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Operator learning has emerged as a promising paradigm for developing efficient surrogate models to solve

partial differential equations (PDEs). However, existing approaches often overlook the domain knowledge
inherent in the underlying PDEs and hence suffer from challenges in capturing temporal dynamics and

generalization issues beyond training time frames. This paper introduces a deep neural ordinary differ-

ential equation (ODE) operator network framework, termed NODE-ONet, to alleviate these limitations.
The framework adopts an encoder-decoder architecture comprising three core components: an encoder that
spatially discretizes input functions, a neural ODE capturing latent temporal dynamics, and a decoder re-

constructing solutions in physical spaces. Theoretically, error analysis for the encoder-decoder architecture is
investigated. Computationally, we propose novel physics-encoded neural ODEs to incorporate PDE-specific

physical properties. Such well-designed neural ODEs significantly reduce the framework’s complexity while

enhancing numerical efficiency, robustness, applicability, and generalization capacity. Numerical experiments
on nonlinear diffusion-reaction and Navier-Stokes equations demonstrate high accuracy, computational ef-
ficiency, and prediction capabilities beyond training time frames. Additionally, the framework’s flexibility
to accommodate diverse encoders/decoders and its ability to generalize across related PDE families further
underscore its potential as a scalable, physics-encoded tool for scientific machine learning.
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1. Introduction

1.1. Background

Partial Differential Equations (PDEs) serve as fundamental tools for modeling systems across

physics, engineering, biology, and economics, where quantities such as temperature, pressure, wave

amplitude, or population density evolve in space and time. Analytical solutions to PDEs are of-

ten intractable, particularly for nonlinear or high-dimensional problems. Consequently, numerical

methods have become essential for solving PDEs approximately.

Traditional numerical methods for PDEs, such as finite difference methods (FDM), finite element

methods (FEM), finite volume methods, and spectral methods, discretize continuous temporal-

spatial domains into computational grids, transforming PDEs into solvable algebraic systems. These

methods are grounded in rigorous mathematical theories and can produce highly accurate and

interpretable solutions, especially for linear PDEs and well-posed problems. Moreover, these methods

are efficient for low-to-moderate dimensionality (no more than 3) and the corresponding linear system

solvers and preconditioners are highly optimized. Hence, these traditional numerical methods are

indispensable for their precision and reliability in diverse PDE applications. However, traditional

numerical methods are still struggling to address PDEs in high-dimensional spaces and complex

domains.

Many problems in science and engineering, such as inverse problems and optimal control, require

solving PDEs repeatedly for different parameters [55,57,58,59]. Traditional numerical solvers for

these problems rely on mesh-based discretization, which generates large-scale algebraic systems.

Solving these systems repeatedly is computationally expensive, rendering traditional approaches

inefficient for many-query scenarios. To alleviate this issue, we propose a novel operator learning

framework for solving PDEs.

Operator learning follows an offline training and online inference paradigm. As analyzed in [10],

operator learning lessens the curse of dimensionality for solving PDEs. However, we should mention

that operator learning usually requires training data generated by traditional numerical PDE solvers,

and thus cannot fully escape the curse of dimensionality. Nevertheless, operator learning involves

only a single, offline training phase for the neural network and during inference, obtaining a solution

for a new input function requires only a forward pass of the neural network. This enables the

construction of highly effective emulators capable of real-time predictions for critical applications

such as freeway traffic control, weather forecasting, and digital twins, see e.g., [2,27,28,39,43,48] and

the references therein.

1.2. Methodology and contributions

To impose our ideas clearly, we consider a class of PDEs modeled by
∂tu(t, x) + L[a](u)(t, x) = f(t, x) ∀(t, x) ∈ [0, T ]× Ω,

u(0, x) = u0(x) ∀x ∈ Ω,

Bu(t, x) = ub(t, x) ∀(t, x) ∈ [0, T ]× ∂Ω.

(1.1)

Above, T > 0, Ω ⊂ Rd is a bounded domain with boundary ∂Ω, L is a differential operator

with a : [0, T ] × Ω → R as the underlying parameter (e.g., L[a](u)(t, x) = −∇ · (a(t, x))∇u(t, x)),
f : [0, T ] × Ω → R is the source term, u0 : Ω → R is the initial value, B denotes a boundary

conditions operator that enforces any Dirichlet, Neumann, Robin, or periodic boundary conditions,

and ub : [0, T ]× ∂Ω → R is the boundary value.

Let v ⊂ {f, a, u0, ub} denote a collection of parameters in (1.1). We assume that, for any admis-

sible v, the system (1.1) has a unique classical solution u in the appropriate function space. The

goal of operator learning is to approximate the solution operator Ψ†, which maps v to the solution
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u, by a neural-network–based functional Ψθ with trainable parameters θ:

Ψθ ≈ Ψ† : v 7→ u.

In this article, we introduce Ψθ within a deep Neural Ordinary Differential Equation Operator

Network (NODE-ONet) framework.

1.2.1. The NODE-ONet framework

The NODE-ONet employs an encoder–decoder architecture, with its error analysis presented in

Section 2.3. In practice, the NODE-ONet consists of the following three components (a concrete

example is provided in Section 2.2, and a complete version is presented in Section 3.2):

(1) Encoding: The input parameter set v is embedded into a latent space using a spatial discretiza-

tion scheme (e.g., pointwise evaluation on grids, expansion in a finite element or Fourier basis).

The resulting encoded system of (1.1) is represented by a reduced number of state variables,

referred to as latent variables, whose dynamics evolve in time.

(2) NODE surrogate: We develop physics-encoded NODEs, which employ explicitly time-

dependent parameters (e.g., with polynomial dependence on t) to approximate the dynamics

of the latent variables, thereby substantially reducing the complexity of vanilla NODEs [9].

Furthermore, the architecture of physics-encoded NODEs is designed to encode structural prop-

erties of the underlying PDEs, such as the nonlinear dependence of a and u, as well as the

additive relationship between f and u in (1.1). The effects of other known parameters (i.e.,

{f, a, u0, ub} \ v in (1.1)) are also incorporated into the NODE design.

(3) Decoding: After the latent dynamics are learned, the PDE solution u is reconstructed from

the NODE outputs by a decoder that depends only on the spatial domain.

Note that the temporal and spatial variables are treated separately in the NODE-ONet. Such

separation is in alignment with traditional numerical methods for time-dependent PDEs, which

often employ a time-sequential method and solve the problems step by step instead of the entire

temporal-spatial domain. As a result, the trained space-dependent decoder can be generalized to

other operator learning tasks for PDEs with similar structures, as demonstrated in Section 5.1.

Moreover, it is remarkable that although the NODE-ONets are designed for evolution PDEs, they

can be readily applied to stationary cases, see Remark 2.1, Corollary 2.1, and Section 3.

1.2.2. Contributions

We introduce NODE-ONets, a new framework for operator learning in PDEs, with theoretical and

practical advancements. Theoretically, we establish error estimates in Theorem 2.2 for the general

encoder–decoder architecture, which can serve as a foundation for proving the convergence of NODE-

ONets on a case-by-case basis in future work. Practically, we develop physics-encoded NODEs, which

are central to the efficiency, robustness, and broad applicability of the proposed NODE-ONets, as

will be demonstrated in Section 5.

The physics-encoded design enables two critical capabilities. First, it allows the model to ef-

fectively capture dynamic patterns of the underlying PDEs and predict system evolution beyond

the training time frame. Second, it seamlessly scales to multi-input functions without increasing

the neural network complexity. This scalability makes NODE-ONets adaptable to diverse input

configurations while maintaining computational efficiency.

It is noteworthy that the physics-encoded NODEs are designed by leveraging the specific math-

ematical structure of underlying PDEs, while the neural networks are trained offline on PDE-

generated data. Hence, the physics-encoded NODE-ONets demonstrate a promising synergy between

PDE-based domain knowledge and data-driven paradigms. Such a hybrid approach benefits from

the interpretability and reliability of PDEs and the flexibility and generalization of neural networks.



4

1.3. Related work and motivation

Some deep learning methods have been recently proposed for solving PDEs, as evidenced

by [14,36,40,50,54] and the references therein. Thanks to the powerful representation capabili-

ties [13,20,26] and generalization abilities [25,46] of deep neural networks (DNNs), the above deep

learning methods enhance the feasibility of tackling complex, multi-scale PDE systems and have

found widespread applications in various scientific and engineering fields, see e.g., [12,16,24,34,56,58]

and the references therein.

Compared with traditional numerical methods, deep learning methods are typically mesh-free,

easy to implement, and flexible in solving various PDEs, especially for high-dimensional problems

or those with complex geometries. Some deep learning methods, such as the deep Ritz method [14],

the deep Galerkin method [54], and physics-informed neural networks (PINNs) [42,50], approximate

the solution of a given PDE by DNNs, and the PDE solution can be obtained by training the DNNs.

Despite that these methods have shown promising results in diverse applications, each of them is

tailored for a specific instance of PDEs. It is thus necessary to train a new DNN given a different PDE

parameter (e.g., initial/boundary value, source term, or coefficients), which may be computationally

costly and thus challenging to generate real-time predictions for varying input data. To alleviate

this issue, some operator learning methods have been recently proposed in the literature, see e.g.,

[4,29,36,40]

1.3.1. Operator learning for PDEs

Operator learning applies a DNN to approximate the solution operator of a PDE, which maps

from a PDE parameter to the solution. Once a neural solution operator is learned, we obtain a

neural surrogate model and only require a forward pass of the DNN to solve a PDE. Representative

operator learning methods for solving PDEs include the deep operator networks (DeepONets) [40],

the MIONet [23], the physics-informed DeepONets [61], the Fourier neural operator (FNO) [36],

the graph neural operator [35], the random feature model [45], the PCA-Net [4], the Laplace neural

operator [7], and the in-context operator network [63].

