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Introduction

Neural ordinary differential equations (NODEs) represent a groundbreaking fusion of deep
learning and differential equations [1]. Mathematically, NODEs rule the evolution of an
absolutely continuous state trajectory & = x(t) : [0, 7] — R via an ordinary differential
equation parameterized by a neural network,

&= Wilt)oo(A )z + B(1))

x(0) = x,

where P is the number of neurons per layer, and {A;(t), W;(t), B;(t)};_, are
time-dependent network parameters.

NODEs excel at interpolating irregular, time-stamped data, yet a rigorous approximation
theory for general ODEs remains underdeveloped. This work addresses that gap by
establishing universal approximation results and convergence rates for NODE-based
models.

SA-NODEs

In this work [2], we focus on a particular instance of NODEs, namely,

P
=Y Wioo(Ajz+ Alt+B), )
1=1

Because the weights 1V;, matrices A%, AZZ, and biases B; do not depend on ¢, we call this
equation semi-autonomous NODEs (SA-NODEs).

The approximated vector field fo = E,f; Wioo(Alx + At + B;) is uniformly Lipschitz
continuous in @« with the estimate:

P
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Approximation theory

» Approximation for ODE systems. Consider the ODE system

(2= f(z,0), t € (0,T),

<\Z(O) — 20- (3)

Under the sole assumption of f being continuous in time and uniformly Lipschitz in
space, the associated SA-NODE approximation z, (%) satisfies the following universal
approximation property:

[22(+) — %(')HM([O,T];W) < €.

By further assuming f € H{ with k > (d +1)/2 + 2, one obtains an upper bound
on the approximation rate

Cr
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2k
» Approximation for transport equations. F\ér_the transport equation
{815,0 +div,(f(z,t)p) =0, (z,t)€RYx[0,T],
p(+,0) = po,
the SA-NODE-based neural transport equation [3]

P

Opo + dive((Y Wiooa(Alx + Aft + B;))pe) = 0, (5)
1=1

pe(+,0) = po.

achieves the approximation bound

C
SUup Wl(p(vt)vp@(vt)) < L

t€|0,7T] \/ﬁ 7

where Wy (-, -) is the Wasserstein-1 distance.

Training strategy

To approximate the ODE system (3) by the SA-NODE (1), we collect a training set
DZ{Zk(tl)}kleRd, k=1,...,.N,l=1,..., M,

where N is the number of trajectories and M is the number of time steps. We write the
SA-NODE prediction as x(t;, ©). Since the network's Lipschitz constant is controlled by
its parameters (cf. (2)), we train by minimizing

LN P
1(6) = 233 (aalt) — (6. 0) + A || (Wil o 141
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To extend training to the transport equation (4) by the neural transport equation (5), we
add L(©) with an additional term measuring the discrepancy between pg and p along
each trajectory, then obtain the loss function for training transport equations.
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Numerical experiments

» Simulations of ODEs. We simulate the Duffing oscillator
4
Zl — <2,

9

B =21 2} + 0 cos(wt),

using SA-NODE where 6 = 0.1 and w = 7. Half of the trajectories (/N/2) form the
training set; the remainder are used for testing. The following result shows

SA-NODEs simulates well with the system.

Errors of SA-NODEs

SA-NODEs Exact le—2
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(a) SA-NODEs and exact solution. (b) Errors.

Figure: SA-NODEs solution, exact solution and errors for ODE systems.

» Simulations of transport equations. WWe model two-dimensional frontogenesis
via the transport equation

{6‘75/)(3?, y,t) +div ((—yg(r(z,y)), zg(r(z,y))) plx,y,t)) = 0,
/0(°> O) — P0,

h
where |

r(@,y)
with r(z,y) = /22 + y* and © = 2.59807. Over t € [0, 4], SA-NODE achieves
near-perfect alignment with the analytic solution.

v sech’(r(z,y)) tanh (r(z, y)),
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Figure: SA-NODEs and exact solution for Doswell frontogenesis.

—-1.00

Conclusions and Perspectives

» Conclusions
» We introduced SA-NODEs, a unified framework for modeling and approximating both ODE and
transport-PDE dynamics.
» We proved their universal approximation property and established explicit convergence rates.
» Numerical experiments validate SA-NODEs' accuracy and robustness across multiple test cases.

» Perspectives
» Extend SA-NODEs to inverse problems for system identification and parameter recovery.
» Explore their predictive performance for long-term forecasting in complex dynamical systems.
» Incorporate SA-NODEs into model predictive control (MPC) pipelines for real-time decision
making.
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