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Introduction

Consider the control of a process on a time interval
0, 7]

for large T'. In many long-time-horizon optimal control problems, the optimal strategy spends most of the
time near a stationary optimum and deviates only briefly at the beginning and the end. Consider

T
Jp(u) = /0 0 (t), u(t)) dt + $(x(T)).

a.j — f(x7u)7

The (associated) static problem

f(ZC,U) =0

has an optimal pair (Z, %). Under standard dissipativity assumptions, an optimal solution (z™*, u*) of the
dynamic problem satisfies the (informal) (exponential) turnpike estimate

|z (t) — z|| + lu*(t) —al| < C(e™+e D) telo,T],

i.e., the trajectory quickly approaches (7, @), remains close for most of the horizon, and departs only near
t =0 and t =T to meet boundary conditions. As T increases, the boundary layers stay O(1) in length
while the central plateau extends. In the gas-pipe example, this appears as a nearly constant valve setting
for most of the interval with short start-up and shut-down transients.

Modelling

For the sake of simplicity we restrict the problem to a single pipe. Continuum mechanical models for a gas
flow in a single pipe are typically of the following type

Orp + Oz (pv) = 0,
) A (1)
O(pv) 4+ Op(p + pv°) = —@pvw — gpOozh,
called isothermal Euler equations, where p, p, v denote the pressure, density and velocity of the gas,
A, D, h(x) are the pipe friction coefficient, diameter and height and g is the gravitational constant. These

equations describe the behavior of compressible, inviscid fluids, like many gases.

min f(x,u) s.t.
)

Infinite Dimensional Port-Hamiltonian Form

We can rewrite (1) in the following way. Denote for short I := |0, L], where L > 0 is the length of the gas
pipeline and T := [0, T for the time interval. Take as state space S = H'(I,R?) and consider a state

z = (p,v) € S, where we assume to have min .y p(x) > 0. An infinite-dimensional port-Hamiltonian
system for a state z : T — S is given by

9r(t) = (T (2(1)) = RA=(1) ) 1 (=(1)) + B(=(2)) )
using slightly abuse of notation for the time ¢, with initial condition 2(0) = 25 € S, and control input

u . T — U. Here

> H e CL(S,R) is the corresponding Hamiltonian (where the derivative here is meant in the Fréchet
sense and H'(z2) € S¥),

> J € L(S,S¥) is the structure operator, which is skew-adjoint (7 (z) = =7 (2)%),
> R € L(S,S¥) is the dissipation operator, which is self-adjoint and positive semidefinite
(R(z) = R(2)" = 0),
» B c L(U,S*) is the input operator.
Here, U C HY(I,R?).

Semi-Discrete Port-Hamiltonian Form

To derive the finite-dimensional version of the so called weak formulation of (2), we use now the classical
Galerkin-method. We will write i := pv for the momentum in the following. Let I be partitioned into n
subintervals Iy, . . ., I,,, which is a equidistant mesh {I; }; with grid length A > 0. We introduce the
finite-dimensional spaces

Qy, := Py(I;,) (for approximating p),

R, :=Py(I;) N H(0, L) (for approximating ),
where Py(I;,) and IP;(I;,) denote the spaces of piecewise constant and piecewise linear functions over I,.
Then we can represent the discrete approximations as

n m
pn(@.t) = ¢t qi(x),  pplet) =) e, pt)rp(),
=1 k=1
where q1, ..., qp is a basis for Q and 71, ...,y is a basis for R;,. One ends up at
E(c)c(t) = Jn(c) — R(c)n(c) + Bu, (3)

subject to the algebraic constraint
-
y = B(c) n(c), (4)
where ¢, u and y are the state, input and output of the system respectively. Here we assume to have

E.J R e C(RY R pe C(RYRY), B e C(RY,R™?),

where d := n +m. The Hamiltonian H & C’l(Rd,R) Is chosen, such that it is bounded from below along

any solution of (3)—(4) satisfying
d T
@ hi(c) = E(e) (o

for each ¢ € R%. As shown in [1], one also gets the discrete power balance equation

“H(e) = —n(e) Rlcn(c) +yTu (5)
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Optimal Control Problem

Now we are able to formulate our optimal control problem. We consider as set of admissable controls wu in
A C L>®(T,R?) and aim to solve

min Cp(u) ::/ y ! wdt
ueA T

subject to (3) and (4)
c0)=cpe K, c(T)=cr € K.
Here, K C R is a compact set. Further we will from now on assume, that (OCP) has an optimal
solution u* with optimal trajectory ¢*. Using (5), we can rewrite the cost functional Cp(u) as

Or(u) = Hier) — Hico) + /T |RY 29| dt

(OCP)

and therefore

Hier) — Hieo) = /T yTu— || RY2|2 dt. (6)

rim Manifold

Taking a closer look at (6), we see, that any optimal trajectory ¢* will have to spend most of the time close
to the set

M = {c c R? | RY2(¢)n(c) = o} . (7)

Finding turnpike properties w.r.t. this set M in general is a big challenge. Following e.g. [2], one typically
chooses suitable assumptions, such that M will be a smooth submanifold of RY for the setting of a gas
pipeline.

Measure- Turnpike Property

There are many possible turnpike properties, where we will for simplicity formulate here the probably
simplest one. Consider the control problem eq. (OCP). Let M C R be a non-empty Borel manifold. The
optimal control problem is said to exhibit the measure-turnpike property (with respect to M), if for all
compact sets K C RY and every € > (), there exists a constant CKﬁ > (), such that for all T > 0 all
optimal trajectories ¢* of eq. (OCP) satisfy

L({t e (0,7 | dist(c*(£), M) > e}) < Ci.e

for all co,cr € K, where £ denotes the Lebesgue measure.

y(to)

Figure: Illustration of the measure-turnpike property: The optimal trajectory y and addmissible trajectory y remain along the
turnpike set 7 as long as possible, see [3].

Strict Dissipativity

Apart from suitable structure and regularity assumptions, a typically used assumption is a property called
strict dissipativity. These are then sufficient (often even necessary) assumptions to ensure the
measure-turnpike property for (OCP). For those, that are a bit familiar with Lyapunov theory: Intuively,
this is using the Hamiltonian 7 as a Lyapunov function. More precisely it is defined as follows.

Consider eq. (OCP) together with a non-empty manifold M C R%. Problem (OCP) is then called
dissipative with respect to M, if there exists a function () : R 0, 00|, that is bounded on compact sets
and a function « : |0, co|— |0, co| with «(0) = 0, which is continuous and strictly increasing, such that all
optimal controls ©* and associated trajectories c* satisfy the dissipation inequality

T
Qler) — Qleg) < /O 0t ) — afdist(c", M) d. (8)

for all T > 0, where ¢ is a continuous function.
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