Although the traditional numerical PDE solvers may still be competitive in pursuit of solutions

with high accuracy, it is well known that operator learning approaches could also achieve satisfac-

tory accuracy of solutions while additionally gaining significance in numerical efficiency as well as

generalization ability. Hence, operator learning approaches are being widely used to construct effec-

tive surrogates for PDEs and are computationally attractive for problems that require repetitive yet

expensive simulations, see e.g., [2,22,27,28,39,43,48,55,57,59].

Among the above operator learning methods, the DeepONets, which adopt an encoder-decoder

architecture and are motivated by the universal approximation theorems for operators [8,40], have

demonstrated good performance in diverse applications, such as electroconvection [6], multiscale

bubble growth dynamics [38], and aortic dissection [64]. More applications, theoretical analysis, and

numerical study of DeepONets can be referred to [15,18,41]. Several variants of DeepONets have

also been developed for learning PDE solution operators in different settings, such as the Bayesian

DeepONet [17], the DeepONet with proper orthogonal decomposition (POD-DeepONet) [41], and

the physics-informed DeepONets [61].

Note that all these DeepONets treat temporal and spatial variables together and train the neu-

ral networks over the entire temporal-spatial domain at once. This may lead to neural networks

being hard to train and deteriorate the numerical accuracy, see e.g., [31,60]. Despite their broad

applicability, DeepONets always utilize generic neural networks (e.g., fully connected neural net-

works (FCNNs), convolutional neural networks (CNNs), and recurrent neural networks) and over-

look domain-specific knowledge inherent to the PDEs, such as their intrinsic structure or the effect

of specific PDE parameters. This oversight may compromise their computational efficiency in learn-

ing PDE solution operators. In particular, DeepONets exhibit limitations in capturing the evolution
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dynamics of time-dependent PDEs, which restricts their predictive performance beyond the training

temporal domain.

Furthermore, as validated in [23], vanilla DeepONets [40] are not sufficiently accurate when

approximating PDE solution operators involving multiple input functions. To address this issue, the

MIONet was proposed in [23], which enhances the numerical accuracy for learning operators with

multi-input functions. However, the model complexity of MIONet increases as the number of input

functions scales, and the MIONet still suffers from the prediction issue beyond training time frames.

These limitations motivate architectures that (i) treat time as a continuous variable rather than

fixed training grids, (ii) encode the dynamical structure of PDEs explicitly, and (iii) remain sta-

ble when extrapolating beyond the training horizon. A natural candidate in this direction is the

framework of NODEs.

1.3.2. Neural ODEs

To handle time-dependent systems, the authors in [9] introduced the concept of NODEs, a

continuous-time limit of deep residual networks (ResNets) [19] that merges deep learning with

dynamical-systems theory. Classical ResNets can be viewed as a forward-Euler discretization of

a NODE. Formally, a vanilla NODE models the dynamics of a state trajectory x(t) : [0, T ] → Rd
via an ODE parameterized by a neural network:

ẋ =

P∑
i=1

Wi(t)⊙ σ(Ai(t)x+Bi(t)),

x(0) = x0.

(1.2)

Here, Ai ∈ L∞([0, T ];Rd×d),Wi ∈ L∞([0, T ];Rd), and Bi ∈ L∞([0, T ];Rd) for i = 1, . . . , P are

trainable parameters, σ : Rd → Rd is an activation function, and ⊙ stands for the Hadamard

product. The continuous-time modeling capability of the vanilla NODEs offers significant advantages

for applications requiring smooth interpolations or handling irregularly sampled data, such as time

series modeling [9] and classification tasks [52]. In particular, the application of NODEs to solve

PDEs has been studied in [44,51].

However, vanilla NODEs [9] suffer from several critical limitations when applied to operator

learning. First, the parameters therein are all implicitly time-dependent, which introduces substantial

computational complexity when training with finer temporal resolutions. Furthermore, the implicit

temporal dependence of these parameters restricts generalization. To be concrete, we can only get

their values at {tk}Ntk=1 that are used in the training process, rendering predictions at t̂ /∈ {tk}Ntk=1

unreliable or unavailable. We refer to [37] for related discussions. Second, vanilla NODEs are largely

restricted to learning solution operators conditioned solely on the initial condition (see [44,51]).

This limits their applicability to broader operator-learning settings in which the inputs include,

for example, spatially varying diffusion coefficients, source terms, boundary data, or other PDE

parameters. Finally, standard implementations of NODEs, which rely on conventional architectures

such as FCNNs or CNNs, neglect PDE-specific knowledge.

Therefore, the main goal of this article is to develop a physics-encoded NODE–based operator-

learning framework that learns the operator mapping from PDE parameters to the corresponding

solution. By encoding PDE structure into the NODE architecture and incorporating numerical

solutions into the training data, our method enables an efficient offline–online workflow: after a one-

time training cost, the surrogate provides fast, high-fidelity predictions for new parameter queries,

yielding high-performance numerical resolution of PDEs.

1.4. Organization

The remainder of this paper is organized as follows. In Section 2, we introduce the general encoder-

decoder networks and investigate the corresponding error analysis. Then, we present the generic
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architecture of the NODE-ONet framework and discuss the training methodology in Section 3. In

Section 4, we elaborate on the design of physics-encoded NODEs and present the resulting NODE-

ONets. In Section 5, comprehensive numerical results are presented to validate the effectiveness,

efficiency, and flexibility of the NODE-ONets in different contexts. Finally, some conclusions and

research perspectives are given in Section 6.

2. General Encoder-Decoder Networks and Error Analysis

In this section, we first review the encoder-decoder networks [4,30,40], a widely used architecture

in operator learning. We then present a general error analysis framework for such networks. This

analysis framework serves as the foundation for both the design and theoretical analysis of the

proposed deep NODE-ONets, which are developed in subsequent sections for solving PDEs.

2.1. The architecture of encoder-decoder networks

Encoder-decoder networks aim to approximate the operator Ψ† : V → U with infinite-dimensional

input and output spaces V and U . For this purpose, we first introduce two suitable latent spaces,

denoted by Vh and Uh, respectively, which generally possess a simpler structure than the original

spaces V and U , often characterized by finite dimensionality. Then, we select an encoder EV and a

decoder DU :

EV : V → Vh and DU : Uh → U ,

either fixed a priori or parameterized by neural networks. Next, we design a decoder DV and an

encoder EU :

DV : Vh → V and EU : U → Uh,

so that the compositions

DU ◦ EU and DV ◦ EV

approximate the identity mappings in U and V (see Assumption 2.1(1)-(2) for the linear case).

These encoder/decoder pairs in turn imply an encoding of the underlying infinite-dimensional

operator Ψ†, resulting in a function between the latent spaces Vh and Uh:

ψ : Vh → Uh, ψ(ζ) = EU ◦Ψ† ◦DV(ζ), ∀ζ ∈ Vh,

as depicted in the right-hand-side of Figure 2.1. Then, formally, we have

DU ◦ ψ ◦ EV ≈ Ψ†.

Using a neural network ψθ : Vh → Uh to approximate ψ, we obtain an encoder-decoder network

Ψθ : V → U in the form of

Ψθ := DU ◦ ψθ ◦ EV , (2.1)

to approximate the operator Ψ†, as illustrated in the left-hand-side of Figure 2.1. Representative

encoder-decoder network architectures include the PCA-Net [4], the Integral Autoencoder Network

[47], the DeepONets [40], the MIONet [23], and their variants [11,21,49,61,65], just to name a few.

2.2. An illustrative example

We now demonstrate the integration of NODEs into an encoder-decoder architecture for learning

PDE solution operators with a concrete example; a general framework is detailed in Section 3.

Consider equation (1.1) in one spatial dimension (d = 1). The spatial operator takes the following

form for a fixed coefficient field a(t, x) and a nonlinear function R:

L[a](u)(t, x) = −∇ ·
(
a(t, x)∇u(t, x)

)
+R

(
u(t, x)

)
.
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V Vh V

UUhU

Ψ†
ψθ ≈ ψ Ψ†

Encoder: EV

Decoder: DU

DV

EU

Approx:Ψθ ψ

Fig. 1. Latent structure in maps between infinite-dimensional spaces V and U .

The boundary condition ub is fixed, while the initial condition is treated as a parameter of the PDE,

given by v = u0 ∈ C(Ω). This example aims to learn the initial-value-to-solution operator

Ψ†
initial : u0 7→ u.

First, we choose the latent spaces as Vh = RNx and Uh = C([0, T ];RNx) with some Nx ∈ N+.

The encoding and decoding steps are respectively realized by a uniform finite-difference grid and

by a P1 finite element interpolation. In particular, let {xi}Nxi=1 be the uniform mesh of Ω and αi the

P1-FEM basis centered at xi. Then, the resulting encoder-decoder architecture is given by:

Architecture



Encoder EV : u0 7→ U0,h =
(
u0(xi)

)Nx
i=1

∈ RNx ,

NODE surrogate ψθ: U0,h 7→ Uθ, with

 U̇θ(t) = NN θ(Uθ(t), t),

Uθ(0) = U0,h,

Decoder DU : u(t, x) =

Nx∑
i=1

(
Uθ(t)

)
i
αi(x).

Here, NN θ denotes a neural network function with parameters θ that are independent of t, which

marks a key distinction from the vanilla NODE formulation in (1.2). The specialized structures of

NN θ, designed to incorporate PDE information, are demonstrated in (4.2) and (4.5).

