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Introduction

The aim of homogenization theory is to study the macroscopic behaviour of a system form its microscopic

one. In other words, if we consider an heterogeneous problem P" where " is a very small parameter and if u"

is a solution of P", the homogenization theory is an asymptotic tool giving us some answers to the following

: Do the solution u" converges in some speci�ed topology to a limit u? What is the limiting problem that

u is a solution?

The objectif of this master thesis is to study the homogenization of the following Dirichlet problem:8<: ��u" = 0 in D0 (D") ;

u" 2 H1
0 (D

");

where D" is a perforated domain obtained by removing a region D � Rd; d � 2 the closures of spherical

holes T "i .

In the �rst chapter, the simplest case of perforated domains is considered, that is where the holes are

periodically distributed. It is well-known that in this case there are three typical situations depending on

the size of the holes: (1) Either the holes are too small and u" converges to a solution of a Dirichlet problem

with Laplace operator as the �rst problem, (2) or the holes are too big and the solution u" converges to

zero, (3) between these two situations there is a critical size in u" converges to a solution of a Dirichlet

problem with an extra-term of ordrer zero, see D. Cioranescu and Murat [5]. So we only focus our attention

on the third case which is, at our opinion, the most interesting one. In the second chapter, another type

of a perforated domain is studied. Here, the holes, considered as balls, are randomly distributed in such a

way that the centers and the radii of these balls denoted T "i are generated by a marked point process (�;R)

(see, Appendix B). We present in this chapter the more recently studies of A. Giunti, R. Höfer, and J.J.L.

Velazquez [10] which generalizes those studies of D. Cioranscu and F. Murat introduced in the �rst chapter

into the case of random holes.
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Chapter 1

Homogenization of a Dirichlet problem in

a perforated domain with periodic

structure

We study in this chapter is the homogenization of a Dirichlet problem in a perforated domain with spherical

holes distributed periodically in the volume. This work was done by D. Cioranscu and F. Murat [5].

1.1 Setting of the problem

Let D be an open bounded set of Rd where d � 2. For every " > 0, we cover Rd by cubes P "k of size 2": For

example we can write:

Rd =
S
k2Zd

(
dY
i=1

[2"ki � "; 2"ki + "[
)
;

where
Qd
i=1 is the cartesian product. one has

P "k =

dY
i=1

[2"ki � "; 2"ki + "[ ; k = (k1; :::; kd) 2 Zd:

Indeed, for every x = (x1; :::; xd) 2 Rd and for every " > 0 there exists k = (k1; :::; kd) 2 Zd such that x 2 P "k .

It su¢ ces to take for every i = 1; :::; d

ki =

��
1

2

�xi
"
+ 1
���

;

where b:c is the integer part. For every k 2 Zd and each cube P "k we consider the closed balls T "k � P "k with

radii a" where 0 < a" < " and the center is the point (2"k1; 2"k2; :::; 2"kd) which is also the center of the
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cube P "k . We set

Q" = Rdn
S
k2Zd

T "k ; D" = D \Q" = Dn
S

k2Zd\ 1
2"
D

T "k (1.1)

where
1

2"
D :=

n
x 2 Rd; 2"k 2 D

o
:

Let f 2 L2(D). We consider the Dirichlet problem in D": Find u" such that

8<: ��u" = f in D0(D");

u" 2 H1
0 (D

"):
(1.2)

The equivalent variational formulation of (1.2) is

8<: Find u" 2 H1
0 (D

");R
D" ru"rv dx =

R
D" fv

" dx; 8 v" 2 H1
0 (D

"):
(1.3)

Applying Lax-Milgram Lemma, we can easily show that the problem (1.3) has a unique weak solution

u" 2 H1
0 (D

"). Now, denote by ~u" the extension of u" by 0 inside the holes, i.e

~u" (x) =

8<: u" (x) a.e x 2 D";

0 a.e x 2 T "k ; k 2 Zd \ 1
2"D:

It is clear that ~u" 2 H1
0 (D). Since D is bounded we can use Poincaré�s inequality : there exists a constant

� > 0 independant of "; such that

� k~u"kH1
0 (D)

� kr~u"k(L2(D))d : (1.4)

Let us return to (1.3) and take v" = u", we obtain

Z
D
jr~u"j2 dx =

Z
D"

jru"j2 dx =
Z
D"

fu"dx =

Z
D
f ~u"dx � kfkL2(D) k~u

"kH1
0 (D)

and using (1.4) we get immediatly

k~u"kH1
0 (D)

� 1

�
kfkL2(D) :

Hence by Rellich-Kondrachov Theorem, we can extract a subsequence still denoted by ~u" such that

~u" ! u strongly in L2(D); (1.5)

then

r~u" * ru weakly in
�
L2 (D)

�d
:
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The main objectif of homogenization theory is to construct the limit problem that u is a solution.

Remark 1.1 We cannot pass to the limit in (1.3), because we only have weak convergence in the gradient.

To overcome this di¢ culty, we take some special test functions of the form : 'w" where ' 2 D(D) and w" is

some functions called correctors, which are speci�cally constructed from the microscopic description of the

initial problem. This technique is called the energy method of Tartar or oscillating test functions introduced

by L. Tartar in [13] in the context of the homogenization of linear elliptic equations.

1.2 Construction of a test function

In this section, we shall give an explicit expression of an oscillating test function which shall be used in the

homogenization process. It is given by the following technical Lemma.

Lemma 1.2 For " > 0, there exists a sequence of functions w" and a distribution � such that

(P1) w" 2 H1(D);

(P2) w" = 0 in the holes T "k ; k 2 Zd \ 1
2"D;

(P3) w" * 1 weakly in H1(D);

(P4) � 2W�1;1(D);

(P5)

8>>>>>>><>>>>>>>:

For a sequence v" with v" = 0 in T "k ; k 2 Zd \ 1
2"D;

satis�es v" * v weakly in H1(D) with v 2 H1(D); we obtain

h��w"; 'v"iH�1(D); H1
0 (D)

! h�; 'vi
H�1(D); H10(D)

for every ' 2 D(D):

:

Proof. As a �rst step of the proof, we de�ne the function w"k on each cube P
"
k and we put8>>>>>><>>>>>>:

w"k = 0 in T
"
k ;

�w"k = 0 in B
"
k � T "k ;

w"k = 1 in P
"
k �B"k;

w"k is continuous in the interfaces @B
"
k; @T

"
k ,

(1.6)

where B"k � P "k is the closed ball of radius " with same center of T
"
k ; k 2 Zd :

B"k =
n
x 2 Rd; jx� 2"kj � "

o
.
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See �gure 1.2.

Figure 1.2.2 : This �gure represente a zoom in the cell Q"k perforated by a spherical hole

T "k � B"k � P "k :

Then, we de�ne w" in the whole set Rd by

w" (x) = w"k (x) ; x 2 P "k :

It follows then 8>>>>>><>>>>>>:

�w" = 0 in
S
k2Zd

B"k � T "k ;

1 in Rdn
S
k2Zd

B"k;

0 in
S
k2Zd

T "k :

Let us now give an explicit formulae for w". Let r = jx� xkj where xk is the center of the ball T "k and search

for w" as a radial solution

w"(x) = v(jx� xkj);
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where v is an unknown scalar function to be determined. Note that we dropped the "�index just to simplify

the presentation. We get the following initial-value problem

8>>><>>>:
��w" (x) = �v00(r) + 1�d

r v0(r) = 0 in ]a"; "[ ;

v(a") = 0;

v(") = 1:

Solving the latter gives us 8>>>>><>>>>>:
w" =

ln a" � ln jx� xkj
ln a" � ln " if d = 2;

w" =
(a")�(d�2) � jx� xkj�(d�2)

(a")�(d�2) � "�(d�2)
if d � 3:

(1.7)

Now let us choose 8<: a" = exp(�C0
"2
) if d = 2;

a" = C0"
d

d�2 if d � 3

where C0 is a positive constant independent of ". Thus w" satis�es the properties (P1)� (P5)with8<: � = �
2
1
C0
if d = 2;

� = �d(d�2)
2d

Cd�20 if d � 3:
(1.8)

For more details, we refer the reader to D. Cioranescu and F. Murat [5]

1.3 Passage to the limit

In what follows w" and � are as in the previous section, namely they satisfy the properties (P1)-(P5) of

Lemma 1.2.

Proposition 1.3 We have

h�; 'iD0(D);D(D) = lim"!0

Z
D
jr~u"j2 'dx; 8' 2 D(D): (1.9)

Remark 1.4 Before proving this result, we mention that the limit � of jr~u"j2 in the sense of distribution

is a Radon measure.
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Proof. From (P5) it is easily seen that (for v" = w", v = 1; ' 2 D(D))

Z
D
jrw"j2 'dx+

Z
D
w"rw"r(')dx =

Z
D
rw"r(w"')dx

= h��w"; 'w"iH�1(D);H1
0 (D)

! h�; 'iH�1(D);H1
0 (D)

:

taking into account that we have

rw" * 0 weakly in (L2(D))d

and by Rellich-Kondrachov theorem we have

w" ! 1 strongly in L2(D):

We pass to the limit, we obtain Z
D
w"rw"r(')dx! 0:

Therefore the result 1.9 holds true.

Theorem 1.5 Under the hypothesis (P1) to (P5); the solution ~u" of (1.2) converges weakly in H1
0 (D) to u

the unique solution of 8>>><>>>:
��u+ �u = f in D0(D);

u 2 H1
0 (D):

(1.10)

Proof. We have proved before in section 1.1 that k~u"kH1
0 (D)

is bounded: Then by Eberlein-�Smuljan

theorem there exists a subsequence denoted also ~u" and u 2 H1
0 (D) such that ~u

" converges weakly to u

in H1
0 (D) and by Rellich-Kondrachov theorem ~u" converge strongly to u in L2(D). Now we identify the

equation statis�ed by the limit u: If ' 2 D(D) and w" 2 H1(D) then we have w"' 2 H1
0 (D), furthermore w

"

satis�es hypothesis (H2) it follows w"' 2 H1
0 (D

"). Then, we can substitute w"' in variationnal formulation

(1.3), one has

Z
D"

fw"'dx =

Z
D"

ru"r(w"')dx

=

Z
D
'r~u"rw"dx+

Z
D
w"r~u"r'dx: (1.11)

Using the following result

w" ! 1 strongly in L2(D)
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and (1.5) we can pass to the limit in the �rst and the last integral of (1.11) then, one has

Z
D
w"r~u"r' dx !

Z
D
rur' dx;Z

D"

fw"'dx !
Z
D
f'dx: (1.12)

Applying Green�s formula we get

Z
D
'r~u"rw"dx = h��w"; '~u"iH�1(D);H1

0 (D)
�
Z
D
~u"r'rw"dx: (1.13)

We can pass easily to the limit in the right hand side of (1.13), using (P5) for the �rst integral it follows

that

h��w"; '~u"iH�1(D);H1
0 (D)

! h�; u'iH�1(D);H1
0 (D)

: (1.14)

For the second integral of (1.13), we use (P3), i.e rw" converges weakly to 0 in
�
L2(D)

�d and the strong
convergence of ~u" in L2(D); we obtain then

Z
D
~u"r'rw"dx! 0: (1.15)

Summing these convergences (1.12), (1.14) and (1.15), we get

Z
D
rur'dx+ h�u; 'iH�1(D);H1

0 (D)
=

Z
D
f'dx; 8' 2 D(D);

and it follows that

h��u; 'iD0(D);D(D) + h�u; 'iH�1(D);H1
0 (D)

= hf; 'iD0(D);D(D) ; 8' 2 D(D):

We can remark that the product �u of � 2W�1;1(D) and u 2 H1
0 (D) belongs to H

�1(D), then the duality

pairing h�u; 'iH�1(D);H1
0 (D)

is well-de�ned which allows to write

��u+ �u = f in D0(D):

Let us prove now the uniqueness of the solution u. Indeed, Let u1, u2 2 H1
0 (D) two solutions of (1.10). One

has

Z
D
ru1:r' dx+ h�; u1'iD0(D);D(D) =

Z
D
f'dx; 8' 2 D(D);Z

D
ru2:r' dx+ h�; u2'iD0(D);D(D) =

Z
D
f'dx; 8' 2 D(D):
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By substracting, we get

Z
D
r(u1 � u2):r' dx+ h�; (u1 � u2)'iD0(D);D(D) = 0; 8' 2 D(D):

For ' = u1 � u2 2 H1
0 (D); it followsZ

D
jr(u1 � u2)j2 dx+



�; (u1 � u2)2

�
W�1;1(D);W 1;1

0 (D)
= 0:

by (1.9), � is a positive measure. Therefore

u1 = u2:

Thus, we get the uniqueness of solution.

1.4 Weak lower semi-continuity of the energy: correctors

In this section, we assume that the construction of w" and �" satisfying hypotheses (H1) to (H5) introduced

in section 1.2 holds true.

Proposition 1.6 For every sequence z" and z such that:

z" * z weakly in H1
0 (D); (1.16)

z" = 0 on the holes T "k ; 8k 2 Zd \
1

2"
D;

One has

lim
"!0

inf

Z
D
jrz"j2 dx �

Z
D
jrzj2 dx+



�; z2

�
W�1;1(D);W 1;1

0 (D)
: (1.17)

Remark 1.7 The classical weak lower semicontinuity of the energy de�ned as follows: For every sequence

z" and z satis�es

z" ! z weakly in H1
0 (D);

then

lim
"!0

inf

Z
D
jrz"j2 dx �

Z
D
jrzj2 dx;

We can remark the fact that z" vanishes in the holes introduce a new energy. Since � 2 W�1;1(D) and

z2 2W 1;1
0 (D) then



�; z2

�
is well-de�ned.
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Proof. (of Proposition 1.6). Let ' 2 D(D). We consider the following integral

Z
D
jr(z" � w"')j2 dx =

Z
D
jrz" � 'rw" � w"r'j2 dx

=

Z
D
jrz"j2 dx+

Z
D
jr'j2 jw"j2 dx+

Z
D
j'j2 jrw"j2 dx

�2
Z
D
w"rz"w"r'dx+ 2

Z
D
w"'rw"r'dx

�2
Z
D
rz"rw"'dx;

taking into account

h��w"; 'z"i
H�1(D);H10(D)

=

Z
D
'rz" rw"dx+

Z
D
z"r' rw"dx;

we obtain

Z
D
jr(z" � w"')j2 dx =

Z
D
jrz" � 'rw" � w"r'j2 dx

=

Z
D
jrz"j2 dx+

Z
D
jr'j2 jw"j2 dx+

Z
D
j'j2 jrw"j2 dx

�2
Z
D
w"rz" w"r'dx+ 2

Z
D
w"'rw"r'dx

+2

Z
D
z" rw"r'dx� 2 h��w"; 'z"i

H�1(D);H10(D)
: (1.18)

We choose " such that
R
D jrz

"j2 dx converges, then using Rellich-Kondrachov theorem and (P5) to pass to

the limit in each term, we obtain

lim
"!0

Z
D
jr(z" � w"')j2 dx = lim

"!0

Z
D
jrz"j2 dx+

Z
D
jr'j2 dx

+ lim
"!0

(

Z
D
r(w"'2)rw"dx�

Z
D
w" jr'j2rw"dx)

�2
Z
D
rz r'dx� 2 h�; 'zi

H�1(D);H10(D)
:

Then

lim
"!0

Z
D
jr(z" � w"')j2 dx = lim

"!0

Z
D
jrz"j2 dx+

Z
D
jr'j2 dx+



�; '2

�
H�1(D);H10(D)

�2
Z
D
rzr'dx� 2 h�; 'zi

H�1(D);H10(D)
: (1.19)
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Now we choose a subsequence denoted also " > 0 such that:

lim
"!0

Z
D
jrz"j2 dx = lim

"!0
inf

Z
D
jrz"j2 dx:

Since the left hand side of (1.19) is positive, we get

lim
"!0

inf

Z
D
jrz"j2 dx � 2

Z
D
rz r'dx�

Z
D
jr'j2 dx

+2 h�; 'zi
H�1(D);H10(D)

� 2


�; '2

�
H�1(D);H10(D)

: (1.20)

This result holds true for every ' 2 D(D): If we choose ' such that ' converges strongly to z in H1
0 (D),

one has

lim
"!0

inf

Z
D
jrz"j2 dx �

Z
D
jrzj2 dx+



�; z2

�
H�1(D);H10(D)

:

If z belongs only to H1
0 (D), one has w

"z =2 H1
0 (D) under (P1), then, (1.18) does not make any sense with

' = z: This is the reason why we had approximate z by smooth functions ': If z = ' from the beginning

and this is impossible if z 2 D(D); we obtain (1.17) from (1.20) directly without passing to the limit.

Proposition 1.8 If moreover z" satis�es:

lim
"!0

Z
D
jrz"j2 dx!

Z
D
jrzj2 dx+



�; z2

�
W�1;1(D);W 1;1

0 (D)
(1.21)

Then

z" � w"z ! 0 strongly in W 1;1
0 (D) (1.22)

Remark 1.9 By (1.22) we have a stong convergence only in W 1;1
0 (D); but we would like to have this

convergence in H1
0 (D); which is the natural space for the problem. We shall see at the end of the proof

of proposition a strong convergence result in W 1;q
0 (D) with q = d�1

d thanks to Gagliardo-Nirenberg-Sobolev

theorem (See Appendix A).

