

THE TURNPIKE PHENOMENON IN GAS NETWORKS

Christopher Chair in Dynamics, Control, and Numerics – AvH Professorship FAU Erlangen-Nürnberg

Introduction

Consider the control of a process on a time interval

[0,T]

for large T. In many long-time-horizon optimal control problems, the optimal strategy spends most of the time near a *stationary* optimum and deviates only briefly at the beginning and the end. Consider

 $\dot{x} = f(x, u), \qquad J_T(u) = \int_0^T \ell(x(t), u(t)) dt + \phi(x(T)).$

The (associated) **static** problem

 $\min_{x,u} \ \ell(x,u) \quad \text{s.t.} \quad f(x,u) = 0$

has an optimal pair (\bar{x}, \bar{u}) . Under standard dissipativity assumptions, an optimal solution (x^*, u^*) of the dynamic problem satisfies the (informal) (exponential) turnpike estimate

$$||x^*(t) - \bar{x}|| + ||u^*(t) - \bar{u}|| \le C(e^{-\alpha t} + e^{-\alpha(T-t)}), \quad t \in [0, T],$$

i.e., the trajectory quickly approaches (\bar{x},\bar{u}) , remains close for most of the horizon, and departs only near t=0 and t=T to meet boundary conditions. As T increases, the boundary layers stay O(1) in length while the central plateau extends. In the gas-pipe example, this appears as a nearly constant valve setting for most of the interval with short start-up and shut-down transients.

Modelling

For the sake of simplicity we restrict the problem to a single pipe. Continuum mechanical models for a gas flow in a single pipe are typically of the following type

$$\partial_t \rho + \partial_x (\rho v) = 0,$$

$$\partial_t (\rho v) + \partial_x (p + \rho v^2) = -\frac{\lambda}{2D} \rho v |v| - g\rho \partial_x h,$$
(1)

called isothermal Euler equations, where p, ρ, v denote the pressure, density and velocity of the gas, $\lambda, D, h(x)$ are the pipe friction coefficient, diameter and height and g is the gravitational constant. These equations describe the behavior of compressible, inviscid fluids, like many gases.

Infinite Dimensional Port-Hamiltonian Form

We can rewrite (1) in the following way. Denote for short $\mathbb{I}:=[0,L]$, where L>0 is the length of the gas pipeline and $\mathbb{T}:=[0,T]$ for the time interval. Take as state space $\mathbb{S}=H^1(\mathbb{I},\mathbb{R}^2)$ and consider a state $z=(\rho,v)\in\mathbb{S}$, where we assume to have $\min_{x\in\mathbb{I}}\rho(x)>0$. An infinite-dimensional port-Hamiltonian system for a state $z:\mathbb{T}\to\mathbb{S}$ is given by

$$\partial_t z(t) = \Big(\mathcal{J}(z(t)) - \mathcal{R}(z(t)) \Big) \mathcal{H}'(z(t)) + \mathcal{B}(z(t)) u, \tag{2}$$

using slightly abuse of notation for the time t, with initial condition $z(0) = z_0 \in \mathbb{S}$, and control input $u : \mathbb{T} \to \mathbb{U}$. Here

- $ightharpoonup \mathcal{H} \in C^1(\mathbb{S},\mathbb{R})$ is the corresponding Hamiltonian (where the derivative here is meant in the Fréchet sense and $\mathcal{H}'(z) \in \mathbb{S}^*$),
- lacksquare $\mathcal{J}\in L(\mathbb{S},\mathbb{S}^*)$ is the structure operator, which is skew-adjoint $(\mathcal{J}(z)=-\mathcal{J}(z)^*)$,
- $\mathcal{R} \in L(\mathbb{S}, \mathbb{S}^*)$ is the dissipation operator, which is self-adjoint and positive semidefinite $(\mathcal{R}(z) = \mathcal{R}(z)^* \succeq 0)$,
- $ightharpoonup \mathcal{B} \in L(\mathbb{U},\mathbb{S}^*)$ is the input operator.

Here, $\mathbb{U}\subseteq H^1(\mathbb{I},\mathbb{R}^2)$.

