République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieure et de la Recherche Scientifique Université des Sciences et de la Technologie Houari Boumediene

Faculté de Mathématiques

Mémoire de master
Mathématiques
Option: EDP
Par : KECHICHE Dounya
Titre

Homogenization for the Poisson Equation in Perforated Domains

Sous le jury composé de

Mrs. N. Aissa
Mrs. R. Boudjerada
Mr. A. AINOUZ

Professeur, USTHB
MCB, USTHB
MCB, USTHB

Présidente
Examinatrice
Encadreur

Acknowledgments

First of all, I would like to express my deepest gratitude to my supervisor Mr. A. Ainouz for his invaluable inspiration, support and guidance. His wide knowledge and the selfless sharing of invaluable experiences have been of great value for me.

I wish express my sincere and warm thanks to Mrs. N. Aissa and Mrs. R. Boudjerada for serving on my defence committee and providing me with valuable comments and insights.

Sincere thanks goes to all teachers during the three years of license and the two years of master's and all those people who helped me directly or indirectly.

Finally, special thanks must be made to my parents, my sisters and brothers Sami and Salah whose endless love is a great source of motivation.

Contents

Introduction 2
1 Homogenization of a Dirichlet problem in a perforated domain with periodic structure 1
1.1 Setting of the problem 1
1.2 Construction of a test function 3
1.3 Passage to the limit 5
1.4 Weak lower semi-continuity of the energy: correctors 8
2 Homogenization for Dirichlet problem in randomly perforated domain 13
2.1 Setting of the problem 13
2.2 Some preliminaries results 15
2.2.1 Case(a): Periodic centers 17
2.2.2 Case(b): General case 35
2.2.3 Proof of theorem 2.2 52
2.3 Auxiliary results 54
Appendix A: Some preliminaries on functional analysis 69
Appendix B: Some basic facts on stochastic analysis 75
Conclusion 79
Bibliography 81

Introduction

The aim of homogenization theory is to study the macroscopic behaviour of a system form its microscopic one. In other words, if we consider an heterogeneous problem P_{ε} where ε is a very small parameter and if u_{ε} is a solution of P_{ε}, the homogenization theory is an asymptotic tool giving us some answers to the following : Do the solution u_{ε} converges in some specified topology to a limit u ? What is the limiting problem that u is a solution?

The objectif of this master thesis is to study the homogenization of the following Dirichlet problem:

$$
\left\{\begin{array}{l}
-\Delta u_{\varepsilon}=0 \quad \text { in } \mathcal{D}^{\prime}\left(D^{\varepsilon}\right), \\
u^{\varepsilon} \in H_{0}^{1}\left(D^{\varepsilon}\right),
\end{array}\right.
$$

where D^{ε} is a perforated domain obtained by removing a region $D \subseteq \mathbb{R}^{d}, d \geq 2$ the closures of spherical holes T_{i}^{ε}.

In the first chapter, the simplest case of perforated domains is considered, that is where the holes are periodically distributed. It is well-known that in this case there are three typical situations depending on the size of the holes: (1) Either the holes are too small and u_{ε} converges to a solution of a Dirichlet problem with Laplace operator as the first problem, (2) or the holes are too big and the solution u_{ε} converges to zero, (3) between these two situations there is a critical size in u_{ε} converges to a solution of a Dirichlet problem with an extra-term of ordrer zero, see D. Cioranescu and Murat [5]. So we only focus our attention on the third case which is, at our opinion, the most interesting one. In the second chapter, another type of a perforated domain is studied. Here, the holes, considered as balls, are randomly distributed in such a way that the centers and the radii of these balls denoted T_{i}^{ε} are generated by a marked point process (Φ, \mathcal{R}) (see, Appendix B). We present in this chapter the more recently studies of A. Giunti, R. Höfer, and J.J.L. Velazquez [10] which generalizes those studies of D. Cioranscu and F. Murat introduced in the first chapter into the case of random holes.

Chapter 1

Homogenization of a Dirichlet problem in a perforated domain with periodic

structure

We study in this chapter is the homogenization of a Dirichlet problem in a perforated domain with spherical holes distributed periodically in the volume. This work was done by D. Cioranscu and F. Murat [5].

1.1 Setting of the problem

Let D be an open bounded set of \mathbb{R}^{d} where $d \geq 2$. For every $\varepsilon>0$, we cover \mathbb{R}^{d} by cubes P_{k}^{ε} of size 2ε. For example we can write:

$$
\mathbb{R}^{d}=\bigcup_{k \in \mathbb{Z}^{d}}\left\{\prod _ { i = 1 } ^ { d } \left[2 \varepsilon k_{i}-\varepsilon, 2 \varepsilon k_{i}+\varepsilon[\},\right.\right.
$$

where $\prod_{i=1}^{d}$ is the cartesian product. one has

$$
P_{k}^{\varepsilon}=\prod_{i=1}^{d}\left[2 \varepsilon k_{i}-\varepsilon, 2 \varepsilon k_{i}+\varepsilon\left[, k=\left(k_{1}, \ldots, k_{d}\right) \in \mathbb{Z}^{d}\right.\right.
$$

Indeed, for every $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ and for every $\varepsilon>0$ there exists $k=\left(k_{1}, \ldots, k_{d}\right) \in \mathbb{Z}^{d}$ such that $x \in P_{k}^{\varepsilon}$. It suffices to take for every $i=1, \ldots, d$

$$
k_{i}=\left(\left\lfloor\frac{1}{2}\left(\frac{x_{i}}{\varepsilon}+1\right)\right\rfloor\right),
$$

where \lfloor.$\rfloor is the integer part. For every k \in \mathbb{Z}^{d}$ and each cube P_{k}^{ε} we consider the closed balls $T_{k}^{\varepsilon} \subset P_{k}^{\varepsilon}$ with radii a^{ε} where $0<a^{\varepsilon}<\varepsilon$ and the center is the point $\left(2 \varepsilon k_{1}, 2 \varepsilon k_{2}, \ldots, 2 \varepsilon k_{d}\right)$ which is also the center of the
cube P_{k}^{ε}. We set

$$
\begin{equation*}
Q^{\varepsilon}=\mathbb{R}^{d} \backslash \bigcup_{k \in \mathbb{Z}^{d}} T_{k}^{\varepsilon}, \quad D^{\varepsilon}=D \cap Q^{\varepsilon}=D \backslash \bigcup_{k \in \mathbb{Z}^{d} \cap \frac{1}{2 \varepsilon} D} T_{k}^{\varepsilon} \tag{1.1}
\end{equation*}
$$

where

$$
\frac{1}{2 \varepsilon} D:=\left\{x \in \mathbb{R}^{d}, 2 \varepsilon k \in D\right\}
$$

Let $f \in L^{2}(D)$. We consider the Dirichlet problem in D^{ε} : Find u^{ε} such that

$$
\left\{\begin{array}{l}
-\Delta u^{\varepsilon}=f \text { in } \mathcal{D}^{\prime}\left(D^{\varepsilon}\right) \tag{1.2}\\
u^{\varepsilon} \in H_{0}^{1}\left(D^{\varepsilon}\right)
\end{array}\right.
$$

The equivalent variational formulation of (1.2) is

$$
\left\{\begin{array}{l}
\text { Find } u^{\varepsilon} \in H_{0}^{1}\left(D^{\varepsilon}\right), \tag{1.3}\\
\int_{D^{\varepsilon}} \nabla u^{\varepsilon} \nabla v d x=\int_{D^{\varepsilon}} f v^{\varepsilon} d x, \forall v^{\varepsilon} \in H_{0}^{1}\left(D^{\varepsilon}\right)
\end{array}\right.
$$

Applying Lax-Milgram Lemma, we can easily show that the problem (1.3) has a unique weak solution $u^{\varepsilon} \in H_{0}^{1}\left(D^{\varepsilon}\right)$. Now, denote by \tilde{u}^{ε} the extension of u^{ε} by 0 inside the holes, i.e

$$
\tilde{u}^{\varepsilon}(x)=\left\{\begin{array}{l}
u^{\varepsilon}(x) \text { a.e } x \in D^{\varepsilon}, \\
0 \quad \text { a.e } x \in T_{k}^{\varepsilon}, k \in \mathbb{Z}^{d} \cap \frac{1}{2 \varepsilon} D .
\end{array}\right.
$$

It is clear that $\tilde{u}^{\varepsilon} \in H_{0}^{1}(D)$. Since D is bounded we can use Poincare's inequality : there exists a constant $\alpha>0$ independant of ε, such that

$$
\begin{equation*}
\alpha\left\|\tilde{u}^{\varepsilon}\right\|_{H_{0}^{1}(D)} \leq\left\|\nabla \tilde{u}^{\varepsilon}\right\|_{\left(L^{2}(D)\right)^{d}} \tag{1.4}
\end{equation*}
$$

Let us return to (1.3) and take $v^{\varepsilon}=u^{\varepsilon}$, we obtain

$$
\int_{D}\left|\nabla \tilde{u}^{\varepsilon}\right|^{2} d x=\int_{D^{\varepsilon}}\left|\nabla u^{\varepsilon}\right|^{2} d x=\int_{D^{\varepsilon}} f u^{\varepsilon} d x=\int_{D} f \tilde{u}^{\varepsilon} d x \leq\|f\|_{L^{2}(D)}\left\|\tilde{u}^{\varepsilon}\right\|_{H_{0}^{1}(D)}
$$

and using (1.4) we get immediatly

$$
\left\|\tilde{u}^{\varepsilon}\right\|_{H_{0}^{1}(D)} \leq \frac{1}{\alpha}\|f\|_{L^{2}(D)}
$$

Hence by Rellich-Kondrachov Theorem, we can extract a subsequence still denoted by \tilde{u}^{ε} such that

$$
\begin{equation*}
\tilde{u}^{\varepsilon} \rightarrow u \text { strongly in } L^{2}(D) \tag{1.5}
\end{equation*}
$$

then

$$
\nabla \tilde{u}^{\varepsilon} \rightharpoonup \nabla u \text { weakly in }\left(L^{2}(D)\right)^{d}
$$

The main objectif of homogenization theory is to construct the limit problem that u is a solution.

Remark 1.1 We cannot pass to the limit in (1.3), because we only have weak convergence in the gradient. To overcome this difficulty, we take some special test functions of the form : φw^{ε} where $\varphi \in \mathcal{D}(D)$ and w^{ε} is some functions called correctors, which are specifically constructed from the microscopic description of the initial problem. This technique is called the energy method of Tartar or oscillating test functions introduced by L. Tartar in [13] in the context of the homogenization of linear elliptic equations.

1.2 Construction of a test function

In this section, we shall give an explicit expression of an oscillating test function which shall be used in the homogenization process. It is given by the following technical Lemma.

Lemma 1.2 For $\varepsilon>0$, there exists a sequence of functions w^{ε} and a distribution μ such that

$$
\begin{aligned}
& (P 1) w^{\varepsilon} \in H^{1}(D), \\
& (P 2) w^{\varepsilon}=0 \text { in the holes } T_{k}^{\varepsilon}, k \in \mathbb{Z}^{d} \cap \frac{1}{2 \varepsilon} D, \\
& (P 3) w^{\varepsilon} \rightharpoonup 1 \text { weakly in } H^{1}(D), \\
& (P 4) \mu \in W^{-1, \infty}(D), \\
& (P 5)\left\{\begin{array}{c}
\text { For a sequence } v^{\varepsilon} \text { with } v^{\varepsilon}=0 \text { in } T_{k}^{\varepsilon}, k \in \mathbb{Z}^{d} \cap \frac{1}{2 \varepsilon} D, \\
\text { satisfies } v^{\varepsilon} \rightharpoonup v \text { weakly in } H^{1}(D) \text { with } v \in H^{1}(D) \text {, we obtain } \\
\left\langle-\Delta w^{\varepsilon}, \varphi v^{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)} \rightarrow\langle\mu, \varphi v\rangle_{H^{-1}(D), H_{0}^{1}(D)} \\
\text { for every } \varphi \in \mathcal{D}(D) .
\end{array}\right.
\end{aligned}
$$

Proof. As a first step of the proof, we define the function w_{k}^{ε} on each cube P_{k}^{ε} and we put

$$
\left\{\begin{array}{l}
w_{k}^{\varepsilon}=0 \text { in } T_{k}^{\varepsilon} \tag{1.6}\\
\Delta w_{k}^{\varepsilon}=0 \text { in } B_{k}^{\varepsilon}-T_{k}^{\varepsilon} \\
w_{k}^{\varepsilon}=1 \text { in } P_{k}^{\varepsilon}-B_{k}^{\varepsilon} \\
w_{k}^{\varepsilon} \text { is continuous in the interfaces } \partial B_{k}^{\varepsilon}, \partial T_{k}^{\varepsilon}
\end{array}\right.
$$

where $B_{k}^{\varepsilon} \subset P_{k}^{\varepsilon}$ is the closed ball of radius ε with same center of $T_{k}^{\varepsilon}, k \in \mathbb{Z}^{d}$:

$$
B_{k}^{\varepsilon}=\left\{x \in \mathbb{R}^{d},|x-2 \varepsilon k| \leq \varepsilon\right\} .
$$

Figure 1.2.2: This figure represente a zoom in the cell Q_{k}^{ε} perforated by a spherical hole

$$
T_{k}^{\varepsilon} \subseteq B_{k}^{\varepsilon} \subseteq P_{k}^{\varepsilon}
$$

Then, we define w^{ε} in the whole set \mathbb{R}^{d} by

$$
w^{\varepsilon}(x)=w_{k}^{\varepsilon}(x), x \in P_{k}^{\varepsilon} .
$$

It follows then

$$
\begin{cases}\Delta w^{\varepsilon}=0 & \text { in } \bigcup_{k \in \mathbb{Z}^{d}} B_{k}^{\varepsilon}-T_{k}^{\varepsilon}, \\ 1 & \text { in } \mathbb{R}^{d} \backslash \bigcup_{k \in \mathbb{Z}^{d}} B_{k}^{\varepsilon}, \\ 0 & \text { in } \bigcup_{k \in \mathbb{Z}^{d}} T_{k}^{\varepsilon}\end{cases}
$$

Let us now give an explicit formulae for w^{ε}. Let $r=\left|x-x_{k}\right|$ where x_{k} is the center of the ball T_{k}^{ε} and search for w^{ε} as a radial solution

$$
w^{\varepsilon}(x)=v\left(\left|x-x_{k}\right|\right),
$$

where v is an unknown scalar function to be determined. Note that we dropped the ε-index just to simplify the presentation. We get the following initial-value problem

$$
\left\{\begin{array}{l}
\left.-\Delta w^{\varepsilon}(x)=-v^{\prime \prime}(r)+\frac{1-d}{r} v^{\prime}(r)=0 \quad \text { in }\right] a^{\varepsilon}, \varepsilon[\\
v\left(a^{\varepsilon}\right)=0 \\
v(\varepsilon)=1
\end{array}\right.
$$

Solving the latter gives us

$$
\left\{\begin{align*}
w^{\varepsilon} & =\frac{\ln a^{\varepsilon}-\ln \left|x-x_{k}\right|}{\ln a^{\varepsilon}-\ln \varepsilon} \text { if } d=2, \tag{1.7}\\
w^{\varepsilon} & =\frac{\left(a^{\varepsilon}\right)^{-(d-2)}-\left|x-x_{k}\right|^{-(d-2)}}{\left(a^{\varepsilon}\right)^{-(d-2)}-\varepsilon^{-(d-2)}} \text { if } d \geq 3
\end{align*}\right.
$$

Now let us choose

$$
\left\{\begin{array}{l}
a^{\varepsilon}=\exp \left(-\frac{C_{0}}{\varepsilon^{2}}\right) \text { if } d=2, \\
a^{\varepsilon}=C_{0} \varepsilon^{\frac{d}{d-2}} \text { if } d \geq 3
\end{array}\right.
$$

where C_{0} is a positive constant independent of ε. Thus w^{ε} satisfies the properties $(P 1)-(P 5)$ with

$$
\left\{\begin{array}{l}
\mu=\frac{\pi}{2} \frac{1}{C_{0}} \text { if } d=2 \tag{1.8}\\
\mu=\frac{\sigma_{d}(d-2)}{2^{d}} C_{0}^{d-2} \text { if } d \geq 3
\end{array}\right.
$$

For more details, we refer the reader to D. Cioranescu and F. Murat [5]

1.3 Passage to the limit

In what follows w^{ε} and μ are as in the previous section, namely they satisfy the properties $(P 1)-(P 5)$ of Lemma 1.2.

Proposition 1.3 We have

$$
\begin{equation*}
\langle\mu, \varphi\rangle_{\mathcal{D}^{\prime}(D), \mathcal{D}(D)}=\lim _{\varepsilon \rightarrow 0} \int_{D}\left|\nabla \tilde{u}^{\varepsilon}\right|^{2} \varphi d x, \forall \varphi \in \mathcal{D}(D) . \tag{1.9}
\end{equation*}
$$

Remark 1.4 Before proving this result, we mention that the limit μ of $\left|\nabla \tilde{u}^{\varepsilon}\right|^{2}$ in the sense of distribution is a Radon measure.

Proof. From (P5) it is easily seen that (for $v^{\varepsilon}=w^{\varepsilon}, v=1, \varphi \in \mathcal{D}(D)$)

$$
\begin{aligned}
\int_{D}\left|\nabla w^{\varepsilon}\right|^{2} \varphi d x+\int_{D} w^{\varepsilon} \nabla w^{\varepsilon} \nabla(\varphi) d x & =\int_{D} \nabla w^{\varepsilon} \nabla\left(w^{\varepsilon} \varphi\right) d x \\
& =\left\langle-\Delta w^{\varepsilon}, \varphi w^{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)} \\
& \rightarrow\langle\mu, \varphi\rangle_{H^{-1}(D), H_{0}^{1}(D)}
\end{aligned}
$$

taking into account that we have

$$
\nabla w^{\varepsilon} \rightharpoonup 0 \text { weakly in }\left(L^{2}(D)\right)^{d}
$$

and by Rellich-Kondrachov theorem we have

$$
w^{\varepsilon} \rightarrow 1 \text { strongly in } L^{2}(D)
$$

We pass to the limit, we obtain

$$
\int_{D} w^{\varepsilon} \nabla w^{\varepsilon} \nabla(\varphi) d x \rightarrow 0
$$

Therefore the result 1.9 holds true.

Theorem 1.5 Under the hypothesis (P1) to (P5), the solution \tilde{u}^{ε} of (1.2) converges weakly in $H_{0}^{1}(D)$ to u the unique solution of

$$
\left\{\begin{array}{l}
-\Delta u+\mu u=f \text { in } \mathcal{D}^{\prime}(D), \tag{1.10}\\
u \in H_{0}^{1}(D)
\end{array}\right.
$$

Proof. We have proved before in section 1.1 that $\left\|\tilde{u}^{\varepsilon}\right\|_{H_{0}^{1}(D)}$ is bounded. Then by Eberlein-S̃muljan theorem there exists a subsequence denoted also \tilde{u}^{ε} and $u \in H_{0}^{1}(D)$ such that \tilde{u}^{ε} converges weakly to u in $H_{0}^{1}(D)$ and by Rellich-Kondrachov theorem \tilde{u}^{ε} converge strongly to u in $L^{2}(D)$. Now we identify the equation statisfied by the limit u. If $\varphi \in \mathcal{D}(D)$ and $w^{\varepsilon} \in H^{1}(D)$ then we have $w^{\varepsilon} \varphi \in H_{0}^{1}(D)$, furthermore w^{ε} satisfies hypothesis $(H 2)$ it follows $w^{\varepsilon} \varphi \in H_{0}^{1}\left(D^{\varepsilon}\right)$. Then, we can substitute $w^{\varepsilon} \varphi$ in variationnal formulation (1.3), one has

$$
\begin{align*}
\int_{D^{\varepsilon}} f w^{\varepsilon} \varphi d x & =\int_{D^{\varepsilon}} \nabla u^{\varepsilon} \nabla\left(w^{\varepsilon} \varphi\right) d x \\
& =\int_{D} \varphi \nabla \tilde{u}^{\varepsilon} \nabla w^{\varepsilon} d x+\int_{D} w^{\varepsilon} \nabla \tilde{u}^{\varepsilon} \nabla \varphi d x . \tag{1.11}
\end{align*}
$$

Using the following result

$$
w^{\varepsilon} \rightarrow 1 \text { strongly in } L^{2}(D)
$$

and (1.5) we can pass to the limit in the first and the last integral of (1.11) then, one has

$$
\begin{align*}
\int_{D} w^{\varepsilon} \nabla \tilde{u}^{\varepsilon} \nabla \varphi d x & \rightarrow \int_{D} \nabla u \nabla \varphi d x \\
\int_{D^{\varepsilon}} f w^{\varepsilon} \varphi d x & \rightarrow \int_{D} f \varphi d x \tag{1.12}
\end{align*}
$$

Applying Green's formula we get

$$
\begin{equation*}
\int_{D} \varphi \nabla \tilde{u}^{\varepsilon} \nabla w^{\varepsilon} d x=\left\langle-\Delta w^{\varepsilon}, \varphi \tilde{u}^{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)}-\int_{D} \tilde{u}^{\varepsilon} \nabla \varphi \nabla w^{\varepsilon} d x . \tag{1.13}
\end{equation*}
$$

We can pass easily to the limit in the right hand side of (1.13), using (P5) for the first integral it follows that

$$
\begin{equation*}
\left\langle-\Delta w^{\varepsilon}, \varphi \tilde{u}^{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)} \rightarrow\langle\mu, u \varphi\rangle_{H^{-1}(D), H_{0}^{1}(D)} \tag{1.14}
\end{equation*}
$$

For the second integral of (1.13), we use (P3), i.e ∇w^{ε} converges weakly to 0 in $\left(L^{2}(D)\right)^{d}$ and the strong convergence of \tilde{u}^{ε} in $L^{2}(D)$, we obtain then

$$
\begin{equation*}
\int_{D} \tilde{u}^{\varepsilon} \nabla \varphi \nabla w^{\varepsilon} d x \rightarrow 0 . \tag{1.15}
\end{equation*}
$$

Summing these convergences (1.12), (1.14) and (1.15), we get

$$
\int_{D} \nabla u \nabla \varphi d x+\langle\mu u, \varphi\rangle_{H^{-1}(D), H_{0}^{1}(D)}=\int_{D} f \varphi d x, \quad \forall \varphi \in \mathcal{D}(D),
$$

and it follows that

$$
\langle-\Delta u, \varphi\rangle_{\mathcal{D}^{\prime}(D), \mathcal{D}(D)}+\langle\mu u, \varphi\rangle_{H^{-1}(D), H_{0}^{1}(D)}=\langle f, \varphi\rangle_{\mathcal{D}^{\prime}(D), \mathcal{D}(D)}, \quad \forall \varphi \in \mathcal{D}(D)
$$

We can remark that the product μu of $\mu \in W^{-1, \infty}(D)$ and $u \in H_{0}^{1}(D)$ belongs to $H^{-1}(D)$, then the duality pairing $\langle\mu u, \varphi\rangle_{H^{-1}(D), H_{0}^{1}(D)}$ is well-defined which allows to write

$$
-\Delta u+\mu u=f \text { in } \mathcal{D}^{\prime}(D)
$$

Let us prove now the uniqueness of the solution u. Indeed, Let $u_{1}, u_{2} \in H_{0}^{1}(D)$ two solutions of (1.10). One has

$$
\begin{aligned}
\int_{D} \nabla u_{1} \cdot \nabla \varphi d x+\left\langle\mu, u_{1} \varphi\right\rangle_{\mathcal{D}^{\prime}(D), \mathcal{D}(D)} & =\int_{D} f \varphi d x, \quad \forall \varphi \in \mathcal{D}(D), \\
\int_{D} \nabla u_{2} \cdot \nabla \varphi d x+\left\langle\mu, u_{2} \varphi\right\rangle_{\mathcal{D}^{\prime}(D), \mathcal{D}(D)} & =\int_{D} f \varphi d x, \quad \forall \varphi \in \mathcal{D}(D) .
\end{aligned}
$$

By substracting, we get

$$
\int_{D} \nabla\left(u_{1}-u_{2}\right) . \nabla \varphi d x+\left\langle\mu,\left(u_{1}-u_{2}\right) \varphi\right\rangle_{\mathcal{D}^{\prime}(D), \mathcal{D}(D)}=0, \quad \forall \varphi \in \mathcal{D}(D)
$$

For $\varphi=u_{1}-u_{2} \in H_{0}^{1}(D)$, it follows

$$
\int_{D}\left|\nabla\left(u_{1}-u_{2}\right)\right|^{2} d x+\left\langle\mu,\left(u_{1}-u_{2}\right)^{2}\right\rangle_{W^{-1, \infty}(D), W_{0}^{1,1}(D)}=0
$$

by (1.9), μ is a positive measure. Therefore

$$
u_{1}=u_{2}
$$

Thus, we get the uniqueness of solution.

1.4 Weak lower semi-continuity of the energy: correctors

In this section, we assume that the construction of w^{ε} and μ^{ε} satisfying hypotheses $(H 1)$ to (H5) introduced in section 1.2 holds true.

Proposition 1.6 For every sequence z^{ε} and z such that:

$$
\begin{align*}
& z^{\varepsilon} \quad \underset{ }{ } \quad z \text { weakly in } H_{0}^{1}(D) \tag{1.16}\\
& z^{\varepsilon}=0 \text { on the holes } T_{k}^{\varepsilon}, \forall k \in \mathbb{Z}^{d} \cap \frac{1}{2 \varepsilon} D
\end{align*}
$$

One has

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \inf \int_{D}\left|\nabla z^{\varepsilon}\right|^{2} d x \geq \int_{D}|\nabla z|^{2} d x+\left\langle\mu, z^{2}\right\rangle_{W^{-1, \infty}(D), W_{0}^{1,1}(D)} \tag{1.17}
\end{equation*}
$$

Remark 1.7 The classical weak lower semicontinuity of the energy defined as follows: For every sequence z^{ε} and z satisfies

$$
z^{\varepsilon} \rightarrow z \text { weakly in } H_{0}^{1}(D)
$$

then

$$
\liminf _{\varepsilon \rightarrow 0} \inf \int_{D}\left|\nabla z^{\varepsilon}\right|^{2} d x \geq \int_{D}|\nabla z|^{2} d x
$$

We can remark the fact that z^{ε} vanishes in the holes introduce a new energy. Since $\mu \in W^{-1, \infty}(D)$ and $z^{2} \in W_{0}^{1,1}(D)$ then $\left\langle\mu, z^{2}\right\rangle$ is well-defined.

Proof. (of Proposition 1.6). Let $\varphi \in \mathcal{D}(D)$. We consider the following integral

$$
\begin{aligned}
\int_{D}\left|\nabla\left(z^{\varepsilon}-w^{\varepsilon} \varphi\right)\right|^{2} d x= & \int_{D}\left|\nabla z^{\varepsilon}-\varphi \nabla w^{\varepsilon}-w^{\varepsilon} \nabla \varphi\right|^{2} d x \\
= & \int_{D}\left|\nabla z^{\varepsilon}\right|^{2} d x+\int_{D}|\nabla \varphi|^{2}\left|w^{\varepsilon}\right|^{2} d x+\int_{D}|\varphi|^{2}\left|\nabla w^{\varepsilon}\right|^{2} d x \\
& -2 \int_{D} w^{\varepsilon} \nabla z^{\varepsilon} w^{\varepsilon} \nabla \varphi d x+2 \int_{D} w^{\varepsilon} \varphi \nabla w^{\varepsilon} \nabla \varphi d x \\
& -2 \int_{D} \nabla z^{\varepsilon} \nabla w^{\varepsilon} \varphi d x
\end{aligned}
$$

taking into account

$$
\left\langle-\Delta w^{\varepsilon}, \varphi z^{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)}=\int_{D} \varphi \nabla z^{\varepsilon} \nabla w^{\varepsilon} d x+\int_{D} z^{\varepsilon} \nabla \varphi \nabla w^{\varepsilon} d x
$$

we obtain

$$
\begin{align*}
\int_{D}\left|\nabla\left(z^{\varepsilon}-w^{\varepsilon} \varphi\right)\right|^{2} d x= & \int_{D}\left|\nabla z^{\varepsilon}-\varphi \nabla w^{\varepsilon}-w^{\varepsilon} \nabla \varphi\right|^{2} d x \\
= & \int_{D}\left|\nabla z^{\varepsilon}\right|^{2} d x+\int_{D}|\nabla \varphi|^{2}\left|w^{\varepsilon}\right|^{2} d x+\int_{D}|\varphi|^{2}\left|\nabla w^{\varepsilon}\right|^{2} d x \\
& -2 \int_{D} w^{\varepsilon} \nabla z^{\varepsilon} w^{\varepsilon} \nabla \varphi d x+2 \int_{D} w^{\varepsilon} \varphi \nabla w^{\varepsilon} \nabla \varphi d x \\
& +2 \int_{D} z^{\varepsilon} \nabla w^{\varepsilon} \nabla \varphi d x-2\left\langle-\Delta w^{\varepsilon}, \varphi z^{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)} . \tag{1.18}
\end{align*}
$$

We choose ε such that $\int_{D}\left|\nabla z^{\varepsilon}\right|^{2} d x$ converges, then using Rellich-Kondrachov theorem and (P5) to pass to the limit in each term, we obtain

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} \int_{D}\left|\nabla\left(z^{\varepsilon}-w^{\varepsilon} \varphi\right)\right|^{2} d x= & \lim _{\varepsilon \rightarrow 0} \int_{D}\left|\nabla z^{\varepsilon}\right|^{2} d x+\int_{D}|\nabla \varphi|^{2} d x \\
& +\lim _{\varepsilon \rightarrow 0}\left(\int_{D} \nabla\left(w^{\varepsilon} \varphi^{2}\right) \nabla w^{\varepsilon} d x-\int_{D} w^{\varepsilon}|\nabla \varphi|^{2} \nabla w^{\varepsilon} d x\right) \\
& -2 \int_{D} \nabla z \nabla \varphi d x-2\langle\mu, \varphi z\rangle_{H^{-1}(D), H_{0}^{1}(D)} .
\end{aligned}
$$

Then

$$
\begin{align*}
\lim _{\varepsilon \rightarrow 0} \int_{D}\left|\nabla\left(z^{\varepsilon}-w^{\varepsilon} \varphi\right)\right|^{2} d x= & \lim _{\varepsilon \rightarrow 0} \int_{D}\left|\nabla z^{\varepsilon}\right|^{2} d x+\int_{D}|\nabla \varphi|^{2} d x+\left\langle\mu, \varphi^{2}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)} \\
& -2 \int_{D} \nabla z \nabla \varphi d x-2\langle\mu, \varphi z\rangle_{H^{-1}(D), H_{0}^{1}(D)} \tag{1.19}
\end{align*}
$$

Now we choose a subsequence denoted also $\varepsilon>0$ such that:

$$
\lim _{\varepsilon \rightarrow 0} \int_{D}\left|\nabla z^{\varepsilon}\right|^{2} d x=\lim _{\varepsilon \rightarrow 0} \inf \int_{D}\left|\nabla z^{\varepsilon}\right|^{2} d x \text {. }
$$

Since the left hand side of (1.19) is positive, we get

$$
\begin{align*}
\lim _{\varepsilon \rightarrow 0} \inf \int_{D}\left|\nabla z^{\varepsilon}\right|^{2} d x \geq & 2 \int_{D} \nabla z \nabla \varphi d x-\int_{D}|\nabla \varphi|^{2} d x \\
& +2\langle\mu, \varphi z\rangle_{H^{-1}(D), H_{0}^{1}(D)}-2\left\langle\mu, \varphi^{2}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)} \tag{1.20}
\end{align*}
$$

This result holds true for every $\varphi \in \mathcal{D}(D)$. If we choose φ such that φ converges strongly to z in $H_{0}^{1}(D)$, one has

$$
\lim _{\varepsilon \rightarrow 0} \inf \int_{D}\left|\nabla z^{\varepsilon}\right|^{2} d x \geq \int_{D}|\nabla z|^{2} d x+\left\langle\mu, z^{2}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)}
$$

If z belongs only to $H_{0}^{1}(D)$, one has $w^{\varepsilon} z \notin H_{0}^{1}(D)$ under ($P 1$), then, (1.18) does not make any sense with $\varphi=z$. This is the reason why we had approximate z by smooth functions φ. If $z=\varphi$ from the beginning and this is impossible if $z \in \mathcal{D}(D)$, we obtain (1.17) from (1.20) directly without passing to the limit.

Proposition 1.8 If moreover z^{ε} satisfies:

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{D}\left|\nabla z^{\varepsilon}\right|^{2} d x \rightarrow \int_{D}|\nabla z|^{2} d x+\left\langle\mu, z^{2}\right\rangle_{W^{-1, \infty}(D), W_{0}^{1,1}(D)} \tag{1.21}
\end{equation*}
$$

Then

$$
\begin{equation*}
z^{\varepsilon}-w^{\varepsilon} z \rightarrow 0 \text { strongly in } W_{0}^{1,1}(D) \tag{1.22}
\end{equation*}
$$

Remark 1.9 By (1.22) we have a stong convergence only in $W_{0}^{1,1}(D)$, but we would like to have this convergence in $H_{0}^{1}(D)$, which is the natural space for the problem. We shall see at the end of the proof of proposition a strong convergence result in $W_{0}^{1, q}(D)$ with $q=\frac{d-1}{d}$ thanks to Gagliardo-Nirenberg-Sobolev theorem (See Appendix A).