Proof. Let us return to (1.18) and taking into account the hypothesis (1.21). We can establishes for

' 2 D (D)

lim
"!0

Z
D
jr(z" � w"')j2 dx =

Z
D
jr(z � ')j2 dx+



�; (z � ')2

�
W�1;1(D);W 1;1

0 (D)
:

If z 2 D(D), we can take ' = z and we have proved

z" � w"z ! 0 strongly in H1
0 (D):

10



If z is not regular, we �x ' such that there exists a constant � > 0 such that

kz � 'kH1
0 (D)

� �:

Using the embedding of H1
0 (D) in W

1;1
0 (D). It follows

lim
"!0

Z
D
jr(z" � w"')j2 dx � (1 + 2 k�kW�1;1(D))�

2:

thanks to Poincaré inequality, one has

lim
"!0

Z
D
j(z" � w"')j2 dx � (1 + 2 k�kW�1;1(D))�

2:

Using de�nition of the limit concept: For C1 = (1+2 k�kW�1;1(D))�
2 > 0; there exist "0 such that for every

" � "0, one has

kz" � w"'k2H1
0 (D)

� C1:

In the other hand

kz" � w"zk
W 1;1
0 (D)

� kz" � w"'k
W 1;1
0 (D)

+ kw"(z � ')k
W 1;1
0 (D)

(1.23)

� kz" � w"'kH1
0 (D)

+ kw"kH1
0 (D)

kz � 'kH1
0 (D)

� C 01� + C2�;

where C
0
1; C2 > 0; for every " � "0, which prove (1.22). We have used in (1.23) an estimation of w"(z � ')

in W 1;1
0 (D): Thanks to Gagliardo-Nirenberg-Sobolev theorem, we have H1

0 (D) � L2?(D) where 2? = 2d
(d�2)

puting 1
q =

1
2 +

1
2? ; we can write

kw"(z � ')k
W 1;q
0 (D)

= kr(w"(z � '))kLq(D)

� krw"k(L2(D))d kz � 'kL2?(D) + kz � 'kL2(D) kw
"kL2?(D) ;

which allows to

z" � w"z ! 0 strongly in W 1;q
0 (D);

where q = d�1
d :

Assume Propositions 1.6 and 1.8 are satis�ed, then we obtain the following corrector result
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Corollary 1.10 Let u" be the solution of the Dirichlet problem (1.2). Then there exists r" such that

8>>><>>>:
~u" = w"u+ r";

r" ! 0 strongly in W 1;1
0 (D);

where u is a solution of (1.10).

Proof. Using theorem 1.5, we have ~u" converges weakly to u in H1
0 (D), where u is a solution of (1.10).

Multiplying the equation of (1.2) by u" and (1.10) by u using Green formula one has

Z
D
jr~u"j2 dx =

Z
D
f ~u"dx!

Z
D
fudx =

Z
D
jruj2 dx+



�; u2

�
W�1;1(D);W 1;1

0 (D)
:

Applaying proposition 1.8, taking z" = ~u"and z = u, we get

~u" � w"u! 0 strongly in W 1;1
0 (D):

Taking

r" = ~u" � w"u! 0 strongly in W 1;1
0 (D):

Then we get our result.
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Chapter 2

Homogenization for Dirichlet problem in

randomly perforated domain

This chapter deals with the homogenization of the Poisson equation in a bounded domain of Rd; d � 3;

which is perforated by a random number of small spherical holes with random radii and positions studied by

A. Giunti et al in [10] using the oscillating test functions method. We recover in the homogenized limit an

averaged analogue of the "strange term" obtained by D. Cioranescu and F. Murat in the periodic case [5].

In addition, we put a minimal assumption on the size of the holes in order to ensure that the homogenized

equation has a sens and thus the homogenization occurs.

2.1 Setting of the problem

Let D � Rd; d � 3; be an open and bounded set that it is star-shaped with respect to the origin. For " > 0;

let us de�ne the set of closed small spherical holes H" � Rd of the form

H" =
[

zj2�\ 1"D

B
"

d
d�2 �j

("zj); (2.1)

where 1"D =
�
x 2 Rd; "x 2 D

	
; the set � � Rd is a random collection of points and the radii

�
�j
	
zj2�

� R+

are random variables. We may thus be thought that the set H" being generated by a marked point process

(�;R) on Rd�R+ where � is a point process on Rd for the center of balls and the marks R =
�
�j
	
zj2�

� R+

are the radii associated to each center. For a precise de�nition we refer the reader to Appendix B. Let

(
;F ;P) be a probability space, where 
 denotes the set of events, F is �-algebra and P is a probability

measure, associated to the process (�;R) satisfying the following properties:

a. The process � is stationary: For every x 2 Rd and each fzjgj2N � Rd, the translation operators �x are

13



de�ned as follow

�x

�
fzjgj2N

�
= fzj + xgj2N :

So

�x (�) = �: (2.2)

b. There exists � < +1 such that for any unitary cube Q � Rd



#(� \Q)2

� 1
2 � �; (2.3)

where #S 2 N[1 denotes the cardinality of a set S and h:i is the integration over 
 with respect to

the probability measure P:

c. The point process � satis�es a strong mixing condition: For any bounded Borel set A � Rd; F(A) be

the smallest �-algebra with respect to which the random variables

N(B)(!) = #(�(!) \B);

are measurable for every Borel set B � A: Then, there exists C1 < +1 and  > d such that for every

A � Rd as above, every x 2 Rd; with jxj > diam(A) and every �1; �2 are measurable function with

respect to F(A) and F(�xA); respectively, we have

jh�1�2i � h�1i h�2ij �
C1

1 + (jxj � diam(A))


�21
� 1
2


�22
� 1
2 : (2.4)

d. The marginal PR of the marks has two correlation functions, the �rst is the density function of a random

variable � 2 R denoted by h� satis�es

+1Z
0

xd�2h�(x)dx < +1: (2.5)

The second is the joint density function of two variables �i; �j depend on the centers zi and zj denoted

by h�i�j and satis�es for x; y 2 R+

h�i�j (x; y) = h�ih�j (x; y) + g(zi; zj ; x; y); (2.6)

with

jg(zi; zj ; x; y)j �
c

(1 + jzi � zj j) (1 + xp) (1 + yp)
;

14



for p > d� 1,  > d; c 2 R+ and g is an integrable function with respect to the variable r = jzi � zj j

and vanishes when the distance jzi � zj j ! +1. For f 2 H�1(D), we introduce our main problem as

follow: Find u" such that 8<: ��u"(!; :) = f(:) in D"(!);

u"(!; :) = 0 in @D"(!);
(2.7)

where D"(!) is a punctured domain obtained by removing from D the set H"(!). We write

D"(!) = Dn
[

zj2�(!)\ 1"D

B
"

d
d�2 �j

("zj): (2.8)

The equivalent variational formulation is8<: �nd u" 2 H1
0 (D

"(!)) such thatR
D"(!)ru"rvdx = hf; viH�1(D"(!));H1

0 (D
"(!)) ; 8v 2 H1

0 (D
"(!)):

(2.9)

Denote by ~u" the extension by zero of u" to the whole set D

~u" =

8<: u" in D"(!);

0 in H"(!);

then ~u" 2 H1
0 (D): In order to simplify the presentation, we denote for P-almost every ! 2 
 D" and

H" instead of D"(!) and H"(!):

2.2 Some preliminaries results

In this section, we give our main result of homogenization and some lemmas in order to use it in the proof

of the following theorem.

Theorem 2.1 Let the holes in (2.1) be generated by a marked point process (�;R) : Let � satisfy (2.2),

(2.3) and (2.4), and let the marginal PR satisfy (2.5) and (2.6). Assume that the expectation of each radius

�i satis�es D
�d�2i

E
=

+1Z
0

xd�2h�i(x)dx < +1: (2.10)

For f 2 H�1(D) and " > 0; let u" = u"(!; :) 2 H1
0 (D

"(!)) solves (2.7). Then, there exists a constant C0 > 0

and uh 2 H1
0 (D) solving 8<: ��uh + C0uh = f in D;

uh = 0 in @D;
(2.11)
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such that for P�almost every ! 2 


~u"(!; :)* uh weakly in H
1
0 (D); for " # 0+:

Moreover, we have that the constant C0 in (2.11) is de�ned as

C0 = (d� 2)�d hN(Q)i
D
�d�2

E
;

where �d is the (d� 1)-dimensional area of the unit sphere of Rd, N(Q) is the number of centers falling into

any �xed unitary cube Q and � 2 R:

To prove this theorem we give the following Lemma.

Lemma 2.2 Let H" = H"(!) be as in . Then, for P�almost every ! 2 
; there exists a sequence

fw"(!; :)g">0 � H1 (D) which satis�es

(H1) For every " > 0; w"(!; :) = 0 in H";

(H2) w"(!; :)* 0 in H1 (D) for " # 0+;

(H3) For every sequence v" * v in H1
0 (D) such that v" = 0 in H

"; it holds that

(��w"(!; :); v")H�1(D);H1
0 (D)

�! C0

Z
D
v;

for " # 0+ and where C0 de�ned as in theorem .

The construction of w" is given in two steps. The �rst step is to give an argument in the simplest case

of the random holes where the centers of balls are distributed periodically and the radii are associated as

an i.i.d random variables. We then generalize this argument to an arbitrary marked point process (�;R)

that satis�es the assumption of theorem 2.2. We �rst �x the following notation: For any two open sets

A � B � Rd; we de�ne the capacity of the condenser (A;B)

cap(A;B) = inf

�Z
B
jrvj : v 2 C10 (B); v � 1A

�
(2.12)

where C10 (B) is the space of in�nitely di¤erentiable functions with compact support. The minimizer of

(2.12) is given as a solution of the following problem

8>>><>>>:
��u = 0 in BnA;

u = 1 in @A;

u = 0 in @B:
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The solution u, called harmonic function; satis�es 0 � u � 1 (Maximum principle, see for instance [3]

p.172-173). For a point process � on Rd and any bounded set E � Rd; we de�ne

�(E) = � \ E; �"(E) = �" \ (1"E);

N(E) = #(�(E)); N "(E) = #(�"(E)):
(2.13)

For � > 0; we denote by �� a thinning for the process � obtained as

�� =

8<:x 2 � : miny2�(!)
y 6=x

jx� yj � �

9=; ; (2.14)

i.e. The points of �(!) whose minimal distance from the other points is at least �: For a �xed M > 0, we

de�ne the truncated marks

RM =
�
�j;M

	
zj2�

; �j;M = �j ^M = min
�
�j ;M

	
: (2.15)

2.2.1 Case(a): Periodic centers

In this setting the holes H" are generated by � = Zd and a collection of i.i.d. random variables f�igzi2Zd

satisfying the assumption (2.10). Since the centers of the holes are periodically distributed, the only chalenge

in the construction of the functions w" is due to the random variables f�igzi2Zd which might generate very

large holes under the mere condition (2.10). We introduce the following lemma which might simplify the

construction of w":

Lemma 2.3 Let � 2
�
0; 2
d�2

�
be �xed. Then, there exists "0 = "0(�) > 0 such that P-almost every ! 2 


and for all " � "0 there exist H"
g (!) ;H

"
b (!) ; D

"
b (!) � Rd such that

H" (!) = H"
g (!) [H"

b (!) ;H
"
b (!) � D"

b (!) ;

dist(H"
g (!) ; D

"
b (!)) � "

2 ;
(2.16)

where

lim
"!0

cap(H"
b (!) ; D

"
b (!)) = 0: (2.17)

Moreover, H"
g(!) may be written as the following union of disjoint balls centered in n

"(!) � Zd \ 1
"D

H"
g(!) =

[
zj2n"

B
"

d
d�2 �j

("zj) ; "
d

d�2 �j � "�+1 < "
2 ;

lim
"!0

"d#(n") = jDj ;

(2.18)
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where jDj denoted for the measure of the set D:

Remark 2.4 This lemma ensures that H" (!) may be almost surely partitioned into two subsets, a good

and bad sets of holes which we denote by H"
g (!) and H

"
b (!) ; respectively. The set H

"
g (!) is made of small

balls where the construction of w" may be carried out similarly as the �rst chapter. The remaining holes

are included in H"
b (!) in addition, this set is well separated from H"

g (!) and small with respect to the

macroscopic size of the domain D:

Proof. In what follows for each zi =
�
z1i ; :::; z

d
i

�
2 Zd; we denote by Q"i the cube of length " centered at

"zi; namely

Q"i =
dY
k=1

h
"zki �

"

2
; "zki +

"

2

i
;

with
dY
k=1

is a cartesian product. In all what follows we use for P�almost every event ! 2 
 the notation

H"
b ;H

"
g and D

"
b instead of H

"
b (!) ;H

"
g (!) and D

"
b (!) : We give the proof of this lemma in three steps.

Step 1: Construction of the sets H"
b and its "safety layer" D

"
b :We denote by I

"
b the set of points of Z

d\ 1
"D

which generate the set H"
b and its safety layer D

"
b . We start by requiring that I

"
b contains the set J

"
b of

points zj where the corresponding balls B
"

d
d�2 �j

("zj) are too large campared to the size of the cubes Q"j .

So for � 2
�
0; 2
d�2

�
; we write

J"b =

�
zj 2 Zd \

1

"
D : "

d
d�2 �j � "�+1

�
� I"b : (2.19)

Bad holes are not only balls with large radii, we can �nd a ball with small radii that has a non empty

intersection with other balls with small or large radii. Namely, there exists zi 2 (Zd \ 1
"D)nJ

"
b and zj 2 J"b

B
"

d
d�2 �i

("zi) \B
"

d
d�2 �j

("zj) 6= ;: (2.20)

For that reason, we can extend J"b into the centers which might are close to ~H
"
b , with

~H"
b =

[
zj2J"b

B
2"

d
d�2 �j

("zj)

and put

~I"b =
n
zj 2 Zd : Q"j \ ~H"

b 6= ;
o
� J"b ; I"b =

~I"b \
1

"
D: (2.21)

We �nally set

H"
b =

[
zj2I"b

B
"

d
d�2 �j

("zj) ; D"
b =

[
zj2~I"b

Q"j : (2.22)
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Step 2: We show (2.17). We �rst show that for any " � "0(�) such that 2"�0 � 1

B
2"

d
d�2 �j

("zj) � D"
b ; 8zj 2 I"b . (2.23)

Indeed, if zj 2 J"b it follows by de�nition of ~H"
b and D

"
b that

B
2"

d
d�2 �j

("zj) � D"
b :

If zj 2 I"b nJ"b ; we claim that

B
2"

d
d�2 �j

("zj) � Q"j � D"
b : (2.24)

By de�nition of �; the corresponding radii satis�es

"
d

d�2 �j � "1+� < "1+
2

d�2 = "
d

d�2 ;

so it is su¢ cient to prove

B
2"

d
d�2

("zj) � Q"j :

We also have 2"
d

d�2 � "0; so we �x "0 such that 2"
d

d�2 � "
2 : Then, (2.24) is established and hence yields

(2.23). Let us return to show our main result (2.17), using (2.22), (2.24) and the subadditivity of capacity

we can write

cap(H"
b ; D

"
b) = inf

(Z
D"
b

rv , v 2 C10(D"
b) v1H"

b
� 1
)

=
X
zj2I"b

cap(B
"

d
d�2 �j

("zj) ; D
"
b)

�
X
zj2I"b

cap(B
"

d
d�2 �j

("zj) ; B
2"

d
d�2 �j

("zj)):

We have

cap(B
"

d
d�2 �j

("zj) ; B
2"

d
d�2 �j

("zj)) =

Z
B
2"

d
d�2 �j

("zj)nB
"

d
d�2 �j

("zj)
jruj2 ;

with u is the solution to 8>>>>><>>>>>:
��u = 0 in B

2"
d

d�2 �j
("zj) nB

"
d

d�2 �j
("zj) ;

u = 1 in B
"

d
d�2 �j

("zj) ;

u = 0 in RdnB
"

d
d�2 �j

("zj) ;

(2.25)
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Also, u has the explicit expression:

u(x) =
jx� "zj j�(d�2) �

�
2"

d
d�2 �j

��(d�2)
�
"

d
d�2 �j

��(d�2)
�
�
2"

d
d�2 �j

��(d�2) ; " d
d�2 �j < jx� "zj j < 2"

d
d�2 �j ;

from which we get

cap(B
"

d
d�2 �j

; B
2"

d
d�2 �j

) =

Z
B
2"

d
d�2 �j

nB
"

d
d�2 �j

dX
j=1

���@xjw";i2 (x)���2 dx
=

(d� 2)2��
"

d
d�2 �j

��(d�2)
�
�
2"

d
d�2 �j

��(d�2)�2
Z

B
2"

d
d�2 �j

nB
"

d
d�2 �j

1

jx� "zj j2(d�1)
dx

=
(d� 2)2�d��

"
d

d�2 �j

��(d�2)
�
�
2"

d
d�2 �j

��(d�2)�2
2"

d
d�2 �jZ

"
d

d�2 �j

1

r(d�1)
dr:

=
(d� 2)�d�

"
d

d�2 �j

��(d�2)
�
�
2"

d
d�2 �j

��(d�2) = (d� 2)�d�
1� 2�(d�2)

�"d�d�2j

where �d is the (d� 1)-dimensional unit sphere in Rd. Then

cap(H"
b ; D

"
b) =

X
zj2I"b

cap(B
"

d
d�2 �j

("zj) ; B
2"

d
d�2 �j

("zj))

