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Abstract— In this article, we explore the effects of memory
terms in continuous-layer Deep Residual Networks by studying
Neural ODEs (NODEs). We investigate two types of models.
On one side, we consider the case of Residual Neural Networks
with dependence on multiple layers, more precisely Momentum
ResNets. On the other side, we analyse a Neural ODE with
auxiliary states playing the role of memory states.

We examine the interpolation and universal approximation
properties for both architectures through a simultaneous con-
trol perspective. We also prove the ability of the second model
to represent sophisticated maps, such as parametrizations of
time-dependent functions. Numerical simulations complement
our study.

Memory models, NODEs, Momentum ResNets, Simulta-
neous Control, Simultaneous tracking controllability, Univer-
sal Approximation, Deep Learning

I. INTRODUCTION

A. Objectives

In the last decades, ever-increasing computational power
has enabled the development of Neural Networks with com-
plex architectures to perform in different tasks in Machine
Learning. However, the power of these tools is often mea-
sured by engineering experiments, with no deep analysis of
the model’s potential and limits. In this paper, we analyse
interpolation and approximation properties of two models
involving memory terms in some fundamental tasks of Su-
pervised Learning, namely the representation of functions.
We will show in particular that these models have advantages
with respect to the Neural ODEs previously studied in [17].

We first study the continuous-layer version of Momentum
ResNets, recently proposed in [18], with a ReLU activation
function. Precisely, the Neural ODE we investigate is

ẍ+ ẋ = w(t)σ(〈a(t), x〉+ b(t)), (I.1)

where x(t) ∈ Rd, σ : R → R is the ReLU activation
function, a,w ∈ L∞((0, T ),Rd) and b ∈ L∞((0, T ),R).
We will prove an interpolation result and the universal
approximation property.

Then, we introduce a class of Neural ODEs with auxiliary
states, p, representing the memory of the system, namely{

ẋ = W~σ(Ax+ Cp+ b1) + b2,

ṗ = uσ(〈d, x〉+ f),
(I.2)
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where x(t) ∈ Rd and p(t) ∈ Rdp , C ∈ L∞((0, T );Rd×dp),
W,A ∈ L∞((0, T );Rd×d), d, b1, b2 ∈ L∞((0, T );Rd), f ∈
L∞((0, T );R) and ~σ : Rd → Rd is the componentwise
application of the activation function. We will prove an inter-
polation result for maps giving a continuous parameterization
of time-dependent functions, precisely

M : Ω ⊂ Rd → C([0, T ];Rd) ∩BV ([0, T ];Rd), (I.3)

with Ω a bounded set. We first investigate the ability of this
type of NODEs to interpolate samples of M for all times
in (0, T ), and then to approximate M through the flow of
(I.2). These correspond, respectively, to the properties of
simultaneous tracking controllability and universal tracking
approximation.

B. Context and notation

Supervised Learning is the branch of Machine Learning
that studies how to learn a function based on a finite col-
lection of samples. To obtain a solution for these problems,
one typically uses a parameterized class of functions; then,
the parameters that correspond to the best candidate in the
class are found through optimization techniques.

Neural Networks (NN) [12] are a common choice of such
parameterized classes of functions. In this article, we focus
on continuous layer versions of Residual Neural Networks
(ResNets), introduced in [9], which have been observed to
outperform of previous classes [11], especially in tasks where
a time structure is present, like in text and video recognition.
ResNets are a collection of Nl ∈ N consecutive layers
of neurons, where the initial data {xi}Ni=1, N ∈ N, are
transformed following a relation of the type{

xk+1,i = xk + g(xk;ωk), k ∈ {0, ..., Nl − 1},
x0,i = xi ∈ Rd.

(I.4)

Here, ωk are the parameters to be chosen. The peculiarity
of ResNets with respect to previous deep NN architectures
is the presence of an inertia term xk in the definition of the
term xk+1. To fix the ideas, for the Momentum ResNets,
g : R3d+1 → Rd it is going to be

g(x;w, a, b) := wσ(〈a, x〉+ b), (I.5)

where ω := {wk, ak, bk}Nl

k=1 are parameters such that
wk, ak ∈ Rd and bk ∈ R, and 〈·, ·〉 denotes the scalar
product. The function σ is the so-called activation function.
When not stated otherwise, σ : R → R will denote the
Rectified Linear Unit (ReLU) defined by

σ(x) := max{x, 0}. (I.6)

In practical situations, the controls are found through
optimization techniques. In the context of continuous-layer



models, this is equivalent to solve optimal control problems,
see [1], [6], [20].

The ResNet architecture (I.4) can be seen as an Euler
discretization of a continuous time model, see [2], [6], [8],
[19]. In fact, as the number of layers Nl goes to infinity, one
can understand (I.4) as the discretization of the ODE

ẋ = g(x;ω(t)), (I.7)

as was done in [19]. By reading the parameters ω(t) as
time-dependant functions, we can solve the approximation
problems from an ODE point of view. In fact, for all times
T > 0 there exists a flow

φT (x;w, a, b), (I.8)

which is the solution to the equation (I.9) at T for the initial
condition x and functions w, a and b. We will read w, a
and b as the controls of the equation (I.9). We will ask if
the flow (I.8) at a certain time T is able to approximate a
desired function for suitable controls.

One basic question to address is if a NN is able to
interpolate any set of samples of the target function; that
is, given a sample of initial points {xi}Ni=1 ⊂ Rd, with d
and N in N, and of target points {yi}Ni=1 ⊂ Rd, we ask
if there exist a function ω such that for all i = 1, . . . , N
we have that φT (xi, ω) = yi. This is a simultaneous
control problem [14], [15]. Along the paper, interpolation
is equivalent to a simultaneous control problem. This issue
has been considered, for instance, in [17] through explicit
constructions and in [3] using Lie Bracket techniques.

Another important theoretical question to ask is if, given
a function f : Ω ⊂ Rd → Rd, d ∈ N, Ω a bounded set, a NN
is able to approximate f as accurately as desired on Ω, for
example in the L2 norm. This property of the NN is called
universal approximation, see for instance [4], [5], [7], [10],
[13], [16].

Now we turn our attention to being able to approximate
more general maps, as the one in (I.3), through a Neural
ODE. We consider a collection of samples of M , {yi =
M(xi)}Ni=1 with yi ∈ C0((0, T );Rd) ∩ BV ((0, T );Rd).
We say that the dynamics (I.2) is simultaneously tracking-
controllable if there exist a control functions ω such that the
associated flow φt(xi, ω) is close to yi(t) for every i and
t ∈ [0, T ]. The tracking controllability has been studied in
some problems in control of PDEs, for instance see [1].

We will also discuss the universal tracking approximation,
where the goal is to approximate the map M with the flow
given by the NODE (I.2).

In [17], the authors considered the NODE

ẋ = w(t)σ(〈a(t), x〉+ b), (I.9)

that from now on, to make a clear distinction, we will call a
first-oder NODE. When the initial data and the targets are in
Rd, the dynamics of (I.9) is not able to interpolate exactly
any set of points. This happens because, by uniqueness of
the solution of (I.9), one cannot drive two distinct points to
the same target; so, if two targets coincide, there cannot be
simultaneous exact controllability.

