CONTROL OF REACTION-DIFFUSION MODELS IN BIOLOGY AND SOCIAL
SCIENCES
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ABSTRACT. These lecture notes address the controllability under state constraints of reaction-diffusion
equations arising in socio-biological contexts. We restrict our study to scalar equations with monostable
and bistable nonlinearities.

The uncontrolled models describing, for instance, population dynamics, concentrations of chemicals,
temperatures, etc., intrinsically preserve pointwise bounds of the states that represent a proportion,
volume-fraction, or density. This is guaranteed, in the absence of control, by the maximum or comparison
principle.

We focus on the classical controllability problem, in which one aims to drive the system to a final
target, for instance, a steady-state. In this context the state is required to preserve, in the presence of
controls, the pointwise bounds of the uncontrolled dynamics.

The presence of constraints introduces significant added complexity for the control process. They may
force the needed control-time to be large enough or even make some natural targets to be unreachable,
due to the presence of barriers that the controlled trajectories might not be able to overcome.

We develop and present a general strategy to analyze these problems. We show how the combination
of the various intrinsic qualitative properties of the systems’ dynamics and, in particular, the use of
traveling waves and steady-states’ paths, can be employed to build controls driving the system to the
desired target.

We also show how, depending on the value of the Allee parameter and on the size of the domain in
which the process evolves, some natural targets might become unreachable. This is consistent with em-
pirical observations in the context of endangered minoritized languages and species at risk of extinction.

Further recent extensions are presented, and open problems are settled. All the discussions are
complemented with numerical simulations to illustrate the main methods and results.
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1. INTRODUCTION

1.1. Motivation. These lecture notes concern the control of reaction-diffusion equations with state con-
straints. Many quantities whose evolution is modeled by reaction-diffusion equations (such as those
arising chemical reactions or biological populations) are positive, simply because they describe some den-
sity, concentration, distribution functions, volume fractions, etc. They can also be subject to bilateral
bounds, for instance, when considering population fractions. The maximum or comparison principle for
parabolic equations plays an important role in this context since it guarantees that the modeled dynamics
fulfill these unilateral or bilateral bounds.

In control theory, the general goal is to interact with the system to achieve a specific purpose. One of the
prototypical problems is the controllability one: by the choice of an appropriate control, one aims to drive
the dynamics from an initial condition to a target configuration in a given time horizon. Other objectives
can also be pursued, such as feedback stabilization (see Part 3]). The problem of controllability
becomes challenging in the presence of constraints, something that is unavoidable when dealing with the
applications above, where the state is intrinsically and naturally constrained to fulfill some pointwise
bounds.

In this work, we present the main challenges arising when dealing with controllability for reaction-diffusion
equations with state constraints, some of the existing main results, and the techniques needed to handle
them.

There is, by now, a fertile literature on the controllability of parabolic equations: ,
and references therein. Roughly, using Fourier series techniques and Carleman inequalities, parabolic

equations and systems can be controlled in an arbitrarily small time, due to the intrinsic infinite velocity of
propagation. However, most of the existing results do not guarantee that state constraints requirements,
such as the positivity of solutions, are met. The study of controllability with state constraints for
parabolic partial differential equations is a much more recent research topic .
The presence of constraints requires the development of new methods for controllability. The staircase
or quasi-static control method, , , which consists of controlling the system keeping the trajectory
in a neighborhood of a path of steady-states connecting the initial and the final datum, is, by now, the
most useful tool to achieve controllability under constraints. But this method requires the time-horizon
to be long enough, something that, as we shall see, is in fact necessary to meet the constraints. Indeed,
in the presence of state constraints, controllability is only met after a minimal controllability or waiting
time, a fact that is not observed in the unconstrained setting.

Another relevant difficulty arising in the context of constrained controllability is the appearance of barrier
states, limiting the constrained dynamics, independently of the controls chosen. A barrier is a nontrivial
steady-state that prevents any controlled trajectory from reaching specific targets due to the comparison



principle. The staircase method cannot overcome these barriers, i.e. the paths of steady-states cannot
provide a way to cross them.

We will explain how to build paths of steady-states, preserving the constraints, and therefore limited by
the barrier functions, allowing to reach the full ensemble of reachable steady-states. Our study relies on
the phase-plane analysis of the dynamical system associated with the elliptic equation that steady-states
satisfy, initiated in [98].

In these lecture notes, we mainly focus on the one-dimensional case. However, the methods can also be
applied to several space dimensions and different nonlinearities. We will also briefly present the main
multi-dimensional versions in [106], those in [84] involving spatially heterogeneous drifts, and the result
that can be achieved through the Allee interaction [114], which can also be combined with a boundary
control.

1.2. Organization of the lecture notes. The lecture notes are organized as follows.

(1) First of all, we complement this introduction by discussing different applications in which the
control problems addressed in the present manuscript arise and by a short description of various
types of control problems.

(2) In Section [2| we present a model in which the control problem requires the fulfillment of state
constraints.

(3) In Section we review some of the most important properties of parabolic and elliptic equations
that will be employed along the paper.

(4) In Section |4l firstly, we discuss the well-posedness of the control problem and the controllability
of parabolic equations. We also present the staircase method following [93].

(5) Section [5| is devoted to analyzing the existence of nontrivial solutions of the elliptic problem
. Furthermore, depending on the measure of the domain, we discuss the possible existence
of barrier functions.

(6) Section |6 gathers graphical illustrations of the energy functional associated with the elliptic
problem.

(7) Section m is devoted to the construction of admissible paths of steady-states fulfilling the con-

straints. We shall mainly focus on the problem of driving the system towards the intermediate

constant steady-state 6 for the bistable nonlinearity. First, we introduce the strategy used in 98],

and later, we extend the reasoning to build paths of symmetric (even with respect to the center

point of the space-interval) steady-states. We discuss the length of the maximal path depending
on the size of the domain.

In Section [§] we summarize the results of the previous sections.

) In Sectionsome numerical simulations of the control process under consideration are presented.

Most of the results presented in the paper can be extended to several space dimensions, |106],

and to models involving spatially heterogeneous drift terms, [84]. These extensions are presented

in Section where we also describe how the boundary control and the Allee-control introduced
in [114] can be combined.

(11) In the last Section we present some open problems and perspectives for future research.
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1.3. A model problem. Let us first introduce the problem of the boundary control of some of the most
common 1 — d reaction-diffusion equations. This problem entails the core phenomenology arising in the
context of constrained controllability.

Let L > 0 and consider the system

O — Oggv = f(v) (x,t) € (0,L) x (0,T),
(1.1) v(0,t) = a1(t) v(L,t) = as(t) t e (0,7),
0<wv(z,0) <1, x € (0,L),

where f € C? satisfies f(0) = f(1) = 0. We will mainly consider two types of nonlinearities f, (see Figure

, namely:

e Monostable: when f/(0) > 0 and f'(1) < 0 with f(s) > 0 for s € (0,1) (see Figure right).
A prototypical example of monostable nonlinearity is f(v) = v(1 — v).

e Bistable: there exists § € (0,1) such that f(6) = 0, f/(6) > 0 and f'(0) < 0 f'(1) < 0 with
f(s) < 0in (0,0) and f(s) > 0 in (6,0) (see Figure left). A typical example of bistable
nonlinearity is f(v) = v(1 — v)(v — 0).
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Bistable Nonlinearity Monostable Nonlinearity

FIGURE 1.1. Left (resp. Right): A bistable (resp. monostable) nonlinearity.

Note that v = 1 is a constant steady-state with a; = a3 =1, v = 0 with a; = a3 = 0 and v = 0, in the
case of the bistable nonlinearities, with a1 = as = 6.

In this model the state v typically represents a proportion or a population density. For this reason,
we impose natural constraints: 0 < v(z,t) < 1. The boundary controls a;(t), j = 1,2, are therefore
constrained by the same bounds, and, as we shall see, this limits significantly the possibility of controlling
the system.

Most of these notes will be devoted to discussing whether the system can be driven, by the action of
suitable controls, to reach these specific steady targets in a way that the constraints 0 < v < 1 are
preserved.

The classical methodology for controlling semilinear equations (e.g., [36]), based on using the linear
controllability properties with careful estimates on the cost of control and fixed point arguments, do not
apply since, typically, the controls obtained in this way will violate the constraints. Therefore, ad-hoc
techniques, taking into account and exploiting the nonlinear dynamics of the system, will be developed
to analyze the controllability properties under these constraints. One of the difficulties that we shall
encounter is that barrier functions may arise as nontrivial solutions to the steady-state equation:

—0pzv = f(v) x € (0,L),
(1.2) 0 <wv(z,0) <1, z € (0,L),
v(0) =0, w(L)=0

with null boundary conditions/controls. Obviously, the trivial constant solution v = 0, is a steady-state
solution of the system. The existence of nontrivial solutions to , vp, depends, basically, on the length
of L. Due to the comparison principle, when such a nontrivial barrier v, exists, the final target v = 0
will not be reachable when the dynamics departs from an initial configuration above vy, since, whatever
the controls are, being non-negative, the solution will always remain above this barrier. This is is an
important warning since it indicates that the control results we might expect will vary depending on L.

This fact has a clear interpretation in applications. For instance, it is well-known that the survival of
species is related to the size of the available territory [104] (see also [8]). In other words, if the area
in which the population lives and evolves is too small, it will likely tend to extinction, while in larger
domains, survival will be more feasible. This is due to the fact that, even if individuals on the vicinity
of the boundary will tend to die, the reproduction rate inside the domain will suffice to compensate for
this loss, assuring the overall survival of the species.

This can be understood in mathematical terms by the stability properties of the trivial steady-state v = 0,
that will attract, or not, the whole ensemble of initial data within the bounds 0 < v < 1, depending on
the length of L: when L is small enough, all initial data will be attracted towards v = 0, while for L large,
because of the barrier effects mentioned above, some initial data will evolve remaining always above vy,
avoiding convergence towards v = 0.

Of course, the long-time stability properties of the system and the nature of the set of steady-state
solutions are intimately related. For instance, from |78] (see also [122]), we know that bounded solutions
of one-dimensional reaction-diffusion equations converge to steady-states. This classical result, combined
with the instability of the null steady-state for large domains, is a way to understand the existence of a
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nontrivial solution to (1.2)), a fact that can be directly explained in the elliptic context using the theory
of critical points from the Calculus of Variations.