� (d� 2)�d�
1� 2�(d�2)

� X
zj2I"b

"d�d�2j :

To apply lemma 2.10, we need to argue

lim
"!0

"d#I"b = 0: (2.26)

Indeed, by (2.19) and (2.21), we have

"d#I"b = "d#J"b + "
d#(I"b nJ"b ) = "d#J"b + "

d
X

zj2I"b nJ"b

= "d#J"b +
X

zj2(I"b nJ"b )

��Q"j��
since

���Q"j��� = "d. But, for zj 2 I"b ; there exists a constant c = c (d) > 0 and yj 2 J"b such that

Q"j � B
2c"

d
d�2 �j

("yj);
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and it follows that

"d#I"b � "d#J"b +
X
zj2J"b

����B2c" d
d�2 �j

("yj)

���� (2.27)

� "d#J"b + (2c)
d
X
zj2J"b

("
d

d�2 �j)
d:

We have

("
d

d�2 �j)
d = "

d2�2d+2d
d�2 �j

d�2�j
2 (2.28)

� ("
d

d�2 max
zj2Zd\ 1"D

�j)
2"d�j

d�2

� ("d
X

zj2Zd\ 1"D

�d�2j )
2

d�2 "d�j
d�2:

Since by lemma 2.9, we have

lim
"!0

"d
X

zj2Zd\ 1"D

�d�2j =
D
�d�2

E
jDj almost surely: (2.29)

Then, it follows for " small enough that

("
d

d�2 �j)
d �

�D
�d�2

E
jDj
� 2
d�2

"d�j
d�2: (2.30)

Substituting (2.30) in (2.27), it holds

"d#I"b � "d#J"b + (2c)
d
D
�d�2

E 2
d�2

"d
X
zj2J"b

�j
d�2: (2.31)

If we now argue that

lim
"!0

"d#J"b = 0; (2.32)

then the limit (2.26) yields immediatly from lemma 2.10 applied in the right hand side of (2.31). Indeed,

We have � < 2
d�2 and "

d
d�2 �j � "1+�, then one has 1 � "2��(d�2)�j : It follows

"d#J"b = "d
X
zj2J"b

� "2��(d�2)"d
X

zj2Zd\ 1"D

�d�2j :

21



Since 2� �(d� 2) > 1 and "d
X

zj2Zd\ 1"D

�d�2j is bounded by lemma 2.9, we get

lim
"!0

"2��(d�2)"d
X

zj2Zd\ 1"D

�d�2j = 0;

which implies (2.32). Therefore

lim
"!0

X
zj2I"b

"d�d�2j = 0;

thus (2.17) is established.

Step 3: Construction of H"
g . We de�ne H

"
g as follows

H"
g = H"nH"

b

=
[
zj2n"

B
"

d
d�2 �j

("zj) ;

where n" = (Zd \ 1
"D)nI

"
b : Since J

"
b � I"b ; then for zj 2 n" and for the choice of � 2

�
0; 2
d�2

�
, we have

"
d

d�2 �j � "1+�. We choose " � "0 with "0 satis�es a such assumption in order to ensure that for zj 2 n" and

zi 2 I"b ; we have

B
"

d
d�2 �j

("zj) � Q"j

and
"

2
� dist(B

"
d

d�2 �j
; @Q"i );

which implies
"

2
� dist(B

"
d

d�2 �j
; D"

b):

Then

"
d

d�2 �j � "1+� <
"

2
:

Let us now provee that

lim
"!0

"d#n" = jDj : (2.33)

Indeed, we have by de�nition of n"

lim
"!0

"d#n" = lim
"!0

"d#(Zd \ 1
"
D)� lim

"!0
"d#I"b :

By (2.26) we have lim"!0 "d#I"b = 0. Then, by lemma 2.9 we have

lim
"!0

"d#n" = lim
"!0

"d#(Zd \ 1
"
D) =

D
#(Zd \Q)

E
jDj ;
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since


#(Zd \Q)

�
= 1;whereQ is the unitary cube of Rd centered at the origin, then (2.33) yields immediatly.

Let us return to the construction of w": We �rst �x � and "0(�) as in the previous lemma and we �x P-

almost every event ! 2 
 such that we �nd H"
b (!);H

"
g(!) and D

"
b (!) as in lemma 2.3. We give the following

proposition where the proof follows later.

Proposition 2.5 We may set w" as follow

w"(x) = w"1(x) ^ w"2(x) = min
x2D

(w"1(x); w
"
2(x)); (2.34)

with w1; w2 2 H1(D) and such that

w"1 � 1 in DnD"
b ; w"1 � 0 in H"

b ; (2.35)

0 � w"2 � 1; w"2 � 0 in D"
b ; w"2 � 1 in H"

g ; (2.36)

with, in addition

w"1 ! 1 strongly in H1(D): (2.37)

Moreover, the function w" satis�es the properties (H1),(H2) and (H3).

Before giving the proof of proposition 2.5, we show the following lemmas 2.6-2.7.

Lemma 2.6 In the same setting of lemma 2.3, for every " � "0 there exists a function w"1 2 H1(D")

satis�es 8>>><>>>:
w"1 = 1 in DnD"

b

w"1 = 0 in H"
b

w"1 ! 1 strongly in H1(D):

(2.38)

Proof. By the result (2.17) and de�nition of capacity we can de�ne a function ~w"1 2 H1
0 (D

"
b) which

satis�es 8>>><>>>:
�� ~w"1 = 0 in D"

bnH"
b ;

~w"1 = 1 in H"
b ;

~w"1 = 0 in DnD"
b

(2.39)

where

cap(H"
b ; D

"
b) =

Z
D"
b

jr ~w"1j
2 :

So let

w"1 =

8<: 1� ~w"1 in D"
b ;

1 in DnD"
b :
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Since ~w"1 2 H1
0 (D

"
b) we see that w

"
1jD"

b
2 H1(D"

b) and w
"
1jDnD"

b
2 H1(DnD"

b). In the other hand, we have by

(2.39) ~w"1 = 0 in @D
"
b ;so w

"
1 = 1 in @D

"
b . We also have w

"
1 = 1 in DnD"

b . Then, w
"
1 is continuous in D, so

that by proposition A.1.12 we get w"1 2 H1(D). We also have ~w"1 = 1 in H
"
b , then w

"
1 = 0 in H

"
b . Thus w

"
1

satis�es the two �rst properties of (2.38). Let us check the last property (2.38). The Poincaré�s inequality

gives

k1� w"1k
2
H1(D) = k ~w

"
1k
2
H1
0 (D

"
b)
� � kr ~w"1k

2

(L2(D"
b))

d = �cap(H"
b ; D

"
b)

where � > 0 is a positive constant depend only on the measure of D"
b : We apply the result (2.17) of lemma

2.3 in (??), yields w"1 ! 1 strongly in H1(D).

We now give in the following result the construction of w"2.

Lemma 2.7 Under the hypotheses of Lemma 2.3, there exists a function w"2 2 H1(D") such that

0 � w"2 � 1; w"2 = 1 in D
"
b ; w"2 = 0 in H

"
g : (2.40)

Furthermore, w"2 satis�es the properties (P2) and (P3) of Lemma 1.2.

Proof. First, we put

w"2 = 1 on D"
b :

For the de�nition of w"2 in DnD"
b which contains only the holes H

"
b of disjoint balls, each striclty contained

in the concentric cube Q"i of size "; we construct w
"
2 explicitly as done in the �rst chapter. For each zi 2 n"

with n" = (Zd \ 1
"D)nI

"
b ; we write

T "i = B
"

d
d�2 �i

("zi); B"i = B "
2
("zi);

we de�ne also

w"2 = 1�
X
zi2n"

w";i2 ; (2.41)

where each w";i2 is a solution of the following problem

8>>><>>>:
��w";i2 = 0 in B"i nT "i ;

w";i2 = 1 in T "i ;

w";i2 = 0 in DnB"i :

(2.42)
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We can easily compute w";i2 in polar coordinates in the annulus B"i nT "i as done in lemma 1.2 taking "
d

d�2 �i <

r = jx� "zij < "
2 for x 2 R

d and "zi the center of T "i ; we get8>>>><>>>>:
w";i2 (x) =

jx�"zij�(d�2)�( "2)
�(d�2)

"�d�
�(d�2)
i �( "2)

�(d�2) in B"i nT "i ;

w";i2 = 1 in T "i ;

w";i2 = 0 in DnB"i :

(2.43)

Now, we show that w"2 satis�es the properties (2.40). Using the maximum principle (See proposition A.2.5),

we get

0 � w";i2 (x) � 1:

Since w";i2 has a disjoint supports then one has

0 � w"2 = 1�
X
zi2n"

w";i2 � 1:

Since w";i2 = 1 in T "i and w
";i
2 has disjoint supports, we obtain

w"2 = 1�
X
zj2n"

w";j2 = 1� w";i2 = 0 in all T "i :

The function w"2 belongs to H
1
0 (D): Indeed, by de�nition of w

";i
2 in (2.43) we can observe that the functions

w";i2 are continuous and H
1
0 by parts, hence by proposition A.1.12 the functions w

";i
2 belongs to H1

0 (B
"
i ) for

each zi 2 n". Since the functions w";i2 has essentially disjoint supports, then

X
zi2n"

w";i2 = w";j2 in B"j : (2.44)

we also have for every zi 2 n",

w";i2 = 0 in @B"i : (2.45)

Then using again the proposition A.1.12 (See appendix A), we can conclude that
X
zi2n"

w";i2 2 H1
0 (DnD"

b):

Extending
X
zi2n"

w";i2 by 0 in D"
b we get X

zi2n"
w";i2 2 H1

0 (D):

Finally, we �nd

w"2 = 1�
X
zi2n"

w";i2 2 H1(D); w"2 = 1 in D"
b :
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Therefore, the function w"2 satis�es the property (2.40). Let us now show that w
"
2 satis�es the properties

(H2), to do that we follow the same steps as in the periodic case. We have

krw"2k
2
(L2(D))d

=
X
zi2n"

Z
B"i

dX
j=1

���@xjw";i2 (x)���2 dx
=

X
zi2n"

(d� 2)�d�
"�d�

�(d�2)
i

�
�
�
"
2

��(d�2)
=

X
zi2n"

(d� 2)�d"d�(d�2)i

1�
�
"
2

��(d�2)
"d�

(d�2)
i

� �(d)
X

zi2Zd\ 1"D

"d�
(d�2)
i ; (2.46)

where � (d) > 0 is a strictly positive constant. By Lemma 2.9 applied on the right hand side of the last

inequality of (2.46), we have almost surely

lim
"!0

sup krw"2k
2
(L2(D))d

� �(d)
D
�d�2

E
jDj : (2.47)

Since 1 � w"2 2 H1
0 (DnD"

b) and 1 � w"2 = 0 in D
"
b ; we can apply Poincaré�s inequality: one has for " small

enough,

k1� w"2k
2
H1
0 (D)

� C2"�(d) krw"2k
2
L2(D) � C2"�(d)

D
�d�2

E
jDj ;

where C" > 0 is the Poincaré�s constant, since B"i is of diameter n =
"
2 < " an estimation of Poincaré�s

constants, one has

C" �
"

2
< ";

then

k1� w"2k
2
L2(D) � "2�(d)

D
�d�2

E
jDj :

Sending " to 0; one has

w"2 ! 1 strongly in L2(D):

This latter result implies that 1�w"2 is bounded in L2(D); we have also by (2.47) r(1�w"2) is bounded in

L2(D); thus 1� w"2 is bounded in H1
0 (D). Using Eberlein-�Smuljan theorem one has up to a subsequence

w"2 * 1 weakly in H1(D) (2.48)
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and thus (H2) established for w"2. We now argue that w
"
2 satis�es the property (H3), to do that the �rst

step is to decompose ��w"2 as done in the �rst chapter, we get:

��w"2 = �" � "; (2.49)

where

�" =
X
zi2n"

@w"2
@�ext

����
@B"i

�"@B"i ; 
" =

X
zi2n"

@w"2
@�ext

����
@T "i

�"@T "i ;

where �ext is the outward unit normal of @B"i : Next, we prove that we need only to argue for v" and v

de�ned as in (H3) the following result

h�"; v"iH�1(D);H1
0 (D)

! C0

Z
D
v: (2.50)

For ' 2 D(D); we have by Green formula

h��w"2; 'iD0(D);D(D) =
X
zi2n"

Z
B"i

rw"2r' =
X
zi2n"

Z
B"i nT "i

rw"2r'

=
X
zi2n"

h��w"2; 'iD0(B"i nT "i );D(B"i nT "i )

+
X
zi2n"

Z
@B"i

'rw"2 � �extds+
X
zi2n"

Z
@T "i

'rw"2 � nextds;

where next is the outward unit normal of @T "i : Since we have ��w"2 = 0 in B"i nT "i ; it follows

h��w"2; 'iD0(D);D(D) =
X
zi2n"

Z
@B"i

@w"2
@�ext

�"@B"i 'ds+
X
zi2n"

Z
@T "i

@w"2
@next

�"@T "i 'ds:

Since we have next = ��ext, we get (2.49) immediatly. We return now to the proof of

h��w"2; v"iH�1(D);H1
0 (D)

! C0

Z
D
v; (2.51)

for v" and C0 given as in lemma 1.2, since v" = 0 in all T "i then to get (2.51) we need only to prove (2.50).

The second step is to arguing that it su¢ ces to prove (2.51) for truncated process
�
Zd;RM

�
withM 2 N

and RM as de�ned above (2.15): In what follow, we denote by w"2;M and �"M introduced as the analogues of

w"2 and �
" for the truncated marks, we denote also C0;M = (d� 2)�d



�d�21��M

�
: We have also

jC0 � C0;M j =
���(d� 2)�d D�d�2 � �d�21��ME��� = (d� 2)�d D�d�21��ME :
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Then, we have

����h��w"2; v"iH�1(D);H1
0 (D)

� C0
Z
D
v

���� = ����Z
D
rw"2rv" +

Z
D
rw"2;Mrv" �

Z
D
rw"2;Mrv" � C0

Z
D
v

���� :
Using Green�s formula and (??), it holds

����h��w"2; v"iH�1(D);H1
0 (D)

� C0
Z
D
v

���� �
����Z
D
r(w"2 � w"2;M )rv"

����
+

����Z
D
rw"2;Mrv" � (d� 2)�d

D
�d�21��M

EZ
D
v � C0;M

Z
D
v

����
�

����Z
D
r(w"2 � w"2;M )rv"

����
+

����
��w"2;M ; v"�H�1(D);H1
0 (D)

� C0;M
Z
D
v

����
+(d� 2)�d

D
�d�21��M

EZ
D
jvj :

Then, using Cauchy-Schwartz inequality we get

����h��w"2; v"iH�1(D);H1
0 (D)

� C0
Z
D
v

���� �
r(w"2 � w"2;M )L2(D) krv"k(L2(D))d
+

����h�"M ; v"iH�1(D);H1
0 (D)

� C0;M
Z
D
v

����
+(d� 2)�d

D
�d�21��M

E
kvkL1(D) :

We have also same as (2.46)

r(w"2 � w"2;M )(L2(D))d =
X
zi2n"

Z
B"i

���(rw";i2 �rw";i2;M )(x)
���2 dx

=
X
zi2n"

(d� 2)2��
"�d�

�(d�2)
i 1�i�M

�
�
�
"
2

��(d�2)�2
Z
B"i

1

jx� "zij2(d�1)
dx

� �(d)
X

zi2Zd\ 1"D

"d�d�2i 1�i�M ;

for a positive constant �(d) > 0 which depend only on d: Thanks to lemma 2.9, one has

lim
"!0

sup
r(w"2 � w"2;M )(L2(D))d � �(d)

D
�d�21��M

E
jDj :

Since v" * v in H1
0 (D), then there exist a constant C > 0 such that

krv"k
(L2(D))d

� C:
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Then, one has

lim
"!0

sup

����h��w"; v"iH�1(D);H1
0 (D)

� C0
Z
D
v

���� � lim
"!0

sup

����h�"M ; v"iH�1(D);H1
0 (D)

� C0;M
Z
D
v

����
+
D
�d�21��M

E
(d� 2)�d kvkL1(D) (2.52)

+C 0
D
�d�21��M

E
;

where C 0 > 0 is a striclty positive constant depend only on d. Since v" is bounded in L2(D) (v" converges

weakly in H1
0 (D) then v

" is bounded in H1
0 (D); hence v

" is bounded in L2(D)) using the embedding of

L2(D) in L1(D) we can conclude that

kvkL1(D) < +1:

Sending M " +1; this latter result and the assumption (2.15) allows to

D
�d�21��M

E
((d� 2)�d kvkL1(D) + C

0)! 0:

So we need only to prove (2.50) for truncated process
�
Zd;RM

�
: The third step which is the last, is to prove

for any �xed M 2 N that we have

lim
"!0

sup

����h�"M ; v"iH�1(D);H1
0 (D)

� C0;M
Z
D
v

���� = 0: (2.53)

Indeed, we have

�"M =
X
zi2n"

@w"2
@�ext

����
@B"i

�"@B"i

=
X
zi2n"

dX
k=1

d� 2�
"�d��(d�2)

�
�
�
"
2

��(d�2) xk � "zki
jx� "zijd�1

�����
@B"i

�kext�
"
@B"i

:

Taking �ext =
�
�1ext; ::; �

d
ext

�
=

dX
k=1

ek where (e1; ::; ed) is canonical basis of Rd; then one has

�" =
X
zi2n"

(d� 2)
�
"
2

��(d�1)�
"�d�

�(d�2)
i;M

�
�
�
"
2

��(d�2) �"@B"i
=

X
zi2n"

2d�1(d� 2)
�
�i;M

��(d�2)
1� 2d�2"2

�
�i;M

�(d�2) "�"@B"i :
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Since �i;M �M; it su¢ ces to prove

~�"M =
X
zi2n"

2d�1(d� 2)
�
�i;M

��(d�2)
"�"@B"i �! C0;M strongly in W�1;1(D): (2.54)

To show (2.54), we argue for a �xed M 2 N that

~�"M � �"M ! 0 strongly in W�1;1(D); (2.55)

with

�"M =
X

zi2Zd\ 1"D

2d(d� 2)d�d�2M;i 1B"i

and that

�"M ! C0;M strongly in W�1;1(D): (2.56)

Let us begin by proving (2.55). We de�ne the following auxiliary problems

8<: ��q"i;M = 2d(d� 2)d�d�2i;M in B"i ;
@q"i;M
@�ext

= 2d�1(d� 2)�d�2i;M " on @B"i ;
(2.57)

we have

q"i;M = 2d�1(d� 2)�d�2i;M

�
jx� "zij2 �

�"
2

�2�
:

Indeed, since we have for 0 < r = jx� "zij < "
2 ; x 2 R

d

1

rd�1
@r

�
rd�1@rq

"
i;M (r)

�
= 2d(d� 2)d�d�2i;M ;

so we integrate over [0; r] for a variable s we get

q"i;M (r) = 2
d�1(d� 2)�d�2i;M r2 + c;

where c 2 R: In particular for q"( "2) = 0; one has

q"i;M (r) = 2
d�1(d� 2)�d�2i;M (r

2 �
�"
2

�2
);

so for 0 < r = jx� "zij < "
2 ; we have

q"i;M (r) = 2
d�1(d� 2)�d�2i;M (jx� "zij

2 �
�"
2

�2
):
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We have

@xkq
"
i;M (x) = 2

d(d� 2)�d�2i;M

�
xk � "zki

�
:

So

rq"i;M (x)L1(B"i ) = sup
x2B"i

dX
k=1

��@xkq"i;M (x)�� = sup
x2B"i

dX
k=1

���2d(d� 2)�d�2i;M

�
xk � "zki

����
� 2d�1(d� 2)�d�2i;M ":

Since �d�2i;M �M; one has rq"i;M(L1(B"i ))d � 2d�1(d� 2)M":

Then

rq"i;M ! 0 strongly in (L1(B"i ))
d : (2.58)

In the other hand, since q"i;M (x) = 0 in @B"i ; we may extend q
"
i;M by 0 outside B"i then we can use the

Poincaré�s inequality, we obtain

q"i;ML1(B"i ) � K
rq"i;M (x)(L1(B"i ))d ;

and conclude that

q"i;M ! 0 strongly in L1(B"i ); (2.59)

by (2.58) and (2.59), one has

q"M =
X

zi2Zd\ 1"D

q"i;M ! 0 strongly in W 1;1(Rd): (2.60)

For ' 2 D(D), we have

h�"M � ~�"M ; 'iD0(D);D(D) =
X

zi2Zd\ 1"D

Z
B"i

2d(d� 2)d�d�2i;M '(x)dx

�
X
zi2n"

Z
@B"i

2d�1(d� 2)�d�2i;M "'(x)ds

=
X

zi2(Zd\ 1"D)nn"

Z
B"i

2d(d� 2)d�d�2i;M '(x)dx

+
X
zi2n"

(

Z
B"i

2d(d� 2)d�d�2i;M '(x)dx

�
Z
@B"i

2d�1(d� 2)�d�2i;M "'(x)ds):
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Using (2.57), we obtain

h�"M � ~�"M ; 'iD0(D);D(D) =
X

zi2(Zd\ 1"D)nn"

Z
B"i

2d(d� 2)d�d�2i;M '(x)dx

+
X
zi2n"



��q"i;M ; '

�
D0(B"i );D(B"i )

�
�
@q"i;M
@�ext

; '

�
D0(B"i );D(B"i )

:

Using Green formula, one has

h�"M � ~�"M ; 'iD0(D);D(D) =
X

zi2(Zd\ 1"D)nn"

Z
B"i

2d(d� 2)d�d�2i;M '(x)dx

+
X

zi2Zd\ 1"D

Z
B"i

rq"i;M (x)r'(x)dx;

=
X

zi2(Zd\ 1"D)nn"

Z
B"i

2d(d� 2)d�d�2i;M '(x)dx

+

Z
D
rq"M (x)r'(x)dx:

Since ' = 0 in @D, it follows

h�"M � ~�"M ; 'iD0(D);D(D) = h��q
"
M ; 'iD0(D);D(D) + hR

"
M ; 'iD0(D);D(D) ;

with

hR"M ; 'iD0(D);D(D) =
X

zi2(Zd\ 1"D) nn"

Z
B"i

2d(d� 2)d�d�2i;M '(x)dx:

Therefore

�"M � ~�"M = ��q"M +R"M in D0(D);

and more precisely in W�1;1(D) (This latter is concluded from the caracterization of W�1;1(D) with

'0 = R"M and 'i =
@q"M
@xi
)

We have by (2.60)

���h��q"M ; 'iW�1;1(D);W 1;1
0 (D)

��� =

Z
D
jrq"Mr'j

=
X

zi2Zd\ 1"D

Z
B"i

��rq"i;Mr'��
�

X
zi2Zd\ 1"D

q"i;MW 1;1(D)
k'k

W 1;1
0 (D)

! 0:
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To prove (2.55), it su¢ ces to show that R"M
�
* 0 weakly-* in L1(D): Indeed, Since R"M is bounded, we need

only to test R"M with ' 2 C1c (D) (C1c (D) is the space of continuously di¤erentiable functions with compact

support)(This is concluded from Hahn-Banach theorem applied to the continous linear form T (') =
R
D R

"
M'

de�ned for every ' 2 C1c (D) which is dense in L1(D)): Then we have

���(R"M ; ')L1(D);L1(D)��� =
X

zi2(Zd\ 1"D)nn"

�����
Z
B"i

2d(d� 2)d�d�2i;M '

�����
� 2d(d� 2)d

X
zi2(Zd\ 1"D)nn"

�d�2i;M

Z
B"i

j'j :

Since ' is bounded in L1 (D) and B"i � B" with B" is a ball with radius ", then it follows by Hölder�s

inequality ���(R"M ; ')L1(D);L1(D)��� � 2d(d� 2)d k'kL1(D) "d X
zi2(Zd\ 1"D)nn"

�d�2i;M ;

To apply lemma 2.10, we remark by (2.18) of lemma 2.3 and (2.120) of lemma 2.9 that we have

lim
"!0

"d#(

�
Zd \ 1

"
D

�
nn") = lim

"!0
"d#

�
Zd \ 1

"
D

�
� lim
"!0

"d#n" = 0

and we can conclude R"M
�
* 0 weakly-* in L1(D). Thus by proposition A.1.8 we have for ' belongs to

W 1;1
0 (D)

kR"MkW�1;1(D) = sup
k'k

W
1;1
0 (D)

=1

���(R"M ; ')W�1;1(D);W 1;1
0 (D)

���
= sup

k'k
W
1;1
0 (D)

=1

���(R"M ; ')L1(D);L1(D)���! 0;

then R"M goes to 0 strongly inW�1;1(D) and this yields (2.55). It remains to show (2.56). By caracterization

of W�1;1(D) and de�nition of �"M ; it su¢ cient to prove only

�"M
�
* C0;M weakly-* in L1(D): (2.61)

Since �"M is bounded, then we test only for ' 2 C1c (D). We have

(�"M ; ')H�1(D);H1
0 (D)

=
X

zi2Zd\ 1"D

2d(d� 2)d�d�2i;M

Z
B"i

';
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applying lemma 2.11, one has

(�"M ; ')H�1(D);H1
0 (D)

! (d� 2)�d
D
�d�21��M

EZ
D
':

Then the proof of (2.61) is established, hence (2.56) holds true.

We return to the proof of proposition 2.5

Proof. We return to our main goal, and argue that the function w" de�ned in proposition 2.5 is H1(D)

and satis�es (H1), (H2) and (H3). We starts with (H1), we have by de�nition w"1 = 0 in H
"
b and w

"
2 = 1 in

H"
b � D"

b , then

w" = w"1 ^ w"2 = w"1 = 0 in H"
b ;

we have also w"1 = 1 in H
"
b � DnD"

b and w
"
1 = 0 in H

"
g , then

w" = w"1 ^ w"2 = w"2 = 0 in H"
g :

So the �rst property (H1) is satis�ed. Let us prove that w" belongs to H1(D); we have by de�nition of w"1

and w"2 8<: w"jDnD"
b
= w"2 2 H1 (DnD"

b) ;

w"jD"
b
= w"1 2 H1 (D"

b) :

We have also

w"j@(DnD"
b)
= w"j@D"

b
= 1:

Then we can use the proposition A.1.12 (See Appendix A) to conclude that w" 2 H1(D). We pass to (H2),

we have for every function v 2 H1(D)

hw"; viH1(D) = hw"; viL2(D) + hrw
";rvi

(L2(D))d
(2.62)

= hw"1; viL2(D"
b)
+ hrw"1;rvi(L2(D"

b))
d

+ hw"2; viL2(DnD"
b)
+ hrw"2;rvi(L2(DnD"

b))
d :

Since w"2 satis�es the property (H2) and w
"
1 converge to 1 strongly in H

1(D) hence weakly in H1(D), then

hw"; viH1(D) ! h1; viH1(D) .

Thus, the property (H2) is established for w". Now, we prove that (H3) is satis�ed for w" but �rst of all we

need to argue that it su¢ cient to prove (H3) only for w"2: Indeed, let v
" 2 H1

0 (D) such that v
" vanishes in

the holes H" and v" converge weakly to v in H1
0 (D): By de�nition of w

"
1, w

"
2 in lemma 2.6 and lemma 2.7,
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we have rw"1 and rw"2 has disjoint supports where

supp (rw"1) � D"
bnH"

b ; supp (rw"2) � Dn
�
D"
b [H"

g

�
:

Then, one has

h��w"; v"iH�1(D);H1
0 (D)

= h��w"1; v"iH�1(D"
bnH"

b );H
1
0 (D

"
bnH"

b )

+ h��w"2; v"iH�1(DnD"
b);H

1
0 (DnD"

b)

=

Z
D"
bnH"

b

rw"1rv"

+ h��w"2; v"iH�1(DnD"
b);H

1
0 (DnD"

b)
:

Using lemma 2.6, one has Z
D"
bnH"

b

rw"1rv" ! 0:

We have also by lemma 2.7

h��w"2; v"iH�1(DnD"
b);H

1
0 (DnD"

b)
! C0

Z
D
v; (2.63)

where C0 de�ned as in theorem 2.2. Then (H3) is satis�ed for w":

2.2.2 Case(b): General case

Let (�;R) be a marked point process de�ned as in of theorem 2.2. We give the following lemma which is

similar to Lemma 2.3 where we can use it for the proof of Lemma 2.2:

Lemma 2.8 There exist an "0 = "0(d) and a family of random variables fr"g">0 � R+ such that for

P�almost every ! 2 


lim
"!0

r"(!) = 0; (2.64)

and for any " � "0 there exist H"
g(!);H

"
b (!) ; D

"
b(!) � Rd: such that

H"(!) = H"
g(!) [H"

b (!); H"
b (!) � D"

b(!);

dist(H"
g(!); D

"
b(!)) � "r"

2 ;

when

lim
"!0

cap(H"
b (!); D

"
b(!)) = 0: (2.65)
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Moreover, H"
g(!) may be written as the following union of disjoint balls centered in n

"(!) � �
�
1
"D
�
:

H"
g(!) =

[
zj2n"

B
"

d
d�2 �j

("zj);

min
zi 6=zj2n"

" jzi � zj j � 2r""; "
d

d�2 �j �
"r"
2
; lim

"!0
"d#(n") = hN(Q)i jDj : (2.66)

Furthermore, if for � > 0 the process �� is de�ned as in (2.14), then

lim
"!0

"d#(fzi 2 �"2� (D) (!) : dist(zi; D"
b) � "�g) = 0: (2.67)

Proof. The proof of this lemma is divided in �ve steps: First, we construct the random variables fr"g">0
for a �xed � 2

�
0; 2
d�2

�
, we write

r" =

�
"

d
d�2 max

zj2�"(D)
�j

� 1
d

_ "
�
4 = max

(�
"

d
d�2 max

zj2�"(D)
�j

� 1
d

; "
�
4

)
: (2.68)

We can show that r" satis�es (2.64). Indeed, For F " a subset of �"(D) de�ned as

F " =
n
zj 2 �"(D) : "

d
d�2 �j � "

o
:

If F " = ;; then for zj 2 �"(D) the corresponding radii satis�es

"
1

d�2 max
zj2�"(D)

�
1
d
j � "

1
d :

Since r" � 0 we have for every " > 0

lim
"!0

r" � lim
"!0

"
1
d _ "

�
4 = 0:

If F " 6= ;; we get

"d max
zj2�"(D)

�d�2j = "d max
zj2F "

�d�2j � "d
X
zj2F "

�d�2j ;

then, one has

lim
"!0

r" � lim
"!0

0@0@"d X
zj2F "

�d�2j

1A _ "�4
1A :

So to get (2.64) immediatly applaying lemma 2.10, it�s su¢ cient to claim that

lim
"!0

"d#F " = 0: (2.69)
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Indeed, for zj 2 F " the corresponding radii �j satis�es 1 � "2�d�2j ; then one has

"d#F " = "d
X
zj2F "

� "d"2
X

zj2�"(D)
�d�2j :

So applying lemma 2.9, (2.69) yields true and the proof of (2.64) is complete. The second step is about the

construction of H"
b (!) and its safety layer D

"
b(!). Equipped with the de�nition of r" de�ned as above (2.68)

and denote by �" = r"": In this step we will give the set of the centers of bad balls denoted I"b as a union of

three sets, the �rst one is denoted by J"b and contains the point of �
"(D) where the corresponding radii are

too large, then we put

J"b =
n
zj 2 �"(D) : "

d
d�2 �j �

�"
2

o
: (2.70)

The second set of points contains the centers generating the balls too close to each other, we indeed set

K"
b = �

"(D)n
�
�"2r"(D) [ J

"
b

�
; (2.71)

where �"2r"(D) is de�ned as in (2.14). Similarly to the periodic case, we de�ne

~H"
b =

[
zj2J"b

B
2"

d
d�2 �j

("zj):

The third set contains the centers of balls might be close to ~H"
b : We denote

~I"b =
n
zj 2 �"(D)n (K"

b [ J"b ) : ~H"
b \B�"("zj) 6= ;

o
: (2.72)

Finally, we put

I"b = J"b [K"
b [ ~I"b ; (2.73)

H"
b =

[
zj2I"b

B
"

d
d�2 �j

("zj); D"
b =

[
zj2I"b

B
2"

d
d�2 �j

("zj); H"
g = H"nH"

b : (2.74)

In the third step, we prove (2.65). By the sub-additivity of capacity and de�nitions (2.74) we compute as

in the simplest case

cap(H"
b ;H

"
b ) =

X
zj2I"b

cap(B
"

d
d�2 �j

("zj); D
"
b)

�
X
zj2I"b

cap(B
"

d
d�2 �j

("zj); B
2"

d
d�2 �j

("zj))

�
X
zj2I"b

"d�d�2j :
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The proof is concluded from lemma 2.10 if we argue that

lim
"!0

"d#I"b = 0: (2.75)

Indeed, by de�nition of I"b in (2.73) it su¢ cient to prove (2.75) only for the sets J
"
b ;K

"
b and ~I

"
b : We start

with

lim
"!0

"d#J"b = 0: (2.76)

We have by de�nition of J"b in (2.70)

1 � "2(r")
�(d�2)2d�2�d�2j for zj 2 J"b ;

then one has

"d#J"b = "d
X
zj2J"b

� "2(r")
�(d�2)2d�2"d

X
zj2�"(D)

�d�2j : (2.77)

We have also by de�nition of r"

r�(d�2)" �
�
"

d
d�2 max

zj2�"(D)
�j

��(d�2)
d

^ "
��(d�2)

4

� "��(d�2):

Substituting this last result in (2.77), we get

"d#J"b � "2��(d�2)2d�2"d
X

zj2�"(D)
�d�2j :

By lemma 2.9 we have

lim
"!0

"d
X

zj2�"(D)
�d�2j = hN (Q)i jDj

D
�d�2

E
< +1;

then since 2��(d�2) > 1, (2.76) is established., For a sequence f�kgk2N � R+� with �k ! 0 when k ! +1

if we suppose also that N "
�k
(D) � N "

r"(D), we get

lim
"!0

sup "d#K"
b � lim

"!0
sup "d(N "(D)�N "

r"(D)) � lim"!0 sup "
d(N "(D)�N "

