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Introduction

The aim of homogenization theory is to study the macroscopic behaviour of a system form its microscopic
one. In other words, if we consider an heterogeneous problem P. where ¢ is a very small parameter and if wu,
is a solution of P., the homogenization theory is an asymptotic tool giving us some answers to the following
: Do the solution u. converges in some specified topology to a limit «? What is the limiting problem that
u is a solution?

The objectif of this master thesis is to study the homogenization of the following Dirichlet problem:

—Au, =0 in D' (D9),
w € HR (D),

where D¢ is a perforated domain obtained by removing a region D C R? d > 2 the closures of spherical
holes T7 .

In the first chapter, the simplest case of perforated domains is considered, that is where the holes are
periodically distributed. It is well-known that in this case there are three typical situations depending on
the size of the holes: (1) Either the holes are too small and u. converges to a solution of a Dirichlet problem
with Laplace operator as the first problem, (2) or the holes are too big and the solution u. converges to
zero, (3) between these two situations there is a critical size in u. converges to a solution of a Dirichlet
problem with an extra-term of ordrer zero, see D. Cioranescu and Murat [5]. So we only focus our attention
on the third case which is, at our opinion, the most interesting one. In the second chapter, another type
of a perforated domain is studied. Here, the holes, considered as balls, are randomly distributed in such a
way that the centers and the radii of these balls denoted T are generated by a marked point process (®,R)
(see, Appendix B). We present in this chapter the more recently studies of A. Giunti, R. Hofer, and J.J.L.
Velazquez [10] which generalizes those studies of D. Cioranscu and F. Murat introduced in the first chapter

into the case of random holes.



Chapter 1

Homogenization of a Dirichlet problem in
a perforated domain with periodic

structure

We study in this chapter is the homogenization of a Dirichlet problem in a perforated domain with spherical

holes distributed periodically in the volume. This work was done by D. Cioranscu and F. Murat [5].

1.1 Setting of the problem

Let D be an open bounded set of R where d > 2. For every ¢ > 0, we cover R? by cubes Py of size 2¢. For

example we can write:

d
R = J {H [2ek; — €, 2¢k; +5[} ;

kezd \ ;=1
where Hle is the cartesian product. one has
d
Pi = H [2ek; — €, 2ek; + €[, k= (ki1, ..., kq) € Z°.

=1

Indeed, for every z = (z1, ..., z4) € R? and for every € > 0 there exists k = (k1, ..., kg) € Z% such that x € Pr.

= (22 0));

where |.] is the integer part. For every k € Z¢ and each cube P we consider the closed balls T} C P with

It suffices to take for every i =1, ....d

radii a® where 0 < a® < ¢ and the center is the point (2ekq, 2cks, ..., 2eky) which is also the center of the



cube P;. We set

=R\ U T, D'=Dn*=D\ U Tf (1.1)
kezd k€ZINLD

where

1
~ D= {m e RY, 2¢k ¢ D}.
2e

Let f € L?>(D). We consider the Dirichlet problem in D®: Find u® such that

—Auf = f in D'(D?),

(1.2)
u® € H}(D?).
The equivalent variational formulation of (1.2) is
Find v® € H}(D?),
(1.3)

[pe VueVo dz = [ fo° dz, ¥V v° € H}(D?).

Applying Lax-Milgram Lemma, we can easily show that the problem (1.3) has a unique weak solution

u® € H}(D?). Now, denote by @ the extension of u¢ by 0 inside the holes, i.e

uf (z) a.ex € D7,

0 aexze Tf, ke ZN4D.

@ (z) =

It is clear that @ € H}(D). Since D is bounded we can use Poincaré’s inequality : there exists a constant

a > 0 independant of €, such that

a @l g2 oy < IVl L2 py)e - (1.4)

Let us return to (1.3) and take v® = u°, we obtain

[vatas = [ veldo= [ pude= [ satds <1 15 g0
D De De D

and using (1.4) we get immediatly

1122y -

1
~&
12 gy <

Hence by Rellich-Kondrachov Theorem, we can extract a subsequence still denoted by @° such that
@ — u strongly in L?(D), (1.5)

then
Vil — Vu weakly in (L? (D))",



The main objectif of homogenization theory is to construct the limit problem that u is a solution.

Remark 1.1 We cannot pass to the limit in (1.8), because we only have weak convergence in the gradient.
To overcome this difficulty, we take some special test functions of the form : pw® where ¢ € D(D) and w® is
some functions called correctors, which are specifically constructed from the microscopic description of the
initial problem. This technique is called the energy method of Tartar or oscillating test functions introduced

by L. Tartar in [13] in the context of the homogenization of linear elliptic equations.

1.2 Construction of a test function

In this section, we shall give an explicit expression of an oscillating test function which shall be used in the

homogenization process. It is given by the following technical Lemma.
Lemma 1.2 For e > 0, there exists a sequence of functions w® and a distribution p such that

(P1) w® € HY(D),

(P2) w® =0 in the holes Tf, k € Z*N 5D

(P3) w® — 1 weakly in H' (D),

(P4) e W (D),

( For a sequence v¢ with v =0 in TS,k € Z4N Q—IED,
satisfies v¢ — v weakly in H*(D) with v € HY(D), we obtain

(P5)
<_AwE:<PUE>H—1(D), H}(D) — (1, pv)

H=1(D), H}(D)

for every ¢ € D(D).

Proof. As a first step of the proof, we define the function wj, on each cube P and we put

g _ 3 13
wy, = 0in T},
g _ 3 € g

wi =1in PE — B,

wy, is continuous in the interfaces 05y, 01%,

where B C Py is the closed ball of radius € with same center of T}, k € VAR

B;:{xeRd,|x—2sk|ge}.



See figure 1.2.
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Figure 1.2.2 : This figure represente a zoom in the cell Qf perforated by a spherical hole

T¢ C Bi C PE.

Then, we define w® in the whole set R? by

w® (x) = wj, (x), v € Pg.

It follows then )
Aw*=0 in | Bf-T,
kezd
1 in RN\ U Bi,
kezd
0 in U Tj.
kezd

\

Let us now give an explicit formulae for w®. Let r = |z — x| where x}, is the center of the ball 7}, and search

for w® as a radial solution

w(z) = v(lz — ),



where v is an unknown scalar function to be determined. Note that we dropped the e—index just to simplify

the presentation. We get the following initial-value problem

—Awf (z) = =" (r) + E=4'(r) =0 in ]af, €],
v(a®) =0,
v(e) =1.

Solving the latter gives us

€ _ _
_ Ina In|z — x| ifd=2,
Ina® —Ine

£

(a5) ) — fo — a7
(af)~(d-2) — g=(d-2)

w® =

ifd > 3.

Now let us choose
at® = exp(—%) if d=2,

cf:Cgesd*i2 ifd>3

where Cj is a positive constant independent of e. Thus w® satisfies the properties (P1) — (P5)with

g&ﬁd:z

M:
p=220d"2 i g > 3,

For more details, we refer the reader to D. Cioranescu and F. Murat [5] m

1.3 Passage to the limit

(1.8)

In what follows w® and p are as in the previous section, namely they satisfy the properties (P1)-(P5) of

Lemma 1.2.

Proposition 1.3 We have

()00 = limy [ [V o, ¥ip € DD).

(1.9)

Remark 1.4 Before proving this result, we mention that the limit p of ]fo]? in the sense of distribution

is a Radon measure.



Proof. From (P5) it is easily seen that (for v° = w®, v =1, ¢ € D(D))

/Vw€|2g0dx+/ wVwV(p)de = /VwEV(chp)dx
D D D
= (AW, 0w g (p) mi(p)

= ) 1), HL(D) -

taking into account that we have

Vw® — 0 weakly in (L*(D))?

and by Rellich-Kondrachov theorem we have
w® — 1 strongly in L*(D).

We pass to the limit, we obtain

/ w*VwV(p)dz — 0.
D
Therefore the result 1.9 holds true. m

Theorem 1.5 Under the hypothesis (P1) to (P5), the solution @€ of (1.2) converges weakly in H(D) to u

the unique solution of
—Au+ pu=f inD'(D),
(1.10)

u € Hi(D).

Proof. We have proved before in section 1.1 that ||a¢|| Hi(p) is bounded. Then by Eberlein-Smuljan
theorem there exists a subsequence denoted also @ and u € HO1 (D) such that @° converges weakly to u
in H}(D) and by Rellich-Kondrachov theorem @ converge strongly to u in L?(D). Now we identify the
equation statisfied by the limit u. If p € D(D) and w® € H'(D) then we have w®p € H}(D), furthermore w®
satisfies hypothesis (H2) it follows w®p € H(D?). Then, we can substitute w®¢p in variationnal formulation

(1.3), one has

fupdr = VuV(wp)dzx
De Ds

= / eV Vuwdx +/ w*VuVedz. (1.11)
D D
Using the following result
w® — 1 strongly in L?(D)



and (1.5) we can pass to the limit in the first and the last integral of (1.11) then, one has

/wEVfLEVgp dr — /Vquo dzx,
D D

fuwfodr — /f(pdx. (1.12)
De D

Applying Green’s formula we get

/Dc,OVﬂEVwEda: = <—Aw5,g0&€)H71(D)7Hé(D) — /DﬂEVgoVwEda:. (1.13)

We can pass easily to the limit in the right hand side of (1.13), using (P5) for the first integral it follows
that

<_Aw5790ﬂ£>H—1(D),H§(D) - <M?u‘p>H—1(D),H(}(D) : (1.14)

For the second integral of (1.13), we use (P3), i.e Vw® converges weakly to 0 in (LZ(D))d and the strong

convergence of @¢ in L?(D), we obtain then
/ u*VeVuw dr — 0. (1.15)
D

Summing these convergences (1.12), (1.14) and (1.15), we get

/DVuVsadxH/w,@H1(D),H5(D)=/Dfsodw, Vo € D(D),

and it follows that

(—Au, 80>D/(D),D(D) + {pu, 90>H—1(D),H3(D) ={f, <P>D/(D),D(D) , Vo € D(D).

We can remark that the product pu of p € W1°(D) and u € H} (D) belongs to H~1(D), then the duality

pairing (uu, 90>H*1(D),H6(D) is well-defined which allows to write
—Au+pu = f in D'(D).

Let us prove now the uniqueness of the solution u. Indeed, Let w1, ug € H& (D) two solutions of (1.10). One

has
/Vm-VsO dx + (p, urp) = /fsodx, Vo € D(D),
D D

D/(D),D(D)

/ Vua.Vo dz + (u, usp) = / fedz, Yo € D(D).
D D

D(D),D(D)



By substracting, we get

=0, VYo e D(D).

D/(D),D(D)

/D V(ur — u2).Vip d + {p1, (w1 — uz)gp)

For ¢ = uy —us € H(D), it follows

/D [V (u1 — UZ)‘Q dr + </L7 (u1 — u2)2>W71,oo(D)7W01vl(D) =0.

by (1.9), u is a positive measure. Therefore

Uyl = ug.

Thus, we get the uniqueness of solution. m

1.4 Weak lower semi-continuity of the energy: correctors

In this section, we assume that the construction of w® and p¢ satisfying hypotheses (H1) to (H5) introduced

in section 1.2 holds true.

Proposition 1.6 For every sequence z° and z such that:

2 = 2z weakly in H}(D), (1.16)
1
2 = 0 on the holes T};, Vk € Z*n %D’
One has
. 2 2 2
gli%mf/D]Vze] dazz/D]Vz\ dz + (p, 2 >W—1«°°(D),W01’1(D)' (1.17)

Remark 1.7 The classical weak lower semicontinuity of the energy defined as follows: For every sequence

z¢ and z satisfies

2¢ — z weakly in H} (D),
then

e—0

liminf/ |sz|2dx2/ V2 |? dz,
D D

We can remark the fact that z° vanishes in the holes introduce a new energy. Since p € W=1°(D) and

2% e WOI’I(D) then (p, 2%) is well-defined.



Proof. (of Proposition 1.6). Let ¢ € D(D). We consider the following integral

/|V(zs—w5cp)|2dx = /|Vze—90Vw€—w€V<p|2dx
D D
= /]Vz€]2dw+/ ]V<p|2]w5]2da:+/ o) | Vs |? da
D D D
—2/ w6Vz€w5Vgodx+2/ w*eVw*Vedr
D D

—2/ VzEVuwpdz,
D

taking into account

(—Aw®, pz°) :/ ©Vz*° Vwad:v+/ 2°V Vudez,
H=1(D),H}(D) D D

we obtain

/|V(z€—w5<p)|2dx = /]VZE—QOVwE—wEVgo\de
D D
_ /]Vz‘5]2dx—|—/ ]Vg0|2|w‘€]2d:n—|—/ o2 [Vur|? da
D D D
2/ w*Vz* w5V90d$+2/ w*eVw*Vedr
D D

+2/ 2° Vw*Vodr — 2 (—Aw, pz°) (1.18)
D

H=1(D),H}(D)

We choose ¢ such that [, |V2® |? dz converges, then using Rellich-Kondrachov theorem and (P5) to pass to

the limit in each term, we obtain

lim [ |V(2f —uw')Pde = lim/ ]Vz€]2da:+/ IVol|® dz
e—0 Jp e—=0 Jp D

+ lim(/ V(wfp?) Vuda —/ w® |Vl Vwsda)
e—0 D D

—2/ Vz Vodr — 2, pz)
D

H=1(D),H} (D)

Then

lim [ V(2 —w')?dz = lim/ \VzE\de—i—/ \V(p\Qd:U+<,u,<p2>
e—0 D e—0 D D

H—1(D),H}(D)

—2/ VaVedr — 2 (u, pz) (1.19)
D

H=1(D),H}(D)



Now we choose a subsequence denoted also € > 0 such that:
hm V22 do = hm 1nf/ V252 d.
—0Jp
Since the left hand side of (1.19) is positive, we get

hmlnf/ VP de > 2/ Vz Vgpd:r—/ IVo|? dz

+2 {u, ¢z) 2 {p, o) ) (1.20)

H=1(D),H} (D) H=1(D),H}(D)

This result holds true for every ¢ € D(D). If we choose ¢ such that ¢ converges strongly to z in H}(D),

one has

hmlnf/ V252 dx>/ |Vz|? dz + (p, %)

H=1(D),HY(D)
If 2 belongs only to H}(D), one has w®z ¢ HE(D) under (P1), then, (1.18) does not make any sense with
¢ = z. This is the reason why we had approximate z by smooth functions ¢. If z = ¢ from the beginning

and this is impossible if z € D(D), we obtain (1.17) from (1.20) directly without passing to the limit. m

Proposition 1.8 If moreover z¢ satisfies:

. 2 2 2
ilg(l) D|V,z5| da:—>/D|Vz| de + (p, 2 >W*1’<>°(D),W01’1(D) (1.21)

Then
25 —w z — 0 strongly in W&’l(D) (1.22)

Remark 1.9 By (1.22) we have a stong convergence only in Wol’l(D), but we would like to have this
convergence in H&(D), which is the natural space for the problem. We shall see at the end of the proof
of proposition a strong convergence result in Wol’q(D) with q = d%dl thanks to Gagliardo-Nirenberg-Sobolev

theorem (See Appendiz A).

