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Introduction
Neural ordinary differential equations (NODEs) represent a groundbreaking fusion of deep
learning and differential equations [1]. Mathematically, NODEs rule the evolution of an
absolutely continuous state trajectory x = x(t) : [0, T ]→ Rd via an ordinary differential
equation parameterized by a neural network,

ẋ =

P∑
i=1

Wi(t) ◦ σ(Ai(t)x + Bi(t)).

x(0) = x0,

where P is the number of neurons per layer, and {Ai(t),Wi(t), Bi(t)}Pi=1 are
time-dependent network parameters.
NODEs excel at interpolating irregular, time-stamped data, yet a rigorous approximation
theory for general ODEs remains underdeveloped. This work addresses that gap by
establishing universal approximation results and convergence rates for NODE-based
models.

SA-NODEs
In this work [2], we focus on a particular instance of NODEs, namely,

ẋ =

P∑
i=1

Wi ◦ σ(A1
ix + A2

it + Bi),

x(0) = x0.

(1)

Because the weights Wi, matrices A1
i , A

2
i , and biases Bi do not depend on t, we call this

equation semi-autonomous NODEs (SA-NODEs).
The approximated vector field fΘ =

∑P
i=1Wi ◦ σ(A1

ix+A2
it+Bi) is uniformly Lipschitz

continuous in x with the estimate:

‖fΘ(x, t)− fΘ(y, t)‖ ≤

∥∥∥∥∥
P∑
i=1

|Wi| ◦ ‖A1
i‖`2

∥∥∥∥∥ ‖x− y‖. (2)

Approximation theory
I Approximation for ODE systems. Consider the ODE system{

ż = f (z, t), t ∈ (0, T ),

z(0) = z0.
(3)

Under the sole assumption of f being continuous in time and uniformly Lipschitz in
space, the associated SA-NODE approximation xz0(t) satisfies the following universal
approximation property:

‖zz0(·)− xz0(·)‖L∞([0,T ];Rd) ≤ ε.

By further assuming f ∈ Hk
loc with k > (d + 1)/2 + 2, one obtains an upper bound

on the approximation rate

‖zz0(·)− xz0(·)‖L∞([0,T ];Rd) ≤
CT,f√
P
, ∀z0 ∈ [−1, 1]d.

I Approximation for transport equations. For the transport equation{
∂tρ + divx(f (x, t) ρ) = 0, (x, t) ∈ Rd × [0, T ],

ρ(·, 0) = ρ0,
(4)

the SA-NODE–based neural transport equation [3]
∂tρΘ + divx((

P∑
i=1

Wi ◦ σ(A1
ix + A2

it + Bi))ρΘ) = 0,

ρΘ(·, 0) = ρ0.

(5)

achieves the approximation bound

sup
t∈[0,T ]

W1(ρ(·, t), ρΘ(·, t)) ≤ CT,f,ρ0√
P

,

where W1(·, ·) is the Wasserstein-1 distance.

Training strategy
To approximate the ODE system (3) by the SA-NODE (1), we collect a training set

D = {zk(tl)}k,l ⊂ Rd, k = 1, . . . , N, l = 1, . . . ,M,

where N is the number of trajectories and M is the number of time steps. We write the
SA-NODE prediction as xk(tl,Θ). Since the network’s Lipschitz constant is controlled by
its parameters (cf. (2)), we train by minimizing

L(Θ) =
1

NM

N∑
k=1

M∑
l=1

(zk(tl)− xk(tl,Θ))2 + λ

∥∥∥∥∥
P∑
i=1

|Wi| ◦ ‖A1
i‖`2

∥∥∥∥∥ .
To extend training to the transport equation (4) by the neural transport equation (5), we
add L(Θ) with an additional term measuring the discrepancy between ρΘ and ρ along
each trajectory, then obtain the loss function for training transport equations.

Numerical experiments
I Simulations of ODEs. We simulate the Duffing oscillator{

ż1 = z2,

ż2 = z1 − z3
1 + δ cos(ωt),

using SA-NODE where δ = 0.1 and ω = π. Half of the trajectories (N/2) form the
training set; the remainder are used for testing. The following result shows
SA-NODEs simulates well with the system.
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(a) SA-NODEs and exact solution.
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Figure: SA-NODEs solution, exact solution and errors for ODE systems.

I Simulations of transport equations. We model two-dimensional frontogenesis
via the transport equation{

∂tρ(x, y, t) + div ((−yg(r(x, y)), xg(r(x, y))) ρ(x, y, t)) = 0,

ρ(·, 0) = ρ0,

where

g(r(x, y)) =
1

r(x, y)
v sech2(r(x, y)) tanh (r(x, y)),

with r(x, y) =
√
x2 + y2 and v = 2.59807. Over t ∈ [0, 4], SA-NODE achieves

near-perfect alignment with the analytic solution.
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Figure: SA-NODEs and exact solution for Doswell frontogenesis.

Conclusions and Perspectives
I Conclusions

I We introduced SA-NODEs, a unified framework for modeling and approximating both ODE and
transport-PDE dynamics.

I We proved their universal approximation property and established explicit convergence rates.
I Numerical experiments validate SA-NODEs’ accuracy and robustness across multiple test cases.

I Perspectives
I Extend SA-NODEs to inverse problems for system identification and parameter recovery.
I Explore their predictive performance for long-term forecasting in complex dynamical systems.
I Incorporate SA-NODEs into model predictive control (MPC) pipelines for real-time decision

making.
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