1.4. Bibliographical notes on applications. Reaction-diffusion systems frequently appear in natural
sciences and applications, in a diversity of contexts that we will briefle describe. As we will also see, control
problems for these models can adopt different forms and formulations, depending on the application
context.

e Population dynamics and spatial ecology. Kolmogorov [60] proposed a model in ecology
in which a population diffuses in space on the whole real line and grows in a nonlinear manner,
discovering the existence of traveling wave solutions of the form U(x — ct), with a given profile
U(z) and a travel velocity c¢. This pioneering work gave rise to a vast literature on reaction-
diffusion, and spatial ecology [38]. For more general diffusion models in ecology, we refer to
[51/6L[17L/40,/85./88L192]. We also refer to [11] for an empirical finding of traveling waves in ecology.

e Chemical reactions [92,/109]. In most cases, models in this context are systems and not scalar
equations as those analyzed here, enjoying a much richer dynamics. Turing patterns [117] is one
of the paradigmatic phenomena, which emerges when there is a large contrast in the diffusivity
constants of the various equations constituting the system. Alan Turing’s model was originally
proposed for morphogenesis, and it has been proven experimentally to be successful [89].

e Magnetic systems in material science: Reaction-diffusion equations have been also employed to
understand the dynamical evolution of spins in magnetic materials. In 23], a reaction-diffusion
system for the evolution of the magnetization of the material is derived from the microscopic
stochastic dynamics of spins [45].

e Evolutionary game theory: In this field, one seeks to understand how players change their
strategies depending on those of the other players [22}[541/56,/91,/118]. When considering the
possible spatial diffusion of the players, reaction-diffusion equations arise naturally, [53}/55].

e Neuroscience: traveling wave phenomena also arise when modeling nerve impulses [28].

e Linguistics: parabolic models may also be employed to analyze language shift, [102].

1.5. Introduction to control problems. Control problems arising in these fields can be presented in
a diversity of forms and allow for various mathematical formulations. Here we briefly present some of
them.

e Interior Control: This type of control action finds applications, for example, in parabolic
equations arising in heat processes. Consider a bar of length L and a sub-interval w C (0, L)
where a heater/cooler is placed. The evolution of the temperature of the bar is governed by the
system:

0tV — OV = Xuwa,

v(0,t) = v(L,t) =0,

v(-,t =0) = vp.
Here vy stands for the initial temperature distribution, while the temperature at the boundary is
fixed. The heating control is modeled by a = a(z,t) which acts locally in w, but aiming a global
effect.

Several types of control problems can be considered. The controllability towards a steady-state
(in particular, when v = 0, the so-called null-control problem) has been extensively studied in the
literature: [314[32]. But the case where state constraints are imposed has been much less studied
and only more recently: [72,76].

o Multiplicative and Bilinear Control: In this case the control does not enter on the system as a
linear right hand side source term but rather as a potential a(x,t) multiplying the state itself:

0y — Oppv = av,

v(0,t) = v(L,t) =0,

v(-,t =0) = vp.
Of course, in this case, the impact of the control a(z,¢) on the system is much weaker. In
particular, if the initial datum vy = 0 is the trivial one, then the solution will also be v = 0 for
all time. Therefore at the final time, ¢ = T, only the final target v(-,T) = 0 will be reached,

regardless of the value of the control. We refer to [1525./58,/59] and to [24L/50.(75]/79-83.86] for
the analysis of bilinear control on population dynamics systems.
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e Allee Control: In [114], adopting a micro-macro modeling perspective (as in [23,/26]), the role of
the Allee threshold parameter 8 of the bistable nonlinearity as an effective control of the system is
justified. In practical applications, for instance, on the regulation of the propagation of invasive
mosquito species, this Allee threshold can be regulated by releasing sterile mosquitoes. This leads
to a model of the form

Ov — Oggv =v(v —0(t))(1 —v) x€R,
v(,t=0) =vg € L*(9Q;]0,1]),

where 6 = 0(t) plays the role of control.

e Boundary Control: This action is another prototypical way of possible interaction in control sys-
tems. Boundary control mechanisms are closely related to interior controls acting on a neighbor-
hood of the boundary. This can be rigorously justified through the classical extension-restriction
argument, |[110]. The corresponding control system then takes the form

0t — Ogev = 0,
U(O’t) = a’l(t)v U(Lvt) = a2(t)7
U(',t = 0) = o,

where a; = a;(t), j = 1,2 play the role of controls. Most of these lecture notes will be devoted
to considering boundary control problems.

In all these contexts, control problems can be formulated in different forms. One may distinguish, in
particular, the following goals and issues.

(1) Controllability problems, [18,|116}126]: given an initial datum and a specific target, to find a
control function that drives the system to the target in a given time-horizon.

(2) Stabilization, |18, Part III]: Given an unstable equilibrium configuration, can we find a control
function in a feedback form (depending on the state) that stabilizes the systems towards this
equilibrium?

(3) Optimal control. This problem can be formulated as a minimization one, for instance in a least-
squares context. One seeks to minimize a cost functional depending on the state and the control,
typically, to lead the system towards a neighborhood of a reference trajectory. Optimal control
problems for parabolic problems have been widely considered, in particular, in |14}|65,[107}[115].

2. PARABOLIC MODELS

In this section, we derive the model that will be considered and explain the relevance of constraints for
the associated control problems.

2.1. ODE versus PDE modelling. The first Ordinary Differential Equation (ODE) considered in
population dynamics exhibits an exponential growth of the population P = P(t) > 0:

P/

F - ﬂ7
Verhulst [120] noticed that the competition for limited resources among individuals of the same population
provides a more accurate model and leads to an upper threshold of the population growth:

P’:BP<1—P>,
K

where £ is the capacity of the environment.

ODEs can be adapted to the Partial Differential Equation (PDE) setting to model the movement and
invasion of species. Assuming that the diffusion is homogeneous and that the resources are space invariant,
the equation can be formulated as follows:

Oy — Dggv = Pu(l — v) (x,t) € (0,L) x (0,7),
9, v =0 (z,t) € {0, L} x (0,T),
v(-,t =0) = vy € L=(RT),
for B > 0. Note that in the equation above, for the sake of simplicity, we have assumed x = 1 and

the diffusivity constant p = 1. As it will be seen in the next section, the solution of the system above
is nonnegative for all times. This is coherent with the fact of v being a density of population. Null
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Neumann type boundary conditions are adopted to represent the fact that no population flow through
the boundary is allowed.

The constraint on the state v < 1 is relevant when the quantity under consideration is a proportion and
can be integrated into the above system or for more general nonlinearities f such that, f(0) = f(1) =0
with f/(0) > 0, f'(1) < 0 and f >0 in (0, 1).

2.2. The bistable model. Let = (0, L) C R and assume that two populations represented by non-
negative functions V' and W, interact in a nonlinear fashion while preserving the quantity V + W, and
diffusing in space. We will discuss later possible contexts in which such a situation might occur. The
corresponding model reads:

OV — 0y V = F(V,W) (z,t) € (0,L) x (0,T),
W — 0puW = —F(V,W) (z,t) € (0,L) x (0,T),
(2.1) 0V =0, W =0 (z,t) € {0,L} x (0,T),

V(- t=0)="V, € L>®((0,L);R"),

W(,t=0)=Wye€ L*((0,L);R"),
where F' is a Lipschitz continuous function satisfying F'(V,0) = F(0,W) = 0 for every V,W € R.
We first look for a simplified approximation of (2.1 involving one single equation. Note that

P=V+W,
is positive and satisfies:
OP — 03P =0 (x,t) € (0,L) x (0,T),
(2.2) 0P =0 (z,t) € {0,L} x (0,T),

P(~,t:0) = Vo + W,

whose long time asymptotic is given by the constant

L
lim P(t,z) = %/0 [V(z,0) + W(z,0)]dz.

t—o00

It is therefore natural, for simplification purposes, to assume that P is actually constant. This allows
to define v := V/P as the proportion of the V' type population in the whole population P. Then (£2.1))

reduces to:
Ov — v = f(v) (z,t) € (0,L) x (0,7,

0;v =0 (z,t) € {0,L} x (0,T),

v(-,t =0) =wvg € L*>((0,L);[0,1]).
for a suitable f that can be easily derived out of F.
In this setting, the bilateral constraints 0 < wv(x,t) < 1 arise naturally for all (z,t). The zeros of the
original nonlinearity F' guarantee that f(0) = f(1) = 0. Then, by the comparison principle, when the
initial datum vy satisfies these bilateral bounds, they are guaranteed to hold for all (x,t) (see next section,
Section .
A nonlinearity f € C! is said to be bistable if:

f0)=f(0)=f1)=0, f(0)<0, f(1)<0, f(6)>0,

f(s) <0 forse(0,0), f(s)>0forse(6,1).

As an example, observe that if

14'%
(V+W)2

for 6 € (0, 1), the corresponding f takes the form
f) =v(l —v)(v—190)

which has such a bistable structure. This model has special interest, in particular, in game theory as
described below:

F(V,W) = (1 0)V +oW)
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o Game theoretical interpretation. This nonlinearity arises naturally in the context of evolutionary
game theory in coordinated games.

The choice of languages in a social context is a prototypical example. Indeed, assume two
bilingual individuals meet each other, and they establish a conversation in one of the two languages
they master. The possible different preferences for languages, can be modeled on a payoff matrix.

In this context, the replicator dynamics is a nonlinear ODE that models the players’ change
of strategy in time. Players continuously play the game, and they evaluate their success while
comparing it with the average success of all players. The replicator dynamics for a two-strategy
game is represented by:

CZU:UOLO)A(lEU)—(v,l—v)A<1ﬁv>)

where A € M5(R) is a payoff matrix.

In this model, v is the proportion of players playing the first strategy, and 1 — v that of those
playing the remaining one. The first term on the right-hand side evaluates the success of the first
strategy, while the second one is the players’ average success. If the first strategy has less success
than the average, the proportion of players playing the first strategy will diminish in favor of the
second strategy. The payoff matrix of a coordination two strategy game is

_((1-6) 0
(")
that leads to the nonlinearity f(v) = v(1 —v)(v — ).

In this game, we see that if < 1/2, players prefer to play the first strategy rather than the
second one. However, the preference does not uniquely determine the behavior of the system.
One can see for instance that both consensus configuration v = 0 and v = 1 are stable. Indeed,
f'(0) < 0and f'(1) < 0, and this assures that the less wanted strategy is stable if enough players
are currently playing it.

For further details and other possible models we cite [2253],54}/54}55},91].

e RBiological interpretation.

In a biological context, according to the so-called Allee effect (see [112]), when the population
in a given habitat is lower than a given threshold 6, they cannot survive.

A game-theoretical approach can also be adopted in this context. Assume the population
presents two distinct genes. More successful genes will be transferred to the next generations,
while the less successful ones will disappear. In this situation, the replicator dynamics applies.