Proof. Let us return to (1.18) and taking into account the hypothesis (1.21). We can establishes for
e D(D)

_ — _ 2
hm D|V(z we)|? de = / V(2 — @) dz + (1, (2 — ) >W_1,OQ(D)7WO1,1(D).

If z € D(D), we can take ¢ = z and we have proved

2° —w®z — 0 strongly in H (D).

10



If z is not regular, we fix ¢ such that there exists a constant § > 0 such that
1z = &llgp) < 6.
Using the embedding of H}(D) in Wol’l(D). It follows
lim [ 905 — w )2 de < (1+ 2|l ()0
e—0 D
thanks to Poincaré inequality, one has

lim /D |(2° — wggo)\Q de < (142 H/’LHW—l,oo(D))52.

e—0

Using definition of the limit concept: For C7 = (1 +2 ||uHW71,oo(D))52 > 0, there exist go such that for every
€ < g9, one has

2
125 = w el (py < Cr-

In the other hand

e .E < e _ € (. )
12 = w2l < 15 — Wl oy + 107G — Do) (123
< 2 = w el g oy + 1wl g oy 112 = @l ma o)
< C16+ 099,

where C},Cy > 0, for every € < o, which prove (1.22). We have used in (1.23) an estimation of w®(z — )
in T/VO1 (D). Thanks to Gagliardo-Nirenberg-Sobolev theorem, we have H} (D) ¢ L*(D) where 2% = %

. 1 _1 1 .
puting 7= 32 + 35, We can write

ez = Dllytamy = IV z = @)l

IN

IVl p2(pyya 12 = @l p2x oy + 112 = @l 2oy 1wl L2y »
which allows to

25 — w®z — 0 strongly in Wol’q(D)7
where ¢ = d%dl. [

Assume Propositions 1.6 and 1.8 are satisfied, then we obtain the following corrector result

11



Corollary 1.10 Let u® be the solution of the Dirichlet problem (1.2). Then there exists r¢ such that
u® = wu + e,
r® — 0 strongly in W()l’l(D),

where w is a solution of (1.10).

Proof. Using theorem 1.5, we have % converges weakly to u in Hg (D), where u is a solution of (1.10).

Multiplying the equation of (1.2) by u® and (1.10) by u using Green formula one has
/ V@l |? dx = / fatdr — / fudz = / \Vul? do + (i, u2>W—1’°°(D) WD) -
D D D D o
Applaying proposition 1.8, taking z¢ = 4and z = u, we get
u° — w u — 0 strongly in Wol’l(D).

Taking

r° = 4° — w®u — 0 strongly in WOI’I(D)-

Then we get our result. m

12



Chapter 2

Homogenization for Dirichlet problem in

randomly perforated domain

This chapter deals with the homogenization of the Poisson equation in a bounded domain of R%, d > 3,
which is perforated by a random number of small spherical holes with random radii and positions studied by
A. Giunti et al in [10] using the oscillating test functions method. We recover in the homogenized limit an
averaged analogue of the "strange term" obtained by D. Cioranescu and F. Murat in the periodic case [5].
In addition, we put a minimal assumption on the size of the holes in order to ensure that the homogenized

equation has a sens and thus the homogenization occurs.

2.1 Setting of the problem

Let D C R? d > 3, be an open and bounded set that it is star-shaped with respect to the origin. For € > 0,

let us define the set of closed small spherical holes H¢ C R? of the form

H = |J B _o (), (2.1)

) ed-2p,
ZjG@ﬂgD

where %D = {a: eRY ez € D} , the set ® C R? is a random collection of points and the radii {pj}zjecb CR*
are random variables. We may thus be thought that the set H® being generated by a marked point process
(®,R) on R xR where ® is a point process on R? for the center of balls and the marks R = {pj }zjeé CR*
are the radii associated to each center. For a precise definition we refer the reader to Appendix B. Let
(Q, F,P) be a probability space, where Q2 denotes the set of events, F is o-algebra and P is a probability

measure, associated to the process (®,R) satisfying the following properties:

a. The process ® is stationary: For every z € R% and each {z} jeN C R?, the translation operators 7, are

13



defined as follow
Tz ({zj}jeN) = {Zj + x}jeN :

So
Tz (®) = P. (2.2)

b. There exists A < +o00 such that for any unitary cube Q C R¢
(2.3)

N|=

(#(@NQ)*)> < A,

where #S € NU oo denotes the cardinality of a set S and (.) is the integration over 2 with respect to

the probability measure PP.

c. The point process ® satisfies a strong mixing condition: For any bounded Borel set A C R? F(A) be

the smallest o-algebra with respect to which the random variables
N(B)(w) = #(®(w) N B),
are measurable for every Borel set B C A. Then, there exists C7 < 400 and v > d such that for every
A C R? as above, every z € R, with || > diam(A) and every &;,&, are measurable function with

respect to F(A) and F(7,A), respectively, we have

€162} = (60 €] < T ey (6D D) (2.4

d. The marginal Pr of the marks has two correlation functions, the first is the density function of a random

variable p € R denoted by h, satisfies

+o0
/a:d2hp(a:)d1: < +o0. (2.5)

0

The second is the joint density function of two variables p;, p; depend on the centers z; and z; denoted

by hy,p, and satisfies for z,y € R*

with
c

Ziy2i, T, y)| < ’

|9(2i, 25, @, y)| (14 |z — 2|7) (1 4 zP) (1 + yP)

14



forp>d—1,v>d, c € R" and g is an integrable function with respect to the variable r = |z; — z;]|
and vanishes when the distance |z; — zj| — +oc. For f € H~1(D), we introduce our main problem as
follow: Find w. such that

)= f() in D),

) (2.7)
Ue(w,.) =0 in 0D (w),

where D®(w) is a punctured domain obtained by removing from D the set H®(w). We write

D'w)=D\ |J B _a,(ez). (2.8)

ed—2Pj
zj E@(w)ﬂ%D

The equivalent variational formulation is

find u. € H}(D?(w)) such that

(2.9)
fDE(w) VUSVvdx = <f7U>H*1(D8(w)),H§(D5(w)) s Yo € H&(De(w))

Denote by @, the extension by zero of u. to the whole set D

ue in Df(w),

0 in H°(w),

Ue =

then . € H&(D). In order to simplify the presentation, we denote for P-almost every w € 0 D¢ and

H¢ instead of D¢(w) and H®(w).

2.2 Some preliminaries results

In this section, we give our main result of homogenization and some lemmas in order to use it in the proof

of the following theorem.

Theorem 2.1 Let the holes in (2.1) be generated by a marked point process (®,R). Let ® satisfy (2.2),
(2.3) and (2.4), and let the marginal Pr satisfy (2.5) and (2.6). Assume that the expectation of each radius

p; satisfies
+oo

<p§l_2> = /xd2hpi (x)dr < +00. (2.10)
0

For f € HY(D) and e > 0, let u. = uc(w,.) € Hi(D?(w)) solves (2.7). Then, there exists a constant Co > 0
and uy, € HY(D) solving

—Aup, + Coup, = f in D,

up =0 in 0D,

(2.11)

15



such that for P—almost every w € €2
Gie(w,.) — up, weakly in Hy(D), fore |0V,
Moreover, we have that the constant Cy in (2.11) is defined as

Co = (d=2)oa (N(@) (p") |

where a4 is the (d — 1)-dimensional area of the unit sphere of RY, N(Q) is the number of centers falling into

any fized unitary cube Q@ and p € R.
To prove this theorem we give the following Lemma.

Lemma 2.2 Let H° = H¢(w) be as in . Then, for P—almost every w € (), there exists a sequence
{w®(w,.)}.o9g € H' (D) which satisfies

(H1) For every e > 0, w®(w,.) =0 in HE,

(H2) w®(w,.) — 0 in H' (D) fore | 07;

(H3) For every sequence v. — v in H} (D) such that v. = 0 in H®, it holds that

(=80 (@), vE) sy 0y — Co [ v

for e | 0 and where Cy defined as in theorem .

The construction of w® is given in two steps. The first step is to give an argument in the simplest case
of the random holes where the centers of balls are distributed periodically and the radii are associated as
an i.i.d random variables. We then generalize this argument to an arbitrary marked point process (®,R)
that satisfies the assumption of theorem 2.2. We first fix the following notation: For any two open sets

A C B CRY we define the capacity of the condenser (4, B)

cap(A, B) = inf {/B Vol v e C(B), v> 1A} (2.12)

where C3°(B) is the space of infinitely differentiable functions with compact support. The minimizer of

(2.12) is given as a solution of the following problem

—Au=0 in B\A4,
u=1 in 0A,
u=0 in 0B.
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The solution u, called harmonic function; satisfies 0 < v < 1 (Maximum principle, see for instance [3]

p.172-173). For a point process ® on RY and any bounded set £ C R?, we define

O(E)=PNE, P5(E) =P N (%E), (2.13)
N(E) = #(2(E)), NE(E) = #(9°(E)).
For § > 0, we denote by ®4 a thinning for the process ® obtained as
Os=qx€®: min [z —y| >0, (2.14)
yEi(W)
Yy#x

i.e. The points of ®(w) whose minimal distance from the other points is at least ¢. For a fixed M > 0, we

define the truncated marks
RM:{pij}Zj€q>7 pLM:pj/\M:mln{pj,M} (215)

2.2.1 Case(a): Periodic centers

In this setting the holes H® are generated by ® = Z? and a collection of i.i.d. random variables {p;} €Tl
satisfying the assumption (2.10). Since the centers of the holes are periodically distributed, the only chalenge
in the construction of the functions w® is due to the random variables {p;} »,ezd Which might generate very
large holes under the mere condition (2.10). We introduce the following lemma which might simplify the

construction of we.

Lemma 2.3 Let § € (0, ﬁ) be fized. Then, there exists eg = €9(d) > 0 such that P-almost every w € Q
and for all € < g there exist H (w), Hy (w), Dy (w) C R? such that

HE () = H (w) U Hj (), Hi (@) C D} (),
dist(HE (w), Dj (w)) > 3,

(2.16)

where

i% cap(H; (w), Dy (w)) = 0. (2.17)

Moreover, Hg(w) may be written as the following union of disjoint balls centered in n®(w) C 74N éD

_d_
(€2)), eT2p; <™ < 5,

(3 J—
Hi(w) = | Baﬁp.
zjENE J

(2.18)

lime?# (n°) = |D|
e—0

17



where |D| denoted for the measure of the set D.

Remark 2.4 This lemma ensures that H® (w) may be almost surely partitioned into two subsets, a good
and bad sets of holes which we denote by H (w) and Hj (w), respectively. The set H (w) is made of small
balls where the construction of w® may be carried out similarly as the first chapter. The remaining holes
are included in Hj (w) in addition, this set is well separated from Hj (w) and small with respect to the

macroscopic size of the domain D.

Proof. In what follows for each z; = (zll, e zfl) € Z%, we denote by Q5 the cube of length ¢ centered at

€zi, namely

d
€ €

Qf:H [525—5752’54‘5 )

k=1

d
with H is a cartesian product. In all what follows we use for P—almost every event w € ) the notation
k=1

Hy, H; and Dy instead of Hj (w), Hg (w) and Dj (w) . We give the proof of this lemma in three steps.
Step 1: Construction of the sets H; and its "safety layer" Dj. We denote by I; the set of points of /e %D
which generate the set H; and its safety layer Dy. We start by requiring that I; contains the set J; of

points z; where the corresponding balls B (ez;) are too large campared to the size of the cubes Q; .

d
ed2p,

So for ¢ € (0, ﬁ) , we write
1
J5 = {zj edefD:gd%pj 25“1} C It (2.19)
9

Bad holes are not only balls with large radii, we can find a ball with small radii that has a non empty

intersection with other balls with small or large radii. Namely, there exists z; € (Z4N %D)\Jf and zj € J;
B 4 (ezj)NB 24 (8Zj) # (. (2.20)
For that reason, we can extend J; into the centers which might are close to HE, with

;= B 4, (%)

ZETE Pi
and put
={yen @i £0} 27, Il‘f:fgméD. (2.21)
We finally set
= Bgd%pj (ez), Dj= | @5 (2.22)

zj€ly zjels
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Step 2: We show (2.17). We first show that for any & < eo() such that 2§ < 1

B 4 (e2j) C D, ¥z € If. (2.23)

2ed—2 PJ

Indeed, if z; € J; it follows by definition of H ; and Df that

B (¢2;) C D;.

d
2:9-2p;

If z; € I\ J;, we claim that

B 4 (%)< Q;C D (2.24)

d
2ed-2p;

By definition of §, the corresponding radii satisfies

so it is sufficient to prove

We also have 26772 < €9, so we fix ¢ such that 9ci7 < £. Then, (2.24) is established and hence yields

g
5.
(2.23). Let us return to show our main result (2.17), using (2.22), (2.24) and the subadditivity of capacity
we can write
cap(H;,Dp) = inf{ Vo, v e CY(DE) vigs > 1}
Dy

= Z cap(B e (ez;), Dy)

ZEls A
< > cap(B g1y, (£2), B, o, (7).
Z]'EI;;:
We have
2
cap(B a4 (ezj),B _a_ (szj)):/ |Vul®,
ei=2p; 2e4=2p; B 4 (ez)\B _a_ (¢%)
25T2p]- smpj

with v is the solution to

2ed=2p; ed=2p;
u=1 in B _d_ (E,Zj) s (2.25)
ed=2p,
u=0 in R\B 4 (ezj),
ed=2p;
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Also, u has the explicit expression:

—(d—2)
o — ez - (25‘%%’3‘)

(Ed%pj) L (28%2/)]‘) o

_d_ _d_
, €9-2p; < | —ezj| < 2ed-2py;

u(z) =

from which we get

2€mp], Empj 7=1
_ (d—2)° / 1 .
da \—(d-2) 4\ —(d-2)\ 2 o [2d-D)
<(€d2pj> — (25d72p ) ) 32 dgp \B di% | ]|
1> j £ j
_ad
26‘1*2/}]»
_ (d—2)%04 / 1
a_ \—(d-2) 4\ —(d-2)\ 2 r(d=1)
(#0) 7 () )
J
(d Z)Ud (d — 2)0‘d d d—2

where o4 is the (d — 1)-dimensional unit sphere in R%. Then

cap(Hy,Dy) = Z cap(B _a_ (ez;),B_ _a_ (ezj))
zj€If ed 2pj 2ed 2/)]-
J
d 2 Ud d d 2
< (1_2 (d— 2 Z €
zJGI

To apply lemma 2.10, we need to argue

lim elHTE = 0. (2.26)
E—
Indeed, by (2.19) and (2.21), we have

eIy = eI + B\ = MHTp + et D

z;€Ig\J§
= #E+ Y |Q

zi€(I5\Jy)

= ¢4, But, for z; € I{, there exists a constant ¢ = ¢ (d) > 0 and y; € Jy such that

since ’ Q;

Q;C B _a (ey)),

2ced=2p;
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and it follows that

8d#I§ < gd#J[f—l- Z B2 4 (eyj)
gegg ! T
d
< eI+ (200 ) (e72p))
ZjEJg
We have
_d_ d?—2d+2d
(€d72pj)d = £ d—2 p d szZ
d
< (™ max p)eip i

2 _
)d—Q 5dﬂjd 2‘

IA
—~~
™

SH
S
s

Since by lemma 2.9, we have

e—0
z€29NLD

Then, it follows for £ small enough that

2

d_ _ a2 _
(5d72pj)d < (<pd 2> |D|)d 2 5dpjd 2

Substituting (2.30) in (2.27), it holds

_2
STy < ST 4 (20 (01T e Y R

ZjEJZf

If we now argue that

lim e?#.J5 =0,
e—0

lim 4 Z p;l*2 = <pd_2> |D| almost surely.

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

then the limit (2.26) yields immediatly from lemma 2.10 applied in the right hand side of (2.31). Indeed,

We have § < ﬁ and sd%?pj > 179, then one has 1 < 52_5(d_2)pj. It follows

g Jg = &d Z < 2-8(d-2) d Z p;zfz‘

zj€Jy z;€24nLD
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Since 2 — 6(d — 2) > 1 and &4 p?9=2 is bounded by lemma 2.9, we get
J
z€24NiD

lim £279(d=2)d Z p?iQ:O,

e—0
z;€ZINLD

which implies (2.32). Therefore

lim E Ed d 2=,
e—0
zjely

thus (2.17) is established.
Step 3: Construction of Hy. We define H; as follows

H: = H°\H;

where n® = (24N 1D)\I;. Since J; C I, then for z; € n° and for the choice of § € (O, ﬁ), we have

_a_ . . . .
gd=2p; < el We choose € < g with g satisfies a such assumption in order to ensure that for z; € n® and
z; € I, we have

B 4 (e25) C Q5

and

Sdist(B _d ,8@5),
d 2p],

which implies

€
— < dist D;
9 = ist( 1tz )
Then
4 146 _ €
€i2p; < ¢ < >
Let us now provee that
lim el#n® =|D|. (2.33)
E—

Indeed, we have by definition of n®

1
lim e%#n® = = lime Ay (74 N gD) — lim elHTE
£E—

e—0

By (2.26) we have lim._ 5d#I§ = 0. Then, by lemma 2.9 we have

;iir(l)ad#ns = ii_rz%sd#(Zd N %D) = <#(Zd N Q)> D[,
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since <#(Zd N Q)> = 1,where @ is the unitary cube of R? centered at the origin, then (2.33) yields immediatly.
[

Let us return to the construction of w®. We first fix 6 and ¢(d) as in the previous lemma and we fix P-
almost every event w € § such that we find Hj (w), H;(w) and Dj (w) as in lemma 2.3. We give the following

proposition where the proof follows later.

Proposition 2.5 We may set w® as follow
w(z) = wi(z) A wy(x) = min(wi(z), ws(x)), (2.34)

with wi,ws € HY(D) and such that

wi =1 in D\Dg, wi =0 in Hj, (2.35)
0<w;<1, w3 =04n Dy, w5=1 in H, (2.36)

with, in addition
wi — 1 strongly in H (D). (2.37)

Moreover, the function w® satisfies the properties (H1),(H2) and (H3).
Before giving the proof of proposition 2.5, we show the following lemmas 2.6-2.7.

Lemma 2.6 In the same setting of lemma 2.3, for every ¢ < gq there exists a function w§ € H'(D?)
satisfies
wi=1 in D\Dj
wi=0 in H} (2.38)
w§ — 1 strongly in H'(D).

Proof. By the result (2.17) and definition of capacity we can define a function @w§ € H} (D) which

satisfies

—Aw; =0 in D;\H,

wi=1 in Hj, (2.39)

wi =0 in D\Dj
where

cap(Hf, Df) = / V5|2 .
Dy

So let

1—a@ in Dj,

1 in D\Dj.
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Since w§ € H{(D5) we see that wﬂDi € HY(D;) and wﬂD\Dg € HY(D\D;). In the other hand, we have by
(2.39) W] = 0 in 9Dj,s0 wi = 1 in dD;. We also have wi = 1 in D\Dj. Then, w{ is continuous in D, so
that by proposition A.1.12 we get w§ € H'(D). We also have w§ = 1 in Hy, then wi = 0 in H;. Thus w{
satisfies the two first properties of (2.38). Let us check the last property (2.38). The Poincaré’s inequality
gives

2 ~c 112 ~c112
L= w3 ) = 153 gy < @ IV oy 0 = ccap(5. D)

L2(Dg))

where a > 0 is a positive constant depend only on the measure of Dj. We apply the result (2.17) of lemma
2.3 in (?7?), yields w§ — 1 strongly in H*(D). m

We now give in the following result the construction of wj.

Lemma 2.7 Under the hypotheses of Lemma 2.3, there exists a function w5 € H(D?) such that
0<w;<1, ws =1 in Dy, ws =0 in H. (2.40)

Furthermore, w satisfies the properties (P2) and (P3) of Lemma 1.2.

Proof. First, we put

ws; =1 on Dj.

For the definition of w5 in D\ Dy which contains only the holes H; of disjoint balls, each striclty contained
in the concentric cube @); of size €, we construct w§ explicitly as done in the first chapter. For each z; € n®

with n® = (Z¢ N %D)\Iif, we write

we define also

ws=1-— Z ws”, (2.41)

Z;ENE

where each wg’i is a solution of the following problem

—Aws' =0 in BA\TY,
wy' =1 in T¢, (2.42)
wy' =0 in D\B:.
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. d
We can easily compute w5 in polar coordinates in the annulus Bf\T¥ as done in lemma 1.2 taking -2 p; <

r= |z —ez| < § for x € R? and £z; the center of T, we get

i \x—azir(d72)— £)~d-2 .
w; Z( ) - Edpi_(d_m(éz))_(d—% n Bf\TiE’
wy' =1 in 7%, (2.43)
ws' =0 in D\BE.

Now, we show that w5 satisfies the properties (2.40). Using the maximum principle (See proposition A.2.5),
we get

0< w;’i(az) <1

Since wg’i has a disjoint supports then one has

0<wy=1- Y wi' <1

Z;ENE

Since wy" =1 in T¥ and w5" has disjoint supports, we obtain

wy=1- > wy’ =1—w;" =0inall Tf.
zjENE
The function w§ belongs to H} (D). Indeed, by definition of w$” in (2.43) we can observe that the functions
w;’iare continuous and H{ by parts, hence by proposition A.1.12 the functions wg’i belongs to H& (B5) for

each z; € n®. Since the functions wg’i has essentially disjoint supports, then

> wy' =wi in B (2.44)
ZiENE
we also have for every z; € nf,
wy' =0 in OB (2.45)

Then using again the proposition A.1.12 (See appendix A), we can conclude that Z wg’i € H}(D\D3).
ZiEN®
Extending Z wg’i by 0 in Dj we get
Z; €N
wy" € HE (D).

ZiENE
Finally, we find

wh=1-— wy' € HY(D), w=1 in D§.

ZiENE
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Therefore, the function wj satisfies the property (2.40). Let us now show that w§ satisfies the properties

(H2), to do that we follow the same steps as in the periodic case. We have

HV/LUEH?LQ(D))CZ

IN

. 2
O w3 () ‘ dx

S [y

ziene VB j=1

(d—2)oq

ZiENE (efdp;(d*2)> _ (g)—(d—%

(d — 2)ogelp ™
Z (%) —(d—2) Edp('d72)

7

Z;iENE 1-—

By Y e,

ziEZdﬂéD

(2.46)

where (3 (d) > 0 is a strictly positive constant. By Lemma 2.9 applied on the right hand side of the last

inequality of (2.46), we have almost surely

: €12 d—2
timsup (Vs s e < B(d) (%) D).

(2.47)

Since 1 — w§ € HY(D\D;) and 1 — w§ = 0 in D, we can apply Poincaré’s inequality: one has for ¢ small

enough,

11— sl o) < C2B() IVuslTe(p) < C2B(d) () 1D,

where C. > 0 is the Poincaré’s constant, since Bf is of diameter n = § < ¢ an estimation of Poincaré’s

constants, one has

then

Sending ¢ to 0, one has

Ce <

<e,

N ™

11— w5l}ap) < £28(a) ("2} D).

w§ — 1 strongly in L?*(D).

This latter result implies that 1 — w$ is bounded in L?*(D), we have also by (2.47) V(1 — w§) is bounded in

L?(D), thus 1 — w§ is bounded in H}(D). Using Eberlein-Smuljan theorem one has up to a subsequence

ws — 1

weakly in H'(D)
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and thus (H2) established for w5. We now argue that w§ satisfies the property (H3), to do that the first

step is to decompose —Awj; as done in the first chapter, we get:

—Awh = p* =77, (2.49)
where
ows ows
£ __ 2 € e __ 2 €
no= Z a 63287 Y= Z a ana
sent Vext aBe siene Vext oTe

where vy is the outward unit normal of 0B;. Next, we prove that we need only to argue for v. and v

defined as in (H3) the following result

o) sy = Co [ v (2.50)

For ¢ € D(D), we have by Green formula

<_Aw§";0>D’(D),D(D) = Z Vuwy Ve = Z/ Vw; Ve
Zi€EnE BiE Zi€ENE zE\TzE
= D (AW O s
ZiENE
+ Z/ VW3 - Vegtds + Z/ VW3 - Negeds,
ZiENE an Zi€ENE BTf

where neyy is the outward unit normal of 077 . Since we have —Aw§ = 0 in Bf\T7, it follows

ows ows
<*Aw§a<ﬂ>D'(D),D(D) = Z /836 72533de3+ Z / 725%@6806&9-

z; ENE 8U€mt Z; €N aTia (9716115

Since we have nezy = —Ueyt, we get (2.49) immediatly. We return now to the proof of

<—Aw§,U5)H_1(D)7Hé(D) — Co/D’U, (2.51)

for v¢ and Cj given as in lemma 1.2, since v® = 0 in all T then to get (2.51) we need only to prove (2.50).
The second step is to arguing that it suffices to prove (2.51) for truncated process (Zd, RM ) with M € N
and RM as defined above (2.15). In what follow, we denote by w§ s and pg, introduced as the analogues of

w and p€ for the truncated marks, we denote also Co s = (d — 2)o4 (p®21,<pr) . We have also

|Co — Com| = ‘(d —2)oy <Pd*2 - pd721p§M>’ = (d—2)oq <pd721p2M> :
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Then, we have

‘(—Awg,f}Hl(D) H1(D)—C’0/ v /VMEVUE—I—/ VwiMVve—/ ng’MVfUE—C’O/ v
o D D D D D

Using Green’s formula and (?7), it holds

/ V(w§ — w§ ) Vo
D

+ / VwiMVvs—(d—2)ad<pd_21p>M>/ ’U—CO,M/ v
D D D

/ V(ws — w3 pr) Vo©
D

‘<—Aw§»U€>H—1(D),H3(D) - OO/D“

IN

+ <_Aw§’M’U8>H*1(D)7H(%(D) —C(]’M/D’U

+Hd =20 (o *10) [ 1ol

Then, using Cauchy-Schwartz inequality we get

<—Aw§aU8>H—1(D),H3(D) - CU/ v

O < HV(WE_wg,M)HLz(D) |’VU8H(L2(D))d

+‘<M§\4aUE>H1(D),H5(D)CovM/Dv

+(d —2)oy <pd_21p2M> HUHLI(D) :

We have also same as (2.46)

. . 2
195 =l prpye = O /B |vust - vusip @) do

ZiEN®

- (d—2)* / 1 ]
ZZ%;E <<e—dpi_(d_2)1p2M) _ (%)*(d*2)>2 Be |z — ez 247V v

B(d) Z epd 1, >0,

z€29N1D

IN

for a positive constant §(d) > 0 which depend only on d. Thanks to lemma 2.9, one has
ilﬁf(l) sup HV(’(U% - w;,M)H(]}(D))d < B(d) <pd_21PZM> |D| .
Since v — v in Hg (D), then there exist a constant C' > 0 such that
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Then, one has

;iir(l)sup <—A’w€,U€>H71(D)7Hé(D) _CO/DU < giilg)sup‘</1’§\4’vs>H1(D),Hé(D) _CO’M/DU
+(p" 1201 (d = 2oullvl ) (2:52)

+Cl <pd_21p2M> ,

where C’ > 0 is a striclty positive constant depend only on d. Since v° is bounded in L?(D) (v® converges
weakly in H}(D) then v° is bounded in H}(D), hence v° is bounded in L?(D)) using the embedding of
L?(D) in L'(D) we can conclude that

[0l L1 (py < +oc.