To train the model, we generate a dataset using an FDM and optimize the associated loss

function. Let Nt denote the number of temporal discretization steps in FDM, with tj (j = 1, . . . , Nt)

representing the discrete time nodes. Similarly, let Nv denote the number of input samples, and uk0
(k = 1, . . . , Nv) their corresponding initial inputs. The training setting is summarized as follows:

Training:


Dataset:

 Features: Uk0,h ∈ RNx , obtained from encoding uk0 ;

Labels: Ukh ∈ RNx×Nt , obtained from a FDM discretization of (1.1);

Loss function: L(θ) =
1

NvNxNt

Nv∑
k=1

Nx∑
i=1

Nt∑
j=1

∣∣∣(Ukθ (tj))i − Ukh (xi, tj)
∣∣∣2 + R(θ).

Here, Ukθ denotes the solution of the NN surrogate with initial condition Uk0,h, and R(θ) is a general

regularization term.

The training procedure is carried out in an offline setting. Once the optimal parameter θ∗ is

obtained, the inference of the solution to (1.1) for a new initial condition u0 is performed by reusing

the previously defined architecture.



8

2.3. Error analysis of encoder-decoder networks

This subsection is dedicated to the error estimate of the general encoder-decoder networks pre-

sented in Section 2.1, i.e., Ψθ −Ψ†. To this end, we first make the following assumptions on spaces,

encoders/decoders, and the objective mapping Ψ†.

Assumption 2.1. Let V, U , Vh, and Uh be Banach spaces. We assume that

(1) (Linearity) The encoder EV : V → Vh and the decoder DU : Uh → U are bounded linear

operators that are invertible in the generalized sense (see Definition 1.38 in [5]).

(2) (Generalized inversion) The decoder DV : Vh → V and the encoder EU : U → Uh are general-

ized inverses of EV andDU , respectively, in the sense that (see Definition 1.38 and Equation (1.7)

in [5])

DV ◦ EV ◦DV = DV , DU ◦ EU ◦DU = DU .

(3) (Continuity) The operator Ψ† : V → U is β-Hölder continuous with Hölder constant LΨ† for

some β ∈ (0, 1].

(4) (Universal approximation property) Define the operator ψ : Vh → Uh by

ψ(ζ) = EU ◦Ψ† ◦DV(ζ).

For any compact subset K ⊂ Vh and any ϵ > 0, there exists a neural network ψθ : Vh → Uh,
with appropriate architecture and parameters θ, such that

∥ψθ(v)− ψ(v)∥Uh ≤ ϵ, ∀v ∈ K.

Then, we define the following two crucial consistency errors of the encoding−decoding schemes:

d1(v) := ∥DV ◦ EV(v)− v∥V , ∀v ∈ V, (2.2)

d2(u) := ∥DU ◦ EU (u)− u∥U , ∀u ∈ U . (2.3)

Before presenting the main error estimate results, we provide an illustrative example (see the

remark below) that meets all of the above assumptions. Moreover, under additional regularity con-

ditions on v and u, its consistency errors vanish as the latent space is refined.

Remark 2.1. Consider the stationary reaction–diffusion equation posed on the torus Td:

−∆u+ c(x)u = f(x), x ∈ Td,

where c ∈ C0,α(Td) is uniformly positive and f ∈ C0,α(Td) for some α ∈ (0, 1] a. By the classical

Schauder estimate [32] , together with the Sobolev estimate for elliptic equations [33] and Morrey’s

inequality [1] , the unique solution u satisfies

u ∈ C2,α(Td), ∥u∥C2,α ≤ C1∥f∥C0,α , ∥u∥C1(Td) ≤ C2∥f∥C(Td),

where C1 and C2 are constants independent of f . Therefore, the solution map Ψ† : f 7→ u is Lipschitz

(and hence Hölder) continuous from C0,α(Td) to C2,α(Td), and from C(Td) to C1(Td). Then we

consider the following setups for the encoder-decoder network:

• Let U = V = C(Td), and set Uh = Vh = RNd for mesh size h = 1/N ≪ 1;
aFor any k ∈ Z+ and α ∈ (0, 1], the Hölder space Ck,α(Td) is defined as

Ck,α(Td) :=
{
u ∈ Ck(Td) : ∥u∥Ck,α < ∞

}
,

where the Hölder norm is given by

∥u∥Ck,α :=
∑

∥I∥
ℓ1

≤k
∥∂Iu∥L∞(Td) +

∑
∥I∥

ℓ1
=k

sup
x,y∈Td
x̸=y

∣∣∂Iu(x)− ∂Iu(y)
∣∣

∥x− y∥α
.

Here, the notation ∂Iu represents the partial derivative of u associated with the multi-index I ∈ Zd+.
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• Define the encoder EV and decoder DU via finite-difference stencils and interpolation by Q1

finite-element basis on a uniform grid with step size h;

• Take DV = DU and EU = EV , and we can verify that the generalized inversion condition is

satisfied (See Lemma 3.1 and Remark 3.1 for a rigorous proof).

Under this construction, it follows directly from the Lipschitz continuity of Ψ† and continuity of the

encoder/decoder pair that the operator

ψ(v) = EU ◦Ψ† ◦DV(v)

is continuous. By the classical universal approximation theorem (e.g., [13]), this continuity ensures

that ψ can be uniformly approximated by shallow neural networks b on any compact subset of Vh,
thereby validating Assumption 2.1(4). Finally, the consistency errors associated with the encoder

and decoder satisfy the following estimates:

sup
v∈C0,α(Td)
∥v∥C0,α≤1

d1(v) ≤ Chα, sup
u∈C1(Td)
∥u∥C1≤1

d2(u) ≤ Ch,

where C > 0 is a constant independent of h. In particular, the consistency errors vanish at the rate

hα and can thus be made arbitrarily small as h→ 0.

The main result on the error analysis of the generic encoder-decoder network is presented in the

following theorem.

Theorem 2.2. Let Assumption 2.1 hold. Then, for any compact subset K ⊂ Vh and any ϵ > 0,

there exists a neural network function ψθ : Vh → Uh, with a suitable architecture and parameters θ,

such that for any v ∈ V satisfying EV(v) ∈ K, we have

∥Ψθ(v)−Ψ†(v)∥U ≤ LΨ† d1(v)
β︸ ︷︷ ︸

encoding-decoding error in V

+ d2
(
Ψ† ◦DV ◦ EV(v)

)︸ ︷︷ ︸
encoding-decoding error in U

+ ∥DU∥ ϵ︸ ︷︷ ︸
NN approximation error

,
(2.4)

where Ψθ is defined in (2.1), and the functions d1 and d2 are given in (2.2)–(2.3).

Proof. Fix any compact set K ⊂ Vh and ϵ > 0. Let v ∈ V such that EV(v) ∈ K. We first decompose

the difference

Ψθ(v)−Ψ†(v) = DU ◦ ψθ ◦ EV(v)−Ψ†(v)

as follows:

Ψθ(v)−Ψ†(v) := γ1(v) + γ2(v), (2.5)

where

γ1(v) := DU ◦ ψθ ◦ EV(v)−DU ◦ ψ ◦ EV(v), γ2(v) := DU ◦ ψ ◦ EV(v)−Ψ†(v).

By Assumption 2.1(4), the neural network approximation error satisfies

∥γ1(v)∥ ≤ ∥DU∥ ϵ. (2.6)
bA shallow neural network mapping Rn to Rm is given by

fshallow(x; θ) := W2 σ(W1x+ b),

where σ denotes the activation function applied componentwise, and the parameters θ = (W1,W2, b) withW1 ∈ RP×n,
W2 ∈ Rm×P , and b ∈ RP . Here, P ∈ N represents the number of neurons in the hidden layer. The universal
approximation property of this neural network is understood in the sense that the number of neurons P tends to
infinity.
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Next, define

v1 := DV ◦ EV(v) and u1 := DU ◦ EU ◦Ψ†(v1).

Since v1 and u1 lie in the ranges of DV and DU , respectively, Assumption 2.1(2) implies that

DV ◦ EV(v1) = v1 and DU ◦ EU (u1) = u1.

We now further decompose γ2(v) as

γ2(v) = DU ◦ ψ ◦ EV(v)−Ψ†(v) = γ2,1(v) + γ2,2(v), (2.7)

where

γ2,1(v) := DU ◦ ψ ◦ EV(v)−DU ◦ ψ ◦ EV(v1)−
(
Ψ†(v)−Ψ†(v1)

)
,

γ2,2(v) := DU ◦ ψ ◦ EV(v1)− u1 −
(
Ψ†(v1)− u1

)
.

Using the definition of ψ and the fact that DV ◦ EV(v1) = v1, we obtain

∥γ2,1(v)∥U =
∥∥∥Ψ†(v)−Ψ†(v1)

∥∥∥
U
≤ LΨ† d1(v)

β , (2.8)

where the inequality follows from Assumption 2.1(3). Similarly, by the definitions of ψ and u1, we

have

∥γ2,2(v)∥U =
∥∥∥Ψ†(v1)−DU ◦ EU

(
Ψ†(v1)

)∥∥∥
U
.

Recalling the definition of d2 from (2.3), we deduce

∥γ2,2(v)∥U = d2

(
Ψ†(v1)

)
= d2

(
Ψ† ◦DV ◦ EV(v)

)
. (2.9)

Then the desired result (2.4) follows from (2.5)-(2.9) directly.

Corollary 2.1. Under the setting of Remark 2.1, fix the regularity order α ∈ (0, 1) and fix a

discretization step size h = 1/N with N ∈ N+. Then there exists a shallow neural network

ψθ : RN
d → RNd , with a sufficiently large number of neurons and appropriately chosen param-

eters θ, such that for every

f ∈ C0,α(Td), ∥f∥C0,α(Td) ≤ 1,

the following error bound holds: ∥∥Ψθ(f)−Ψ†(f)
∥∥
C(Td) ≤ C hα,

where the constant C > 0 is independent of both h and f .