In ecology, spatial heterogeneities are omnipresent. Note that when A depends on z like in

Alz) = ((1 —g(x)) (9(();10))’

0(x) determines which strategy is having an advantage, depending on the spatial location z. So
that, if 0 < s < 0(x), then f < 0, but f > 0if #(z) < s < 1. This leads to a model in which the
nonlinearity depends on z. In ecological systems, one may also consider situations in which one
gene is favorable in dry environments, and the other one in humid habitats, for instance. This
case will be briefly discussed later on.
One may also consider different diffusivities for each of the genes, where the reduction to a

scalar case might not be possible.

o Chemical reactions. A chemical reaction in which the number of reactants, constituted by particles
of different classes, can also be represented by similar systems, [92, Chapter 1].

2.3. Boundary control. In these lecture notes we will mainly consider the situation in which the control
acts on the boundary. The control can enter through the Neumann boundary condition, for instance,
regulating the flux:

OV — Oggv = f(v) (z,t) € (0,L) x (0,T),

% = b(x,t) (z,t) € {0,L} x (0,T),
0<w(z,0)<1 z € (0,L).

But, obviously, a trajectory with Neumann control can also be understood as being submitted to a
Dirichlet one, with controls that, actually, coincide with the trace of the obtained solution. Therefore,
equivalently, we may consider the same problems with Dirichlet controls that are somehow easier to



handle. In particular in the Dirichlet context, constraints on the state are simply reflected as constraints
on controls, thanks to the maximum or comparison principle.

Indeed, given the Neumann control b(x,t), and the corresponding solution v = v(x,t), its Dirichlet trace
a(z,t) can be understood as a Dirichlet control, leading to the equivalent control system

8151] - 8zacv = f(’U) (Z‘,t) € (07 L) X (Oa T)a
(2.3) v = a(z,t) (,t) € {0, L} x (0,7),

0<w(z,0)<1 z € (0,L).
Of course the constraints on v, solution of the Neumann problem, are automatically transferred to the
Dirichlet controls

0<a(x,t) <1 forany (x,t) € {0,L} x [0,T].

On the other hand, as we shall see in the subsequent section, by the comparison principle, the constraints
on the controls a suffice for them to hold for the solution v of (2.3]) as well.

Thus, in the context of Dirichlet controls, imposing bilateral bounds on solutions is equivalent to imposing
them on the controls.

3. REVIEW OF SOME RESULTS ON PARABOLIC EQUATIONS

In this section, we gather some classical results on semilinear parabolic equations that are useful for
control purposes. We will mainly expose results concerning

(1) convergence to steady-states,

(2) comparison pinciples,

(3) traveling waves.
The primary tool to control reaction-diffusion equations with constraints to steady targets is the staircase
method, which uses paths of steady-states. The stability of these steady-states plays also an important role
since it allows to extend the ensemble of the controllable data. But, as mentioned above, the existence
of nontrivial steady-states can also be a fundamental obstruction for control, due to the comparison
principle.
This section gathers the main technical results needed to develop these principles. In particular, we will
employ the comparison principle between the solution of the reaction-diffusion equation and a section of
a traveling wave, that corresponds to its restriction to the spatial domain under consideration.

3.1. Convergence to steady-states. Consider the following one-dimensional semilinear heat equation

Opv = 0 (a(x)0,v) + f(x,v) (z,t) € (0,L) x (0,T)
(3.1) v(z,0) = vo(z) z € (0,L),

v(0,t) = Bo, v(L,t)=pr t€(0,7),
Bo and Br, being constants independent of t.

Let t.(vg) be the maximum time of existence of the solution of . For general nonlinearities, solutions
of may blow-up in finite time.

Let vy € C ([0, L];R) and suppose that the solution is global, so that the maximum time of definition
of the solution is +o00: t.(vg) = oco. The w-limit set of the solutions can be defined as the set of
accumulation points of the trajectory v(-,t) in C* ([0, L]) as t — oo. It is by now well-known that any
bounded trajectory converges to a steady-state. The result actually holds for more general boundary
conditions [77] (see also [122] for an earlier reference).

Theorem 3.1 (Matano, Theorems A and B from [78]). The w-limit set of any function vy € C([0, L]; R)
contains at most one element.
For any initial data vo € C([0, L];R), one and only one of the following three properties holds:

(1) The solution blows up in finite time, t.(vo) < 00, and limy_;_ (vy) [|[V(t)]| Loe (0,L]:r) = 00-

(2) The solution is global, t.(vo) = 0o, grows ast — 0o, and limy_,;_ (v, [V(t)|l L ([0,L);r) = ©-
(3) The solution converges to a solution of the elliptic problem.

Oy (a(x)0zv) + f(z,v) =0 xz € (0,L),
v(0) = Bo, wv(L)=pr,



10 DOMENEC RUIZ-BALET AND ENRIQUE ZUAZUA
in the C* ([0, L];R) U C? ((0, L);R) topology.

In higher dimensions, the theorem above is no longer true, as shown in [95,96]. However, if the nonlinearity
is analytic, one can ensure the convergence to steady-states thanks to the Lojasiewicz gradient inequality
[57,111] (see also [48,68]).

3.2. Comparison results. The comparison principle enables us to gain further understanding on the
dynamics of the trajectories of the PDE under consideration, [13}39,[103], |38, Chapter 5]. We present si-
multaneously parabolic and elliptic comparison principles. We state them in the one dimensional context;
although they also hold in several space dimensions.

Definition 3.2 (Parabolic sub- and supersolutions). Consider the elliptic operator:
L= Opy + k(z)0,

where k : (0, L) — R is a smooth function. Let f : R — R be a smooth function and & : {0, L} x(0,T) — R.
Consider the parabolic problem:

0w — Lv = f(v) (x,t) € (0,L) x (0,T)
(3.2) v(t,x) = h(z,t) (x,t) € {0,L} x (0,T)

v(0,x) = vo(x) x € (0,L).
A subsolution v of satisfies:

0w — Lo < f(v) (x,t) € (0,L) x (0,T)

h(t,x) (x,t) € {0, L} x (0,T)

vo(x x € (0,L).
A supersolution 7 of satisfies:

oo — LT > f(D) (z,t) € (0,L) x (0,T)

o(t,z) > h(t,x) (x,t) € {0,L} x (0,T)

(0, z) > vo(x) x € (0,L).
Theorem 3.3 (Parabolic comparison principle [13]). Ifv is a subsolution (respectively T a supersolution)

to (3.2) and v is a solution such that v > v (respectively v < T) on (x,t) € {0,L} x [0,T)J(0,L) x {0}
thenv >wv (v <v)in (x,t) € (0,L) x (0,T).

In the elliptic context the comparison principle reads as follows. Let f : [0,L] x R — R be a locally
Lipschitz function and consider the equation:

—Lo(z) = f(z,v(z))  x€(0,L),
(3:3) {v(x) =0 z€{0,L}.

Definition 3.4 (Elliptic sub- and supersolutions). We say that v (respectively ) is a subsolution (re-
spectively a supersolution) if v (respectively ¥) belongs to C°([0, L]) U C?((0, L)) and verifies that:
—Lu(z) < f(z,0(z)) =€ (0,L),
v<0 xz €{0,L},

or, respectively,
—Lv(x) > f(z,v(x)) x € (0,L),
v>0 x € {0, L}.

Theorem 3.5 (Elliptic comparison principle, Theorem 5.17 in |63]). Assume that there exist a subsolution
v and a supersolution U of (3.3) such that v <7.

Then (3.3) admits a minimal solution v, and a mazimal (possibly equal) solution T* such that, v < v, <
v* < T and there exist no solution u between v and T such that at a certain point x € Q) it satisfies either
o(@) < v.(x) or v(z) = 7" ()

As mentioned above, solutions of reaction-diffusion systems can blow up in finite time for certain initial
data and specific nonlinearities growing super linearly at infinity, [29, Chapter 9, pp 547-550]. The
following corollary guarantees the stability of the system if the initial data lies in 0 < vy < 1.
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Corollary 3.6 (Stability). Assume that 0 < vy <1 and f: R — R is locally Lipschitz continuous with
f(0) = f(1) = 0. Then, the solution of the problem

O = Ogzv + f(v) (x,t) € (0,L) x (0,T),
v(z,t) = a(x) € 0,1] (z,t) € {0,L} x (0,T),
v(x,0) = vo(x) x € (0,L),

1s defined for all positive time and
0<wv(zx,t) <1.

Proof. The existence and uniqueness of solutions follows from classical methods, existence and uniqueness
for the linear problem and the application of a fixed point method for the nonlinear equation |29, Chapter
9.
The comparison principle applies as well, observing that the functions w,v : (0, L) x RT — R defined as
(x,t) =1 and v(z,t) = 0 are a supersolution and a subsolution, respectively.

|

3.3. Traveling waves. We are considering Dirichlet boundary controls in both extremes of the domain:
x = 0, L. This is, in fact, equivalent to not imposing boundary conditions at all, and simply reading-off
the boundary traces of the solutions, provided they fulfill the bilateral bounds. Note that this argument
is actually the one that allowed us to show the equivalence between the Neumann and the Dirichlet
control problems in the presence of constraints. Observe, however, that this equivalence is no longer true
when the control acts only on one extreme of the boundary, for instance. This case requires a specific
treatment, depending on the boundary conditions under consideration.

Considering the Dirichlet boundary control problem from this perspective, i.e. ignoring the boundary
conditions under the sole condition that the solution satisfies 0 < v(x,t) < 1, allows for instance consid-
ering the Cauchy problem in the whole real line, and the restrictions of its solutions to the domain (0, L)
under consideration.

A particular relevant example of trajectories defined in the whole real line are the so-called traveling
waves, [38,/60] for the Cauchy problem:

O — Oggv = f(V) (z,t) € R x RT,
(34) {v(-,t =0) = vy € L™(R).

Definition 3.7 (Traveling waves). A traveling wave solution to (3.4]) is a solution of the form v(¢,z) =
U(z — ct) with ¢ € R being the wave speed and U = U(s) its profile.

The existence of such functions was discovered by Kolmogorov [60] and, since then, they have been
exhaustively studied.

Note that the C? profile U such that U(+00) = 0 and U(—o00) = 1 defines a traveling wave solution iff
(3.5) —cU'(s)+U"(s) = f(U(s)) s€R
where s = & — c¢t. From (3.5)) by multiplying by U’(s) and integrating over R one observes,

e /R (U (s))2ds + /R U”(3)U" (s)ds = /R FU ()T (s)ds.