C. The Momentum ResNets

In the recent paper [18], the authors proposed a new model
of continuous layer ResNets. Precisely, instead of (I.9), they
use the equation with parameters θ ∈ Rd×d given by

εẍ+ ẋ = g(x, θ), with (x(0), ẋ(0)) = (xi, pi),

which is called a Momentum ResNet. A major difference
with respect to NODEs is that two points can share the
same position and be distinguished by their velocity. More-
over, Momentum ResNets allows the authors of [18] to use
a backpropagation algorithm requiring less memory with
respect to the NODEs. In this framework, the parameter
ε acts as a measure of the memory of the system, seen
as the dependence on previous layers. When ε → 0, one
recovers the NODE. Regarding the fundamental properties of
the Momentum ResNets, the authors investigate the class of
functions that can be recovered via the Momentum ResNets
with a linear function g(x) = θ x, θ ∈ Rd×d, proving that
they can recover diagonalizable matrices satisfying a certain
condition on their eigenvalues.

In this paper, the first model we investigate is the Momen-
tum Resnet{

ẍ+ ẋ = w(t)σ(〈a(t), x(t)〉+ b(t)),

(x(0), ẋ(0)) = (xi, pi),
(I.10)

with σ as in (I.6) and w, a ∈ L∞((0, T );Rd), and b ∈
L∞((0, T );R). Notice that, for the sake of simplicity of the
mathematical dissertation, we took ε = 1, thus taking into
account the case of a strong memory dependence. However,
the dynamical properties we will employ are not dependent
on this parameter. We are going to investigate simultaneous
controllability and universal approximation in L2 for the
Momentum ResNets as in (I.10). Following the intuitions in
[17], our proofs are relying on constructive arguments arising
from the analysis of the exact dynamics of (I.10).

We stress that Momentum ResNets can also be seen
as memory like models. Indeed, the problem in (I.10) is
equivalent to{

ẋ = −x+
∫ t

0
w(s)σ(〈a(s), x〉+ b(s))ds,

x(0) = xi,
(I.11)

where we see that the past influences the dynamics of the
system. Notice that we will have dependences on at least
two layers when considering the discretization of the second
derivative of the ODE.

D. A class of Neural ODEs
A different way to include memory in the system is to

have some auxiliary states playing the role of memory terms
in the architecture. We will consider memory models of the
form{

xk+1 = xk + gx(xk, pk;ωk), k = 1, . . . , Nl − 1,

pk+1 = pk + gp(xk, pk;ωk), k = 1, . . . , Nl − 1,
(I.12)

where x ∈ Rd is the state variable and p ∈ Rdp , dp ∈ N,
is considered the memory variable. As for the ResNets, we



will focus on a continuous time version of (I.12), precisely{
ẋ = wσ(〈a, x〉+ 〈c, p〉+ b),

ṗ = uσ(〈d, x〉+ f),
(I.13)

with a, b, w as before, c, u, d ∈ L∞((0, T );Rd), and f ∈
L∞((0, T );R). Note that, if we set the initial memory to be
0, the equation can be written as:

ẋ = wσ

(
〈a, x〉+

〈
c,

∫ t

0

uσ (〈d, x〉+ f) ds

〉
+ b

)
.

Models with memory states, even continuous ones, are not
new in the literature, see [21] and the references therein.
By using the properties of the first-order NODEs (I.9)
analysed in [17], it will be easy to deduce simultaneously
controllability and the universal approximation property for
(I.13).

The simultaneous controllability for (I.13) allows to con-
trol both the state and the memory variable. This property
is, for us, crucial to prove the simultaneous tracking con-
trollability and universal tracking approximation. However,
in order to do so, we need to extend the system (I.13)
to a more general one, given in (I.2). The model (I.2) (as
well as (I.13)) could be understood as a Neural ODE in a
higher dimensional space, in which we only consider some
components as the state. In particular, we will consider the
components of p as memory states. We will refer to (I.2) as
a Memory NODE, to make a even clearer distinction with
respect to the first-order NODE in (I.9).

We are able to prove simultaneous tracking controllability
for Memory NODEs; in particular, we will be able to
control the trajectories on an interval [0, T ] for any time
horizon T > 0. In our proof, the price to pay to obtain the
simultaneous tracking controllability property is to consider
a minimum dimension on the memory. In fact, we need
p ∈ Rdp with dp = 2d, which means that we have to
consider a system that has bigger size with respect to (I.10)
and (I.9). Moreover, also the controls take values in a higher
dimensional space. However, we do not know if this is a
fundamental requirement or if it is just technical. Given
the results of simultaneous tracking control and universal
approximation, the universal tracking approximation follows
as a corollary.

E. Organization of the paper

The paper is organized as follows:
• In Section II, we state in detail the results concerning

Momentum ResNets, and we will discuss the dynamical
properties that allows us to prove the simultaneous
controllability and the universal approximation theorem.
The proofs for these theorems are in Appendix A.

• In Section III, we state the main results concerning
Memory NODEs, the simultaneous control of the state-
memory pair, the tracking simultaneous controllability,
and we will prove the universal tracking approximation.
The complete proofs for these theorems are in Appendix
B.

• In Section IV, we will complete the study providing
numerical simulations for those models in the discussed
tasks. Specifically, we applied the systems to the case
of indicator and sinusoidal functions.

• We will give some final comments in Section V.

II. THE MOMENTUM RESNETS

In the first part of this section, we state and comment
the results for the Momentum ResNets. In Subsection II-
A, we will present and comment the dynamics of (I.10). In
Subsection II-B, we will give a sketch of the proofs. The
complete proofs of the results are presented in the Appendix
A.

Simultaneous controllability-Interpolation. We now
consider the problem of simultaneous controllability, which
is, driving with the same controls each point xi in the
collection {xi}Ni=1, with N ∈ N, to its given target yi.

Theorem II.1. Fix T > 0, let d > 2 and let
{(xi, 0), yi}Ni=1 ⊂ Rd × Rd × Rd, with N ∈ N, such that
xi 6= xj if i 6= j. Then, there exist control functions w, a ∈
L∞

(
(0, T ),Rd

)
and b ∈ L∞ ((0, T ),R) such that the flow

associated to a, w, b according to (I.10) satisfies

yi = PxφT ((xi, pi); a,w, b) ∀i ∈ {1, ..., N}. (II.1)

where Px is the projection to the x component of the system.

Remark II.2 (Complexity of the controls). The proof is
constructive and makes use of piecewise constant controls.
The maximum number of required switches is of the order
of N.

The proof of Theorem II.1 is similar to the proof of
the Simultaneous Control Theorem in [17]. The idea is to
construct a flow driving the points to their targets through
piecewise constant controls, for which the behaviour of the
system can be written explicitly.

An advantage of Momentum ResNets with respect to the
first order Neural ODE is the exact interpolation for any
target.

Here we will show that one can make use of the flow of
(I.10) to have a universal approximation.

In [17], one shows that the simultaneous control result plus
the possibility of generating contractive flows in every Carte-
sian direction enables to have a universal approximation. In
the case of Momentum ResNets, define

Si := Ri−1 × R+ × Rd−i

and let Vi ⊂ Rd. We say that the dynamics of (I.10) can
generate contractive flows in the i−th component if there
exists some controls ωi and an open set of velocities Vi,
with {0}d ∈ Vi, such that the map φt(·;ωi) satisfies

Px(φt(Si, Vi;ωi)) ⊂ Ri−1 × R+ × Rd−i, ∀t > 0,

lim
t→+∞

Px (φt(x, v;ωi))
(i)

= 0, ∀ x ∈ Si, v ∈ Vi.