Proof. Let us return to (1.18) and taking into account the hypothesis (1.21). We can establishes for $\varphi \in D(D)$

$$
\lim _{\varepsilon \rightarrow 0} \int_{D}\left|\nabla\left(z^{\varepsilon}-w^{\varepsilon} \varphi\right)\right|^{2} d x=\int_{D}|\nabla(z-\varphi)|^{2} d x+\left\langle\mu,(z-\varphi)^{2}\right\rangle_{W^{-1, \infty}(D), W_{0}^{1,1}(D)}
$$

If $z \in \mathcal{D}(D)$, we can take $\varphi=z$ and we have proved

$$
z^{\varepsilon}-w^{\varepsilon} z \rightarrow 0 \text { strongly in } H_{0}^{1}(D)
$$

If z is not regular, we fix φ such that there exists a constant $\delta>0$ such that

$$
\|z-\varphi\|_{H_{0}^{1}(D)} \leq \delta
$$

Using the embedding of $H_{0}^{1}(D)$ in $W_{0}^{1,1}(D)$. It follows

$$
\lim _{\varepsilon \rightarrow 0} \int_{D}\left|\nabla\left(z^{\varepsilon}-w^{\varepsilon} \varphi\right)\right|^{2} d x \leq\left(1+2\|\mu\|_{W^{-1, \infty}(D)}\right) \delta^{2}
$$

thanks to Poincaré inequality, one has

$$
\lim _{\varepsilon \rightarrow 0} \int_{D}\left|\left(z^{\varepsilon}-w^{\varepsilon} \varphi\right)\right|^{2} d x \leq\left(1+2\|\mu\|_{W^{-1, \infty}(D)}\right) \delta^{2} .
$$

Using definition of the limit concept: For $C_{1}=\left(1+2\|\mu\|_{W^{-1, \infty}(D)}\right) \delta^{2}>0$, there exist ε_{0} such that for every $\varepsilon \leq \varepsilon_{0}$, one has

$$
\left\|z^{\varepsilon}-w^{\varepsilon} \varphi\right\|_{H_{0}^{1}(D)}^{2} \leq C_{1} .
$$

In the other hand

$$
\begin{align*}
\left\|z^{\varepsilon}-w^{\varepsilon} z\right\|_{W_{0}^{1,1}(D)} & \leq\left\|z^{\varepsilon}-w^{\varepsilon} \varphi\right\|_{W_{0}^{1,1}(D)}+\left\|w^{\varepsilon}(z-\varphi)\right\|_{W_{0}^{1,1}(D)} \tag{1.23}\\
& \leq\left\|z^{\varepsilon}-w^{\varepsilon} \varphi\right\|_{H_{0}^{1}(D)}+\left\|w^{\varepsilon}\right\|_{H_{0}^{1}(D)}\|z-\varphi\|_{H_{0}^{1}(D)} \\
& \leq C_{1}^{\prime} \delta+C_{2} \delta,
\end{align*}
$$

where $C_{1}^{\prime}, C_{2}>0$, for every $\varepsilon \leq \varepsilon_{0}$, which prove (1.22). We have used in (1.23) an estimation of $w^{\varepsilon}(z-\varphi)$ in $W_{0}^{1,1}(D)$. Thanks to Gagliardo-Nirenberg-Sobolev theorem, we have $H_{0}^{1}(D) \subset L^{2 \star}(D)$ where $2 \star=\frac{2 d}{(d-2)}$ puting $\frac{1}{q}=\frac{1}{2}+\frac{1}{2 \star}$, we can write

$$
\begin{aligned}
\left\|w^{\varepsilon}(z-\varphi)\right\|_{W_{0}^{1, q}(D)} & =\left\|\nabla\left(w^{\varepsilon}(z-\varphi)\right)\right\|_{L^{q}(D)} \\
& \leq\left\|\nabla w^{\varepsilon}\right\|_{\left(L^{2}(D)\right)^{d}}\|z-\varphi\|_{L^{2 \star}(D)}+\|z-\varphi\|_{L^{2}(D)}\left\|w^{\varepsilon}\right\|_{L^{2 \star}(D)},
\end{aligned}
$$

which allows to

$$
z^{\varepsilon}-w^{\varepsilon} z \rightarrow 0 \text { strongly in } W_{0}^{1, q}(D)
$$

where $q=\frac{d-1}{d}$.
Assume Propositions 1.6 and 1.8 are satisfied, then we obtain the following corrector result

Corollary 1.10 Let u^{ε} be the solution of the Dirichlet problem (1.2). Then there exists r^{ε} such that

$$
\left\{\begin{array}{l}
\tilde{u}^{\varepsilon}=w^{\varepsilon} u+r^{\varepsilon} \\
r^{\varepsilon} \rightarrow 0 \text { strongly in } W_{0}^{1,1}(D)
\end{array}\right.
$$

where u is a solution of (1.10).

Proof. Using theorem 1.5, we have \tilde{u}^{ε} converges weakly to u in $H_{0}^{1}(D)$, where u is a solution of (1.10). Multiplying the equation of (1.2) by u^{ε} and (1.10) by u using Green formula one has

$$
\int_{D}\left|\nabla \tilde{u}^{\varepsilon}\right|^{2} d x=\int_{D} f \tilde{u}^{\varepsilon} d x \rightarrow \int_{D} f u d x=\int_{D}|\nabla u|^{2} d x+\left\langle\mu, u^{2}\right\rangle_{W^{-1, \infty}(D), W_{0}^{1,1}(D)} .
$$

Applaying proposition 1.8 , taking $z^{\varepsilon}=\tilde{u}^{\varepsilon}$ and $z=u$, we get

$$
\tilde{u}^{\varepsilon}-w^{\varepsilon} u \rightarrow 0 \text { strongly in } W_{0}^{1,1}(D) .
$$

Taking

$$
r^{\varepsilon}=\tilde{u}^{\varepsilon}-w^{\varepsilon} u \rightarrow 0 \text { strongly in } W_{0}^{1,1}(D) .
$$

Then we get our result.

Chapter 2

Homogenization for Dirichlet problem in randomly perforated domain

This chapter deals with the homogenization of the Poisson equation in a bounded domain of $\mathbb{R}^{d}, d \geq 3$, which is perforated by a random number of small spherical holes with random radii and positions studied by A. Giunti et al in [10] using the oscillating test functions method. We recover in the homogenized limit an averaged analogue of the "strange term" obtained by D. Cioranescu and F. Murat in the periodic case [5]. In addition, we put a minimal assumption on the size of the holes in order to ensure that the homogenized equation has a sens and thus the homogenization occurs.

2.1 Setting of the problem

Let $D \subseteq \mathbb{R}^{d}, d \geq 3$, be an open and bounded set that it is star-shaped with respect to the origin. For $\varepsilon>0$, let us define the set of closed small spherical holes $H^{\varepsilon} \subseteq \mathbb{R}^{d}$ of the form

$$
\begin{equation*}
H^{\varepsilon}=\bigcup_{z_{j} \in \Phi \cap \frac{1}{\varepsilon} D} B_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right), \tag{2.1}
\end{equation*}
$$

where $\frac{1}{\varepsilon} D=\left\{x \in \mathbb{R}^{d}, \varepsilon x \in D\right\}$, the set $\Phi \subseteq \mathbb{R}^{d}$ is a random collection of points and the radii $\left\{\rho_{j}\right\}_{z_{j} \in \Phi} \subseteq \mathbb{R}^{+}$ are random variables. We may thus be thought that the set H^{ε} being generated by a marked point process (Φ, \mathcal{R}) on $\mathbb{R}^{d} \times \mathbb{R}^{+}$where Φ is a point process on \mathbb{R}^{d} for the center of balls and the marks $\mathcal{R}=\left\{\rho_{j}\right\}_{z_{j} \in \Phi} \subseteq \mathbb{R}^{+}$ are the radii associated to each center. For a precise definition we refer the reader to Appendix B. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, where Ω denotes the set of events, \mathcal{F} is σ-algebra and \mathbb{P} is a probability measure, associated to the process (Φ, \mathcal{R}) satisfying the following properties:
a. The process Φ is stationary: For every $x \in \mathbb{R}^{d}$ and each $\left\{z_{j}\right\}_{j \in \mathbb{N}} \subseteq \mathbb{R}^{d}$, the translation operators τ_{x} are
defined as follow

$$
\tau_{x}\left(\left\{z_{j}\right\}_{j \in \mathbb{N}}\right)=\left\{z_{j}+x\right\}_{j \in \mathbb{N}}
$$

So

$$
\begin{equation*}
\tau_{x}(\Phi)=\Phi . \tag{2.2}
\end{equation*}
$$

b. There exists $\lambda<+\infty$ such that for any unitary cube $Q \subseteq \mathbb{R}^{d}$

$$
\begin{equation*}
\left\langle \#(\Phi \cap Q)^{2}\right\rangle^{\frac{1}{2}} \leq \lambda \tag{2.3}
\end{equation*}
$$

where $\# S \in \mathbb{N} \cup \infty$ denotes the cardinality of a set S and \langle.$\rangle is the integration over \Omega$ with respect to the probability measure \mathbb{P}.
c. The point process Φ satisfies a strong mixing condition: For any bounded Borel set $A \subseteq \mathbb{R}^{d}, \mathcal{F}(A)$ be the smallest σ-algebra with respect to which the random variables

$$
N(B)(\omega)=\#(\Phi(\omega) \cap B)
$$

are measurable for every Borel set $B \subseteq A$. Then, there exists $C_{1}<+\infty$ and $\gamma>d$ such that for every $A \subseteq \mathbb{R}^{d}$ as above, every $x \in \mathbb{R}^{d}$, with $|x|>\operatorname{diam}(A)$ and every ξ_{1}, ξ_{2} are measurable function with respect to $\mathcal{F}(A)$ and $\mathcal{F}\left(\tau_{x} A\right)$, respectively, we have

$$
\begin{equation*}
\left|\left\langle\xi_{1} \xi_{2}\right\rangle-\left\langle\xi_{1}\right\rangle\left\langle\xi_{2}\right\rangle\right| \leq \frac{C_{1}}{1+(|x|-\operatorname{diam}(A))^{\gamma}}\left\langle\xi_{1}^{2}\right\rangle^{\frac{1}{2}}\left\langle\xi_{2}^{2}\right\rangle^{\frac{1}{2}} \tag{2.4}
\end{equation*}
$$

d. The marginal $\mathbb{P}_{\mathcal{R}}$ of the marks has two correlation functions, the first is the density function of a random variable $\rho \in \mathcal{R}$ denoted by h_{ρ} satisfies

$$
\begin{equation*}
\int_{0}^{+\infty} x^{d-2} h_{\rho}(x) d x<+\infty \tag{2.5}
\end{equation*}
$$

The second is the joint density function of two variables ρ_{i}, ρ_{j} depend on the centers z_{i} and z_{j} denoted by $h_{\rho_{i} \rho_{j}}$ and satisfies for $x, y \in \mathbb{R}^{+}$

$$
\begin{equation*}
h_{\rho_{i} \rho_{j}}(x, y)=h_{\rho_{i}} h_{\rho_{j}}(x, y)+g\left(z_{i}, z_{j}, x, y\right) \tag{2.6}
\end{equation*}
$$

with

$$
\left|g\left(z_{i}, z_{j}, x, y\right)\right| \leq \frac{c}{\left(1+\left|z_{i}-z_{j}\right|^{\gamma}\right)\left(1+x^{p}\right)\left(1+y^{p}\right)}
$$

for $p>d-1, \gamma>d, c \in \mathbb{R}^{+}$and g is an integrable function with respect to the variable $r=\left|z_{i}-z_{j}\right|$ and vanishes when the distance $\left|z_{i}-z_{j}\right| \rightarrow+\infty$. For $f \in H^{-1}(D)$, we introduce our main problem as follow: Find u_{ε} such that

$$
\begin{cases}-\Delta u_{\varepsilon}(\omega, .)=f(.) & \text { in } D^{\varepsilon}(\omega) \tag{2.7}\\ u_{\varepsilon}(\omega, .)=0 & \text { in } \partial D^{\varepsilon}(\omega)\end{cases}
$$

where $D^{\varepsilon}(\omega)$ is a punctured domain obtained by removing from D the set $H^{\varepsilon}(\omega)$. We write

$$
\begin{equation*}
D^{\varepsilon}(\omega)=D \backslash \bigcup_{z_{j} \in \Phi(\omega) \cap \frac{1}{\varepsilon} D} B_{\varepsilon^{\frac{d}{d-2} \rho_{j}}}\left(\varepsilon z_{j}\right) . \tag{2.8}
\end{equation*}
$$

The equivalent variational formulation is

$$
\left\{\begin{array}{l}
\text { find } u_{\varepsilon} \in H_{0}^{1}\left(D^{\varepsilon}(\omega)\right) \text { such that } \tag{2.9}\\
\int_{D^{\varepsilon}(\omega)} \nabla u_{\varepsilon} \nabla v d x=\langle f, v\rangle_{H^{-1}\left(D^{\varepsilon}(\omega)\right), H_{0}^{1}\left(D^{\varepsilon}(\omega)\right)}, \quad \forall v \in H_{0}^{1}\left(D^{\varepsilon}(\omega)\right) .
\end{array}\right.
$$

Denote by \tilde{u}_{ε} the extension by zero of u_{ε} to the whole set D

$$
\tilde{u}_{\varepsilon}= \begin{cases}u_{\varepsilon} & \text { in } D^{\varepsilon}(\omega) \\ 0 & \text { in } H^{\varepsilon}(\omega)\end{cases}
$$

then $\tilde{u}_{\varepsilon} \in H_{0}^{1}(D)$. In order to simplify the presentation, we denote for \mathbb{P}-almost every $\omega \in \Omega D^{\varepsilon}$ and H^{ε} instead of $D^{\varepsilon}(\omega)$ and $H^{\varepsilon}(\omega)$.

2.2 Some preliminaries results

In this section, we give our main result of homogenization and some lemmas in order to use it in the proof of the following theorem.

Theorem 2.1 Let the holes in (2.1) be generated by a marked point process (Φ, \mathcal{R}). Let Φ satisfy (2.2), (2.3) and (2.4), and let the marginal $\mathbb{P}_{\mathcal{R}}$ satisfy (2.5) and (2.6). Assume that the expectation of each radius ρ_{i} satisfies

$$
\begin{equation*}
\left\langle\rho_{i}^{d-2}\right\rangle=\int_{0}^{+\infty} x^{d-2} h_{\rho_{i}}(x) d x<+\infty . \tag{2.10}
\end{equation*}
$$

For $f \in H^{-1}(D)$ and $\varepsilon>0$, let $u_{\varepsilon}=u_{\varepsilon}(\omega,.) \in H_{0}^{1}\left(D^{\varepsilon}(\omega)\right)$ solves (2.7). Then, there exists a constant $C_{0}>0$ and $u_{h} \in H_{0}^{1}(D)$ solving

$$
\begin{cases}-\Delta u_{h}+C_{0} u_{h}=f & \text { in } D \tag{2.11}\\ u_{h}=0 & \text { in } \partial D\end{cases}
$$

such that for \mathbb{P}-almost every $\omega \in \Omega$

$$
\tilde{u}_{\varepsilon}(\omega, .) \rightharpoonup u_{h} \text { weakly in } H_{0}^{1}(D), \text { for } \varepsilon \downarrow 0^{+}
$$

Moreover, we have that the constant C_{0} in (2.11) is defined as

$$
C_{0}=(d-2) \sigma_{d}\langle N(Q)\rangle\left\langle\rho^{d-2}\right\rangle
$$

where σ_{d} is the $(d-1)$-dimensional area of the unit sphere of $\mathbb{R}^{d}, N(Q)$ is the number of centers falling into any fixed unitary cube Q and $\rho \in \mathcal{R}$.

To prove this theorem we give the following Lemma.

Lemma 2.2 Let $H^{\varepsilon}=H^{\varepsilon}(\omega)$ be as in. Then, for \mathbb{P}-almost every $\omega \in \Omega$, there exists a sequence $\left\{w^{\varepsilon}(\omega, .)\right\}_{\varepsilon>0} \subseteq H^{1}(D)$ which satisfies
(H1) For every $\varepsilon>0, w^{\varepsilon}(\omega,)=$.0 in H^{ε};
$(H 2) w^{\varepsilon}(\omega,.) \rightharpoonup 0$ in $H^{1}(D)$ for $\varepsilon \downarrow 0^{+}$;
(H3) For every sequence $v_{\varepsilon} \rightharpoonup v$ in $H_{0}^{1}(D)$ such that $v_{\varepsilon}=0$ in H^{ε}, it holds that

$$
\left(-\Delta w^{\varepsilon}(\omega, .), v_{\varepsilon}\right)_{H^{-1}(D), H_{0}^{1}(D)} \longrightarrow C_{0} \int_{D} v
$$

for $\varepsilon \downarrow 0^{+}$and where C_{0} defined as in theorem.

The construction of w^{ε} is given in two steps. The first step is to give an argument in the simplest case of the random holes where the centers of balls are distributed periodically and the radii are associated as an i.i.d random variables. We then generalize this argument to an arbitrary marked point process (Φ, \mathcal{R}) that satisfies the assumption of theorem 2.2. We first fix the following notation: For any two open sets $A \subseteq B \subseteq \mathbb{R}^{d}$, we define the capacity of the condenser (A, B)

$$
\begin{equation*}
\operatorname{cap}(A, B)=\inf \left\{\int_{B}|\nabla v|: v \in \mathcal{C}_{0}^{\infty}(B), \quad v \geq \mathbf{1}_{A}\right\} \tag{2.12}
\end{equation*}
$$

where $\mathcal{C}_{0}^{\infty}(B)$ is the space of infinitely differentiable functions with compact support. The minimizer of (2.12) is given as a solution of the following problem

$$
\begin{cases}-\Delta u=0 & \text { in } B \backslash A \\ u=1 & \text { in } \partial A \\ u=0 & \text { in } \partial B\end{cases}
$$

The solution u, called harmonic function; satisfies $0 \leq u \leq 1$ (Maximum principle, see for instance [3] p.172-173). For a point process Φ on \mathbb{R}^{d} and any bounded set $E \subseteq \mathbb{R}^{d}$, we define

$$
\begin{array}{ll}
\Phi(E)=\Phi \cap E, & \Phi^{\varepsilon}(E)=\Phi^{\varepsilon} \cap\left(\frac{1}{\varepsilon} E\right), \tag{2.13}\\
N(E)=\#(\Phi(E)), & N^{\varepsilon}(E)=\#\left(\Phi^{\varepsilon}(E)\right) .
\end{array}
$$

For $\delta>0$, we denote by Φ_{δ} a thinning for the process Φ obtained as

$$
\begin{equation*}
\Phi_{\delta}=\left\{x \in \Phi: \min _{\substack{y \in \Phi(\omega) \\ y \neq x}}|x-y| \geq \delta\right\}, \tag{2.14}
\end{equation*}
$$

i.e. The points of $\Phi(\omega)$ whose minimal distance from the other points is at least δ. For a fixed $M>0$, we define the truncated marks

$$
\begin{equation*}
\mathcal{R}^{M}=\left\{\rho_{j, M}\right\}_{z_{j} \in \Phi}, \quad \rho_{j, M}=\rho_{j} \wedge M=\min \left\{\rho_{j}, M\right\} . \tag{2.15}
\end{equation*}
$$

2.2.1 Case(a): Periodic centers

In this setting the holes H^{ε} are generated by $\Phi=\mathbb{Z}^{d}$ and a collection of i.i.d. random variables $\left\{\rho_{i}\right\}_{z_{i} \in \mathbb{Z}^{d}}$ satisfying the assumption (2.10). Since the centers of the holes are periodically distributed, the only chalenge in the construction of the functions w^{ε} is due to the random variables $\left\{\rho_{i}\right\}_{z_{i} \in \mathbb{Z}^{d}}$ which might generate very large holes under the mere condition (2.10). We introduce the following lemma which might simplify the construction of w^{ε}.

Lemma 2.3 Let $\delta \in\left(0, \frac{2}{d-2}\right)$ be fixed. Then, there exists $\varepsilon_{0}=\varepsilon_{0}(\delta)>0$ such that \mathbb{P}-almost every $\omega \in \Omega$ and for all $\varepsilon \leq \varepsilon_{0}$ there exist $H_{g}^{\varepsilon}(\omega), H_{b}^{\varepsilon}(\omega), D_{b}^{\varepsilon}(\omega) \subseteq \mathbb{R}^{d}$ such that

$$
\begin{align*}
& H^{\varepsilon}(\omega)=H_{g}^{\varepsilon}(\omega) \cup H_{b}^{\varepsilon}(\omega), H_{b}^{\varepsilon}(\omega) \subset D_{b}^{\varepsilon}(\omega), \tag{2.16}\\
& \operatorname{dist}\left(H_{g}^{\varepsilon}(\omega), D_{b}^{\varepsilon}(\omega)\right) \geq \frac{\varepsilon}{2},
\end{align*}
$$

where

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \operatorname{cap}\left(H_{b}^{\varepsilon}(\omega), D_{b}^{\varepsilon}(\omega)\right)=0 \tag{2.17}
\end{equation*}
$$

Moreover, $H_{g}^{\varepsilon}(\omega)$ may be written as the following union of disjoint balls centered in $n^{\varepsilon}(\omega) \subseteq \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D$

$$
\begin{align*}
& H_{g}^{\varepsilon}(\omega)=\bigcup_{z_{j} \in n^{\varepsilon}} B_{\varepsilon^{d-2} \rho_{j}}\left(\varepsilon z_{j}\right), \varepsilon^{\frac{d}{d-2}} \rho_{j} \leq \varepsilon^{\delta+1}<\frac{\varepsilon}{2}, \tag{2.18}\\
& \lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \#\left(n^{\varepsilon}\right)=|D|
\end{align*}
$$

where $|D|$ denoted for the measure of the set D.

Remark 2.4 This lemma ensures that $H^{\varepsilon}(\omega)$ may be almost surely partitioned into two subsets, a good and bad sets of holes which we denote by $H_{g}^{\varepsilon}(\omega)$ and $H_{b}^{\varepsilon}(\omega)$, respectively. The set $H_{g}^{\varepsilon}(\omega)$ is made of small balls where the construction of w^{ε} may be carried out similarly as the first chapter. The remaining holes are included in $H_{b}^{\varepsilon}(\omega)$ in addition, this set is well separated from $H_{g}^{\varepsilon}(\omega)$ and small with respect to the macroscopic size of the domain D.

Proof. In what follows for each $z_{i}=\left(z_{i}^{1}, \ldots, z_{i}^{d}\right) \in \mathbb{Z}^{d}$, we denote by Q_{i}^{ε} the cube of length ε centered at εz_{i}, namely

$$
Q_{i}^{\varepsilon}=\prod_{k=1}^{d}\left[\varepsilon z_{i}^{k}-\frac{\varepsilon}{2}, \varepsilon z_{i}^{k}+\frac{\varepsilon}{2}\right]
$$

with $\prod_{k=1}^{d}$ is a cartesian product. In all what follows we use for \mathbb{P}-almost every event $\omega \in \Omega$ the notation $H_{b}^{\varepsilon}, H_{g}^{\varepsilon}$ and D_{b}^{ε} instead of $H_{b}^{\varepsilon}(\omega), H_{g}^{\varepsilon}(\omega)$ and $D_{b}^{\varepsilon}(\omega)$. We give the proof of this lemma in three steps. Step 1: Construction of the sets H_{b}^{ε} and its "safety layer" D_{b}^{ε}. We denote by I_{b}^{ε} the set of points of $\mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D$ which generate the set H_{b}^{ε} and its safety layer D_{b}^{ε}. We start by requiring that I_{b}^{ε} contains the set J_{b}^{ε} of points z_{j} where the corresponding balls $B_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right)$ are too large campared to the size of the cubes Q_{j}^{ε}. So for $\delta \in\left(0, \frac{2}{d-2}\right)$, we write

$$
\begin{equation*}
J_{b}^{\varepsilon}=\left\{z_{j} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D: \varepsilon^{\frac{d}{d-2}} \rho_{j} \geq \varepsilon^{\delta+1}\right\} \subseteq I_{b}^{\varepsilon} \tag{2.19}
\end{equation*}
$$

Bad holes are not only balls with large radii, we can find a ball with small radii that has a non empty intersection with other balls with small or large radii. Namely, there exists $z_{i} \in\left(\mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D\right) \backslash J_{b}^{\varepsilon}$ and $z_{j} \in J_{b}^{\varepsilon}$

$$
\begin{equation*}
B_{\varepsilon^{\frac{d}{d-2}} \rho_{i}}\left(\varepsilon z_{i}\right) \cap B_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right) \neq \emptyset \tag{2.20}
\end{equation*}
$$

For that reason, we can extend J_{b}^{ε} into the centers which might are close to $\tilde{H}_{b}^{\varepsilon}$, with

$$
\tilde{H}_{b}^{\varepsilon}=\bigcup_{z_{j} \in J_{b}^{\varepsilon}} B_{2 \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right)
$$

and put

$$
\begin{equation*}
\tilde{I}_{b}^{\varepsilon}=\left\{z_{j} \in \mathbb{Z}^{d}: Q_{j}^{\varepsilon} \cap \tilde{H}_{b}^{\varepsilon} \neq \emptyset\right\} \supseteq J_{b}^{\varepsilon}, \quad I_{b}^{\varepsilon}=\tilde{I}_{b}^{\varepsilon} \cap \frac{1}{\varepsilon} D \tag{2.21}
\end{equation*}
$$

We finally set

$$
\begin{equation*}
H_{b}^{\varepsilon}=\bigcup_{z_{j} \in I_{b}^{\varepsilon}} B_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right), \quad D_{b}^{\varepsilon}=\bigcup_{z_{j} \in \tilde{I}_{b}^{\varepsilon}} Q_{j}^{\varepsilon} \tag{2.22}
\end{equation*}
$$

Step 2: We show (2.17). We first show that for any $\varepsilon \leq \varepsilon_{0}(\delta)$ such that $2 \varepsilon_{0}^{\delta} \leq 1$

$$
\begin{equation*}
B_{2 \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right) \subseteq D_{b}^{\varepsilon}, \forall z_{j} \in I_{b}^{\varepsilon} \tag{2.23}
\end{equation*}
$$

Indeed, if $z_{j} \in J_{b}^{\varepsilon}$ it follows by definition of $\tilde{H}_{b}^{\varepsilon}$ and D_{b}^{ε} that

$$
B_{2 \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right) \subseteq D_{b}^{\varepsilon} .
$$

If $z_{j} \in I_{b}^{\varepsilon} \backslash J_{b}^{\varepsilon}$, we claim that

$$
\begin{equation*}
B_{2 \varepsilon \frac{d}{d-2} \rho_{j}}\left(\varepsilon z_{j}\right) \subseteq Q_{j}^{\varepsilon} \subseteq D_{b}^{\varepsilon} . \tag{2.24}
\end{equation*}
$$

By definition of δ, the corresponding radii satisfies

$$
\varepsilon^{\frac{d}{d-2}} \rho_{j} \leq \varepsilon^{1+\delta}<\varepsilon^{1+\frac{2}{d-2}}=\varepsilon^{\frac{d}{d-2}}
$$

so it is sufficient to prove

$$
B_{2 \varepsilon \frac{d}{d-2}}\left(\varepsilon z_{j}\right) \subseteq Q_{j}^{\varepsilon} .
$$

We also have $2 \varepsilon^{\frac{d}{d-2}} \leq \varepsilon_{0}$, so we fix ε_{0} such that $2 \varepsilon^{\frac{d}{d-2}} \leq \frac{\varepsilon}{2}$. Then, (2.24) is established and hence yields (2.23). Let us return to show our main result (2.17), using (2.22), (2.24) and the subadditivity of capacity we can write

$$
\begin{aligned}
\operatorname{cap}\left(H_{b}^{\varepsilon}, D_{b}^{\varepsilon}\right) & =\inf \left\{\int_{D_{b}^{\varepsilon}} \nabla v, v \in \mathcal{C}_{0}^{1}\left(D_{b}^{\varepsilon}\right) v 1_{H_{b}^{\varepsilon}} \geq 1\right\} \\
& =\sum_{z_{j} \in I_{b}^{\varepsilon}} \operatorname{cap}\left(B_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right), D_{b}^{\varepsilon}\right) \\
& \leq \sum_{z_{j} \in I_{b}^{\varepsilon}} \operatorname{cap}\left(B_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right), B_{2 \varepsilon}{ }_{2 \varepsilon^{d-2} \rho_{j}}\left(\varepsilon z_{j}\right)\right) .
\end{aligned}
$$

We have

$$
\operatorname{cap}\left(B_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right), B_{2 \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right)\right)=\int_{B_{2 \varepsilon^{\frac{d}{d-2} \rho_{j}}}\left(\varepsilon z_{j}\right) \backslash{ }_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right)}|\nabla u|^{2},
$$

with u is the solution to

$$
\begin{cases}-\Delta u=0 & \text { in } B_{2 \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right) \backslash B_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right), \tag{2.25}\\ u=1 & \text { in } B_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right), \\ u=0 & \text { in } \mathbb{R}^{d} \backslash B_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right)\end{cases}
$$

Also, u has the explicit expression:

$$
u(x)=\frac{\left|x-\varepsilon z_{j}\right|^{-(d-2)}-\left(2 \varepsilon^{\frac{d}{d-2}} \rho_{j}\right)^{-(d-2)}}{\left(\varepsilon^{\frac{d}{d-2}} \rho_{j}\right)^{-(d-2)}-\left(2 \varepsilon^{\frac{d}{d-2}} \rho_{j}\right)^{-(d-2)}}, \varepsilon^{\frac{d}{d-2}} \rho_{j}<\left|x-\varepsilon z_{j}\right|<2 \varepsilon^{\frac{d}{d-2}} \rho_{j} ;
$$

from which we get

$$
\begin{aligned}
& \operatorname{cap}\left(B_{\varepsilon^{\frac{d}{d-2} \rho_{j}}}, B_{2 \varepsilon^{\frac{d}{d-2} \rho_{j}}}\right)=\int_{B_{2 \varepsilon^{\frac{d}{d-2} \rho_{j}}} \backslash B_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}} \sum_{j=1}^{d}\left|\partial_{x_{j}} w_{2}^{\varepsilon, i}(x)\right|^{2} d x \\
& =\frac{(d-2)^{2}}{\left(\left(\varepsilon^{\frac{d}{d-2}} \rho_{j}\right)^{-(d-2)}-\left(2 \varepsilon^{\frac{d}{d-2}} \rho_{j}\right)^{-(d-2)}\right)^{2}} \int_{{ }_{2 \varepsilon} \frac{d}{d-2} \rho_{j}} \int_{{ }^{\frac{d^{\frac{d}{d-2}} \rho_{j}}{}}} \frac{1}{\left|x-\varepsilon z_{j}\right|^{2(d-1)}} d x \\
& =\frac{(d-2)^{2} \sigma_{d}}{\left(\left(\varepsilon^{\frac{d}{d-2}} \rho_{j}\right)^{-(d-2)}-\left(2 \varepsilon^{\frac{d}{d-2}} \rho_{j}\right)^{-(d-2)}\right)^{2}} \int_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}^{2 \varepsilon^{\frac{d}{d-2}} \rho_{j}} \frac{1}{r^{(d-1)}} d r \text {. } \\
& =\frac{(d-2) \sigma_{d}}{\left(\varepsilon^{\frac{d}{d-2}} \rho_{j}\right)^{-(d-2)}-\left(2 \varepsilon^{\frac{d}{d-2}} \rho_{j}\right)^{-(d-2)}}=\frac{(d-2) \sigma_{d}}{\left(1-2^{-(d-2)}\right)} \varepsilon^{d} \rho_{j}^{d-2}
\end{aligned}
$$

where σ_{d} is the $(d-1)$-dimensional unit sphere in \mathbb{R}^{d}. Then

$$
\begin{aligned}
\operatorname{cap}\left(H_{b}^{\varepsilon}, D_{b}^{\varepsilon}\right) & =\sum_{z_{j} \in I_{b}^{\varepsilon}} \operatorname{cap}\left(B_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right), B_{2 \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right)\right) \\
& \leq \frac{(d-2) \sigma_{d}}{\left(1-2^{-(d-2)}\right)} \sum_{z_{j} \in I_{b}^{\varepsilon}} \varepsilon^{d} \rho_{j}^{d-2} .
\end{aligned}
$$

To apply lemma 2.10, we need to argue

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# I_{b}^{\varepsilon}=0 \tag{2.26}
\end{equation*}
$$

Indeed, by (2.19) and (2.21), we have

$$
\begin{aligned}
\varepsilon^{d} \# I_{b}^{\varepsilon} & =\varepsilon^{d} \# J_{b}^{\varepsilon}+\varepsilon^{d} \#\left(I_{b}^{\varepsilon} \backslash J_{b}^{\varepsilon}\right)=\varepsilon^{d} \# J_{b}^{\varepsilon}+\varepsilon^{d} \sum_{z_{j} \in I_{b}^{\varepsilon} \backslash J_{b}^{\varepsilon}} \\
& =\varepsilon^{d} \# J_{b}^{\varepsilon}+\sum_{z_{j} \in\left(I_{b}^{\varepsilon} \backslash J_{b}^{\varepsilon}\right)}\left|Q_{j}^{\varepsilon}\right|
\end{aligned}
$$

since $\left|Q_{j}^{\varepsilon}\right|=\varepsilon^{d}$. But, for $z_{j} \in I_{b}^{\varepsilon}$, there exists a constant $c=c(d)>0$ and $y_{j} \in J_{b}^{\varepsilon}$ such that

$$
Q_{j}^{\varepsilon} \subseteq B_{2 c \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon y_{j}\right),
$$

and it follows that

$$
\begin{align*}
\varepsilon^{d} \# I_{b}^{\varepsilon} & \leq \varepsilon^{d} \# J_{b}^{\varepsilon}+\sum_{z_{j} \in J_{b}^{\varepsilon}}\left|B_{2 c \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon y_{j}\right)\right| \tag{2.27}\\
& \leq \varepsilon^{d} \# J_{b}^{\varepsilon}+(2 c)^{d} \sum_{z_{j} \in J_{b}^{\varepsilon}}\left(\varepsilon^{\frac{d}{d-2}} \rho_{j}\right)^{d} .
\end{align*}
$$

We have

$$
\begin{align*}
\left(\varepsilon^{\frac{d}{d-2}} \rho_{j}\right)^{d} & =\varepsilon^{\frac{d^{2}-2 d+2 d}{d-2}} \rho_{j}{ }^{d-2} \rho_{j}{ }^{2} \tag{2.28}\\
& \leq\left(\varepsilon^{\frac{d}{d-2}} \max _{z_{j} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D} \rho_{j}\right)^{2} \varepsilon^{d} \rho_{j}^{d-2} \\
& \leq\left(\varepsilon^{d} \sum_{z_{j} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D} \rho_{j}^{d-2}\right)^{\frac{2}{d-2}} \varepsilon^{d} \rho_{j}^{d-2} .
\end{align*}
$$

Since by lemma 2.9, we have

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \sum_{z_{j} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D} \rho_{j}^{d-2}=\left\langle\rho^{d-2}\right\rangle|D| \text { almost surely. } \tag{2.29}
\end{equation*}
$$

Then, it follows for ε small enough that

$$
\begin{equation*}
\left(\varepsilon^{\frac{d}{d-2}} \rho_{j}\right)^{d} \leq\left(\left\langle\rho^{d-2}\right\rangle|D|\right)^{\frac{2}{d-2}} \varepsilon^{d} \rho_{j}^{d-2} . \tag{2.30}
\end{equation*}
$$

Substituting (2.30) in (2.27), it holds

$$
\begin{equation*}
\varepsilon^{d} \# I_{b}^{\varepsilon} \leq \varepsilon^{d} \# J_{b}^{\varepsilon}+(2 c)^{d}\left\langle\rho^{d-2}\right\rangle^{\frac{2}{d-2}} \varepsilon^{d} \sum_{z_{j} \in J_{b}^{\varepsilon}} \rho_{j}^{d-2} \tag{2.31}
\end{equation*}
$$

If we now argue that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# J_{b}^{\varepsilon}=0 \tag{2.32}
\end{equation*}
$$

then the limit (2.26) yields immediatly from lemma 2.10 applied in the right hand side of (2.31). Indeed, We have $\delta<\frac{2}{d-2}$ and $\varepsilon^{\frac{d}{d-2}} \rho_{j} \geq \varepsilon^{1+\delta}$, then one has $1 \leq \varepsilon^{2-\delta(d-2)} \rho_{j}$. It follows

$$
\varepsilon^{d} \# J_{b}^{\varepsilon}=\varepsilon^{d} \sum_{z_{j} \in J_{b}^{\varepsilon}} \leq \varepsilon^{2-\delta(d-2)} \varepsilon^{d} \sum_{z_{j} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D} \rho_{j}^{d-2}
$$

Since $2-\delta(d-2)>1$ and $\varepsilon^{d} \sum_{z_{j} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D} \rho_{j}^{d-2}$ is bounded by lemma 2.9, we get

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{2-\delta(d-2)} \varepsilon^{d} \sum_{z_{j} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D} \rho_{j}^{d-2}=0,
$$

which implies (2.32). Therefore

$$
\lim _{\varepsilon \rightarrow 0} \sum_{z_{j} \in I_{b}^{\varepsilon}} \varepsilon^{d} \rho_{j}^{d-2}=0,
$$

thus (2.17) is established.
Step 3: Construction of H_{g}^{ε}. We define H_{g}^{ε} as follows

$$
\begin{aligned}
H_{g}^{\varepsilon} & =H^{\varepsilon} \backslash H_{b}^{\varepsilon} \\
& =\bigcup_{z_{j} \in n^{\varepsilon}} B_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right),
\end{aligned}
$$

where $n^{\varepsilon}=\left(\mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D\right) \backslash I_{b}^{\varepsilon}$. Since $J_{b}^{\varepsilon} \subset I_{b}^{\varepsilon}$, then for $z_{j} \in n^{\varepsilon}$ and for the choice of $\delta \in\left(0, \frac{2}{d-2}\right)$, we have $\varepsilon^{\frac{d}{d-2}} \rho_{j} \leq \varepsilon^{1+\delta}$. We choose $\varepsilon \leq \varepsilon_{0}$ with ε_{0} satisfies a such assumption in order to ensure that for $z_{j} \in n^{\varepsilon}$ and $z_{i} \in I_{b}^{\varepsilon}$, we have

$$
B_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right) \subset Q_{j}^{\varepsilon}
$$

and

$$
\frac{\varepsilon}{2} \leq \operatorname{dist}\left(B_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}, \partial Q_{i}^{\varepsilon}\right)
$$

which implies

$$
\frac{\varepsilon}{2} \leq \operatorname{dist}\left(B_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}, D_{b}^{\varepsilon}\right) .
$$

Then

$$
\varepsilon^{\frac{d}{d-2}} \rho_{j} \leq \varepsilon^{1+\delta}<\frac{\varepsilon}{2} .
$$

Let us now provee that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# n^{\varepsilon}=|D| . \tag{2.33}
\end{equation*}
$$

Indeed, we have by definition of n^{ε}

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# n^{\varepsilon}=\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \#\left(\mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D\right)-\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# I_{b}^{\varepsilon} .
$$

By (2.26) we have $\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# I_{b}^{\varepsilon}=0$. Then, by lemma 2.9 we have

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# n^{\varepsilon}=\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \#\left(\mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D\right)=\left\langle \#\left(\mathbb{Z}^{d} \cap Q\right)\right\rangle|D|,
$$

since $\left\langle \#\left(\mathbb{Z}^{d} \cap Q\right)\right\rangle=1$, where Q is the unitary cube of \mathbb{R}^{d} centered at the origin, then (2.33) yields immediatly.