This gives an implicit definition of the velocity of propagation of the profile. Indeed, using the fact that

U’'(+00) = 0, one can see that the above expression is reduced to:
F)

3.6 =————7
o R

where F' is the primitive of f.

Equation gives, in particular, the direction of the traveling wave. Indeed, if F'(1) > 0, the traveling
wave is moving to the right, so that eventually, as t increases, the value 1 invades the whole real line,
while, if F(1) = 0, the profile defines a steady-state solution. The existence of traveling waves for
bistable nonlinearities can be proved, for instance, using phase-plane techniques, understanding
as a dynamical system and looking for a trajectory that connects (U(—oc0) = 1,U'(—o0) = 0) with
(U(—=00) =0,U'(—00) = 0).

The next theorem guarantees the existence of traveling waves for bistable nonlinearities:
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Travelling Wave profile

12

-10 0 10

FIGURE 3.1. Profile U(x) for the traveling wave for the cubic nonlinearity f(u) = u(1 —
u)(u — @) restricted in the interval [—10,10]. This profile U is independent of the value
of 6.

Theorem 3.8 (Traveling waves for the bistable nonlinearity, Theorem 4.9 in [92], Theorem 4.15 [38|).
Assume that:

f0)=0, f(0)<o0, f(6)=0, f(1)=0, f(1)<0

flvy<0 for O0<wv<O, fv)>0 for O<v<l
Then, there exists a unique traveling wave (¢*,v = U(z — c*t)) of (3.4) with a decreasing profile U and
satisfying:

¢ >0 for F(1) >0, ¢* <0 for F(1)<0, ¢*=0forF(1)=0

where F(s) = [; f(v)dv.

For the cubic nonlinearity f(u) = u(1 — u)(u — @) the profile U(z) has an explicit expression

__ewp{-a/v)
YO = T e VB

c*zx/i(l—e).

2

shown in Figure with traveling speed

Traveling wave solutions connect the steady-state 0 with the steady-state 1. They can act as attractors
for the dynamical system. Indeed, there is a wide class of initial data that exponentially converges to a
traveling wave as t — 4-00.

Theorem 3.9 (Theorem 4.16 in [38]). Assume that f bistable. Then if the initial data of (3.4)), vo
satisfies:

lim sup vg(z) < 6 lim inf vy (z) > 6,
T——00 #—r+o0

there exist constants C > 0, u > 0 (independent of x) and xo € R such that:
|u(z,t) — U(x — ct — x0)| < Ce M.

Assuming that f is monostable:
f0)=f1)=0, f(s)>0 s€(0,1); [f(0)>0, f(1)<0,

there is no uniqueness of the traveling waves
Theorem 3.10 (Theorem 4.15 in [38]). Let f be monostable. Then there exist ¢* > 0 such that:

o there exist a traveling wave solution with U(—oc0) =1, U(4+00) =0 if ¢ > ¢,

o if c < c* there does not exist any traveling wave.
In this case there exist infinitely many traveling waves. This issue has been extensively analysed in some
specific models like the Fisher-KPP equation below, [60]:
{@U — Opzv =710(1 — 0) (z,t) eRxR*

3.7
(3.7) 0<wv(z,0)<1 x €R.
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Concerning the stability of traveling wave solutions in the monostable case there is a specific traveling
wave that enjoys stability properties:

Theorem 3.11 ( [60]). Let f : R — R be monostable, fulfilling f'(0) > f'(s) for all0 < s <1 and let
v =v(x,t) be the solution of

0w — Opev = f(v) (w,t) ER xRT
v(,t=0)=1g

where

0 for x>0
vO(x)_{l for x<0.

Then there exist a function ¢ € C' such that

(3.8) lu(z,t) —U(x —c"t =) -0 as t— o0
uniformly in x € R and:

lim +'(t) =0

t—o0

We refer to [108], [105], [37], among others, for further results on the asymptotic stability of solutions.

Traveling waves play a very interesting role in the context of control since its restriction to the bounded
domain [0, L] yields a trajectory linking an arc near the steady-state 0 with another one near 1 (or
the reverse, depending in the sense of the propagation). Traveling waves can also naturally be used to
construct sub- and super-solutions for controlled trajectories.

4. WELL-POSEDNESS OF THE CONTROL PROBLEM AND CONTROLLABILITY

4.1. Comments on the well-posedness. Let us first discuss the well-posedness of the main control
problem considered in these lecture notes, namely the boundary control of the scalar reaction-diffusion
equation:

O — Ogzv = f(v) (x,t) € (0,L) x (0,T),
(41) U(Ovt) = al(t)v ’U(L,t) = a2(t) te (O7T)a

v(z,0) = vo(x), wo € L((0,L);[0,1])
where a; € L*((0,T);R) for i = 1,2 are control functions.

Splitting the solution into two subproblems, v = w + y, as in [93], where

0w — Opgw =0 (z,t) € (0,L) x (0,T),
(4.2) w(0,t) = a1 (t), w(L,t)=ax(t) te(0,T),
w(z,0) =0,
and
Oy — Ozey = f(y +w) (z,t) € (0, L) x (0,T),
(4.3) y(0,t) =0, y(L,t)=0 te (0,7),

y(x,0) = vo(x), wvo € L*>((0,L);][0,1]),

the existence and uniqueness of a weak solution can be shown. In the presence of boundary control weak
solutions are defined as follows:

Definition 4.1 (Weak solution). Consider the space:
T:={peC>®(0,T] x[0,L]): (,T)=0, ¢(z,t)=0 (x,t)€{0,L} x[0,T]}.
For vy € L>([0, L]; [0,1]) and for a; € L>((0,T")) for i = 1,2,
v e C°(0,T), H*((0,L))) N L>=((0,L) x (0,T))

is a weak solution of system (4.1)) if for every ¢ € T one has that:
T

T 4L L
/ / v(— O — Ouap) — f(v)pdadt = / vo(z, 0)dx + / a1(t)0z0(0,t) — ag(t)0yp(L, t)dt.
o Jo 0 0
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Note that, in the construction above, solving the non-homogeneous boundary-value problem (4.2)), due
to the low regularity of the boundary controls, requires to first introduce the notion of solution in the
sense of transposition [66, Ch.13].

Let us introduce the following notation:
Q=(0,L), Q@Q=02x(0,T7), =00x(0,T)
and the adjoint problem

—0ip — Opap = @ (x’t) € (Oa L) X (OvT)>
(4.4) p(0,t) =0, p(L,t)=0 te(0,7),
p(z,T)=0

for ¢ € L2((0,T); L2((0, L))
The well-posedness of the adjoint equation (4.4)) can be addressed by classical methods, [29, Chapter 7

pp. 378]. In fact, under the inversion of the time variable (¢t — —t) this system becomes an homogeneous
Dirichlet problem for the forward heat equations. The solution then belongs to:

d
pELQ((O,T),Hé(O,L)), ape LQ((():T)vH_l(OaL))
On the other hand, multiplying (4.2]) by ¢ and integrate over Q:

T L T L T 0p a=t
/ / wodxdt = / / w(—&sp - 8xxp)dmdt = / Wl —0 dt
o Jo o Jo o T
T

_ / a3 (£)0:p(L, t) — a1 ()0,p(0, 1) dt

0
= <aa A¢>L2(Z)7

where a = (a1,az). The map A : L?(Q) — L?((0,T);R?), A(¢) = (—0.p(0,t),0.p(L,t)), such that p
solves (4.4)), is linear and continuous. A transposition solution w of (4.2)) is a distribution w satisfying
the following relationship for every ¢ € L?(Q):

(4.5) /OT /OL wo = (a,Ap)r2(s).

By duality, the existence and uniqueness of the transposition solution holds. For details see [66, Chapter
4, Sections 8, 12.3, 13 and Section 15 Example 1] and [65, page 202].

The well-posedness of problem (4.3]) can then be achieved as an application of Banach Fixed-point [93]
to

Oy — Ozay = f(§+w) (z,t) € (0,L) x (0,T)
(4.6) y(0,t) = y(L,t) =0 te(0,7)
y(x,0) = vo(z), wo € L>((0,L);[0,1]).
The solution (&) of , defines a map v : Bg — Br where Br C L*°(Q) is a ball of radius R.

Using the variations of constants formula with the semigroup generated by the heat equation, a contraction
map is defined for T" small enough, leading to local existence and uniqueness. When the nonlinearity is
assumed to be globally Lipschitz, the solution is globally defined in time. Blow up may occur when the
nonlinearity is superlinear at infinity.

4.2, Null Controllability of linear problems. We present some of the main features of the null
controllability problem for scalar parabolic equations, the main arguments employed in its analysis, and
the bibliographical references.

The first method to deal with the controllability of the heat equation in one dimension is based on the
use of biorthogonal functions, [31].

On the other hand, the extension-restriction principle allows to transform the boundary control problem
into an interior control one. The argument consists of extending the system to a larger domain in which
the control acts in its interior but outside the original domain. Once the solution in the extended domain is
controlled, the restriction to the original domain leads to a controlled trajectory with Dirichlet boundary
controls.



15

Here we shall only consider scalar equations. For extensions to parabolic systems we refer to [1,[33}/46,
51L(62].

The original domain € = (0, L) is extended to Qg = (=1, L+ 1). Let w C (—1,0) (see Figure and
consider the following linear parabolic control problem:

OV — Ot — bz, )V = XWh (z,t) € Qg x (0,7),
(4.7) v(=1,¢) =0, v(L+1,t)=0 te(0,7),
v(z,0) = vo(xz), wvo € L™(Qg;|0,1]) x € Qp,

where the initial datum is a smooth extension by zero of compact support of vg and b € L2((0,T), L*(Qg)).

-1 0 L L+1

FIGURE 4.1. Original domain © = [0, L], extended domain Qg = (=1, L + 1) and the
control region w.

We now consider the extended adjoint equation:

Op + Opap + b(x,t)p =0 (x,t) € Qr x (0,T),
(4.8) p(-1,t) =0, p(L+1,t)=0 te(0,T),
p(z,T) = p’ () x € Qp.

Integrating by parts we get

0= /Q o(T)p(T ) - /Q o (O)p(0)d - /0 ! /Q 0O+ O+ ) d — /0 ' /w hpdadt.

Hence,
0= /Q o(T)p(T ) - /Q o (0)p(0)d - /0 ! /w hpdadt.

A control h driving the solution v to the null state, i.e. v(T) = 0, is characterized by the duality identity:

—/ dm—/ /hpdmdt =0
Qp

for all pT such that the solution of (4.8 satisfies p € L%(w x (0,T)). Observe that the condition
p € L?(w x (0,T)) does not imply that pT € L*(Qg). In fact, pT belongs to a much larger space, [36].