Momentum ResNets are able to generate a contractive
flow in all the components, see Figure 1. However, the



difference with respect to the first order NODEs (I.9) is that
for Momentum ResNets such contraction cannot be done in
arbitrarily short time; this is the reason why Theorem II.1
requires a minimal controllability time.

Nonetheless, it has to be mentioned that since the proof
is constructive, it does not mean that such universal approx-
imation cannot be obtained by other means with arbitrary
short time.

Corollary II.3. Let f ∈ L2(Ω;Rd) with Ω ⊂ Rd a bounded
domain. Then, for any ε > 0, there exist Tmin > 0,
dependent on ε, such that for all T > Tmin there exist
controls w, a ∈ L∞((0, T ),Rd), and b ∈ L∞((0, T );R)
whose associated flow according to (I.10) satisfies

‖f(·)− PxφT ((·, 0); a,w, b)‖L2(Ω) 6 ε,

where Px is the projection to the state component of the
system.

A. Dynamical features of the Momentum ResNets

Let us briefly describe the different types of flows that
allow us to guarantee the results. For doing so, we will
take controls a, w ∈ Rd and b ∈ R; in this Subsection,
we consider them to be time independent. More specifically,
we will analyze a component at a time; fix i ∈ {1, ..., d}
and consider a in the form a(k) = δi,k, where δi,k is the
Kronecker delta. By a simple translation, it is enough to
understand the flows for b = 0. The ODE (I.10) can be
rewritten as:{

ẍ+ ẋ+ w(t)〈a(t), x〉 = 0 if 〈a(t), x〉 > 0

ẍ+ ẋ = 0 if 〈a(t), x〉 6 0
(II.2)

which component-wise is equivalent to{
ẍ(j) + ẋ(j) + w(j)x(i) = 0, if x(i) > 0,

ẍ(j) + ẋ(j) = 0, if x(i) 6 0,
(II.3)

Of all possible cases, take into account these three:

1) ẍ(i) + ẋ(i) = 0 Thus, we analyse the dynamics in the
inactive hyperplane of the activation function. Denoting
ẋ = p, the solution is

x(j)(t) = x(j)(0) + (1− e−t)(p(j)(0))
p(j)(t) = p(j)(0)e−t

(II.4)

2) ẍ(i) + ẋ(i) + wx(i) = 0 It corresponds to the case in
which we are in the side of the space in which the
activation function is not zero and j = i. The dynamics
is (

x
p

)′
= A

(
x
p

)
=

(
0 1
−w −1

)(
x
p

)
,

where the eigenvalues and eigenvectors of the matrix A
are given by

λ± =
1

2
±
√

1

4
− w, v± =

(
1

− 1
2 ±

√
1
4 − w

)
.

Here, three cases arise
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Fig. 1: Phase plane in x(1) and p(1) for different flows, the black line
are critical points for the dynamics. (Top-left): w = 5 the half-oscillatory
regime. (Top-right): w = 0 damping regime. Bottom: i = j with w = 0.2

for x1 > 0 (compressive flow).

a) if w ∈ (0, 1/4), the origin is an attractor;
b) if w > 1/4, the dynamics behaves as a damped

oscillator;
c) if w < 0, the origin is a saddle point.

3) ẍ(j) + ẋ(j) + w(j)x(i) = 0 with i 6= j. Consider w(j) 6=
0, and assume that the quantity q = w(i)x(i) is time
independent. Then, the solution is

x(j)(t) = x(j)(0) + (1− e−t)p(j)(0)

+ q(t− 1 + e−t),

p(j)(t) = e−tp(j)(0) + q(1− e−t).

(II.5)

B. Ideas of the proofs

The control strategy will consist on splitting the time
interval (0, T ) in two (0, T/2) and (T/2, T ) and each
interval is also divided in several subintervals and proceed
interatively. In (0, T/2) the goal will be to act appriopiately
on the first component of each point whereas in (T/2, T )
the objective will be to act on the remaining components for
each point. The argument is similar in both intervals, very
schematically the procedure is:
1) In each subinterval a specific point is chosen
2) One chooses a control that will perturb the dynamics of

several points with the goal of modifying appropriately
the trajectory of the chosen point so that the free dynam-
ics will bring the point to its target.

3) We will make use of the fact that the control acts only in
half space to not perturb the trajectories that have already
been appropriately controlled.

Setting x(0) and p(0) in (II.4) as the output of (II.5) one
arrives at:

x(j)(T ) = x(j)(0) + (1− e−t)p(j)(0)+

(1− e−(T−t))(e−tp(j)(0))+

q(t− 1 + e−t + (1− e−(T−t))(1− e−t))
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x(2)−axis
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Controlled phase

Free phase

ẍ+ ẋ = q

ẍ+ ẋ = 0

Fig. 2: Representation of the strategy used for controlling points. The red
point (in the 2nd quadrant) represents the point one aims to control to the
red circle (in the 4rth quadrant). In red, the free (uncontrolled) trajectory of
the point when the control is not active in the region where the point is. In
purple, the part of the trajectory where the control is active. The controlled
phase ends before reaching the target, letting the point naturally reach the
target following the free dynamics.

One can realize that, for any T > t > 0, the expression
above is a line, and therefore, one can always choose q so
that at the time T the state is at the desired position.

The universal approximation follows with the same argu-
ments than in [17]:
1) Consider a suitably fine mesh made out of hyperrectan-

gles, and apply a compression to each rectangle.
2) By Theorem II.1, we control a point of each compressed

rectangle to its target. We can then conclude by continuity
of the ODE with respect to the initial data.

We point out that for w ∈ (0, 1/4) we can generate a
compressive flow. One can see that using the eigenvectors
of A one can define an invariant region inside {x(i) > 0}
such that all the trajectories converge to the origin (0, 0), see
Figure 1.

III. A NEURAL ODE MODEL

A. Simultaneous control of the state-memory pair

Let d, dp ∈ N and consider the following ODE system:
ẋ = w(t)σ (〈a(t), x〉+ 〈c(t), p〉+ b(t)) ,

ṗ = u(t)σ (〈d(t), x〉+ f(t)) ,

x(0) = xi, p(0) = 0.

(III.1)

We will call x the state component of the system and p the
memory component.

Our first goal is to be able to simultaneously control both
the state and the memory at the final time for any target
configuration with distinct state-memory pairs. The fact of
being able to control also the memory will be key for the
simultaneous tracking control problem that we will describe
later on.

Proposition III.1 (Memory-Simultaneous controllability).
Let d, dp ∈ N, T > 0 and consider {(xi, pi)}Ni=1 ⊂ Rd×Rdp
to be N distinct initial data for (III.1) and let us consider

{(yi, ϕi)}Ni=1 ⊂ Rd×Rdp to be distinct target points. Then,
there exist controls w, a, d, b2 ∈ L∞((0, T );Rd), u, c ∈
L∞((0, T );Rdp) and b1, f ∈ L∞((0, T );R) such that

φT ((xi, pi);ω) = (yi, ϕi) i ∈ {1, ..., N}
where by φT ((x, p), ω) we denote the solution at time
T of (III.1) with initial data (x, p) and controls ω =
{w, a, c, b1, b2, u, d, f}.
Remark III.2 (Approximate controllability). We have as-
sumed that the targets are distinct. If two targets coincide
(in state and memory), we cannot drive two points exactly
there by the uniqueness of solution of the ODE. However, it
is certainly possible to obtain an approximate controllability
result, since we can control both points arbitrarily close to
the common target by changing one of the targets.