Proof. Throughout the proof, the notation ≲ indicates an inequality ≤ up to a multiplicative

constant on the right-hand side that is independent of both h and f . Recall the estimate (2.4) from

Theorem 2.2.

For the first term LΨ† d1(v)
β , we invoke the Lipschitz continuity of Ψ† (with β = 1), together

with the consistency-error bound for d1 from Remark 2.1, to obtain

LΨ† d1(f)
β ≲ hα.

For the second term, d2
(
Ψ† ◦DV ◦EV(f)

)
, recalling the definition of encoder-decoder operators

in Remark 2.1, we deduce

∥DV ◦ EV(f)∥C(Td) ≲ ∥f∥C(Td) ≲ ∥f∥C0,α(Td).

By elliptic regularity in Sobolev spaces [33] together with Morrey’s inequality [1] , it follows that

∥Ψ† ◦DV ◦ EV(f)∥C1(Td) ≲ ∥DV ◦ EV(f)∥C(Td) ≲ ∥f∥C0,α(Td).
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Hence, the consistency error for d2 in Remark 2.1 leads

d2
(
Ψ† ◦DV ◦ EV(f)

)
≲ h.

For the third term, ∥DU∥ ϵ, note first that DU is a bounded operator with norm 1. Moreover,

EV(f) takes values in a fixed compact set in RNd , since f is bounded and EV is continuous. The

mapping EU ◦ Ψ† ◦ DV restricted to this compact set can be approximated arbitrarily well by a

shallow neural network, thanks to the universal approximation theorem [13]. Taking ϵ = hα, we

conclude that

∥DU∥ ϵ ≲ hα.

Combining the upper bounds on all three terms yields the desired estimate.

For stationary PDEs, Remark 2.1 and Corollary 2.1 provide a canonical framework for con-

structing and analyzing encoder-decoder networks. Nevertheless, extending this analysis framework

to non-stationary PDEs is more delicate. A major challenge is temporal discretization: fully discrete

schemes often require careful stability control. As an alternative, one may adopt a time-continuous

(semi-discrete) formulation, but this forces the latent spaces to be infinite-dimensional functional

spaces, demanding more advanced universal approximation results in such settings.

Recently, approximation guarantees for dynamical systems via NODEs has been studied in [37],

providing complementary insights into ODE-driven mappings between function spaces. Leveraging

this advance, we introduce the NODE-ONet framework for PDEs in Section 3. Although the er-

ror analysis for an NODE-ONet depends intricately on the specific PDE under consideration and

is technically involved, the overall framework adheres to Theorem 2.2. A rigorous investigation of

approximation errors is beyond the scope of this work and will be pursued in future studies. Con-

sequently, we focus here on the algorithmic design and the numerical investigation of NODE-ONets

for various PDEs.

3. The NODE-ONet Framework

This section introduces the NODE-ONet framework, within the general architecture of the previously

discussed encoder-decoder networks, to approximate the mapping from the parameters of (1.1) to

its solution u.

3.1. Stationary case

Before addressing the general case (1.1), we first consider its stationary counterpart:{
L[a](u)(x) = f(x), ∀x ∈ Ω,

Bu(x) = ub(x), ∀x ∈ ∂Ω,
(3.1)

to provide some insights into the design of the NODE-ONets. Here, a and f depend only on space.

To simplify and unify the analysis, we assume Ω ⊂ Rd is compact and ub is fixed. Thus, the relevant

parameters in this setting are a and f . Let C(Ω) be the space of continuous functions on Ω. We

assume that the parameters a, f ∈ E ⊂ C(Ω) and that the stationary equation (3.1) admits a unique

classical solution for all a, f ∈ E . Consequently, we assume that V and U are subspaces of C(Ω).
As outlined in Section 2.1, the key components of an encoder-decoder network involve determin-

ing suitable latent spaces Vh and Uh, designing the neural network approximation ψθ, and defining

the encoder EV and the decoder DU .

First, the latent spaces are chosen as finite-dimensional Euclidean spaces with dimensions dV
and dU , respectively:

Vh = RdV , Uh = RdU .
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Let ψθ be a neural network such that Assumption 2.1(4) holds. Then, the encoder and the decoder

for the stationary case are defined as follows:

(S1). Stationary Encoding (Space Discretization): Given any function v ∈ C(Ω), the stationary
encoder is defined as

EsV : C(Ω) → RdV , v 7→
(
Lℓ(v)

)dV
ℓ=1

,

where Lℓ are bounded linear operators on C(Ω). Therefore, by the Riesz representation theorem,

each Lℓ has an integral representation written as

Lℓ(v) =

∫
Ω

v dµℓ, for some µℓ ∈ M(Ω),

where M(Ω) denotes the space of Radon measures supported in Ω. Notably, if we take µℓ = δxℓ ,

the operator reduces to evaluating v at the point xℓ.

(S2). Stationary Decoding (Reconstruction): Given (ψj)
dU
j=1 ∈ RdU the output of the neural

network ψθ, the stationary decoder Ds
U is defined as the following interpolation form:

Ds
U : RdU → C(Ω), (ψj)

dU
j=1 7→

dU∑
j=1

αj(x; θα)ψj , for x ∈ Ω.

Here, the set

α(x) := {αj(x; θα)}dUj=1 ∈ RdU (3.2)

represents either the values of a set of predefined spatial basis functions at x (e.g., finite element

or Fourier bases) or the output of a neural network Nθα : Ω → RdU parameterized by θα ∈ Rpα .

Lemma 3.1. Let V and U be non-empty closed subspaces of C(Ω). The encoder EsV and the decoder

Ds
U , defined above, satisfy Assumption 2.1(1). Moreover, their generalized inverses, Ds

V and EsU ,

which satisfy Assumption 2.1(2), are given by:

Ds
V(z) =

dV∑
k=1

zkfk, ∀ z ∈ RdV , where

∫
Ω

fk dµℓ =

{
1, if k = ℓ;

0, otherwise.

and

EsU (u) =

(∫
Ω

u dmi

)dU
i=1

, ∀u ∈ U , where

∫
Ω

αj dmi =

{
1, if i = j;

0, otherwise.

Proof. The proof follows from a straightforward calculation.

The above lemma establishes the pseudo-inverse property for the standard finite-difference mesh

and the Q1 finite-element basis, as illustrated in the following remark. This, in turn, justifies the

validity of the stationary elliptic equation example given in Remark 2.1.

Remark 3.1 (Uniform finite-difference mesh and Q1 finite-element basis). Let Ω be a

hypercube in Rd, and let Ωh = {xi}i=1,...,Nd be the corresponding uniform finite-difference grid

with mesh size h. We take dV = dU = Nd. Then the grid trace operator and the Q1 finite-element

interpolant form a natural encoder–decoder pair satisfying Lemma 3.1. Specifically, in the notation

of Lemma 3.1, we define

µi = mi = δxi , αi(x) = fi(x) =

d∏
j=1

ϕi,j(x), ∀ i = 1, . . . , Nd, ∀x ∈ Ω,
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where ϕi,j is the one-dimensional P1 hat function centered at xi in the coordinate direction ej with

support of length 2h. Following from Lemma 3.1, by the core identity:∫
Ω

αi dµj = αi(xj) =

{
1, if i = j;

0, otherwise.

Assumption 2.1(2) holds for the resulting pairs (EsV , D
s
V) and (EsU , D

s
U ).

3.2. Non-stationary case

Let us now present the proposed NODE-ONet framework for the non-stationary case (1.1), adhering

to the general encoder-decoder architecture. In particular, we shall elaborate on the design of suitable

latent spaces Vh and Uh, an NODE-induced neural network ψθ, the encoder EV , and the decoder

DU .

For convenience, we assume that Ω is compact, ub is fixed, and the parameters a, f ∈ K ⊂
C([0, T ]; C(Ω)), u0 ∈ C(Ω). First, inspired by the latent spaces in the stationary case, we define

Vh = C([0, T ]; RdV ) and Uh = C([0, T ]; RdU ),

where dV and dU are positive constants. We then propose the NODE-ONet framework, consisting

of the following three components:

(NS1). Encoding (Space Discretization): Given an input function v ∈ C([0, T ]; C(Ω)), by taking

the stationary encoder EsV for each v(t) ∈ C(Ω), t ∈ [0, T ], we obtain the encoder for the non-

stationary case:

EV : C([0, T ]; C(Ω)) → C([0, T ]; RdV ), v 7→ v = (vℓ)
dV
ℓ=1,

where

vℓ(t) = (EsV(v(t, ·)))ℓ = Lℓ(v(t, ·)), for t ∈ [0, T ] and ℓ = 1, . . . , dV .

(NS2). NODE (Approximation): Given v ∈ C([0, T ]; RdV ), let ψ ∈ C([0, T ]; RdU ) satisfy the follow-

ing NODE: {
ψ̇(t) = Nθψ

(
ψ(t), Pvv(t), t

)
, for t ∈ [0, T ],

ψ(0) = PuEsU (u0) ∈ RdU .
(3.3)

Here, Nθψ : RdU ×RdU ×R+ → RdU denotes a neural network parameterized by θψ ⊂ Rpψ , while
Pv, Pu ∈ RdU×dV are trainable transformation matrices (see Section 4 for further demonstra-

tions). We then introduce the NODE operator, parameterized by θΨ, Pu, and Pv, as

NODE (θΨ,Pu,Pv) : C([0, T ]; RdV ) → C([0, T ]; RdU ), v 7→ ψ,

and employ the NODE-induced neural network ψθ := NODE (θΨ,Pu,Pv) to approximate the

mapping ψ = EU ◦Ψ† ◦DV .