Sending M 1 +o0, this latter result and the assumption (2.15) allows to
(#2120 ) ((d = 2)0aloll 1y + C') = 0.

So we need only to prove (2.50) for truncated process (Zd, RM ) . The third step which is the last, is to prove
for any fixed M € N that we have

lim sup ’<N§\4705>H1(D),H3(D) - COM/DU = 0. (2.53)
Indeed, we have
ows
€ _ 2 €
iy = OVext B¢ 0B;
AN i
d
_ Z d—2 zk — g2k ok 55
—(d—2 d—1 er N
sens k=1 (e7%7@7D) — (3) ) fo —ex aB:
d
Taking vegr = (Vlyy, ., v4) = Z ex where (e1, .., eq) is canonical basis of R, then one has
k=1
—(d-1)
o= (d—2) (%) 3B5
—(d—2 d—2
e (=0t - (57
( (d-2)
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Since p; yy < M, it suffices to prove

oy = Z 2971(d — 2) (pi7M)_(d_2) dgpe — Comr strongly in w—h>=(D).

ZiENFE

To show (2.54), we argue for a fixed M € N that
iS5, — 15y — O strongly in W~—1%°(D),

with

and that

ny — Co . strongly in W’l’OO(D).
Let us begin by proving (2.55). We define the following auxiliary problems

—Ag5 = 2%(d ~2)dpfy7  in B,

aq; _ 0

oy =2 l(d—2)pi’MZe on B¢,
we have

_ _ €\2
g nr =271 (d - 2)p 37 <\fﬂ — ezl - (5) > '

Indeed, since we have for 0 < r = |z —ez;| < 5§,z € R?

10 (K000 (1)) = 21— 2)apl?,
so we integrate over [0, r] for a variable s we get

G ar(r) = 201 (d — 2)ply2r? 1 c,
where ¢ € R. In particular for ¢°(5) = 0, one has

() =2 - 285207 — (5)),

so for 0 < r = |z — ez < §, we have

_ _ €\2
G () =207 (d = 2)pl (2 —exl = (5))):
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We have
Ouy i1 () = 2(d = 2)piF (o = e2F)

So

Hqu’M(a:)HLOO(Bf) = jgggZ!@xquM )‘:jgggZ‘Qdd 2)p (a: —Ezk)’

< 29~ 1(d_ 2)91'71\/15
Si d—2
ince p; 7 < M, one has
“qu,M||(Loo(B¢))d < 2d71(d —2)Me.
Then
Vi — 0 strongly in (L>®(BS))?. (2.58)

In the other hand, since ¢ ,,(x) = 0 in 0B, we may extend ¢; p by 0 outside Bj then we can use the

Poincaré’s inequality, we obtain

HqiMHLOO(Bf) <K quiM(w)H(Loo(Bif))d )

and conclude that

¢;p — 0 strongly in L™(B;), (2.59)
by (2.58) and (2.59), one has
= Z q;pr — 0 strongly in Wheo(RY). (2.60)
z€Z9NLD
For ¢ € D(D), we have
(M — ﬁ?\/[a@z)/(p),p(p) = Z /5 2d d—2) dPZ M‘P( )d
zZEZdﬁ D
-> / 271 (d — 2)p 2ep(z)ds
2, ENE oB¢

- ¥ / U(d — 2)dp520(x)de

zie(ZdﬂiD)\nE B

+ > / 2%(d — 2)dp},fp(x)dz

z; €N

- / 29-1(d — 2)pﬁ/[2590(:c)ds).
0B¢ '
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Using (2.57), we obtain

T T VUM / 2(d — 2)dpty2p(x)de

14

2ie(ziniD)\ne i

aqf’M
+ Z <_Aq167M7 SO>'D’(B§),D(B$) - <8'Ue;pt 9 SO> )D( ) .

zi€Ene D/(B),D(BS

Using Green formula, one has

O - B omom = O [ 2Md- 2l

zie(ZdﬂiD)\nE B;

+ /D Vi (2)Veo(x)dz.

Since ¢ = 0 in 0D, it follows

(M — B> 80>DI(D),D(D) = (—Aqy @)D/(D),D(D) + (R (10>D’(D),D(D) )

with

(R 80>D/(D),D(D) = Z /5 27(d - 2)dPZX42<P<$)dCC~
zie(Zdl"%D) \ne B;

Therefore

Ny — i = —Aqy + Ry in D'(D),

and more precisely in W~1°°(D) (This latter is concluded from the caracterization of W~1°°(D) with

HgE
o = Ry and p; = F)

We have by (2.60)

<_AQZ€\/17@)W—l,oo(D)’Wolvl(D)‘ = /D IVay Vol

= Z / V& V|
B

% €ZNLID

IN

Z H%’E,Mmeo(D) H90“14/01*1@) -0
ZiEZdr‘I%D
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To prove (2.55), it suffices to show that RS, — 0 weakly-* in L>(D). Indeed, Since R5, is bounded, we need
only to test R3, with ¢ € C1(D) (C(D) is the space of continuously differentiable functions with compact
support)(This is concluded from Hahn-Banach theorem applied to the continous linear form T' () = |’ p Ry
defined for every ¢ € C}(D) which is dense in L!(D)). Then we have

(R, SO)LOO(D),Ll(D)} = Z . Qd(d - 2)de342¢
zie(Zdﬂ%D)\nE B;
< 2/d-2d > i el
ziG(Zdﬁ%D)\nE B;

Since ¢ is bounded in L* (D) and B C B. with B. is a ball with radius ¢, then it follows by Holder’s
inequality

)( ?\J?SO)LOO(D)7L1(D)} < 2d(d_2)d||(10||Loo(D) €d Z pfi;j,
z€(29NLD)\n®

To apply lemma 2.10, we remark by (2.18) of lemma 2.3 and (2.120) of lemma 2.9 that we have

1 1
lim @ ( (Zd N D) \nF) = lim %% (Zd N D) — lim e%#n° =0
g e—0 g e—0

e—0
and we can conclude Rj; 20 weakly-* in L®(D). Thus by proposition A.1.8 we have for ¢ belongs to

Wy (D)

By = su0 (B @)ysm oo
[l 1.1y =1

= s (R Peoyim)| 0
||¢||W5,1(D):1

then RS, goes to 0 strongly in W~1°°(D) and this yields (2.55). It remains to show (2.56). By caracterization

of W~1°(D) and definition of 15, it sufficient to prove only
n5 — Co.nr weakly-* in L>®(D). (2.61)
Since 13, is bounded, then we test only for ¢ € C}(D). We have

e Doy = D 2Ud=2)dph7 | o,
z€29NLD Bi
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applying lemma 2.11, one has

(319 -1(p),my(p) — (d = 2)04 <pd721”§M > /D >

Then the proof of (2.61) is established, hence (2.56) holds true. m

We return to the proof of proposition 2.5

Proof. We return to our main goal, and argue that the function w® defined in proposition 2.5 is H'(D)
and satisfies (H1), (H2) and (H3). We starts with (H1), we have by definition w{ = 0 in H; and w5 =1 in
Hp C Dy, then

w® =wi Aws=wj =0 in H},

w®=wj Aw; =w; =0 in Hg.

So the first property (H1) is satisfied. Let us prove that w® belongs to H'(D), we have by definition of w§

and ws
wE|D\D§ =w; € H' (D\Dj),
W = ws € B (Df).
We have also
Uﬂa(D\Dg) = w€|8D§ =1
Then we can use the proposition A.1.12 (See Appendix A) to conclude that w® € H*(D). We pass to (H2),

we have for every function v € H'(D)

<’UJE,U>H1(D) = <’UJ6,U>L2(D) + <V1UE,V’U>(L2(D))¢1 (2.62)
= <wi,U>L2(D§) + <Vwi7vv>(L2(Di))d

Since w§ satisfies the property (H2) and w§ converge to 1 strongly in H!(D) hence weakly in H(D), then
(W, 0) g1 (py = (L) g1y -

Thus, the property (H2) is established for w®. Now, we prove that (H3) is satisfied for w® but first of all we
need to argue that it sufficient to prove (H3) only for w§. Indeed, let v* € H}(D) such that v® vanishes in

the holes H® and v converge weakly to v in H{ (D). By definition of w$, w§ in lemma 2.6 and lemma 2.7,
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we have Vw] and Vw; has disjoint supports where
supp (Vwi) € Dy\Hj, supp (Vws) € D\ (Dj U H;) .

Then, one has

(CAWS V) gy oy = (CAWL V) gy o) 1 D5\ )

+ (= Aws, v%) -1 (p\pe), 1L (D\Df)

= / VwiVov®
DE\HE

+ (= Aw3, %) g1 (p\pz) B (D\DS) -

Using lemma 2.6, one has

/ VwiVev® — 0.
DE\HE

We have also by lemma 2.7

(=Aw3,v%) gr-1(p\pe), 1y (D\DF) — CO/D% (2.63)

where Cy defined as in theorem 2.2. Then (H3) is satisfied for w®. m

2.2.2 Case(b): General case

Let (®,R) be a marked point process defined as in of theorem 2.2. We give the following lemma which is

similar to Lemma 2.3 where we can use it for the proof of Lemma 2.2.

Lemma 2.8 There exist an €9 = eo(d) and a family of random variables {r.} C R* such that for

e>0

P—almost every w € )

lim r.(w) =0, (2.64)

e—0

and for any € < gq there exist Hg(w), Hj (w) , Dj(w) C Re. such that

He(w) = How) U Hy (W), Hi(w) C Dj(w),
dist(Hg(w), Dy (w)) > 5=,

when

ii_r)r[l) cap(Hj (w), Di(w)) = 0. (2.65)
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Moreover, Hy(w) may be written as the following union of disjoint balls centered in n®(w) C ® (%D) :

Hi(w) = U B6 EQPI(ez]),
zjENE J
min_ clzn—z| > 2, eTip < i lim A (nf) = (N(Q))| D). (2.66)
2iF#z;€ENE 2 e—0

Furthermore, if for § > 0 the process ®g is defined as in (2.14), then

lim el ({2 € ®55 (D) (w) : dist(z;, D) < d}) = 0. (2.67)

E—

Proof. The proof of this lemma is divided in five steps: First, we construct the random variables {r:}_.

for a fixed a € (0, ﬁ), we write

=

1
d o d d g
= [ga—2 ) vetr = a2 ) o,ed b 2.68
om (o ) et e () ) 2609

We can show that r. satisfies (2.64). Indeed, For F¢ a subset of ®¢(D) defined as

Fe = {zj € ¥°(D) : i 2p; > g} .

If F* =, then for z; € ®°(D) the corresponding radii satisfies

1 1
€d—2 max p¢ <egd.
zjeds(D) 7

=

Since r. > 0 we have for every € > 0
. . 1 a
limr, <limed Vea =0.
e—0 e—0

If F° (), we get

e max p;-l72 = ¢? max p?iQ <el E pj»liQ,
. . €
z;€®¢(D) z;€F ey

then, one has

. . — o
lim r. < lim g? g pd2 | ved
e—0 e—0 J

zjele

So to get (2.64) immediatly applaying lemma 2.10, it’s sufficient to claim that

lim elHF* =0. (2.69)
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d

Indeed, for z; € F° the corresponding radii p; satisfies 1 < 52/)]-_2, then one has

gl#Fe = ¢ Z < gl¢? Z p?fz.
zE€F* 2;€0(D)
So applying lemma 2.9, (2.69) yields true and the proof of (2.64) is complete. The second step is about the
construction of Hj (w) and its safety layer Dj(w). Equipped with the definition of r. defined as above (2.68)
and denote by 7. = r.c. In this step we will give the set of the centers of bad balls denoted I; as a union of
three sets, the first one is denoted by J; and contains the point of ®¢(D) where the corresponding radii are

too large, then we put

Jp = {zj € ®°(D): 5d%2pj > %} (2.70)

The second set of points contains the centers generating the balls too close to each other, we indeed set
Ki = 9°(D)\ (®5,.(D) U J) | (2.71)
where @5, (D) is defined as in (2.14). Similarly to the periodic case, we define

jig = th 132€4£L7 (EZ&).

d—2 Pj

The third set contains the centers of balls might be close to H ¢ : We denote

5 = {2 e O\ WG U T B N By (e2)) # 0} (272)
Finally, we put
I = JUK{UI;, (2.73)
g o= U B 4, (ez), Dp= U B%d%zp_(é‘zj), H; = H°\Hj. (2.74)
z;€ly J z;ely J

In the third step, we prove (2.65). By the sub-additivity of capacity and definitions (2.74) we compute as

in the simplest case

cap(H}, H;) = 3 cap(B_a (e2)), D)

itz
el bi

< Z:cap(Bd%2 (ezj), B _a_ (%))

€ ; 2ed=2p;
ZEls Pi Pi

Z sd,o;.l_Q.