Remark III.3 (Complexity of the controls). The proof is
constructive and inductive using piecewise constant controls.
Therefore, the maximum required number of switches is of
the order of N .

Remark III.4 (Other activation functions). One will notice
that the only thing used from the activation function is that
σ is globally Lipschitz, σ(x) = 0 if x 6 0 and σ(x) > 0 if
x > 0.

The proof of Proposition III.1 makes use of an extension
of the techniques developed in [17] for the control of

ẋ = w(t)σ (〈a(t), x(t)〉+ b(t)) . (III.2)

In [17], using Cartesian flows, the authors can prove a
simultaneous control result for any d > 2.

In this proof, we have two aspects to deal with. Firstly,
notice that the field of the memory variable only depends
on the state component, so, even if similar mechanisms
to the case of first order the Neural ODE (I.9) can be
applied, the intrinsic limitation of only depending on the state
components should be discussed. Secondly, the dimensions
d and dp might not coincide. It would be certainly simpler to
consider d = dp, but as we shall see later on, the dimension
of the memory plays a crucial role in the approximate
simultaneous tracking controllability.

Let us briefly remind some key features of the control of
the Neural ODE for d = 2 shown in [17]. The dynamics is(

x(1)

x(2)

)′
=

(
w1(t)
w2(t)

)
σ(〈a(t), x〉+ b(t)).

By using flows of these two types (see Figure 3),(
x(1)

x(2)

)′
=

(
w1

0

)
σ(a2x

(2) + b) (III.3)

and (
x(1)

x(2)

)′
=

(
0
w2

)
σ(a1x

(1) + b) (III.4)

one can prove the approximate simultaneous controllability
(see also Section II for Momentum ResNets). As one can
see from Figure 3, the flows associated to (III.3) and (III.4)
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Fig. 3: (Left) flow associated to (III.4), (Right) flow associated to (III.3)

freeze one side of the hyperplane, selected by 〈a, x〉+b = 0,
and cause a parallel movement in the nonfrozen half space.

The main feature is that, in the equations in (III.3) and
(III.4), the evolution of one component, say x(1) does not
depend on x(1) itself, but on the other components. For this
reason, even with the considered system (III.1), the evolution
of the memory component does not depend on itself, so we
can still have a simultaneous controllability result. In the
Appendix B, we will provide a proof of the simultaneous
control result for the Neural ODE.

The proof is postponed into the Appendix B-A

B. Simultaneous tracking control

The goal of this section is to show how by the memory
can help to obtain a simultaneous tracking controllability
property.

We will consider a finite collection of samples of a
continuous function M ,

M : Ω ⊂ Rd 7→ C([0, T ];Rd) ∩BV ([0, T ];Rd).

That is, we have a dataset of the form

{(xi, yi = M(xi)}Ni=1 ⊂ Rd × C([0, T ];Rd) ∩BV ([0, T ];Rd).

For being able to approximate the map M , we will consider
an extension of (III.1). Instead of considering a scalar product
between two vectors 〈a, b〉 or 〈c, p〉 in the state equation, we
will consider a matrix vector product. Precisely, we take

ẋ = W~σ (Ax+ Cp+ b1) + b2,

ṗ = uσ (〈d, x〉+ f) ,

x(−τ) = xi, p(−τ) = 0.

(III.5)

where b1, b2 ∈ L∞((−τ, T );Rd),
W,A ∈ L∞((−τ, T );Rd×d), C ∈ L∞((−τ, T );Rd×dp).
Note that the memory component of the system is the same
as in (III.1). Again, notice that (III.5) can be rewritten as:

ẋ = W~σ

(
Ax+ C

∫ t

−τ
uσ (〈d, x〉+ f) ds+ b1

)
+ b2.

On the other hand, for suitable controls, the system (III.5)
has the same flows as (III.1). In particular, Theorem III.1
also holds for (III.5) (and also the universal approximation
of [17]).

The following theorem is the simultaneous tracking con-
trollability, that we are able to achieve by taking the di-
mension of the memory as, at least, the double of the state
dimension.

Theorem III.5 (Simultaneous Tracking controllability).
Let dp > d and let {(xi, yi)}Ni=1 ⊂ Rd ×(
BV ((0, T );Rd) ∩ C0((0, T );Rd)

)
, and fix τ > 0.

Then, for every ε > 0, there exist controls W ,
A ∈ L∞((−τ, T );Rd×d), C ∈ L∞((−τ, T );Rd×dp) and
d, b1, b2 ∈ L∞((−τ, T );Rd), u ∈ L∞((−τ, T );Rdp) and
f ∈ L∞((−τ, T );R) such that the solution of (III.5)
satisfies:

sup
06t6T

|φt((xi, 0);ω)− yi(t)| < ε ∀i ∈ {1, ..., N},

with ω = {W,A,C, d, b1, b2, u, f}.
In the interval (−τ, 0), we use the controls to prepare the

memory variables before the simultaneous tracking control
process. We will postpone the proof in the Appendix B-B,
giving only some flavour here.

The proof of the theorem is based on the following two
observations. We will consider dp = 2d; from here on, we
will make an abuse of notation by writing p = (p(1), p(2))
where p(1), p(2) ∈ Rd.
1) We begin by approximating linear maps of the form yi =

Pit+Bi with Pi, Bi ∈ Rd. For every i ∈ {1, ..., N} let
Bi be the targets for the state for Theorem III.1 and pi
the targets for the memory to be found hereafter. Then,
consider A = 0, b1 = 0, W = Id; the dynamics of the
state equation is

x′ = ~σ(Cp) + b2.

We choose C = (Id|0); since we consider σ to be the
ReLU, we reduce the problem to finding b2 ∈ Rd such
that

p
(1)
i = Pi − b2 ∈ Rd+ i ∈ {1, ..., N},

which is always possible. Then the dynamics reads

x′ = Pi, x(0) = Bi.

The solutions to the latter are precisely Pit+ Bi for all
i ∈ {1, ..., N}.

2) The second point is to use the first and second component
of the memory in an alternate manner. We will first
approximate the target functions by means of piecewise
linear functions of time, as Figure 4 shows. Then, we
will use an alternate strategy, while we are using the first
component of the memory to control the system, we will
reconfigure the second component to be prepared for the
next interval as Figure 5.

Remark III.6 (Other activation functions). In the proof of
Theorem III.5 we have strongly used the structure of the
ReLU activation function. However, similar constructions
can be done for activation functions that satisfy

σ(x) = 0 x 6 0, σ(x) > 0 x > 0

with σ being differentiable from the right, i.e.

∃ lim
h→0+

σ(h)

h
=: σ′+(0).
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Fig. 4: Piecewise linear approximation of the target functions. The
solid lines represent the target functions, while the dotted coloured lines
represent its piecewise linear approximation. The approximation generates
time intervals (tk, tk+1) where the memory will be used to control the
trajectory.

p(1)

p(2)

x

Memory use Reconfiguration

Reconfiguration ReconfigurationMemory use
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Fig. 5: Qualitative representation of the alternate control strategy, while
we are using p(1) to approximate in a time interval (Memory use), we are
preparing p(2) for the next time interval (Reconfiguration). In the successive
time interval the roles are interchanged, we use p(2) for controlling while
p(1) is being prepared for the next time interval.