(NS3). Decoding (Reconstruction): Given ψ := (ψj)
dU
j=1 ∈ C([0, T ]; RdU ) the output of an NODE-

induced neural network ψθ, the decoder DU is defined by

DU : C([0, T ]; RdU ) → C([0, T ]; C(Ω)), ψ 7→ Ψ,

where

Ds
U (ψ(t))(x) =

dU∑
j=1

αj(x; θα)ψj(t) for (t, x) ∈ [0, T ]× Ω,

with {αj}dUj=1 a set of basis functions as defined in (3.2).
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With the above constructions, the proposed NODE-ONet framework reads: for any v ∈ V ⊆
C([0, T ]; C(Ω)) and any (t, x) ∈ [0, T ]× Ω,

ΨNODE-ONet(v; θ)(t, x) :=

dU∑
j=1

αj(x; θα)ψj(t,v; θψ,Pu,Pv),

where v = EV(v) and θ = {θψ, θα,Pv,Pu} collects all the trainable parameters, see Figure 2.

v v =


v1(t)

v2(t)

· · ·
vdV (t)

 NODE (3.3)

Neural Network or Basis Functions

ψ1(t)

ψ2(t)

· · ·

ψdU (t)

α1(x)

α2(x)

· · ·

αdU (x)

× ΨNODE-ONet(v; θ)(t, x) ≈ u(t, x)

x

Fig. 2. The generic architecture for an NODE-ONet, which takes inputs consisting of v ∈ V and x ∈ Ω, and outputs

the value ΨNODE-ONet(v; θ)(t, x) to approximate Ψ†(v)(t, x) = u(t, x), for any t ∈ [0, T ].

Next, we provide two clarifying remarks on the pseudo-inverse properties of the encoder and the

decoder, and the intuition behind the NODE component described in (NS2) of the NODE-ONet

framework above.

Remark 3.2. (Pseudo-inverses). By applying Lemma 3.1 in the stationary setting, we deduce

that the encoder EV and the decoder DU (defined in (NS1) and (NS3) above) admit generalized

inverses DV and EU in the sense of Assumption 2.1(2). These inverses are explicitly given by

DV(z)(t) = Ds
V(z(t)), ∀ t ∈ [0, T ], ∀ z ∈ C

(
[0, T ]; RdV

)
,

EU (u)(t) = EsU (u(t, ·)), ∀ t ∈ [0, T ], ∀u ∈ C
(
[0, T ]; C(Ω)

)
,

where Ds
V and EsU are defined in Lemma 3.1.

Remark 3.3. (Neural ODE and semi-discrete schemes). The NODE-induced neural network

ψθ : v 7→ ψ, given in (NS2), aims to approximate the composite operator ψ = EU ◦ Ψ† ◦ DV . In

contrast to the stationary case, establishing a universal approximation property for ψθ is generally

more challenging, since ψ does not uniformly map parameters of a vector field to the corresponding

ODE solutions . Nevertheless, ψ admits an accurate approximation through a semi-discrete scheme

applied to equation (1.1).

To illustrate, we consider learning the source-to-solution operator Ψf : f 7→ u for (1.1). Here,

v = f , and we define the encoded input fh := EV(f) ∈ C
(
[0, T ];RdV

)
with dU = dV . Then, ψ(fh)

can be approximated by the solution uh ∈ C([0, T ]; RdU ) of the semi-discrete version of (1.1):

duh
dt

+ Lh[a](uh) = fh, ∀ t ∈ [0, T ], (3.4)

subject to appropriate initial and boundary conditions, where Lh[a] denotes the spatial discretization
of L[a]. The discrepancy between ψ(fh) and uh coincides with the semi-discretization error of (1.1),
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which is generally smaller and more tractable than that of a fully discrete scheme. In other words,

the approximation error ϵ introduced by the NODE (see Assumption 2.1(4) for the general setting)

inherently includes the semi-discretization error. This is not problematic, since ϵ can be absorbed into

the encoding-decoding errors without affecting the leading-order term of the total approximation

error. A careful analysis of the overall error shapes the direction of subsequent works.

3.3. Training of NODE-ONets

Given a dataset {vi, xj ,Ψ†(vi)(t, xj)}1≤i≤Nv,1≤j≤Nx of different input functions {vi} and spatial

points {xj}, the mean-squared error introduced by ΨNODE-ONet reads

1

NvNx

Nv∑
i=1

Nx∑
j=1

∫ T

0

∥∥ΨNODE-ONet(vi; θ)(t, xj)−Ψ†(vi)(t, xj)
∥∥2
2
dt. (3.5)

To mitigate overfitting, we incorporate a regularization term R(θ) into the mean-squared error to

train ΨNODE-ONet. In practice, the integral in (3.5) is approximated by a quadrature scheme. To

this end, we sample a set of temporal grid points {tk}Ntk=1 ⊂ [0, T ] and solve the NODE (3.3) using

a suitable ODE solver (e.g., Euler or Runge–Kutta methods) to compute {ΨNODE-ONet(vi)(tk, xj)}
for 1 ≤ i ≤ Nv, 1 ≤ j ≤ Nx, and 1 ≤ k ≤ Nt. The resulting loss function for training is then given

by:

L(θ) = 1

NvNxNt

Nv∑
i=1

Nx∑
j=1

Nt∑
k=1

∥ΨNODE-ONet(vi)(tk, xj)−Ψ†(vi)(tk, xj)∥22 + λR(θ), (3.6)

where λ ≥ 0 is a regularization parameter.

Remark 3.4. The NODE-ONet framework can be implemented in a physics-informed machine

learning manner. In particular, instead of (3.6), one can minimize the residual of the underlying

PDE in the spirit of the PINNs [50].

Remark 3.5. The training inputs {vi}Nvi=1 are usually drawn from a prescribed distribution. It is

known that purely data-driven models, including learned operators, are predominantly effective in

interpolation scenarios, i.e., when test inputs follow the training distribution, see e.g., [3,62,66].

However, real-world applications require extrapolation to out-of-distribution test inputs, which may

lead to significant errors and model failure. To mitigate this extrapolation problem and improve the

reliability of our model, we can integrate the approaches developed in [66] into the NODE-ONet

framework.

4. Physics-Encoded NODEs

The NODE-ONet framework is a high-level architecture that does not prescribe specific architectural

details for its encoders and decoders. Consequently, a wide range of encoders and decoders including

those proposed in [11,21,49,65] can be directly integrated into this framework. Furthermore, with

different NODEs, various NODE-ONets for PDEs can be specified from this framework. It is evident

that the NODE component plays a pivotal role in determining the computational effectiveness and

efficiency of the overall network. However, applying existing NODEs within NODE-ONets encounters

various numerical challenges. To mitigate these limitations, we present a physics-encoded NODE

design in this section and elaborate on its formulation and advantages with concrete examples.

Physics-encoded NODEs comprise two key components. First, the trainable parameters are ei-

ther explicitly time-dependent or even time-invariant, reducing model complexity while enhancing

temporal generalization. Second, domain knowledge is encoded into the NODE architecture by lever-

aging the structural features inherent to the underlying PDEs. To make the discussions concrete,

we focus on a nonlinear diffusion-reaction equation and a Navier-Stokes equation.
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4.1. A nonlinear diffusion-reaction equation

We specify (1.1) as the following diffusion-reaction equation:
∂tu(t, x)−∇ · (D(t, x)∇u(t, x)) +R(t, x)u2(t, x) = f(t, x), ∀(t, x) ∈ [0, T ]× Ω,

u(0, x) = u0(x), ∀x ∈ Ω,

u(t, x) = ub(t, x), ∀(t, x) ∈ [0, T ]× ∂Ω,

(4.1)

where D : [0, T ] × Ω → R is the diffusion coefficient, R : [0, T ] × Ω → R is the reaction coefficient,

f : [0, T ] × Ω → R is the source term, u0(x) and ub(t, x) are the initial value and the boundary

value, respectively. We consider v := {D,R, f, u0} as the relevant input parameters for learning the

solution operator of (4.1).

The PDE (4.1) combines diffusion, nonlinear reaction, and external forcing, leading to rich math-

ematical behavior and diverse applications. Analytical and numerical treatment depends critically

on the interplay between these terms. In particular, we observe that the solution u depends bilinearly

on D and nonlinearly on R, respectively.

Inspired by the structural property of (4.1), we propose the physics-encoded NODE:
ψ̇(t) =

P∑
i=1

{
(Wi ⊙ [PrR(t)] + Vi)⊙ σ (Ai ⊙ [PDD(t)]⊙ψ +Ani (t) +Bi) + Pff(t)

}
,

ψ(0) = Puu0 ∈ RdU .

(4.2)

Above, σ : RdU → RdU is an activation function, ⊙ stands for the Hadamard product,Wi, Vi, Ai, Bi ∈
RdU for i = 1, . . . , P are time-independent trainable parameters, PD,Pr,Pf ,Pu ∈ RdU×dV are

trainable matrices, and u0,D(t),R(t),f(t) ∈ RdV are obtained via space discretization of u0(x),

D(t, x), R(t, x), and f(t, x), respectively. Furthermore, Ani (t) ∈ RdU is assumed to be a polynomial

of degree n with respect to t, which generally can be written in the form of

Ani (t) = a
n
i t
n + an−1

i tn−1 + · · ·+ a1
i t+ a

0
i (4.3)

with aji ∈ RdU , 1 ≤ j ≤ n, 1 ≤ i ≤ P.

It is notable that the intrinsic structural properties of the PDE (4.1) − such as the bilinear

coupling between D and u, the nonlinear dependence of R and u, and the additive source term f ,

are preserved in (4.2), ensuring alignment with the underlying physical principles. This preservation

enables the NODE (4.2) to effectively learn the dynamics of (4.1) and hence allows the resulting

NODE-ONet to extrapolate solutions beyond the training temporal domain. Let {tk}Ntk=1 ⊂ [0, T ] be

a set of grids for the temporal discretization of (4.2). The architecture of the resulting NODE-ONet,

designed to solve the reaction-diffusion PDE (4.1), is illustrated in Figure 3, where α := {αj(x)}dUj=1

is supposed to the output of a neural network Nθα .