The control h fulfilling the above identity can be obtained minimizing the functional

J:H—R, pl'—Jp / / 2d:vdt+/ p(0)v(0)dz.
Qg
where,

T
H := {pT such that p solves (4.8]) and / /p2dxdt < —l—oo},
0 w

The Euler-Lagrange equation satisfied by the minimizer p*T of J is given by

T
*, T T * - v =
T p/o /wgpd i+ [ el

This leads to the desired control h = p*, which is of minimal L?-norm among all possible controls.

In order to show that J has a minimizer we observe that J is continuous and convex. Its coercivity is
equivalent to the so-called observability inequality for the adjoint system:

T
(4.9) 19(0) 220y < C /0 / pdzdt, WpT € H.

This kind of inequalities for parabolic equations in one and several space dimensions was proved using
Carleman inequalities in [41] (see also [34]).
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This leads to the control of the system (4.7)) such that v(z,T;h) = 0. Taking its restriction to the original
domain (0, L) we find the boundary controls

a(0,t) = v(0,t;h) a(L,t) =v(L,t;h)

leading to the null control of the original system

040 — Oppv — b(z, t)v =0 (x,t) € Q x (0,T)
v(0,t) = a(0,t), v(L,t)=a(L,t) te(0,7)
v(z,0) = vy, x €

so that

v(z,T) =0, Yz € (0, L).

Note however that these arguments do not guarantee that the controls and/or the controlled states fulfill
the bilateral constraints.

4.3. Null controllability for the semilinear problem and further comments. Once the linear
control problem has been solved, the semilinear one can be addressed using either Schauder’s or Kakutani’s
fixed point [27]. This fixed point argument was originally employed for the semilinear wave equation, see
for instance [123}/124] and references therein (see also [61]).

The fixed point argument can be implemented as follows. Given & € L?(Q), we introduce the bounded
potential be

JE@ )
be(w,1) = &(,1) t(et) #0,

1/(0) otherwise.
Then, one considers the linear controlled problem

0tV — Ogav — be (2, t)v = X he (z,t) € Qg x (0,T),
(4.10) v(=1,t) =v(L+1,£) =0 te(0,7),
v(z,0) =vy, v(z,T)=0 x € Qp.

Applying the linear methods above, this system can be controlled, and in this way we can define the map
¢ L2(Q) — L?(Q) defined as & — (&) = v solution of ([{.10). This map turns out to be continuous
and compact. Under suitable growth conditions on the nonlinearity, in particular, when f is globally
Lipschitz, it can be shown that this map is invariant in a sufficiently large ball. This allows to apply
Schauder fixed point. The fixed point corresponds to a controlled trajectory for the nonlinear system.

There is, by now, an extensive literature in linear and semilinear parabolic control problems. We refer
to [351|36] for some of the earliest works and to [64,/70] for alternative methods.

As mentioned above, these arguments do not yield estimates in the controls and controlled states allowing
to assure that the bilateral constraints are fulfilled. A careful analysis of the Carleman inequalities allows
to obtain estimates on the cost of control of the form

1
lellso e < exp{C (3 + 1le=T+ 19122 ) } bolzz .oy

As expected, the size of controls increases exponentially when the time horizon T tends to zero leading
to oscillations on controls and states that are incompatible with the bilateral constraints considered in
these lecture notes (see Figure 4.2)).
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Controlled state at t*=2.2688

1+ =

Va (-, %)

(o)

Boundary Conrol
>

Time T

FIGURE 4.2. Left: Control function a(0,t) steering the semilinear equation with cubic
bistable nonlinearity f(s) = s(1 — s)(s — ) to the steady-state w = 0 in time T = 5.
Right: Snapshot at time ¢t = 2.2688 of the controlled trajectory wv,(:,¢) violating the
constraints 0 < v < 1.

Important further developments are needed in order to understand the controllability of these systems
under bilateral constraints of the form 0 < v < 1.

4.4. Constrained controllability results. In this subsection, we present the main Theorem given
in [93|, which ensures that under certain assumptions, and, in particular, for long time-horizons, the
problem of high amplitude oscillations observed in Figure can be avoided and bilateral constraints
can be assured. However, this will require a much more detailed analysis of the dynamics of the system
and, in particular, to build paths of steady-states linking one steady-state to another.

Consider

O — Oyzv = f(v) (x,t) € (0,L) x (0,T),
(4.11) v=a(x,t) (x,t) € {0,L} x (0,T),
v(0,2) = vo(z) € [0,1] x € (0,L).

We say that vy and vy are path-connected steady-states if there exists a continuous function from [0, 1] to
the set of admissible steady-states S endowed with the L™ topology, v : [0,1] — S, such that v(0) = v
and (1) = v;. Denote by 7° := 7(s).

Theorem 4.2 (Theorem 1.2 in [93]). Let vy and vy be path-connected admissible steady-states. Assume
there exists v > 0 such that:

(4.12) v<v(x)<1—v forxze{0,L},

for any s € [0,1]. Then, if T is large enough, there exist a control function a € L™ ((O,T); [0, 1]2) such
that the problem (4.11)), with initial datum vy and control function a(t) at x = 0, L, admits unique solution
verifying v(-, T) = vy.

Figure shows the strategy qualitatively. If one has a connected path of steady-states, one can use local
controllability to control sequentially along elements in the path in short time intervals by preserving the
constraints. The strategy is based on using an L* bound on the control in terms of the L*> norm of the
difference between the initial datum and the target in a given time interval, for instance of unit length.
This allows the identification of a finite number of intermediate steady-states along the path and applying
local controllability from one to another recurrently without breaking the constraints. This strategy, by
construction, requires a large time, of the order of the number of intermediate steps required, while the
controllability of the linear and semilinear heat equation, in the absence of constraints, can be achieved
in arbitrary small time.
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FI1GURE 4.3. Qualitative representation of the staircase strategy.

4.5. Minimal controllability time. Let us consider the problem where f is globally Lipschitz.
As mentioned before, in absence state constraints, the controllability problem to some steady-state can
be achieved in arbitrary small time [36]. But the cost of controlling the system becomes exponentially
large as the control time-horizon shrinks

In the presence of positivity constraints, there is a minimal controllability time for the linear heat equation
(see [72] and [69] for systems). The same occurs for the semilinear heat equation (see [93]). Here, we will
provide a schematic proof of the existence of a minimal control time under bilateral bounds.

Theorem 4.3 (Positivity of the minimal controllability time for the semilinear equation [93]). Let us
consider a steady-state target v:

Ve = [ (D) xz € (0,L),
0<v<1 z € (0,L),
5(0) =ai, E(L) = Q9.

Furthermore, consider the boundary control problem (4.11)) with target function © and vg # T. Then the
controllability cannot be achieved in arbitrary small time if the control function satisfies 0 < a < 1.

Proof. The result is an application of the comparison principle.

Let 7 be an admissible target steady-state. Assume that the admissible initial condition vq is different
from the target. Then, necessarily, there exists an open interval I C (0, L) such that either

(A) v<vy x€l,
(B) T>vy x €l

(A) For any control strategy a, one has that by the comparison principle
v(t; vg, a) > v(t;vg,a = 0)

where v(¢; vg, a) is the solution of (4.11)) with control a. Moreover, there exists a nonnegative test
function ¢ € H}(0, L) such that:

/(vo —T)gpdx > 0
I
Since the solution of (4.11)) is continuous with values in H~1(0, L), there exists T* > 0 for which

/(v(t;vo,a —0) —T)p>0 te (0T

I
Hence,

/(v(t;vo,a) —0)p > /(v(t;vo,a =0)—-7)>0 te(0,T7).

I I
Therefore, for any admissible control a, controllability cannot hold before T™*.
(B) The same principle applies, but by employing the control a = 1 in the comparison argument.
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O

Remark 4.4. The result, i.e. the need of a large enough time of control, is still valid under unilateral
constraints. However, it requires employing duality techniques and using the continuity in time of the
normal derivative of the adjoint equation and choosing a suitable profile as a final datum (see [93]).

5. BARRIERS AND MULTIPLICITY OF STEADY-STATES

5.1. Barriers. One of the main novel features of the systems under consideration is a fundamental lack
of controllability, consequence of the comparison principle, when state-constraints are present. We will see
that this fact is related, in particular, to the existence of nontrivial elliptic solutions, a fact that depends
on the length of the domain. These nontrivial solutions, by the comparison principle, will impede specific
trajectories to reach the prescribed target.

The comparison principle, presented in Subsection [3.2] ensures that a solution of the elliptic equation:
—Opow = f(w)  x€(0,L),
(5.1) 0<w(z)<1 z € (0,L),
w(0) =w(L) =0,
will always be below the solution of the following parabolic problem
Ov — Opzv = f(v) (z,t) € (0,L) x (0,T),
v(z,t) = a(z,t) >0 (z,t) € {0,L} x (0,T),
v(z,0) > w(z).
This shows that w(z) constitutes an intrinsic obstruction to the controllability for the initial data above
w, v(x,0) > w(z), x € (0,L), to targets taking values below w on a subinterval, since the solution, for
any admissible control satisfies necessarily
w(z) < o(zx,t).

Hence, any target vr satisfying vr(z) < w(x) in a sub-interval I will not be reachable from initial data
above the nontrivial steady state v(z,0) > w(x), € (0, L). For this reason, we say that w(z) acts as a
barrier.

Recall that the control a is acting on the boundary and therefore is submitted to the same constraints
0 <a(x,t) <1

As we have seen, the existence of solutions with null Dirichlet boundary conditions is an impediment
for the controllability to 0 (see Figure . The existence of such solution depends on the length of the
domain L and it can be understood intuitively in the application context. Roughly, the population
reproduces in the interior of a domain where the process evolves while vanishing at the boundary. These
two phenomena compete. If the domain is large enough, the reproduction inside can compensate for
individuals’ loss through the boundary.

Barrier

FIGURE 5.1. A barrier function for the semilinear heat equation with cubic nonlinearity
f(u) =u(l —u)(u—1/3) for L = 20.
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Note that nontrivial solutions with a boundary value 1 will have the same effect when the aim is that the
system reaches the state v = 1.

The following sections are devoted to studying the existence and nonexistence of such nontrivial steady-
state solutions. We will restrict the study to the one-dimensional case, even though the results also hold
in several space dimensions by the same techniques.