Roughly speaking, the property that one can use is that
around 0 the activation function is like the ReLU

σ(x) ≈ max{0, σ′+(0)x} if |x| << 1.

The proof is adapted by simply choosing small target memo-
ries in the positive cone, i.e. pi ∈ Rd+∩Bδ(0) for δ > 0 small
enough and by choosing W = αId for α ∈ R big enough so
that the memory component that needs to be used, say p(1)

i,k ,
fulfills

αp
(1)
i,k = Pi,k − b2,k

where Pi,k − b2,k are as in the proof of Theorem III.5.

Corollary III.7 (Universal Tracking Approximation). Fix
dp > 2d. Let Ω ⊂ Rd be a bounded set and M ∈
C0
(
Ω;C0((0, T );Rd) ∩BV ((0, T );Rd)

)
. Fix τ > 0, then

for every ε > 0 there exist controls ω such that the solution
of (III.5) satisfies:

sup
t∈(0,T )

‖M(·, t)− Pxφt(·;ω)‖L2(Ω) < ε,

where Px is the projection into the state variables.

Proof: One can observe that, using the compression
Lemma 1 of [17] in the universal approximation for the
state component, and then the simultaneous tracking control

Theorem III.5, we have a universal tracking approximation
for functions in C0

(
Ω;C0((0, T );Rd) ∩BV ((0, T );Rd)

)
for Ω ⊂ Rd bounded.

IV. SIMULATIONS

This section is devoted to illustrating through simulations
the generalization properties discussed above of the models
considered.

We will consider the two types of problems studied in the
paper
1) Learning a function;
2) Simultaneous tracking controllability.

A. Learning a function

For the first problem, we choose a function

g : [−1, 1]2 → R,

precisely the characteristic function of a circle centred in
(0, 0). We take N = 100 random samples of it. Then, we
use these samples to train a Neural ODE (see Figures 6 and
7) and a Momentum ResNet (see Figure 8 and 9) and observe
the differences.

We employ a least-squares approach by minimizing

J({xi, yi}Ni=1) =
1

N

N∑
i=1

‖Pxi(T ;ω)− yi‖2L2 + β‖ω‖2L2 ,

where by ω we understand the controls as well as the
projection P , i.e. ω = (a,w, P, b) belongs to

X := (L∞((0, T );R2))3 × L∞((0, T );R)

xi(T ;ω) is the solution at time T of either a Momentum
ResNet as in (I.1) with initial datum (xi, 0) or a Neural ODE{

x′ = w(t)σ(〈a, x〉+ b),

x(0) = xi.

For both models, we take a sigmoid activation function.
Being S a set and χS the characteristic function of such

set, we measure the generalization error by means of the L1

norm, i.e.
error = ‖PφT (x;ω)− χS‖L1 ,

where with an abuse of notation we denote PφT both the
solution of the Neural ODE and the projection to the position
of the solution of the Momentum ResNet.

At the final time, a suitable hyperplane H separates the
training points, determining whether their image is 0 or 1.
That is, this hyperplane fix the decision boundary. Since the
map

φT : Ω→ Rd

is a homeomorphism, we have that (φT )−1(H) is topolog-
ically equivalent to a hyperplane. In particular, the decision
boundary for a first-order NODE cannot have the same
topology of the boundary of the circle, which is a closed
curve. So, the decision boundary touches the border of the
square in Figure 6, misrepresenting some points that are far
from the border of the circle.



Fig. 6: Neural ODE with trained with 100 data points sampled in a disk,
25 layers for the time discretization with T = 10, β = 10−6.

Fig. 7: Error plot for the Neural ODE with trained with 100 data points
sampled in a disk, 25 layers for the time discretization with T = 10,
β = 10−6.

On the other hand, for Momentum ResNets, the decision
boundary is determined by a projection only on the state
variable. This means that the decision boundary is not
necessarily topologically equivalent to a hyperplane. From
the simulations, we see that the Momentum ResNet has been
able to capture the topology of the set S and to perform the
task with smaller error.

B. Simultaneous tracking

We will consider a function

M ∈ C0
(
(0, 1);C0((0, T );R) ∩BV ((0, T );R)

)
,

precisely M(x) = sin(xt). We take a sample of 5 random
points xi ∈ (0, 1) and define

yi = M(xi).

Fig. 8: Momentum Resnet with trained with 100 data points sampled in
a disk, 25 layers for the time discretization with T = 10, β = 10−6.

Fig. 9: Error plot for the Momentum ResNet with 100 data points sampled
in a disk, 25 layers for the time discretization with T = 10, β = 10−6.
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Fig. 10: (Top-Left) Function M(x) = sin(0.25xt) (Top-Right) 5 equis-
paced samples in (0, 1) of the function M . The blue dotted line indicates the
time 0 (Center-Left) Generalization (Center-Right) Interpolation, trajectories
in the training data. The blue dotted line indicates the time 0 (Bottom-Left)
Generalization error (Bottom-Right) Training error plot. 50 layers have been
considered in the Euler discretization of (I.2).

We minimize the functional

J
(
{xi, yi}Ni=1

)
=

1

N

N∑
i=1

∫ T

0

‖xi(t;ω)− yi(t)‖2L2dt

+ β‖ω‖2X ,

where xi(t;ω) is the solution of{
x′ = wσ(ax+

〈
c,
∫ t
−τ uσ(dx+ f)ds

〉
+ b1) + b2

x(−τ) = xi,

with a, w, d, b1, b2 ∈ L∞((−τ, T );R) and c, u ∈
L∞((−τ, T );R2).

We get an error smaller than 0.063529 for the simultaneous
tracking and an error of 0.11019 for the overall universal
approximation.



V. CONCLUSION

In contrast to first-order NODEs, Momentum ResNets
and Memory NODEs can interpolate exactly any sample of
points. Precisely, given a sample {(xi, yi)}Ni=1 ⊂ Rd × Rd
with xi 6= xj for i 6= j and d,N ∈ N, Momentum ResNets
and Memory NODEs can simultaneously control any point
xi to its corresponding target yi in any given time interval
(see our Theorem II.1 and Proposition III.1). For first-order
NODEs as (I.9), the analogous result (Theorem 2 in [17])
can be achieved only under the hypothesis yi 6= yj for
i 6= j. As explained in the Introduction, the hypothesis of
not coinciding targets is necessary for first-order NODEs
by uniqueness of the solution. Instead, for the models in-
vestigated in this paper, two trajectories can have the same
state variable, provided that they have different velocities or
memory states.

In the simulations (see Section IV), we have implemented
a binary classification, where, at the final step, each poit
is assigned to one of the two class according to a pro-
jection on a hyperplan. Therefore, the decision boundary
is a hyperplane after the transformation carried out by
the flow of the NODE. Since the input-output map is a
homeomorphism, the preimage of the hyperplane, and as
a consequence also the decision boundary, is topologically
equivalent to a hyperplane. This phenomenon is observed
in the simulations. On the other hand, when considering a
Momentum ResNet, the phase-space dimension is doubled
in positions and velocities states, but we only focus on the
position variable to determine the class of the point. Because
of this property, we observed numerically that Momentum
ResNets could have better approximation properties than
first-order NODEs.