4.2. A Navier-Stokes equation

Let Ω = (0, 1)2. For a given T > 0, we consider the incompressible Navier-Stokes equation in the

vorticity–velocity form:
∂tu(t, x) + V (t, x) · ∇u(t, x) = ν∆u(t, x) + f(t, x), ∀(t, x) ∈ [0, T ]× Ω,

u(t, x) = ∇× V (t, x) := ∂x1
V2 − ∂x2

V1, ∀(t, x) ∈ [0, T ]× Ω,

∇ · V (t, x) = 0, ∀(t, x) ∈ [0, T ]× Ω,

u(0, x) = u0(x), ∀x ∈ Ω,

(4.4)

with proper boundary conditions. In (4.4), V (t, x) and u(t, x) are the velocity and the vorticity,

respectively; ν > 0 is the viscosity coefficient, u0(x) is the initial vorticity, and f(t, x) is the forcing

term.
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v v =


v1(t)

v2(t)

· · ·
vdV (t)



w w =


w1(t)

w2(t)

· · ·
wdV (t)


NODE Nθψ (t1)

ψ1(t1)

ψ2(t1)

· · ·
ψdU (t1)

NODE Nθψ (t2)

ψ1(t2)

ψ2(t2)

· · ·
ψdU (t2)

NODE Nθψ (t3) · · ·

x Neural Network Nθα α = (α1(x), α2(x), · · · , αdU (x))⊤ × × · · ·

ΨNODE-ONet(v; θ)(t1, x) ≈ u(t1, x) ΨNODE-ONet(v; θ)(t1, x) ≈ u(t2, x)

Fig. 3. A physics-encoded NODE-ONet for learning Ψ† : v(t, x) 7→ u(t, x) of (4.1), where Nθψ represents the NODE

(4.2) with θψ the set of trainable parameters, v ⊂ {D, f,R, u0} and w = {D, f,R, u0}\v are the sets of input functions
and known functions, respectively .

It follows from the linearity of ∇ and ∇× that the term V (t, x) · ∇u(t, x) in (4.4) can be viewed

as a quadratic form Fu · Gu with linear operators F and G to be determined. Moreover, the forcing

term f is additive to the equation. Inspired by these observations, we consider the following physics-

encoded NODE:ψ̇(t) =
P∑
i=1

{
Wi ⊙ σ

(
Ai ⊙ψ + [Ci ⊙ψ]⊙ [Di ⊙ψ] +Ani (t) +Bi

)
+ Pff

}
,

ψ(0) = Puu0 ∈ RdU ,

(4.5)

where σ : RdU → RdU is an activation function, ⊙ stands for the Hadamard product,

Wi, Ai, Bi, Ci, Di ∈ RdU for i = 1, . . . , P are time-independent trainable parameters, Pf ,Pu ∈
RdU×dV are trainable matrices, and u0,f ∈ RdV are obtained via space discretization of u0(x) and

f(x), respectively. Furthermore, Ani (t) ∈ RdU is given in (4.3). The NODE (4.5) possesses the same

desirable properties as (4.2). The resulting NODE-ONet architecture is analogous to the one shown

in Figure 3, and we therefore omit a detailed description.

Thanks to the physics-encoded NODEs (4.2) and (4.5), the corresponding NODE-ONets ex-

plicitly incorporate the influence of known system-specific functions, a feature that distinguishes it

from conventional operator learning methodologies. This integration not only enhances numerical

efficiency but also improves predictive accuracy. To further elucidate the implementation of physics-

encoded NODEs and validate the advantages of the resulting NODE-ONets across diverse contexts,

we present some case studies in the following section.

5. Applications and Numerical Simulations

In this section, we validate the effectiveness, efficiency, and flexibility of the proposed physics-encoded

NODEs and the resulting NODE-ONets. To this end, we focus on the nonlinear diffusion-reaction

equation (4.1) and the Navier-Stokes equation (4.4). Some numerical comparisons with state-of-the-

art operator learning methods are also included. All codes used in this paper are written in Python

and PyTorch and are publicly available on https://github.com/DCN-FAU-AvH/NODE-ONet.

5.1. The nonlinear diffusion-reaction equation (4.1)

We specify (4.1) as

∂tu(t, x)−∇ · (D(x)∇u(t, x)) +Ru2(t, x) = f(x), ∀(t, x) ∈ [0, 1]× [0, 1], (5.1)

with zero initial and boundary conditions. This example has been well-studied in the literature of

operator learning for PDEs, see e.g., [23,40]. We follow the above references and assume D and f

are time-independent and the reaction coefficient R = −0.01.

https://github.com/DCN-FAU-AvH/NODE-ONet
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The purpose of considering the current example is three-fold. First, we implement the physics-

encoded NODE (4.2) to learn the solution operator Ψ† : v(t, x) 7→ u(t, x) of (5.1) in three input

settings: v = f(x), v = D(x), and v = (D(x), f(x)), and we assess the effectiveness of the resulting

NODE-ONets. Second, by comparing with some state-of-the-art operator networks including the

DeepONets [40] and the MIONet [23], we shall show the advances of the NODE-ONets in terms of

numerical efficiency and accuracy. Finally, we test the generalization and prediction capabilities of

the NODE-ONets.

5.1.1. Set-ups

To build the training set, we first generate a high-resolution reference dataset. We sample input

functions {vi}
Nvtrain
i=1 from a Gaussian process GP(0, C) on the spatial domain,

vi ∼ GP(0, C) , C(x1, x2) = exp
(
−∥x1 − x2∥22/(2l2)

)
, (5.2)

where l > 0 is the length-scale of the Gaussian covariance kernel; larger l yields smoother samples vi.

For each vi, we solve (5.1) on a fine spatial grid of 1001 equi-spaced points using a finite-difference

method to obtain the corresponding high-resolution solution ui. To assemble training data at a target

spatial resolution Nx, we define grid points {xj}Nxj=1 and evaluate ui at these locations (via interpola-

tion when needed), yielding tuples (vi, xj , ui(xj)). The collection {(vi, xj , ui(xj))}1≤i≤Nvtrain , 1≤j≤Nx
constitutes the training dataset for learning the solution operator Ψ† : v 7→ u. Given each input

function vi, we follow the idea of DeepONets and define the encoder EV : V → [0, T ] × RdV as

EV(v) = v(t) := {vℓ(t)}dVℓ=1 ∈ RdV for any t ∈ [0, T ], where vℓ(t) = v(t, xℓ) with {xℓ}dVℓ=1 ⊂ Ω a set

of fixed sensors.

The neural network Nθα is set as an FCNN consisting of 2 hidden layers with P = 100 neurons

per layer and equipped with ReLU activation functions. We set Ani (t) = a
1
i t in (4.2). All the NODEs

use ReLU activation functions and are solved by the explicit Euler method with Nt time steps. The

output dimension of Nθα and NODEs is set as dU = 50. Unless otherwise specified, we minimize the

loss function (3.6) with λ = 0 by an ADAM optimizer with learning rate 10−3 for 1 × 105 epochs

to train the NODE-ONets, The parameters for Nθα and the NODEs are initialized by the default

PyTorch settings.

To validate the test accuracy, we set Nx = Nt = 100 and generate Nvtest new input functions v

for the trained NODE-ONets following the same procedures for generating the training sets as the

default setting. To measure the test errors, we employ two kinds of metrics as follows:

Absolute error :=

 1

NvtestNxNt

Nvtest∑
i=1

Nx∑
j=1

Nt∑
k=1

∥ΨNODE-ONet(vi)(tk, xj)−Ψ†(vi)(tk, xj)∥22

 1
2

,

Relative error := Absolute error /

 1

NvtestNxNt

Nvtest∑
i=1

Nx∑
j=1

Nt∑
k=1

∥Ψ†(vi)(tk, xj)∥22

 1
2

.

(5.3)

5.1.2. Results and discussions

In this subsection, we elaborate on the implementation of the NODE-ONets with the physics-encoded

NODE (4.2) for solving (5.1) and present some preliminary results with various types of input

functions.

• Learn the solution operator of (5.1) with a single input function. We first learn the

source-to-solution operator Ψ†
f : v = f 7→ u. For this purpose, we take D(t, x) = 0.01 in (5.1), and

the input function f is generated by (5.2) with l = 0.5. Since the coefficients D and R are assumed
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to be constants, the physics-encoded NODE (4.2) reduces to the following form:
ψ̇(t) =

P∑
i=1

Wi ⊙ σ(Ai ⊙ψ + a1
i t+Bi) + Pff ,

ψ(0) = 0 ∈ RdU .

(5.4)

We set dV = 20, and take different Nx, Nt, and Nvtrain to train the NODE-ONet. We then

sample Nvtest new input functions f(x) to test the learned operator Ψ∗
f . The test absolute and

relative errors for different parameter settings are presented in Table 1. The test results for one

random input function f(x) are reported in Figure 4.

Table 1. Comparisons of the NODE-ONet with the unstacked DeepONet for learning the source-to-solution operator
Ψ†
f : f(x) 7→ u(t, x) of (5.1).