Let us return to the construction of w^{ε}. We first fix δ and $\varepsilon_{0}(\delta)$ as in the previous lemma and we fix \mathbb{P} almost every event $\omega \in \Omega$ such that we find $H_{b}^{\varepsilon}(\omega), H_{g}^{\varepsilon}(\omega)$ and $D_{b}^{\varepsilon}(\omega)$ as in lemma 2.3. We give the following proposition where the proof follows later.

Proposition 2.5 We may set w^{ε} as follow

$$
\begin{equation*}
w^{\varepsilon}(x)=w_{1}^{\varepsilon}(x) \wedge w_{2}^{\varepsilon}(x)=\min _{x \in D}\left(w_{1}^{\varepsilon}(x), w_{2}^{\varepsilon}(x)\right) \tag{2.34}
\end{equation*}
$$

with $w_{1}, w_{2} \in H^{1}(D)$ and such that

$$
\begin{gather*}
w_{1}^{\varepsilon} \equiv 1 \text { in } D \backslash D_{b}^{\varepsilon}, \quad w_{1}^{\varepsilon} \equiv 0 \text { in } H_{b}^{\varepsilon}, \tag{2.35}\\
0 \leq w_{2}^{\varepsilon} \leq 1, \quad w_{2}^{\varepsilon} \equiv 0 \text { in } D_{b}^{\varepsilon}, \quad w_{2}^{\varepsilon} \equiv 1 \quad \text { in } H_{g}^{\varepsilon}, \tag{2.36}
\end{gather*}
$$

with, in addition

$$
\begin{equation*}
w_{1}^{\varepsilon} \rightarrow 1 \quad \text { strongly in } H^{1}(D) . \tag{2.37}
\end{equation*}
$$

Moreover, the function w^{ε} satisfies the properties (H1),(H2) and (H3).
Before giving the proof of proposition 2.5, we show the following lemmas 2.6-2.7.
Lemma 2.6 In the same setting of lemma 2.3, for every $\varepsilon \leq \varepsilon_{0}$ there exists a function $w_{1}^{\varepsilon} \in H^{1}\left(D^{\varepsilon}\right)$ satisfies

$$
\begin{cases}w_{1}^{\varepsilon}=1 & \text { in } D \backslash D_{b}^{\varepsilon} \tag{2.38}\\ w_{1}^{\varepsilon}=0 & \text { in } H_{b}^{\varepsilon} \\ w_{1}^{\varepsilon} \rightarrow 1 & \text { strongly in } H^{1}(D) .\end{cases}
$$

Proof. By the result (2.17) and definition of capacity we can define a function $\tilde{w}_{1}^{\varepsilon} \in H_{0}^{1}\left(D_{b}^{\varepsilon}\right)$ which satisfies

$$
\begin{cases}-\Delta \tilde{w}_{1}^{\varepsilon}=0 & \text { in } D_{b}^{\varepsilon} \backslash H_{b}^{\varepsilon}, \tag{2.39}\\ \tilde{w}_{1}^{\varepsilon}=1 & \text { in } H_{b}^{\varepsilon}, \\ \tilde{w}_{1}^{\varepsilon}=0 & \text { in } D \backslash D_{b}^{\varepsilon}\end{cases}
$$

where

$$
\operatorname{cap}\left(H_{b}^{\varepsilon}, D_{b}^{\varepsilon}\right)=\int_{D_{b}^{\varepsilon}}\left|\nabla \tilde{w}_{1}^{\varepsilon}\right|^{2}
$$

So let

$$
w_{1}^{\varepsilon}= \begin{cases}1-\tilde{w}_{1}^{\varepsilon} & \text { in } D_{b}^{\varepsilon} \\ 1 & \text { in } D \backslash D_{b}^{\varepsilon}\end{cases}
$$

Since $\tilde{w}_{1}^{\varepsilon} \in H_{0}^{1}\left(D_{b}^{\varepsilon}\right)$ we see that $\left.w_{1}^{\varepsilon}\right|_{D_{b}^{\varepsilon}} \in H^{1}\left(D_{b}^{\varepsilon}\right)$ and $\left.w_{1}^{\varepsilon}\right|_{D \backslash D_{b}^{\varepsilon}} \in H^{1}\left(D \backslash D_{b}^{\varepsilon}\right)$. In the other hand, we have by (2.39) $\tilde{w}_{1}^{\varepsilon}=0$ in $\partial D_{b}^{\varepsilon}$,so $w_{1}^{\varepsilon}=1$ in $\partial D_{b}^{\varepsilon}$. We also have $w_{1}^{\varepsilon}=1$ in $D \backslash D_{b}^{\varepsilon}$. Then, w_{1}^{ε} is continuous in D, so that by proposition A.1.12 we get $w_{1}^{\varepsilon} \in H^{1}(D)$. We also have $\tilde{w}_{1}^{\varepsilon}=1$ in H_{b}^{ε}, then $w_{1}^{\varepsilon}=0$ in H_{b}^{ε}. Thus w_{1}^{ε} satisfies the two first properties of (2.38). Let us check the last property (2.38). The Poincaré's inequality gives

$$
\left\|1-w_{1}^{\varepsilon}\right\|_{H^{1}(D)}^{2}=\left\|\tilde{w}_{1}^{\varepsilon}\right\|_{H_{0}^{1}\left(D_{b}^{\varepsilon}\right)}^{2} \leq \alpha\left\|\nabla \tilde{w}_{1}^{\varepsilon}\right\|_{\left(L^{2}\left(D_{b}^{\varepsilon}\right)\right)^{d}}^{2}=\alpha c a p\left(H_{b}^{\varepsilon}, D_{b}^{\varepsilon}\right)
$$

where $\alpha>0$ is a positive constant depend only on the measure of D_{b}^{ε}. We apply the result (2.17) of lemma 2.3 in (??), yields $w_{1}^{\varepsilon} \rightarrow 1$ strongly in $H^{1}(D)$.

We now give in the following result the construction of w_{2}^{ε}.

Lemma 2.7 Under the hypotheses of Lemma 2.3, there exists a function $w_{2}^{\varepsilon} \in H^{1}\left(D^{\varepsilon}\right)$ such that

$$
\begin{equation*}
0 \leq w_{2}^{\varepsilon} \leq 1, \quad w_{2}^{\varepsilon}=1 \text { in } D_{b}^{\varepsilon}, \quad w_{2}^{\varepsilon}=0 \text { in } H_{g}^{\varepsilon} \tag{2.40}
\end{equation*}
$$

Furthermore, w_{2}^{ε} satisfies the properties (P2) and (P3) of Lemma 1.2.

Proof. First, we put

$$
w_{2}^{\varepsilon}=1 \text { on } D_{b}^{\varepsilon} .
$$

For the definition of w_{2}^{ε} in $D \backslash D_{b}^{\varepsilon}$ which contains only the holes H_{b}^{ε} of disjoint balls, each striclty contained in the concentric cube Q_{i}^{ε} of size ε, we construct w_{2}^{ε} explicitly as done in the first chapter. For each $z_{i} \in n^{\varepsilon}$ with $n^{\varepsilon}=\left(\mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D\right) \backslash I_{b}^{\varepsilon}$, we write

$$
T_{i}^{\varepsilon}=B_{\varepsilon^{\frac{d}{d-2}} \rho_{i}}\left(\varepsilon z_{i}\right), \quad B_{i}^{\varepsilon}=B_{\frac{\varepsilon}{2}}\left(\varepsilon z_{i}\right),
$$

we define also

$$
\begin{equation*}
w_{2}^{\varepsilon}=1-\sum_{z_{i} \in n^{\varepsilon}} w_{2}^{\varepsilon, i} \tag{2.41}
\end{equation*}
$$

where each $w_{2}^{\varepsilon, i}$ is a solution of the following problem

$$
\begin{cases}-\Delta w_{2}^{\varepsilon, i}=0 & \text { in } B_{i}^{\varepsilon} \backslash T_{i}^{\varepsilon}, \tag{2.42}\\ w_{2}^{\varepsilon, i}=1 & \text { in } T_{i}^{\varepsilon}, \\ w_{2}^{\varepsilon, i}=0 & \text { in } D \backslash B_{i}^{\varepsilon} .\end{cases}
$$

We can easily compute $w_{2}^{\varepsilon, i}$ in polar coordinates in the annulus $B_{i}^{\varepsilon} \backslash T_{i}^{\varepsilon}$ as done in lemma 1.2 taking $\varepsilon^{\frac{d}{d-2}} \rho_{i}<$ $r=\left|x-\varepsilon z_{i}\right|<\frac{\varepsilon}{2}$ for $x \in \mathbb{R}^{d}$ and εz_{i} the center of T_{i}^{ε}, we get

$$
\begin{cases}w_{2}^{\varepsilon, i}(x)=\frac{\left|x-\varepsilon z_{i}\right|^{-(d-2)}-\left(\frac{\varepsilon}{2}\right)^{-(d-2)}}{\varepsilon^{-d \rho_{i}^{-(d-2)}-\left(\frac{\varepsilon}{2}\right)^{-(d-2)}}} & \text { in } B_{i}^{\varepsilon} \backslash T_{i}^{\varepsilon} \tag{2.43}\\ w_{2}^{\varepsilon, i}=1 & \text { in } T_{i}^{\varepsilon} \\ w_{2}^{\varepsilon, i}=0 & \text { in } D \backslash B_{i}^{\varepsilon}\end{cases}
$$

Now, we show that w_{2}^{ε} satisfies the properties (2.40). Using the maximum principle (See proposition A.2.5), we get

$$
0 \leq w_{2}^{\varepsilon, i}(x) \leq 1 .
$$

Since $w_{2}^{\varepsilon, i}$ has a disjoint supports then one has

$$
0 \leq w_{2}^{\varepsilon}=1-\sum_{z_{i} \in n^{\varepsilon}} w_{2}^{\varepsilon, i} \leq 1 .
$$

Since $w_{2}^{\varepsilon, i}=1$ in T_{i}^{ε} and $w_{2}^{\varepsilon, i}$ has disjoint supports, we obtain

$$
w_{2}^{\varepsilon}=1-\sum_{z_{j} \in n^{\varepsilon}} w_{2}^{\varepsilon, j}=1-w_{2}^{\varepsilon, i}=0 \text { in all } T_{i}^{\varepsilon} .
$$

The function w_{2}^{ε} belongs to $H_{0}^{1}(D)$. Indeed, by definition of $w_{2}^{\varepsilon, i}$ in (2.43) we can observe that the functions $w_{2}^{\varepsilon, i}$ are continuous and H_{0}^{1} by parts, hence by proposition A.1.12 the functions $w_{2}^{\varepsilon, i}$ belongs to $H_{0}^{1}\left(B_{i}^{\varepsilon}\right)$ for each $z_{i} \in n^{\varepsilon}$. Since the functions $w_{2}^{\varepsilon, i}$ has essentially disjoint supports, then

$$
\begin{equation*}
\sum_{z_{i} \in n^{\varepsilon}} w_{2}^{\varepsilon, i}=w_{2}^{\varepsilon, j} \text { in } B_{j}^{\varepsilon} . \tag{2.44}
\end{equation*}
$$

we also have for every $z_{i} \in n^{\varepsilon}$,

$$
\begin{equation*}
w_{2}^{\varepsilon, i}=0 \quad \text { in } \partial B_{i}^{\varepsilon} . \tag{2.45}
\end{equation*}
$$

Then using again the proposition A.1.12 (See appendix A), we can conclude that $\sum_{z_{i} \in n^{\varepsilon}} w_{2}^{\varepsilon, i} \in H_{0}^{1}\left(D \backslash D_{b}^{\varepsilon}\right)$. Extending $\sum_{z_{i} \in n^{\varepsilon}} w_{2}^{\varepsilon, i}$ by 0 in D_{b}^{ε} we get

$$
\sum_{z_{i} \in n^{\varepsilon}} w_{2}^{\varepsilon, i} \in H_{0}^{1}(D)
$$

Finally, we find

$$
w_{2}^{\varepsilon}=1-\sum_{z_{i} \in n^{\varepsilon}} w_{2}^{\varepsilon, i} \in H^{1}(D), \quad w_{2}^{\varepsilon}=1 \quad \text { in } D_{b}^{\varepsilon} .
$$

Therefore, the function w_{2}^{ε} satisfies the property (2.40). Let us now show that w_{2}^{ε} satisfies the properties (H2), to do that we follow the same steps as in the periodic case. We have

$$
\begin{align*}
\left\|\nabla w_{2}^{\varepsilon}\right\|_{\left(L^{2}(D)\right)^{d}}^{2} & =\sum_{z_{i} \in n^{\varepsilon}} \int_{B_{i}^{\varepsilon}} \sum_{j=1}^{d}\left|\partial_{x_{j}} w_{2}^{\varepsilon, i}(x)\right|^{2} d x \\
& =\sum_{z_{i} \in n^{\varepsilon}} \frac{(d-2) \sigma_{d}}{\left(\varepsilon^{-d} \rho_{i}^{-(d-2)}\right)-\left(\frac{\varepsilon}{2}\right)^{-(d-2)}} \\
& =\sum_{z_{i} \in n^{\varepsilon}} \frac{(d-2) \sigma_{d} \varepsilon^{d} \rho_{i}^{(d-2)}}{1-\left(\frac{\varepsilon}{2}\right)^{-(d-2)} \varepsilon^{d} \rho_{i}^{(d-2)}} \\
& \leq \beta(d) \sum_{z_{i} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D} \varepsilon^{d} \rho_{i}^{(d-2)}, \tag{2.46}
\end{align*}
$$

where $\beta(d)>0$ is a strictly positive constant. By Lemma 2.9 applied on the right hand side of the last inequality of (2.46), we have almost surely

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \sup \left\|\nabla w_{2}^{\varepsilon}\right\|_{\left(L^{2}(D)\right)^{d}}^{2} \leq \beta(d)\left\langle\rho^{d-2}\right\rangle|D| . \tag{2.47}
\end{equation*}
$$

Since $1-w_{2}^{\varepsilon} \in H_{0}^{1}\left(D \backslash D_{b}^{\varepsilon}\right)$ and $1-w_{2}^{\varepsilon}=0$ in D_{b}^{ε}, we can apply Poincaré's inequality: one has for ε small enough,

$$
\left\|1-w_{2}^{\varepsilon}\right\|_{H_{0}^{1}(D)}^{2} \leq C_{\varepsilon}^{2} \beta(d)\left\|\nabla w_{2}^{\varepsilon}\right\|_{L^{2}(D)}^{2} \leq C_{\varepsilon}^{2} \beta(d)\left\langle\rho^{d-2}\right\rangle|D|,
$$

where $C_{\varepsilon}>0$ is the Poincaré's constant, since B_{i}^{ε} is of diameter $n=\frac{\varepsilon}{2}<\varepsilon$ an estimation of Poincaré's constants, one has

$$
C_{\varepsilon} \leq \frac{\varepsilon}{2}<\varepsilon
$$

then

$$
\left\|1-w_{2}^{\varepsilon}\right\|_{L^{2}(D)}^{2} \leq \varepsilon^{2} \beta(d)\left\langle\rho^{d-2}\right\rangle|D| .
$$

Sending ε to 0 , one has

$$
w_{2}^{\varepsilon} \rightarrow 1 \text { strongly in } L^{2}(D) .
$$

This latter result implies that $1-w_{2}^{\varepsilon}$ is bounded in $L^{2}(D)$, we have also by $(2.47) \nabla\left(1-w_{2}^{\varepsilon}\right)$ is bounded in $L^{2}(D)$, thus $1-w_{2}^{\varepsilon}$ is bounded in $H_{0}^{1}(D)$. Using Eberlein- $\tilde{S} m u l j a n$ theorem one has up to a subsequence

$$
\begin{equation*}
w_{2}^{\varepsilon} \rightharpoonup 1 \quad \text { weakly in } H^{1}(D) \tag{2.48}
\end{equation*}
$$

and thus (H2) established for w_{2}^{ε}. We now argue that w_{2}^{ε} satisfies the property (H3), to do that the first step is to decompose $-\Delta w_{2}^{\varepsilon}$ as done in the first chapter, we get:

$$
\begin{equation*}
-\Delta w_{2}^{\varepsilon}=\mu^{\varepsilon}-\gamma^{\varepsilon} \tag{2.49}
\end{equation*}
$$

where

$$
\mu^{\varepsilon}=\left.\sum_{z_{i} \in n^{\varepsilon}} \frac{\partial w_{2}^{\varepsilon}}{\partial v_{e x t}}\right|_{\partial B_{i}^{\varepsilon}} \delta_{\partial B_{i}^{\varepsilon}}^{\varepsilon}, \gamma^{\varepsilon}=\left.\sum_{z_{i} \in n^{\varepsilon}} \frac{\partial w_{2}^{\varepsilon}}{\partial v_{e x t}}\right|_{\partial T_{i}^{\varepsilon}} \delta_{\partial T_{i}^{\varepsilon}}^{\varepsilon}
$$

where $v_{\text {ext }}$ is the outward unit normal of $\partial B_{i}^{\varepsilon}$. Next, we prove that we need only to argue for v_{ε} and v defined as in (H3) the following result

$$
\begin{equation*}
\left\langle\mu^{\varepsilon}, v^{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)} \rightarrow C_{0} \int_{D} v \tag{2.50}
\end{equation*}
$$

For $\varphi \in \mathcal{D}(D)$, we have by Green formula

$$
\begin{aligned}
\left\langle-\Delta w_{2}^{\varepsilon}, \varphi\right\rangle_{\mathcal{D}^{\prime}(D), \mathcal{D}(D)}= & \sum_{z_{i} \in n^{\varepsilon}} \int_{B_{i}^{\varepsilon}} \nabla w_{2}^{\varepsilon} \nabla \varphi=\sum_{z_{i} \in n^{\varepsilon}} \int_{B_{i}^{\varepsilon} \backslash T_{i}^{\varepsilon}} \nabla w_{2}^{\varepsilon} \nabla \varphi \\
= & \sum_{z_{i} \in n^{\varepsilon}}\left\langle-\Delta w_{2}^{\varepsilon}, \varphi\right\rangle_{\mathcal{D}^{\prime}\left(B_{i}^{\varepsilon} \backslash T_{i}^{\varepsilon}\right), \mathcal{D}\left(B_{i}^{\varepsilon} \backslash T_{i}^{\varepsilon}\right)} \\
& +\sum_{z_{i} \in n^{\varepsilon}} \int_{\partial B_{i}^{\varepsilon}} \varphi \nabla w_{2}^{\varepsilon} \cdot v_{e x t} d s+\sum_{z_{i} \in n^{\varepsilon}} \int_{\partial T_{i}^{\varepsilon}} \varphi \nabla w_{2}^{\varepsilon} \cdot n_{e x t} d s,
\end{aligned}
$$

where $n_{\text {ext }}$ is the outward unit normal of $\partial T_{i}^{\varepsilon}$. Since we have $-\Delta w_{2}^{\varepsilon}=0$ in $B_{i}^{\varepsilon} \backslash T_{i}^{\varepsilon}$, it follows

$$
\left\langle-\Delta w_{2}^{\varepsilon}, \varphi\right\rangle_{\mathcal{D}^{\prime}(D), \mathcal{D}(D)}=\sum_{z_{i} \in n^{\varepsilon}} \int_{\partial B_{i}^{\varepsilon}} \frac{\partial w_{2}^{\varepsilon}}{\partial v_{e x t}} \delta_{\partial B_{i}^{\varepsilon}}^{\varepsilon} \varphi d s+\sum_{z_{i} \in n^{\varepsilon}} \int_{\partial T_{i}^{\varepsilon}} \frac{\partial w_{2}^{\varepsilon}}{\partial n_{e x t}} \delta_{\partial T_{i}^{\varepsilon}}^{\varepsilon} \varphi d s
$$

Since we have $n_{\text {ext }}=-v_{\text {ext }}$, we get (2.49) immediatly. We return now to the proof of

$$
\begin{equation*}
\left\langle-\Delta w_{2}^{\varepsilon}, v^{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)} \rightarrow C_{0} \int_{D} v \tag{2.51}
\end{equation*}
$$

for v^{ε} and C_{0} given as in lemma 1.2, since $v^{\varepsilon}=0$ in all T_{i}^{ε} then to get (2.51) we need only to prove (2.50).
The second step is to arguing that it suffices to prove (2.51) for truncated process ($\mathbb{Z}^{d}, \mathcal{R}^{M}$) with $M \in \mathbb{N}$ and \mathcal{R}^{M} as defined above (2.15). In what follow, we denote by $w_{2, M}^{\varepsilon}$ and μ_{M}^{ε} introduced as the analogues of w_{2}^{ε} and μ^{ε} for the truncated marks, we denote also $C_{0, M}=(d-2) \sigma_{d}\left\langle\rho^{d-2} \mathbf{1}_{\rho \leq M}\right\rangle$. We have also

$$
\left|C_{0}-C_{0, M}\right|=\left|(d-2) \sigma_{d}\left\langle\rho^{d-2}-\rho^{d-2} \mathbf{1}_{\rho \leq M}\right\rangle\right|=(d-2) \sigma_{d}\left\langle\rho^{d-2} \mathbf{1}_{\rho \geq M}\right\rangle
$$

Then, we have

$$
\left|\left\langle-\Delta w_{2}^{\varepsilon}, v^{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)}-C_{0} \int_{D} v\right|=\left|\int_{D} \nabla w_{2}^{\varepsilon} \nabla v^{\varepsilon}+\int_{D} \nabla w_{2, M}^{\varepsilon} \nabla v^{\varepsilon}-\int_{D} \nabla w_{2, M}^{\varepsilon} \nabla v^{\varepsilon}-C_{0} \int_{D} v\right|
$$

Using Green's formula and (??), it holds

$$
\begin{aligned}
\left|\left\langle-\Delta w_{2}^{\varepsilon}, v^{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)}-C_{0} \int_{D} v\right| \leq & \left|\int_{D} \nabla\left(w_{2}^{\varepsilon}-w_{2, M}^{\varepsilon}\right) \nabla v^{\varepsilon}\right| \\
& +\left|\int_{D} \nabla w_{2, M}^{\varepsilon} \nabla v^{\varepsilon}-(d-2) \sigma_{d}\left\langle\rho^{d-2} \mathbf{1}_{\rho \geq M}\right\rangle \int_{D} v-C_{0, M} \int_{D} v\right| \\
\leq & \left|\int_{D} \nabla\left(w_{2}^{\varepsilon}-w_{2, M}^{\varepsilon}\right) \nabla v^{\varepsilon}\right| \\
& +\left|\left\langle-\Delta w_{2, M}^{\varepsilon}, v^{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)}-C_{0, M} \int_{D} v\right| \\
& +(d-2) \sigma_{d}\left\langle\rho^{d-2} \mathbf{1}_{\rho \geq M}\right\rangle \int_{D}|v| .
\end{aligned}
$$

Then, using Cauchy-Schwartz inequality we get

$$
\begin{aligned}
\left|\left\langle-\Delta w_{2}^{\varepsilon}, v^{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)}-C_{0} \int_{D} v\right| \leq & \left\|\nabla\left(w_{2}^{\varepsilon}-w_{2, M}^{\varepsilon}\right)\right\|_{L^{2}(D)}\left\|\nabla v^{\varepsilon}\right\|_{\left(L^{2}(D)\right)^{d}} \\
& +\left|\left\langle\mu_{M}^{\varepsilon}, v^{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)}-C_{0, M} \int_{D} v\right| \\
& +(d-2) \sigma_{d}\left\langle\rho^{d-2} \mathbf{1}_{\rho \geq M}\right\rangle\|v\|_{L^{1}(D)} .
\end{aligned}
$$

We have also same as (2.46)

$$
\begin{aligned}
\left\|\nabla\left(w_{2}^{\varepsilon}-w_{2, M}^{\varepsilon}\right)\right\|_{\left(L^{2}(D)\right)^{d}} & =\sum_{z_{i} \in n^{\varepsilon}} \int_{B_{i}^{\varepsilon}}\left|\left(\nabla w_{2}^{\varepsilon, i}-\nabla w_{2, M}^{\varepsilon, i}\right)(x)\right|^{2} d x \\
& =\sum_{z_{i} \in n^{\varepsilon}} \frac{(d-2)^{2}}{\left(\left(\varepsilon^{-d} \rho_{i}^{-(d-2)} \mathbf{1}_{\rho_{i} \geq M}\right)-\left(\frac{\varepsilon}{2}\right)^{-(d-2)}\right)^{2}} \int_{B_{i}^{\varepsilon}} \frac{1}{\left|x-\varepsilon z_{i}\right|^{2(d-1)}} d x \\
& \leq \beta(d) \sum_{z_{i} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D} \varepsilon^{d} \rho_{i}^{d-2} \mathbf{1}_{\rho_{i} \geq M}
\end{aligned}
$$

for a positive constant $\beta(d)>0$ which depend only on d. Thanks to lemma 2.9 , one has

$$
\lim _{\varepsilon \rightarrow 0} \sup \left\|\nabla\left(w_{2}^{\varepsilon}-w_{2, M}^{\varepsilon}\right)\right\|_{\left(L^{2}(D)\right)^{d}} \leq \beta(d)\left\langle\rho^{d-2} \mathbf{1}_{\rho \geq M}\right\rangle|D| .
$$

Since $v^{\varepsilon} \rightharpoonup v$ in $H_{0}^{1}(D)$, then there exist a constant $C>0$ such that

$$
\left\|\nabla v^{\varepsilon}\right\|_{\left(L^{2}(D)\right)^{d}} \leq C
$$

Then, one has

$$
\begin{align*}
\lim _{\varepsilon \rightarrow 0} \sup \left|\left\langle-\Delta w^{\varepsilon}, v^{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)}-C_{0} \int_{D} v\right| \leq & \lim _{\varepsilon \rightarrow 0} \sup \left|\left\langle\mu_{M}^{\varepsilon}, v^{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)}-C_{0, M} \int_{D} v\right| \\
& +\left\langle\rho^{d-2} \mathbf{1}_{\rho \geq M}\right\rangle(d-2) \sigma_{d}\|v\|_{L^{1}(D)} \tag{2.52}\\
& +C^{\prime}\left\langle\rho^{d-2} \mathbf{1}_{\rho \geq M}\right\rangle
\end{align*}
$$

where $C^{\prime}>0$ is a striclty positive constant depend only on d. Since v^{ε} is bounded in $L^{2}(D)\left(v^{\varepsilon}\right.$ converges weakly in $H_{0}^{1}(D)$ then v^{ε} is bounded in $H_{0}^{1}(D)$, hence v^{ε} is bounded in $L^{2}(D)$) using the embedding of $L^{2}(D)$ in $L^{1}(D)$ we can conclude that

$$
\|v\|_{L^{1}(D)}<+\infty
$$

Sending $M \uparrow+\infty$, this latter result and the assumption (2.15) allows to

$$
\left\langle\rho^{d-2} \mathbf{1}_{\rho \geq M}\right\rangle\left((d-2) \sigma_{d}\|v\|_{L^{1}(D)}+C^{\prime}\right) \rightarrow 0 .
$$

So we need only to prove (2.50) for truncated process $\left(\mathbb{Z}^{d}, \mathcal{R}^{M}\right)$. The third step which is the last, is to prove for any fixed $M \in \mathbb{N}$ that we have

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \sup \left|\left\langle\mu_{M}^{\varepsilon}, v^{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)}-C_{0, M} \int_{D} v\right|=0 \tag{2.53}
\end{equation*}
$$

Indeed, we have

$$
\begin{aligned}
\mu_{M}^{\varepsilon} & =\left.\sum_{z_{i} \in n^{\varepsilon}} \frac{\partial w_{2}^{\varepsilon}}{\partial v_{e x t}}\right|_{\partial B_{i}^{\varepsilon}} \delta_{\partial B_{i}^{\varepsilon}}^{\varepsilon} \\
& =\left.\sum_{z_{i} \in n^{\varepsilon}} \sum_{k=1}^{d} \frac{d-2}{\left(\varepsilon^{-d} \rho^{-(d-2)}\right)-\left(\frac{\varepsilon}{2}\right)^{-(d-2)}} \frac{x^{k}-\varepsilon z_{i}^{k}}{\left|x-\varepsilon z_{i}\right|^{d-1}}\right|_{\partial B_{i}^{\varepsilon}} v_{e x t}^{k} \delta_{\partial B_{i}^{\varepsilon}}^{\varepsilon} .
\end{aligned}
$$

Taking $v_{e x t}=\left(v_{e x t}^{1}, . ., v_{e x t}^{d}\right)=\sum_{k=1}^{d} e_{k}$ where $\left(e_{1}, . ., e_{d}\right)$ is canonical basis of \mathbb{R}^{d}, then one has

$$
\begin{aligned}
\mu^{\varepsilon} & =\sum_{z_{i} \in n^{\varepsilon}} \frac{(d-2)\left(\frac{\varepsilon}{2}\right)^{-(d-1)}}{\left(\varepsilon^{-d} \rho_{i, M}^{-(d-2)}\right)-\left(\frac{\varepsilon}{2}\right)^{-(d-2)}} \delta_{\partial B_{i}^{\varepsilon}}^{\varepsilon} \\
& =\sum_{z_{i} \in n^{\varepsilon}} \frac{2^{d-1}(d-2)\left(\rho_{i, M}\right)^{-(d-2)}}{1-2^{d-2} \varepsilon^{2}\left(\rho_{i, M}\right)^{(d-2)}} \varepsilon \delta_{\partial B_{i}^{\varepsilon}}^{\varepsilon} .
\end{aligned}
$$

Since $\rho_{i, M} \leq M$, it suffices to prove

$$
\begin{equation*}
\tilde{\mu}_{M}^{\varepsilon}=\sum_{z_{i} \in n^{\varepsilon}} 2^{d-1}(d-2)\left(\rho_{i, M}\right)^{-(d-2)} \delta \delta_{\partial B_{i}^{\varepsilon}}^{\varepsilon} \longrightarrow C_{0, M} \quad \text { strongly in } W^{-1, \infty}(D) . \tag{2.54}
\end{equation*}
$$

To show (2.54), we argue for a fixed $M \in \mathbb{N}$ that

$$
\begin{equation*}
\tilde{\mu}_{M}^{\varepsilon}-\eta_{M}^{\varepsilon} \rightarrow 0 \text { strongly in } W^{-1, \infty}(D), \tag{2.55}
\end{equation*}
$$

with

$$
\eta_{M}^{\varepsilon}=\sum_{z_{i} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D} 2^{d}(d-2) d \rho_{M, i}^{d-2} \mathbf{1}_{B_{i}^{\varepsilon}}
$$

and that

$$
\begin{equation*}
\eta_{M}^{\varepsilon} \rightarrow C_{0, M} \text { strongly in } W^{-1, \infty}(D) . \tag{2.56}
\end{equation*}
$$

Let us begin by proving (2.55). We define the following auxiliary problems

$$
\begin{cases}-\Delta q_{i, M}^{\varepsilon}=2^{d}(d-2) d \rho_{i, M}^{d-2} & \text { in } B_{i}^{\varepsilon} \tag{2.57}\\ \frac{\partial q_{i, M}^{\varepsilon}}{\partial v_{e x t}}=2^{d-1}(d-2) \rho_{i, M}^{d-2} \varepsilon & \text { on } \partial B_{i}^{\varepsilon},\end{cases}
$$

we have

$$
q_{i, M}^{\varepsilon}=2^{d-1}(d-2) \rho_{i, M}^{d-2}\left(\left|x-\varepsilon z_{i}\right|^{2}-\left(\frac{\varepsilon}{2}\right)^{2}\right) .
$$