In Figures 6 and 8, the task is to approximate the charac-
teristic function of a circle through binary classification using
first order NODEs and Momentum ResNets respectively. In
Figure 6, one may observe that the decision boundary is not
a closed curve whereas in Figure 8 we can observe that the
approximation performed by Momentum ResNets reflects the
topology of the circle.

In fact, when using Momentum ResNets, we assign null
velocity to all initial data. The preimage of the final hy-
perplane is topologially equivalent to a hyperplane in R2d

because we are only observing the intput-output for data
in Rd × {0} (see Figure 11). Hence, the performance of
Momentum ResNets not only has presented a smaller overall
error, but has been qualitatively preferable to first-order
NODEs.

On the other hand, in our Corollary II.3 for universal
approximation with Momentum ResNets, we have a minimal
controllability time which was not present in first-order
NODEs. However, we don’t know if this is a structural
problem or if it is possible to prove this controllability result
for any time interval with a different proof.

For Memory NODEs, we easily derived simultaneous
controllability and universal approximation from the results
of [17], see Proposition III.1. More importantly, we have

p−axis

x−axis

Decision boundary

Fig. 11: Example of how, with the enlarged phase-space of Momentum
ResNet, one can generate different topologies of the decision boundary.
When restricting to initial data of the form R×{0}, the decision boundary
can have different topologies. The colors red and blue represent the different
classes in the binary classification.

shown the ability of Memory NODEs to approximate maps
of the following type

C

(
Ω;

[
C([0, T ];Rd) ∩BV ([0, T ];Rd)

])
where Ω ⊂ Rd, see Theorem III.5 and Corollary III.7.

The theoretical result is also supported by the simulations
(see Figure 10): with just five samples, we were able to
have relatively good results in both simultaneous tracking
and universal tracking approximation.

Memory issues are a central point in the assessment of a
model, thus it is worth spending some words on this topic.
For Momentum ResNets, the authors of [18] were able to use
a backpropagation algorithm that requires less memory than
with first-order NODEs by exploiting the particular structure
of the dynamics. Hence, Momentum ResNets appear to be
not only more accurate but also more memory-efficient than
first-order NODEs.

On the other hand, for the results concerning the Memory
NODEs in (I.2), we need to require the dimension of the
memory variable to be at least two times the dimension of
the state variable. However, we point out that the requirement
on the memory size depends on the methods of our proof
and we do not know if the same results can be achieved with
less requirements.

We stress again that both models can be formulated in an
integral form, namely

ẋ = −x+

∫ t

0

w(s)σ (〈a(s), x(s)〉+ b(s)) ds

for the Momentum ResNet, and

ẋ = W~σ

(
Ax+ C

∫ t

0

uσ (〈d, x〉+ f) ds+ b1

)
+ b2

for the Memory NODE.
A natural extension of this work could concern the study

of better approximation properties, for instance, universal
approximation in the H1 norm. Furthermore, one could try
to use Memory NODEs to obtain better results than the ones
in [17] for transport equations, for example, trying an L1-
approximate controllability instead of a Wasserstein one.



APPENDIX A
PROOFS: MOMENTUM RESNETS

In this Subsection, we prove Theorem II.1. The proof is
divided into three steps.
1) The first one is a preliminary step.
2) The second concerns the control of the first component

of each point.
3) The third is related to the control of the remaining

components for every point.
Proof:

1) Preparation of the data set. Without loss of generality,
one can ensure the following:

a) There exists C > 0 such that

min
i∈{1,...,N}

x
(1)
i > max

j∈{1,...,N}
y

(1)
j + C

p
(1)
i > 0 ∀i ∈ {1, ..., N}

(A.1)

b) It holds
x

(1)
i (0) 6= x

(1)
j (0) ∀i 6= j (A.2)

In order to do so, one can choose a hyperplane of the form
x(2) + b = 0 such that all the data points belong to one
side of such hyperplane, with b >> 1 such that x(2)

i +b >
0 for all i. Then, by choosing ~w = (0, w(2), 0, . . . , 0) with
w(2) big enough, we can guarantee that after an arbitrarily
small time all points fulfil (A.1). Indeed, by the variations
of constants formula, one obtains(

x(1)(t)

p(1)(t)

)
=

(
x(1)(0) + (1− e−t)p(1)(0)

e−tp(1)(0)

)
+∫ t

0

w(2)(x(2)(s) + b)

(
1− es−t

es−t

)
ds.

(A.3)

For b big enough, all terms in the above integral are
positive between in (0, t). Thus, the flow increases the
first component of every point.
Since the field is globally Lipschitz, there is uniqueness
and global existence of the solution. This means that,
after the procedure above, one has

(xi, pi) 6= (xj , pj) ∀i, j ∈ {1, ..., N}.

Take two points i, j, either (A.2) is fulfilled, x(1)
i 6= x

(1)
j ,

or there exists a component, k, in which the two points
differ x

(k)
i 6= x

(k)
j . Take b = −1/2(x

(k)
i + x

(k)
j ) ,

a = δk,k′ and w = (w(1), 0, ..., 0). Then, by solving the
dynamics for a time that can be choosen arbitarly small,
one obtains that x(1)

i 6= x
(1)
j . This process can be done

for every pair of points that share the first component.
Note that, we also have that p(1)

l > 0 for all l.
Since this step can be done in arbitrary small time, we
will assume that without loss of generality the initial data
fulfills (A.1) and (A.2).

2) Control the first component. Since (A.1) and (A.2) are
fulfilled at t = 0, there exists a positive time T1 such
that in the interval I1 = (0, T1), (A.1) and (A.2) are
fulfilled. Our goal now is to control the first component
of each point. We will proceed iteratively, we split I1 in
N intervals I1 = ∪I1,i = ∪(ti−1, ti) with t0 = 0 and

ti < min{T/2, T1} for i = 1, ..., N , to be determined
later on. In the interval I1,i we will control the position
and velocity of the point i so that at the final time will
fulfil that x(1)

i (T ) = yi (see Figure 2 for a qualitative
representation). However, to be able to achieve exact
controllability, we guarantee the property

x
(1)
i (ti) + p

(1)
i (ti) 6= x

(1)
j + p

(1)
j (tj). (A.4)

Thanks to (A.4), there does not exist an open interval
I ⊂ (T/2, T ) such that

x
(1)
i = x

(1)
j ∀t ∈ I.

Therefore, there exists an interval I ⊂ (T/2, T ) such that

x
(1)
i (t) 6= x

(1)
j (t) i 6= j t ∈ I. (A.5)

Since (A.5) is fulfilled, the points can be ordered with
respect to their first component and there is a hyperplane
of the form x(1) = c separating any two points. The
interval I will be used for controlling the remaining
components.
We now ensure controllability of the first component and
(A.4). We will proceed iteratively; for every i = 1, ..., N
we do the following:

a) Isolating the target point. Choose a = (0, 1, 0, . . . , 0)

and b such that x(1)
i (t) < b < x

(1)
j (t) for any j such

that x(1)
i (t) < x

(1)
j (t). As we proceeded in (A.3), one

can generate a flow that pushes all the points such that
x

(1)
i (t) < x

(1)
j (t) towards −∞ in the x(2) component.