ZjGIIf

IN
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The proof is concluded from lemma 2.10 if we argue that
lim elHIE = 0. (2.75)
e—

Indeed, by definition of If in (2.73) it sufficient to prove (2.75) only for the sets J;, Ki and Ij. We start

with
lim el JE = 0. (2.76)
E—

We have by definition of J; in (2.70)
1< 52(r5)*(d*2)2d*2p§?_2 for z; € Jg,

then one has

g = & Z
ZjEJg
< 2(r) 2t N ple2, (2.77)
zj€®<(D)
We have also by definition of 7.
—(d—2)
_d_ d —a(d—=2)
r;(d_2) < <5d—2 max J> ANe™ 4 :
sz@E(D)
S 6—0{((1—2)‘

Substituting this last result in (2.77), we get
€d#Ji,€ < 82—a(d—2)2d—26d Z p;l—Q.
z;€®¢ (D)

By lemma 2.9 we have

lime! Y p7? = (N (Q)) D] (p"2) < +o0.

e—0
z;€®¢ (D)
then since 2—a(d—2) > 1, (2.76) is established., For a sequence {03}, € R™* with §; — 0 when k — +o0

if we suppose also that N (D) < Ny (D), we get

lim sup elHKE < lim sup e!(N*(D) — N:.(D)) < Jim sup e!(N*(D) — N5 (D)). (2.78)
E— E— E—>
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We can apply (2.122) of lemma 2.9 for the right hand side of (2.78), one has
lim sup e # K7 < (N(Q) — Ny, (Q)) DI
for @ is a unitary cube. Sending J; — 0 and applying (2.122) of lemma 2.9, we obtain
E%H#Kfzo. (2.79)

It remains to prove

n%ﬁ#ﬁzo. (2.80)
E—

i | > o, 2.81
%w;gég(D)s\zZ zj| = 2n, (2.81)
zl-;ézj
eTzp, < %. (2.82)
Since the balls of I have radii satisfies (2.82) and centers satisfies (2.81), then the balls {B,. (ale-)}zei8 are
&Ly
disjoints. So one has
- I'(4+1) ~ r'(4+1)
Ml =t Y <t 3T SR By ()] = vt 3D A By (o)
Zz€f§ Zl€j§ € Zleig
with ‘Bne (azi)‘ = %™ and T is the gamma function defined as generalization of the factorial function for

r'(4+1)
non integer value. We have for any z; € I, ; there exists ¢ = c¢(d) and z; € J; such that

By (ez:) € B __a_ (e%),

ce P

then one has

. rg+1
e#l < vty Aﬁzifgl B 4 (%)
sege ce =%,
iSJp
—d _d_ d
< r Z Ch (ad—2pj) ,
ZiGJf
with C7 > 0 is a constant depend only on d. We have also
Y do2dizd g oo 4 2.d_ d—2
gd—2pA =€ d—2 P P S cd—2 max pPi)E P ,
( J) / / ( z;€Z4NLD J) /
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then, we obtain
~ _d_ _
el#IE <r79Ci(eT2  max pj)2 g sdpjd 2,
z;€ZNLD =y

In the other hand, we have by definition of 7.

it follows

A\
a
s
—~
Q)
QL
o
Sa
b
o=

substituting (2.84) in (2.83) one has

Sl < 0 (V@) D1 (2)) ™ 3 st

ZiGJlf

Since we have proved (2.76), we can apply lemma 2.9, thus (2.80) is established. Finally, we get

lim eI = lim e@#J¢ + lim e K + lim 941 = 0.
e—0 e—0 e—0 e—0

(2.83)

(2.84)

The fourth step is to contruct the set of good holes Hg which satisfies (2.66). We can set n® = ®*(D)\I;

and define H 5 as follows

Let us prove that

. n
dist (H;, Dy) > 56

(2.85)

Since for z; € n°, we have z; ¢ K; U J; then the properties (2.81) and (2.82) are satisfies then one has

. e
dzs(BEd%Qpi(ezi),Bna(ezi)) > 5
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So to claim (2.85), it sufficient to prove that for z; € n® and z; € I} we have

B 4 (é‘Zj) N B77 (62’2') = . (286)
2ed=2p, €

Indeed, If z; € J§ then z; ¢ I7, we have also z; ¢ I then by definition of I7 in (2.72), (2.86) is established.
Now, if z; € K§ U I; then

_d_ .
2ed-2p; <1, min € |2; — z;| > 2.,
zZi€En

then, we can conclude (2.86) and finally this yields (2.85). We now prove the properties (2.66). For the

first, by definition of n® for any z;, z; € n® with z; # z; we have z;, z; ¢ K;, Then we get

min € |z; — z;| > 2n,. (2.87)

Zi€EN®E

The second result follows from the definition of n®. For z; € n® we have z; ¢ I; then one has
_d_
2612 pj <),

we have also

lim e9#n® = lim e? (#0°(D) — #1;) .
e—0 e—0

Using (2.75), one has

lim e4n® = lim e9#®°(D).
e—0 e—0
Using the result (2.2) in lemma 2.9, we get

lim e“4n° = (N (Q)) |D] . (2.88)

where @ is the unitary cube. The last step is to prove (2.67), to do that we first set

Y5 ={z € ®55(D) : dist (zi, Dy) < de}. (2.89)
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We have

Yy C {z en®UI :dist(ez;, Dy) < de}

C I Uz €n®:dist | ez, U B 4 (ezj) ]| <de
2:d-2 .
ZjEJE 7
UQ zi € n° NP55(D) : dist | ez, U B 4 (ezj) | <de
\ 272 p;
z;€lf UK}
We denote
Ef =2 zen® :dist | ez, U B 4 (ezj) | < e (2.90)
. 2y
ZjEJb
and
C® =14z en"NO55(D) : dist | €z, U B a4 (ezj) | <oep, (2.91)
\ 272 p,
z;€lf UK !

to argue (2.67) we show that
lim elHIE = lim el 4 EF = lim el4CF = 0.
Indeed, the first result is concluded from (2.75). We pass to
lim elHEF =0. (2.92)

We may choose g = €¢(d) such that for all € < gg the property (2.64) is satisfied and er, < 4. For z; € E*

there exists z; € J; where z;, z; satisfies the following properties

By, (ez;) € Bes(ezi),

25%% 2 e

dist(&zi,aBQ _d_ (€Zj)) < O€.
€

d—2 pj

Then, we can remark that

By (ezi) © B%sﬁsd%pj (e25).
Using 1 < drL, we get
255327525£p, QEﬁgpgzégﬁp’
re J i J
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then, one has

B, (ez) € B i (ez;) C B

i). 2.93
265+2€mpj 65r§15d%i2pj (SZJ) ( )

So, we obtain

elHET = rlgET =% Z d B, (e2)]
z;ENE 7'('775
I+ _d
< (ML) 2 [py e, e
z€JE Pi

F(Ql +1) _ d \d F( B d2—2d+2d
< ( 27Td >6dT52dZ(€d2pj> S( 5% 2dzs s d2p§7

2z €J; 2z €Jp
with I' is the Gamma function. Since by definition of r. we have

—2d

—2d
r, " <egd2 2maxp

one has

I'(¢+1)
d 2 d_d d—2
e"#E° < <7rd ) 6% E P

Z¢€J§
Using (2.76) and lemma 2.10 we get out (2.92). Now, we claim the last result

lim e?4C° = 0, (2.94)

e—0

we show that the set C% is empty for ¢ small enough. We have by definition of I ; and Ky, if z; € n. satisfies

dist | €z, U B 4 (ezj) | < e,
N 25d_2ﬂj
ZjEIlfUKbs

~ d
then, there exists a z; € Iy U K with 2e4-2p; < rfe < e such that

€|z — zj| < dist <ezi,8B2 d (ezj)> + 7% < 20¢,

cd=2p;

this implies C¢ C ®°(D)\®55(D) and thus by definition C* is empty. Hence (2.94) is established. m

We now return to the proof of lemma 2.2 in the general case.

Proof. Equiping with the sets Hg, Hy and Dy constructed as in lemma 2.8, the construction of w*
follows the same steps as in the periodic case where we take w® = wj A w5 with w] and w$ defined as the

same as in lemma 2.6 and 2.7 respectivly for the simplest case with Hg, H; and Dy as in lemma 2.8. The
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only change here is due to the construction of w§ under the setting of lemma 2.8. Indeed, we set
w5 =1 in Dj,

then it remains to construct wj only in D\Dj. For each z; € n® with n® being the set of centers of the
particles in Hg, we denote by d§ the random variables

d_?:min{dist(szj,Di)y min 5\2@—4],5}.

1
2 zi#z;ENE

We have by (2.66) and (2.85)
, 1.
dist(ezj, Dy) > 1., —mine |z — z;| > 1.,
2 i#j

then we can remark that d; > n, where 7, = er. and r. defined as in lemma 2.8. So we define the sets for
zj €nf

Tf = Baﬁpj(szj), Bj8 = Bdﬁ(szj),

and consider the functions w5 as in lemma 2.8, solving

—Awi? =0 in BS\TF,

1 in 17, (2.95)
0 in D\B;,
d .
then taking ed-2p; < r. = |z — ez;| < d; with ez; is the center of T7 and = € R?. The function w5’ is

defined as follow
|w—ez;| 7D —(d5)~(4-2

. iy Ty BT
wy? =9 1 in 7%,
0 in D\B:.
By definition of d3, we have
ds > 2:73p,. (2.96)

Indeed, by definition of n® and (2.66) for z; € n® the corresponding radii satisfies

_d_ . 1 .
2ed=2p; <ere < mln{QmmE!Zi - ] >5}-

i#j

The definition of 7 and (2.85) gives

% < dist(T%, Df),
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then
2ed-2p; <ed-2p; + — <ed2p; +dist(T;, Dy) < dist(ezj, D).

Thus (2.96) yields. The previous result (2.96) argue that the functions wg’j have disjoint supports and same

for Vws”. Then, we can set

ws=1-— E w;’]

. (>
ZjEN

and show that the function wj satisfies the properties (2.40), by definition of w;j in T5 and since the

functions wg’j has disjoint supports then we can conclude that w5 vanishes in H_. We can argue also that
0<w; <1,

as in the periodic case using the maximum principle. Thus the properties (2.40) are satisfied under the
setting of lemma 2.8. By definition of w5 in Dj and D\Dj; we can easly conclude that ws| ps €H L(D§) and
w§| p\Ds € H'(D\ D), we can remark also that the function is continuous in the whole set D then applaying
proposition A.1.12 (See Appendix A) we get w5 belongs to H!(D). Let us return to the properties of w®
and show that w® satisfies (H1), (H2) and (H3): We starts with (H1), we have by definiton wi = 0 in Hf,
and w3 = 1in H; C Dy, then

w®=wi Aws=wi =0 in H,

we have also wi = 1 in Hy C D\Dj, and wi = 0 in H, then
w® =wi Aws=w; =0 in H,

then (H1) is satisfied. Same prove as in the periodic case, it sufficient to prove (H2) and (H3) only for ws,

d
we begins with (H2) we have by definition of w§ for € R? where ei2p; < |z —ez;| < d5

@) = — 3 Opui() (2.97)

ZiEN®

(d—2) (af — e21)
S8 (et 0) - () Pl eal”
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then

. 2
Vol = X [ [Vus'@) do

&
zjENE Bj

d

- > [
zjens ¥ 75 j=1

_ (d—2)? / 1 .
z;s <<€_dpj(d2)) _ (dj) —(d—2))2 B: ]a: _ 5zj\2(d_1) )

2
O w3 (l’)‘ dx

we obtain

< c@ Y el (2.98)

zj€®NLD

where C(d) > 0 is a constant and oy is the (d — 1)-dimensional unit sphere in R?. Using (2.121) of lemma
2.9, one has

vag“?[;(D))d < K7 (299)

where K = C(d) (N(Q)) (p?~2)|D| > 0 and Q is the unitary cube of R%.

Since 1 — w5 = 0 in 0D, then we can apply Poincaré’s inequality one has

2 2
11— wSHHl(D) <« vagH([p(D))d < ak,

where o > 0 is a Poincaré constant. By Eberlein—Smuljan theorem; up to a subsequence, we have almost
surely

1 — w5 — w weakly in H'(D),

it follows by Rellich-Kondrachov theorem
1 — w§ — w strongly in L*(D).
Let us prove that w = 0, to do that we need to prove the equivalent result
ws — 1 weakly in H'(D),
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only for the truncated processes (n?w, { Pj, M}zj Ene) . We take

€
nﬁ/[:{zjenazdjzﬂ}, pij:pj/\M:min{pj,M}

and

He''= ) B a4, (ez), D™ =D\(Hy" UH)

d—2
Pj,M
Zj GnM

and wg’M defined for the truncated process as w5. Let us prove first that 1 — w5 converges strongly to 0 in

L?(D). Indeed, we have by triangular inequality

e, M

i TR . H - 2.100
El_r)r(l)SllpH w2H < Mirﬂoosupal_r)n Sup || Wy — Wy L2(D) ( )
+ lim suplim SUPH1— M ‘

M —+o00 e—0 L2(D)

To show the second right hand side of (2.100), we first remark that

1—wy™ =0 RN [

zjEN,
then, the Poincaré’s inequality gives

2

2y ZHl_ !

zjENE zjEN®

m? || VS|l py < MK,

e,M
w5

12
<> fr-w?
L2(BE)

L2(BS)

IN

where m is a Poincaré’s constant and K is a strictly positive constant defined as in (2.99). Since for every

zj € n°, d; < ¢ then we get m < e. Hence

2
- g, <o
L2(D)
Sending € to 0 we get
w5™ — 0 strongly in L2(D). (2.101)
Now, it remains to prove
I I | oM —0. 2.102
Moo P G SUP wp — Wy L2(D) ( )
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The definition of wg’M

above gives

‘57M7j 3 €
> in |J B

ng _ Zj€NYy Zj €Ny (2103)
1 in RN\ ] B,
ZjEH?M
where each function wy M-solving (2.95) with Bj = Ba: (e2;) and p; py < M. By definition of w;’M, we have
4
0 in U
Zjenil
wh—wg™ ={ wi-1 ) B (2.104)
zj€ENE\ng,
0 in R4\ [ ] Be.
L zjENE
So by Poincaré’s inequality to show (2.102) it’s sufficient to prove only
I tim sup |V (w5 - wi™)| — 0. 2.105
pim sup lim sup — w, (12D ( )
Using (2.104) one has
9 (0 = 5" Wi = 2 [9 (87 5™
S (102102)) C ? (12(D))*
J
= Z HV’U)QJ ‘ o 1psz1d§2M—1s
zjENE
+ ) HVwQJ ’ VRS 2 (2.106)
zj€ENE

Let us prove that the first right hand side of (2.106) vanishes in the limit using (2.97) and d; > M e, we

get

> [’

e
Zj €en

‘(L?(D))

(d— 2)adedp(d_2)

—(d-2) i d—2 Lpzmlas=ne
zjens 1 — (dj) 5dp§ -2)

d — 2)ogetpd?
< Z ( )dd2 jjd 5 lp>Mlae>n-1e
zjEN® 1-M € p

d—
d QUdZEp( 2 ,DJZM‘

e
Zj en

IN

a Loj>mlas>n-1c

IN
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Applaying lemma 2.9 to the process (CIJ, {p§d72)1pj>M} q)) , one has
- Z;€

lim Z HVwE’jH?Lz(D))d ]-psz]-d;zM—ls < (d—2)oyq <P(d_2)1p2M> (N(@Q))|D|,

e—0
zjENE

where @ is a unitary cube. Sending M — +oo, we get

lim sup hm Z Hsz’J L=l n-1e = 0.