5.2. Rescaling. Consider the space interval (0, L) and the evolution equation
Ov — Ogev = f(V) (z,t) € (0,L) x (0,T),
(5.2) v(z,t) = a(z,t) (z,t) € {0, L} x (0,T),
v(-,t=0) =vy € L*((0, L), [0, 1]).
Equation can be rescaled to be considered in the space interval (0,1), through the space-time
transformation s(x) = x/L, 7(t) = t/L?. By setting v(L?7, Ls) = u(r, s) the problem reads:
Uy — Ogu = L* f(u) (z,t) € (0,1) x (0,7),
(5.3) u(z,t) = a(z,t) (z,t) € {0,1} x (0,7,
u(-,t =0) =wug € L*((0,1),[0,1]).

Abusing of notation, in the sequel we will continue using (z,t) instead of (s, 7) and we denote \ := L2

In [67] the existence of positive solutions for the semilinear elliptic problem (5.3) and its multiplicity is
studied. We collect here the results of the work [67] that can be applied in our steady-state problem

(-4).
Consider the boundary value problem in (0, 1):
—0ppu = \f(u) z € (0,1),
(5.4) O<u<l1 x € (0,1),
u(0) = u(1) = 0.

5.3. Variational formulation. The weak formulation of the boundary value problem:

—O0pev = Af(z,v) x€(0,1),
(5:5) {v(O) =v(1) =0,
v € H0,1): /WM%—V@WMMmﬂ Yh € H§(0,1),
0

which corresponds to the critical points of the energy functional:

1
I:H}(0,1) —R;, v—I[v]:= / <;vg - )\F(SU,’U)) dz,
0

where F(x,v) = fov(x) f(z,s)ds.
Lemma 5.1 (Coercivity of I). Assume that:

(5.6) Alim sup @ < A1(0,1),

|s]—o0

where \1(0,1) = 7% is the first eigenvalue of the Dirichlet Laplacian. Then I is coercive.

Proof. For simplicity we will consider only the case in which s — +oo. The case s — —oo follows
similarly. Since
f(z,s)

AMimsup ——= < A\(0,1),
5—00 S
we know that there exist R > 0 such that
Aﬁ%ﬂ<M Vs > R.

Using also the fact that f(x,0) = 0 we can write:

’ [ S(s) " p P
/oAf(s)dS—/O )\f(s)ds—&—/R)\Tsdsg/o )\f(s)ds+§(u2_R2)§§u2+C(R,f,)\)
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for a certain p < A\1((0,L)). So

1 1 »

> 2 D2 > = 1— 2 _

_/0 u; 2u C(R, f,N)dz > 2/0 ( )\1(0,1))% C(R, f,\)dx
p

1 ! 2 2
22O—Mmm)ézMM—aRﬁMzﬂﬂ%mn—aRﬁM

where ¢ > 0 because p < A1((0,1)). So I is coercive.
(]

Theorem 5.2 (Existence of a minimizer). Under the assumptions of Lemma I has a minimizer.

Proof. Note that the Lagrangian L(p,z,z) = %|p|2 — F(z) is the additive superposition of a convex
term, with respect to the variable p, and a reminder that will lead to a compact functional perturbation.
Therefore I is weakly lower-semicontinuous (Theorem 1 Ch.8 pp.468 in [29]) and the functional has a
minimizer v € Hg((0, L)). O

Remark 5.3. The hypothesis (5.6) is only needed for proving that the functional is coercive. For the
monostable and bistable nonlinearities, since f(1) = 0, one can extend f by zero for s > 1.

We are interested on solutions taking values in [0, 1]. Thus, the nonlinearity f (monostable or bistable)
is extended naturally by setting it to be constant before s = 0 (f(z,s) = 0 for s < 0) and after s = 1
(f(xz,s) =0 for s > 1). After redefining f (if needed) by

f(s) ifts>0,
f(s):=<0 if s <0,
0 if s > 1,

we define the functional:

I:H}(0,1)—R
v— I[v] := /01 Bvi - )\ﬁ‘(v)] dx

where F(v) = X [} f(s)ds

Obviously, I[0] = 0.

Thanks to the redefinition of f, we ensure that whenever v = 0 is not a minimizer, the minimizer satisfies
0 > v > 1 and the Euler-Lagrange equations:

— 0yt = Af(v) xz € (0,1)
O<v<l z € (0,1)
v(0) =v(1) =0.

Indeed, if the minimizer would not satisfy 0 > v > 1, then one would reach a contradiction. Suppose
that v takes values outside [0, 1], then the function

v(z) ifv(z) €]0,1]

v=141 if v(z) >1

0 if v(z) <0
would satisfy fol v < fol v2, while the nonlinear part of the energy containing F(v) would remain the
same. However, by the strong maximum principle v cannot be a solution of the elliptic problem since it
is incompatible with v being constant on a subinterval. Therefore the minimizer must satisfy 0 < v < 1.
Since 0 < v < 11in (0,L), f = f in this range and therefore it is a solution of our original problem, with

the nonlinearity f.
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Definition 5.4. We define \* (analogously (L*)? = \*) as the infimum value A € R* for which there is
a solution of:

—Opev =Af(v) 2 €(0,1),
(5.7) 0<wv<l1 e (0,1),
v(0) = v(1) = 0.
Note that, because of the constraint 0 < v < 1in (0,1), v is guaranteed to be a nontrivial solution.

Analogously, for the bistable nonlinearity, we will denote by A} (or L}) the infimum value on A € Rt (or
L € R™) for which a nontrivial solution with boundary value 6 exists.

It will be proven later on (Theorem and Theorem [5.14) that for monostable and certain bistable
nonlinearities A* < 4-00

The following classical result [67] makes use of subsolutions to prove that, if for a certain A there exists
a nontrivial solution to (5.7), then, for any A > A there will exist a nontrivial solution.

Proposition 5.5. Assume that \* < +00. For every A > \* there exist a nontrivial solution to (5.7))

Proof. We will use the fact that A = L?, and prove the result making use of different domains. More
precisely, assuming that there exists a nontrivial solution of the elliptic problem for a certain L; > 0, we
will see that there exists a nontrivial solution for any L > L;. This is equivalent to saying that if there
exists a nontrivial solution for ), there will also exist a nontrivial solution for any A > \.

Let us therefore assume that there exists a solution to:
— 01 = f(v1) x € (0,Ly),
0<v <1 xz € (0,Ly),
v1(0) =v1(L1) =0.
To prove that for any L > L; there exists a nontrivial solution, one can construct a subsolution of:
—Owev = f(v) 2 €(0,L),
O<ov<l1 z € (0,L),
v(0) = v(L) =0,
using v1. Indeed, one can extend v1 by zero in (Lq, L),

{vl(x) if z € (0, Ly),

o) =1, if z € (Ly, L).

Then ¥ is a weak subsolution for the problem in (0,L). On the other hand, note that 1 is always a
supersolution, therefore, there exists a nontrivial solution for the problem in (0, L) and therefore for any
A> AN O

5.4. Monostable nonlinearity.

5.4.1. Null Dirichlet condition. Using the variational structure of the problem, we will be able to give
estimates from above for \*, the minimal value for which the non-trivial steady state solution exists.

The following Theorem was proven in |10, Theorem II.1], however, the alternative proof given below uses
a variational argument.

Theorem 5.6 (An upper bound of A*). E|Assume that
fz,s)

A lim ———= > X;(0,1) z € [0,1]
s—0t S
and
f(z,s)

A lim
S§— 00 S

< A1((0,1)) Vxe[0,1]

Then, for all A\ > % there exist a solution of the problem (5.4)). Therefore:

MMz eo,1] 95 f(0, )

Here we provide a weaker version of the original theorem in |10| and a proof using a variational argument
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Proof. First of all, note that a minimizer exists by Theorem [5.2] The constant function v = 1 is not
a possible candidate because of the null Dirichlet boundary conditions. The main idea of the proof is
simple: It suffices to prove the existence of a non-trivial global minimizer for I taking valuesin 0 < v < 1.

Let e; be the first eigenfunction of the operator A = (—0,,) with null Dirichlet boundary conditions. We
know that this function is positive. Set v = ee; for € > 0 to be chosen later on.

By hypothesis,

Miim 29 3 0.1) 2 e [0,1),
s—0t S
This means that there exists » € Rt such that
A
@ > A (0,1) Vs € [0,7].

Choose € small enough such that ee; < r. Evaluating the functional we obtain:

1 .2 €ey 1 €2
Ieeq] :/ %&ce% —/ )\@sdsdl’ S/ — 0,3 — pﬁd = —/ (A1(0,1) —p)e2dx < 0
0 0 0

for some p > A1((0,1)).
This shows that v = 0 is not a minimizer. Accordingly, a global non-trivial minimizer exists. (]

The following Theorem gives a lower bound on A for the existence of a nontrivial solution in the case in
which the nonlinearities are concave and twice differentiable.

Theorem 5.7 (A lower bound of \*). Let f be twice differentiable such that f'(0) > 0 and concave, i.e.
f"(s) <0inse0,1]. Then if:

A1(0,1)
A<
f'(0)
there cannot be any positive solution of (5.4), Therefore,
A1(0,1)
> > 0.
f'(0)

Proof. Multiply the equation by v and integrate over the domain and integrate by parts. We obtain
1 1
/ vi—A/ flow =
0 0

/01 A0, )v? = Mf(v)v <0.
Now consider the Taylor formula for f:
10) = 10+ O + [ 1) - i
Due to the fact that £(0) = 0 we end up with
/01 (A1(0,1) = Af/(0)) v* — Mo /0 f"(s)(v — s)dsdx < 0.

Since v > 0 we have that v — s > 0. Moreover, by assumption f”(s) < 0, and we obtain that the second
term is nonnegative. We can conclude that a necessary condition for the existence of a positive solution
is:

By the Poincaré inequality,

1
| . -aro) e <o
0
The proof is complete.

O

Remark 5.8 (Space dependent nonlinearity). With a subtle change in the proof of Theorem 5.7} one can
see that the same result holds for the following problem:

=0z = Af(v,2) x € (0,1)
(5.8) v >0 xz € (0,1)
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where f(v,z) is twice differentiable with respect to v and concave with respect to v. Following the same
argument one arrives at the following condition

/O (A1(0,1) = Af'(0,2)) v <0.

If we assume that

0 < min 0sf(0,2) < 9sf(0,2) < max Jsf(0,2) < 400
z€[0,L] z€[0,L]

we obtain the lower bound \*:

Ve M0

> 0.
- maXgeio,1] aef(oa ‘T)

Theorem 5.9 (Monostable concave nonlinearities). When f is monostable, concave and does not depend
on x we have:

>\1(0a 1)
A = > 0.
f'(0)
When f monostable and concave but depending on x, we have
A1(0,1) <N < A1(0,1) .
maxgeqo,1] Os.f (0, ) mingeo,1] 95 f(0, )

Remark 5.10 (Uniqueness of positive solutions for concave nonlinearities). When f is concave and a
positive solution exists, it is unique [9}/67].