This process can be done arbitrarily fast and for any
constant C one can find a control to ensure that

p
(2)
j < −C ∀j s.t. x(1)

i (t) < x
(1)
j (t) t ∈ I1

The exact same procedure can be done for all points
such that

x
(1)
i (t) > x

(1)
j (t) t ∈ I1.

Let us denote by ti,1 the time in which the following is
fulfilled

x
(2)
j < x

(2)
i if j 6= i

p
(2)
j < p

(2)
i if j 6= i

which can be always guaranteed by choosing the appro-
priate magnitude of w. Furthermore, let ti,2 = ti− ti,1.

b) Set the velocity on the first component of the target
point so that at the final time reaches its target.

y
(1)
i = x

(1)
i (T ) = x

(1)
i (ti,1)

+ (1− e−ti,2p(1)
i (ti,1)

+ (1− e−(T−ti))e−ti,2)p(ti,1)

q(ti,2 − 1 + e−ti,2

+ (1− e−(T−ti))(1− e−ti,2))

where q = w
(1)
i (x

(2)
i (t) + b(t)) and b(t) is chosen in a

way that q is time independent, i.e. b(t) = b∗ − x(2)
i (t)

and so that x(2)
j (t)+b(t) < 0 if j 6= i, x(2)

i (t)+b(t) > 0.



Furthermore, q depends on ti, q = qti , and it is equal
to:

qti =

(
ti,2 − 1 + e−ti,2

+ (1− e−(T−ti))(1− e−ti,2)

)−1

(
y

(1)
i − x

(1)
i (T )− x(1)

i (ti,1)

− (1− e−ti,2)p
(1)
i (ti,1)−

(1− e−(T−ti))e−ti,2p(ti,1)

)
c) Ensuring (A.4). Note that

x(1)(t) + p(1)(t) = x(1)(0) + p(1)(0) + qti(ti − ti,i)
and that qti(ti − ti−1) is not constant. Therefore, we
can always choose ti so that (A.4) is satisfied.

3) Control the remaining components in the interval I .
Thanks to (A.5), we can relabel the points according to
the first component, i.e.

i < j =⇒ x
(1)
i (t) < x

(1)
j (t) t ∈ I.

One can proceed iteratively. From i = 1, ..., N one
chooses a hyperplane of the form x(1) − x(1)

i + r with
r > 0 so that

x
(1)
j − x

(1)
i + r < 0 ∀j < i

and then, choose solve the dynamics with w =
(0, w(2), w(3), ..., w(d)) in a small time interval I2,i ⊂ I
so that the point i at the final time T reaches the target.
See Figure 12 for an illustation of the procedure

APPENDIX B
PROOFS: NEURAL ODE MODEL

In this appendix we will prove the simultaneous control
of {

x′ = w(t)σ(a(t)x+ c(t)p+ b(t)

p′ = u(t)σ(d(t)x+ f(t)
(B.1)

where w, u, a, c, b, f ∈ L∞((0, T );R) are control functions.
The proof follows from Theorem 2 in [17] in a straightfor-
ward manner. For the sake of completeness, we will provide
here the needed proof in our situation.

Lemma B.1. Let σ be the ReLU and consider
{(xi, pi)}Ni=1 ⊂ R2 be distinct initial data and
{(yi, ϕi)}Ni=1 ⊂ R2 be distinct target data. Then,
for every time horizon T > 0, there exist controls
w, u, a, c, b, f ∈ L∞((0, T );R) such that the solution at
time T satisfies

φT (xi;ω) = (yi, pi) i ∈ {1, ..., N}.

Proof: The proof is divided in different steps,
1) First we will find a set of equivalent initial data points

and equivalent targets that satisfy convenient properties.

2) Secondly we will control the state component of the
system.

3) And finally we will control the memory component of
the system.

Note that a trajectory of (B.1) in (0, T ) can be seen as a
trajectory in the time interval (0, 1) up to a rescaling on the
time that will be absorbed by the controls w and u.
1) We will find control functions that allow us to assume

without loss of generality that:

xi 6= xj if i 6= j (B.2)

and
yi 6= yj if i 6= j

Assume that (B.2) is not satisfied by only two points, let
us say x1 = x2. Then, since the points {(xi, pi)}Ni=1 are
distinct, we can fix the hyperplane

p+ b = 0

with b = 1/2(p1+p2). This hyperplane separates (x1, p1)
and (x2, p2). Since the activation function is zero in one
half space, then by just setting w = 1 and a = 0 and
solving the ODE (B.1) we will generate a flow as in
Figure 3. We solve (B.1) for T small enough so that the
solution at time T satisfies:

xi(T ) 6= xj(T ) if i 6= j

Note that this argument can be applied iteratively for any
number of coincidences on the state.
On the other hand, note that the backward trajectories
of (B.1) are also forward trajectories of (B.1) with the
appropriate changes in the control functions. This allows
us to apply the same argument for the target points
whenever there is a coincidence on the target states.

2) For controlling the first component of each data point we
will apply recursively three flows.
For each point we apply the following procedure:

a) Choose the hyperplane x − xi + ε = 0 (with d = 1
f = −xi + ε) for ε > 0 small enough so that

min
j
|xj − xi + ε| = ε

then we chose u = 1 and we solve (B.1) for T large
enough so that

pi < pj(T ) if xj > xi

b) we repeat the same procedure but by choosing the
hyperplane x − xi − ε = 0 (d = −1 f = xi + ε)
for ε > 0 small enough so that

min
j
|xj − xi − ε| = ε

then we chose again u = 1 and we solve (B.1) for T
large enough so that

pi < pj(T ) if xj < xi

c) In this way, one has that the point (xi, pi) remained
without moving and pj(T ) > pi for all j. This means
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Fig. 12: The black arrows represent the direction of the velocity of each point, the circles the target locations of the points. The dashed line is the
chosen hyperplane and the gray arrow the direction of the field. The subfigure (a) represents the control of the first coordinate of the red point. (Top left)
Preparation of the data set. (Top right) We choose a hyperplane slightly above the point we want to control its first component and we push all points
above (with respect to the x(1) coordinate) the target point to −∞ in the second component of the system. This process should be done fast enough, so
that no point below the hyperplane will cross it. (Bottom-left) The same is applied for all points below the target point. (Bottom-right) The grey dotted
arrow attached to the hyperplane indicates that the hyperplane is moving to keep the distance between the target point constant. The target point can be
separated from all the others by a hyperplane. We can assign the appropriate velocity in the first component of the system so that it coincides with its
target at the final time. This process will be repeated for every point. Subfigure (b). The grey dotted arrow attached to the hyperplane indicates that the
hyperplane is moving to keep the distance between the point that has to be controlled and the hyperplane constant. The figure represents how to control
the components x(i) for i = 2, ..., d. (Top left) Choice of the hyperplane. (Top right) We choose a hyperplane slightly below the point we want to control
and we act on the velocity of every point so that the first one has the desired velocity to reach the target. (Top right) After having acted on the first point
we chose a hyperplane above the point that has been controlled so that the next action does not affect it and we act on the remaining points so that the
second point has the desired velocity to reach its target. (Bottom) The procedure follows iteratively until all points will reach their location at the final
time.

that there exist a hyperplane of the form p− pj − ε = 0
(with c = −1 b = pi+ε) that separates the point (xi, pi)
from all the others. This allows us generate a flow that
is able to exactly control xi to yi

Up to now, we have been able to control exactly the state
of each point.