M —+4o0c0

oy

In the other hand, we have

5 [ s -
z€n @yt sens 1 — (di) ( )sdpgd_m o
< Z (d - 2)0’d€dp( )1d§§ﬁ
zjENE
Since d; < ﬁ, then
3
min {dzst(az],Db) —mine|z — 2; ,5} < —,
1£] M
it follows

dist(cz;, Dy) < 47, or
min;zj e |z — zj| < 55.
So, we can writte

ZjEI {ZJGTL ﬂq)gM 1( )7 diSt(Z]’,Dg)Sﬁ}7 or

Then, one has

. d—
hm sup Z HV £ ’ (2D <= < il_r)lg)sup Z (d— 2)ad5dp§-
z;€ENE z;€d€ (D)\¢2M 1(D)
. . d (dfz)
+ilir(1)sup Z (d—2)oacp; ™.
ZjEI}EV[

By (2.68) of lemma 2.8, for § = 5 we have

lim e9#15, = 0,
e—0
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then we can apply lemma 2.10, we get

;ii% sup Z (d— 2)ad5dp(-d72) = 0.

Zj EI:,SW
On the other hand, applying lemma 2.9 for the process ® and ® 2 we obtain

limsup Y (A= 2)0asl Y = (4= 2)0u (N(Q) — Nap1 (@) (042} D).

2, €5(D)\@5, (D)

Since we have

lim (N(Q) — Nap-1(Q)) =0,

M—0
we get
. . _ d (d—2) _
Mliglroo glil%sup Z (d—2)oac"p; 0. (2.108)
z €2 (D\®Z, (D)

By (2.107) and (2.108) we conclude immediatly (2.105).
It remains to prove (H3). First, we show that it sufficient to prove (H3) for truncated sequences

{wi™}  for a fixed M € N. Namely
e>

~AwsM C / 2.109
( 2 7U€>H—1(D),H3(D)_> Rl ( )

with Copr = (d — 2)oq (Nop-1(Q)) <p§i\;2>. Indeed, we have by Cauchy-Schwarz inequality and for ve,v
defined as in (H3)

< '(—A (w§ — wg’M

(—Aw3, ve) g-1(p),my(p) — Co /D v ) ’UE) H=1(D),H}(D)

+)(CO_CO,M)/DU

—AwSM - C / .
+'< 2 ’%)H*(D),H(%(D) A f Y

Using Green’s formula, one has
)

/D v (w5 — wi™) Vo | |
(L7 =) (foee)”

'<_A (w§ B w;M) ’UE)Hl(D),H(}(D)‘ -

IN
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Using (2.105) and since v. € H!(D), then

. . . e 57M _
Mlgﬁooili%sul) ( A(w2 2 >7UE>H1(D),H(}(D)‘ 0 (2.110)
We have also
'(00 ~ Cour) /D o] < (d = 2)0a (N(Q) = Naa1 (@) {2 = %) [0l 21

Using (2.122) of lemma 2.9 for § = M ~! and by assumption (2.10) one has

= 0. (2.111)

li Co—C
-6

Then, by (2.110) and (2.111) we conclude that we need only to prove (2.109). The proof of (2.109) follows
the same lines of the third step of the proof of (H3) for the periodic case for wj. We just put here the

changes in the proof, we arguing as that case we prove only that

d

M= Y dd—2)p]

e
K d
Zj Enﬁw <d§)

in this latter is due to the fact that the balls BS have radii d; instead of 5. Since p; 5, < M

1p: = Com in L™ (D). (2.112)

The factor Z—Z
J

and - < M, we have
J

d

il ey = D d(d—2) 07 <MATDd (d - 2) # (nyy) < oe.

3
d —_
Zj En‘?w (d;)

Then, since 75, is bounded in L*®°(D), and the density of Ci(D) in L' (D) by Hahn-Banach corollary

(Corollary A.2.1 See appendix A) applied to the continuous linear form 7" defined by

T(@)Z/Dniw for ¢ € Cj(D),

it’s sufficient to test 15, only for ¢ € C}(D) (Ci(D) is the space of functions of classe C! with compact

support in D). To prove (2.112), we define

d
. o €
M= Y, dd-2)pji——1p (2.113)
Zqu)%(D) (dj)
and prove that for ¢ € C}(D)
/D (2 = nau) ¢ — 0 (2.114)



and

/7~7§\/[<_’CO,M/ ¢ (2.115)
D D
Indeed, we have
- d—2 5d
[ G-mine = % - w/em
b €9 i (D)\ng, ( ) '
< d(d—2)M*? > /
Z€®E 1 (D)\ns, E(EZJ
<

M2 G ey % ({2 € Paa(D) 1 5 < — ).

Applying (2.68) of lemma 2.8, (2.114) yields immediatly. In other hand, applying lemma 2.11 for (CI)Z V-1 { p‘j M2 })

one has almost surely

Y =2 ;d | e=%wa@n () [ ¢

then (2.115) holds. m

2.2.3 Proof of theorem 2.2

In this subsection, we give the proof of theorem 2.2 using lemma 2.2 similarly as the first chapter. Indeed,
let w € Q be fixed for which the function {w* (w,.)}. of lemma 2.2 exist and satisfy hypotheses (H1), (H2)

and (H3). Taking v = u. in (2.9), we get

2 _
/DE(W) [Vue|™ = (f, te) g1 (D= (u)), 1 (D= (w)) »

then,

/[\) ‘V{La|2 = /Z;E(w) |Vu5|2 = (f7 u8>H*1(D€(w)),Hé(D5(w)) (2116)

= (ile)y-1(),mi(p)

IN

11l -1y el g2y -

Poincaré’s inequality gives

el g2 py < ClIfllg-1(py < +oo,
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which a constant C' > 0 that depends only on the domain D.

Then by Eberlein—gmuljan theorem up to a subsequence which may depend on w, one has
iie — uy, weakly in Hg (D) when & — 0. (2.117)

Let us show that wuy, solves (2.11), for a fixed test function ¢ € D (D) and since (H1) yields for w® then

ow® € H (D). we can substitute pw® in (2.9) we get

/ Vi Vw® —|—/ wVuVo = (f, cpwE)H_l(D)’Hé(D). (2.118)
D D

By (H2), the right-hand side converges to

(f, 90w6>H*1(D),H(}(D) — (/, S0>H*1(D)7H01(D) :

We now rewrite the left-hand side of (2.118) using Green formula

/DQDV’UJEVZU‘E—F/D’UJ&V’LNLEV(,O = <—Aw6,g0’ag>H—1(D)7Hé(D)

/ U VwV +/ w*VeVile.
D D
For the first term on the right-hand side, we use (H3) one has

(=AW, ¢lie) g1(p), 1y () — Co /D "

For the second, by (2.117) and (H2)
/ 1:Vw*Ve — 0.
D

Using (H2) and (2.117) yields

/’LUEVQOVfLEH/ VoVuy,.
D D

These results gives

/D VoVup, + C'o/DUW = (/) -1 (D), H3 (D) -
We use Green formula again, we obtain
(—=Aup, + Coup, <P>D/(D)7D(D) ={f, <P>DI(D),D(D) )

then
—Auy, + Coup, = f  in D' (D).
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Let us show the uniqueness of wy,. if u; and us two solutions of (2.11) then they satisfy for ¢ € D (D)

/D VeVur + Co/Duw = (/, ‘P>H*1(D),H5(D)’

and

/D VeVus + Co /D u2e = (f, ) -1(D),H1(D) -

The substruction gives

/Vng(ul—m)—l—Co/ (u1 —u2) p =0,
D D

taking ¢ = uy — ug, we get

/ N(ul—w)\?——co/ fur — us?,
D D

since Cy > 0, then by Poincaré’s inequality yields
Ul = ug.
Thus the uniqueness of uy,.

2.3 Auxiliary results

We define the marked point process (®, x) where the process ® satisfies the properties (2.2), (2.3) and (2.4)
and the marks x = {X;}, 4 satisfying (2.5) and (2.6) with

+o00
(X) = /0 chy (z)dz < +00. (2.119)

with hx is the density function of X € .

Lemma 2.9 Let Q a unitary cube and let (®,x) be a marked point process as introduced above. Then, for

every bounded set B C R% which is star shaped with respect to the origin, we have

HH(I) eIN¥(B) = (N(Q)) |B| almost surely, (2.120)
e—
and
liH(l) e? Xi=(N(Q))(X)|B| almost surely. (2.121)
T Léee(B)

Furthermore, for every § < 0 the process ®5 obtained from ® as in 2.14 satisfies the analogue of (2.120),

o4



(2.121) and
tim o (N5(4)) = (N(4)). (2.122)

for every bounded set A C R,

Proof. In order to simplify, we prove this lemma for

R R

B=QFf=|_-= =
Q } 2 ) 2 [7

i.e Qf is a cube of size R centered at the origin and %B = Q% Let {in}ziEZd or {Q;},.cza the partition of

R? made of essentially disjoint unit cubes centered in the points of the lattice Z¢ = {z;} For all 4 >0

1€EN -

and all € small enough, we have

g4 Z XizedZIq)a(QR) Z ijsd Z Z Xj,
)

2 €D (QR 2 €L 2, €2(Q:) c7dn0 B 2 €P(Q:)
Z €2NQ

where 14 gry is the characteristic function of the set ®%(Q"). Since QF C QT we can write

e Y X<t ) > X (2.123)

z €25 (QF) ziGZdﬂQR%E z €2(Qs)

We can denote by Z; the following sum

Zi= Y X (2.124)

2, €2(Qi)
By definition of ®(Q);), the cardinality of ®(Q);) is finite then since a finite sum of random variables is a
R
random variable so for every z; € Z¢N Q%, Z; are random variables. In addition, the point process ® is

stationary then

(#P(Qy)) = (#0(Q)) for any 2; € Z7,

hence

(Zi) = < > Xj> = (N (Q)) (X)

2 €2(Q;)

and the random variables Z; are identically distributed. We have also by the assumption (2.119) for every
Rp

2z €Z*NQ = that

<Zi> < 4o00.
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In the other hand we have for every z;, z; € 74N Q% with ¢ #

<Zizj>—<z>2‘ - < > s Xle>_<N(Q>>2<X>2

21€9(Q;) 21,€2(Q;)

[(X) (N (Qi) NV (Q))) — (N (@) (X)?].

with Z € {Z;} o We have for x,y € RT and by the assumption (2.6)
2; €

Q
+oo  p+oo +oo  pAoo

) = [ [ s @adedy = [ [ ahx, @)y, (o) dody
0 0 0 0

c oo oo 1
T — dxdy,
1+‘Zi_zj|7/0 /0 (Trar)(1+yn)

Since zyhx, (z) hx; (y) and 0 L

1+aP)(1+yP)
A)one has

are positive then we can apply Fubini’s theorem (See appendix

C
1+ |Zi—zj|ﬂy’

/+°° 1 /+°° 1
C=c| ——f ——
o (A4+2P) Jo  (1+4+yP)

which is finite since p > d — 1. Then we get

(XiX;) = (X)* +

with

(Z:2;) = (2| < (07 (N (@) N Q) = (X)* (N (@)’
¢ (N (Q:) N (Qy)) - (2.125)

+7
|2i — 2|7

By stationarity of ®, we have that for any 4,7 € N, ¢ #£ j

(N (Qi) N (Q))) = (N (Qi—j) N(Q))

so for N (Q), N (Qi—;) two random variables, measurable with respect to F(Q) and F(Q;—; = 7.,—,Q)
(F (Q) is the smallest o-algebra which make the random variable N (@) measurable), there exists C; < +00,

such that for v > 0 and |z; — 2;| > diam(Q) (with diam(Q) denotes the diameter of @), we have

Cq
T+ (o — 2] — diam(@))
(NP,

|2 — z;]"

(N Q)N (@) = (N (@) = (N @) (2.126)

IN
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We thus insert this latter (2.126) into (2.125), we get

(zi2) (29| < 2 (N (@), (2127)

=z =zl

which a constant M > 0. So the conditions of lemma B.2.3 (See appendix B) are satisfied and then we can

apply the strong law of large numbers for the sequence Z; and conclude that we have for p > 0

lim sup et > X S(N@Q) (X)) |QF|. (2.128)
z; €PE (QR)

Arguing analogously for the lower limit by taking the following inequality
Sy xee Yoz

#E€2%(QM) 2e2dnQ e

where p > 0 and Z; is defined as (2.124). So since Z; satisfies the assumption of lemma B.2.3, we can apply

the strong law of large numbers to Z;, it follows

lim inf el ) Xi = (N@)(X) Q. (2.129)
z, €2(QT)

Thus by (2.128) and (2.129), the result (2.121) holds true. To prove (2.120), we take X; = 1 for all z; € Z¢
in (2.121) as follow

e Y. =Nyt

z €0°(QF)
and we get our result. For § > 0 be fixed, let us show (2.122). Indeed, for ¢’ > 0 and § small enough
P((N(B)—N6(3)> >5’) —P(#{ze®nB: min |-yl <ss >8] =0

yeP(w)NB
Yy#T

then

N° (B) o N (B) almost surely.

We have also s " B C & N B then

N%(B) = #®sNB < N(B)=#®NB

o7



and (N (B)) < +o0, it follows from the dominated convergence theorem ( See appendix B) that

lim (N°(B)) = (N(B)).

To show (2.120) and (2.121) for &5 we may argue exactly as above for the original process ® and apply the

strong law of large numbers to the random variables

Z)= > X

z; €P5(Qi)

Since for each z; € Z4 we have ®5(Q;) C ®°(Q;), then
0< 27! < Z.

So the only condition that remains to be proved for the collection {Z{s }Z czd 18 (2.125). By arguing same as

(2.123), we have

C

_‘_7
|20 — 2|

(2:2;) = (2)’| < \<X>2 (N @IN'(@)) — (N(Q) (x)? (N (QIN(Q)))

with Z a random variable take the same expectation with Z; for every z; € Z%. So the only challenge here

is to prove (2.126) for N%(Q;) instead of N(Q;) for any z; € Z?. To do that, for every = € R?, we define

dy = min |z — vy,
yed,

y#£T

which allows to write

N@= > 1= > 1456z),

2z €Ds5NQ z€PNQ

and

N(@ = > 1gsz).