�k
(D)): (2.78)
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We can apply (2.122) of lemma 2.9 for the right hand side of (2.78), one has

lim
"!0

sup "d#K"
b � hN(Q)�N�k(Q)i jDj ;

for Q is a unitary cube. Sending �k ! 0 and applying (2.122) of lemma 2.9, we obtain

lim
"!0

"d#K"
b = 0: (2.79)

It remains to prove

lim
"!0

"d#~I"b = 0: (2.80)

By de�nitions (2.70), (2.71) and (2.72), we have for zi 2 �"(D)n (K"
b [ J"b )

min
zj ;zi2�"(D)

zi 6=zj

" jzi � zj j � 2�"; (2.81)

"
d

d�2 �i <
�"
2
: (2.82)

Since the balls of ~I"b have radii satis�es (2.82) and centers satis�es (2.81), then the balls
�
B�"("zi)

	
zi2~I"b

are

disjoints. So one has

"d#~I"b = "d
X
zi2~I"b

� "d
X
zi2~I"b

�(d2 + 1)

�d"�
d

��B�"("zi)�� = r�d"
X
zi2~I"b

�(d2 + 1)

�d
��B�"("zi)�� ;

with
��B�"("zi)�� = �d"�

d

�( d
2
+1)

and � is the gamma function de�ned as generalization of the factorial function for

non integer value. We have for any zi 2 ~I"b there exists c = c(d) and zj 2 J"b such that

B�"("zi) � B
c"

d
d�2 �j

("zj);

then one has

"d#~I"b � r�d"
X
zi2J"b

�(d2 + 1)

�d

����Bc" d
d�2 �j

("zj)

����
� r�d"

X
zi2J"b

C1

�
"

d
d�2 �j

�d
;

with C1 > 0 is a constant depend only on d: We have also

("
d

d�2 �j)
d = "

d2�2d+2d
d�2 �j

d�2�j
2 � ("

d
d�2 max

zj2Zd\ 1"D
�j)

2"d�j
d�2;
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then, we obtain

"d#~I"b � r�d" C1("
d

d�2 max
zj2Zd\ 1"D

�j)
2
X
zi2J"b

"d�j
d�2: (2.83)

In the other hand, we have by de�nition of r"

r�d" �
�
"

d
d�2 max

zj2�"(D)
�j

��1
^ "

��d
4 �

�
"

d
d�2 max

zj2�"(D)
�j

��1
;

it follows

r�d" C1("
d

d�2 max
zj2Zd\ 1"D

�j)
2 � C1("

d
d�2 max

zj2Zd\ 1"D
�j)

� C1("
d

X
zj2Zd\ 1"D

�d�2j )
1

d�2 :

For " small enough, we can apply lemma 2.9 then we get

r�d" C1("
d

d�2 max
zj2Zd\ 1"D

�j)
2 � C1

�
hN(Q)i jDj

D
�d�2

E� 1
d�2

; (2.84)

substituting (2.84) in (2.83) one has

"d#~I"b � C1

�
hN(Q)i jDj

D
�d�2

E� 1
d�2 X

zi2J"b

"d�j
d�2:

Since we have proved (2.76), we can apply lemma 2.9, thus (2.80) is established. Finally, we get

lim
"!0

"d#I"b = lim
"!0

"d#J"b + lim
"!0

"d#K"
b + lim

"!0
"d#~I"b = 0:

The fourth step is to contruct the set of good holes H"
g which satis�es (2.66). We can set n

" = �"(D)nI"b
and de�ne H"

g as follows

H"
g =

[
zi2n"

B
"

d
d�2 �i

("zi):

Let us prove that

dist
�
H"
g ; D

"
b

�
� �"
2
: (2.85)

Since for zi 2 n"; we have zi =2 K"
b [ J"b then the properties (2.81) and (2.82) are satis�es then one has

dis(B
"

d
d�2 �i

("zi); B�"("zi)) �
�"
2
:
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So to claim (2.85), it su¢ cient to prove that for zi 2 n" and zj 2 I"b we have

B
2"

d
d�2 �j

("zj) \B�"("zi) = ;: (2.86)

Indeed, If zj 2 J"b then zj =2 ~I"b ; we have also zi =2 ~I"b then by de�nition of ~I"b in (2.72), (2.86) is established.

Now, if zj 2 K"
b [ ~I"b then

2"
d

d�2 �j < �"; min
zi2n"

" jzi � zj j � 2�";

then, we can conclude (2.86) and �nally this yields (2.85). We now prove the properties (2.66). For the

�rst, by de�nition of n" for any zi; zj 2 n" with zi 6= zj we have zi; zj =2 K"
b , Then we get

min
zi2n"

" jzi � zj j � 2�": (2.87)

The second result follows from the de�nition of n": For zj 2 n" we have zj =2 I"b then one has

2"
d

d�2 �j � �";

we have also

lim
"!0

"d#n" = lim
"!0

"d (#�"(D)�#I"b ) :

Using (2.75), one has

lim
"!0

"d#n" = lim
"!0

"d#�"(D):

Using the result (2.2) in lemma 2.9, we get

lim
"!0

"d#n" = hN (Q)i jDj ; (2.88)

where Q is the unitary cube. The last step is to prove (2.67), to do that we �rst set

Y "� = fzi 2 �"2�(D) : dist (zi; D"
b) � �"g : (2.89)
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We have

Y "� � fzi 2 n" [ I"b : dist ("zi; D"
b) � �"g

� I"b [

8<:zi 2 n" : dist
0@"zi; [

zj2J"b

B
2"

d
d�2 �j

("zj)

1A � �"

9=;
[

8><>:zi 2 n" \ �"2�(D) : dist
0B@"zi; [

zj2~I"b[K"
b

B
2"

d
d�2 �j

("zj)

1CA � �"

9>=>; :

We denote

E" =

8<:zi 2 n" : dist
0@"zi; [

zj2J"b

B
2"

d
d�2 �j

("zj)

1A � �"

9=; (2.90)

and

C" =

8><>:zi 2 n" \ �"2�(D) : dist
0B@"zi; [

zj2~I"b[K"
b

B
2"

d
d�2 �j

("zj)

1CA � �"

9>=>; ; (2.91)

to argue (2.67) we show that

lim
"!0

"d#I"b = lim
"!0

"d#E" = lim
"!0

"d#C" = 0:

Indeed, the �rst result is concluded from (2.75). We pass to

lim
"!0

"d#E" = 0: (2.92)

We may choose "0 = "0(d) such that for all " � "0 the property (2.64) is satis�ed and "r" � "�: For zi 2 E"

there exists zj 2 J"b where zi; zj satis�es the following properties8>>>><>>>>:
B�"("zi) � B"�("zi);

2"
d

d�2 �j � �";

dist("zi; @B
2"

d
d�2 �j

("zj)) � �":

Then, we can remark that

B�"("zi) � B
2�"+2"

d
d�2 �j

("zj):

Using 1 � �r�1" , we get

2�" � 2�

r"
2"

d
d�2 �j ; 2"

d
d�2 �j �

2�

r"
"

d
d�2 �j ;
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then, one has

B�"("zi) � B
2�"+2"

d
d�2 �j

("zj) � B
6�r�1" "

d
d�2 �j

("zj): (2.93)

So, we obtain

"d#E" = r�d" �d"#E
" = r�d" �d"

X
zi2n"

�(d2 + 1)

�d�d"

��B�"("zi)��
�

 
�(d2 + 1)

�d

!
r�d"

X
zi2J"b

����B6�r�1" "
d

d�2 �j
("zj)

����
�

 
�(d2 + 1)

�d

!
�dr�2d"

X
zi2J"b

�
"

d
d�2 �j

�d
�
 
�(d2 + 1)

�d

!
�dr�2d"

X
zi2J"b

"
d2�2d+2d

d�2 �d�2j �2j ;

with � is the Gamma function. Since by de�nition of r" we have

r�2d" � "
�2d
d�2 max ��2j ;

one has

"d#E" �
 
�(d2 + 1)

�d

!
�d"d

X
zi2J"b

�d�2j :

Using (2.76) and lemma 2.10 we get out (2.92). Now, we claim the last result

lim
"!0

"d#C" = 0; (2.94)

we show that the set C" is empty for " small enough. We have by de�nition of ~I"b and K
"
b ; if zi 2 n" satis�es

dist

0B@"zi; [
zj2~I"b[K"

b

B
2"

d
d�2 �j

("zj)

1CA � �";

then, there exists a zj 2 ~I"b [K"
b with 2"

d
d�2 �j < r"" � �" such that

" jzi � zj j � dist

�
"zi; @B

2"
d

d�2 �j
("zj)

�
+ r"" � 2�";

this implies C" � �"(D)n�"2�(D) and thus by de�nition C" is empty. Hence (2.94) is established.

We now return to the proof of lemma 2.2 in the general case.

Proof. Equiping with the sets H"
g ;H

"
b and D

"
b constructed as in lemma 2.8, the construction of w

"

follows the same steps as in the periodic case where we take w" = w"1 ^ w"2 with w"1 and w"2 de�ned as the

same as in lemma 2.6 and 2.7 respectivly for the simplest case with H"
g ;H

"
b and D

"
b as in lemma 2.8. The
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only change here is due to the construction of w"2 under the setting of lemma 2.8. Indeed, we set

w"2 = 1 in D"
b ;

then it remains to construct w"2 only in DnD"
b : For each zj 2 n" with n" being the set of centers of the

particles in H"
g ; we denote by d

"
j the random variables

d"j = min

�
dist("zj ; D

"
b);
1

2
min

zi 6=zj2n"
" jzi � zj j ; "

�
:

We have by (2.66) and (2.85)

dist("zj ; D
"
b) � �";

1

2
min
i6=j

" jzi � zj j � �";

then we can remark that d"j � �" where �" = "r" and r" de�ned as in lemma 2.8. So we de�ne the sets for

zj 2 n"

T "j = B
"

d
d�2 �j

("zj); B"j = Bd"j ("zj);

and consider the functions w";j2 as in lemma 2.8, solving

8>>><>>>:
��w";j2 = 0 in B"jnT "j ;

1 in T "j ;

0 in DnB"j ;

(2.95)

then taking "
d

d�2 �j < r" = jx� "zj j < d"j with "zj is the center of T
"
j and x 2 Rd: The function w

";j
2 is

de�ned as follow

w";j2 =

8>>>><>>>>:
jx�"zj j�(d�2)�(d"j)�(d�2)

"�d�
�(d�2)
j �(d"j)�(d�2)

in B"jnT "j ;

1 in T "j ;

0 in DnB"j :

By de�nition of d"j , we have

d"j � 2"
d

d�2 �j : (2.96)

Indeed, by de�nition of n" and (2.66) for zj 2 n" the corresponding radii satis�es

2"
d

d�2 �j � "r" � min
�
1

2
min
i6=j

" jzi � zj j ; "
�
:

The de�nition of T "j and (2.85) gives
"r"
2
� dist(T "j ; D

"
b);
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then

2"
d

d�2 �j � "
d

d�2 �j +
"r"
2
� "

d
d�2 �j + dist(T

"
j ; D

"
b) � dist("zj ; D

"
b):

Thus (2.96) yields. The previous result (2.96) argue that the functions w";j2 have disjoint supports and same

for rw";j2 : Then, we can set

w"2 = 1�
X
zj2n"

w";j2

and show that the function w"2 satis�es the properties (2.40), by de�nition of w
";j
2 in T "j and since the

functions w";j2 has disjoint supports then we can conclude that w"2 vanishes in H
"
g : We can argue also that

0 � w"2 � 1;

as in the periodic case using the maximum principle. Thus the properties (2.40) are satis�ed under the

setting of lemma 2.8. By de�nition of w"2 in D
"
b and DnD"

b we can easly conclude that w
"
2jD"

b
2 H1(D"

b) and

w"2jDnD"
b
2 H1(DnD"

b); we can remark also that the function is continuous in the whole set D then applaying

proposition A.1.12 (See Appendix A) we get w"2 belongs to H
1(D). Let us return to the properties of w"

and show that w" satis�es (H1), (H2) and (H3): We starts with (H1), we have by de�niton w"1 = 0 in H
"
b ;

and w"2 = 1 in H
"
b � D"

b , then

w" = w"1 ^ w"2 = w"1 = 0 in H"
b ;

we have also w"1 = 1 in H
"
b � DnD"

b ; and w
"
1 = 0 in H

"
g , then

w" = w"1 ^ w"2 = w"2 = 0 in H"
g ;

then (H1) is satis�ed. Same prove as in the periodic case, it su¢ cient to prove (H2) and (H3) only for w"2;

we begins with (H2) we have by de�nition of w"2 for x 2 Rd where "
d

d�2 �j < jx� "zj j < d"j

@xiw
"
2(x) = �

X
zi2n"

@xiw
";j
2 (x) (2.97)

=
X
zj2n"

(d� 2)�
"�d�

�(d�2)
j

�
�
�
d"j

��(d�2) (xi � "zij)jx� "zj jd
;
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then

krw"2k
2
(L2(D))d

=
X
zj2n"

Z
B"j

���rw";j2 (x)���2 dx
=

X
zj2n"

Z
B"j

dX
j=1

���@xiw";j2 (x)���2 dx
=

X
zj2n"

(d� 2)2��
"�d�

�(d�2)
j

�
�
�
d"j

��(d�2)�2
Z
B"j

1

jx� "zj j2(d�1)
dx;

we obtain

krw"2k
2
(L2(D))d

=
X
zj2n"

(d� 2)�d�
"�d�

�(d�2)
j

�
�
�
d"j

��(d�2)
=

X
zj2n"

(d� 2)�d"d�(d�2)j

1�
�
d"j

��(d�2)
"d�

(d�2)
j

� C (d)
X

zj2�"\ 1"D

"d�
(d�2)
j ; (2.98)

where C(d) > 0 is a constant and �d is the (d� 1)-dimensional unit sphere in Rd: Using (2.121) of lemma

2.9, one has

krw"2k
2
(L2(D))d

� K; (2.99)

where K = C(d) hN(Q)i


�d�2

�
jDj > 0 and Q is the unitary cube of Rd:

Since 1� w"2 = 0 in @D, then we can apply Poincaré�s inequality one has

k1� w"2k
2
H1(D) � � krw"2k

2
(L2(D))d

� �K;

where � > 0 is a Poincaré constant: By Eberlein-�Smuljan theorem; up to a subsequence, we have almost

surely

1� w"2 * w weakly in H1(D);

it follows by Rellich-Kondrachov theorem

1� w"2 ! w strongly in L2(D):

Let us prove that w = 0; to do that we need to prove the equivalent result

w"2 * 1 weakly in H1(D);
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only for the truncated processes
�
n"M ;

�
�j;M

	
zj2n"

�
: We take

n"M =
n
zj 2 n" : d"j �

"

M

o
; �j;M = �j ^M = min

�
�j ;M

	
and

H";M
g =

[
zj2n"M

B
"

d
d�2 �j;M

("zj); D";M = Dn
�
H";M
g [H"

b

�
and w";M2 de�ned for the truncated process as w"2. Let us prove �rst that 1� w"2 converges strongly to 0 in

L2(D). Indeed, we have by triangular inequality

lim
"!0

sup k1� w"2k � lim
M!+1

sup lim
"!0

sup
w"2 � w";M2 

L2(D)
(2.100)

+ lim
M!+1

sup lim
"!0

sup
1� w";M2 

L2(D)
:

To show the second right hand side of (2.100), we �rst remark that

1� w";M2 = 0 in Rdn
[

zj2n"M

B"j ;

then, the Poincaré�s inequality gives

1� w";M2 2
L2(D)

=
X
zj2n"

1� w";j2 2
L2(B"j )

�
X
zj2n"

1� w";j2 2
L2(B"j )

� m2 krw"2k
2
L2(D) � m2K;

where m is a Poincaré�s constant and K is a strictly positive constant de�ned as in (2.99). Since for every

zj 2 n", d"j � " then we get m � ": Hence

1� w";M2 2
L2(D)

� "2K:

Sending " to 0 we get

w";M2 ! 0 strongly in L2(D): (2.101)

Now, it remains to prove

lim
M!+1

sup lim
"!0

sup
w"2 � w";M2 

L2(D)
= 0: (2.102)
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The de�nition of w";M2 above gives

w";M2 =

8>>><>>>:
1�

X
zj2n"M

w";M;j2 in
[

zj2n"M

B"j ;

1 in Rdn
[

zj2n"M

B"j ;
(2.103)

where each function w";M;j2 solving (2.95) with B"j = Bd"j ("zj) and �j;M �M: By de�nition of w";M2 ; we have

w"2 � w
";M
2 =

8>>>>>>>><>>>>>>>>:

0 in
[

zj2n"M

B"j ;

w"2 � 1 in
[

zj2n"nn"M

B"j ;

0 in Rdn
[
zj2n"

B"j :

(2.104)

So by Poincaré�s inequality to show (2.102) it�s su¢ cient to prove only

lim
M!+1

sup lim
"!0

sup
r�w"2 � w";M2 �

(L2(D))d
= 0: (2.105)

Using (2.104) one has

r�w"2 � w";M2 �2
(L2(D))d

=
X
zj2n"

r�w";j2 � w";M;j2

�2
(L2(D))d

=
X
zj2n"

rw";j2 2
(L2(D))d

1�j�M1d"j�M�1"

+
X
zj2n"

rw";j2 2
(L2(D))d

1d"j�
"
M
: (2.106)