3) To control the memory, we first relabel the points in a
way that yi < yj if i < j. For controlling the memory, it
is enough to iteratively choose d = 1 and f = yi−ε for ε
small enough and chose u so that at time T the memory
of the point i is controlled. Note that by the procedure
above, once a point has been exactly controlled, the next
stages do not perturb that point again.

A. Proof of Theorem III.1
Proof: [Proof of Theorem III.1] We will split the proof

in several a cases. The main idea is to group a memory
component with a state component and to apply the strategy
in [17].

Case d = dp. In this case we can consider the pairs

(x(k), p(k)) for k = 1, .., d

The strategy will rely on applying the strategy of [17] to
each pair state-memory, see Appendix Lemma B.1.

Case d > dp. As we have noted already, due to the
particular strategy of [17], even though the memory equation
does not depend on itself, we can nonetheless have the
necessary controls to perform the simultaneous control when
we consider pairs of state and memory.

In this case, the dimension of the state is bigger than the
dimension of the memory. This invites to consider

(x(k), p(k)) for k = 1, .., dp − 1

where the previous case immediately applies and consider
the remaining components altogether

(x(dp), x(dp+1), ..., x(d), p(dp))

Case d < dp As mentioned in the previous cases, since
the memory equation does not depend on itself, to apply the
strategy of [17] we need to group memory variables with
state variables. In this case, we have more memory variables
than state variables. However we can still manage to reduce it
to a simpler case by first controlling dp−d memory variables
using one state component and then reduce to the d = dp
case.

Split the time interval (0, T/2) into dp − d time subinter-
vals, Ik, in each time interval we will consider the pair

(x(1), p(d+k)) for k = 1, .., dp − d

and control the p(d+k) component.
Afterwards, we are left with the pairs

(x(k), p(k)) for k = 1, .., d

uncontrolled, but this is resolved with the first case.



B. Proof of Theorem III.5

Proof: [Proof of Theorem III.5] We will prove the
theorem for dp = 2d and this implies also the case dp > 2d
by simply ignoring the dp−2d extra variables. We will divide
the proof in several steps
1) Approximation. Consider a partition of (0, T ) by Nt

intervals Ik, (0, T ) = ∪Nt

k=1Ik so that every yi ∈
C0((0, T );Rd) ∩ BV ((0, T );Rd) is approximated by a
piecewise linear function. We consider the piecewise
linear function to be all of them linear in every Ik as
Figure 4 shows. Let yhi be the approximation for yi and
let yhi,k be the function in the interval Ik

sup
06t6T

|yi(t)− yhi | 6 ε i ∈ {1, ..., N}

Furthermore, we can consider an approximation that
fulfills

∂x(1)yhi,k 6= ∂x(1)yhj,k
if j 6= i k ∈ {1, ..., Nt}. (B.3)

Thanks to (B.3) for every k there exist a subinterval Ĩk ⊂
Ik such that(

yhi,k(x)
)(1)

6=
(
yhj,k(x)

)(1)

∀x ∈ Ĩk, if j 6= i, k ∈ {1, ..., Nt}
(B.4)

2) Simultaneous control. Now we apply Theorem III.1
to approximately simultaneously control the state and
the memory. We choose for every i we choose yhi,1(0)
as targets for the state component. The targets in the
memory component will be chosen accordingly so that
the dynamics

x′i = σ(Cpi) + b2

is able to reproduce the required linear trajectories. We
discuss the target selection in the next step.

3) Alternating strategy. As we mentioned before, we will
make an abuse of notation and consider p = (p(1), p(2))
with p(1), p(2) ∈ Rd. The strategy is visualised in
Figure 5; we will use one component of the memory
to endow a linear movement while, in parallel, we will
reconfigure the other component of the memory for the
approximation in the next interval. This requires to under-
stand two things, first, which targets for the memory we
should select (Memory use) and second, how to control
the component of the memory not used for controlling
(Reconfiguration).

a) Use of the Memory. Let us consider the linear target
functions in Ik:

yhi,k = Bi,k + Pi,kt, i ∈ {1, ..., N},
with Pi,k, Bi,k ∈ Rd. Consider A = 0, b1 = 0,W = Id,
the dynamics of the state equation is

x′ = ~σ(Cp) + b2.

We choose Rd×dp 3 C = (Id|0) and we look for
memory targets that are in the positive cone {p(1)

i,k}Ni=1 ⊂
Rd+. The activation function σ is assumed to be the

ReLU, and hence, we reduce the problem on finding
b2,k ∈ Rd such that

p
(1)
i,k = Pi,k − b2,k ∈ Rd+ i ∈ {1, ..., N},

which is always possible. Then the dynamics trivially
reads

x′ = Pi,k, x(0) = Bi,k

whose solutions are Pi,kt+Bi,k for all i ∈ {1, ..., N}.
b) Reconfiguration. Since, for every k we have that there

exists an interval Ĩk for which (B.4) holds, one can
control the second component of the memory while
the first component is used for following the trajectory.
Thanks to (B.4) and the continuity of the trajectories,
we can consider a subinterval

≈
Ik such that, up to a

relabeling of the points we have(
yhi,k
)(1)

<
(
yhj,k
)(1)

t ∈
≈
Ik, if i < j.

We set d = (1, 0, ..., 0) and we split
≈
Ik into N

subintervals, name them
≈
Ik,i and we proceed to control

the memory component that is not used to control the
state sequentially. Set

f(t) =
(
yhi,k(t)

)(1) − δ
for δ > 0 small enough so that(

yhj,k(t)
)(1)

< f(t) t ∈
≈
Ik,i if j < i

We settle the memory targets for the next interval Ik+1

as in the previous step and then we choose

u = β (pi,k+1 − pi,k−1)

for β ∈ R so that when we solve the ODE

p′ = uσ(〈d, x〉+ f) t ∈
≈
Ik,i

the solution at tk,i := sup
≈
Ik,i satisfies that pi(tk,i) =

pi,k+1. Note that if j < i, the equation becomes

p′ = 0

so, once we have controlled the memory for one point,
in the subsequent steps this memory will be unaltered.
Therefore, we are able to exactly control the memory
component where we desire.
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[20] C. E. Yagüe and B. Geshkovski. Sparse approximation in learning via
neural odes. arXiv preprint arXiv:2102.13566, 2021.

[21] M. Zhang, Z. McCarthy, C. Finn, S. Levine, and P. Abbeel. Learning
deep neural network policies with continuous memory states. In 2016
IEEE international conference on robotics and automation (ICRA),
pages 520–527. IEEE, 2016.


	Introduction
	Objectives
	Context and notation
	The Momentum ResNets
	A class of Neural ODEs
	Organization of the paper

	The Momentum ResNets
	Dynamical features
	Ideas of the proofs

	A Neural ODE model
	Simultaneous control
	Simultaneous tracking control

	Simulations
	Learning a function
	Simultaneous tracking

	Conclusion
	Appendix A: Proofs: Momentum ResNets
	Appendix B: Proofs: Neural ODE model
	Proof of Theorem III.1
	Proof of Theorem III.5

	References