Semi-Discrete Port-Hamiltonian Form

To derive the finite-dimensional version of the so called weak formulation of (2), we use now the classical Galerkin-method. We will write $\mu := \rho v$ for the momentum in the following. Let \mathbb{I} be partitioned into n subintervals $\mathbb{I}_1, \ldots, \mathbb{I}_n$, which is a equidistant mesh $\{\mathbb{I}_h\}_h$ with grid length h > 0. We introduce the finite-dimensional spaces

 $\mathbb{Q}_h := \mathbb{P}_0(\mathbb{I}_h)$ (for approximating ρ),

 $\mathbb{R}_h := \mathbb{P}_1(\mathbb{I}_h) \cap H^1(0, L)$ (for approximating μ),

where $\mathbb{P}_0(\mathbb{I}_h)$ and $\mathbb{P}_1(\mathbb{I}_h)$ denote the spaces of piecewise constant and piecewise linear functions over \mathbb{I}_h . Then we can represent the discrete approximations as

$$\rho_h(x,t) = \sum_{j=1}^n c_{\rho,j}(t) \, q_j(x), \qquad \mu_h(x,t) = \sum_{k=1}^m c_{\mu,k}(t) \, r_k(x),$$

where q_1,\ldots,q_n is a basis for \mathbb{Q}_h and r_1,\ldots,r_m is a basis for \mathbb{R}_h . One ends up at

$$E(\mathbf{c})\dot{\mathbf{c}}(t) = J \eta(\mathbf{c}) - R(\mathbf{c}) \eta(\mathbf{c}) + B u, \tag{3}$$

subject to the algebraic constraint

$$y = B(\mathbf{c})^{\top} \eta(\mathbf{c}), \tag{4}$$

where c, u and y are the state, input and output of the system respectively. Here we assume to have

 $E, J, R \in C(\mathbb{R}^d, \mathbb{R}^{d \times d}), \ \eta \in C(\mathbb{R}^d, \mathbb{R}^d), \ B \in C(\mathbb{R}^d, \mathbb{R}^{d \times 2}),$

where d:=n+m. The Hamiltonian $\mathcal{H}\in C^1(\mathbb{R}^d,\mathbb{R})$ is chosen, such that it is bounded from below along any solution of (3)–(4) satisfying

 $\frac{d}{d\mathbf{c}}\mathcal{H}(\mathbf{c}) = E(\mathbf{c})^{\top} \eta(\mathbf{c})$

for each $\mathbf{c} \in \mathbb{R}^d$. As shown in [1], one also gets the discrete power balance equation

$$\frac{d}{dt}\mathcal{H}(\mathbf{c}) = -\eta(\mathbf{c})^{\top} R(\mathbf{c}) \eta(\mathbf{c}) + y^{\top} u.$$
(5)

Martin Chair in Dynamics, Control, and Numerics – AvH Professorship FAU Erlangen-Nürnberg

Optimal Control Problem

Now we are able to formulate our optimal control problem. We consider as set of admissable controls u in $\mathbb{A} \subseteq L^{\infty}(\mathbb{T}, \mathbb{R}^2)$ and aim to solve

$$\min_{u \in \mathbb{A}} C_T(u) := \int_{\mathbb{T}} y^\top u \, dt$$

$$\text{subject to (3) and (4)}$$

$$\mathbf{c}(0) = c_0 \in K, \quad \mathbf{c}(T) = c_T \in K.$$

Here, $K \subseteq \mathbb{R}^{n+m}$ is a compact set. Further we will from now on assume, that (OCP) has an optimal solution u^* with optimal trajectory c^* . Using (5), we can rewrite the cost functional $C_T(u)$ as

 $C_T(u) = \mathcal{H}(c_T) - \mathcal{H}(c_0) + \int_{\mathbb{T}} ||R^{1/2}\eta||^2 dt$

and therefore

 $\mathcal{H}(c_T) - \mathcal{H}(c_0) = \int_{\mathbb{T}} y^{\top} u - \|R^{1/2}\eta\|^2 dt.$ (6)

Trim Manifold

Taking a closer look at (6), we see, that any optimal trajectory c^* will have to spend most of the time close to the set

$$\mathcal{M} := \left\{ \mathbf{c} \in \mathbb{R}^d \mid R^{1/2}(\mathbf{c})\eta(\mathbf{c}) = 0 \right\}. \tag{7}$$

Finding turnpike properties w.r.t. this set \mathcal{M} in general is a big challenge. Following e.g. [2], one typically chooses suitable assumptions, such that \mathcal{M} will be a smooth submanifold of \mathbb{R}^d for the setting of a gas pipeline.

Measure-Turnpike Property

There are many possible turnpike properties, where we will for simplicity formulate here the probably simplest one. Consider the control problem eq. (OCP). Let $\mathcal{M} \subseteq \mathbb{R}^d$ be a non-empty Borel manifold. The optimal control problem is said to exhibit the *measure-turnpike property* (with respect to \mathcal{M}), if for all compact sets $K \subseteq \mathbb{R}^d$ and every $\epsilon > 0$, there exists a constant $C_{K,\epsilon} > 0$, such that for all T > 0 all optimal trajectories c^* of eq. (OCP) satisfy

$$\mathcal{L}(\{t \in [0,T] \mid \operatorname{dist}(c^*(t),\mathcal{M}) > \epsilon\}) \leq C_{K,\epsilon}$$

for all $c_0, c_T \in K$, where $\mathcal L$ denotes the Lebesgue measure.