Training Training #Trainable #Training Test #Test Absolute Relative
epochs resolutions parameters input f resolutions input f error error

NODE-ONet
ADAM
5 × 105

Nx = 10
Nt = 5
dV = 20

27,550 100
Nx = 100
Nt = 100

10,000 4.248 × 10−3 7.370 × 10−3

NODE-ONet
ADAM
5 × 105

Nx = 100
Nt = 10
dV = 20

27,550 500
Nx = 100
Nt = 100

10,000 1.368 × 10−3 2.675 × 10−3

DeepONet
ADAM
5 × 105

Nx = 100
Nt = 10
K = 50
dV = 100

40,600 100
Nx = 100
Nt = 100
K = 100

10,000 6.352 × 10−3 1.230 × 10−2

DeepONet
ADAM
5 × 105

Nx = 100
Nt = 100
K = 1,000
dV = 100

40,600 500
Nx = 100
Nt = 100
K = 1,000

10,000 1.313 × 10−3 2.582 × 10−3

For numerical comparisons, we implement the unstacked DeepONet [40] following the same setups

therein. In particular, for the training of DeepONet, we randomly select K points for each f as the

input of the trunk net. The errors are listed in Table 1 and the numerical results for one random

input function f(x) are presented in Figure 5. The comparison results in Table 1 demonstrate that

the NODE-ONet achieves comparable or superior accuracy to the DeepONet in learning the source-

to-solution operator Ψf , while exhibiting significantly greater efficiency. In particular, the NODE-

ONet attains low errors with coarser training resolutions and fewer model parameters, whereas

the DeepONet requires finer discretization and higher complexity to achieve similar accuracy. This

validates the NODE-ONet’s numerical efficiency in learning the solution operator of PDEs.

Fig. 4. Test results of the NODE-ONet for learning the source-to-solution operator Ψ†
f : f(x) 7→ u(t, x) of (5.1) with

one random f(x). Training parameters: Nx = 100, Nt = 10, Nvtrain = 500. Test parameters: Nx = Nt = 100, Nvtest =
10, 000.

We then consider the diffusion-to-solution operator Ψ†
D : v = D 7→ u. We take f(x) = sin(2πx)

in (5.1), and set l = 0.5 in (5.2) to generate the input function D(x). In this case, the physics-
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Fig. 5. Test results of the DeepONet for learning the source-to-solution operator Ψ†
f : f(x) 7→ u(t, x) of (5.1) with

one random f(x). Training: Nx = 100, Nt = 100, Nvtrain = 100. Test: Nx = Nt = 100, Nvtest = 10, 000.

encoded NODE (4.2) is in the form of (5.5). It is notable that f := {f(xℓ)}dVℓ=1 in (5.5) is a spatial

discretization of the given f(x).
ψ̇(t) =

P∑
i=1

Wi ⊙ σ(Ai ⊙ [PDD]⊙ψ + a1
i t+Bi) + Pff ,

ψ(0) = 0 ∈ RdU .

(5.5)

For the training of the NODE-ONet, we take Nx = 100, Nt = 10, dV = 20, and Nvtrain = 1, 000.

Then, we setNx = Nt = 100 and sampleNvtest = 10, 000 new input functionsD(x) to test the learned

operator Ψ∗
D. The test absolute and relative errors are respectively 1.276 × 10−3 and 3.919 × 10−3

and the test results for one random input function D(x) are reported in Figure 6. As expected, the

NODE-ONet is effective in learning the diffusion-to-solution operator.

Fig. 6. Test results of the NODE-ONet for learning the diffusion-to-solution operator Ψ†
D : D(x) 7→ u(t, x) of (5.1)

with one random D(x).

• Learn the solution operator of (5.1) with multi-input functions. Next, we apply the

NODE-ONet to learn the solution operator of (5.1) with multi-inputs Ψ†
m : v = {D, f} 7→ u. We

follow [23] to set D(x) = 0.01(|g(x)| + 1) and the functions g(x) and f(x) are generated by (5.2)

with l = 0.2. It follows from (4.2) that the physics-encoded NODE used here reads
ψ̇(t) =

P∑
i=1

Wi ⊙ σ(Ai ⊙ [PDD]⊙ψ + a1
i t+Bi) + Pff ,

ψ(0) = 0 ∈ RdU .

(5.6)

We set dV = 20 and take different Nx, Nt, Nvtrain to train the NODE-ONet. To validate the

effectiveness and efficiency, we compare the NODE-ONet with the MIONet [23], which is one of the

benchmark algorithms for learning operators with multi-input functions. The MIONet consists of

two branch nets for encoding the input functions D and f and a trunk net for encoding the domain

(t, x) of the output function u. We implement the MIONet following the settings given in [23].
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The test results of the NODE-ONet and the MIONet are listed in Table 2 and the numerical

results for one random input pair {D(x), f(x)} are reported in Figures 7 and 8. The NODE-ONet

demonstrates superior efficiency and accuracy over the MIONet when learning the multi-input so-

lution operator Ψ†
m. With only 100 training pairs at moderate resolution (Nx = 50, Nt = 10),

the NODE-ONet achieves significantly lower errors compared to the MIONet trained at higher

resolution. For the case of Nvtrain = 1, 000, the NODE-ONet with coarser temporal resolution still

outperforms the MIONet with finer discretization. These results highlight NODE-ONet’s advantages

in computational efficiency for operator learning with multiple inputs.

Table 2. Comparisons of the NODE-ONet with the MIONet for learning the solution operator of (5.1) with multi-

input functions: Ψ†
m : {D(x), f(x)} 7→ u(t, x).

Training Training #Trainable #Training Test #Test Absolute Relative
epochs resolutions parameters {D, f} resolutions {D, f} error error

NODE-ONet
ADAM
1 × 105

Nx = 50
Nt = 10

28,550 100
Nx = 100
Nt = 100

5,000 2.362 × 10−2 5.297 × 10−2

NODE-ONet
ADAM
1 × 105

Nx = 100
Nt = 10

28,550 1,000
Nx = 100
Nt = 100

5,000 4.626 × 10−3 1.032 × 10−2

MIONet
ADAM
1 × 105

Nx = 100
Nt = 100

161,600 100
Nx = 100
Nt = 100

5,000 1.212 × 10−1 2.661 × 10−1

MIONet
ADAM
1 × 105

Nx = 100
Nt = 100

161,600 1,000
Nx = 100
Nt = 100

5,000 9.491 × 10−3 2.072 × 10−2

Fig. 7. Test results of the NODE-ONet for learning the solution operator Ψ†
m : {D(x), f(x)} 7→ u(t, x) of (5.1) with

one random multi-input pair. Training: Nx = 100, Nt = 10, Nvtrain = 1000. Test: Nx = Nt = 100, Nvtest = 5000.

Fig. 8. Test results of the MIONet for learning the solution operator Ψ†
m : {D(x), f(x)} 7→ u(t, x) of (5.1) with one

random input pair. Training: Nx = Nt = 100, Nvtrain = 1000. Test: Nx = Nt = 100, Nvtest = 5000.

• Generalization capacity of α. Thanks to the separation of temporal and spatial variables in

the NODE-ONet, we expect that the trained neural network Nθ∗α (and hence the corresponding

output α∗) can be directly used as a decoder for learning other PDEs with similar structures. For
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validation, we first set D = 0.01, R = −0.01 in (5.1) and learn the source-to-solution operator Ψ†
f

by the NODE-ONet. We set l = 0.5 in (5.2) to generate a training set with 500 input functions to

get the trained neural network Nθ∗α .

Then, we set D = 0.2, R = 0 and hence the PDE (5.1) reduces to a diffusion equation. We aim

to learn the resulting source-to-solution operator by the NODE-ONet with the pre-trained neural

network Nθ∗α . Note that, in this case, one only needs to train the NODE (5.4). For this purpose, we

sample 500 input functions from (5.2) with l = 0.3 to generate a training set. To test the numerical

accuracy, we set l = 0.3 in (5.2) to generate 10,000 new input functions. The test absolute and

relative errors are 1.836 × 10−3 and 7.670 × 10−3, respectively. The numerical results with one

random input function f are presented in Figure 9.

Fig. 9. Test results for learning the source-to-solution operator Ψ†
f : f(x) 7→ u(t, x) of (5.1) with trained α.

• Prediction beyond the training time frame. We test the above learned source-to-solution

operator Ψ∗
f and the operator Ψ∗

m with multi-input functions for t ∈ [0, 2]. Note that these two

operators are trained for t ∈ [0, 1]. The test errors are listed in Table 3, from which we can see

that, compared with the DeepONet and MIONet, the NODE-ONets achieve much higher numerical

accuracy for t ∈ [0, 2].

The numerical results with one random input function/pair are reported in Figures 10 – 13.

We observe that the test errors for all methods are small for t ∈ [0, 1]. However, the prediction

errors for t ∈ [1, 2] of the NODE-ONets are much smaller than those of the DeepONet and MIONet.

These results demonstrate that the proposed physics-encoded NODE (4.2) can efficiently learn the

evolution pattern of the PDE (5.1). Hence, the resulting NODE-ONet is capable of predicting the

system beyond the training time frame, distinguishing it from DeepONets and MIONet.

Table 3. Prediction results of (5.1) for t ∈ [0, 2]. Ψ∗
f : f(x) 7→ u(t, x): the learned source-to-solution operator ,Ψ∗

m :
{D(x), f(x)} 7→ u(t, x): the learned solution operator with multi-input functions.

#Training Training Test Absolute Relative
input functions time frame time frame error error

Ψ∗
f

NODE-ONet
500 t ∈ [0, 1] t ∈ [0, 2]

6.839 × 10−3 7.113 × 10−3

DeepONet 2.302 × 10−1 2.360 × 10−1

Ψ∗
m

NODE-ONet
1,000 t ∈ [0, 1] t ∈ [0, 2]

1.392 × 10−2 1.732 × 10−2

MIONet 1.012 × 10−1 1.251 × 10−1

• Flexibility of encoder/decoder. Recall that the NODE-ONet framework does not prescribe

specific architectures for the encoder/decoder. In previous simulations, we employ the neural network

Nθα to generate α in the decoders for comparison purposes. Alternatively, as mentioned in Section

3, one can also use some other basis functions for generating α. To validate, we consider learning the

source-to-solution operator Ψf : f 7→ u of (5.1) by replacingNθα with a set of Fourier basis functions,

and other settings are kept the same. The test absolute and relative errors are 9.734 × 10−4 and

1.908× 10−3, respectively. The numerical results with one random input f are presented in Figure
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Fig. 10. Prediction solution of (5.1) by the NODE-ONet for the learned source-to-solution operator Ψ∗
f : f(x) 7→ u(t, x)

with one random input function. (Test time frame t ∈ [0, 2]; Training time frame t ∈ [0, 1])

Fig. 11. Prediction solution of (5.1) by the DeepONet for the learned source-to-solution operator Ψ∗
f : f(x) 7→ u(t, x)

with one random input function. (Test time frame t ∈ [0, 2]; Training time frame t ∈ [0, 1]).