Indeed, since we have for $0<r=\left|x-\varepsilon z_{i}\right|<\frac{\varepsilon}{2}, x \in \mathbb{R}^{d}$

$$
\frac{1}{r^{d-1}} \partial_{r}\left(r^{d-1} \partial_{r} q_{i, M}^{\varepsilon}(r)\right)=2^{d}(d-2) d \rho_{i, M}^{d-2},
$$

so we integrate over $[0, r]$ for a variable s we get

$$
q_{i, M}^{\varepsilon}(r)=2^{d-1}(d-2) \rho_{i, M}^{d-2} r^{2}+c,
$$

where $c \in \mathbb{R}$. In particular for $q^{\varepsilon}\left(\frac{\varepsilon}{2}\right)=0$, one has

$$
q_{i, M}^{\varepsilon}(r)=2^{d-1}(d-2) \rho_{i, M}^{d-2}\left(r^{2}-\left(\frac{\varepsilon}{2}\right)^{2}\right)
$$

so for $0<r=\left|x-\varepsilon z_{i}\right|<\frac{\varepsilon}{2}$, we have

$$
q_{i, M}^{\varepsilon}(r)=2^{d-1}(d-2) \rho_{i, M}^{d-2}\left(\left|x-\varepsilon z_{i}\right|^{2}-\left(\frac{\varepsilon}{2}\right)^{2}\right) .
$$

We have

$$
\partial_{x_{k}} q_{i, M}^{\varepsilon}(x)=2^{d}(d-2) \rho_{i, M}^{d-2}\left(x^{k}-\varepsilon z_{i}^{k}\right) .
$$

So

$$
\begin{aligned}
\left\|\nabla q_{i, M}^{\varepsilon}(x)\right\|_{L^{\infty}\left(B_{i}^{\varepsilon}\right)} & =\sup _{x \in B_{i}^{\varepsilon}} \sum_{k=1}^{d}\left|\partial_{x_{k}} q_{i, M}^{\varepsilon}(x)\right|=\sup _{x \in B_{i}^{\varepsilon}} \sum_{k=1}^{d}\left|2^{d}(d-2) \rho_{i, M}^{d-2}\left(x^{k}-\varepsilon z_{i}^{k}\right)\right| \\
& \leq 2^{d-1}(d-2) \rho_{i, M}^{d-2} \varepsilon .
\end{aligned}
$$

Since $\rho_{i, M}^{d-2} \leq M$, one has

$$
\left\|\nabla q_{i, M}^{\varepsilon}\right\|_{\left(L^{\infty}\left(B_{i}^{\varepsilon}\right)\right)^{d}} \leq 2^{d-1}(d-2) M \varepsilon .
$$

Then

$$
\begin{equation*}
\nabla q_{i, M}^{\varepsilon} \rightarrow 0 \text { strongly in }\left(L^{\infty}\left(B_{i}^{\varepsilon}\right)\right)^{d} \tag{2.58}
\end{equation*}
$$

In the other hand, since $q_{i, M}^{\varepsilon}(x)=0$ in $\partial B_{i}^{\varepsilon}$, we may extend $q_{i, M}^{\varepsilon}$ by 0 outside B_{i}^{ε} then we can use the Poincaré's inequality, we obtain

$$
\left\|q_{i, M}^{\varepsilon}\right\|_{L^{\infty}\left(B_{i}^{\varepsilon}\right)} \leq K\left\|\nabla q_{i, M}^{\varepsilon}(x)\right\|_{\left(L^{\infty}\left(B_{i}^{\varepsilon}\right)\right)^{d}}
$$

and conclude that

$$
\begin{equation*}
q_{i, M}^{\varepsilon} \rightarrow 0 \text { strongly in } L^{\infty}\left(B_{i}^{\varepsilon}\right) \tag{2.59}
\end{equation*}
$$

by (2.58) and (2.59), one has

$$
\begin{equation*}
q_{M}^{\varepsilon}=\sum_{z_{i} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D} q_{i, M}^{\varepsilon} \rightarrow 0 \text { strongly in } W^{1, \infty}\left(\mathbb{R}^{d}\right) \tag{2.60}
\end{equation*}
$$

For $\varphi \in \mathcal{D}(D)$, we have

$$
\begin{aligned}
\left\langle\eta_{M}^{\varepsilon}-\tilde{\mu}_{M}^{\varepsilon}, \varphi\right\rangle_{\mathcal{D}^{\prime}(D), \mathcal{D}(D)}= & \sum_{z_{i} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D} \int_{B_{i}^{\varepsilon}} 2^{d}(d-2) d \rho_{i, M}^{d-2} \varphi(x) d x \\
& -\sum_{z_{i} \in n^{\varepsilon}} \int_{\partial B_{i}^{\varepsilon}} 2^{d-1}(d-2) \rho_{i, M}^{d-2} \varepsilon \varphi(x) d s \\
= & \sum_{z_{i} \in\left(\mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D\right) \backslash n^{\varepsilon}} \int_{B_{i}^{\varepsilon}} 2^{d}(d-2) d \rho_{i, M}^{d-2} \varphi(x) d x \\
& +\sum_{z_{i} \in n^{\varepsilon}}\left(\int_{B_{i}^{\varepsilon}} 2^{d}(d-2) d \rho_{i, M}^{d-2} \varphi(x) d x\right. \\
& \left.-\int_{\partial B_{i}^{\varepsilon}} 2^{d-1}(d-2) \rho_{i, M}^{d-2} \varepsilon \varphi(x) d s\right) .
\end{aligned}
$$

Using (2.57), we obtain

$$
\begin{aligned}
\left\langle\eta_{M}^{\varepsilon}-\tilde{\mu}_{M}^{\varepsilon}, \varphi\right\rangle_{\mathcal{D}^{\prime}(D), \mathcal{D}(D)}= & \sum_{z_{i} \in\left(\mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D\right) \backslash n^{\varepsilon}} \int_{B_{i}^{\varepsilon}} 2^{d}(d-2) d \rho_{i, M}^{d-2} \varphi(x) d x \\
& +\sum_{z_{i} \in n^{\varepsilon}}\left\langle-\Delta q_{i, M}^{\varepsilon}, \varphi\right\rangle_{\mathcal{D}^{\prime}\left(B_{i}^{\varepsilon}\right), \mathcal{D}\left(B_{i}^{\varepsilon}\right)}-\left\langle\frac{\partial q_{i, M}^{\varepsilon}}{\partial v_{e x t}}, \varphi\right\rangle_{\mathcal{D}^{\prime}\left(B_{i}^{\varepsilon}\right), \mathcal{D}\left(B_{i}^{\varepsilon}\right)} .
\end{aligned}
$$

Using Green formula, one has

$$
\begin{aligned}
\left\langle\eta_{M}^{\varepsilon}-\tilde{\mu}_{M}^{\varepsilon}, \varphi\right\rangle_{\mathcal{D}^{\prime}(D), \mathcal{D}(D)}= & \sum_{z_{i} \in\left(\mathbb{Z}_{\cap}^{d} \frac{1}{\varepsilon} D\right) \backslash \eta^{\varepsilon}} \int_{B_{i}^{\varepsilon}} 2^{d}(d-2) d \rho_{i, M}^{d-2} \varphi(x) d x \\
& +\sum_{z_{i} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D} \int_{B_{i}^{\varepsilon}} \nabla q_{i, M}^{\varepsilon}(x) \nabla \varphi(x) d x, \\
= & \sum_{z_{i} \in\left(\mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D\right) \backslash n^{\varepsilon}} \int_{B_{i}^{\varepsilon}} 2^{d}(d-2) d \rho_{i, M}^{d-2} \varphi(x) d x \\
& +\int_{D} \nabla q_{M}^{\varepsilon}(x) \nabla \varphi(x) d x .
\end{aligned}
$$

Since $\varphi=0$ in ∂D, it follows

$$
\left\langle\eta_{M}^{\varepsilon}-\tilde{\mu}_{M}^{\varepsilon}, \varphi\right\rangle_{\mathcal{D}^{\prime}(D), \mathcal{D}(D)}=\left\langle-\Delta q_{M}^{\varepsilon}, \varphi\right\rangle_{\mathcal{D}^{\prime}(D), \mathcal{D}(D)}+\left\langle R_{M}^{\varepsilon}, \varphi\right\rangle_{\mathcal{D}^{\prime}(D), \mathcal{D}(D)},
$$

with

$$
\left\langle R_{M}^{\varepsilon}, \varphi\right\rangle_{\mathcal{D}^{\prime}(D), \mathcal{D}(D)}=\sum_{z_{i} \in\left(\mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D\right) \backslash n^{\varepsilon}} \int_{B_{i}^{\varepsilon}} 2^{d}(d-2) d \rho_{i, M}^{d-2} \varphi(x) d x .
$$

Therefore

$$
\eta_{M}^{\varepsilon}-\tilde{\mu}_{M}^{\varepsilon}=-\Delta q_{M}^{\varepsilon}+R_{M}^{\varepsilon} \text { in } \mathcal{D}^{\prime}(D),
$$

and more precisely in $W^{-1, \infty}(D)$ (This latter is concluded from the caracterization of $W^{-1, \infty}(D)$ with $\varphi_{0}=R_{M}^{\varepsilon}$ and $\left.\varphi_{i}=\frac{\partial q_{M}^{\varepsilon}}{\partial x_{i}}\right)$

We have by (2.60)

$$
\begin{aligned}
\left|\left\langle-\Delta q_{M}^{\varepsilon}, \varphi\right\rangle_{W^{-1, \infty}(D), W_{0}^{1,1}(D)}\right| & =\int_{D}\left|\nabla q_{M}^{\varepsilon} \nabla \varphi\right| \\
& =\sum_{z_{i} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D} \int_{B_{i}^{\varepsilon}}\left|\nabla q_{i, M}^{\varepsilon} \nabla \varphi\right| \\
& \leq \sum_{z_{i} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D}\left\|q_{i, M}^{\varepsilon}\right\|_{W^{1, \infty}(D)}\|\varphi\|_{W_{0}^{1,1}(D)} \rightarrow 0 .
\end{aligned}
$$

To prove (2.55), it suffices to show that $R_{M}^{\varepsilon} \stackrel{*}{\rightharpoonup} 0$ weakly-* in $L^{\infty}(D)$. Indeed, Since R_{M}^{ε} is bounded, we need only to test R_{M}^{ε} with $\varphi \in \mathcal{C}_{c}^{1}(D)\left(\mathcal{C}_{c}^{1}(D)\right.$ is the space of continuously differentiable functions with compact support)(This is concluded from Hahn-Banach theorem applied to the continous linear form $T(\varphi)=\int_{D} R_{M}^{\varepsilon} \varphi$ defined for every $\varphi \in \mathcal{C}_{c}^{1}(D)$ which is dense in $\left.L^{1}(D)\right)$. Then we have

$$
\begin{aligned}
\left|\left(R_{M}^{\varepsilon}, \varphi\right)_{L^{\infty}(D), L^{1}(D)}\right| & =\sum_{z_{i} \in\left(\mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D\right) \backslash n^{\varepsilon}}\left|\int_{B_{i}^{\varepsilon}} 2^{d}(d-2) d \rho_{i, M}^{d-2} \varphi\right| \\
& \leq 2^{d}(d-2) d \sum_{z_{i} \in\left(\mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D\right) \backslash n^{\varepsilon}} \rho_{i, M}^{d-2} \int_{B_{i}^{\varepsilon}}|\varphi| .
\end{aligned}
$$

Since φ is bounded in $L^{\infty}(D)$ and $B_{i}^{\varepsilon} \subset B_{\varepsilon}$ with B_{ε} is a ball with radius ε, then it follows by Hölder's inequality

$$
\left|\left(R_{M}^{\varepsilon}, \varphi\right)_{L^{\infty}(D), L^{1}(D)}\right| \leq 2^{d}(d-2) d\left\|_{\varphi}\right\|_{L^{\infty}(D)} \varepsilon^{d} \sum_{z_{i} \in\left(\mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D\right) \backslash n^{\varepsilon}} \rho_{i, M}^{d-2},
$$

To apply lemma 2.10, we remark by (2.18) of lemma 2.3 and (2.120) of lemma 2.9 that we have

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \#\left(\left(\mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D\right) \backslash n^{\varepsilon}\right)=\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \#\left(\mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D\right)-\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# n^{\varepsilon}=0
$$

and we can conclude $R_{M}^{\varepsilon} \stackrel{*}{\rightharpoonup} 0$ weakly-* in $L^{\infty}(D)$. Thus by proposition A.1.8 we have for φ belongs to $W_{0}^{1,1}(D)$

$$
\begin{aligned}
\left\|R_{M}^{\varepsilon}\right\|_{W^{-1, \infty}(D)} & =\sup _{\|\varphi\|_{W_{0}^{1,1}(D)}=1}\left|\left(R_{M}^{\varepsilon}, \varphi\right)_{W^{-1, \infty}(D), W_{0}^{1,1}(D)}\right| \\
& =\sup _{\|\varphi\|_{W_{0}^{1,1}(D)}=1}\left|\left(R_{M}^{\varepsilon}, \varphi\right)_{L^{\infty}(D), L^{1}(D)}\right| \rightarrow 0
\end{aligned}
$$

then R_{M}^{ε} goes to 0 strongly in $W^{-1, \infty}(D)$ and this yields (2.55). It remains to show (2.56). By caracterization of $W^{-1, \infty}(D)$ and definition of η_{M}^{ε}, it sufficient to prove only

$$
\begin{equation*}
\eta_{M}^{\varepsilon} \stackrel{*}{\rightharpoonup} C_{0, M} \text { weakly-* in } L^{\infty}(D) . \tag{2.61}
\end{equation*}
$$

Since η_{M}^{ε} is bounded, then we test only for $\varphi \in \mathcal{C}_{c}^{1}(D)$. We have

$$
\left(\eta_{M}^{\varepsilon}, \varphi\right)_{H^{-1}(D), H_{0}^{1}(D)}=\sum_{z_{i} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D} 2^{d}(d-2) d \rho_{i, M}^{d-2} \int_{B_{i}^{\varepsilon}} \varphi,
$$

applying lemma 2.11, one has

$$
\left(\eta_{M}^{\varepsilon}, \varphi\right)_{H^{-1}(D), H_{0}^{1}(D)} \rightarrow(d-2) \sigma_{d}\left\langle\rho^{d-2} \mathbf{1}_{\rho \leq M}\right\rangle \int_{D} \varphi
$$

Then the proof of (2.61) is established, hence (2.56) holds true.
We return to the proof of proposition 2.5
Proof. We return to our main goal, and argue that the function w^{ε} defined in proposition 2.5 is $H^{1}(D)$ and satisfies (H1), (H2) and (H3). We starts with (H1), we have by definition $w_{1}^{\varepsilon}=0$ in H_{b}^{ε} and $w_{2}^{\varepsilon}=1$ in $H_{b}^{\varepsilon} \subseteq D_{b}^{\varepsilon}$, then

$$
w^{\varepsilon}=w_{1}^{\varepsilon} \wedge w_{2}^{\varepsilon}=w_{1}^{\varepsilon}=0 \quad \text { in } H_{b}^{\varepsilon},
$$

we have also $w_{1}^{\varepsilon}=1$ in $H_{b}^{\varepsilon} \subseteq D \backslash D_{b}^{\varepsilon}$ and $w_{1}^{\varepsilon}=0$ in H_{g}^{ε}, then

$$
w^{\varepsilon}=w_{1}^{\varepsilon} \wedge w_{2}^{\varepsilon}=w_{2}^{\varepsilon}=0 \quad \text { in } H_{g}^{\varepsilon} .
$$

So the first property (H1) is satisfied. Let us prove that w^{ε} belongs to $H^{1}(D)$, we have by definition of w_{1}^{ε} and w_{2}^{ε}

$$
\left\{\begin{array}{l}
\left.w^{\varepsilon}\right|_{D \backslash D_{b}^{\varepsilon}}=w_{2}^{\varepsilon} \in H^{1}\left(D \backslash D_{b}^{\varepsilon}\right), \\
\left.w^{\varepsilon}\right|_{D_{b}^{\varepsilon}}=w_{1}^{\varepsilon} \in H^{1}\left(D_{b}^{\varepsilon}\right) .
\end{array}\right.
$$

We have also

$$
\left.w^{\varepsilon}\right|_{\partial\left(D \backslash D_{b}^{\varepsilon}\right)}=\left.w^{\varepsilon}\right|_{\partial D_{b}^{\varepsilon}}=1 .
$$

Then we can use the proposition A.1.12 (See Appendix A) to conclude that $w^{\varepsilon} \in H^{1}(D)$. We pass to (H2), we have for every function $v \in H^{1}(D)$

$$
\begin{align*}
\left\langle w^{\varepsilon}, v\right\rangle_{H^{1}(D)}= & \left\langle w^{\varepsilon}, v\right\rangle_{L^{2}(D)}+\left\langle\nabla w^{\varepsilon}, \nabla v\right\rangle_{\left(L^{2}(D)\right)^{d}} \tag{2.62}\\
= & \left\langle w_{1}^{\varepsilon}, v\right\rangle_{L^{2}\left(D_{b}^{\varepsilon}\right)}+\left\langle\nabla w_{1}^{\varepsilon}, \nabla v\right\rangle_{\left(L^{2}\left(D_{b}^{\varepsilon}\right)\right)^{d}} \\
& +\left\langle w_{2}^{\varepsilon}, v\right\rangle_{L^{2}\left(D \backslash D_{b}^{\varepsilon}\right)}+\left\langle\nabla w_{2}^{\varepsilon}, \nabla v\right\rangle_{\left(L^{2}\left(D \backslash D_{b}^{\varepsilon}\right)\right)^{d}} .
\end{align*}
$$

Since w_{2}^{ε} satisfies the property $(\mathrm{H} 2)$ and w_{1}^{ε} converge to 1 strongly in $H^{1}(D)$ hence weakly in $H^{1}(D)$, then

$$
\left\langle w^{\varepsilon}, v\right\rangle_{H^{1}(D)} \rightarrow\langle 1, v\rangle_{H^{1}(D)} .
$$

Thus, the property (H2) is established for w^{ε}. Now, we prove that (H3) is satisfied for w^{ε} but first of all we need to argue that it sufficient to prove (H3) only for w_{2}^{ε}. Indeed, let $v^{\varepsilon} \in H_{0}^{1}(D)$ such that v^{ε} vanishes in the holes H^{ε} and v^{ε} converge weakly to v in $H_{0}^{1}(D)$. By definition of w_{1}^{ε}, w_{2}^{ε} in lemma 2.6 and lemma 2.7,
we have $\nabla w_{1}^{\varepsilon}$ and $\nabla w_{2}^{\varepsilon}$ has disjoint supports where

$$
\operatorname{supp}\left(\nabla w_{1}^{\varepsilon}\right) \subseteq D_{b}^{\varepsilon} \backslash H_{b}^{\varepsilon}, \quad \operatorname{supp}\left(\nabla w_{2}^{\varepsilon}\right) \subseteq D \backslash\left(D_{b}^{\varepsilon} \cup H_{g}^{\varepsilon}\right)
$$

Then, one has

$$
\begin{aligned}
\left\langle-\Delta w^{\varepsilon}, v^{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)}= & \left\langle-\Delta w_{1}^{\varepsilon}, v^{\varepsilon}\right\rangle_{H^{-1}\left(D_{b}^{\varepsilon} \backslash H_{b}^{\varepsilon}\right), H_{0}^{1}\left(D_{b}^{\varepsilon} \backslash H_{b}^{\varepsilon}\right)} \\
& +\left\langle-\Delta w_{2}^{\varepsilon}, v^{\varepsilon}\right\rangle_{H^{-1}\left(D \backslash D_{b}^{\varepsilon}\right), H_{0}^{1}\left(D \backslash D_{b}^{\varepsilon}\right)} \\
= & \int_{D_{b}^{\varepsilon} \backslash H_{b}^{\varepsilon}} \nabla w_{1}^{\varepsilon} \nabla v^{\varepsilon} \\
& +\left\langle-\Delta w_{2}^{\varepsilon}, v^{\varepsilon}\right\rangle_{H^{-1}\left(D \backslash D_{b}^{\varepsilon}\right), H_{0}^{1}\left(D \backslash D_{b}^{\varepsilon}\right)} .
\end{aligned}
$$

Using lemma 2.6, one has

$$
\int_{D_{b}^{\varepsilon} \backslash H_{b}^{\varepsilon}} \nabla w_{1}^{\varepsilon} \nabla v^{\varepsilon} \rightarrow 0 .
$$

We have also by lemma 2.7

$$
\begin{equation*}
\left\langle-\Delta w_{2}^{\varepsilon}, v^{\varepsilon}\right\rangle_{H^{-1}\left(D \backslash D_{b}^{\varepsilon}\right), H_{0}^{1}\left(D \backslash D_{b}^{\varepsilon}\right)} \rightarrow C_{0} \int_{D} v \tag{2.63}
\end{equation*}
$$

where C_{0} defined as in theorem 2.2. Then (H3) is satisfied for w^{ε}.

2.2.2 Case(b): General case

Let (Φ, \mathcal{R}) be a marked point process defined as in of theorem 2.2. We give the following lemma which is similar to Lemma 2.3 where we can use it for the proof of Lemma 2.2.

Lemma 2.8 There exist an $\varepsilon_{0}=\varepsilon_{0}(d)$ and a family of random variables $\left\{r_{\varepsilon}\right\}_{\varepsilon>0} \subseteq \mathbb{R}^{+}$such that for \mathbb{P}-almost every $\omega \in \Omega$

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} r_{\varepsilon}(\omega)=0 \tag{2.64}
\end{equation*}
$$

and for any $\varepsilon \leq \varepsilon_{0}$ there exist $H_{g}^{\varepsilon}(\omega), H_{b}^{\varepsilon}(\omega), D_{b}^{\varepsilon}(\omega) \subseteq \mathbb{R}^{d}$. such that

$$
\begin{aligned}
& H^{\varepsilon}(\omega)=H_{g}^{\varepsilon}(\omega) \cup H_{b}^{\varepsilon}(\omega), \quad H_{b}^{\varepsilon}(\omega) \subseteq D_{b}^{\varepsilon}(\omega), \\
& \operatorname{dist}\left(H_{g}^{\varepsilon}(\omega), D_{b}^{\varepsilon}(\omega)\right) \geq \frac{\varepsilon r_{\varepsilon}}{2},
\end{aligned}
$$

when

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \operatorname{cap}\left(H_{b}^{\varepsilon}(\omega), D_{b}^{\varepsilon}(\omega)\right)=0 \tag{2.65}
\end{equation*}
$$

Moreover, $H_{g}^{\varepsilon}(\omega)$ may be written as the following union of disjoint balls centered in $n^{\varepsilon}(\omega) \subseteq \Phi\left(\frac{1}{\varepsilon} D\right)$:

$$
\begin{align*}
H_{g}^{\varepsilon}(\omega) & =\bigcup_{z_{j} \in n^{\varepsilon}} B_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right), \\
\min _{z_{i} \neq z_{j} \in n^{\varepsilon}} \varepsilon\left|z_{i}-z_{j}\right| & \geq 2 r_{\varepsilon} \varepsilon, \quad \varepsilon^{\frac{d}{d-2}} \rho_{j} \leq \frac{\varepsilon r_{\varepsilon}}{2}, \quad \lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \#\left(n^{\varepsilon}\right)=\langle N(Q)\rangle|D| . \tag{2.66}
\end{align*}
$$

Furthermore, if for $\delta>0$ the process Φ_{δ} is defined as in (2.14), then

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \#\left(\left\{z_{i} \in \Phi_{2 \delta}^{\varepsilon}(D)(\omega): \operatorname{dist}\left(z_{i}, D_{b}^{\varepsilon}\right) \leq \varepsilon \delta\right\}\right)=0 . \tag{2.67}
\end{equation*}
$$

Proof. The proof of this lemma is divided in five steps: First, we construct the random variables $\left\{r_{\varepsilon}\right\}_{\varepsilon>0}$ for a fixed $\alpha \in\left(0, \frac{2}{d-2}\right)$, we write

$$
\begin{equation*}
r_{\varepsilon}=\left(\varepsilon^{\frac{d}{d-2}} \max _{z_{j} \in \Phi^{\varepsilon}(D)} \rho_{j}\right)^{\frac{1}{d}} \vee \varepsilon^{\frac{\alpha}{4}}=\max \left\{\left(\varepsilon^{\frac{d}{d-2}} \max _{z_{j} \in \Phi^{\varepsilon}(D)} \rho_{j}\right)^{\frac{1}{d}}, \varepsilon^{\frac{\alpha}{4}}\right\} . \tag{2.68}
\end{equation*}
$$

We can show that r_{ε} satisfies (2.64). Indeed, For F^{ε} a subset of $\Phi^{\varepsilon}(D)$ defined as

$$
F^{\varepsilon}=\left\{z_{j} \in \Phi^{\varepsilon}(D): \varepsilon^{\frac{d}{d-2}} \rho_{j} \geq \varepsilon\right\}
$$

If $F^{\varepsilon}=\emptyset$, then for $z_{j} \in \Phi^{\varepsilon}(D)$ the corresponding radii satisfies

$$
\varepsilon^{\frac{1}{d-2}} \max _{z_{j} \in \Phi^{\varepsilon}(D)} \rho_{j}^{\frac{1}{d}} \leq \varepsilon^{\frac{1}{d}}
$$

Since $r_{\varepsilon} \geq 0$ we have for every $\varepsilon>0$

$$
\lim _{\varepsilon \rightarrow 0} r_{\varepsilon} \leq \lim _{\varepsilon \rightarrow 0} \varepsilon^{\frac{1}{d}} \vee \varepsilon^{\frac{\alpha}{4}}=0
$$

If $F^{\varepsilon} \neq \emptyset$, we get

$$
\varepsilon^{d} \max _{z_{j} \in \Phi^{\varepsilon}(D)} \rho_{j}^{d-2}=\varepsilon^{d} \max _{z_{j} \in F^{\varepsilon}} \rho_{j}^{d-2} \leq \varepsilon^{d} \sum_{z_{j} \in F^{\varepsilon}} \rho_{j}^{d-2},
$$

then, one has

$$
\lim _{\varepsilon \rightarrow 0} r_{\varepsilon} \leq \lim _{\varepsilon \rightarrow 0}\left(\left(\varepsilon^{d} \sum_{z_{j} \in F^{\varepsilon}} \rho_{j}^{d-2}\right) \vee \varepsilon^{\frac{\alpha}{4}}\right) .
$$

So to get (2.64) immediatly applaying lemma 2.10, it's sufficient to claim that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# F^{\varepsilon}=0 \tag{2.69}
\end{equation*}
$$

Indeed, for $z_{j} \in F^{\varepsilon}$ the corresponding radii ρ_{j} satisfies $1 \leq \varepsilon^{2} \rho_{j}^{d-2}$, then one has

$$
\varepsilon^{d} \# F^{\varepsilon}=\varepsilon^{d} \sum_{z_{j} \in F^{\varepsilon}} \leq \varepsilon^{d} \varepsilon^{2} \sum_{z_{j} \in \Phi^{\varepsilon}(D)} \rho_{j}^{d-2} .
$$

So applying lemma 2.9, (2.69) yields true and the proof of (2.64) is complete. The second step is about the construction of $H_{b}^{\varepsilon}(\omega)$ and its safety layer $D_{b}^{\varepsilon}(\omega)$. Equipped with the definition of r_{ε} defined as above (2.68) and denote by $\eta_{\varepsilon}=r_{\varepsilon} \varepsilon$. In this step we will give the set of the centers of bad balls denoted I_{b}^{ε} as a union of three sets, the first one is denoted by J_{b}^{ε} and contains the point of $\Phi^{\varepsilon}(D)$ where the corresponding radii are too large, then we put

$$
\begin{equation*}
J_{b}^{\varepsilon}=\left\{z_{j} \in \Phi^{\varepsilon}(D): \varepsilon^{\frac{d}{d-2}} \rho_{j} \geq \frac{\eta_{\varepsilon}}{2}\right\} \tag{2.70}
\end{equation*}
$$

The second set of points contains the centers generating the balls too close to each other, we indeed set

$$
\begin{equation*}
K_{b}^{\varepsilon}=\Phi^{\varepsilon}(D) \backslash\left(\Phi_{2 r_{\varepsilon}}^{\varepsilon}(D) \cup J_{b}^{\varepsilon}\right), \tag{2.71}
\end{equation*}
$$

where $\Phi_{2 r_{\varepsilon}}^{\varepsilon}(D)$ is defined as in (2.14). Similarly to the periodic case, we define

$$
\tilde{H}_{b}^{\varepsilon}=\bigcup_{z_{j} \in J_{b}^{\varepsilon}} B_{2 \varepsilon^{\frac{d}{d-2} \rho_{j}}}\left(\varepsilon z_{j}\right)
$$

The third set contains the centers of balls might be close to $\tilde{H}_{b}^{\varepsilon}$: We denote

$$
\begin{equation*}
\tilde{I}_{b}^{\varepsilon}=\left\{z_{j} \in \Phi^{\varepsilon}(D) \backslash\left(K_{b}^{\varepsilon} \cup J_{b}^{\varepsilon}\right): \tilde{H}_{b}^{\varepsilon} \cap B_{\eta_{\varepsilon}}\left(\varepsilon z_{j}\right) \neq \emptyset\right\} . \tag{2.72}
\end{equation*}
$$

Finally, we put

$$
\begin{align*}
I_{b}^{\varepsilon} & =J_{b}^{\varepsilon} \cup K_{b}^{\varepsilon} \cup \tilde{I}_{b}^{\varepsilon}, \tag{2.73}\\
H_{b}^{\varepsilon} & =\bigcup_{z_{j} \in I_{b}^{\varepsilon}} B_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right), \quad D_{b}^{\varepsilon}=\bigcup_{z_{j} \in I_{b}^{\varepsilon}} B_{2 \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right), \quad H_{g}^{\varepsilon}=H^{\varepsilon} \backslash H_{b}^{\varepsilon} \tag{2.74}
\end{align*}
$$

In the third step, we prove (2.65). By the sub-additivity of capacity and definitions (2.74) we compute as in the simplest case

$$
\begin{aligned}
\operatorname{cap}\left(H_{b}^{\varepsilon}, H_{b}^{\varepsilon}\right) & =\sum_{z_{j} \in I_{b}^{\varepsilon}} \operatorname{cap}\left(B_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right), D_{b}^{\varepsilon}\right) \\
& \leq \sum_{z_{j} \in I_{b}^{\varepsilon}} \operatorname{cap}\left(B_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right), B_{2 \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right)\right) \\
& \leq \sum_{z_{j} \in I_{b}^{\varepsilon}} \varepsilon^{d} \rho_{j}^{d-2}
\end{aligned}
$$

The proof is concluded from lemma 2.10 if we argue that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# I_{b}^{\varepsilon}=0 \tag{2.75}
\end{equation*}
$$

Indeed, by definition of I_{b}^{ε} in (2.73) it sufficient to prove (2.75) only for the sets $J_{b}^{\varepsilon}, K_{b}^{\varepsilon}$ and $\tilde{I}_{b}^{\varepsilon}$. We start with

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# J_{b}^{\varepsilon}=0 \tag{2.76}
\end{equation*}
$$

We have by definition of J_{b}^{ε} in (2.70)

$$
1 \leq \varepsilon^{2}\left(r_{\varepsilon}\right)^{-(d-2)} 2^{d-2} \rho_{j}^{d-2} \quad \text { for } \quad z_{j} \in J_{b}^{\varepsilon},
$$

then one has

$$
\begin{align*}
\varepsilon^{d} \# J_{b}^{\varepsilon} & =\varepsilon^{d} \sum_{z_{j} \in J_{b}^{\varepsilon}} \\
& \leq \varepsilon^{2}\left(r_{\varepsilon}\right)^{-(d-2)} 2^{d-2} \varepsilon^{d} \sum_{z_{j} \in \Phi^{\varepsilon}(D)} \rho_{j}^{d-2} . \tag{2.77}
\end{align*}
$$

We have also by definition of r_{ε}

$$
\begin{aligned}
r_{\varepsilon}^{-(d-2)} & \leq\left(\varepsilon^{\frac{d}{d-2}} \max _{z_{j} \in \Phi^{\varepsilon}(D)} \rho_{j}\right)^{\frac{-(d-2)}{d}} \wedge \varepsilon^{\frac{-\alpha(d-2)}{4}} \\
& \leq \varepsilon^{-\alpha(d-2)} .
\end{aligned}
$$

Substituting this last result in (2.77), we get

$$
\varepsilon^{d} \# J_{b}^{\varepsilon} \leq \varepsilon^{2-\alpha(d-2)} 2^{d-2} \varepsilon^{d} \sum_{z_{j} \in \Phi^{\varepsilon}(D)} \rho_{j}^{d-2} .
$$

By lemma 2.9 we have

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \sum_{z_{j} \in \Phi^{\varepsilon}(D)} \rho_{j}^{d-2}=\langle N(Q)\rangle|D|\left\langle\rho^{d-2}\right\rangle<+\infty,
$$

then since $2-\alpha(d-2)>1,(2.76)$ is established., For a sequence $\left\{\delta_{k}\right\}_{k \in \mathbb{N}} \subseteq \mathbb{R}^{+*}$ with $\delta_{k} \rightarrow 0$ when $k \rightarrow+\infty$ if we suppose also that $N_{\delta_{k}}^{\varepsilon}(D) \leq N_{r_{\varepsilon}}^{\varepsilon}(D)$, we get

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \sup \varepsilon^{d} \# K_{b}^{\varepsilon} \leq \lim _{\varepsilon \rightarrow 0} \sup \varepsilon^{d}\left(N^{\varepsilon}(D)-N_{r_{\varepsilon}}^{\varepsilon}(D)\right) \leq \lim _{\varepsilon \rightarrow 0} \sup \varepsilon^{d}\left(N^{\varepsilon}(D)-N_{\delta_{k}}^{\varepsilon}(D)\right) \tag{2.78}
\end{equation*}
$$

We can apply (2.122) of lemma 2.9 for the right hand side of (2.78), one has

$$
\lim _{\varepsilon \rightarrow 0} \sup \varepsilon^{d} \# K_{b}^{\varepsilon} \leq\left\langle N(Q)-N_{\delta_{k}}(Q)\right\rangle|D|,
$$

for Q is a unitary cube. Sending $\delta_{k} \rightarrow 0$ and applying (2.122) of lemma 2.9, we obtain

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# K_{b}^{\varepsilon}=0 \tag{2.79}
\end{equation*}
$$

It remains to prove

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# \tilde{I}_{b}^{\varepsilon}=0 \tag{2.80}
\end{equation*}
$$