Remark 5.11 (Non uniqueness of positive solutions for non concave nonlinearities). When f is not
concave uniqueness of the nontrivial positive solution might not hold. Assuming that f’(0) > 0, if
A* < A1(0,1)/f'(0), we have that for all A such that \* < A < A;(0,1) there exists a second positive
solution. This is proven using topological degree arguments [67].

5.4.2. Phase Portrait. In one dimension the elliptic equation

—OgzU = f(?]),

can be interpreted as a dynamical system:

(5.9) % <v1;) - (—;J(EU)> '

For the monostable nonlinearity, we notice that (1,0) is a topological saddle for the nonlinear system,
and (0,0) is a center for the linearized system. The differential matrix is:

DF(v,v,) = <_a£f(v) (1)) '

Since, by definition of monostable nonlinearity, 0, f (11)|v:1 < 0 and 0, f (U)|v:0 > 0, we have that

By symmetry with respect to the horizontal axis, we can also conclude that (0,0) is a center for the
nonlinear system. Moreover, by the first integral of the system, we know that the separatrix of the saddle
is given by:

vy = £4/2(F(1) — F(v)).

The following Figure [5.2|is a representation of the phase portrait in the monostable case
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Phase Portrait

FIGURE 5.2. Separatrix of the system and phase portrait inside the region it determines,

f(s) =s(1—3s).

5.4.3. Bifurcation diagram. In Figure (left), we give a qualitative representation of the bifurcation
diagram for a concave nonlinearity, while in Figure (right) for non-concave one. In the horizontal
axis, the parameter A = L? is represented, and in the vertical one, the infinity norm of the nontrivial
solution, when it exists (for further examples, see |67]).

l[elloo

PRED) b A
N = 7

FIGURE 5.3. Qualitative bifurcation diagram for the stationary solutions. The black
curve represents a nontrivial solution. At the left, the diagram for convave monostable
nonlinearities is plotted and, at the right, for a general monostable nonlinearity .

5.4.4. Dirichlet condition equal to = 1. As mentioned before, a nontrivial solution with boundary value
= 1 would have a similar blocking effect. However such a solution does not exist.

To prove the nonexistence of a solution to the problem:
—Owev = Af(v) 2 €(0,1),
(5.10) 0<v<l1 xz € (0,1),
v(0) =v(L) =1,
we will show that for any initial datum between 0 and 1 the solution of the parabolic problem:
Opu — Opgt = A f () (z,t) € (0,1) x R,

O<u<l1 (z,t) € (0,1) x R,
u(0,t) =u(l,t) =1 t €eRT,
0<u(z,0)<1 x € (0,1),

goes asymptotically to the constant solution v =1 as ¢t — +o0.

For monostable nonlinearities,

V(t) = /0 [u—1—log(u)] dz
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plays the role of a Lyapunov functional ( [97])
d L2 ! 1—u
—Vit)y=— | Zdz— [ X dz <0
GV == [ e [ ap i tas <

Remark 5.12 (Comparison with traveling waves). Another way to check the lack of existence of nontrivial
admissible steady-states other than 4 = 1 with boundary contidion 1 is by using the comparison principle
with the traveling wave solution for the Cauchy problem. Indeed we know that a decreasing traveling
wave function exists for monostable nonlinearities [92, Ch.4 Th. 4.5 pp.67]. Since it is decreasing and
connecting 0 and 1, for any initial data u(z,0) > 0 of the parabolic problem, we can choose a section
of the traveling wave that is strictly under w(z,0). Then, the boundary conditions of this section of
the traveling wave will be below 1, constituting a subsolution of the parabolic problem with Dirichlet
data equals to 1. This argument enables us to conclude that the solution of the parabolic problem will
converge to 1 since the traveling waves converges to 1 uniformly in compact sets as ¢t — co.

5.5. Bistable nonlinearity.

5.5.1. Null Dirichlet condition. Now we turn our attention to bistable nonlinearities. The structure of
the proofs will be similar to the monostable case.

Theorem 5.13 (A lower bound for A*). Let f :[0,1] x R — R and assume that f is bounded uniformly
with respect to x. Assume furthermore that f(x,0) = 0. Consider:

- sz:Af(x7v) T e (Oa 1)?

0<v<l1 xz € (0,1),
v(0) = v(1) =0.
Then,
MO
MaX(z,s)€f0,1]*
Proof.

1 1 1 1
(5.11) )\1(0,1)/ vidx S/ (0pv)*dx :/ A (z,v)vdx S/ A\Pvidx
0 0 0 0

with P = maxz s)e[0,1)2 f(z:, S)/S Note that if

1 1
(5.12) )\P/ vidr < )\1(0,1)/ v?dx
0 0

we would violate (5.11)). Therefore, for any A < A(0,1)/P there cannot exist a nontrivial solution. Hence,
we deduce the lower bound on A\* in the statement of the Theorem.

O

Theorem 5.14 (An upper bound for \*). Assume that f(0) = f(0) = f(1) = 0, and that f'(0) < 0,
f'(1) <1, f'() > 0. Moreover consider F(v) = [ f(s)ds and assume that F(1) > 0. Consider the space
interval [0,1]. The following problem:

—Opatt = Af(u) z € (0,1),
(5.13) O<u<l1 z € (0,1),
u(0) =u(1l) =0.
has a solution for every A > 8(F (1) — F(6))/F(1)2.
This fact, together with the lower bound in Theorem[5.13, leads to the following double bounds on \* :
2 F(1)-F
——jg SATSS (;(1)2 =

maxXseo,1] —5

Proof. Obviously, v = 0 is a trivial solution. On the other hand, the elliptic equation corresponds to the
Euler-Lagrange equations of the functional

1 /1 1
I[U]:i/o Uidm—)\/o F(v)dz.
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The strategy to find a non-trivial solution is similar than the one of Theorem [5.6l We construct a family

of functions vs € H}(0,1) as follows (see Figure :

2 5
vs(x) =<1 ifxe(g,l—g)

(D) et

The functions vs take the constant value = 1 in an inner subinterval, they vanish at the boundary with

linear transitions (recall that F'(1) > 0) in intervals of length 4.

Function vs

vs ()

0 . .
a-46/2) 1

FIGURE 5.4. Function vg

Note that vs € H}(0,1) and

) ) 1)
0 1fz€(2,12)

2 _
()= i ifxe (0 é U 1—§ 1
52 11 r ,2 2, .

We want to find a pair (A, §) for which:

1 vs ()
I[v] :/0 [;|3mv5|2 - )\/O f(s)ds] dr < 0.

For doing so, first we choose d > 0 to be small enough such that:

1 pos(z)
/ / f(s)dsdx > ¢ > 0.
0 0

To analyze this integral we split it in two parts:

U&(»L) -4 Ua(L)
/ / dsdx—/ / dsdac—l—/ / f(s)dsdx
0.1\(§.1-%)

/ F(0)dz + F(1)(1 —6) = F(1)(1 — 6) 4+ F(0)6.
[0,1\(3.1-%)

So, it will suffice to require that:
F(1)
14 0< ———r.
(5.14) 0< <F(1)—F(9)
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Once 0 is fixed fulfilling (5.14)), we choose X large enough so that the space integral on F'(vs(x)) dominates
the gradient component

T{os] = /O [;aﬂw - AF(U(;(:C))} dr < %/0 Bpus2dz — A (F()(1 ) + 6F(9))

2

2
_ /(0’1)\(2’1 | e = A(F()(1 = 6) + 5F(8)) = 5~ A(F(1)(1 - 6) + F(9)).

)
2
So, the choice of A

2

(5.15) A STE) = 0) + F(6)9)

suffices.

Hence, any pair (), ) satisfying both ([5.14]) and (5.15]) will guarantee the existence of a nontrivial solution.
It is then natural to analyze which is the choice of ¢ leading to the minimum upper bound in terms of A7
With this purpose, we choose ¢ in the interval 0 < 6 < F(1)/(F(1) — F(6)) maximizing the denominator:

5 (F(1)(1=8) + F(6)5).

We note that —F(1) + F(0) is negative, and hence this constitutes a polynomial in ¢ that attains its
maximum in:

o F)
2(F(1) - F(6))

This optimal §* satisfies the requirement:
F(1) - F(1)
2(F(1) = F(0))  F(1)—F(0)

0 =

So we have that

suffices to ensure existence of a nontrivial solution.
O

Remark 5.15. The strategy of the proof of Theorem [5.14] works also in the monostable case. In that case,
when proving the upper bound of the integral of the primitive, F(1) — F(¢) will be replaced by F(1),
since the primitive in the monostable case is monotone.

Corollary 5.16 (Corollary). Let f by any C?(R;R) function satisfying:

e fO)=fO)=f1)=0with0< O <1

e consider F(v) = [ f(s)ds and suppose that F(1) >0
e f/(0) <0, f'() >0 and f'(1) <0

o f<0in(0,0) and f >0 in (6,1)

Then,

(5.16) 7 < SR e f'(s) = Q(f).

Proof. This is a corollary of Theorem

F(1) - F(0) f(s) _ JF(1)—F(0)

5.17 2cg L <8 !

(5.17) T S8 pmyr e T S8 gy max )

since, by the mean value theorem, max,¢[o 1 @ < maxgeo,1) f'(s)- O

Remark 5.17 (Open question). The statement in Corollary has a very mild reminiscence of PDE the-
ory, essentially because A\; = 72 in [0, 1]. Inequality (5.17) seems to be a general functional inequality for
bistable nonlinearities, unrelated to elliptic PDEs. It would be interesting to provide a PDE independent
proof.
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Remark 5.18 (Existence of positive solutions for nonlinearities depending on space). Similar arguments
can be applied to show the existence of positive solutions with space-dependent nonlinearities:

—0Opev = f(x,0) z € (0,1),
O<ov<l1 z € (0,1),
v(0) = v(1) = 0.

Assume that there exist smooth functions 6, K : [0,1] — R™ such that:

0(z) < K(z) for all x

f(0(z),z) =0 for all =

f(K(x),2) =0 for all x

f(s,z) <0forall 0<s<6(x)

f(s,z) >0 for all (z) < s < K(z)

e There exist * € [0,1] such that F(K(z*),z*) > 0.

Then there is a finite A > 0 for which the positive solution exists.