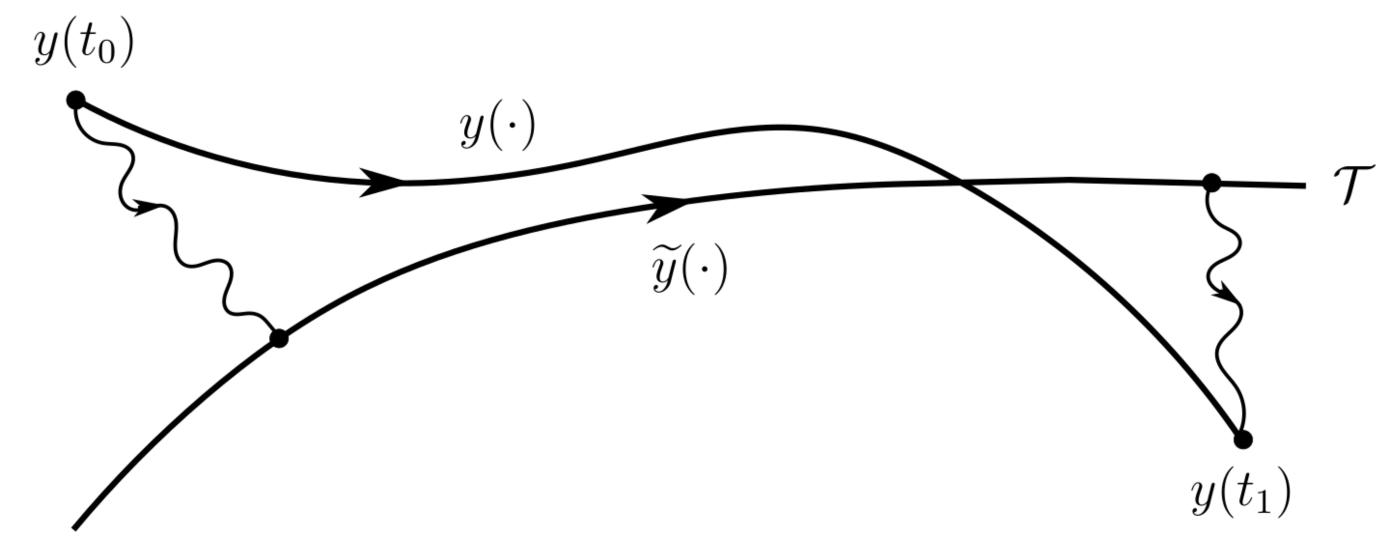


Figure: Illustration of the measure-turnpike property: The optimal trajectory y and addmissible trajectory \tilde{y} remain along the turnpike set T as long as possible, see [3].

Strict Dissipativity

Apart from suitable structure and regularity assumptions, a typically used assumption is a property called strict dissipativity. These are then sufficient (often even necessary) assumptions to ensure the measure-turnpike property for (OCP). For those, that are a bit familiar with Lyapunov theory: Intuively, this is using the Hamiltonian $\mathcal H$ as a Lyapunov function. More precisely it is defined as follows. Consider eq. (OCP) together with a non-empty manifold $\mathcal M \subseteq \mathbb R^d$. Problem (OCP) is then called

dissipative with respect to \mathcal{M} , if there exists a function $Q: \mathbb{R}^d \to [0, \infty[$, that is bounded on compact sets and a function $\alpha: [0, \infty[\to [0, \infty[$ with $\alpha(0) = 0$, which is continuous and strictly increasing, such that all optimal controls u^* and associated trajectories c^* satisfy the dissipation inequality

$$Q(c_T) - Q(c_0) \le \int_0^T \ell(c^*, u^*) - \alpha(\operatorname{dist}(c^*, \mathcal{M})) dt, \tag{8}$$

for all T>0, where ℓ is a continuous function.

Selected publications

[1] Faulwasser, T., Flaßkamp, K., Ober-Blöbaum, S., Schaller, M., Worthmann, K. (2022). **Manifold turnpikes, trims, and symmetries.** Mathematics of Control, Signals, and Systems, 34(4), 759-788.

[2] Karsai, A. (2024). Manifold turnpikes of nonlinear port-Hamiltonian descriptor systems under minimal energy supply. Mathematics of Control, Signals, and Systems, 36(3), 707-728.

[3] Trélat, E., Zhang, C. (2018). **Integral and** measure-turnpike properties for infinite-dimensional optimal control systems. Mathematics of Control, Signals, and Systems, 30(1), 3.

[4] Faulwasser, T., Maschke, B., Philipp, F., Schaller, M., Worthmann, K. (2022). **Optimal control of port-Hamiltonian descriptor systems with minimal energy supply.** SIAM Journal on Control and Optimization, 60(4), 2132-2158.