By definitions (2.70), (2.71) and (2.72), we have for $z_{i} \in \Phi^{\varepsilon}(D) \backslash\left(K_{b}^{\varepsilon} \cup J_{b}^{\varepsilon}\right)$

$$
\begin{align*}
\min _{\substack{z_{j}, z_{i} \in \Phi^{\varepsilon}(D) \\
z_{i} \neq z_{j}}} \varepsilon\left|z_{i}-z_{j}\right| & \geq 2 \eta_{\varepsilon}, \tag{2.81}\\
\varepsilon^{\frac{d}{d-2}} \rho_{i} & <\frac{\eta_{\varepsilon}}{2} . \tag{2.82}
\end{align*}
$$

Since the balls of $\tilde{I}_{b}^{\varepsilon}$ have radii satisfies (2.82) and centers satisfies (2.81), then the balls $\left\{B_{\eta_{\varepsilon}}\left(\varepsilon z_{i}\right)\right\}_{z_{i} \in \tilde{I}_{b}^{\varepsilon}}$ are disjoints. So one has

$$
\varepsilon^{d} \# \tilde{I}_{b}^{\varepsilon}=\varepsilon^{d} \sum_{z_{i} \in \tilde{I}_{b}^{\varepsilon}} \leq \varepsilon^{d} \sum_{z_{i} \in \tilde{I}_{b}^{\varepsilon}} \frac{\Gamma\left(\frac{d}{2}+1\right)}{\eta_{\varepsilon}^{d} \pi^{d}}\left|B_{\eta_{\varepsilon}}\left(\varepsilon z_{i}\right)\right|=r_{\varepsilon}^{-d} \sum_{z_{i} \in \tilde{I}_{b}^{\varepsilon}} \frac{\Gamma\left(\frac{d}{2}+1\right)}{\pi^{d}}\left|B_{\eta_{\varepsilon}}\left(\varepsilon z_{i}\right)\right|,
$$

with $\left|B_{\eta_{\varepsilon}}\left(\varepsilon z_{i}\right)\right|=\frac{\eta_{\pi}^{d} d^{d}}{\Gamma\left(\frac{d}{2}+1\right)}$ and Γ is the gamma function defined as generalization of the factorial function for non integer value. We have for any $z_{i} \in \tilde{I}_{b}^{\varepsilon}$ there exists $c=c(d)$ and $z_{j} \in J_{b}^{\varepsilon}$ such that

$$
B_{\eta_{\varepsilon}}\left(\varepsilon z_{i}\right) \subseteq B_{c \varepsilon}{ }_{c \varepsilon}^{d-2} \rho_{j}\left(\varepsilon z_{j}\right),
$$

then one has

$$
\begin{aligned}
\varepsilon^{d} \# \tilde{I}_{b}^{\varepsilon} & \leq r_{\varepsilon}^{-d} \sum_{z_{i} \in J_{b}^{\varepsilon}} \frac{\Gamma\left(\frac{d}{2}+1\right)}{\pi^{d}}\left|B_{c \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right)\right| \\
& \leq r_{\varepsilon}^{-d} \sum_{z_{i} \in J_{b}^{\varepsilon}} C_{1}\left(\varepsilon^{\frac{d}{d-2}} \rho_{j}\right)^{d},
\end{aligned}
$$

with $C_{1}>0$ is a constant depend only on d. We have also

$$
\left(\varepsilon^{\frac{d}{d-2}} \rho_{j}\right)^{d}=\varepsilon^{\frac{d^{2}-2 d+2 d}{d-2}} \rho_{j}^{d-2} \rho_{j}^{2} \leq\left(\varepsilon^{\frac{d}{d-2}} \max _{z_{j} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D} \rho_{j}\right)^{2} \varepsilon^{d} \rho_{j}^{d-2},
$$

then, we obtain

$$
\begin{equation*}
\varepsilon^{d} \# \tilde{I}_{b}^{\varepsilon} \leq r_{\varepsilon}^{-d} C_{1}\left(\varepsilon^{\frac{d}{d-2}} \max _{z_{j} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D} \rho_{j}\right)^{2} \sum_{z_{i} \in J_{b}^{\varepsilon}} \varepsilon^{d} \rho_{j}^{d-2} \tag{2.83}
\end{equation*}
$$

In the other hand, we have by definition of r_{ε}

$$
r_{\varepsilon}^{-d} \leq\left(\varepsilon^{\frac{d}{d-2}} \max _{z_{j} \in \Phi^{\varepsilon}(D)} \rho_{j}\right)^{-1} \wedge \varepsilon^{\frac{-\alpha d}{4}} \leq\left(\varepsilon^{\frac{d}{d-2}} \max _{z_{j} \in \Phi^{\varepsilon}(D)} \rho_{j}\right)^{-1}
$$

it follows

$$
\begin{aligned}
r_{\varepsilon}^{-d} C_{1}\left(\varepsilon^{\frac{d}{d-2}} \max _{z_{j} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D} \rho_{j}\right)^{2} & \leq C_{1}\left(\varepsilon^{\frac{d}{d-2}} \max _{z_{j} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D} \rho_{j}\right) \\
& \leq C_{1}\left(\varepsilon^{d} \sum_{z_{j} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D} \rho_{j}^{d-2}\right)^{\frac{1}{d-2}}
\end{aligned}
$$

For ε small enough, we can apply lemma 2.9 then we get

$$
\begin{equation*}
r_{\varepsilon}^{-d} C_{1}\left(\varepsilon^{\frac{d}{d-2}} \max _{z_{j} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D} \rho_{j}\right)^{2} \leq C_{1}\left(\langle N(Q)\rangle|D|\left\langle\rho^{d-2}\right\rangle\right)^{\frac{1}{d-2}} \tag{2.84}
\end{equation*}
$$

substituting (2.84) in (2.83) one has

$$
\varepsilon^{d} \# \tilde{I}_{b}^{\varepsilon} \leq C_{1}\left(\langle N(Q)\rangle|D|\left\langle\rho^{d-2}\right\rangle\right)^{\frac{1}{d-2}} \sum_{z_{i} \in J_{b}^{\varepsilon}} \varepsilon^{d} \rho_{j}^{d-2}
$$

Since we have proved (2.76), we can apply lemma 2.9 , thus (2.80) is established. Finally, we get

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# I_{b}^{\varepsilon}=\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# J_{b}^{\varepsilon}+\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# K_{b}^{\varepsilon}+\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# \tilde{I}_{b}^{\varepsilon}=0
$$

The fourth step is to contruct the set of good holes H_{g}^{ε} which satisfies (2.66). We can set $n^{\varepsilon}=\Phi^{\varepsilon}(D) \backslash I_{b}^{\varepsilon}$ and define H_{g}^{ε} as follows

$$
H_{g}^{\varepsilon}=\bigcup_{z_{i} \in n^{\varepsilon}} B_{\varepsilon^{\frac{d}{d-2}} \rho_{i}}\left(\varepsilon z_{i}\right)
$$

Let us prove that

$$
\begin{equation*}
\operatorname{dist}\left(H_{g}^{\varepsilon}, D_{b}^{\varepsilon}\right) \geq \frac{\eta_{\varepsilon}}{2} \tag{2.85}
\end{equation*}
$$

Since for $z_{i} \in n^{\varepsilon}$, we have $z_{i} \notin K_{b}^{\varepsilon} \cup J_{b}^{\varepsilon}$ then the properties (2.81) and (2.82) are satisfies then one has

$$
\operatorname{dis}\left(B_{\varepsilon^{\frac{d}{d-2}} \rho_{i}}\left(\varepsilon z_{i}\right), B_{\eta_{\varepsilon}}\left(\varepsilon z_{i}\right)\right) \geq \frac{\eta_{\varepsilon}}{2}
$$

So to claim (2.85), it sufficient to prove that for $z_{i} \in n^{\varepsilon}$ and $z_{j} \in I_{b}^{\varepsilon}$ we have

$$
\begin{equation*}
B_{2 \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right) \cap B_{\eta_{\varepsilon}}\left(\varepsilon z_{i}\right)=\emptyset . \tag{2.86}
\end{equation*}
$$

Indeed, If $z_{j} \in J_{b}^{\varepsilon}$ then $z_{j} \notin \tilde{I}_{b}^{\varepsilon}$, we have also $z_{i} \notin \tilde{I}_{b}^{\varepsilon}$ then by definition of $\tilde{I}_{b}^{\varepsilon}$ in (2.72), (2.86) is established. Now, if $z_{j} \in K_{b}^{\varepsilon} \cup \tilde{I}_{b}^{\varepsilon}$ then

$$
2 \varepsilon^{\frac{d}{d-2}} \rho_{j}<\eta_{\varepsilon}, \quad \min _{z_{i} \in n^{\varepsilon}} \varepsilon\left|z_{i}-z_{j}\right| \geq 2 \eta_{\varepsilon},
$$

then, we can conclude (2.86) and finally this yields (2.85). We now prove the properties (2.66). For the first, by definition of n^{ε} for any $z_{i}, z_{j} \in n^{\varepsilon}$ with $z_{i} \neq z_{j}$ we have $z_{i}, z_{j} \notin K_{b}^{\varepsilon}$, Then we get

$$
\begin{equation*}
\min _{z_{i} \in n^{\varepsilon}} \varepsilon\left|z_{i}-z_{j}\right| \geq 2 \eta_{\varepsilon} . \tag{2.87}
\end{equation*}
$$

The second result follows from the definition of n^{ε}. For $z_{j} \in n^{\varepsilon}$ we have $z_{j} \notin I_{b}^{\varepsilon}$ then one has

$$
2 \varepsilon^{\frac{d}{d-2}} \rho_{j} \leq \eta_{\varepsilon}
$$

we have also

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# n^{\varepsilon}=\lim _{\varepsilon \rightarrow 0} \varepsilon^{d}\left(\# \Phi^{\varepsilon}(D)-\# I_{b}^{\varepsilon}\right)
$$

Using (2.75), one has

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# n^{\varepsilon}=\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# \Phi^{\varepsilon}(D) .
$$

Using the result (2.2) in lemma 2.9, we get

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# n^{\varepsilon}=\langle N(Q)\rangle|D|, \tag{2.88}
\end{equation*}
$$

where Q is the unitary cube. The last step is to prove (2.67), to do that we first set

$$
\begin{equation*}
Y_{\delta}^{\varepsilon}=\left\{z_{i} \in \Phi_{2 \delta}^{\varepsilon}(D): \operatorname{dist}\left(z_{i}, D_{b}^{\varepsilon}\right) \leq \delta \varepsilon\right\} . \tag{2.89}
\end{equation*}
$$

We have

$$
\begin{aligned}
Y_{\delta}^{\varepsilon} \subseteq & \left\{z_{i} \in n^{\varepsilon} \cup I_{b}^{\varepsilon}: \operatorname{dist}\left(\varepsilon z_{i}, D_{b}^{\varepsilon}\right) \leq \delta \varepsilon\right\} \\
\subseteq & I_{b}^{\varepsilon} \cup\left\{z_{i} \in n^{\varepsilon}: \operatorname{dist}\left(\varepsilon z_{i}, \bigcup_{z_{j} \in J_{b}^{\varepsilon}} B_{2 \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right)\right) \leq \delta \varepsilon\right\} \\
& \cup\left\{z_{i} \in n^{\varepsilon} \cap \Phi_{2 \delta}^{\varepsilon}(D): \operatorname{dist}\left(\varepsilon z_{i}, \bigcup_{z_{j} \in I_{b}^{\varepsilon} \cup K_{b}^{\varepsilon}} B_{2 \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right)\right) \leq \delta \varepsilon\right\} .
\end{aligned}
$$

We denote

$$
\begin{equation*}
E^{\varepsilon}=\left\{z_{i} \in n^{\varepsilon}: \operatorname{dist}\left(\varepsilon z_{i}, \bigcup_{z_{j} \in J_{b}^{\varepsilon}} B_{2 \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right)\right) \leq \delta \varepsilon\right\} \tag{2.90}
\end{equation*}
$$

and

$$
\begin{equation*}
C^{\varepsilon}=\left\{z_{i} \in n^{\varepsilon} \cap \Phi_{2 \delta}^{\varepsilon}(D): \operatorname{dist}\left(\varepsilon z_{i}, \quad \bigcup_{z_{j} \in \tilde{I} \tilde{I}_{b}^{\varepsilon} \cup K_{b}^{\varepsilon}} B_{2 \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right)\right) \leq \delta \varepsilon\right\} \tag{2.91}
\end{equation*}
$$

to argue (2.67) we show that

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# I_{b}^{\varepsilon}=\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# E^{\varepsilon}=\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# C^{\varepsilon}=0
$$

Indeed, the first result is concluded from (2.75). We pass to

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# E^{\varepsilon}=0 \tag{2.92}
\end{equation*}
$$

We may choose $\varepsilon_{0}=\varepsilon_{0}(d)$ such that for all $\varepsilon \leq \varepsilon_{0}$ the property (2.64) is satisfied and $\varepsilon r_{\varepsilon} \leq \varepsilon \delta$. For $z_{i} \in E^{\varepsilon}$ there exists $z_{j} \in J_{b}^{\varepsilon}$ where z_{i}, z_{j} satisfies the following properties

$$
\left\{\begin{array}{l}
B_{\eta_{\varepsilon}}\left(\varepsilon z_{i}\right) \subseteq B_{\varepsilon \delta}\left(\varepsilon z_{i}\right), \\
2 \varepsilon^{\frac{d}{d-2}} \rho_{j} \geq \eta_{\varepsilon}, \\
\operatorname{dist}\left(\varepsilon z_{i}, \partial B_{2 \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right)\right) \leq \delta \varepsilon .
\end{array}\right.
$$

Then, we can remark that

$$
B_{\eta_{\varepsilon}}\left(\varepsilon z_{i}\right) \subseteq B_{2 \delta \varepsilon+2 \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right) .
$$

Using $1 \leq \delta r_{\varepsilon}^{-1}$, we get

$$
2 \delta \varepsilon \leq \frac{2 \delta}{r_{\varepsilon}} 2 \varepsilon^{\frac{d}{d-2}} \rho_{j}, \quad 2 \varepsilon^{\frac{d}{d-2}} \rho_{j} \leq \frac{2 \delta}{r_{\varepsilon}} \varepsilon^{\frac{d}{d-2}} \rho_{j},
$$

then, one has

$$
\begin{equation*}
B_{\eta_{\varepsilon}}\left(\varepsilon z_{i}\right) \subseteq B_{2 \delta \varepsilon+2 \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right) \subseteq B_{6 \delta r_{\varepsilon}^{-1} \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right) . \tag{2.93}
\end{equation*}
$$

So, we obtain

$$
\begin{aligned}
& \varepsilon^{d} \# E^{\varepsilon}=r_{\varepsilon}^{-d} \eta_{\varepsilon}^{d} \# E^{\varepsilon}=r_{\varepsilon}^{-d} \eta_{\varepsilon}^{d} \sum_{z_{i} \in n^{\varepsilon}} \frac{\Gamma\left(\frac{d}{2}+1\right)}{\pi^{d} \eta_{\varepsilon}^{d}}\left|B_{\eta_{\varepsilon}}\left(\varepsilon z_{i}\right)\right| \\
& \leq\left(\frac{\Gamma\left(\frac{d}{2}+1\right)}{\pi^{d}}\right) r_{\varepsilon}^{-d} \sum_{z_{i} \in J_{b}^{\varepsilon}}\left|B_{6 \delta r_{\varepsilon}^{-1} \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right)\right| \\
& \leq\left(\frac{\Gamma\left(\frac{d}{2}+1\right)}{\pi^{d}}\right) \delta^{d} r_{\varepsilon}^{-2 d} \sum_{z_{i} \in J_{b}^{\varepsilon}}\left(\varepsilon^{\frac{d}{d-2}} \rho_{j}\right)^{d} \leq\left(\frac{\Gamma\left(\frac{d}{2}+1\right)}{\pi^{d}}\right) \delta^{d} r_{\varepsilon}^{-2 d} \sum_{z_{i} \in J_{b}^{\varepsilon}} \varepsilon^{\frac{d^{2}-2 d+2 d}{d-2}} \rho_{j}^{d-2} \rho_{j}^{2},
\end{aligned}
$$

with Γ is the Gamma function. Since by definition of r_{ε} we have

$$
r_{\varepsilon}^{-2 d} \leq \varepsilon^{\frac{-2 d}{d-2}} \max \rho_{j}^{-2}
$$

one has

$$
\varepsilon^{d} \# E^{\varepsilon} \leq\left(\frac{\Gamma\left(\frac{d}{2}+1\right)}{\pi^{d}}\right) \delta^{d} \varepsilon^{d} \sum_{z_{i} \in J_{b}^{\varepsilon}} \rho_{j}^{d-2}
$$

Using (2.76) and lemma 2.10 we get out (2.92). Now, we claim the last result

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# C^{\varepsilon}=0 \tag{2.94}
\end{equation*}
$$

we show that the set C^{ε} is empty for ε small enough. We have by definition of $\tilde{I}_{b}^{\varepsilon}$ and K_{b}^{ε}, if $z_{i} \in n_{\varepsilon}$ satisfies

$$
\operatorname{dist}\left(\varepsilon z_{i}, \bigcup_{z_{j} \in \tilde{I}_{b}^{\varepsilon} \cup K_{b}^{\varepsilon}} B_{2 \varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right)\right) \leq \delta \varepsilon
$$

then, there exists a $z_{j} \in \tilde{I}_{b}^{\varepsilon} \cup K_{b}^{\varepsilon}$ with $2 \varepsilon^{\frac{d}{d-2}} \rho_{j}<r^{\varepsilon} \varepsilon \leq \delta \varepsilon$ such that

$$
\varepsilon\left|z_{i}-z_{j}\right| \leq \operatorname{dist}\left(\varepsilon z_{i}, \partial B_{2 \varepsilon \varepsilon^{\frac{d}{d-2} \rho_{j}}}\left(\varepsilon z_{j}\right)\right)+r^{\varepsilon} \varepsilon \leq 2 \delta \varepsilon,
$$

this implies $C^{\varepsilon} \subseteq \Phi^{\varepsilon}(D) \backslash \Phi_{2 \delta}^{\varepsilon}(D)$ and thus by definition C^{ε} is empty. Hence (2.94) is established.
We now return to the proof of lemma 2.2 in the general case.
Proof. Equiping with the sets $H_{g}^{\varepsilon}, H_{b}^{\varepsilon}$ and D_{b}^{ε} constructed as in lemma 2.8, the construction of w^{ε} follows the same steps as in the periodic case where we take $w^{\varepsilon}=w_{1}^{\varepsilon} \wedge w_{2}^{\varepsilon}$ with w_{1}^{ε} and w_{2}^{ε} defined as the same as in lemma 2.6 and 2.7 respectivly for the simplest case with $H_{g}^{\varepsilon}, H_{b}^{\varepsilon}$ and D_{b}^{ε} as in lemma 2.8. The
only change here is due to the construction of w_{2}^{ε} under the setting of lemma 2.8. Indeed, we set

$$
w_{2}^{\varepsilon}=1 \quad \text { in } D_{b}^{\varepsilon},
$$

then it remains to construct w_{2}^{ε} only in $D \backslash D_{b}^{\varepsilon}$. For each $z_{j} \in n^{\varepsilon}$ with n^{ε} being the set of centers of the particles in H_{g}^{ε}, we denote by d_{j}^{ε} the random variables

$$
d_{j}^{\varepsilon}=\min \left\{\operatorname{dist}\left(\varepsilon z_{j}, D_{b}^{\varepsilon}\right), \frac{1}{2} \min _{z_{i} \neq z_{j} \in n^{\varepsilon}} \varepsilon\left|z_{i}-z_{j}\right|, \varepsilon\right\} .
$$

We have by (2.66) and (2.85)

$$
\operatorname{dist}\left(\varepsilon z_{j}, D_{b}^{\varepsilon}\right) \geq \eta_{\varepsilon}, \quad \frac{1}{2} \min _{i \neq j} \varepsilon\left|z_{i}-z_{j}\right| \geq \eta_{\varepsilon},
$$

then we can remark that $d_{j}^{\varepsilon} \geq \eta_{\varepsilon}$ where $\eta_{\varepsilon}=\varepsilon r_{\varepsilon}$ and r_{ε} defined as in lemma 2.8. So we define the sets for $z_{j} \in n^{\varepsilon}$

$$
T_{j}^{\varepsilon}=B_{\varepsilon^{\frac{d}{d-2}} \rho_{j}}\left(\varepsilon z_{j}\right), \quad B_{j}^{\varepsilon}=B_{d_{j}^{\varepsilon}}\left(\varepsilon z_{j}\right),
$$

and consider the functions $w_{2}^{\varepsilon, j}$ as in lemma 2.8, solving

$$
\begin{cases}-\Delta w_{2}^{\varepsilon, j}=0 & \text { in } B_{j}^{\varepsilon} \backslash T_{j}^{\varepsilon} \tag{2.95}\\ 1 & \text { in } T_{j}^{\varepsilon} \\ 0 & \text { in } D \backslash B_{j}^{\varepsilon}\end{cases}
$$

then taking $\varepsilon^{\frac{d}{d-2}} \rho_{j}<r_{\varepsilon}=\left|x-\varepsilon z_{j}\right|<d_{j}^{\varepsilon}$ with εz_{j} is the center of T_{j}^{ε} and $x \in \mathbb{R}^{d}$. The function $w_{2}^{\varepsilon, j}$ is defined as follow

$$
w_{2}^{\varepsilon, j}= \begin{cases}\frac{\left|x-\varepsilon z_{j}\right|^{-(d-2)}-\left(d_{j}^{\varepsilon}\right)^{-(d-2)}}{\varepsilon^{-d} \rho_{j}^{-(d-2)}-\left(d_{j}^{\varepsilon}\right)^{-(d-2)}} & \text { in } B_{j}^{\varepsilon} \backslash T_{j}^{\varepsilon} \\ 1 & \text { in } T_{j}^{\varepsilon} \\ 0 & \text { in } D \backslash B_{j}^{\varepsilon} .\end{cases}
$$

By definition of d_{j}^{ε}, we have

$$
\begin{equation*}
d_{j}^{\varepsilon} \geq 2 \varepsilon^{\frac{d}{d-2}} \rho_{j} \tag{2.96}
\end{equation*}
$$

Indeed, by definition of n^{ε} and (2.66) for $z_{j} \in n^{\varepsilon}$ the corresponding radii satisfies

$$
2 \varepsilon^{\frac{d}{d-2}} \rho_{j} \leq \varepsilon r_{\varepsilon} \leq \min \left\{\frac{1}{2} \min _{i \neq j} \varepsilon\left|z_{i}-z_{j}\right|, \varepsilon\right\} .
$$

The definition of T_{j}^{ε} and (2.85) gives

$$
\frac{\varepsilon r_{\varepsilon}}{2} \leq \operatorname{dist}\left(T_{j}^{\varepsilon}, D_{b}^{\varepsilon}\right),
$$

then

$$
2 \varepsilon^{\frac{d}{d-2}} \rho_{j} \leq \varepsilon^{\frac{d}{d-2}} \rho_{j}+\frac{\varepsilon r_{\varepsilon}}{2} \leq \varepsilon^{\frac{d}{d-2}} \rho_{j}+\operatorname{dist}\left(T_{j}^{\varepsilon}, D_{b}^{\varepsilon}\right) \leq \operatorname{dist}\left(\varepsilon z_{j}, D_{b}^{\varepsilon}\right)
$$

Thus (2.96) yields. The previous result (2.96) argue that the functions $w_{2}^{\varepsilon, j}$ have disjoint supports and same for $\nabla w_{2}^{\varepsilon, j}$. Then, we can set

$$
w_{2}^{\varepsilon}=1-\sum_{z_{j} \in n^{\varepsilon}} w_{2}^{\varepsilon, j}
$$

and show that the function w_{2}^{ε} satisfies the properties (2.40), by definition of $w_{2}^{\varepsilon, j}$ in T_{j}^{ε} and since the functions $w_{2}^{\varepsilon, j}$ has disjoint supports then we can conclude that w_{2}^{ε} vanishes in H_{g}^{ε}. We can argue also that

$$
0 \leq w_{2}^{\varepsilon} \leq 1
$$

as in the periodic case using the maximum principle. Thus the properties (2.40) are satisfied under the setting of lemma 2.8. By definition of w_{2}^{ε} in D_{b}^{ε} and $D \backslash D_{b}^{\varepsilon}$ we can easly conclude that $\left.w_{2}^{\varepsilon}\right|_{D_{b}^{\varepsilon}} \in H^{1}\left(D_{b}^{\varepsilon}\right)$ and $\left.w_{2}^{\varepsilon}\right|_{D \backslash D_{b}^{\varepsilon}} \in H^{1}\left(D \backslash D_{b}^{\varepsilon}\right)$, we can remark also that the function is continuous in the whole set D then applaying proposition A.1.12 (See Appendix A) we get w_{2}^{ε} belongs to $H^{1}(D)$. Let us return to the properties of w^{ε} and show that w^{ε} satisfies (H1), (H2) and (H3): We starts with $(\mathrm{H} 1)$, we have by definiton $w_{1}^{\varepsilon}=0$ in H_{b}^{ε}, and $w_{2}^{\varepsilon}=1$ in $H_{b}^{\varepsilon} \subseteq D_{b}^{\varepsilon}$, then

$$
w^{\varepsilon}=w_{1}^{\varepsilon} \wedge w_{2}^{\varepsilon}=w_{1}^{\varepsilon}=0 \quad \text { in } H_{b}^{\varepsilon}
$$

we have also $w_{1}^{\varepsilon}=1$ in $H_{b}^{\varepsilon} \subseteq D \backslash D_{b}^{\varepsilon}$, and $w_{1}^{\varepsilon}=0$ in H_{g}^{ε}, then

$$
w^{\varepsilon}=w_{1}^{\varepsilon} \wedge w_{2}^{\varepsilon}=w_{2}^{\varepsilon}=0 \quad \text { in } H_{g}^{\varepsilon}
$$

then (H1) is satisfied. Same prove as in the periodic case, it sufficient to prove (H2) and (H3) only for w_{2}^{ε}, we begins with (H2) we have by definition of w_{2}^{ε} for $x \in \mathbb{R}^{d}$ where $\varepsilon^{\frac{d}{d-2}} \rho_{j}<\left|x-\varepsilon z_{j}\right|<d_{j}^{\varepsilon}$

$$
\begin{align*}
\partial_{x_{i}} w_{2}^{\varepsilon}(x) & =-\sum_{z_{i} \in n^{\varepsilon}} \partial_{x_{i}} w_{2}^{\varepsilon, j}(x) \tag{2.97}\\
& =\sum_{z_{j} \in n^{\varepsilon}} \frac{(d-2)}{\left(\varepsilon^{-d} \rho_{j}^{-(d-2)}\right)-\left(d_{j}^{\varepsilon}\right)^{-(d-2)}} \frac{\left(x^{i}-\varepsilon z_{j}^{i}\right)}{\left|x-\varepsilon z_{j}\right|^{d}}
\end{align*}
$$

then

$$
\begin{aligned}
\left\|\nabla w_{2}^{\varepsilon}\right\|_{\left(L^{2}(D)\right)^{d}}^{2} & =\sum_{z_{j} \in n^{\varepsilon}} \int_{B_{j}^{\varepsilon}}\left|\nabla w_{2}^{\varepsilon, j}(x)\right|^{2} d x \\
& =\sum_{z_{j} \in n^{\varepsilon}} \int_{B_{j}^{\varepsilon}} \sum_{j=1}^{d}\left|\partial_{x_{i}} w_{2}^{\varepsilon, j}(x)\right|^{2} d x \\
& =\sum_{z_{j} \in n^{\varepsilon}} \frac{(d-2)^{2}}{\left(\left(\varepsilon^{-d} \rho_{j}^{-(d-2)}\right)-\left(d_{j}^{\varepsilon}\right)^{-(d-2)}\right)^{2}} \int_{B_{j}^{\varepsilon}} \frac{1}{\left|x-\varepsilon z_{j}\right|^{2(d-1)}} d x,
\end{aligned}
$$

we obtain

$$
\begin{align*}
\left\|\nabla w_{2}^{\varepsilon}\right\|_{\left(L^{2}(D)\right)^{d}}^{2} & =\sum_{z_{j} \in n^{\varepsilon}} \frac{(d-2) \sigma_{d}}{\left(\varepsilon^{-d} \rho_{j}^{-(d-2)}\right)-\left(d_{j}^{\varepsilon}\right)^{-(d-2)}} \\
& =\sum_{z_{j} \in n^{\varepsilon}} \frac{(d-2) \sigma_{d} \varepsilon^{d} \rho_{j}^{(d-2)}}{1-\left(d_{j}^{\varepsilon}\right)^{-(d-2)} \varepsilon^{d} \rho_{j}^{(d-2)}} \\
& \leq C(d) \sum_{z_{j} \in \Phi^{\varepsilon} \cap \frac{1}{\varepsilon} D} \varepsilon^{d} \rho_{j}^{(d-2)} \tag{2.98}
\end{align*}
$$

where $C(d)>0$ is a constant and σ_{d} is the $(d-1)$-dimensional unit sphere in \mathbb{R}^{d}. Using (2.121) of lemma 2.9, one has

$$
\begin{equation*}
\left\|\nabla w_{2}^{\varepsilon}\right\|_{\left(L^{2}(D)\right)^{d}}^{2} \leq K \tag{2.99}
\end{equation*}
$$

where $K=C(d)\langle N(Q)\rangle\left\langle\rho^{d-2}\right\rangle|D|>0$ and Q is the unitary cube of \mathbb{R}^{d}. Since $1-w_{2}^{\varepsilon}=0$ in ∂D, then we can apply Poincaré's inequality one has

$$
\left\|1-w_{2}^{\varepsilon}\right\|_{H^{1}(D)}^{2} \leq \alpha\left\|\nabla w_{2}^{\varepsilon}\right\|_{\left(L^{2}(D)\right)^{d}}^{2} \leq \alpha K
$$

where $\alpha>0$ is a Poincaré constant. By Eberlein-S̃muljan theorem; up to a subsequence, we have almost surely

$$
1-w_{2}^{\varepsilon} \rightharpoonup w \text { weakly in } H^{1}(D),
$$

it follows by Rellich-Kondrachov theorem

$$
1-w_{2}^{\varepsilon} \rightarrow w \text { strongly in } L^{2}(D)
$$

Let us prove that $w=0$, to do that we need to prove the equivalent result

$$
w_{2}^{\varepsilon} \rightharpoonup 1 \text { weakly in } H^{1}(D)
$$

only for the truncated processes $\left(n_{M}^{\varepsilon},\left\{\rho_{j, M}\right\}_{z_{j} \in n^{\varepsilon}}\right)$. We take

$$
n_{M}^{\varepsilon}=\left\{z_{j} \in n^{\varepsilon}: d_{j}^{\varepsilon} \geq \frac{\varepsilon}{M}\right\}, \quad \rho_{j, M}=\rho_{j} \wedge M=\min \left\{\rho_{j}, M\right\}
$$

and

$$
H_{g}^{\varepsilon, M}=\bigcup_{z_{j} \in n_{M}^{\varepsilon}} B_{\varepsilon^{\frac{d}{d-2}} \rho_{j, M}}\left(\varepsilon z_{j}\right), \quad D^{\varepsilon, M}=D \backslash\left(H_{g}^{\varepsilon, M} \cup H_{b}^{\varepsilon}\right)
$$

and $w_{2}^{\varepsilon, M}$ defined for the truncated process as w_{2}^{ε}. Let us prove first that $1-w_{2}^{\varepsilon}$ converges strongly to 0 in $L^{2}(D)$. Indeed, we have by triangular inequality

$$
\begin{align*}
\lim _{\varepsilon \rightarrow 0} \sup \left\|1-w_{2}^{\varepsilon}\right\| \leq & \lim _{M \rightarrow+\infty} \sup \lim _{\varepsilon \rightarrow 0} \sup \left\|w_{2}^{\varepsilon}-w_{2}^{\varepsilon, M}\right\|_{L^{2}(D)} \tag{2.100}\\
& +\lim _{M \rightarrow+\infty} \sup \lim _{\varepsilon \rightarrow 0} \sup \left\|1-w_{2}^{\varepsilon, M}\right\|_{L^{2}(D)}
\end{align*}
$$

To show the second right hand side of (2.100), we first remark that

$$
1-w_{2}^{\varepsilon, M}=0 \text { in } \mathbb{R}^{d} \backslash \bigcup_{z_{j} \in n_{M}^{\varepsilon}} B_{j}^{\varepsilon},
$$

then, the Poincaré's inequality gives

$$
\begin{aligned}
\left\|1-w_{2}^{\varepsilon, M}\right\|_{L^{2}(D)}^{2} & =\sum_{z_{j} \in n^{\varepsilon}}\left\|1-w_{2}^{\varepsilon, j}\right\|_{L^{2}\left(B_{j}^{\varepsilon}\right)}^{2} \leq \sum_{z_{j} \in n^{\varepsilon}}\left\|1-w_{2}^{\varepsilon, j}\right\|_{L^{2}\left(B_{j}^{\varepsilon}\right)}^{2} \\
& \leq m^{2}\left\|\nabla w_{2}^{\varepsilon}\right\|_{L^{2}(D)}^{2} \leq m^{2} K,
\end{aligned}
$$

where m is a Poincaré's constant and K is a strictly positive constant defined as in (2.99). Since for every $z_{j} \in n^{\varepsilon}, d_{j}^{\varepsilon} \leq \varepsilon$ then we get $m \leq \varepsilon$. Hence

$$
\left\|1-w_{2}^{\varepsilon, M}\right\|_{L^{2}(D)}^{2} \leq \varepsilon^{2} K
$$

Sending ε to 0 we get

$$
\begin{equation*}
w_{2}^{\varepsilon, M} \rightarrow 0 \text { strongly in } L^{2}(D) . \tag{2.101}
\end{equation*}
$$

Now, it remains to prove

$$
\begin{equation*}
\lim _{M \rightarrow+\infty} \sup \lim _{\varepsilon \rightarrow 0} \sup \left\|w_{2}^{\varepsilon}-w_{2}^{\varepsilon, M}\right\|_{L^{2}(D)}=0 . \tag{2.102}
\end{equation*}
$$

The definition of $w_{2}^{\varepsilon, M}$ above gives

$$
w_{2}^{\varepsilon, M}= \begin{cases}1-\sum_{z_{j} \in n_{M}^{\varepsilon}} w_{2}^{\varepsilon, M, j} & \text { in } \bigcup_{z_{j} \in n_{M}^{\varepsilon}} B_{j}^{\varepsilon}, \tag{2.103}\\ 1 & \text { in } \mathbb{R}^{d} \backslash \bigcup_{z_{j} \in n_{M}^{\varepsilon}} B_{j}^{\varepsilon},\end{cases}
$$

where each function $w_{2}^{\varepsilon, M, j}$ solving (2.95) with $B_{j}^{\varepsilon}=B_{d_{j}^{\varepsilon}}\left(\varepsilon z_{j}\right)$ and $\rho_{j, M} \leq M$. By definition of $w_{2}^{\varepsilon, M}$, we have

$$
w_{2}^{\varepsilon}-w_{2}^{\varepsilon, M}= \begin{cases}0 & \text { in } \bigcup_{z_{j} \in n_{M}^{\varepsilon}} B_{j}^{\varepsilon}, \tag{2.104}\\ w_{2}^{\varepsilon}-1 & \text { in } \bigcup_{z_{j} \in n^{\varepsilon} \backslash n_{M}^{\varepsilon}} B_{j}^{\varepsilon}, \\ 0 & \text { in } \mathbb{R}^{d} \backslash \bigcup_{z_{j} \in n^{\varepsilon}} B_{j}^{\varepsilon} .\end{cases}
$$