Let us prove that the �rst right hand side of (2.106) vanishes in the limit using (2.97) and d"j � M�1"; we

get

X
zj2n"

rw";j2 2
(L2(D))d

1�j�M1d"j�M�1" �
X
zj2n"

(d� 2)�d"d�(d�2)j

1�
�
d"j

��(d�2)
"d�

(d�2)
j

1�j�M1d"j�M�1"

�
X
zj2n"

(d� 2)�d"d�(d�2)j

1�Md�2"2�d�2j

1�j�M1d"j�M�1"

� (d� 2)�d
X
zj2n"

"d�
(d�2)
j 1�j�M :

48



Applaying lemma 2.9 to the process
�
�;
n
�
(d�2)
j 1�j�M

o
zj2�

�
; one has

lim
"!0

X
zj2n"

rw";j2
(L2(D))d

1�j�M1d"j�M�1" � (d� 2)�d
D
�(d�2)1��M

E
hN(Q)i jDj ;

where Q is a unitary cube. Sending M ! +1; we get

lim
M!+1

sup lim
"!0

X
zj2n"

rw";j2 2
(L2(D))d

1�j�M1d"j�M�1" = 0: (2.107)

In the other hand, we have

X
zj2n"

rw";j2 2
(L2(D))d

1dj� "
M

=
X
zj2n"

(d� 2)�d"d�(d�2)j

1�
�
d"j

��(d�2)
"d�

(d�2)
j

1d"j�
"
M

�
X
zj2n"

(d� 2)�d"d�(d�2)j 1d"j�
"
M
:

Since d"j � "
M ; then

min

�
dist("zj ; D

"
b);
1

2
min
i6=j

" jzi � zj j ; "
�
� "

M
;

it follows 8<: dist("zj ; D
"
b) � "

M ; or

mini6=j " jzi � zj j � 2"
M :

So, we can writte 8<: zj 2 I"M =
�
zj 2 n" \ �"2M�1(D); dist(zj ; D

"
b) � "

M

	
; or

zj 2 �"(D)n�"2M�1(D):

Then, one has

lim
"!0

sup
X
zj2n"

rw";j2 2
(L2(D))d

1dj� "
M

� lim
"!0

sup
X

zj2�"(D)n�"
2M�1 (D)

(d� 2)�d"d�(d�2)j

+ lim
"!0

sup
X
zj2I"M

(d� 2)�d"d�(d�2)j :

By (2.68) of lemma 2.8, for � = 1
M we have

lim
"!0

"d#I"M = 0;

49



then we can apply lemma 2.10, we get

lim
"!0

sup
X
zj2I"M

(d� 2)�d"d�(d�2)j = 0:

On the other hand, applying lemma 2.9 for the process � and � 2
M
we obtain

lim
"!0

sup
X

zj2�"(D)n�"
2M�1 (D)

(d� 2)�d"d�(d�2)j = (d� 2)�d hN(Q)�N2M�1(Q)i
D
�(d�2)

E
jDj :

Since we have

lim
M!0

hN(Q)�N2M�1(Q)i = 0;

we get

lim
M!+1

lim
"!0

sup
X

zi2�"(D)n�"
2M�1 (D)

(d� 2)�d"d�(d�2)j = 0: (2.108)

By (2.107) and (2.108) we conclude immediatly (2.105).

It remains to prove (H3). First, we show that it su¢ cient to prove (H3) for truncated sequencesn
w";M2

o
">0

for a �xed M 2 N. Namely

�
��w";M2 ; v"

�
H�1(D);H1

0 (D)
! C0;M

Z
D
v; (2.109)

with C0;M = (d � 2)�d hN2M�1(Q)i
D
�d�2M

E
: Indeed, we have by Cauchy-Schwarz inequality and for v"; v

de�ned as in (H3)

����(��w"2; v")H�1(D);H1
0 (D)

� C0
Z
D
v

���� �
��������w"2 � w";M2 �

; v"

�
H�1(D);H1

0 (D)

����
+

����(C0 � C0;M )Z
D
v

����
+

�������w";M2 ; v"

�
H�1(D);H1

0 (D)
� C0;M

Z
D
v

���� :
Using Green�s formula, one has

��������w"2 � w";M2 �
; v"

�
H�1(D);H1

0 (D)

���� =

����Z
D
r
�
w"2 � w

";M
2

�
rv"

����
�

�Z
D

���r�w"2 � w";M2 ����2� 1
2
�Z

D
jrv"j2

� 1
2

:
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Using (2.105) and since v" 2 H1(D); then

lim
M!+1

lim
"!0

sup

��������w"2 � w";M2 �
; v"

�
H�1(D);H1

0 (D)

���� = 0: (2.110)

We have also

����(C0 � C0;M )Z
D
v

���� � (d� 2)�d hN(Q)�N2M�1(Q)i
D
�d�2 � �d�2M

E
kvkL1(D) ;

Using (2.122) of lemma 2.9 for � =M�1 and by assumption (2.10) one has

lim
M!+1

����(C0 � C0;M )Z
D
v

���� = 0: (2.111)

Then, by (2.110) and (2.111) we conclude that we need only to prove (2.109). The proof of (2.109) follows

the same lines of the third step of the proof of (H3) for the periodic case for w"2. We just put here the

changes in the proof, we arguing as that case we prove only that

�"M =
X
zj2n"M

d(d� 2)�d�2j;M

"d�
d"j

�d1B"j �
* C0;M in L1 (D) : (2.112)

The factor "
d

d"j
in this latter is due to the fact that the balls B"j have radii d

"
j instead of

"
2 : Since �j;M � M

and "
d"j
�M; we have

k�"MkL1(D) =
X
zj2n"M

d (d� 2) �d�2j;M

"d�
d"j

�d�Md(d�2)d (d� 2)# (n"M ) <1:

Then, since �"M is bounded in L1(D); and the density of C10(D) in L1 (D) by Hahn-Banach corollary

(Corollary A.2.1 See appendix A) applied to the continuous linear form T de�ned by

T (') =

Z
D
�"M' for ' 2 C10(D);

it�s su¢ cient to test �"M only for � 2 C10(D) (C10(D) is the space of functions of classe C1 with compact

support in D). To prove (2.112), we de�ne

~�"M =
X

zj2� 2
M
(D)

d(d� 2)�d�2j;M

"d�
d"j

�d1B"j (2.113)

and prove that for � 2 C10(D) Z
D
(~�"M � �"M ) � ! 0 (2.114)
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and Z
D
~�"M� ! C0;M

Z
D
�: (2.115)

Indeed, we have

Z
D
(~�"M � �"M ) � =

X
zj2�"

2M�1 (D)nn"M

d(d� 2)�d�2j;M

"d�
d"j

�d Z
B"j

j�j

� d(d� 2)Md�2
X

zj2�"
2M�1 (D)nn"M

Z
B"("zj)

j�j

� Md�2 k�kL1(D) "
d#
�n
zj 2 �"2M�1(D) : d

"
j �

"

M

o�
:

Applying (2.68) of lemma 2.8, (2.114) yields immediatly. In other hand, applying lemma 2.11 for
�
�"2M�1 ;

n
�d�2j;M

o�
;

one has almost surely

X
zj2�"

2M�1 (D)nn"M

d(d� 2)�d�2j;M

"d�
d"j

�d Z
B"j

� ! �d
d
hN(Q)i

D
�d�2M

EZ
D
�;

then (2.115) holds.

2.2.3 Proof of theorem 2.2

In this subsection, we give the proof of theorem 2.2 using lemma 2.2 similarly as the �rst chapter. Indeed,

let ! 2 
 be �xed for which the function fw" (!; :)g">0 of lemma 2.2 exist and satisfy hypotheses (H1), (H2)

and (H3). Taking v = u" in (2.9), we getZ
D"(!)

jru"j2 = hf; u"iH�1(D"(!));H1
0 (D

"(!)) ;

then,

Z
D
jr~u"j2 =

Z
D"(!)

jru"j2 = hf; u"iH�1(D"(!));H1
0 (D

"(!)) (2.116)

= hf; ~u"iH�1(D);H1
0 (D)

� kfkH�1(D) k~u"kH1
0 (D)

:

Poincaré�s inequality gives

k~u"kH1
0 (D)

� C kfkH�1(D) < +1;
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which a constant C > 0 that depends only on the domain D:

Then by Eberlein-�Smuljan theorem up to a subsequence which may depend on !; one has

~u" * uh weakly in H
1
0 (D) when "! 0+: (2.117)

Let us show that uh solves (2.11), for a �xed test function ' 2 D (D) and since (H1) yields for w" then

'w" 2 H1
0 (D) : we can substitute 'w

" in (2.9) we get

Z
D
'r~u"rw" +

Z
D
w"r~u"r' = hf; 'w"iH�1(D);H1

0 (D)
: (2.118)

By (H2), the right-hand side converges to

hf; 'w"iH�1(D);H1
0 (D)

! hf; 'iH�1(D);H1
0 (D)

:

We now rewrite the left-hand side of (2.118) using Green formula

Z
D
'r~u"rw" +

Z
D
w"r~u"r' = h��w"; '~u"iH�1(D);H1

0 (D)

�
Z
D
~u"rw"r'+

Z
D
w"r'r~u":

For the �rst term on the right-hand side, we use (H3) one has

h��w"; '~u"iH�1(D);H1
0 (D)

! C0

Z
D
uh':

For the second, by (2.117) and (H2) Z
D
~u"rw"r'! 0:

Using (H2) and (2.117) yields Z
D
w"r'r~u" !

Z
D
r'ruh:

These results gives Z
D
r'ruh + C0

Z
D
uh' = hf; 'iH�1(D);H1

0 (D)
:

We use Green formula again, we obtain

h��uh + C0uh; 'iD0(D);D(D) = hf; 'iD0(D);D(D) ;

then

��uh + C0uh = f in D0 (D) :
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Let us show the uniqueness of uh. if u1 and u2 two solutions of (2.11) then they satisfy for ' 2 D (D)Z
D
r'ru1 + C0

Z
D
u1' = hf; 'iH�1(D);H1

0 (D)
;

and Z
D
r'ru2 + C0

Z
D
u2' = hf; 'iH�1(D);H1

0 (D)
:

The substruction gives Z
D
r'r (u1 � u2) + C0

Z
D
(u1 � u2)' = 0;

taking ' = u1 � u2; we get Z
D
jr (u1 � u2)j2 = �C0

Z
D
ju1 � u2j2 ;

since C0 > 0; then by Poincaré�s inequality yields

u1 = u2:

Thus the uniqueness of uh:

2.3 Auxiliary results

We de�ne the marked point process (�; �) where the process � satis�es the properties (2.2), (2.3) and (2.4)

and the marks � = fXigzi2� satisfying (2.5) and (2.6) with

hXi =
Z +1

0
xhX(x)dx < +1: (2.119)

with hX is the density function of X 2 �:

Lemma 2.9 Let Q a unitary cube and let (�; �) be a marked point process as introduced above. Then, for

every bounded set B � Rd which is star shaped with respect to the origin, we have

lim
"!0

"dN "(B) = hN(Q)i jBj almost surely, (2.120)

and

lim
"!0

"d
X

zi2�"(B)
Xi = hN(Q)i hXi jBj almost surely. (2.121)

Furthermore, for every � < 0 the process �� obtained from � as in 2.14 satis�es the analogue of (2.120),
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(2.121) and

lim
"!0

"d hN�(A)i = hN(A)i : (2.122)

for every bounded set A � Rd:

Proof. In order to simplify, we prove this lemma for

B = QR =

�
�R
2
;
R

2

�
;

i.e QR is a cube of size R centered at the origin and 1
"B = Q

R
" : Let fQzigzi2Zd or fQigzi2Zd the partition of

Rd made of essentially disjoint unit cubes centered in the points of the lattice Zd = fzigi2N : For all � > 0

and all " small enough, we have

"d
X

zi2�"(QR)

Xi = "d
X
zi2Zd

1�"(QR)
X

zj2�(Qi)
Xj = "d

X
zi2Zd\Q

R
"

X
zj2�(Qi)

Xj ;

where 1�"(QR) is the characteristic function of the set �
"(QR): Since QR � QR+� we can write

"d
X

zi2�"(QR)

Xi � "d
X

zi2Zd\Q
R+�
"

X
zj2�(Qi)

Xj : (2.123)

We can denote by Zi the following sum

Zi =
X

zj2�(Qi)
Xj : (2.124)

By de�nition of �(Qi); the cardinality of �(Qi) is �nite then since a �nite sum of random variables is a

random variable so for every zi 2 Zd \Q
R+�
" ; Zi are random variables. In addition, the point process � is

stationary then

h#�(Qi)i = h#�(Q)i for any zi 2 Zd;

hence

hZii =
* X
zj2�(Qi)

Xj

+
= hN (Q)i hXi

and the random variables Zi are identically distributed. We have also by the assumption (2.119) for every

zi 2 Zd \Q
R+�
" that

hZii < +1:
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In the other hand we have for every zi; zj 2 Zd \Q
R+�
" with i 6= j

���hZiZji � hZi2��� =

������
* X
zl2�(Qi)

X
zk2�(Qj)

XlXk

+
� hN (Q)i2 hXi2

������
=

���hXiXji hN (Qi)N (Qj)i � hN (Q)i2 hXi2��� ;
with Z 2 fZig

zi2Zd\Q
R+�
"
: We have for x; y 2 R+ and by the assumption (2.6)

hXiXji =

Z +1

0

Z +1

0
xyhXiXj (x; y)dxdy =

Z +1

0

Z +1

0
xyhXi (x)hXj (y) dxdy

+
c

1 + jzi � zj j
Z +1

0

Z +1

0

1

(1 + xp) (1 + yp)
dxdy;

Since xyhXi (x)hXj (y) and
1

(1+xp)(1+yp) are positive then we can apply Fubini�s theorem (See appendix

A)one has

hXiXji = hXi2 +
C

1 + jzi � zj j
;

with

C = c

Z +1

0

1

(1 + xp)

Z +1

0

1

(1 + yp)
;

which is �nite since p > d� 1. Then we get

���hZiZji � hZi2��� �
���hXi2 hN (Qi)N (Qj)i � hXi2 hN (Q)i2���
+

C

jzi � zj j
hN (Qi)N (Qj)i : (2.125)

By stationarity of �; we have that for any i; j 2 N; i 6= j

hN (Qi)N (Qj)i = hN (Qi�j)N (Q)i ;

so for N (Q) ; N (Qi�j) two random variables, measurable with respect to F(Q) and F(Qi�j = � zi�zjQ)

(F (Q) is the smallest �-algebra which make the random variable N (Q) measurable), there exists C1 < +1,

such that for  > 0 and jzi � zj j > diam(Q) (with diam(Q) denotes the diameter of Q), we have

���hN (Qi)N (Qj)i � hN (Q)i2��� � C1
1 + (jzi � zj j � diam(Q))

D
N (Q)2

E
(2.126)

� C1
jzi � zj j

D
N (Q)2

E
:
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We thus insert this latter (2.126) into (2.125), we get

���hZiZji � hZi2��� � M

jzi � zj j
D
N (Q)2

E
; (2.127)

which a constant M > 0: So the conditions of lemma B.2.3 (See appendix B) are satis�ed and then we can

apply the strong law of large numbers for the sequence Zi and conclude that we have for � > 0

lim
"!0

sup "d
X

zi2�"(QR)

Xi � hN(Q)i hXi
��QR+��� : (2.128)

Arguing analogously for the lower limit by taking the following inequality

"d
X

zi2�"(QR)

Xi � "d
X

zi2Zd\Q
R��
"

Zi;

where � > 0 and Zi is de�ned as (2.124). So since Zi satis�es the assumption of lemma B.2.3, we can apply

the strong law of large numbers to Zi; it follows

lim
"!0

inf "d
X

zi2�"(QR)

Xi � hN(Q)i hXi
��QR���� : (2.129)

Thus by (2.128) and (2.129), the result (2.121) holds true. To prove (2.120), we take Xi = 1 for all zi 2 Zd

in (2.121) as follow

"d
X

zi2�"(QR)

= hN(Q)i
��QR�� ;

and we get our result. For � > 0 be �xed, let us show (2.122). Indeed, for �0 > 0 and � small enough

P
��
N(B)�N � (B)

�
> �0

�
= P

0@#
8<:x 2 � \B : min

y2�(!)\B
y 6=x

jx� yj < �

9=; > �0

1A = 0:

then

N � (B) !
�!0

N (B) almost surely.