2,€Tz, (2NQ)

where 7., ((® N Q)) is the translation of (P N Q) to (P N Q;) by the vector x;. Since

La,>5 = 1N(Bs(x)\{z})=0>

where

By(@)\ {z} = {y € RN\ {a} |0 — | < 3}

o8



It follows that, each N°(Q;) is a measurable random variable with repect to F(Bs(Q;)) defined as in (2.4)
with
By(@Qs) = {y € RY, dist(z, Qi) < 6}

Then, we can apply (2.4) as in (2.126) we get

(V@) - (V@) < S (@),

= 2 — 2

Lemma 2.10 In the same setting of the previous lemma 2.9, let {1}
such that 1. C ®¢(B) and

-0 be a familly of collections of points

lin% el#I. =0  almost surely. (2.130)
E—

Then,

;1_1?(1)5 ZI X; =0 almost surely.
zlE I3

Proof. Let M € N. We define for every z; € ® the truncated marks {Y;}, 4 as follow

X; if X;> M,

¥i = Xilinroo) = 0 if X, <M
i .

Since the original marks {X;}, .4 satisfies the assumptions (2.5) and (2.6) then the truncated marks

{Yil..co C© {Xi}, co satisfies the same assumptions. Moreover, we have by lemma B.1.4 (See appendix

B)

400 +o00 +oo M
vy = / P(Y; > y)dy = / P(Xilppgoe) > y)dy = / P(X; > y)1y<prdy = / P(X; > y)dy
0 0 0 0
+oo
< /P(X,' > y)dy = (X) < 400,
0

then, we can apply lemma 2.9 to the point process ® with truncated marks {Y;} .,cq to infer that almost

surely

et Y Yo (Xpriog) -
z;€P¢(B)
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This yields

: d o d , . d 4
;ILI(l)Supé‘ ZXZ gli%sups ZX11[07M)+;%SUP€ ZXZl[M7+OO)

z; €1l zi €l z; €1l
. d
< limsupe” Y Xilpgan + (X s veo))
Z,;E]a
. d
< Mil_rz%sups ZI —|—<X1[M7+Oo)>
ZLE €

IN

. d
M il_r)l% sup e*# 1. + (X1 400)) 5
by the assumption (2.130), we obtain

. } d . —
;g%bupe z; Xi < (X1 4e0)) = P(X € [M, +00)).
Zi€le

We may take the limit M — 400 and conclude that
iLIllOSUPE Z X;=0.
Ziefg
Since X; are positive, then our main result
; d -
il_I)I(I)E Z X; =0,
zi €l

holds true. m

Lemma 2.11 In the same setting of lemma 2.9, let us assume that in addition the marks satisfy <X2> <
+o0. For z; € ® and € > 0, let ;. > 0, and assume that there exists a constant C' > 0 such that for all
zi€®ande >0

rie < Ce. (2.131)

Then, almost surely, we have

d g
lim Xi:T / C(z)da = f(N (@) (X) /B ¢ (2) da, (2.132)

e—0 21607 (B) i,e  Br; _(ezi)

for every ¢ € C} (B).
Proof. First, we show that it suffices to prove (2.132) for r; . = ¢ for all z; € ® and € > 0. For ¢ € C} (B),
we put for z € R? and ez; the center of the balls B(ez;), By, (%)
r=|x — ez
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with
((r) =C(je—ezi]) = ((2).

Then, we get
i _ _ e e B Z0Nd—1
Z =) ((x)dx C(z)dx| = Z 704 [ C(r)r"dr —aq [ ((r)rdr
2, €0(B) ri e (€21) <(e2i) nede(B) | be ]
3 d €
— Z ad/C(E(’;r)rd Lar — Jd/C(r)rd Ydr|,
z,€P¢(B) 0 0

using mean value theorem and the assumption r; . < Ce, we get almost surely

g Y

2, €% ( B)

. d nre
<l sup e(d)e [Vl e gy “N(B) =0,

dr — d
/B oy S / @

with ¢(d) is a positive constant independant of ¢. Since e?N¢(B) is bounded by lemma 2.9, thus it suffices
to argue (2.132) only for r; . = . Without loss of generality we assume that r;. = ¢ and |B| = 1. We
can remark by density of countable subset of WO1 > (B) in C} (B) that it suffices to show (2.132) only for
¢ e Wol’oo (B). Let ¢ € I/Vol’OO (B), we begin by writing

S X (wdr = ) (Xl-—<X>)/ ¢ (2) dz

neae(p) U Be(e=) 260°(B) Be(ez:)
Zi E; /5 (e2i)
then
Xi C(a)de = 2N (@) (x) [ ¢| < (Xi — (X)) ¢ (z) da (2.133)
% 6;5(3) Be(ez:) d /B - E%:J(B) Be(e2;)
04
D> / da= 2N Q) [ (.

2z, €P¢(B

Let {Q;};cn be a partition of R? into essentialy disjoint unitary cubes and let {y;},.y the collection of their

centers. We claim that if T, T. +, R. and RE defined by

~[o TO= ¥ <.

QiNLIB#)
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RO= Y [ @i R©=4% Y N@En).

2,€®¢(B) =(e2i) QiN1B#)

then

1. (¢) — T. (C)‘ =0, hm ‘R —R. (C)‘ = 0 almost surely. (2.134)

The first limit is a standard Riemann sum, we have

~
—~
Iy
N—
|
™
—~
I
S~—
Il

li — = _
ti| =t Y clew| =t [~ Y cemlen
Qm B#0 Qm B#0

with |@;] is the Lebesgue measure of @Q);. Let us argue the second limit of (2.134) for ¢ € T/VO1 *°(B), we have
~ o
Re(Q)~ Re (0)] = ( > / 2) do — ddN(Q)C(éyi)) .
QintBA0 \mede(Qq) ' P

Since by change of coordinates we have

3 /dm—sdad @), (2.135)

2, €P¢(Q
then by mean value theorem and (2.135) we can write

Re(Q)~ Be(0)] = 2 B#@( > / - <ayz>)

2, €P(Q;)

< 26|V ooy €T NE(B).

Since by lemma 2.9 the term ¢?N¢(B) is finite, then the second limit follows immediatly.

So we can use these results to write

| X/ C(a)da - TN (@) X) [ ¢

B

IN

msp| Y (- () [ C@)ds

+lim sup |<* (X Z [, cemm@ - @) (2:136)



It remains to show that the two terms of the right-hand side of (2.136) vanishes almost surely, before that

we define

am = / C (1’) dl‘, )('Z = Xz — <Xz> s
B (ezi)

Se = Z ai,sXh gs = Z ai,in-
z,€P¢(B) 2z, €P¢(B)
We begin by proving the first right hand side of (2.136) which means S. defined above vanishes in the limit.

For § > 0, we estimate by Chebyshev’s inequality, one has
P (SE > 5) <52 <S§> : (2.137)

We want to show that S. converges to zero in probability, so we rewrite

<S§> = < Z ai,sak,aXiXk>

2,2, €P(B)

= Z < Z alyle Z akysf(k > . (2138)
QiNLB#0 2 €25(Q;) 2 €25 (Q:)
Q;niBp#o.

We set

Y, = Z ar- X,

2€9¢(Qi)

it follows

(#-( ¥ )= ¥ B X o 2129
QiNiB#D QiNiB#p i#5,QiNL B0,
Q;niB0. Q;niB0.

For the second right hand side of (2.139), we can write

S oome ¥ (% )] 2.10)
i#5,QiNL B0, QiNLB#0, 2€P5(Q;),2, € P (Q1)
Q;niBzo. Q;n1B0.

Since for ¢ € I/Vol’O<> (B) we have

|ae| = < HCHLOO(B) |Be| = & ”CHLOO(B) )

/ ¢ (x)dx
B (ezi)
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then we argue similarly as lemma 2.9 using the assumption (2.6), we get

d 2 o
SR D s2mmﬂm< 5 &XQ
i#5,QiN < B#0, i#5,QiNL B#0, 2€P%(Q;), 2k €P(Qi)
Q;niB#o. Q;niBz0.

N(Q;)N (Q;
< Z 52d||C||ioo(B)C< |,(z?—)zj|(7Qj)>’

Q;niB#0.

(N (Q)?

lzi—2;]7

with v > d. Adding and substructing the term

we get by assumption (2.4)

c N(Q)2
E : (Y;Y;) < E g2d ”C”%OO(B) M
i#£5,QiNL B0, QiNtB#0, v
Q;Ng BA0. @ niB20.

A similar estimation as the first limit in (2.134) for £ small enough gives

1 1
Y e (2141
i#5,Q:NL B#0 !
Q;niB#o.

with ¢ defined as

1
p(z) = ol for © # Oga,

and the assumption v > d gives

1
Ed/Bgo < 400.
It follows
S0 < e Gl (V@) [
Q;nLB#D.

sending € — 0, we get under the assumption (2.3)

Z (Y;Y;) — 0. (2.142)
Q;NLB#D.
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For the first term, we have

S 00 < Y e < S f<3>+< 3 m>

Nt L €4 (Q; 7>
QiN=B#0 Cé]:%ifg) z Qi) zl€<I>5(Q:),gk€§>5(Qj>
(2.6) 2d 2 2
<Y P ) (N (@) var(X)
QNLB#D
a2 CN(Qi)N(Q)))
+ Z g2 HCHLoo(B) ‘Z,Z_Z.p ’ d
i£5,Qin L BAD Y
Q;n1B£0.

(N@Q)?

adding and substructing the term C‘Z‘*Z‘P and using the assumption (2.4)
i Zj

2 2d 2 2 2d 2 <N(Q)2>
> (< Y Pl (N@)var(X)+C YD ey
QiNg B#D QN B#D i#5,QiNL B B
Q;niBzo.

A similar estimation as in (2.141) gives

S A Y e (V@) var(X) + Ce? ¢z (N (Q)7) / 0.

QiNtB#0 QNiB#0 B

Since (X?) and (N(Q)?) are finite, then

> (¥?) = 0whene—0. (2.143)
QiNIB#)

Hence by (2.143), (2.142) and the assumption (2.3)
<§€2> — 0 when € — 0,

So

Se = 0 in probability.
E—

Then, we can use the Borel-Cantelli’s theorem B.1.10 (See appendix B) for the subsequence ¢, = % with
n € N we get

lim S‘En =0 almost surely.
n—-+o00
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For the second right hand side of (2.136) we argue in a similar way as above, we denote

Qi=0Qi—(Q), L=e"02 3 ((ew)Q
QiNLIB#D

We estimate by Chebyshev’s inequality for each § > 0, we get
P(I. > 6) < 67%(12)

and we write

2
g ~ ~
() = 102 S (Clew) C(ewy) Qi )
QiNLB#)
Qjﬁ%B;é(Zl
< X Y (V@QIN@) - (V(Q)F)
= L>(B) d2 t J
QiN1B#0
er‘%B;é@

2D o4 2 2 U?z
< XS zx ) 2 >
QN1 B0

c(N(©Q?)

|2i — 2|7

since by definition of Riemann sum we have

> o @) a [ oy
C’
~d
— E
i#5.QiN L B#D = zj‘
Q;NLB#D

with

1
p(z) = r for x # Oga,

thanks to the assumption v > d we have
/ C <N (Q)2> ¢ < +oo.
B
Then we substitute in (2.144) we get
(12) < 00 (Gl T [ (N (@) = 0 when e -0,

it follows

I e 0 in probability.
e—
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Applaying the Borel-Cantelli theorem B.1.10 for a subsequence &, = % with n € N, we get

lim I., =0 almost surely.
n—-+00

So for a subsequence {e, },cy We have

lim )X ¢ (z)de = =2 (N (Q)) (X) /B ¢ () dz almost surely. (2.145)

n—-+4o0o . Bg(ezi) d
Z¢€{><§B)

To extend (2.145) to any sequence ¢; — 0, we fix first the following notation

() =)

Note that e 71,871 € Nand ¢ < & <& We write ¢ = (" + (™ then we can remark by linearity of the integral
that it suffices to consider the positive functions which allows to keep with the case a; . > 0.

For £; — 0, by definition of £; we can estimate

N%i (B)
Sepo= Y aigXi <SS+ Y |aie, —ag | X
2, €9 (B) i=1
N%i (B)
< S.. + max Qje; — Qe X;. 2.146
We can claim that we have almost surely

max;«nNz(p) |Gie — iz Max;<ne(p) |die — Gj
lim <N (B3d| 1,€ 1,€| — lim ngf(B)d‘ i€ z,g‘ —0. (2.147)
e—0 g e—0 €

We first show that if (2.147) is true, we can conclude the lemma immediatly. We have

. . I N¢i(B)
MaXi—1,.,N% (B) |Tie; — Gig;|
Se; < S, + 5 g > X, (2.148)
=j i=1

B)

from lemma 2.9 we have g? Zf\:l] ( X; is bounded for € small enough, by (2.147) the second right hand side

of (2.148) vanishes in the limit. For the first we can use the result (2.145), we get

. 0d
fim sup 5., < % (N (@) (%) [ ¢ (a)da

Ej—
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We may argue similarly, we have

max;_y _yei g |aie, — aig;| Nl
i=1,..,N°i(B) |%i,e; — Wig;| _
S., > S:, + B 50 N X,
g i—1
1=

Using (2.147), (2.145) and lemma 2.9 we get

. o
lim inf ng > 7d

e;—0 d

(N (Q)) (X) /B ¢ (z) da.

Then, our main result holds true.
Now, it remains to argue (2.147), we have for ¢ € V[/Ol’oO (B) and for every z; € B and ¢; < g2 the

following estimation
Uiy = Qigy| < / ¢ (z +e12i) — C(z + e22)| do
B, (0)

+/ ¢ (z+ e9z;) dz,
Be,(0)\Be, (0)

using mean value theorem one has

d
d €2 d
ey — Gies] < IVCI poe e o2 — €1l [zl €4+ 1€ oo (() - 1)

Since we have N°2 (B) < N°! (B) and thus i < N°2 (B) we have that |z;| < e; ' and

d
€1 15
‘ai,sl - ai,52| < HCHWI,OO(B) <<1 — 62) + <<€1> — 1>> €(1i.