So by Poincaré's inequality to show (2.102) it's sufficient to prove only

$$
\begin{equation*}
\lim _{M \rightarrow+\infty} \sup \lim _{\varepsilon \rightarrow 0} \sup \left\|\nabla\left(w_{2}^{\varepsilon}-w_{2}^{\varepsilon, M}\right)\right\|_{\left(L^{2}(D)\right)^{d}}=0 \tag{2.105}
\end{equation*}
$$

Using (2.104) one has

$$
\begin{align*}
\left\|\nabla\left(w_{2}^{\varepsilon}-w_{2}^{\varepsilon, M}\right)\right\|_{\left(L^{2}(D)\right)^{d}}^{2}= & \sum_{z_{j} \in n^{\varepsilon}}\left\|\nabla\left(w_{2}^{\varepsilon, j}-w_{2}^{\varepsilon, M, j}\right)\right\|_{\left(L^{2}(D)\right)^{d}}^{2} \\
= & \sum_{z_{j} \in n^{\varepsilon}}\left\|\nabla w_{2}^{\varepsilon, j}\right\|_{\left(L^{2}(D)\right)^{d}}^{2} 1_{\rho_{j} \geq M} \mathbf{1}_{d_{j}^{\varepsilon} \geq M^{-1} \varepsilon} \\
& +\sum_{z_{j} \in n^{\varepsilon}}\left\|\nabla w_{2}^{\varepsilon, j}\right\|_{\left(L^{2}(D)\right)^{d}}^{2} \mathbf{1}_{d_{j}^{\varepsilon} \leq \frac{\varepsilon}{M}} . \tag{2.106}
\end{align*}
$$

Let us prove that the first right hand side of (2.106) vanishes in the limit using (2.97) and $d_{j}^{\varepsilon} \geq M^{-1} \varepsilon$, we get

$$
\begin{aligned}
\sum_{z_{j} \in n^{\varepsilon}}\left\|\nabla w_{2}^{\varepsilon, j}\right\|_{\left(L^{2}(D)\right)^{d}}^{2} 1_{\rho_{j} \geq M} \mathbf{1}_{d_{j}^{\varepsilon} \geq M^{-1} \varepsilon} & \leq \sum_{z_{j} \in n^{\varepsilon}} \frac{(d-2) \sigma_{d} \varepsilon^{d} \rho_{j}^{(d-2)}}{1-\left(d_{j}^{\varepsilon}\right)^{-(d-2)} \varepsilon^{d} \rho_{j}^{(d-2)}} 1_{\rho_{j} \geq M} \mathbf{1}_{d_{j}^{\varepsilon} \geq M^{-1} \varepsilon} \\
& \leq \sum_{z_{j} \in n^{\varepsilon}} \frac{(d-2) \sigma_{d} \varepsilon^{d} \rho_{j}^{(d-2)}}{1-M^{d-2} \varepsilon^{2} \rho_{j}^{d-2}} 1_{\rho_{j} \geq M} \mathbf{1}_{d_{j}^{\varepsilon} \geq M^{-1} \varepsilon} \\
& \leq(d-2) \sigma_{d} \sum_{z_{j} \in n^{\varepsilon}} \varepsilon^{d} \rho_{j}^{(d-2)} 1_{\rho_{j} \geq M} .
\end{aligned}
$$

Applaying lemma 2.9 to the process $\left(\Phi,\left\{\rho_{j}^{(d-2)} 1_{\rho_{j} \geq M}\right\}_{z_{j} \in \Phi}\right)$, one has

$$
\lim _{\varepsilon \rightarrow 0} \sum_{z_{j} \in n^{\varepsilon}}\left\|\nabla w^{\varepsilon, j}\right\|_{\left(L^{2}(D)\right)^{d}}^{2} 1_{\rho_{j} \geq M} \mathbf{1}_{d_{j}^{\varepsilon} \geq M^{-1} \varepsilon} \leq(d-2) \sigma_{d}\left\langle\rho^{(d-2)} 1_{\rho \geq M}\right\rangle\langle N(Q)\rangle|D|,
$$

where Q is a unitary cube. Sending $M \rightarrow+\infty$, we get

$$
\begin{equation*}
\lim _{M \rightarrow+\infty} \sup \lim _{\varepsilon \rightarrow 0} \sum_{z_{j} \in n^{\varepsilon}}\left\|\nabla w_{2}^{\varepsilon, j}\right\|_{\left(L^{2}(D)\right)^{d}}^{2} 1_{\rho_{j} \geq M} \mathbf{1}_{d_{j}^{\varepsilon} \geq M^{-1} \varepsilon}=0 \tag{2.107}
\end{equation*}
$$

In the other hand, we have

$$
\begin{aligned}
\sum_{z_{j} \in n^{\varepsilon}}\left\|\nabla w_{2}^{\varepsilon, j}\right\|_{\left(L^{2}(D)\right)^{d}}^{2} \mathbf{1}_{d_{j} \leq \frac{\varepsilon}{M}} & =\sum_{z_{j} \in n^{\varepsilon}} \frac{(d-2) \sigma_{d} \varepsilon^{d} \rho_{j}^{(d-2)}}{1-\left(d_{j}^{\varepsilon}\right)^{-(d-2)} \varepsilon^{d} \rho_{j}^{(d-2)}} \mathbf{1}_{d_{j}^{\varepsilon} \leq \frac{\varepsilon}{M}} \\
& \leq \sum_{z_{j} \in n^{\varepsilon}}(d-2) \sigma_{d} \varepsilon^{d} \rho_{j}^{(d-2)} \mathbf{1}_{d_{j}^{\varepsilon} \leq \frac{\varepsilon}{M}} .
\end{aligned}
$$

Since $d_{j}^{\varepsilon} \leq \frac{\varepsilon}{M}$, then

$$
\min \left\{\operatorname{dist}\left(\varepsilon z_{j}, D_{b}^{\varepsilon}\right), \frac{1}{2} \min _{i \neq j} \varepsilon\left|z_{i}-z_{j}\right|, \varepsilon\right\} \leq \frac{\varepsilon}{M},
$$

it follows

$$
\left\{\begin{array}{l}
\operatorname{dist}\left(\varepsilon z_{j}, D_{b}^{\varepsilon}\right) \leq \frac{\varepsilon}{M}, \text { or } \\
\min _{i \neq j} \varepsilon\left|z_{i}-z_{j}\right| \leq \frac{2 \varepsilon}{M} .
\end{array}\right.
$$

So, we can writte

$$
\left\{\begin{array}{l}
z_{j} \in I_{M}^{\varepsilon}=\left\{z_{j} \in n^{\varepsilon} \cap \Phi_{2 M^{-1}}^{\varepsilon}(D), \operatorname{dist}\left(z_{j}, D_{b}^{\varepsilon}\right) \leq \frac{\varepsilon}{M}\right\}, \quad \text { or } \\
z_{j} \in \Phi^{\varepsilon}(D) \backslash \Phi_{2 M^{-1}}^{\varepsilon}(D) .
\end{array}\right.
$$

Then, one has

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} \sup \sum_{z_{j} \in n^{\varepsilon}}\left\|\nabla w_{2}^{\varepsilon, j}\right\|_{\left(L^{2}(D)\right)^{d}}^{2} \mathbf{1}_{d_{j} \leq \frac{\varepsilon}{M}} \leq & \lim _{\varepsilon \rightarrow 0} \sup \sum_{z_{j} \in \Phi^{\varepsilon}(D) \backslash \Phi_{2 M-1}^{\varepsilon}(D)}(d-2) \sigma_{d} \varepsilon^{d} \rho_{j}^{(d-2)} \\
& +\lim _{\varepsilon \rightarrow 0} \sup \sum_{z_{j} \in I_{M}^{\varepsilon}}(d-2) \sigma_{d} \varepsilon^{d} \rho_{j}^{(d-2)} .
\end{aligned}
$$

By (2.68) of lemma 2.8 , for $\delta=\frac{1}{M}$ we have

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# I_{M}^{\varepsilon}=0
$$

then we can apply lemma 2.10 , we get

$$
\lim _{\varepsilon \rightarrow 0} \sup \sum_{z_{j} \in I_{M}^{\varepsilon}}(d-2) \sigma_{d} \varepsilon^{d} \rho_{j}^{(d-2)}=0
$$

On the other hand, applying lemma 2.9 for the process Φ and $\Phi_{\frac{2}{M}}$ we obtain

$$
\lim _{\varepsilon \rightarrow 0} \sup \sum_{z_{j} \in \Phi^{\varepsilon}(D) \backslash \Phi_{2 M^{-1}}^{\varepsilon}(D)}(d-2) \sigma_{d} \varepsilon^{d} \rho_{j}^{(d-2)}=(d-2) \sigma_{d}\left\langle N(Q)-N_{2 M^{-1}}(Q)\right\rangle\left\langle\rho^{(d-2)}\right\rangle|D|
$$

Since we have

$$
\lim _{M \rightarrow 0}\left\langle N(Q)-N_{2 M^{-1}}(Q)\right\rangle=0
$$

we get

$$
\begin{equation*}
\lim _{M \rightarrow+\infty} \lim _{\varepsilon \rightarrow 0} \sup \sum_{z_{i} \in \Phi^{\varepsilon}(D) \backslash \Phi_{2 M^{-1}}^{\varepsilon}(D)}(d-2) \sigma_{d} \varepsilon^{d} \rho_{j}^{(d-2)}=0 \tag{2.108}
\end{equation*}
$$

By (2.107) and (2.108) we conclude immediatly (2.105).
It remains to prove (H3). First, we show that it sufficient to prove (H3) for truncated sequences $\left\{w_{2}^{\varepsilon, M}\right\}_{\varepsilon>0}$ for a fixed $M \in \mathbb{N}$. Namely

$$
\begin{equation*}
\left(-\Delta w_{2}^{\varepsilon, M}, v_{\varepsilon}\right)_{H^{-1}(D), H_{0}^{1}(D)} \rightarrow C_{0, M} \int_{D} v \tag{2.109}
\end{equation*}
$$

with $C_{0, M}=(d-2) \sigma_{d}\left\langle N_{2 M^{-1}}(Q)\right\rangle\left\langle\rho_{M}^{d-2}\right\rangle$. Indeed, we have by Cauchy-Schwarz inequality and for v_{ε}, v defined as in (H3)

$$
\begin{aligned}
\left|\left(-\Delta w_{2}^{\varepsilon}, v_{\varepsilon}\right)_{H^{-1}(D), H_{0}^{1}(D)}-C_{0} \int_{D} v\right| \leq & \left|\left(-\Delta\left(w_{2}^{\varepsilon}-w_{2}^{\varepsilon, M}\right), v_{\varepsilon}\right)_{H^{-1}(D), H_{0}^{1}(D)}\right| \\
& +\left|\left(C_{0}-C_{0, M}\right) \int_{D} v\right| \\
& +\left|\left(-\Delta w_{2}^{\varepsilon, M}, v_{\varepsilon}\right)_{H^{-1}(D), H_{0}^{1}(D)}-C_{0, M} \int_{D} v\right|
\end{aligned}
$$

Using Green's formula, one has

$$
\begin{aligned}
\left|\left(-\Delta\left(w_{2}^{\varepsilon}-w_{2}^{\varepsilon, M}\right), v_{\varepsilon}\right)_{H^{-1}(D), H_{0}^{1}(D)}\right| & =\left|\int_{D} \nabla\left(w_{2}^{\varepsilon}-w_{2}^{\varepsilon, M}\right) \nabla v_{\varepsilon}\right| \\
& \leq\left(\int_{D}\left|\nabla\left(w_{2}^{\varepsilon}-w_{2}^{\varepsilon, M}\right)\right|^{2}\right)^{\frac{1}{2}}\left(\int_{D}\left|\nabla v_{\varepsilon}\right|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

Using (2.105) and since $v_{\varepsilon} \in H^{1}(D)$, then

$$
\begin{equation*}
\lim _{M \rightarrow+\infty} \lim _{\varepsilon \rightarrow 0} \sup \left|\left(-\Delta\left(w_{2}^{\varepsilon}-w_{2}^{\varepsilon, M}\right), v_{\varepsilon}\right)_{H^{-1}(D), H_{0}^{1}(D)}\right|=0 . \tag{2.110}
\end{equation*}
$$

We have also

$$
\left|\left(C_{0}-C_{0, M}\right) \int_{D} v\right| \leq(d-2) \sigma_{d}\left\langle N(Q)-N_{2 M^{-1}}(Q)\right\rangle\left\langle\rho^{d-2}-\rho_{M}^{d-2}\right\rangle\|v\|_{L^{1}(D)},
$$

Using (2.122) of lemma 2.9 for $\delta=M^{-1}$ and by assumption (2.10) one has

$$
\begin{equation*}
\lim _{M \rightarrow+\infty}\left|\left(C_{0}-C_{0, M}\right) \int_{D} v\right|=0 \tag{2.111}
\end{equation*}
$$

Then, by (2.110) and (2.111) we conclude that we need only to prove (2.109). The proof of (2.109) follows the same lines of the third step of the proof of (H3) for the periodic case for w_{2}^{ε}. We just put here the changes in the proof, we arguing as that case we prove only that

$$
\begin{equation*}
\eta_{M}^{\varepsilon}=\sum_{z_{j} \in n_{M}^{\varepsilon}} d(d-2) \rho_{j, M}^{d-2} \frac{\varepsilon^{d}}{\left(d_{j}^{\varepsilon}\right)^{d}} \mathbf{1}_{B_{j}^{\varepsilon}} \stackrel{*}{\stackrel{ }{*}} C_{0, M} \quad \text { in } L^{\infty}(D) . \tag{2.112}
\end{equation*}
$$

The factor $\frac{\varepsilon^{d}}{d_{j}^{\varepsilon}}$ in this latter is due to the fact that the balls B_{j}^{ε} have radii d_{j}^{ε} instead of $\frac{\varepsilon}{2}$. Since $\rho_{j, M} \leq M$ and $\frac{\varepsilon}{d_{j}^{\epsilon}} \leq M$, we have

$$
\left\|\eta_{M}^{\varepsilon}\right\|_{L^{\infty}(D)}=\sum_{z_{j} \in n_{M}^{\varepsilon}} d(d-2) \rho_{j, M}^{d-2} \frac{\varepsilon^{d}}{\left(d_{j}^{\varepsilon}\right)^{d}} \leq M^{d(d-2)} d(d-2) \#\left(n_{M}^{\varepsilon}\right)<\infty
$$

Then, since η_{M}^{ε} is bounded in $L^{\infty}(D)$, and the density of $\mathcal{C}_{0}^{1}(D)$ in $L^{1}(D)$ by Hahn-Banach corollary (Corollary A.2.1 See appendix A) applied to the continuous linear form T defined by

$$
T(\varphi)=\int_{D} \eta_{M}^{\varepsilon} \varphi \quad \text { for } \varphi \in \mathcal{C}_{0}^{1}(D),
$$

it's sufficient to test η_{M}^{ε} only for $\zeta \in \mathcal{C}_{0}^{1}(D)\left(\mathcal{C}_{0}^{1}(D)\right.$ is the space of functions of classe \mathcal{C}^{1} with compact support in D). To prove (2.112), we define

$$
\begin{equation*}
\tilde{\eta}_{M}^{\varepsilon}=\sum_{z_{j} \in \Phi_{\frac{2}{M}}(D)} d(d-2) \rho_{j, M}^{d-2} \frac{\varepsilon^{d}}{\left(d_{j}^{\varepsilon}\right)^{d}} \mathbf{1}_{B_{j}^{\varepsilon}} \tag{2.113}
\end{equation*}
$$

and prove that for $\zeta \in \mathcal{C}_{0}^{1}(D)$

$$
\begin{equation*}
\int_{D}\left(\tilde{\eta}_{M}^{\varepsilon}-\eta_{M}^{\varepsilon}\right) \zeta \rightarrow 0 \tag{2.114}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{D} \tilde{\eta}_{M}^{\varepsilon} \zeta \rightarrow C_{0, M} \int_{D} \zeta \tag{2.115}
\end{equation*}
$$

Indeed, we have

$$
\begin{aligned}
\int_{D}\left(\tilde{\eta}_{M}^{\varepsilon}-\eta_{M}^{\varepsilon}\right) \zeta & =\sum_{z_{j} \in \Phi_{2 M-1}^{\varepsilon}(D) \backslash n_{M}^{\varepsilon}} d(d-2) \rho_{j, M}^{d-2} \frac{\varepsilon^{d}}{\left(d_{j}^{\varepsilon}\right)^{d}} \int_{B_{j}^{\varepsilon}}|\zeta| \\
& \leq d(d-2) M^{d-2} \sum_{z_{j} \in \Phi_{2 M-1}^{\varepsilon}(D) \backslash n_{M}^{\varepsilon}} \int_{B_{\varepsilon}\left(\varepsilon z_{j}\right)}|\zeta| \\
& \leq M^{d-2}\|\zeta\|_{L^{\infty}(D)} \varepsilon^{d} \#\left(\left\{z_{j} \in \Phi_{2 M^{-1}}^{\varepsilon}(D): d_{j}^{\varepsilon} \leq \frac{\varepsilon}{M}\right\}\right)
\end{aligned}
$$

Applying (2.68) of lemma 2.8, (2.114) yields immediatly. In other hand, applying lemma 2.11 for $\left(\Phi_{2 M^{-1}}^{\varepsilon},\left\{\rho_{j, M}^{d-2}\right\}\right)$, one has almost surely

$$
\sum_{z_{j} \in \Phi_{2 M^{-1}}^{\varepsilon}(D) \backslash n_{M}^{\varepsilon}} d(d-2) \rho_{j, M}^{d-2} \frac{\varepsilon^{d}}{\left(d_{j}^{\varepsilon}\right)^{d}} \int_{B_{j}^{\varepsilon}} \zeta \rightarrow \frac{\sigma_{d}}{d}\langle N(Q)\rangle\left\langle\rho_{M}^{d-2}\right\rangle \int_{D} \zeta
$$

then (2.115) holds.

2.2.3 Proof of theorem 2.2

In this subsection, we give the proof of theorem 2.2 using lemma 2.2 similarly as the first chapter. Indeed, let $\omega \in \Omega$ be fixed for which the function $\left\{w^{\varepsilon}(\omega, .)\right\}_{\varepsilon>0}$ of lemma 2.2 exist and satisfy hypotheses (H1), (H2) and (H3). Taking $v=u_{\varepsilon}$ in (2.9), we get

$$
\int_{D^{\varepsilon}(\omega)}\left|\nabla u_{\varepsilon}\right|^{2}=\left\langle f, u_{\varepsilon}\right\rangle_{H^{-1}\left(D^{\varepsilon}(\omega)\right), H_{0}^{1}\left(D^{\varepsilon}(\omega)\right)}
$$

then,

$$
\begin{align*}
\int_{D}\left|\nabla \tilde{u}_{\varepsilon}\right|^{2} & =\int_{D^{\varepsilon}(\omega)}\left|\nabla u_{\varepsilon}\right|^{2}=\left\langle f, u_{\varepsilon}\right\rangle_{H^{-1}\left(D^{\varepsilon}(\omega)\right), H_{0}^{1}\left(D^{\varepsilon}(\omega)\right)} \tag{2.116}\\
& =\left\langle f, \tilde{u}_{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)} \\
& \leq\|f\|_{H^{-1}(D)}\left\|\tilde{u}_{\varepsilon}\right\|_{H_{0}^{1}(D)}
\end{align*}
$$

Poincaré's inequality gives

$$
\left\|\tilde{u}_{\varepsilon}\right\|_{H_{0}^{1}(D)} \leq C\|f\|_{H^{-1}(D)}<+\infty
$$

which a constant $C>0$ that depends only on the domain D.
Then by Eberlein-S̃muljan theorem up to a subsequence which may depend on ω, one has

$$
\begin{equation*}
\tilde{u}_{\varepsilon} \rightharpoonup u_{h} \text { weakly in } H_{0}^{1}(D) \text { when } \varepsilon \rightarrow 0^{+} . \tag{2.117}
\end{equation*}
$$

Let us show that u_{h} solves (2.11), for a fixed test function $\varphi \in \mathcal{D}(D)$ and since (H1) yields for w^{ε} then $\varphi w^{\varepsilon} \in H_{0}^{1}(D)$. we can substitute φw^{ε} in (2.9) we get

$$
\begin{equation*}
\int_{D} \varphi \nabla \tilde{u}_{\varepsilon} \nabla w^{\varepsilon}+\int_{D} w^{\varepsilon} \nabla \tilde{u}_{\varepsilon} \nabla \varphi=\left\langle f, \varphi w^{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)} . \tag{2.118}
\end{equation*}
$$

By (H2), the right-hand side converges to

$$
\left\langle f, \varphi w^{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)} \rightarrow\langle f, \varphi\rangle_{H^{-1}(D), H_{0}^{1}(D)} .
$$

We now rewrite the left-hand side of (2.118) using Green formula

$$
\begin{aligned}
\int_{D} \varphi \nabla \tilde{u}_{\varepsilon} \nabla w^{\varepsilon}+\int_{D} w^{\varepsilon} \nabla \tilde{u}_{\varepsilon} \nabla \varphi= & \left\langle-\Delta w^{\varepsilon}, \varphi \tilde{u}_{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)} \\
& -\int_{D} \tilde{u}_{\varepsilon} \nabla w^{\varepsilon} \nabla \varphi+\int_{D} w^{\varepsilon} \nabla \varphi \nabla \tilde{u}_{\varepsilon}
\end{aligned}
$$

For the first term on the right-hand side, we use (H3) one has

$$
\left\langle-\Delta w^{\varepsilon}, \varphi \tilde{u}_{\varepsilon}\right\rangle_{H^{-1}(D), H_{0}^{1}(D)} \rightarrow C_{0} \int_{D} u_{h} \varphi .
$$

For the second, by (2.117) and (H2)

$$
\int_{D} \tilde{u}_{\varepsilon} \nabla w^{\varepsilon} \nabla \varphi \rightarrow 0
$$

Using (H2) and (2.117) yields

$$
\int_{D} w^{\varepsilon} \nabla \varphi \nabla \tilde{u}_{\varepsilon} \rightarrow \int_{D} \nabla \varphi \nabla u_{h} .
$$

These results gives

$$
\int_{D} \nabla \varphi \nabla u_{h}+C_{0} \int_{D} u_{h} \varphi=\langle f, \varphi\rangle_{H^{-1}(D), H_{0}^{1}(D)} .
$$

We use Green formula again, we obtain

$$
\left\langle-\Delta u_{h}+C_{0} u_{h}, \varphi\right\rangle_{\mathcal{D}^{\prime}(D), \mathcal{D}(D)}=\langle f, \varphi\rangle_{\mathcal{D}^{\prime}(D), \mathcal{D}(D)},
$$

then

$$
-\Delta u_{h}+C_{0} u_{h}=f \quad \text { in } \mathcal{D}^{\prime}(D) .
$$

Let us show the uniqueness of u_{h}. if u_{1} and u_{2} two solutions of (2.11) then they satisfy for $\varphi \in \mathcal{D}(D)$

$$
\int_{D} \nabla \varphi \nabla u_{1}+C_{0} \int_{D} u_{1} \varphi=\langle f, \varphi\rangle_{H^{-1}(D), H_{0}^{1}(D)},
$$

and

$$
\int_{D} \nabla \varphi \nabla u_{2}+C_{0} \int_{D} u_{2} \varphi=\langle f, \varphi\rangle_{H^{-1}(D), H_{0}^{1}(D)} .
$$

The substruction gives

$$
\int_{D} \nabla \varphi \nabla\left(u_{1}-u_{2}\right)+C_{0} \int_{D}\left(u_{1}-u_{2}\right) \varphi=0
$$

taking $\varphi=u_{1}-u_{2}$, we get

$$
\int_{D}\left|\nabla\left(u_{1}-u_{2}\right)\right|^{2}=-C_{0} \int_{D}\left|u_{1}-u_{2}\right|^{2}
$$

since $C_{0}>0$, then by Poincaré's inequality yields

$$
u_{1}=u_{2} .
$$

Thus the uniqueness of u_{h}.

2.3 Auxiliary results

We define the marked point process (Φ, χ) where the process Φ satisfies the properties (2.2), (2.3) and (2.4) and the marks $\chi=\left\{X_{i}\right\}_{z_{i} \in \Phi}$ satisfying (2.5) and (2.6) with

$$
\begin{equation*}
\langle X\rangle=\int_{0}^{+\infty} x h_{X}(x) d x<+\infty \tag{2.119}
\end{equation*}
$$

with h_{X} is the density function of $X \in \chi$.

Lemma 2.9 Let Q a unitary cube and let (Φ, χ) be a marked point process as introduced above. Then, for every bounded set $B \subseteq \mathbb{R}^{d}$ which is star shaped with respect to the origin, we have

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} N^{\varepsilon}(B)=\langle N(Q)\rangle|B| \quad \text { almost surely } \tag{2.120}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \sum_{z_{i} \in \Phi^{\varepsilon}(B)} X_{i}=\langle N(Q)\rangle\langle X\rangle|B| \quad \text { almost surely. } \tag{2.121}
\end{equation*}
$$

Furthermore, for every $\delta<0$ the process Φ_{δ} obtained from Φ as in 2.14 satisfies the analogue of (2.120),
(2.121) and

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d}\left\langle N_{\delta}(A)\right\rangle=\langle N(A)\rangle . \tag{2.122}
\end{equation*}
$$

for every bounded set $A \subseteq \mathbb{R}^{d}$.

Proof. In order to simplify, we prove this lemma for

$$
\left.B=Q^{R}=\right]-\frac{R}{2}, \frac{R}{2}[
$$

i.e Q^{R} is a cube of size R centered at the origin and $\frac{1}{\varepsilon} B=Q^{\frac{R}{\varepsilon}}$. Let $\left\{Q_{z_{i}}\right\}_{z_{i} \in \mathbb{Z}^{d}}$ or $\left\{Q_{i}\right\}_{z_{i} \in \mathbb{Z}^{d}}$ the partition of \mathbb{R}^{d} made of essentially disjoint unit cubes centered in the points of the lattice $\mathbb{Z}^{d}=\left\{z_{i}\right\}_{i \in \mathbb{N}}$. For all $\mu>0$ and all ε small enough, we have

$$
\varepsilon^{d} \sum_{z_{i} \in \Phi^{\varepsilon}\left(Q^{R}\right)} X_{i}=\varepsilon^{d} \sum_{z_{i} \in \mathbb{Z}^{d}} \mathbf{1}_{\Phi^{\varepsilon}\left(Q^{R}\right)} \sum_{z_{j} \in \Phi\left(Q_{i}\right)} X_{j}=\varepsilon^{d} \sum_{z_{i} \in \mathbb{Z}^{d} \cap Q^{\frac{R}{\varepsilon}}} \sum_{z_{j} \in \Phi\left(Q_{i}\right)} X_{j},
$$

where $\mathbf{1}_{\Phi^{\varepsilon}\left(Q^{R}\right)}$ is the characteristic function of the set $\Phi^{\varepsilon}\left(Q^{R}\right)$. Since $Q^{R} \subset Q^{R+\mu}$ we can write

$$
\begin{equation*}
\varepsilon^{d} \sum_{z_{i} \in \Phi^{\varepsilon}\left(Q^{R}\right)} X_{i} \leq \varepsilon^{d} \sum_{z_{i} \in \mathbb{Z}^{d} \cap Q^{\frac{R+\mu}{\varepsilon}}} \sum_{z_{j} \in \Phi\left(Q_{i}\right)} X_{j} \tag{2.123}
\end{equation*}
$$

We can denote by Z_{i} the following sum

$$
\begin{equation*}
Z_{i}=\sum_{z_{j} \in \Phi\left(Q_{i}\right)} X_{j} . \tag{2.124}
\end{equation*}
$$

By definition of $\Phi\left(Q_{i}\right)$, the cardinality of $\Phi\left(Q_{i}\right)$ is finite then since a finite sum of random variables is a random variable so for every $z_{i} \in \mathbb{Z}^{d} \cap Q^{\frac{R+\mu}{\varepsilon}}, Z_{i}$ are random variables. In addition, the point process Φ is stationary then

$$
\left\langle \# \Phi\left(Q_{i}\right)\right\rangle=\langle \# \Phi(Q)\rangle \text { for any } z_{i} \in \mathbb{Z}^{d}
$$

hence

$$
\left\langle Z_{i}\right\rangle=\left\langle\sum_{z_{j} \in \Phi\left(Q_{i}\right)} X_{j}\right\rangle=\langle N(Q)\rangle\langle X\rangle
$$

and the random variables Z_{i} are identically distributed. We have also by the assumption (2.119) for every $z_{i} \in \mathbb{Z}^{d} \cap Q^{\frac{R+\mu}{\varepsilon}}$ that

$$
\left\langle Z_{i}\right\rangle<+\infty
$$

In the other hand we have for every $z_{i}, z_{j} \in \mathbb{Z}^{d} \cap Q^{\frac{R+\mu}{\varepsilon}}$ with $i \neq j$

$$
\begin{aligned}
\left|\left\langle Z_{i} Z_{j}\right\rangle-\langle Z\rangle^{2}\right| & =\left|\left\langle\sum_{z_{l} \in \Phi\left(Q_{i}\right)} \sum_{z_{k} \in \Phi\left(Q_{j}\right)} X_{l} X_{k}\right\rangle-\langle N(Q)\rangle^{2}\langle X\rangle^{2}\right| \\
& =\left|\left\langle X_{i} X_{j}\right\rangle\left\langle N\left(Q_{i}\right) N\left(Q_{j}\right)\right\rangle-\langle N(Q)\rangle^{2}\langle X\rangle^{2}\right|
\end{aligned}
$$

with $Z \in\left\{Z_{i}\right\}_{z_{i} \in \mathbb{Z}^{d} \cap Q^{\frac{R+\mu}{\varepsilon}}}$. We have for $x, y \in \mathbb{R}^{+}$and by the assumption (2.6)

$$
\begin{aligned}
\left\langle X_{i} X_{j}\right\rangle= & \int_{0}^{+\infty} \int_{0}^{+\infty} x y h_{X_{i} X_{j}}(x, y) d x d y=\int_{0}^{+\infty} \int_{0}^{+\infty} x y h_{X_{i}}(x) h_{X_{j}}(y) d x d y \\
& +\frac{c}{1+\left|z_{i}-z_{j}\right|^{\gamma}} \int_{0}^{+\infty} \int_{0}^{+\infty} \frac{1}{\left(1+x^{p}\right)\left(1+y^{p}\right)} d x d y
\end{aligned}
$$

Since $x y h_{X_{i}}(x) h_{X_{j}}(y)$ and $\frac{1}{\left(1+x^{p}\right)\left(1+y^{p}\right)}$ are positive then we can apply Fubini's theorem (See appendix A) one has

$$
\left\langle X_{i} X_{j}\right\rangle=\langle X\rangle^{2}+\frac{C}{1+\left|z_{i}-z_{j}\right|^{\gamma}},
$$

with

$$
C=c \int_{0}^{+\infty} \frac{1}{\left(1+x^{p}\right)} \int_{0}^{+\infty} \frac{1}{\left(1+y^{p}\right)},
$$

which is finite since $p>d-1$. Then we get

$$
\begin{align*}
\left|\left\langle Z_{i} Z_{j}\right\rangle-\langle Z\rangle^{2}\right| \leq & \left|\langle X\rangle^{2}\left\langle N\left(Q_{i}\right) N\left(Q_{j}\right)\right\rangle-\langle X\rangle^{2}\langle N(Q)\rangle^{2}\right| \\
& +\frac{C}{\left|z_{i}-z_{j}\right|^{\gamma}}\left\langle N\left(Q_{i}\right) N\left(Q_{j}\right)\right\rangle . \tag{2.125}
\end{align*}
$$

By stationarity of Φ, we have that for any $i, j \in \mathbb{N}, i \neq j$

$$
\left\langle N\left(Q_{i}\right) N\left(Q_{j}\right)\right\rangle=\left\langle N\left(Q_{i-j}\right) N(Q)\right\rangle,
$$

so for $N(Q), N\left(Q_{i-j}\right)$ two random variables, measurable with respect to $\mathcal{F}(Q)$ and $\mathcal{F}\left(Q_{i-j}=\tau_{z_{i}-z_{j}} Q\right)$ $\left(\mathcal{F}(Q)\right.$ is the smallest σ-algebra which make the random variable $N(Q)$ measurable), there exists $C_{1}<+\infty$, such that for $\gamma>0$ and $\left|z_{i}-z_{j}\right|>\operatorname{diam}(Q)$ (with $\operatorname{diam}(Q)$ denotes the diameter of Q), we have

$$
\begin{align*}
\left|\left\langle N\left(Q_{i}\right) N\left(Q_{j}\right)\right\rangle-\langle N(Q)\rangle^{2}\right| & \leq \frac{C_{1}}{1+\left(\left|z_{i}-z_{j}\right|-\operatorname{diam}(Q)\right)^{\gamma}}\left\langle N(Q)^{2}\right\rangle \tag{2.126}\\
& \leq \frac{C_{1}}{\left|z_{i}-z_{j}\right|^{\gamma}}\left\langle N(Q)^{2}\right\rangle .
\end{align*}
$$

We thus insert this latter (2.126) into (2.125), we get

$$
\begin{equation*}
\left|\left\langle Z_{i} Z_{j}\right\rangle-\langle Z\rangle^{2}\right| \leq \frac{M}{\left|z_{i}-z_{j}\right|^{\gamma}}\left\langle N(Q)^{2}\right\rangle, \tag{2.127}
\end{equation*}
$$

which a constant $M>0$. So the conditions of lemma B.2.3 (See appendix B) are satisfied and then we can apply the strong law of large numbers for the sequence Z_{i} and conclude that we have for $\mu>0$

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \sup \varepsilon^{d} \sum_{z_{i} \in \Phi^{\varepsilon}\left(Q^{R}\right)} X_{i} \leq\langle N(Q)\rangle\langle X\rangle\left|Q^{R+\mu}\right| \tag{2.128}
\end{equation*}
$$