We have also �� \B � � \B then

N �(B) = #�� \B � N(B) = #� \B
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and hN(B)i < +1; it follows from the dominated convergence theorem ( See appendix B) that

lim
�!0

D
N �(B)

E
= hN(B)i :

To show (2.120) and (2.121) for �� we may argue exactly as above for the original process � and apply the

strong law of large numbers to the random variables

Z�i =
X

zj2�"�(Qi)
X�
j :

Since for each zi 2 Zd we have �"�(Qi) � �"(Qi), then

0 � Z�i � Zi:

So the only condition that remains to be proved for the collection
�
Z�i
	
zi2Zd is (2.125). By arguing same as

(2.123), we have

���hZiZji � hZi2��� � ����hXi2 DN �(Qi)N
�(Qj)

E
�
D
N �(Q)

E2
hXi2

����+ C

jzi � zj j
D
N �(Qi)N

�(Qj)
E
;

with Z a random variable take the same expectation with Zj for every zi 2 Zd: So the only challenge here

is to prove (2.126) for N �(Qi) instead of N(Qi) for any zi 2 Zd: To do that, for every x 2 Rd; we de�ne

dx = min
y2�;
y 6=x

jx� yj ;

which allows to write

N �(Q) =
X

zi2��\Q
1 =

X
zi2�\Q

1dx>�(zi);

and

N �(Q) =
X

zi2�xi (�\Q)
1dx>�(zi):

where �xi((� \Q)) is the translation of (� \Q) to (� \Qi) by the vector xi: Since

1dx>� = 1N(B�(x)nfxg)=0;

where

B�(x)n fxg =
n
y 2 Rdn fxg ; jx� yj � �

o
:
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It follows that, each N �(Qi) is a measurable random variable with repect to F(B�(Qi)) de�ned as in (2.4)

with

B�(Qi) =
n
y 2 Rd; dist(x;Qi) � �

o
:

Then, we can apply (2.4) as in (2.126) we get

����DN �(Qi�j)N
�(Q)

E
�
D
N �(Q)

E2���� � C

jzi � zj j

D
N �(Q)2

E
:

Lemma 2.10 In the same setting of the previous lemma 2.9, let fI"g">0 be a familly of collections of points

such that I" � �"(B) and

lim
"!0

"d#I" = 0 almost surely. (2.130)

Then,

lim
"!0

"d
X
zi2I"

Xi = 0 almost surely.

Proof. Let M 2 N: We de�ne for every zi 2 � the truncated marks fYigzi2� as follow

Yi = Xi1[M;1) =

8<: Xi if Xi �M;

0 if Xi < M:

Since the original marks fXigzi2� satis�es the assumptions (2.5) and (2.6) then the truncated marks

fYigzi2� � fXigzi2� satis�es the same assumptions. Moreover, we have by lemma B.1.4 (See appendix

B)

hYii =

+1Z
0

P (Yi > y)dy =

+1Z
0

P (Xi1[M;1) > y)dy =

+1Z
0

P (Xi > y)1y�Mdy =

MZ
0

P (Xi > y)dy

�
+1Z
0

P (Xi > y)dy = hXi < +1;

then, we can apply lemma 2.9 to the point process � with truncated marks fYigzi2� to infer that almost

surely

"d
X

zi2�"(B)
Yi !



X1[M;+1)

�
:
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This yields

lim
"!0

sup "d
X
zi2I"

Xi = lim
"!0

sup "d
X
zi2I"

Xi1[0;M) + lim
"!0

sup "d
X
zi2I"

Xi1[M;+1)

� lim
"!0

sup "d
X
zi2I"

Xi1[0;M) +


X1[M;+1)

�
� M lim

"!0
sup "d

X
zi2I"

+


X1[M;+1)

�
� M lim

"!0
sup "d#I" +



X1[M;+1)

�
;

by the assumption (2.130), we obtain

lim
"!0

sup "d
X
zi2I"

Xi �


X1[M;+1)

�
= P (X 2 [M;+1)):

We may take the limit M ! +1 and conclude that

lim
"!0

sup "d
X
zi2I"

Xi = 0:

Since Xi are positive, then our main result

lim
"!0

"d
X
zi2I"

Xi = 0;

holds true.

Lemma 2.11 In the same setting of lemma 2.9, let us assume that in addition the marks satisfy


X2
�
<

+1: For zi 2 � and " > 0; let ri;" > 0; and assume that there exists a constant C > 0 such that for all

zi 2 � and " > 0

ri;" � C": (2.131)

Then, almost surely, we have

lim
"!0

X
zi2�"(B)

Xi
"d

rdi;"

Z
Bri;" ("zi)

�(x)dx =
�d
d
hN (Q)i hXi

Z
B
� (x) dx; (2.132)

for every � 2 C10 (B) :

Proof. First, we show that it su¢ ces to prove (2.132) for ri;" = " for all zi 2 � and " > 0: For � 2 C10 (B) ;

we put for x 2 Rd and "zi the center of the balls B"("zi); Bri;"("zi)

r = jx� "zij
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with

~� (r) = ~� (jx� "zij) = � (x) :

Then, we get

X
zi2�"(B)

����� "drdi;"
Z
Bri;" ("zi)

�(x)dx�
Z
B"("zi)

� (x) dx

����� =
X

zi2�"(B)

������ "
d

rdi;"
�d

ri;"Z
0

~�(r)rd�1dr � �d
"Z
0

~�(r)rd�1dr

������
=

X
zi2�"(B)

�������d
"Z
0

~�(
rdi;"
"d
r)rd�1dr � �d

"Z
0

~�(r)rd�1dr

������ ;
using mean value theorem and the assumption ri;" � C"; we get almost surely

lim
"!0

sup
X

zi2�"(B)

����� "drdi;"
Z
Bri;" ("zi)

�(x)dx�
Z
B"("zi)

� (x) dx

����� � lim"!0 sup c(d)" kr�k(L1(B))d "dN "(B) = 0;

with c(d) is a positive constant independant of ": Since "dN "(B) is bounded by lemma 2.9, thus it su¢ ces

to argue (2.132) only for ri;" = ": Without loss of generality we assume that ri;" = " and jBj = 1: We

can remark by density of countable subset of W 1;1
0 (B) in C10 (B) that it su¢ ces to show (2.132) only for

� 2W 1;1
0 (B) : Let � 2W 1;1

0 (B), we begin by writing

X
zi2�"(B)

Xi

Z
B"("zi)

� (x) dx =
X

zi2�"(B)
(Xi � hXi)

Z
B"("zi)

� (x) dx

+ hXi
X

zi2�"(B)

Z
B"("zi)

� (x) dx:

then������
X

zi2�"(B)
Xi

Z
B"("zi)

� (x) dx� �d
d
hN (Q)i hXi

Z
B
�

������ �

������
X

zi2�"(B)
(Xi � hXii)

Z
B"("zi)

� (x) dx

������ (2.133)

+ hXi

������
X

zi2�"(B)

Z
B"("zi)

� (x) dx� �d
d
hN (Q)i

Z
B
�

������ :
Let fQigi2N be a partition of Rd into essentialy disjoint unitary cubes and let fyigi2N the collection of their

centers. We claim that if T", ~T"; R" and ~R" de�ned by

T" (�) =

Z
B
�; ~T" (�) = "d

X
Qi\ 1"B 6=;

� ("yi) ;
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R" (�) =
X

zi2�"(B)

Z
B"("zi)

� (x) dx; ~R" (�) = "d
�d
d

X
Qi\ 1"B 6=;

N (Q) � ("yi) :

then

lim
"!0

���T" (�)� ~T" (�)
��� = 0; lim

"!0

���R" (�)� ~R" (�)
��� = 0 almost surely. (2.134)

The �rst limit is a standard Riemann sum, we have

lim
"!0

���T" (�)� ~T" (�)
��� = lim

"!0

�������
Z
B
� � "d

X
Qi\ 1"B 6=;

� ("yi)

������� = lim"!0
�������
Z
B
� �

X
Qi\ 1"B 6=;

� ("yi) jQij

�������
= 0;

with jQij is the Lebesgue measure of Qi: Let us argue the second limit of (2.134) for � 2W 1;1
0 (B) ; we have

���R" (�)� ~R" (�)
��� =

�������
X

Qi\ 1"B 6=;

0@ X
zi2�"(Qi)

Z
B"("zi)

� (x) dx� "d�d
d
N (Q) � ("yi)

1A
������� :

Since by change of coordinates we have

X
zi2�"(Qi)

Z
B"

dx = "d
�d
d
N (Q) ; (2.135)

then by mean value theorem and (2.135) we can write

���R" (�)� ~R" (�)
��� =

�������
X

Qi\ 1"B 6=;

0@ X
zi2�"(Qi)

Z
B"("zi)

� (x)� � ("yi)

1A
�������

� 2" kr�kL1(B) "
dN "(B):

Since by lemma 2.9 the term "dN "(B) is �nite, then the second limit follows immediatly.

So we can use these results to write

lim
"!0

sup

������
X

zi2�"(B)
Xi

Z
B"("zi)

� (x) dx� �d
d
hN (Q)i hXi

Z
B
�

������
� lim

"!0
sup

������
X

zi2�"(B)
(Xi � hXi)

Z
B"("zi)

� (x) dx

������
+ lim
"!0

sup

�������"d hXi
�d
d

X
Qi\ 1"B 6=;

Z
B"("zi)

� ("yi) (N (Qi)� hN (Q)i)

������� : (2.136)
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It remains to show that the two terms of the right-hand side of (2.136) vanishes almost surely, before that

we de�ne

ai;" =

Z
B"("zi)

� (x) dx; ~Xi = Xi � hXii ;

S" =
X

zi2�"(B)
ai;"Xi; ~S" =

X
zi2�"(B)

ai;" ~Xi:

We begin by proving the �rst right hand side of (2.136) which means ~S" de�ned above vanishes in the limit.

For � > 0; we estimate by Chebyshev�s inequality, one has

P
�
~S" > �

�
� ��2

D
~S2"

E
: (2.137)

We want to show that ~S" converges to zero in probability, so we rewrite

D
~S2"

E
=

* X
zi;zk2�"(B)

ai;"ak;" ~Xi ~Xk

+

=
X

Qi\ 1"B 6=;
Qj\

1
"B 6=;:

*0@ X
zl2�"(Qj)

al;" ~Xl

1A0@ X
zk2�"(Qi)

ak;" ~Xk

1A+ : (2.138)

We set

Yi =
X

zl2�"(Qi)
al;" ~Xl;

it follows D
~S2"

E
=

* X
Qi\ 1"B 6=;
Qj\

1
"B 6=;:

YiYj

+
=

X
Qi\ 1"B 6=;



Y 2i
�
+

X
i6=j;Qi\ 1"B 6=;;

Qj\
1
"B 6=;:

hYiYji : (2.139)

For the second right hand side of (2.139), we can write

X
i6=j;Qi\ 1"B 6=;;

Qj\
1
"B 6=;:

hYiYji =
X

Qi\ 1"B 6=;;
Qj\

1
"B 6=;:

0@* X
zl2�"(Qj);zk2�"(Qi)

al;"ak;" ~Xl ~Xk

+1A : (2.140)

Since for � 2W 1;1
0 (B) we have

jal;"j =
�����
Z
B"("zi)

� (x) dx

����� � k�kL1(B) jB"j = "d k�kL1(B) ;
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then we argue similarly as lemma 2.9 using the assumption (2.6), we get

X
i6=j;Qi\ 1"B 6=;;

Qj\
1
"B 6=;:

hYiYji �
X

i6=j;Qi\ 1"B 6=;;
Qj\

1
"B 6=;:

"2d k�k2L1(B)

* X
zl2�"(Qj);zk2�"(Qi)

~Xl ~Xk

+

�
X

Qi\ 1"B 6=;;
Qj\

1
"B 6=;:

"2d k�k2L1(B)
c hN(Qi)N (Qj)i

jzi � zj j
;

with  > d: Adding and substructing the term chN(Q)i2
jzi�zj j we get by assumption (2.4)

X
i6=j;Qi\ 1"B 6=;;

Qj\
1
"B 6=;:

hYiYji �
X

Qi\ 1"B 6=;;
Qj\

1
"B 6=;:

"2d k�k2L1(B)
c


N(Q)2

�
jzi � zj j

:

A similar estimation as the �rst limit in (2.134) for " small enough gives

X
i6=j;Qi\ 1"B 6=;
Qj\

1
"B 6=;:

1

jzi � zj j
=
1

"d

Z
B
'; (2.141)

with ' de�ned as

' (x) =
1

jxj for x 6= 0Rd ;

and the assumption  > d gives
1

"d

Z
B
' < +1:

It follows X
i6=j;Qi\ 1"B 6=;;

Qj\
1
"B 6=;:

hYiYji � c"d k�k2L1(B)


N(Q)2

� Z
B
';

sending "! 0; we get under the assumption (2.3)

X
i6=j;Qi\ 1"B 6=;;

Qj\
1
"B 6=;:

hYiYji ! 0: (2.142)
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For the �rst term, we have

X
Qi\ 1"B 6=;



Y 2i
�
�

X
Qi\ 1"B 6=;
Qj\

1
"B 6=;

"2d k�k2L1(B)

0BB@
* X
zi2�"(Qi)

~X2
i

+
+

* X
i6=j;

zl2�"(Qi);zk2�"(Qj)

~Xk ~Xl

+1CCA
(2:6)

�
X

Q\ 1
"
B 6=;

"2d k�k2L1(B)


N(Q)2

�
var(X)

+
X

i6=j;Qi\ 1"B 6=;
Qj\

1
"B 6=;:

"2d k�k2L1(B)
c hN(Qi)N (Qj)i

jzi � zj j
;

adding and substructing the term chN(Q)i2
jzi�zj j and using the assumption (2.4)

X
Qi\ 1"B 6=;



Y 2i
�
�

X
Q\ 1

"
B 6=;

"2d k�k2L1(B)


N(Q)2

�
var(X) + C

X
i6=j;Qi\ 1"B 6=;
Qj\

1
"B 6=;:

"2d k�k2L1(B)

D
N (Q)2

E
jzi � zj j

:

A similar estimation as in (2.141) gives

X
Qi\ 1"B 6=;



Y 2i
�
�

X
Q\ 1

"
B 6=;

"2d k�k2L1(B)


N(Q)2

�
var(X) + C"d k�k2L1(B)

D
N (Q)2

EZ
B
':

Since


X2
�
and



N(Q)2

�
are �nite, then

X
Qi\ 1"B 6=;



Y 2i
�
! 0 when "! 0: (2.143)

Hence by (2.143), (2.142) and the assumption (2.3)

D
~S2"

E
! 0 when "! 0;

So

~S" !
"!0

0 in probability.

Then, we can use the Borel-Cantelli�s theorem B.1.10 (See appendix B) for the subsequence "n = 1
n with

n 2 N we get

lim
n!+1

~S"n = 0 almost surely.
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For the second right hand side of (2.136) we argue in a similar way as above, we denote

~Qi = Qi � hQi ; I" = "d hXi �d
d

X
Qi\ 1"B 6=;

� ("yi) ~Qi:

We estimate by Chebyshev�s inequality for each � > 0; we get

P (I" > �) � ��2


I2"
�

and we write



I2"
�
= "2d hXi2 �

2
d

d2

X
Qi\ 1"B 6=;
Qj\

1
"B 6=;

D
� ("yi) � ("yj) ~Qi ~Qj

E

� "2d hXi2 k�k2L1(B)
�2d
d2

X
Qi\ 1"B 6=;
Qj\

1
"B 6=;

�
N (Qi)N (Qj)� hN (Q)i2

�

(2:4)

� "2d hXi2 k�k2L1(B)
�2d
d2

X
Qi\ 1"B 6=;
Qj\

1
"B 6=;

C
D
N (Q)2

E
jzi � zj j

; (2.144)

since by de�nition of Riemann sum we have

X
i6=j;Qi\ 1"B 6=;

Qj\
1
"B 6=;

C
D
N (Q)2

E
jzi � zj j

� 1

"d

Z
B
C
D
N (Q)2

E
';

with

' (x) =
1

jxj for x 6= 0Rd ;

thanks to the assumption  > d we have

Z
B
C
D
N (Q)2

E
' < +1:

Then we substitute in (2.144) we get



I2"
�
� "d hXi2 k�k2L1(B)

�2d
d2

Z
B
C
D
N (Q)2

E
'! 0 when "! 0;

it follows

I" !
"!0

0 in probability.
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Applaying the Borel-Cantelli theorem B.1.10 for a subsequence "n = 1
n with n 2 N; we get

lim
n!+1

I"n = 0 almost surely.

So for a subsequence f"ngn2N we have

lim
n!+1

X
zi2�

�
1
"n
B
�Xi

Z
B"("zi)

� (x) dx =
�d
d
hN (Q)i hXi

Z
B
� (x) dx almost surely. (2.145)

To extend (2.145) to any sequence "j ! 0; we �x �rst the following notation

" =

��
1

"

�
+ 1

��1
; " =

��
1

"

���1
:

Note that "�1; "�1 2 N and " � " � ":We write � = �++ �� then we can remark by linearity of the integral

that it su¢ ces to consider the positive functions which allows to keep with the case ai;" � 0:

For "j ! 0; by de�nition of "j we can estimate

S"j =
X

zi2�"j (B)

ai;"jXi � S"j +

N"j (B)X
i=1

���ai;"j � a"j ���Xi
� S"j + max

i=1;::;N"j (B)

���ai;"j � a"j ���N
"j (B)X
i=1

Xi: (2.146)

We can claim that we have almost surely

lim
"!0

maxi�N"(B) jai;" � ai;"j
"d

= lim
"!0

maxi�N"(B)

��ai;" � ai;"��
"d

= 0: (2.147)

We �rst show that if (2.147) is true, we can conclude the lemma immediatly. We have

S"j � S"j +
maxi=1;::;N"j (B)

���ai;"j � ai;"j ���
"dj

"dj

N"j (B)X
i=1

Xi; (2.148)

from lemma 2.9 we have "dj
PN"j (B)
i=1 Xi is bounded for " small enough, by (2.147) the second right hand side

of (2.148) vanishes in the limit. For the �rst we can use the result (2.145), we get

lim
"j!0

supS"j �
�d
d
hN (Q)i hXi

Z
B
� (x) dx:
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We may argue similarly, we have

S"j � S"j +
maxi=1;::;N"j (B)

��ai;"j � ai;"j ��
"d

"d
N"j (B)X
i=1

Xi:

Using (2.147), (2.145) and lemma 2.9 we get

lim
"j!0

inf S"j �
�d
d
hN (Q)i hXi

Z
B
� (x) dx:

Then, our main result holds true.

