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Introduction
Consider the control of a process on a time interval

[0, T ]

for large T . In many long-time-horizon optimal control problems, the optimal strategy spends most of the
time near a stationary optimum and deviates only briefly at the beginning and the end. Consider

ẋ = f (x, u), JT (u) =

∫ T

0
ℓ(x(t), u(t)) dt + ϕ(x(T )).

The (associated) static problem
min
x,u

ℓ(x, u) s.t. f (x, u) = 0

has an optimal pair (x̄, ū). Under standard dissipativity assumptions, an optimal solution (x∗, u∗) of the
dynamic problem satisfies the (informal) (exponential) turnpike estimate

∥x∗(t)− x̄∥ + ∥u∗(t)− ū∥ ≤ C
(
e−αt + e−α(T−t)), t ∈ [0, T ],

i.e., the trajectory quickly approaches (x̄, ū), remains close for most of the horizon, and departs only near
t = 0 and t = T to meet boundary conditions. As T increases, the boundary layers stay O(1) in length
while the central plateau extends. In the gas-pipe example, this appears as a nearly constant valve setting
for most of the interval with short start-up and shut-down transients.

Modelling
For the sake of simplicity we restrict the problem to a single pipe. Continuum mechanical models for a gas
flow in a single pipe are typically of the following type

∂tρ + ∂x(ρv) = 0,

∂t(ρv) + ∂x(p + ρv2) = − λ

2D
ρv|v| − gρ∂xh,

(1)

called isothermal Euler equations, where p, ρ, v denote the pressure, density and velocity of the gas,
λ,D, h(x) are the pipe friction coefficient, diameter and height and g is the gravitational constant. These
equations describe the behavior of compressible, inviscid fluids, like many gases.

Infinite Dimensional Port-Hamiltonian Form
We can rewrite (1) in the following way. Denote for short I := [0, L], where L > 0 is the length of the gas
pipeline and T := [0, T ] for the time interval.Take as state space S = H1(I,R2) and consider a state
z = (ρ, v) ∈ S, where we assume to have minx∈I ρ(x) > 0. An infinite-dimensional port-Hamiltonian
system for a state z : T → S is given by

∂tz(t) =
(
J (z(t))−R(z(t))

)
H′(z(t)) + B(z(t))u, (2)

using slightly abuse of notation for the time t, with initial condition z(0) = z0 ∈ S, and control input
u : T → U. Here
▶ H ∈ C1(S,R) is the corresponding Hamiltonian (where the derivative here is meant in the Fréchet

sense and H′(z) ∈ S∗),
▶ J ∈ L(S,S∗) is the structure operator, which is skew-adjoint (J (z) = −J (z)∗),
▶ R ∈ L(S,S∗) is the dissipation operator, which is self-adjoint and positive semidefinite

(R(z) = R(z)∗ ⪰ 0),

▶ B ∈ L(U,S∗) is the input operator.
Here, U ⊆ H1(I,R2).

Semi-Discrete Port-Hamiltonian Form
To derive the finite-dimensional version of the so called weak formulation of (2), we use now the classical
Galerkin-method. We will write µ := ρv for the momentum in the following. Let I be partitioned into n
subintervals I1, . . . , In, which is a equidistant mesh {Ih}h with grid length h > 0. We introduce the
finite-dimensional spaces

Qh := P0(Ih) (for approximating ρ),

Rh := P1(Ih) ∩H1(0, L) (for approximating µ),

where P0(Ih) and P1(Ih) denote the spaces of piecewise constant and piecewise linear functions over Ih.
Then we can represent the discrete approximations as

ρh(x, t) =
n∑

j=1

cρ,j(t) qj(x), µh(x, t) =
m∑
k=1

cµ,k(t) rk(x),

where q1, . . . , qn is a basis for Qh and r1, . . . , rm is a basis for Rh. One ends up at

E(c) ċ(t) = J η(c)−R(c) η(c) +B u, (3)

subject to the algebraic constraint
y = B(c)⊤η(c), (4)

where c, u and y are the state, input and output of the system respectively. Here we assume to have

E, J,R ∈ C(Rd,Rd×d), η ∈ C(Rd,Rd), B ∈ C(Rd,Rd×2),

where d := n +m. The Hamiltonian H ∈ C1(Rd,R) is chosen, such that it is bounded from below along
any solution of (3)–(4) satisfying

d

dc
H(c) = E(c)⊤η(c)

for each c ∈ Rd. As shown in [1], one also gets the discrete power balance equation

d

dt
H(c) = −η(c)⊤R(c)η(c) + y⊤u. (5)

Optimal Control Problem

Now we are able to formulate our optimal control problem. We consider as set of admissable controls u in
A ⊆ L∞(T,R2) and aim to solve

min
u∈A

CT (u) :=

∫
T
y⊤u dt

subject to (3) and (4)

c(0) = c0 ∈ K, c(T ) = cT ∈ K.

 (OCP)

Here, K ⊆ Rn+m is a compact set. Further we will from now on assume, that (OCP) has an optimal
solution u∗ with optimal trajectory c∗. Using (5), we can rewrite the cost functional CT (u) as

CT (u) = H(cT )−H(c0) +

∫
T
∥R1/2η∥2 dt

and therefore

H(cT )−H(c0) =

∫
T
y⊤u− ∥R1/2η∥2 dt. (6)

Trim Manifold
Taking a closer look at (6), we see, that any optimal trajectory c∗ will have to spend most of the time close
to the set

M :=
{
c ∈ Rd | R1/2(c)η(c) = 0

}
. (7)

Finding turnpike properties w.r.t. this set M in general is a big challenge. Following e.g. [2], one typically
chooses suitable assumptions, such that M will be a smooth submanifold of Rd for the setting of a gas
pipeline.

Measure-Turnpike Property
There are many possible turnpike properties, where we will for simplicity formulate here the probably
simplest one. Consider the control problem eq. (OCP). Let M ⊆ Rd be a non-empty Borel manifold. The
optimal control problem is said to exhibit the measure-turnpike property (with respect to M), if for all
compact sets K ⊆ Rd and every ϵ > 0, there exists a constant CK,ϵ > 0, such that for all T > 0 all
optimal trajectories c∗ of eq. (OCP) satisfy

L
(
{t ∈ [0, T ] | dist(c∗(t),M) > ϵ}

)
≤ CK,ϵ

for all c0, cT ∈ K, where L denotes the Lebesgue measure.

Figure: Illustration of the measure-turnpike property: The optimal trajectory y and addmissible trajectory ỹ remain along the
turnpike set T as long as possible, see [3].

Strict Dissipativity
Apart from suitable structure and regularity assumptions, a typically used assumption is a property called
strict dissipativity. These are then sufficient (often even necessary) assumptions to ensure the
measure-turnpike property for (OCP). For those, that are a bit familiar with Lyapunov theory: Intuively,
this is using the Hamiltonian H as a Lyapunov function. More precisely it is defined as follows.

Consider eq. (OCP) together with a non-empty manifold M ⊆ Rd. Problem (OCP) is then called
dissipative with respect to M, if there exists a function Q : Rd → [0,∞[, that is bounded on compact sets
and a function α : [0,∞[→ [0,∞[ with α(0) = 0, which is continuous and strictly increasing, such that all
optimal controls u∗ and associated trajectories c∗ satisfy the dissipation inequality

Q(cT )−Q(c0) ≤
∫ T

0
ℓ(c∗, u∗)− α(dist(c∗,M)) dt, (8)

for all T > 0, where ℓ is a continuous function.
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