We choose €1 = €,e9 = € this yields

d
1 _d
60 = sl < [Clhnoeis) (e+ (=) - 1) 2

and thus the first limit in (2.147) holds. m
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Appendix A: Some preliminaries on

functional analysis

In all what follows D is an open bounded set of R%, d > 2.
A.1 L? spaces and Sobolev spaces
Definition A.1.1 [4] We denote by L!(D) the space of real-valued measurable functions u defined in D

that satisfies

/D ()| da < +o0.

Then, we set

LYD) = {u : D — R measurable such that / lu(z)|dx < +oo} )
D

For 1 < p < 00, we set
LP(D) = {u : D — R measurable such that |u|” € Ll(D)} ,
We define L>°(D) as a space of essentially bounded measurable fonctions mesurables i.e
3C > 0: |u(z)| < C almost every = € D.
Then, we set
LY(D) = {u: D — R measurable : 3C >0 : |u(z)| < C almost every = € D},
Proposition A.1.2 [4] Equipped LP(D),1 < p < oo with the norm

el o) = ( [ 1uta |da:) . Vue L7(D),

and L>°(D) with
[ull oo (py = Inf {C: |u(z)| < C almost every = € D}.
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LP(D),1 < p < oo is a Banach space. Moreover, L?(D) endowed with

/ u(z)v(z)de, Yu,v € L*(D),
D

is Hilbert space.
Theorem A.1.3 (An embedding theorem for L? spaces) [2] Suppose that |D| = [, dz < +00 and
1 <p<q<+oo.Ifue LYD), then u € LP(D) and

11
[ell ooy < (1PN llullLap) -

Hence

LY(D) — LP(D).

Theorem A.1.4 (Holder’s inequality) [4] Let f € LP(D) and g € LY(D) with 1 < p,q < oo and

+ 2 =1. Then, f-g € L*(D) and

1,1
P g

/D -0 < 1w 191l o -

Remark A.1.5 Holder’s inequality for L?(D) is just well-knows as Cauchy-Schwarz inequality.
Definition A.1.6 [4] Let m > 1 be an integer. For 1 < p < oo we define Sobolev spaces denoted by
WP (D) as follow

Vo € NV avec |a| < m,3g, € LP(D) telle que
W™P (D) =< ueLPD):

 fouDlg = (=1)" [, gatp, Y € D (D)

N
where D% = g4, |a| = Zai and D (D) is the space of infinitely differentiable functions ¢ : D — R with
=1

compact support.

We define Wy™"" (D) as the closure of D (D) in W™P? (D), i.e
Wm(D)

Wg"* (D) =D (D)

For p = 2, we denote by H™ (D) and H* (D) the spaces W™?2 (D) et Wén’z (D) respectivly.
Theorem A.1.7 [4] Equipped W™P (D) with the norm

[ullwme) = Z D%l p(py, V1<p< oo,
0<|a|<m

70



WP (D) is a Banach space.

For p =2, H™ (D) is a Hilbert space with respect to the scalar product

Z /D D%(z)D%(x)dx.

0<]al<m

est un espace de Hilbert. Moreover, WP (D) is reflexif for 1 < p < oo and separable for 1 < p < +o0.
The product ¢u of a smooth function ¢ € D(D) and v € W™P(D) belongs to Wy"*(D).
Proposition A.1.8 (Caracterization of dual space of Wol’p (D)) [2] For 1 < p < oo, and L €

W=L9(D) with ¢ = pp%l, there exist ¢, @1, ..., g € L1 (D) such that

Moreover,

1l -apy = 5 (190> 9150 00) | ooy ) -

Corollary A.1.9 (Poincaré inequality) [1] If D is a bounded open set of R?. There exist a positive
constant C' = C (D, p) with 1 < p < oo such that

ull oy < C IVl ppyes Y € WiP(D).
Theorem A.1.10 (Rellich-Kondrachov) [4] Suppose that D is bounded, and 0D is C1. We have

1
Ifp < N then WHP (Q) — LY(Q),Vq € [1,p*] where p = DTN
Ifp = N then Wh? (Q) — LY(Q),Vq € [1,00],

Ifp > N then WH? (Q) — C(Q),

with compact embedding.
Theorem A.1.11 (Green formula) [1] Suppose that D be an open bounded regular set of classe C?.
If u and v are functions of H'(€2), they satisfy

/Qu(a:)g; (z)dx = —/qu(:z:)aagZ (:z:)dx—l—/(mu(aj)v(x)nidx,

where n = (n;);<;< 5 is the outward unit normal to 9.
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Proposition A.1.12 [1] Suppose that D is an open bounded regular set of classe C1. Let (w;); ..
be a regular partition of D, that is each w; is a regular open set of classe C', w; Nw; = 0 if ¢ # j and

Q= U w;. Let u be a fonction whose restriction to each w;, u|wi = u; belongs to Hl(wi). If u is continous
1éi§k
over , then u belongs to H'().

Theorem A.1.13 (Gagliardo-Nirenberg-Sobolev inequality) [2] Assume that 1 < p < d and that
0D is C'. u € WP (D) then u € LP" (D) with p* = ddfpp. and we have the estimation

ull Lo (py < Cllullyrep

the constant C' depending only on p,d, and D.
If we consider the case p = d, then we the continuous embedding of W14 (D) in L7 (D) with ¢ € [d, +00).
A.2 Functional analysis results
Corollary A.2.1 [4] (Hahn-Banach)Let G be a subset of a Banach space E, G’ and E’ the dual space

of E and g : G — R is a continuous linear function of norm

9l = sup |g(a)].
Izl o<1
zeG

Then there exists f € E’ that extends g and such that|g||o = || f]| 5 -
Theorem A.2.2 (Lax-Milgram) [4] Let a a bilineair form defined in H x H and satisfies

M >0, |a(u, ) < M Jullg ol Va,ve H

Ja > 0, a(u,v) > a|ull% Yue H
with H a Hilbert space. Then, for every 1) € H’, there exist a unique u € H such that
a(u,v) = (Y,v) g g, Vv € H.

Definition A.2.3 (Weak and weak-star convergence) [4] Let E be a banach space.

A sequence (), € E is said to converge strongly to an element u € E, if

lunllg = llullg

where ||.||; is a norm defined in FE.

A sequence (u),cny € E is said to converge weakly to an element v € E' and we write

uy — u weakly in E.
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if
(9 un) g p — (9,w) pr pp for every g € E',

where E' is the daul space of E.

A sequence (gn),cn C E' is said to converge weakly-star to g € E' and we write
n A g weakly-star in F’.

Theorem A.2.4 (Eberlein-Smuljan) [4]

a. Let E be a reflexif Banach space and (uy,), ¢y is a bounded sequence in E. Then, there exist a subsequence

(Uny )y, en converge weakly to a limit u € E.

b. If E is a separable Banach space and (gn),,cy & bounded sequence in £ with E’ is the dual of E. Then,

there exist a subsequence (g, ) nyeN converge weakly-star to a limit g € E'.
Theorem A.2.5 (Maximum principle [9]) Let u € C? (D) N C (D) such that
—Au = 0.

Then

minu < u(z) < maxwu for x € D.
oD oD

A.3 Additional definitions and results
Definition A.3.1 (Periodic functions) [6] Let Y = ]0,11[ x ... x ]0,l4[ be a cell in R? and u is a

function defined in almost everywhere in R?. the fonction u est said to be Y —periodic if
u(z + klie;) = f(x) Yk eZ, Vi=1,..d,

where (€i);<;<4 is the canonical basis of R<,
Proposition A.3.2 (See D. Cioranescu and Murat [6]) Let 1 < p < +oo and f be a Y— periodic
function in LP(Y) where Y = ]0,l1[ x ... x ]0,l4[ be a cell in R? Set

fe(z)=f (E) almost everywhere in R%,
5
Then, if p < 00, as € — 0

fe = My (f) = Dl/| /Yf (z) dx weakly in LP (w),
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for any open subset w of R%.

If p = 400, one has
1
fo = My () = 37 / £ (z) dz weakly* in L <Rd> .
Y

Theorem A.3.3 (Fubini’s theorem) [12] Suppose that f (z,y) is a non-negative measurable function
on R% x R% = R? Then, for almost every 2 € R% and y € R%

1. The slice f¥ (z) := f (z,y) is measurable on R?.

2. the function defined by [pq, f¥ (z) dz is measurable on R%.

3.the slice f; (y) := f (x,y) is measurable on R%.

4. the function defined by [pa4, f¥ (z) dz is measurable on R%.

/Rdz < Rdlf(%,@/)Clx) 0ly=/Rdf=/Rd1 ( Rde(x,y)dy) dz.

Moreover,

74



Appendix B : Some basic facts on

stochastic analysis

We denote (2, F,P) where (2 is the set of outcomes, F is a set of events and P: F — [0, 1] is a function that
assigns probabilities to events.

B.1 Some probability results

Definition B.1.1 [7] Let (S,S) an aribtrary measurable space. A map X : Q@ — S is said to be a
measurable map from (Q, F) to (S5,S) if

X !'B)={w:X(w)eB}eFforall BeS.

If (5,8) = (]Rd, Rd) and d > 2 then X is called a random vector, if d = 1, X is called a random variable, or
random vector for short.

Definition B.1.2 [7] The distribution function of a random variable X is the function F' defined as
Fz)=P(X <),

defined for every z € (—o00,+00).

When the distribution function F' has the form
Fa)= [t
—0o0

we say that X has a density function f.
Definition B.1.3 [7] The expectation of a random variable with density function f is defined by

—+00

(X) = /xf (z) da.

—00

Generaly, the expectation defined as the integration over the set of probability 2 with respect to the
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probability measure P, we write

() = [ X dpw),
Q
We define the n'*—moments of a random variable X with n € N* as follow

—+00

(X™) = /x”f (x) dx.
We define also the variance var(X) of X as follow

var (X) = ((X = (X))*)
= (X?) - (X)*.

Lemma B.1.4 [7] Let X a random variable. If X > 0, and p > 0, then

“+oo

(XPy = [ py? 'P(X > y)dy.
/

Theorem B.1.5 (Chebychev inequality) [7] Let X a random variable, for any a > 0, we have
a’P (| X| > a) < (X?).

Theorem B.1.6 (Dominated convergence theorem) Let X, is a sequence of random variables.

X,Y two random variables. If X,, converges to X almost surely, | X,,| <Y and (Y) < 400 then
(Xn) = (X))

Definition B.1.7 (The joint distribution and density) [11]

The joint distribution Fxy of two random variables X and Y the probability of the event
{X<2,Y <y},

with z,y € (—o0, +00).

The joint density function of X and Y is defined as follow

O*Fxy (z,y)
fxy (z,y) = T owdy

Definition B.1.8 (Independance) [11] Two random variables X and Y is said to be independent if
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for every A, B € F, the events (X € A) and (Y € B) are independent that is, if
P(XeAYeB)=P(XecAP(Y €B).
applaying this latter for the events (X < z) and (Y < y) for the real numbers x and y,then
Fxy (z,y) = Fx (z) Fy (y) .

hence

fxy = fxfy-

In what follow E is an arbitrary complete separable metric space, B (E) the o—field of its Borel sets.

Theorem B.1.9 (Borel-Cantelli I) [7] Let A;,7 € N* a sequence of subsets of €2, if
> P(X > i) < oo
i=1

Then
P(X > i i.0) = 0.
(i.o infinitely often which means P (X; > i i.0) =P <lim sup (X; > z)) with limsup (X; > i) = ﬂ U (X; >1)

i>0 k>i
and (X; > i) ={we Q: X;(w) > i}

Theorem B.1.10 (Borel-Cantelli IT) [7] Let X,, a sequence of random variables, X,, — X in proba-
bility if and only if for every sequence X, (,,) there is a further subsequence that converges almost surely to
X.

Definition B.1.11 (Convergence types) [11] A sequence X,, of random variables is convergent to a

random variable X in probabaility if for every € > 0
P (| X, — X| >¢) — 0 when n — +o0.

We said that X,, converge almost surely (this type of convergence called almost everywhere in measure

theory) if for every € > 0 we have

P(| X, — X| > ¢ a.e) =0.

B.2 Stochastic processes

Definition B.2.1 [§]

We denote by p : B(E) — R* the Borel measure which is said to be boundedly finite if p(A) < 400
for every bounded Borel set A € B(FE),
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. Mg the space of all boundedly finite measure on B (E) .

. N is the space of all boundedly finite integer-valued measures N € Mg, called counting measures for

short.

. N} is the family of all simple counting measures, consisting of all those elements of Ny for which

N ({z})=0,0r1 (all x € E).

. N; gx « is the family of all boundedly finite counting measures defined on the product B(£ x K), where K
is a complete separable metric space of marks, subject to the additional requirement that the ground
measure N, defined by

Ny(A) = N(Ax K) for all A € B(E).

is boundedly finite simple counting measure; i.e Ny € N}.
Definition.B.2.2 [§]

A random measure ¢ on the space E is a measurable mapping from (2, F,P) into (Mg, B(MEg)).
. A point process N on E is a measurable mapping from (2, 7, P) into (Ng, B (NEg)).
. A point process is simple when P(N € N},) =1.

. A marked point process on E with marks in K is a point process N on B(E x K) for which P(N €
N7 ) =1, its ground process is given by N (.) = N(. x K).

Lemma B.2.3 (Strong law of large numbers for sums of random variables with correlations)
[10] Let {@;};en = Z¢, and let {X;},.y be identically distributed random variables with X; > 0 and X is a
random variable takes the same properties as X, for each i € N such that (X) < 4o00. Let us assume that
for every i,j € N with i # j
C
XiX) = (XP| < —— v>d.
XX) = (X < s

Then, for every bounded Borel set B C R? which is star-shaped with respect to the origin, we have

lim ¢ Z X; =X almost surely.

e—0
z;€24N1D
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Conclusion

In this thesis we have used the homogenization theory to study a Dirichlet problem with Laplace operator
in a bounded domain, perforated by spherical holes using the oscillating test function method. We have
treated two examples of perforated domain. In the begining, we have focused on the case where the holes
are distributed periodically and which have a critical size, we have introduced some hyptheses on holes in
order to obtain in the limit the Laplace operator with an additional term and this where the charm of the
problem lies. For the second example we have treated a perforated domain with random number of balls,
assuming that the centers of the balls are generated according to a stationary point process and the radii
are random variables with short-range correlations. In addition, we have recovered in the homogenized limit
an averaged analogue of strange term obtained as in the first case under a minimal assumption on the size

of the holes.
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