Arguing analogously for the lower limit by taking the following inequality

$$
\varepsilon^{d} \sum_{z_{i} \in \Phi^{\varepsilon}\left(Q^{R}\right)} X_{i} \geq \varepsilon^{d} \sum_{z_{i} \in \mathbb{Z}^{d} \cap Q^{\frac{R-\mu}{\varepsilon}}} Z_{i},
$$

where $\mu>0$ and Z_{i} is defined as (2.124). So since Z_{i} satisfies the assumption of lemma B.2.3, we can apply the strong law of large numbers to Z_{i}, it follows

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \inf \varepsilon^{d} \sum_{z_{i} \in \Phi^{\varepsilon}\left(Q^{R}\right)} X_{i} \geq\langle N(Q)\rangle\langle X\rangle\left|Q^{R-\mu}\right| \tag{2.129}
\end{equation*}
$$

Thus by (2.128) and (2.129), the result (2.121) holds true. To prove (2.120), we take $X_{i}=1$ for all $z_{i} \in \mathbb{Z}^{d}$ in (2.121) as follow

$$
\varepsilon^{d} \sum_{z_{i} \in \Phi^{\varepsilon}\left(Q^{R}\right)}=\langle N(Q)\rangle\left|Q^{R}\right|,
$$

and we get our result. For $\delta>0$ be fixed, let us show (2.122). Indeed, for $\delta^{\prime}>0$ and δ small enough

$$
\mathbb{P}\left(\left(N(B)-N^{\delta}(B)\right)>\delta^{\prime}\right)=\mathbb{P}\left(\#\left\{x \in \Phi \cap B: \min _{\substack{y \in \Phi(\omega) \cap B \\ y \neq x}}|x-y|<\delta\right\}>\delta^{\prime}\right)=0 .
$$

then

$$
N^{\delta}(B) \underset{\delta \rightarrow 0}{\rightarrow} N(B) \text { almost surely. }
$$

We have also $\Phi_{\delta} \cap B \subseteq \Phi \cap B$ then

$$
N^{\delta}(B)=\# \Phi_{\delta} \cap B \leq N(B)=\# \Phi \cap B
$$

and $\langle N(B)\rangle<+\infty$, it follows from the dominated convergence theorem (See appendix B) that

$$
\lim _{\delta \rightarrow 0}\left\langle N^{\delta}(B)\right\rangle=\langle N(B)\rangle
$$

To show (2.120) and (2.121) for Φ_{δ} we may argue exactly as above for the original process Φ and apply the strong law of large numbers to the random variables

$$
Z_{i}^{\delta}=\sum_{z_{j} \in \Phi_{\delta}^{\delta}\left(Q_{i}\right)} X_{j}^{\delta} .
$$

Since for each $z_{i} \in \mathbb{Z}^{d}$ we have $\Phi_{\delta}^{\varepsilon}\left(Q_{i}\right) \subseteq \Phi^{\varepsilon}\left(Q_{i}\right)$, then

$$
0 \leq Z_{i}^{\delta} \leq Z_{i}
$$

So the only condition that remains to be proved for the collection $\left\{Z_{i}^{\delta}\right\}_{z_{i} \in \mathbb{Z}^{d}}$ is (2.125). By arguing same as (2.123), we have

$$
\left|\left\langle Z_{i} Z_{j}\right\rangle-\langle Z\rangle^{2}\right| \leq\left|\langle X\rangle^{2}\left\langle N^{\delta}\left(Q_{i}\right) N^{\delta}\left(Q_{j}\right)\right\rangle-\left\langle N^{\delta}(Q)\right\rangle^{2}\langle X\rangle^{2}\right|+\frac{C}{\left|z_{i}-z_{j}\right|^{\gamma}}\left\langle N^{\delta}\left(Q_{i}\right) N^{\delta}\left(Q_{j}\right)\right\rangle,
$$

with Z a random variable take the same expectation with Z_{j} for every $z_{i} \in \mathbb{Z}^{d}$. So the only challenge here is to prove (2.126) for $N^{\delta}\left(Q_{i}\right)$ instead of $N\left(Q_{i}\right)$ for any $z_{i} \in \mathbb{Z}^{d}$. To do that, for every $x \in \mathbb{R}^{d}$, we define

$$
d_{x}=\min _{\substack{y \in \Phi \\ y \neq x}}|x-y|,
$$

which allows to write

$$
N^{\delta}(Q)=\sum_{z_{i} \in \Phi_{\delta} \cap Q} 1=\sum_{z_{i} \in \Phi \cap Q} \mathbf{1}_{d_{x}>\delta}\left(z_{i}\right),
$$

and

$$
N^{\delta}(Q)=\sum_{z_{i} \in \tau_{x_{i}}(\Phi \cap Q)} \mathbf{1}_{d_{x}>\delta}\left(z_{i}\right) .
$$

where $\tau_{x_{i}}((\Phi \cap Q))$ is the translation of $(\Phi \cap Q)$ to $\left(\Phi \cap Q_{i}\right)$ by the vector x_{i}. Since

$$
\mathbf{1}_{d_{x}>\delta}=\mathbf{1}_{N\left(B_{\delta}(x) \backslash\{x\}\right)=0},
$$

where

$$
B_{\delta}(x) \backslash\{x\}=\left\{y \in \mathbb{R}^{d} \backslash\{x\},|x-y| \leq \delta\right\} .
$$

It follows that, each $N^{\delta}\left(Q_{i}\right)$ is a measurable random variable with repect to $\mathcal{F}\left(B_{\delta}\left(Q_{i}\right)\right)$ defined as in (2.4) with

$$
B_{\delta}\left(Q_{i}\right)=\left\{y \in \mathbb{R}^{d}, \operatorname{dist}\left(x, Q_{i}\right) \leq \delta\right\}
$$

Then, we can apply (2.4) as in (2.126) we get

$$
\left|\left\langle N^{\delta}\left(Q_{i-j}\right) N^{\delta}(Q)\right\rangle-\left\langle N^{\delta}(Q)\right\rangle^{2}\right| \leq \frac{C}{\left|z_{i}-z_{j}\right|}\left\langle N^{\delta}(Q)^{2}\right\rangle .
$$

Lemma 2.10 In the same setting of the previous lemma 2.9, let $\left\{I_{\varepsilon}\right\}_{\varepsilon>0}$ be a familly of collections of points such that $I_{\varepsilon} \subseteq \Phi^{\varepsilon}(B)$ and

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \# I_{\varepsilon}=0 \quad \text { almost surely. } \tag{2.130}
\end{equation*}
$$

Then,

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \sum_{z_{i} \in I_{\varepsilon}} X_{i}=0 \quad \text { almost surely. }
$$

Proof. Let $M \in \mathbb{N}$. We define for every $z_{i} \in \Phi$ the truncated marks $\left\{Y_{i}\right\}_{z_{i} \in \Phi}$ as follow

$$
Y_{i}=X_{i} \mathbf{1}_{[M, \infty)}= \begin{cases}X_{i} & \text { if } \quad X_{i} \geq M \\ 0 & \text { if } \quad X_{i}<M\end{cases}
$$

Since the original marks $\left\{X_{i}\right\}_{z_{i} \in \Phi}$ satisfies the assumptions (2.5) and (2.6) then the truncated marks $\left\{Y_{i}\right\}_{z_{i} \in \Phi} \subseteq\left\{X_{i}\right\}_{z_{i} \in \Phi}$ satisfies the same assumptions. Moreover, we have by lemma B.1.4 (See appendix B)

$$
\begin{aligned}
\left\langle Y_{i}\right\rangle & =\int_{0}^{+\infty} P\left(Y_{i}>y\right) d y=\int_{0}^{+\infty} P\left(X_{i} \mathbf{1}_{[M, \infty)}>y\right) d y=\int_{0}^{+\infty} P\left(X_{i}>y\right) \mathbf{1}_{y \leq M} d y=\int_{0}^{M} P\left(X_{i}>y\right) d y \\
& \leq \int_{0}^{+\infty} P\left(X_{i}>y\right) d y=\langle X\rangle<+\infty
\end{aligned}
$$

then, we can apply lemma 2.9 to the point process Φ with truncated marks $\left\{Y_{i}\right\}_{z_{i} \in \Phi}$ to infer that almost surely

$$
\varepsilon^{d} \sum_{z_{i} \in \Phi^{\varepsilon}(B)} Y_{i} \rightarrow\left\langle X \mathbf{1}_{[M,+\infty)}\right\rangle
$$

This yields

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} \sup \varepsilon^{d} \sum_{z_{i} \in I_{\varepsilon}} X_{i} & =\lim _{\varepsilon \rightarrow 0} \sup \varepsilon^{d} \sum_{z_{i} \in I_{\varepsilon}} X_{i} \mathbf{1}_{[0, M)}+\lim _{\varepsilon \rightarrow 0} \sup \varepsilon^{d} \sum_{z_{i} \in I_{\varepsilon}} X_{i} \mathbf{1}_{[M,+\infty)} \\
& \leq \lim _{\varepsilon \rightarrow 0} \sup \varepsilon^{d} \sum_{z_{i} \in I_{\varepsilon}} X_{i} \mathbf{1}_{[0, M)}+\left\langle X \mathbf{1}_{[M,+\infty)}\right\rangle \\
& \leq M \lim _{\varepsilon \rightarrow 0} \sup \varepsilon^{d} \sum_{z_{i} \in I_{\varepsilon}}+\left\langle X \mathbf{1}_{[M,+\infty)}\right\rangle \\
& \leq M \lim _{\varepsilon \rightarrow 0} \sup \varepsilon^{d} \# I_{\varepsilon}+\left\langle X \mathbf{1}_{[M,+\infty)}\right\rangle
\end{aligned}
$$

by the assumption (2.130), we obtain

$$
\lim _{\varepsilon \rightarrow 0} \sup \varepsilon^{d} \sum_{z_{i} \in I_{\varepsilon}} X_{i} \leq\left\langle X \mathbf{1}_{[M,+\infty)}\right\rangle=P(X \in[M,+\infty)) .
$$

We may take the limit $M \rightarrow+\infty$ and conclude that

$$
\lim _{\varepsilon \rightarrow 0} \sup \varepsilon^{d} \sum_{z_{i} \in I_{\varepsilon}} X_{i}=0
$$

Since X_{i} are positive, then our main result

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \sum_{z_{i} \in I_{\varepsilon}} X_{i}=0,
$$

holds true.
Lemma 2.11 In the same setting of lemma 2.9, let us assume that in addition the marks satisfy $\left\langle X^{2}\right\rangle<$ $+\infty$. For $z_{i} \in \Phi$ and $\varepsilon>0$, let $r_{i, \varepsilon}>0$, and assume that there exists a constant $C>0$ such that for all $z_{i} \in \Phi$ and $\varepsilon>0$

$$
\begin{equation*}
r_{i, \varepsilon} \leq C \varepsilon \tag{2.131}
\end{equation*}
$$

Then, almost surely, we have

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \sum_{z_{i} \in \Phi^{\varepsilon}(B)} X X_{i} \frac{\varepsilon^{d}}{r_{i, \varepsilon}^{d}} \int_{B_{r_{i, \varepsilon}}\left(\varepsilon z_{i}\right)} \zeta(x) d x=\frac{\sigma_{d}}{d}\langle N(Q)\rangle\langle X\rangle \int_{B} \zeta(x) d x, \tag{2.132}
\end{equation*}
$$

for every $\zeta \in \mathcal{C}_{0}^{1}(B)$.
Proof. First, we show that it suffices to prove (2.132) for $r_{i, \varepsilon}=\varepsilon$ for all $z_{i} \in \Phi$ and $\varepsilon>0$. For $\zeta \in \mathcal{C}_{0}^{1}(B)$, we put for $x \in \mathbb{R}^{d}$ and εz_{i} the center of the balls $B_{\varepsilon}\left(\varepsilon z_{i}\right), B_{r_{i, \varepsilon}}\left(\varepsilon z_{i}\right)$

$$
r=\left|x-\varepsilon z_{i}\right|
$$

with

$$
\tilde{\zeta}(r)=\tilde{\zeta}\left(\left|x-\varepsilon z_{i}\right|\right)=\zeta(x) .
$$

Then, we get

$$
\begin{aligned}
\sum_{z_{i} \in \Phi^{\varepsilon}(B)}\left|\frac{\varepsilon^{d}}{r_{i, \varepsilon}^{d}} \int_{B_{r_{i, \varepsilon}}\left(\varepsilon z_{i}\right)} \zeta(x) d x-\int_{B_{\varepsilon}\left(\varepsilon z_{i}\right)} \zeta(x) d x\right| & =\sum_{z_{i} \in \Phi^{\varepsilon}(B)}\left|\frac{\varepsilon^{d}}{r_{i, \varepsilon}^{d}} \sigma_{d} \int_{0}^{r_{i, \varepsilon}} \tilde{\zeta}(r) r^{d-1} d r-\sigma_{d} \int_{0}^{\varepsilon} \tilde{\zeta}(r) r^{d-1} d r\right| \\
& =\sum_{z_{i} \in \Phi^{\varepsilon}(B)}\left|\sigma_{d} \int_{0}^{\varepsilon} \tilde{\zeta}\left(\frac{r_{i, \varepsilon}^{d}}{\varepsilon^{d}} r\right) r^{d-1} d r-\sigma_{d} \int_{0}^{\varepsilon} \tilde{\zeta}(r) r^{d-1} d r\right|,
\end{aligned}
$$

using mean value theorem and the assumption $r_{i, \varepsilon} \leq C \varepsilon$, we get almost surely

$$
\lim _{\varepsilon \rightarrow 0} \sup \sum_{z_{i} \in \Phi^{\varepsilon}(B)}\left|\frac{\varepsilon^{d}}{r_{i, \varepsilon}^{d}} \int_{B_{r_{i, \varepsilon}\left(\varepsilon z_{i}\right)}} \zeta(x) d x-\int_{B_{\varepsilon}\left(\varepsilon z_{i}\right)} \zeta(x) d x\right| \leq \lim _{\varepsilon \rightarrow 0} \sup c(d) \varepsilon\|\nabla \zeta\|_{\left(L^{\infty}(B)\right)^{d}} \varepsilon^{d} N^{\varepsilon}(B)=0,
$$

with $c(d)$ is a positive constant independant of ε. Since $\varepsilon^{d} N^{\varepsilon}(B)$ is bounded by lemma 2.9 , thus it suffices to argue (2.132) only for $r_{i, \varepsilon}=\varepsilon$. Without loss of generality we assume that $r_{i, \varepsilon}=\varepsilon$ and $|B|=1$. We can remark by density of countable subset of $W_{0}^{1, \infty}(B)$ in $\mathcal{C}_{0}^{1}(B)$ that it suffices to show (2.132) only for $\zeta \in W_{0}^{1, \infty}(B)$. Let $\zeta \in W_{0}^{1, \infty}(B)$, we begin by writing

$$
\begin{aligned}
\sum_{z_{i} \in \Phi^{\varepsilon}(B)} X_{i} \int_{B_{\varepsilon}\left(\varepsilon z_{i}\right)} \zeta(x) d x= & \sum_{z_{i} \in \Phi^{\varepsilon}(B)}\left(X_{i}-\langle X\rangle\right) \int_{B_{\varepsilon}\left(\varepsilon z_{i}\right)} \zeta(x) d x \\
& +\langle X\rangle \sum_{z_{i} \in \Phi^{\varepsilon}(B)} \int_{B_{\varepsilon}\left(\varepsilon z_{i}\right)} \zeta(x) d x .
\end{aligned}
$$

then

$$
\begin{align*}
\left|\sum_{z_{i} \in \Phi^{\varepsilon}(B)} X_{i} \int_{B_{\varepsilon}\left(\varepsilon z_{i}\right)} \zeta(x) d x-\frac{\sigma_{d}}{d}\langle N(Q)\rangle\langle X\rangle \int_{B} \zeta\right| \leq & \left|\sum_{z_{i} \in \Phi^{\varepsilon}(B)}\left(X_{i}-\left\langle X_{i}\right\rangle\right) \int_{B_{\varepsilon}\left(\varepsilon z_{i}\right)} \zeta(x) d x\right| \tag{2.133}\\
& +\langle X\rangle\left|\sum_{z_{i} \in \Phi^{\varepsilon}(B)} \int_{B_{\varepsilon}\left(\varepsilon z_{i}\right)} \zeta(x) d x-\frac{\sigma_{d}}{d}\langle N(Q)\rangle \int_{B} \zeta\right| .
\end{align*}
$$

Let $\left\{Q_{i}\right\}_{i \in \mathbb{N}}$ be a partition of \mathbb{R}^{d} into essentialy disjoint unitary cubes and let $\left\{y_{i}\right\}_{i \in \mathbb{N}}$ the collection of their centers. We claim that if $T_{\varepsilon}, \tilde{T}_{\varepsilon}, R_{\varepsilon}$ and \tilde{R}_{ε} defined by

$$
T_{\varepsilon}(\zeta)=\int_{B} \zeta, \quad \tilde{T}_{\varepsilon}(\zeta)=\varepsilon^{d} \sum_{Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset} \zeta\left(\varepsilon y_{i}\right),
$$

$$
R_{\varepsilon}(\zeta)=\sum_{z_{i} \in \Phi^{\varepsilon}(B)} \int_{B_{\varepsilon}\left(\varepsilon z_{i}\right)} \zeta(x) d x, \quad \tilde{R}_{\varepsilon}(\zeta)=\varepsilon^{d} \frac{\sigma_{d}}{d} \sum_{Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset} N(Q) \zeta\left(\varepsilon y_{i}\right) .
$$

then

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left|T_{\varepsilon}(\zeta)-\tilde{T}_{\varepsilon}(\zeta)\right|=0, \quad \lim _{\varepsilon \rightarrow 0}\left|R_{\varepsilon}(\zeta)-\tilde{R}_{\varepsilon}(\zeta)\right|=0 \text { almost surely } \tag{2.134}
\end{equation*}
$$

The first limit is a standard Riemann sum, we have

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0}\left|T_{\varepsilon}(\zeta)-\tilde{T}_{\varepsilon}(\zeta)\right| & =\lim _{\varepsilon \rightarrow 0}\left|\int_{B} \zeta-\varepsilon^{d} \sum_{Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset} \zeta\left(\varepsilon y_{i}\right)\right|=\lim _{\varepsilon \rightarrow 0}\left|\int_{B} \zeta-\sum_{Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset} \zeta\left(\varepsilon y_{i}\right)\right| Q_{i}| | \\
& =0
\end{aligned}
$$

with $\left|Q_{i}\right|$ is the Lebesgue measure of Q_{i}. Let us argue the second limit of (2.134) for $\zeta \in W_{0}^{1, \infty}(B)$, we have

$$
\left|R_{\varepsilon}(\zeta)-\tilde{R}_{\varepsilon}(\zeta)\right|=\left|\sum_{Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset}\left(\sum_{z_{i} \in \Phi^{\varepsilon}\left(Q_{i}\right)} \int_{B_{\varepsilon}\left(\varepsilon z_{i}\right)} \zeta(x) d x-\varepsilon^{d} \frac{\sigma_{d}}{d} N(Q) \zeta\left(\varepsilon y_{i}\right)\right)\right|
$$

Since by change of coordinates we have

$$
\begin{equation*}
\sum_{z_{i} \in \Phi^{\varepsilon}\left(Q_{i}\right)} \int_{B_{\varepsilon}} d x=\varepsilon^{d} \frac{\sigma_{d}}{d} N(Q) \tag{2.135}
\end{equation*}
$$

then by mean value theorem and (2.135) we can write

$$
\begin{aligned}
\left|R_{\varepsilon}(\zeta)-\tilde{R}_{\varepsilon}(\zeta)\right| & =\left|\sum_{Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset}\left(\sum_{z_{i} \in \Phi^{\varepsilon}\left(Q_{i}\right)} \int_{B_{\varepsilon}\left(\varepsilon z_{i}\right)} \zeta(x)-\zeta\left(\varepsilon y_{i}\right)\right)\right| \\
& \leq 2 \varepsilon\|\nabla \zeta\|_{L^{\infty}(B)} \varepsilon^{d} N^{\varepsilon}(B) .
\end{aligned}
$$

Since by lemma 2.9 the term $\varepsilon^{d} N^{\varepsilon}(B)$ is finite, then the second limit follows immediatly.
So we can use these results to write

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0} \sup \left|\sum_{z_{i} \in \Phi^{\varepsilon}(B)} X_{i} \int_{B_{\varepsilon}\left(\varepsilon z_{i}\right)} \zeta(x) d x-\frac{\sigma_{d}}{d}\langle N(Q)\rangle\langle X\rangle \int_{B} \zeta\right| \\
\leq & \lim _{\varepsilon \rightarrow 0} \sup \left|\sum_{z_{i} \in \Phi^{\varepsilon}(B)}\left(X_{i}-\langle X\rangle\right) \int_{B_{\varepsilon}\left(\varepsilon z_{i}\right)} \zeta(x) d x\right| \\
& +\lim _{\varepsilon \rightarrow 0} \sup \left|\varepsilon^{d}\langle X\rangle \frac{\sigma_{d}}{d} \sum_{Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset} \int_{B_{\varepsilon}\left(\varepsilon z_{i}\right)} \zeta\left(\varepsilon y_{i}\right)\left(N\left(Q_{i}\right)-\langle N(Q)\rangle\right)\right| . \tag{2.136}
\end{align*}
$$

It remains to show that the two terms of the right-hand side of (2.136) vanishes almost surely, before that we define

$$
\begin{aligned}
a_{i, \varepsilon} & =\int_{B_{\varepsilon}\left(\varepsilon z_{i}\right)} \zeta(x) d x, & \tilde{X}_{i}=X_{i}-\left\langle X_{i}\right\rangle, \\
S_{\varepsilon} & =\sum_{z_{i} \in \Phi^{\varepsilon}(B)} a_{i, \varepsilon} X_{i}, & \tilde{S}_{\varepsilon}=\sum_{z_{i} \in \Phi^{\varepsilon}(B)} a_{i, \varepsilon} \tilde{X}_{i} .
\end{aligned}
$$

We begin by proving the first right hand side of (2.136) which means \tilde{S}_{ε} defined above vanishes in the limit. For $\delta>0$, we estimate by Chebyshev's inequality, one has

$$
\begin{equation*}
\mathbb{P}\left(\tilde{S}_{\varepsilon}>\delta\right) \leq \delta^{-2}\left\langle\tilde{S}_{\varepsilon}^{2}\right\rangle \tag{2.137}
\end{equation*}
$$

We want to show that \tilde{S}_{ε} converges to zero in probability, so we rewrite

$$
\begin{align*}
\left\langle\tilde{S}_{\varepsilon}^{2}\right\rangle & =\left\langle\sum_{z_{i}, z_{k} \in \Phi^{\varepsilon}(B)} a_{i, \varepsilon} a_{k, \varepsilon} \tilde{X}_{i} \tilde{X}_{k}\right\rangle \\
& =\sum_{\substack{Q_{i} \cap \frac{1}{\frac{1}{B} B \neq \emptyset} \\
Q_{j} \cap \frac{1}{\varepsilon} B \neq \emptyset .}}\left\langle\left(\sum_{z_{l} \in \Phi^{\varepsilon}\left(Q_{j}\right)} a_{l, \varepsilon} \tilde{X}_{l}\right)\left(\sum_{z_{k} \in \Phi^{\varepsilon}\left(Q_{i}\right)} a_{k, \varepsilon} \tilde{X}_{k}\right)\right\rangle . \tag{2.138}
\end{align*}
$$

We set

$$
Y_{i}=\sum_{z_{l} \in \Phi^{\varepsilon}\left(Q_{i}\right)} a_{l, \varepsilon} \tilde{X}_{l}
$$

it follows

$$
\begin{equation*}
\left\langle\tilde{S}_{\varepsilon}^{2}\right\rangle=\left\langle\sum_{\substack{Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset \\ Q_{j} \cap \frac{1}{\varepsilon} B \neq \emptyset .}} Y_{i} Y_{j}\right\rangle=\sum_{Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset}\left\langle Y_{i}^{2}\right\rangle+\sum_{\substack{i \neq j, Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset, Q_{j} \cap \frac{1}{\varepsilon} B \neq \emptyset .}}\left\langle Y_{i} Y_{j}\right\rangle . \tag{2.139}
\end{equation*}
$$

For the second right hand side of (2.139), we can write

$$
\begin{equation*}
\sum_{\substack{i \neq j, Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset, Q_{j} \cap \frac{1}{\varepsilon} B \neq \emptyset .}}\left\langle Y_{i} Y_{j}\right\rangle=\sum_{\substack{Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset, Q_{j} \cap \frac{1}{\varepsilon} B \neq \emptyset .}}\left(\left\langle\sum_{z_{l} \in \Phi^{\varepsilon}\left(Q_{j}\right), z_{k} \in \Phi^{\varepsilon}\left(Q_{i}\right)} a_{l, \varepsilon} a_{k, \varepsilon} \tilde{X}_{l} \tilde{X}_{k}\right\rangle\right) . \tag{2.140}
\end{equation*}
$$

Since for $\zeta \in W_{0}^{1, \infty}(B)$ we have

$$
\left|a_{l, \varepsilon}\right|=\left|\int_{B_{\varepsilon}\left(\varepsilon z_{i}\right)} \zeta(x) d x\right| \leq\|\zeta\|_{L^{\infty}(B)}\left|B_{\varepsilon}\right|=\varepsilon^{d}\|\zeta\|_{L^{\infty}(B)},
$$

then we argue similarly as lemma 2.9 using the assumption (2.6), we get

$$
\begin{aligned}
\sum_{\substack{i \neq j, Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset, Q_{j} \cap \frac{1}{\varepsilon} B \neq \emptyset .}}\left\langle Y_{i} Y_{j}\right\rangle & \leq \sum_{\substack{i \neq j, Q_{i} \cap \frac{1}{B} B \neq \emptyset, Q_{j} \cap \frac{1}{\varepsilon} B \neq \emptyset .}} \varepsilon^{2 d}\|\zeta\|_{L^{\infty}(B)}^{2}\left\langle\sum_{z_{l} \in \Phi^{\varepsilon}\left(Q_{j}\right), z_{k} \in \Phi^{\varepsilon}\left(Q_{i}\right)} \tilde{X}_{l} \tilde{X}_{k}\right\rangle \\
& \leq \sum_{\substack{Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset, Q_{j} \cap \frac{1}{\varepsilon} B \neq \emptyset .}} \varepsilon^{2 d}\|\zeta\|_{L^{\infty}(B)}^{2} \frac{c\left\langle N\left(Q_{i}\right) N\left(Q_{j}\right)\right\rangle}{\left|z_{i}-z_{j}\right|^{\gamma}},
\end{aligned}
$$

with $\gamma>d$. Adding and substructing the term $\frac{c\langle N(Q)\rangle^{2}}{\left|z_{i}-z_{j}\right|^{\mid}}$we get by assumption (2.4)

$$
\sum_{\substack{i \neq j, Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset, Q_{j} \cap \frac{1}{\varepsilon} B \neq \emptyset .}}\left\langle Y_{i} Y_{j}\right\rangle \leq \sum_{\substack{Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset, Q_{j} \cap \frac{1}{\varepsilon} B \neq \emptyset}} \varepsilon^{2 d}\|\zeta\|_{L^{\infty}(B)}^{2} \frac{c\left\langle N(Q)^{2}\right\rangle}{\left|z_{i}-z_{j}\right|^{\gamma}}
$$

A similar estimation as the first limit in (2.134) for ε small enough gives

$$
\begin{equation*}
\sum_{\substack{i \neq j, Q_{i} \cap \frac{1}{8} B \neq \emptyset \\ Q_{j} \cap \frac{1}{\varepsilon} B \neq \emptyset .}} \frac{1}{\left|z_{i}-z_{j}\right|^{\gamma}}=\frac{1}{\varepsilon^{d}} \int_{B} \varphi, \tag{2.141}
\end{equation*}
$$

with φ defined as

$$
\varphi(x)=\frac{1}{|x|^{\gamma}} \text { for } x \neq 0_{\mathbb{R}^{d}}
$$

and the assumption $\gamma>d$ gives

$$
\frac{1}{\varepsilon^{d}} \int_{B} \varphi<+\infty
$$

It follows

$$
\sum_{\substack{i \neq j, Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset, Q_{j} \cap \frac{1}{\varepsilon} B \neq \emptyset .}}\left\langle Y_{i} Y_{j}\right\rangle \leq c \varepsilon^{d}\|\zeta\|_{L^{\infty}(B)}^{2}\left\langle N(Q)^{2}\right\rangle \int_{B} \varphi,
$$

sending $\varepsilon \rightarrow 0$, we get under the assumption (2.3)

$$
\begin{equation*}
\sum_{\substack{i \neq j, Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset, Q_{j} \cap \frac{1}{\varepsilon} B \neq \emptyset .}}\left\langle Y_{i} Y_{j}\right\rangle \rightarrow 0 . \tag{2.142}
\end{equation*}
$$

For the first term, we have

$$
\begin{aligned}
\sum_{Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset}\left\langle Y_{i}^{2}\right\rangle \leq & \sum_{\substack{Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset \\
Q_{j} \cap \frac{1}{\varepsilon} B \neq \emptyset}} \varepsilon^{2 d}\|\zeta\|_{L^{\infty}(B)}^{2}\left(\left\langle\sum_{z_{i} \in \Phi^{\varepsilon}\left(Q_{i}\right)} \tilde{X}_{i}^{2}\right\rangle+\left\langle\sum_{\substack{z_{l} \in \Phi^{\varepsilon}\left(Q_{i}\right), z_{k} \in \Phi^{\varepsilon}\left(Q_{j}\right)}} \tilde{X}_{k} \tilde{X}_{l}\right\rangle\right) \\
& \stackrel{(2.6)}{\leq} \sum_{\substack{Q \cap \frac{1}{\varepsilon} B \neq \emptyset}} \varepsilon^{2 d}\|\zeta\|_{L^{\infty}(B)}^{2}\left\langle N(Q)^{2}\right\rangle \operatorname{var}(X) \\
& +\sum_{\substack{i \neq j, Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset \\
Q_{j} \cap \frac{1}{\varepsilon} \varepsilon \neq \emptyset .}} \varepsilon^{2 d}\|\zeta\|_{L^{\infty}(B)}^{2} \frac{c\left\langle N\left(Q_{i}\right) N\left(Q_{j}\right)\right\rangle}{\left|z_{i}-z_{j}\right|^{\gamma}},
\end{aligned}
$$

adding and substructing the term $\frac{c\langle N(Q)\rangle^{2}}{\left|z_{i}-z_{j}\right|^{\gamma}}$ and using the assumption (2.4)

$$
\sum_{Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset}\left\langle Y_{i}^{2}\right\rangle \leq \sum_{Q \cap \frac{1}{\varepsilon} B \neq \emptyset} \varepsilon^{2 d}\|\zeta\|_{L^{\infty}(B)}^{2}\left\langle N(Q)^{2}\right\rangle \operatorname{var}(X)+C \sum_{\substack{i \neq j, Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset \\ Q_{j} \cap \frac{1}{\varepsilon} B \neq \emptyset .}} \varepsilon^{2 d}\|\zeta\|_{L^{\infty}(B)}^{2} \frac{\left\langle N(Q)^{2}\right\rangle}{\left|z_{i}-z_{j}\right|^{\gamma}} .
$$

A similar estimation as in (2.141) gives

$$
\sum_{Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset}\left\langle Y_{i}^{2}\right\rangle \leq \sum_{Q \cap \frac{1}{\varepsilon} B \neq \emptyset} \varepsilon^{2 d}\|\zeta\|_{L^{\infty}(B)}^{2}\left\langle N(Q)^{2}\right\rangle \operatorname{var}(X)+C \varepsilon^{d}\|\zeta\|_{L^{\infty}(B)}^{2}\left\langle N(Q)^{2}\right\rangle \int_{B} \varphi .
$$

Since $\left\langle X^{2}\right\rangle$ and $\left\langle N(Q)^{2}\right\rangle$ are finite, then

$$
\begin{equation*}
\sum_{Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset}\left\langle Y_{i}^{2}\right\rangle \rightarrow 0 \text { when } \varepsilon \rightarrow 0 \tag{2.143}
\end{equation*}
$$

Hence by (2.143), (2.142) and the assumption (2.3)

$$
\left\langle\tilde{S}_{\varepsilon}^{2}\right\rangle \rightarrow 0 \text { when } \varepsilon \rightarrow 0
$$

So

$$
\tilde{S}_{\varepsilon} \underset{\varepsilon \rightarrow 0}{\rightarrow} 0 \text { in probability. }
$$

Then, we can use the Borel-Cantelli's theorem B.1.10 (See appendix B) for the subsequence $\varepsilon_{n}=\frac{1}{n}$ with $n \in \mathbb{N}$ we get

$$
\lim _{n \rightarrow+\infty} \tilde{S}_{\varepsilon_{n}}=0 \text { almost surely. }
$$

For the second right hand side of (2.136) we argue in a similar way as above, we denote

$$
\tilde{Q}_{i}=Q_{i}-\langle Q\rangle, \quad I_{\varepsilon}=\varepsilon^{d}\langle X\rangle \frac{\sigma_{d}}{d} \sum_{Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset} \zeta\left(\varepsilon y_{i}\right) \tilde{Q}_{i} .
$$

We estimate by Chebyshev's inequality for each $\delta>0$, we get

$$
\mathbb{P}\left(I_{\varepsilon}>\delta\right) \leq \delta^{-2}\left\langle I_{\varepsilon}^{2}\right\rangle
$$

and we write

$$
\begin{align*}
\left\langle I_{\varepsilon}^{2}\right\rangle= & \varepsilon^{2 d}\langle X\rangle^{2} \frac{\sigma_{d}^{2}}{d^{2}} \sum_{\substack{Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset \\
Q_{j} \cap \frac{1}{\varepsilon} B \neq \emptyset}}\left\langle\zeta\left(\varepsilon y_{i}\right) \zeta\left(\varepsilon y_{j}\right) \tilde{Q}_{i} \tilde{Q}_{j}\right\rangle \\
\leq & \varepsilon^{2 d}\langle X\rangle^{2}\|\zeta\|_{L^{\infty}(B)}^{2} \frac{\sigma_{d}^{2}}{d^{2}} \sum_{\substack{Q_{i} \cap \frac{1}{c} B \neq \emptyset \\
Q_{j} \cap \frac{1}{\varepsilon} B \neq \emptyset}}\left(N\left(Q_{i}\right) N\left(Q_{j}\right)-\langle N(Q)\rangle^{2}\right) \\
& \quad{ }^{(2.4)} \leq \varepsilon^{2 d}\langle X\rangle^{2}\|\zeta\|_{L^{\infty}(B)}^{2} \frac{\sigma_{d}^{2}}{d^{2}} \sum_{\substack{Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset \\
Q_{j} \cap \frac{1}{\varepsilon} B \neq \emptyset}} \frac{C\left\langle N(Q)^{2}\right\rangle}{\left|z_{i}-z_{j}\right|^{\gamma}}, \tag{2.144}
\end{align*}
$$

since by definition of Riemann sum we have

$$
\sum_{\substack{i \neq j, Q_{i} \cap \frac{1}{\varepsilon} B \neq \emptyset \\ Q_{j} \cap \frac{1}{\varepsilon} B \neq \emptyset}} \frac{C\left\langle N(Q)^{2}\right\rangle}{\left|z_{i}-z_{j}\right|} \leq \frac{1}{\varepsilon^{d}} \int_{B} C\left\langle N(Q)^{2}\right\rangle \varphi
$$

with

$$
\varphi(x)=\frac{1}{|x|^{\gamma}} \text { for } x \neq 0_{\mathbb{R}^{d}},
$$

thanks to the assumption $\gamma>d$ we have

$$
\int_{B} C\left\langle N(Q)^{2}\right\rangle \varphi<+\infty .
$$

Then we substitute in (2.144) we get

$$
\left\langle I_{\varepsilon}^{2}\right\rangle \leq \varepsilon^{d}\langle X\rangle^{2}\|\zeta\|_{L^{\infty}(B)}^{2} \frac{\sigma_{d}^{2}}{d^{2}} \int_{B} C\left\langle N(Q)^{2}\right\rangle \varphi \rightarrow 0 \text { when } \varepsilon \rightarrow 0,
$$

it follows

$$
I_{\varepsilon} \xrightarrow[\varepsilon \rightarrow 0]{\rightarrow} 0 \text { in probability. }
$$