Now, it remains to argue (2.147), we have for � 2 W 1;1
0 (B) and for every zi 2 B and "1 � "2 the

following estimation

jai;"1 � ai;"2 j �
Z
B"1 (0)

j� (x+ "1zi)� � (x+ "2zi)j dx

+

Z
B"2 (0)nB"1 (0)

� (x+ "2zi) dx;

using mean value theorem one has

jai;"1 � ai;"2 j � kr�k(L1(B))d j"2 � "1j jzij "
d
1 + k�kL1(B)

 �
"2
"1

�d
� 1
!
"d1:

Since we have N "2 (B) � N "1 (B) and thus i � N "2 (B) we have that jzij � "�12 and

jai;"1 � ai;"2 j � k�kW 1;1(B)

 �
1� "1

"2

�
+

 �
"2
"1

�d
� 1
!!

"d1:

We choose "1 = "; "2 = " this yields

jai;"1 � ai;"2 j � k�kW 1;1(B)

 
"+

�
1

1� "

�d
� 1
!
"d:

and thus the �rst limit in (2.147) holds.
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Appendix A: Some preliminaries on

functional analysis

In all what follows D is an open bounded set of Rd; d � 2:

A.1 Lp spaces and Sobolev spaces

De�nition A.1.1 [4] We denote by L1(D) the space of real-valued measurable functions u de�ned in D

that satis�es Z
D
ju(x)j dx < +1:

Then, we set

L1(D) =

�
u : D ! R measurable such that

Z
D
ju(x)j dx < +1

�
;

For 1 < p <1; we set

Lp(D) =
n
u : D ! R measurable such that jujP 2 L1(D)

o
;

We de�ne L1(D) as a space of essentially bounded measurable fonctions mesurables i.e

9C � 0 : ju(x)j � C almost every x 2 D:

Then, we set

L1(D) = fu : D ! R measurable : 9C � 0 : ju(x)j � C almost every x 2 Dg ;

Proposition A.1.2 [4] Equipped Lp(D); 1 � p <1 with the norm

kukLp(D) =
�Z

D
ju(x)j dx

� 1
p

; 8u 2 Lp(D);

and L1(D) with

kukL1(D) = inf fC : ju(x)j � C almost every x 2 Dg :
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Lp(D); 1 � p � 1 is a Banach space. Moreover, L2(D) endowed with

Z
D
u(x)v(x)dx; 8u; v 2 L2(D);

is Hilbert space.

Theorem A.1.3 (An embedding theorem for Lp spaces) [2] Suppose that jDj =
R
D dx < +1 and

1 � p � q � +1: If u 2 Lq(D); then u 2 Lp(D) and

kukLp(D) � (jDj)
1
p
� 1
q kukLq(D) :

Hence

Lq(D) ,! Lp(D):

Theorem A.1.4 (Hölder�s inequality) [4] Let f 2 Lp(D) and g 2 Lq(D) with 1 � p; q � 1 and

1
p +

1
q = 1: Then, f � g 2 L

1(D) and

Z
D
jf � gj � kfkLp(D) kgkLq(D) :

Remark A.1.5 Hölder�s inequality for L2(D) is just well-knows as Cauchy-Schwarz inequality.

De�nition A.1.6 [4] Let m � 1 be an integer. For 1 � p � 1 we de�ne Sobolev spaces denoted by

Wm;p (D) as follow

Wm;p (D) =

8<:u 2 Lp(D) : 8� 2 NN avec j�j � m;9g� 2 Lp(D) telle queR

 uD

�' = (�1)�
R

 g�'; 8' 2 D (D)

9=; ;

where D�u = g�; j�j =
NX
i=1

�i and D (D) is the space of in�nitely di¤erentiable functions � : D ! R with

compact support.

We de�ne Wm;p
0 (D) as the closure of D (D) in Wm;p (D) ; i.e

Wm;p
0 (D) = D (D)W

m;p(D)
:

For p = 2; we denote by Hm (D) and Hm
0 (D) the spaces W

m;2 (D) et Wm;2
0 (D) respectivly.

Theorem A.1.7 [4] Equipped Wm;p (D) with the norm

kukWm;p(
) =
X

0�j�j�m
kD�ukLp(D) ; 81 � p � +1;
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Wm;p (D) is a Banach space.

For p = 2; Hm (D) is a Hilbert space with respect to the scalar product

X
0�j�j�m

Z
D
D�u(x)D�v(x)dx:

est un espace de Hilbert. Moreover, Wm;p (D) is re�exif for 1 < p <1 and separable for 1 � p < +1:

The product 'u of a smooth function ' 2 D(D) and u 2Wm;p(D) belongs to Wm;p
0 (D):

Proposition A.1.8 (Caracterization of dual space of W 1;p
0 (D)) [2] For 1 � p < 1; and L 2

W�1;q(D) with q = p�1
p , there exist '0; '1; :::; 'd 2 L

q (D) such that

L(u) =

Z
D
'0u+

dX
i=1

Z
D

@u

@xi
'i; 8u 2W 1;p

0 (D);

Moreover,

kLkW�1;q(D) = inf
�
k('0; '1; :::; 'd)k(Lq(D))d+1

�
:

Corollary A.1.9 (Poincaré inequality) [1] If D is a bounded open set of Rd: There exist a positive

constant C = C (D; p) with 1 � p <1 such that

kukLp(D) � C kruk(Lp(D))d ; 8u 2W 1;p
0 (D):

Theorem A.1.10 (Rellich-Kondrachov) [4] Suppose that D is bounded, and @D is C1: We have

If p < N then W 1;p (
) ,! Lq(
);8q 2 [1; p�[ where 1
p�
=
1

p
� 1

N
;

If p = N then W 1;p (
) ,! Lq(
);8q 2 [1;1[ ,

If p > N then W 1;p (
) ,! C(
);

with compact embedding.

Theorem A.1.11 (Green formula) [1] Suppose that D be an open bounded regular set of classe C1:

If u and v are functions of H1(
); they satisfy

Z


u(x)

@v

@xi
(x)dx = �

Z


v(x)

@u

@xi
(x)dx+

Z
@

u(x)v(x)nidx;

where n = (ni)1�i�N is the outward unit normal to @
:
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Proposition A.1.12 [1] Suppose that D is an open bounded regular set of classe C1: Let (wi)1�i�k

be a regular partition of D; that is each wi is a regular open set of classe C1; wi \ wj = ; if i 6= j and


 =
[

1�i�k
wi: Let u be a fonction whose restriction to each wi; ujwi = ui belongs to H1(wi): If u is continous

over 
; then u belongs to H1(
):

Theorem A.1.13 (Gagliardo-Nirenberg-Sobolev inequality) [2] Assume that 1 � p < d and that

@D is C1: u 2W 1;p (D) then u 2 Lp� (D) with p� = dp
d�p . and we have the estimation

kukLp� (D) � C kukW 1;p(D) ;

the constant C depending only on p; d; and D:

If we consider the case p = d; then we the continuous embedding ofW 1;d (D) in Lq (D) with q 2 [d;+1) :

A.2 Functional analysis results

Corollary A.2.1 [4] (Hahn-Banach)Let G be a subset of a Banach space E, G0 and E0 the dual space

of E and g : G �! R is a continuous linear function of norm

kgkG0 = sup
kxkG�1
x2G

jg(x)j :

Then there exists f 2 E0 that extends g and such thatkgkG0 = kfkE0 :

Theorem A.2.2 (Lax-Milgram) [4] Let a a bilineair form de�ned in H �H and satis�es

9M > 0; ja(u; v)j �M kukH kvkH 8u; v 2 H

9� > 0; a(u; v) � � kuk2H 8u 2 H
;

with H a Hilbert space. Then, for every  2 H 0; there exist a unique u 2 H such that

a(u; v) = h ; viH0;H ; 8v 2 H:

De�nition A.2.3 (Weak and weak-star convergence) [4] Let E be a banach space.

A sequence (un)n2N � E is said to converge strongly to an element u 2 E; if

kunkE ! kukE ;

where k:kE is a norm de�ned in E:

A sequence (un)n2N � E is said to converge weakly to an element u 2 E and we write

un * u weakly in E:
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if

hg; uniE0;E ! hg; uiE0;E for every g 2 E0;

where E0 is the daul space of E.

A sequence (gn)n2N � E0 is said to converge weakly-star to g 2 E0 and we write

gn
�
* g weakly-star in E0:

Theorem A.2.4 (Eberlein-�Smuljan) [4]

a. Let E be a re�exif Banach space and (un)n2N is a bounded sequence in E. Then, there exist a subsequence

(unk)nk2N converge weakly to a limit u 2 E:

b. If E is a separable Banach space and (gn)n2N a bounded sequence in E
0 with E0 is the dual of E: Then,

there exist a subsequence (gnk)nk2N converge weakly-star to a limit g 2 E
0:

Theorem A.2.5 (Maximum principle [9]) Let u 2 C2 (D) \ C
�
D
�
such that

��u = 0:

Then

min
@D

u � u(x) � max
@D

u for x 2 D:

A.3 Additional de�nitions and results

De�nition A.3.1 (Periodic functions) [6] Let Y = ]0; l1[ � ::: � ]0; ld[ be a cell in Rd and u is a

function de�ned in almost everywhere in Rd: the fonction u est said to be Y�periodic if

u(x+ kliei) = f(x) 8k 2 Z; 8i = 1; ::; d;

where (ei)1�i�d is the canonical basis of Rd:

Proposition A.3.2 (See D. Cioranescu and Murat [6]) Let 1 � p � +1 and f be a Y� periodic

function in Lp(Y ) where Y = ]0; l1[� :::� ]0; ld[ be a cell in Rd Set

f"(x) = f(
x

"
) almost everywhere in Rd:

Then, if p <1; as "! 0

f" *MY (f) =
1

jY j

Z
Y
f (x) dx weakly in Lp (!) ;
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for any open subset ! of Rd:

If p = +1; one has

f" *MY (f) =
1

jY j

Z
Y
f (x) dx weakly* in L1

�
Rd
�
:

Theorem A.3.3 (Fubini�s theorem) [12] Suppose that f (x; y) is a non-negative measurable function

on Rd1 � Rd2 = Rd:Then, for almost every x 2 Rd1 and y 2 Rd2

1. The slice fy (x) := f (x; y) is measurable on Rd:

2. the function de�ned by
R
Rd1 f

y (x) dx is measurable on Rd2 :

3.the slice fx (y) := f (x; y) is measurable on Rd2 :

4. the function de�ned by
R
Rd2 f

y (x) dx is measurable on Rd1 :

Moreover, Z
Rd2

�Z
Rd1

f (x; y) dx

�
dy =

Z
Rd
f =

Z
Rd1

�Z
Rd2

f (x; y) dy

�
dx:

74



Appendix B : Some basic facts on

stochastic analysis

We denote (
;F ;P) where 
 is the set of outcomes, F is a set of events and P: F ! [0; 1] is a function that

assigns probabilities to events.

B.1 Some probability results

De�nition B.1.1 [7] Let (S;S) an aribtrary measurable space. A map X : 
 ! S is said to be a

measurable map from (
;F) to (S;S) if

X�1 (B) = f! : X (!) 2 Bg 2 F for all B 2 S:

If (S;S) =
�
Rd;Rd

�
and d � 2 then X is called a random vector, if d = 1, X is called a random variable, or

random vector for short.

De�nition B.1.2 [7] The distribution function of a random variable X is the function F de�ned as

F (x) = P (X � x) ;

de�ned for every x 2 (�1;+1) :

When the distribution function F has the form

F (x) =

xZ
�1

f (y) dy:

we say that X has a density function f:

De�nition B.1.3 [7] The expectation of a random variable with density function f is de�ned by

hXi =
+1Z
�1

xf (x) dx:

Generaly, the expectation de�ned as the integration over the set of probability 
 with respect to the
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probability measure P; we write

hXi =
Z


X (!) dP (!) ;

We de�ne the nth�moments of a random variable X with n 2 N� as follow

hXni =
+1Z
�1

xnf (x) dx:

We de�ne also the variance var(X) of X as follow

var (X) =
D
(X � hXi)2

E
=



X2
�
� hXi2 :

Lemma B.1.4 [7] Let X a random variable. If X � 0; and p > 0; then

hXpi =
+1Z
0

pyp�1P(X > y)dy:

Theorem B.1.5 (Chebychev inequality) [7] Let X a random variable, for any a > 0; we have

a2P (jXj � a) �


X2
�
:

Theorem B.1.6 (Dominated convergence theorem) Let Xn is a sequence of random variables.

X;Y two random variables. If Xn converges to X almost surely, jXnj � Y and hY i < +1 then

hXni ! hXi :

De�nition B.1.7 (The joint distribution and density) [11]

The joint distribution FX;Y of two random variables X and Y the probability of the event

fX � x; Y � yg ;

with x; y 2 (�1;+1):

The joint density function of X and Y is de�ned as follow

fX;Y (x; y) =
@2FX;Y (x; y)

@x@y
:

De�nition B.1.8 (Independance) [11] Two random variables X and Y is said to be independent if
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for every A;B 2 F , the events (X 2 A) and (Y 2 B) are independent that is, if

P (X 2 A; Y 2 B) = P (X 2 A)P (Y 2 B) :

applaying this latter for the events (X � x) and (Y � y) for the real numbers x and y;then

FX;Y (x; y) = FX (x)FY (y) :

hence

fX;Y = fXfY :

In what follow E is an arbitrary complete separable metric space, B (E) the ���eld of its Borel sets.

Theorem B.1.9 (Borel-Cantelli I) [7] Let Ai; i 2 N� a sequence of subsets of 
; if

1X
i=1

P(X � i) <1:

Then

P(X � i i.o) = 0:

(i.o in�nitely often which means P (Xi > i i.o) = P
�
lim
i
sup (Xi > i)

�
with lim

i
sup (Xi > i) =

\
i�0

[
k�i
(Xi > i)

and (Xi > i) = f! 2 
 : Xi(!) > ig

Theorem B.1.10 (Borel-Cantelli II) [7] Let Xn a sequence of random variables, Xn ! X in proba-

bility if and only if for every sequence Xn(m) there is a further subsequence that converges almost surely to

X:

De�nition B.1.11 (Convergence types) [11] A sequence Xn of random variables is convergent to a

random variable X in probabaility if for every " > 0

P (jXn �Xj > ")! 0 when n! +1:

We said that Xn converge almost surely (this type of convergence called almost everywhere in measure

theory) if for every " > 0 we have

P (jXn �Xj > " a.e) = 0:

B.2 Stochastic processes

De�nition B.2.1 [8]

We denote by � : B (E) �! R+ the Borel measure which is said to be boundedly �nite if �(A) < +1

for every bounded Borel set A 2 B(E),
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a. ME the space of all boundedly �nite measure on B (E) :

b. NE is the space of all boundedly �nite integer-valued measures N 2 ME , called counting measures for

short.

c. N �
E is the family of all simple counting measures, consisting of all those elements of NE for which

N (fxg) = 0; or 1 (all x 2 E).

d. N g
E�K is the family of all boundedly �nite counting measures de�ned on the product B(E�K); where K

is a complete separable metric space of marks, subject to the additional requirement that the ground

measure Ng de�ned by

Ng(A) = N(A�K) for all A 2 B(E):

is boundedly �nite simple counting measure; i.e Ng 2 N �
E :

De�nition.B.2.2 [8]

a. A random measure � on the space E is a measurable mapping from (
;F ;P) into (ME ;B (ME)) :

b. A point process N on E is a measurable mapping from (
;F ;P) into (NE ;B (NE)) :

c. A point process is simple when P(N 2 N �
E) =1:

d. A marked point process on E with marks in K is a point process N on B (E �K) for which P(N 2

N g
E�K) =1; its ground process is given by N (:) = N(:�K):

Lemma B.2.3 (Strong law of large numbers for sums of random variables with correlations)

[10] Let fxigi2N = Zd; and let fXigi2N be identically distributed random variables with Xi � 0 and X is a

random variable takes the same properties as Xi; for each i 2 N such that hXi < +1: Let us assume that

for every i; j 2 N with i 6= j ���hXiXji � hXi2��� < C

jxi � xj j
 > d:

Then, for every bounded Borel set B � Rd which is star-shaped with respect to the origin, we have

lim
"!0

"d
X

xi2Zd\ 1"D

Xi = X almost surely.
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Conclusion

In this thesis we have used the homogenization theory to study a Dirichlet problem with Laplace operator

in a bounded domain, perforated by spherical holes using the oscillating test function method. We have

treated two examples of perforated domain. In the begining, we have focused on the case where the holes

are distributed periodically and which have a critical size, we have introduced some hyptheses on holes in

order to obtain in the limit the Laplace operator with an additional term and this where the charm of the

problem lies. For the second example we have treated a perforated domain with random number of balls,

assuming that the centers of the balls are generated according to a stationary point process and the radii

are random variables with short-range correlations. In addition, we have recovered in the homogenized limit

an averaged analogue of strange term obtained as in the �rst case under a minimal assumption on the size

of the holes.
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