Fig. 12. Prediction solution of (5.1) by the NODE-ONet for the learned solution operator with multi-input functions:

Ψ∗
m : {D(x), f(x)} 7→ u(t, x) with one random input pair. (Test time frame t ∈ [0, 2]; Training time frame t ∈ [0, 1]).

Fig. 13. Prediction solution of (5.1) by the MIONet for the learned solution operator with multi-input functions:

Ψ∗
m : {D(x), f(x)} 7→ u(t, x) with one random input pair. (Test time frame t ∈ [0, 2]; Training time frame t ∈ [0, 1]).

14. All these results demonstrate the flexibility of the NODE-ONet.

5.2. The Navier-Stokes equation (4.4)

In this section, we test the two-dimensional Navier-Stokes equation (4.4) to validate the effectiveness

of the NODE-ONet framework. For this purpose, we set the viscosity ν = 0.001 and impose the

periodic boundary condition on u. Following [36,41], the forcing term f is assumed to be time-

invariant. Then, we are interested in learning the following three operators:

• the initial value-to-solution operator Ψi : u0 7→ u with the fixed source term f(x1, x2) =

0.1 sin(2π(x1 + x2)) + 0.1 cos(2π(x1 + x2));
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Fig. 14. Test results of the NODE-ONet with Fourier basis for learning the source-to-solution operator Ψf : f(x) 7→
u(t, x) of (5.1) with one random input function.

• the source-to-solution operator Ψf : f 7→ u with the fixed initial value u0(x1, x2) =

0.1 sin(2π(x1 + x2)) + 0.1 cos(2π(x1 + x2));

• the solution operator with multi-input Ψm : {u0, f} 7→ u.

The training sets for learning the three operators are generated by the public codes provided

in [36] with the input functions u0 and f sampled from the following Gaussian random fields:

u0 ∼ GP(0, 73/2(−∆+49I)−2.5) and f ∼ GP(0, 33/2(−∆+49I)−5). The neural network Nθα for all

the cases is set as an FCNN consisting of 4 hidden layers with 2, 000 neurons per layer and equipped

with ReLU activation functions. We set Ani (t) = a
1
i t and P = 2, 000 in (4.5). All the NODEs use ReLU

activation functions and are solved by the explicit Euler method with Nt time steps. The output

dimension of Nθα and NODEs is set as dU = 200. To train the neural networks, we minimize the

loss function (3.6) with R(θ) = ∥θ∥1 and λ = 10−5 using an ADAM optimizer followed by certain

LBFGS iterations. The parameters for Nθα and the NODEs are initialized by the default PyTorch

settings. We use the errors defined in (5.3) to measure the accuracy of the NODE-ONets for learning

the three operators above. Other parameters are summarized in Table 4.

Table 4. Parameter settings for learning the solution operators of (4.4).

Training Learning Training Test
dV dU Nv

epochs rate resolutions resolutions

Ψi
ADAM 5× 105

LBFGS 100
10−4 Nx = 502

Nt = 10
Nx = 1002

Nt = 100
502 200

1000 (training)
200 (test)

Ψf
ADAM 5× 105

LBFGS 100
10−4 Nx = 502

Nt = 10
Nx = 1002

Nt = 100
502 200

1000 (training)

200 (test)

Ψm
ADAM 5× 105

LBFGS 100
10−4 Nx = 502

Nt = 20

Nx = 1002

Nt = 100
502 200

1000 (training)

200 (test)

Table 5. Test and prediction accuracy for learning the solution operators of (4.4).

Training Test Absolute test Relative test Absolute test Relative test
time frame time frame error in [0, 10] error in [0, 10] error in [0, 20] error in [0, 20]

Ψi t ∈ [0, 10] t ∈ [0, 20] 1.396× 10−2 3.053× 10−2 5.860× 10−2 8.491× 10−2

Ψf t ∈ [0, 10] t ∈ [0, 20] 2.751× 10−3 3.180× 10−2 7.379× 10−3 7.167× 10−2

Ψm t ∈ [0, 10] t ∈ [0, 20] 1.320× 10−2 8.827× 10−2 1.208× 10−2 8.857× 10−2

Numerical results for learning the operators Ψi, Ψf , and Ψm are presented in Table 5 and

Figures 15−17. The NODE-ONets efficiently learn various solution operators of (4.4), producing

highly accurate numerical solutions for t ∈ [0, 10]. Furthermore, it maintains satisfactory prediction

accuracy for t ∈ [10, 20] in all cases. These results demonstrate the framework’s capability to handle

some complex systems in different settings while consistently delivering reliable numerical solutions.
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Fig. 15. Numerical results for learning the initial value-to-solution operator Ψi : u0(x) 7→ u(t, x) of (4.4) with one

random input function. From top to bottom: t = 2, 6, 10 (test within the training time frame), and t = 12, 20

(prediction beyond the training time frame).
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Fig. 16. Numerical results for learning the source-to-solution operator Ψf : f(x) 7→ u(t, x) of (4.4) with one random

input function. From top to bottom: t = 2, 6, 10 (test within the training time frame), and t = 12, 20 (prediction

beyond the training time frame).
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Fig. 17. Numerical results for learning the solution operator of (4.4) with multi-inputs Ψm : {u0(x), f(x)} 7→ u(t, x)

with one random input pair. From top to bottom: t = 2, 6, 10 (test within the training time frame), and t = 12, 20

(prediction beyond the training time frame).
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6. Conclusions and Perspectives

This paper introduces the deep Neural Ordinary Differential Equation Operator Network (NODE-

ONet), a framework for learning solution operators of partial differential equations (PDEs). By inte-

grating neural ODEs (NODEs) within an encoder-decoder architecture, the NODE-ONet framework

effectively decouples spatial and temporal variables, aligning with traditional numerical methods for

time-dependent PDEs. The core innovation lies in the design of physics-encoded NODEs, which

incorporate structural properties of the underlying PDEs (e.g., bilinear couplings, additive source

terms) into their architecture. Such well-designed physics-encoded NODEs not only enhance the

numerical efficiency and robustness of the resulting NODE-ONets but also enable accurate extrap-

olation beyond the training temporal domain. Our key contributions and findings include:

• Theoretical Foundation: A general error analysis for encoder-decoder networks is established,

providing mathematical insights on operator approximation errors and guiding the design of

NODE-ONets.

• Physics-Encoded NODEs: By enforcing explicit time dependence in trainable parameters

and embedding PDE-specific knowledge (e.g., nonlinear dependencies and effects of known PDE

parameters), these NODEs achieve superior generalization while maintaining low model com-

plexity.

• Numerical Efficiency: The NODE-ONets outperform state-of-the-art methods (e.g., Deep-

ONets, MIONet) in terms of numerical accuracy, model complexity, and training cost, especially

for learning operators with multi-input functions.

• Generalization: Trained encoders/decoders can be transferred to related PDEs without re-

training, and predictions remain satisfactory beyond the training time horizon.

• Flexibility: The framework accommodates various encoders/decoders (e.g., neural networks,

Fourier basis) and adapts to both stationary and non-stationary PDEs.

Hence, the NODE-ONet framework represents a significant step toward scalable and physics-encoded

computational tools for PDEs by combining data-driven learning with mathematical structures.

Our work leaves some important questions, which are beyond the scope of the paper and will be

the subject of future investigation.

• Further Error Analysis. The error analysis presented in Section 2.3 is mainly devoted to the

generic encoder-decoder architecture. It is relevant to analyze the (approximate and general-

ization) errors for the NODE-ONet framework, which depends intricately on the specific PDE

under consideration and is technically involved, see also Remark 3.3.

• Optimal NODEs. Note that the physics-encoded NODEs used in our experiments (and also

the generic one (4.2)) are not unique. For instance, an alternative physics-encoded NODE to

(5.6) can be given byψ̇(t) = −PD ·Diag(D) · P⊤
D ·ψ +

P∑
i=1

{
Wi ⊙ σ

(
Ai ⊙ψ + a1i t+Bi

)
+ Pff

}
,

ψ(0) = 0 ∈ RdU ,

where Diag(·) : RdV → RdV×dV is the diagonal matrix operator, PD ∈ RdU×dV , and other

parameters are the same as those in (5.6). The above NODE has the same model complexity as

that of (5.6) and the resulting NODE-ONet demonstrates comparable numerical performance

to that in Table 2. Hence, it is of great theoretical and practical significance to establish a

mathematical principle to determine the optimal physics-encoded NODE for a specific PDE

solution operator.

• Extensions. First, extending the NODE-ONet framework to address optimal control and in-

verse problems involving PDEs presents a compelling research direction. Such problems typically

require solving coupled time-forward and time-backward equations. A central challenge in this
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extension is, therefore, the design of appropriate NODE architectures capable of simultane-

ously capturing the evolving dynamics of both equations. Second, while our current focus is on

parabolic equations, developing NODE-ONets for hyperbolic equations remains crucial. For this

purpose, one may consider some second-order NODEs and the ideas in [53] could be useful.
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