Applaying the Borel-Cantelli theorem B.1.10 for a subsequence $\varepsilon_{n}=\frac{1}{n}$ with $n \in \mathbb{N}$, we get

$$
\lim _{n \rightarrow+\infty} I_{\varepsilon_{n}}=0 \quad \text { almost surely } .
$$

So for a subsequence $\left\{\varepsilon_{n}\right\}_{n \in \mathbb{N}}$ we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \sum_{z_{i} \in \Phi\left(\frac{1}{\varepsilon_{n}} B\right)} X_{i} \int_{B_{\varepsilon}\left(\varepsilon z_{i}\right)} \zeta(x) d x=\frac{\sigma_{d}}{d}\langle N(Q)\rangle\langle X\rangle \int_{B} \zeta(x) d x \text { almost surely. } \tag{2.145}
\end{equation*}
$$

To extend (2.145) to any sequence $\varepsilon_{j} \rightarrow 0$, we fix first the following notation

$$
\underline{\varepsilon}=\left(\left\lfloor\frac{1}{\varepsilon}\right\rfloor+1\right)^{-1}, \quad \bar{\varepsilon}=\left(\left\lfloor\frac{1}{\varepsilon}\right\rfloor\right)^{-1} .
$$

Note that $\underline{\varepsilon}^{-1}, \bar{\varepsilon}^{-1} \in \mathbb{N}$ and $\underline{\varepsilon} \leq \varepsilon \leq \bar{\varepsilon}$. We write $\zeta=\zeta^{+}+\zeta^{-}$then we can remark by linearity of the integral that it suffices to consider the positive functions which allows to keep with the case $a_{i, \varepsilon} \geq 0$.
For $\varepsilon_{j} \rightarrow 0$, by definition of $\underline{\varepsilon}_{j}$ we can estimate

$$
\begin{align*}
S_{\varepsilon_{j}} & =\sum_{z_{i} \in \Phi^{\varepsilon_{j}}(B)} a_{i, \varepsilon_{j}} X_{i} \leq S_{\underline{\varepsilon}_{j}}+\sum_{i=1}^{N^{\varepsilon_{j}}(B)}\left|a_{i, \varepsilon_{j}}-a_{\underline{\varepsilon}_{j}}\right| X_{i} \\
& \leq S_{\underline{\varepsilon}_{j}}+\max _{i=1, ., N^{\varepsilon_{j}}(B)}\left|a_{i, \varepsilon_{j}}-a_{\underline{\varepsilon}_{j}}\right| \sum_{i=1}^{N^{\varepsilon_{j}}(B)} X_{i} . \tag{2.146}
\end{align*}
$$

We can claim that we have almost surely

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \frac{\max _{i \leq N \bar{\varepsilon}(B)}\left|a_{i, \varepsilon}-a_{i, \bar{\varepsilon}}\right|}{\bar{\varepsilon}^{d}}=\lim _{\varepsilon \rightarrow 0} \frac{\max _{i \leq N \Xi(B)}\left|a_{i, \varepsilon}-a_{i, \underline{\varepsilon}}\right|}{\underline{\varepsilon}^{d}}=0 . \tag{2.147}
\end{equation*}
$$

We first show that if (2.147) is true, we can conclude the lemma immediatly. We have

$$
\begin{equation*}
S_{\varepsilon_{j}} \leq S_{\underline{\varepsilon}_{j}}+\frac{\max _{i=1, \ldots, N^{\varepsilon_{j}}(B)}\left|a_{i, \varepsilon_{j}}-a_{i, \varepsilon_{j}}\right|}{\underline{\varepsilon}_{j}^{d}} \underline{\varepsilon}_{j}^{d} \sum_{i=1}^{N^{\varepsilon_{j}}(B)} X_{i} \tag{2.148}
\end{equation*}
$$

from lemma 2.9 we have $\underline{\varepsilon}_{j}^{d} \sum_{i=1}^{N^{\varepsilon_{j}}(B)} X_{i}$ is bounded for ε small enough, by (2.147) the second right hand side of (2.148) vanishes in the limit. For the first we can use the result (2.145), we get

$$
\lim _{\varepsilon_{j} \rightarrow 0} \sup S_{\varepsilon_{j}} \leq \frac{\sigma_{d}}{d}\langle N(Q)\rangle\langle X\rangle \int_{B} \zeta(x) d x
$$

We may argue similarly, we have

$$
S_{\varepsilon_{j}} \geq S_{\bar{\varepsilon}_{j}}+\frac{\max _{i=1, \ldots, N^{\varepsilon_{j}}(B)}\left|a_{i, \varepsilon_{j}}-a_{i, \bar{\varepsilon}_{j}}\right|}{\bar{\varepsilon}^{d}} \bar{\varepsilon}^{d} \sum_{i=1}^{N^{\varepsilon_{j}}(B)} X_{i}
$$

Using (2.147), (2.145) and lemma 2.9 we get

$$
\lim _{\varepsilon_{j} \rightarrow 0} \inf S_{\varepsilon_{j}} \geq \frac{\sigma_{d}}{d}\langle N(Q)\rangle\langle X\rangle \int_{B} \zeta(x) d x
$$

Then, our main result holds true.
Now, it remains to argue (2.147), we have for $\zeta \in W_{0}^{1, \infty}(B)$ and for every $z_{i} \in B$ and $\varepsilon_{1} \leq \varepsilon_{2}$ the following estimation

$$
\begin{aligned}
\left|a_{i, \varepsilon_{1}}-a_{i, \varepsilon_{2}}\right| \leq & \int_{B_{\varepsilon_{1}}(0)}\left|\zeta\left(x+\varepsilon_{1} z_{i}\right)-\zeta\left(x+\varepsilon_{2} z_{i}\right)\right| d x \\
& +\int_{B_{\varepsilon_{2}}(0) \backslash B_{\varepsilon_{1}}(0)} \zeta\left(x+\varepsilon_{2} z_{i}\right) d x,
\end{aligned}
$$

using mean value theorem one has

$$
\left|a_{i, \varepsilon_{1}}-a_{i, \varepsilon_{2}}\right| \leq\|\nabla \zeta\|_{\left(L^{\infty}(B)\right)^{d}}\left|\varepsilon_{2}-\varepsilon_{1}\right|\left|z_{i}\right| \varepsilon_{1}^{d}+\|\zeta\|_{L^{\infty}(B)}\left(\left(\frac{\varepsilon_{2}}{\varepsilon_{1}}\right)^{d}-1\right) \varepsilon_{1}^{d} .
$$

Since we have $N^{\varepsilon_{2}}(B) \leq N^{\varepsilon_{1}}(B)$ and thus $i \leq N^{\varepsilon_{2}}(B)$ we have that $\left|z_{i}\right| \leq \varepsilon_{2}^{-1}$ and

$$
\left|a_{i, \varepsilon_{1}}-a_{i, \varepsilon_{2}}\right| \leq\|\zeta\|_{W^{1, \infty}(B)}\left(\left(1-\frac{\varepsilon_{1}}{\varepsilon_{2}}\right)+\left(\left(\frac{\varepsilon_{2}}{\varepsilon_{1}}\right)^{d}-1\right)\right) \varepsilon_{1}^{d}
$$

We choose $\varepsilon_{1}=\varepsilon, \varepsilon_{2}=\bar{\varepsilon}$ this yields

$$
\left|a_{i, \varepsilon_{1}}-a_{i, \varepsilon_{2}}\right| \leq\|\zeta\|_{W^{1, \infty}(B)}\left(\varepsilon+\left(\frac{1}{1-\varepsilon}\right)^{d}-1\right) \bar{\varepsilon}^{d} .
$$

and thus the first limit in (2.147) holds.

Appendix A: Some preliminaries on functional analysis

In all what follows D is an open bounded set of $\mathbb{R}^{d}, d \geq 2$.

A. $1 L^{p}$ spaces and Sobolev spaces

Definition A.1.1 [4] We denote by $L^{1}(D)$ the space of real-valued measurable functions u defined in D that satisfies

$$
\int_{D}|u(x)| d x<+\infty .
$$

Then, we set

$$
L^{1}(D)=\left\{u: D \rightarrow \mathbb{R} \text { measurable such that } \int_{D}|u(x)| d x<+\infty\right\}
$$

For $1<p<\infty$, we set

$$
L^{p}(D)=\left\{u: D \rightarrow \mathbb{R} \text { measurable such that }|u|^{P} \in L^{1}(D)\right\}
$$

We define $L^{\infty}(D)$ as a space of essentially bounded measurable fonctions mesurables i.e

$$
\exists C \geq 0:|u(x)| \leq C \text { almost every } x \in D
$$

Then, we set

$$
L^{1}(D)=\{u: D \rightarrow \mathbb{R} \text { measurable }: \exists C \geq 0:|u(x)| \leq C \text { almost every } x \in D\}
$$

Proposition A.1.2 [4] Equipped $L^{p}(D), 1 \leq p<\infty$ with the norm

$$
\|u\|_{L^{p}(D)}=\left(\int_{D}|u(x)| d x\right)^{\frac{1}{p}}, \quad \forall u \in L^{p}(D)
$$

and $L^{\infty}(D)$ with

$$
\|u\|_{L^{\infty}(D)}=\inf \{C:|u(x)| \leq C \text { almost every } x \in D\}
$$

$L^{p}(D), 1 \leq p \leq \infty$ is a Banach space. Moreover, $L^{2}(D)$ endowed with

$$
\int_{D} u(x) v(x) d x, \quad \forall u, v \in L^{2}(D)
$$

is Hilbert space.
Theorem A.1.3 (An embedding theorem for L^{p} spaces) [2] Suppose that $|D|=\int_{D} d x<+\infty$ and $1 \leq p \leq q \leq+\infty$. If $u \in L^{q}(D)$, then $u \in L^{p}(D)$ and

$$
\|u\|_{L^{p}(D)} \leq(|D|)^{\frac{1}{p}-\frac{1}{q}}\|u\|_{L^{q}(D)} .
$$

Hence

$$
L^{q}(D) \hookrightarrow L^{p}(D)
$$

Theorem A.1.4 (Hölder's inequality) [4] Let $f \in L^{p}(D)$ and $g \in L^{q}(D)$ with $1 \leq p, q \leq \infty$ and $\frac{1}{p}+\frac{1}{q}=1$. Then, $f \cdot g \in L^{1}(D)$ and

$$
\int_{D}|f \cdot g| \leq\|f\|_{L^{p}(D)}\|g\|_{L^{q}(D)}
$$

Remark A.1.5 Hölder's inequality for $L^{2}(D)$ is just well-knows as Cauchy-Schwarz inequality.
Definition A.1.6 [4] Let $m \geq 1$ be an integer. For $1 \leq p \leq \infty$ we define Sobolev spaces denoted by $W^{m, p}(D)$ as follow
where $D^{\alpha} u=g_{\alpha},|\alpha|=\sum_{i=1}^{N} \alpha_{i}$ and $\mathcal{D}(D)$ is the space of infinitely differentiable functions $\phi: D \rightarrow \mathbb{R}$ with compact support.
We define $W_{0}^{m, p}(D)$ as the closure of $\mathcal{D}(D)$ in $W^{m, p}(D)$, i.e

$$
W_{0}^{m, p}(D)=\overline{\mathcal{D}}(D)^{W^{m, p}(D)}
$$

For $p=2$, we denote by $H^{m}(D)$ and $H_{0}^{m}(D)$ the spaces $W^{m, 2}(D)$ et $W_{0}^{m, 2}(D)$ respectivly.
Theorem A.1.7 [4] Equipped $W^{m, p}(D)$ with the norm

$$
\|u\|_{W^{m, p}(\Omega)}=\sum_{0 \leq|\alpha| \leq m}\left\|D^{\alpha} u\right\|_{L^{p}(D)}, \quad \forall 1 \leq p \leq+\infty,
$$

$W^{m, p}(D)$ is a Banach space.
For $p=2, H^{m}(D)$ is a Hilbert space with respect to the scalar product

$$
\sum_{0 \leq|\alpha| \leq m} \int_{D} D^{\alpha} u(x) D^{\alpha} v(x) d x
$$

est un espace de Hilbert. Moreover, $W^{m, p}(D)$ is reflexif for $1<p<\infty$ and separable for $1 \leq p<+\infty$.
The product φu of a smooth function $\varphi \in \mathcal{D}(D)$ and $u \in W^{m, p}(D)$ belongs to $W_{0}^{m, p}(D)$.
Proposition A.1.8 (Caracterization of dual space of $W_{0}^{1, p}(D)$) [2] For $1 \leq p<\infty$, and $L \in$ $W^{-1, q}(D)$ with $q=\frac{p-1}{p}$, there exist $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{d} \in L^{q}(D)$ such that

$$
L(u)=\int_{D} \varphi_{0} u+\sum_{i=1}^{d} \int_{D} \frac{\partial u}{\partial x_{i}} \varphi_{i}, \quad \forall u \in W_{0}^{1, p}(D),
$$

Moreover,

$$
\|L\|_{W^{-1, q}(D)}=\inf \left(\left\|\left(\varphi_{0}, \varphi_{1}, \ldots, \varphi_{d}\right)\right\|_{\left(L^{q}(D)\right)^{d+1}}\right) .
$$

Corollary A.1.9 (Poincaré inequality) [1] If D is a bounded open set of \mathbb{R}^{d}. There exist a positive constant $C=C(D, p)$ with $1 \leq p<\infty$ such that

$$
\|u\|_{L^{p}(D)} \leq C\|\nabla u\|_{\left(L^{p}(D)\right)^{d}}, \quad \forall u \in W_{0}^{1, p}(D)
$$

Theorem A.1.10 (Rellich-Kondrachov) [4] Suppose that D is bounded, and ∂D is \mathcal{C}^{1}. We have

$$
\begin{aligned}
& \text { If } p<N \text { then } W^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega), \forall q \in\left[1, p^{*}\left[\text { where } \frac{1}{p^{*}}=\frac{1}{p}-\frac{1}{N},\right.\right. \\
& \text { If } p=N \text { then } W^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega), \forall q \in[1, \infty[\\
& \text { If } p>N \text { then } W^{1, p}(\Omega) \hookrightarrow C(\bar{\Omega}),
\end{aligned}
$$

with compact embedding.
Theorem A.1.11 (Green formula) [1] Suppose that D be an open bounded regular set of classe C^{1}. If u and v are functions of $H^{1}(\Omega)$, they satisfy

$$
\int_{\Omega} u(x) \frac{\partial v}{\partial x_{i}}(x) d x=-\int_{\Omega} v(x) \frac{\partial u}{\partial x_{i}}(x) d x+\int_{\partial \Omega} u(x) v(x) n_{i} d x
$$

where $n=\left(n_{i}\right)_{1 \leq i \leq N}$ is the outward unit normal to $\partial \Omega$.

Proposition A.1.12 [1] Suppose that D is an open bounded regular set of classe C^{1}. Let $\left(w_{i}\right)_{1 \leq i \leq k}$ be a regular partition of D, that is each w_{i} is a regular open set of classe $C^{1}, w_{i} \cap w_{j}=\emptyset$ if $i \neq j$ and $\bar{\Omega}=\bigcup_{1 \leq i \leq k} \overline{w_{i}}$. Let u be a fonction whose restriction to each $w_{i},\left.u\right|_{w_{i}}=u_{i}$ belongs to $H^{1}\left(w_{i}\right)$. If u is continous over $\bar{\Omega}$, then u belongs to $H^{1}(\Omega)$.

Theorem A.1.13 (Gagliardo-Nirenberg-Sobolev inequality) [2] Assume that $1 \leq p<d$ and that ∂D is $\mathcal{C}^{1} . u \in W^{1, p}(D)$ then $u \in L^{p^{*}}(D)$ with $p^{*}=\frac{d p}{d-p}$. and we have the estimation

$$
\|u\|_{L^{p^{*}}(D)} \leq C\|u\|_{W^{1, p}(D)},
$$

the constant C depending only on p, d, and D.
If we consider the case $p=d$, then we the continuous embedding of $W^{1, d}(D)$ in $L^{q}(D)$ with $q \in[d,+\infty)$.

A. 2 Functional analysis results

Corollary A.2.1 [4] (Hahn-Banach)Let G be a subset of a Banach space E, G^{\prime} and E^{\prime} the dual space of E and $g: G \longrightarrow \mathbb{R}$ is a continuous linear function of norm

$$
\|g\|_{G^{\prime}}=\sup _{\substack{\|x\|_{G} \leq 1 \\ x \in G}}|g(x)| .
$$

Then there exists $f \in E^{\prime}$ that extends g and such that $\|g\|_{G^{\prime}}=\|f\|_{E^{\prime}}$.
Theorem A.2.2 (Lax-Milgram) [4] Let a a bilineair form defined in $H \times H$ and satisfies

$$
\begin{array}{ll}
\exists M>0,|a(u, v)| \leq M\|u\|_{H}\|v\|_{H} & \forall u, v \in H \\
\exists \alpha>0, a(u, v) \geq \alpha\|u\|_{H}^{2} & \forall u \in H
\end{array},
$$

with H a Hilbert space. Then, for every $\psi \in H^{\prime}$, there exist a unique $u \in H$ such that

$$
a(u, v)=\langle\psi, v\rangle_{H^{\prime}, H}, \quad \forall v \in H .
$$

Definition A.2.3 (Weak and weak-star convergence) [4] Let E be a banach space.
A sequence $\left(u_{n}\right)_{n \in \mathbb{N}} \subseteq E$ is said to converge strongly to an element $u \in E$, if

$$
\left\|u_{n}\right\|_{E} \rightarrow\|u\|_{E}
$$

where $\|\cdot\|_{E}$ is a norm defined in E.
A sequence $\left(u_{n}\right)_{n \in \mathbb{N}} \subseteq E$ is said to converge weakly to an element $u \in E$ and we write

$$
u_{n} \rightharpoonup u \text { weakly in } E .
$$

$$
\left\langle g, u_{n}\right\rangle_{E^{\prime}, E} \rightarrow\langle g, u\rangle_{E^{\prime}, E} \text { for every } g \in E^{\prime}
$$

where E^{\prime} is the daul space of E.
A sequence $\left(g_{n}\right)_{n \in \mathbb{N}} \subseteq E^{\prime}$ is said to converge weakly-star to $g \in E^{\prime}$ and we write

$$
g_{n} \stackrel{*}{\rightharpoonup} g \text { weakly-star in } E^{\prime} .
$$

Theorem A.2.4 (Eberlein-S̃muljan) [4]

a. Let E be a reflexif Banach space and $\left(u_{n}\right)_{n \in \mathbb{N}}$ is a bounded sequence in E. Then, there exist a subsequence $\left(u_{n_{k}}\right)_{n_{k} \in \mathbb{N}}$ converge weakly to a limit $u \in E$.
b. If E is a separable Banach space and $\left(g_{n}\right)_{n \in \mathbb{N}}$ a bounded sequence in E^{\prime} with E^{\prime} is the dual of E. Then, there exist a subsequence $\left(g_{n_{k}}\right)_{n_{k} \in \mathbb{N}}$ converge weakly-star to a limit $g \in E^{\prime}$.

Theorem A.2.5 (Maximum principle [9]) Let $u \in C^{2}(D) \cap C(\bar{D})$ such that

$$
-\Delta u=0 .
$$

Then

$$
\min _{\partial D} u \leq u(x) \leq \max _{\partial D} u \text { for } x \in D
$$

A. 3 Additional definitions and results

Definition A.3.1 (Periodic functions) [6] Let $Y=] 0, l_{1}[\times \ldots \times] 0, l_{d}\left[\right.$ be a cell in \mathbb{R}^{d} and u is a function defined in almost everywhere in \mathbb{R}^{d}. the fonction u est said to be Y-periodic if

$$
u\left(x+k l_{i} e_{i}\right)=f(x) \quad \forall k \in \mathbb{Z}, \forall i=1, . ., d,
$$

where $\left(e_{i}\right)_{1 \leq i \leq d}$ is the canonical basis of \mathbb{R}^{d}.
Proposition A.3.2 (See D. Cioranescu and Murat [6]) Let $1 \leq p \leq+\infty$ and f be a Y - periodic function in $L^{p}(Y)$ where $\left.Y=\right] 0, l_{1}[\times \ldots \times] 0, l_{d}\left[\right.$ be a cell in \mathbb{R}^{d} Set

$$
f_{\varepsilon}(x)=f\left(\frac{x}{\varepsilon}\right) \quad \text { almost everywhere in } \mathbb{R}^{d} .
$$

Then, if $p<\infty$, as $\varepsilon \rightarrow 0$

$$
f_{\varepsilon} \rightharpoonup M_{Y}(f)=\frac{1}{|Y|} \int_{Y} f(x) d x \text { weakly in } L^{p}(\omega)
$$

for any open subset ω of \mathbb{R}^{d}.
If $p=+\infty$, one has

$$
f_{\varepsilon} \rightharpoonup M_{Y}(f)=\frac{1}{|Y|} \int_{Y} f(x) d x \text { weakly* }^{*} \text { in } L^{\infty}\left(\mathbb{R}^{d}\right) .
$$

Theorem A.3.3 (Fubini's theorem) [12] Suppose that $f(x, y)$ is a non-negative measurable function on $\mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}=\mathbb{R}^{d}$. Then, for almost every $x \in \mathbb{R}^{d_{1}}$ and $y \in \mathbb{R}^{d_{2}}$

1. The slice $f^{y}(x):=f(x, y)$ is measurable on \mathbb{R}^{d}.
2. the function defined by $\int_{\mathbb{R}^{d_{1}}} f^{y}(x) d x$ is measurable on $\mathbb{R}^{d_{2}}$.
3.the slice $f_{x}(y):=f(x, y)$ is measurable on $\mathbb{R}^{d_{2}}$.
3. the function defined by $\int_{\mathbb{R}^{d_{2}}} f^{y}(x) d x$ is measurable on $\mathbb{R}^{d_{1}}$.

Moreover,

$$
\int_{\mathbb{R}^{d_{2}}}\left(\int_{\mathbb{R}^{d_{1}}} f(x, y) d x\right) d y=\int_{\mathbb{R}^{d}} f=\int_{\mathbb{R}^{d_{1}}}\left(\int_{\mathbb{R}^{d_{2}}} f(x, y) d y\right) d x .
$$

Appendix B : Some basic facts on stochastic analysis

We denote $(\Omega, \mathcal{F}, \mathbb{P})$ where Ω is the set of outcomes, \mathcal{F} is a set of events and $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$ is a function that assigns probabilities to events.

B. 1 Some probability results

Definition B.1.1 [7] Let (S, \mathcal{S}) an aribtrary measurable space. A map $X: \Omega \rightarrow S$ is said to be a measurable map from (Ω, \mathcal{F}) to (S, \mathcal{S}) if

$$
X^{-1}(B)=\{\omega: X(\omega) \in B\} \in \mathcal{F} \text { for all } B \in \mathcal{S}
$$

If $(S, \mathcal{S})=\left(\mathbb{R}^{d}, \mathcal{R}^{d}\right)$ and $d \geq 2$ then X is called a random vector, if $d=1, X$ is called a random variable, or random vector for short.

Definition B.1.2 [7] The distribution function of a random variable X is the function F defined as

$$
F(x)=\mathbb{P}(X \leq x)
$$

defined for every $x \in(-\infty,+\infty)$.
When the distribution function F has the form

$$
F(x)=\int_{-\infty}^{x} f(y) d y
$$

we say that X has a density function f.
Definition B.1.3 [7] The expectation of a random variable with density function f is defined by

$$
\langle X\rangle=\int_{-\infty}^{+\infty} x f(x) d x
$$

Generaly, the expectation defined as the integration over the set of probability Ω with respect to the
probability measure \mathbb{P}, we write

$$
\langle X\rangle=\int_{\Omega} X(\omega) d \mathbb{P}(\omega)
$$

We define the $n^{\text {th }}$-moments of a random variable X with $n \in \mathbb{N}^{*}$ as follow

$$
\left\langle X^{n}\right\rangle=\int_{-\infty}^{+\infty} x^{n} f(x) d x
$$

We define also the variance $\operatorname{var}(X)$ of X as follow

$$
\begin{aligned}
\operatorname{var}(X) & =\left\langle(X-\langle X\rangle)^{2}\right\rangle \\
& =\left\langle X^{2}\right\rangle-\langle X\rangle^{2}
\end{aligned}
$$

Lemma B.1.4 [7] Let X a random variable. If $X \geq 0$, and $p>0$, then

$$
\left\langle X^{p}\right\rangle=\int_{0}^{+\infty} p y^{p-1} \mathbb{P}(X>y) d y
$$

Theorem B.1.5 (Chebychev inequality) [7] Let X a random variable, for any $a>0$, we have

$$
a^{2} \mathbb{P}(|X| \geq a) \leq\left\langle X^{2}\right\rangle
$$

Theorem B.1.6 (Dominated convergence theorem) Let X_{n} is a sequence of random variables. X, Y two random variables. If X_{n} converges to X almost surely, $\left|X_{n}\right| \leq Y$ and $\langle Y\rangle<+\infty$ then

$$
\left\langle X_{n}\right\rangle \rightarrow\langle X\rangle .
$$

Definition B.1.7 (The joint distribution and density) [11]

The joint distribution $F_{X, Y}$ of two random variables X and Y the probability of the event

$$
\{X \leq x, Y \leq y\}
$$

with $x, y \in(-\infty,+\infty)$.
The joint density function of X and Y is defined as follow

$$
f_{X, Y}(x, y)=\frac{\partial^{2} F_{X, Y}(x, y)}{\partial x \partial y} .
$$

Definition B.1.8 (Independance) [11] Two random variables X and Y is said to be independent if
for every $A, B \in \mathcal{F}$, the events $(X \in A)$ and $(Y \in B)$ are independent that is, if

$$
\mathbb{P}(X \in A, Y \in B)=\mathbb{P}(X \in A) \mathbb{P}(Y \in B) .
$$

applaying this latter for the events $(X \leq x)$ and $(Y \leq y)$ for the real numbers x and y,then

$$
F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y) .
$$

hence

$$
f_{X, Y}=f_{X} f_{Y}
$$

In what follow E is an arbitrary complete separable metric space, $\mathcal{B}(E)$ the σ-field of its Borel sets.
Theorem B.1.9 (Borel-Cantelli I) [7] Let $A_{i}, i \in \mathbb{N}^{*}$ a sequence of subsets of Ω, if

$$
\sum_{i=1}^{\infty} \mathbb{P}(X \geq i)<\infty
$$

Then

$$
\mathbb{P}(X \geq i \text { i.o })=0
$$

(i.o infinitely often which means $\mathbb{P}\left(X_{i}>i\right.$ i.o $)=\mathbb{P}\left(\limsup _{i}\left(X_{i}>i\right)\right)$ with $\lim _{i} \sup \left(X_{i}>i\right)=\bigcap_{i \geq 0} \bigcup_{k \geq i}\left(X_{i}>i\right)$ and $\left(X_{i}>i\right)=\left\{\omega \in \Omega: X_{i}(\omega)>i\right\}$

Theorem B.1.10 (Borel-Cantelli II) [7] Let X_{n} a sequence of random variables, $X_{n} \rightarrow X$ in probability if and only if for every sequence $X_{n(m)}$ there is a further subsequence that converges almost surely to X.

Definition B.1.11 (Convergence types) [11] A sequence X_{n} of random variables is convergent to a random variable X in probabaility if for every $\varepsilon>0$

$$
\mathbb{P}\left(\left|X_{n}-X\right|>\varepsilon\right) \rightarrow 0 \text { when } n \rightarrow+\infty .
$$

We said that X_{n} converge almost surely (this type of convergence called almost everywhere in measure theory) if for every $\varepsilon>0$ we have

$$
\mathbb{P}\left(\left|X_{n}-X\right|>\varepsilon \text { a.e }\right)=0 .
$$

B. 2 Stochastic processes

Definition B.2.1 [8]

We denote by $\mu: \mathcal{B}(E) \longrightarrow \mathbb{R}^{+}$the Borel measure which is said to be boundedly finite if $\mu(A)<+\infty$ for every bounded Borel set $A \in \mathcal{B}(E)$,
a. \mathcal{M}_{E} the space of all boundedly finite measure on $\mathcal{B}(E)$.
b. \mathcal{N}_{E} is the space of all boundedly finite integer-valued measures $N \in \mathcal{M}_{E}$, called counting measures for short.
c. \mathcal{N}_{E}^{*} is the family of all simple counting measures, consisting of all those elements of \mathcal{N}_{E} for which $N(\{x\})=0$, or $1($ all $x \in E)$.
d. $\mathcal{N}_{E \times \mathcal{K}}^{g}$ is the family of all boundedly finite counting measures defined on the product $\mathcal{B}(E \times \mathcal{K})$, where \mathcal{K} is a complete separable metric space of marks, subject to the additional requirement that the ground measure N_{g} defined by

$$
N_{g}(A)=N(A \times \mathcal{K}) \text { for all } A \in \mathcal{B}(E)
$$

is boundedly finite simple counting measure; i.e $N_{g} \in \mathcal{N}_{E}^{*}$.

Definition.B.2.2 [8]

a. A random measure ξ on the space E is a measurable mapping from $(\Omega, \mathcal{F}, \mathbb{P})$ into $\left(\mathcal{M}_{E}, \mathcal{B}\left(\mathcal{M}_{E}\right)\right)$.
b. A point process N on E is a measurable mapping from $(\Omega, \mathcal{F}, \mathbb{P})$ into $\left(\mathcal{N}_{E}, \mathcal{B}\left(\mathcal{N}_{E}\right)\right)$.
c. A point process is simple when $\mathbb{P}\left(N \in \mathcal{N}_{E}^{*}\right)=1$.
d. A marked point process on E with marks in \mathcal{K} is a point process N on $\mathcal{B}(E \times \mathcal{K})$ for which $\mathbb{P}(N \in$ $\left.\mathcal{N}_{E \times \mathcal{K}}^{g}\right)=1$, its ground process is given by $N()=.N(. \times \mathcal{K})$.

Lemma B.2.3 (Strong law of large numbers for sums of random variables with correlations)

[10] Let $\left\{x_{i}\right\}_{i \in \mathbb{N}}=\mathbb{Z}^{d}$, and let $\left\{X_{i}\right\}_{i \in \mathbb{N}}$ be identically distributed random variables with $X_{i} \geq 0$ and X is a random variable takes the same properties as X_{i}, for each $i \in \mathbb{N}$ such that $\langle X\rangle<+\infty$. Let us assume that for every $i, j \in \mathbb{N}$ with $i \neq j$

$$
\left|\left\langle X_{i} X_{j}\right\rangle-\langle X\rangle^{2}\right|<\frac{C}{\left|x_{i}-x_{j}\right|^{\gamma}} \gamma>d .
$$

Then, for every bounded Borel set $B \subseteq \mathbb{R}^{d}$ which is star-shaped with respect to the origin, we have

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d} \sum_{x_{i} \in \mathbb{Z}^{d} \cap \frac{1}{\varepsilon} D} X_{i}=X \quad \text { almost surely. }
$$

Conclusion

In this thesis we have used the homogenization theory to study a Dirichlet problem with Laplace operator in a bounded domain, perforated by spherical holes using the oscillating test function method. We have treated two examples of perforated domain. In the begining, we have focused on the case where the holes are distributed periodically and which have a critical size, we have introduced some hyptheses on holes in order to obtain in the limit the Laplace operator with an additional term and this where the charm of the problem lies. For the second example we have treated a perforated domain with random number of balls, assuming that the centers of the balls are generated according to a stationary point process and the radii are random variables with short-range correlations. In addition, we have recovered in the homogenized limit an averaged analogue of strange term obtained as in the first case under a minimal assumption on the size of the holes.

Bibliography

[1] G. Alaire, Numerical analysis and optimization, introduction to mathematical modelling and numerical simulation, Oxford University Press (2007)
[2] R. A. Adams, J. F. Fournier, Sobolev spaces, $2^{\text {nd }}$ Edition, pure and applied mathematics series, Elsevier Ltd (2003)
[3] A. Baernstein II. Symmetrization in analysis, New mathematical monographs, Combridge university press, 1.15 (2019).
[4] H. Brézis, functional analysis, Sobolev spaces and Partial Differential Equations, Univertext, Springer (2011).
[5] D. Cioranescu and F. Murat, Un terme étrange venu d'ailleurs II, Nonlinear partial differential equations and their applications, Collège de France Seminar, Vol. III (Paris, 1980/1981), Res. Notes in Math. (1982),70, 154-178, 425-426. Pitman, Boston, Mass.
[6] D. Cioranescu, P. Donato, An introduction to homogenization, Oxford University Press (1999).
[7] R. Durret, Proability:Theory and examples, Combridge University Press New York, NY, USA (2010).
[8] D.J. Daley and D. Vere-Jones, An introduction to the theory of point processes, Vol.II: General theory and structures, Probability and its applications, Springer-Verlag New York (2003).
[9] L. C. Evans, Partial Differential Equation, Graduate studies in mathematics 19, $2^{\text {nd }}$ Edition, American Mathematical Socioty (2010).
[10] A. Giunti, R. Höfer, and J.J.L. Velazquez, Homogenization for the Poisson equation in randomly perforated domains under minimal assumptions on the size of the holes, to appear in Comm .in PDEs, arXiv preprint 1803.10214(2018).
[11] A. Papoulis, Probability, random variables and stochastic processes, third edition, McGraw-Hill Inc (1991).
[12] E. Stein and R. Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Spaces, Princeton University Press, Priceton and Oxford, 2005
[13] L. Tartar, Cours Peccot, collège de France (1977). Partialy written in F. Murat \& L. Tartar, Hconvergence, translated in the present volume.