Remark 5.19 (Survival of the gene). The bio-physical interpretation of the previous result is the following:
Consider a population with two traits 0 and 1. Each trait is advantageous only in part of the environment.
If the set in which one trait is advantageous is large enough, the action of a boundary control will not be
sufficient to annihilate it.

Remark 5.20 (Double blocking phenomenon). Setting different values of §(z) above and below 1/2 for
the nonlinearity f(y) = y(1 — y)(y — 6(z)) one could apply these methods to prove the existence of both
nontrivial steady-state solutions for boundary values = 1 and = 0. By the comparison principle, this
example leads to a double blocking phenomenon, already observed in [84].
Proposition 5.21 (Maximum of positive solutions). Let f be bistable and v be a solution to:

=0z = A f (V) xz € (0,1),

O<v<l1 x € (0,1),

v(0) = v(1) = 0.
Then the mazimum of v in [0,1] is above 0:

max v(z) > 6.
z€[0,1]

Proof. The proof follows by contradiction. Assume that the maximum of v is lower or equal than 6. Then
the energy estimate yields to a contradiction:

1 1
0</vfcdx:/\/ vf(v) <0
0 0

where the strict inequality in the left-hand side comes from the assumption that the solution is not trivial,
and the right-hand side one from the fact that f is negative in (0, 6).

O

5.5.2. Dirichlet condition = 6. Note that the results for the monostable nonlinearity apply for the exis-
tence of nontrivial solutions with boundary value 0, i.e. nontrivial solution to:

O = M) e (0,1),
v>0 z € (0,1),
v(0) =v(1) = 6.

By hypothesis, we know that f > 0 in (6,1), f'(6) > 0, f'(1) < 0 and f(#) = f(1) = 0. Then f is

monostable in [0, 1], and w = v — @ satisfies the criteria of the previous theorems.

Corollary 5.22 (Estimates on A for bistable nonlinearities). We have

m < A5 < mi { 2 s }
< \j < min ; .
e R e VB T M)

If f is convez in (0,0) and concave in (0,1) then:
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Other than the estimates above, in general one has the following result.
Proposition 5.23 (Ordering of the thresholds). When F(1) > 0 we have
Ay < '
When A > X*, denoting by vg and vy the mazimum steady-state nontrivial solutions fulfilling the con-
straints with Dirichlet values = 6 and = 0 respectively, then:

Vg > V9.

Proof. The result follows from the elliptic comparison principle, together with the fact that any nontrivial

solution of the boundary value problem has its maximum above 6. O
Upper and lower bound for L* Upper and lower bound for Lj
30 r 11 -
. *******
L ¥™ *
25 | * 10 fox *
* *
* *
) o 0 9 ***
ER E
= o =5 8 *ey
2 15l o 5] oy,
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***************** *************
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F B
6 J— *,M,*******—****—*H
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0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 0

FIGURE 5.5. Bounds on L* and L} for different values of 6 in the nonlinearity f(s) =
s(1 — s)(1 — 6). The red dots represent upper bounds and the blue dots lower bounds.
Left: Bounds on L*. Right: bounds on L} (Definition [5.4).

Remark 5.24. Recall that when F'(1) = 0, i.e. when 6 = 1/2, there does not exist any nontrivial solution
with boundary value 0, for this reason, in Figure [5.5] one observes that the upper bound on L* goes to
+0o as 6 approaches 1/2. Note that the lower bound proven for \* (Theorem and A} (Corollary
are independent of the sign of F(1). They only depend on pointwise values of the nonlinearity f.

5.5.3. Dirichlet boundary condition = 1. Consider
—Ouev =Af(v)  z€(0,1),
(5.18) O<v<l x € (0,1),
v(0)=v(1)=1

As mentioned before, using comparison arguments with sections of traveling waves, we can prove that
the solution of the parabolic model converges to 1 for any A as t — 4o0.

Proposition 5.25 (Convergence to 1). Consider F(1) > 0, for any interval (0, L), the solution of the
reaction diffusion system (5.2) with boundary value equal to 1 converges to v = 1.

Proof. Consider
Ou — Opeu = f(u)  (x,t) € (0,L) x (0,T),
(5.19) u(z,t) =1 (x,t) € {0, L} x (0,T),
0 <u(z,0) <1 xz e (0,L).
We know that this equation, when considered in the full real line, has a traveling wave solution whose

profile, by Theorem [3.8] is a monotone function decreasing in the direction of the velocity of propagation.
We can then use a segment or section of this traveling wave as a parabolic subsolution to our problem.

Indeed, since the traveling wave profile is monotone decreasing, we can choose a segment of the traveling
wave below u(z,0) in [0, L]. More precisely, let us denote by TW (z) a traveling wave profile satisfying:

TW(z) < u(z,0) Vxe€l0,L]
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The following problem:

O — Oz = f(u) (x,t) € (0,L) x RT,
(5.20) u(z,t) =TW (x — ct) (z,t) € {0,L} x RT
u(z,0) = TW(x) x € (0,L),

leads to a solution u(x,t) = TW(x — ct), which is a subsolution of (5.19)). By the parabolic comparison
principle, the solution of (5.19)) will be above u(x,t) = TW (x — ct) which converges to 1 as t — oo.

O

5.5.4. Phase Portrait. Here we study the ODE dynamics of system for bistable nonlinearities. First
of all we notice that the points (0,0) (corresponding to the stationary solution v = 0) and (1, 0) (corre-
sponding to the stationary solution v = 1) are saddles for all values of 6 € (0, 1) since the nonlinearity
fulfills: 5

0 0
%f(v)’u:o < 0’ %f(v)h):l < O’ %f(v)‘vza >0

The matrices corresponding to the linearized systems around (0,0) and (1,0) are, respectively, as follows:

(car o) (Casl o)

They correspond to topological saddles, with real eigenvalues of opposite sign. On the other hand, the
linearized system at (6,0) is a center since the eigenvalues of the matrix

<_88v ?”) oo (1)>

lie in the imaginary axis. This is not enough to conclude the local behavior of the critical point since it
is not hyperbolic. However, observing that the system is symmetric with respect to the horizontal axis,
we have that (0,0) is a center for the nonlinear system.

On the other hand, the following functional plays the role of a first integral of the system
1

E(v,vg) = 51}3 + F(v)
where F(v) = [ f(s)ds.
When F(1) > 0, the separatrix of the saddle in 0 is the same trajectory and encloses (6,0). Indeed,
E(0,0) = 0, and the curves v, = +,/—2F(v) lie below and above the horizontal axis, respectively. At
the point 0 < 6; < 1, fulfilling F(61) = 0, these curves meet. Such point exists, since F(1) > 0 and
F(v) <0forall 0 <wv <.

When F(1) = 0 one has F((v) < 0 for all 0 < v < 1 and the separatrix is split into two trajectories that
connect 0 and 1 (the traveling wave profiles for F/(1) = 0). We will call T the region in the phase-plane
that the separatrix (v;)g—o(v) = £1/—2F(v) encloses.

Notice that I' is included in [0, 1] X R, which means that all arcs of any length inside I" fulfill the constraints.

Implementing the same procedure for finding the separatrix that exits from (1,0), we end up with the
curves (v;)p=1(v) = £/2(F(1) — F(v)). At the vertical axis, v = 0, they take values (v,)gp=1(0) =
+,/2F(1).

Notice that, in the particular case of the cubic nonlinearity f(v) = v(1 — v)(v — 0), as we increase ¢
towards 1/2, (v;)r=1(0) decreases until it reaches the value 0 for § = 1/2, while, at the same time 6;
goes to 1.

Moreover, we can also find the separatrix outside the admissible domain 0 < v < 1. We can see that
(V) p=1 = £V/2(F(1) = F(v))

is well defined for v > 1 since F(v) is a strictly decreasing function. So —F(v) is increasing. This
means that both separatrixes do not cross the horizontal axis anymore after v = 1. This is valid also for
F(1)=0.
Furthermore, the separatrix going out from 0 towards —oo,

(vg) E=o = £/ —2F(v)
is well defined for v < 0. Notice that this argument also holds for F'(1) = 0.
See Figure [5.6] and for the phase-portrait and the graphical representation of the separatrix.
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Phase Portrait Separatrix

FIGURE 5.6. Phase portraits for f(s) = s(1 — s)(s — 6), when 60 < 1/2 (F(1) > 0).
Left/The phase plane: in black lines the stable and unstable manifolds of the points
(0,0) and (1,0), and, in blue lines, the trajectories of the ODE system. Right: The
separatrix, stable and unstable manifolds of the points (0,0) and (1,0) depicted outside
of the admisible region 0 < v <1 (in blue).

Phase Portrait Separatrix

FIGURE 5.7. Phase portraits for f(s) = s(1—s)(s—1/2) (6 =1/2, F(1) =0). Left/The
phase plane: in black lines the stable and unstable manifolds of the points (0,0) and
(1,0), and, in blue lines, the trajectories of the ODE system. Right: The separatrix,
stable and unstable manifolds of the points (0,0) and (1,0) depicted outside of the
admisible region 0 < u < 1 (in blue).

5.5.5. An expression for L in the phase plane. In the one-dimensional case, one can also obtain an
expression for the length L in the phase portrait using the first integral of the system. We restrict our
study to the curves that cross the vertical axis. The parameter a € (0, F'(1)) is introduced.

Notice that any trajectory starting from the vertical axis is strictly increasing until it reaches its maximum.
This means that it is a C! diffeomorphism from the time interval [0,1/2L(c)] to its maximal point
[0, Umaz (@)]. Let us denote this diffeomorphism (that depends on «) by V' : [0,1/2L(«)] — [0, Vimaz ()]
Then noticing that vy,e. () = V(L(a)/2) and that 0 = V(0), we have

) L(a)/2 VH(L(@)/2) Vmaz () 1)/( ) Umaz (@) 1
Laz?/ dz=2/ dz:2/ V- vdvz?/ ——dv.
0 V=1(0) 0 ( 0 V/(V=1(v))

We have v (a) = F~1(a) and V' = /2 /a — F(v).
For the bistable nonlinearity, F' is not globally invertible, but it is invertible for trajectories crossing the
vertical axis and below the separatrix going out from 1. In fact,

F2 01, v2F(1)] — [0, F(1)]
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is monotone increasing and

L V2 e L dv =2 Fﬁl(a)il d
)= / Va—FVW i) b Va-Fo)

Changing the parametrization, L* (Definition [5.4)) can be written in the following way:

. A dv
. _aé(relf,l)ﬂ/o JEB) = F(v)

Using the aforementioned expression, in [98] the following threshold estimates are proved:

5.5.6. Bifurcation diagrams. In this subsection we describe the bifurcation diagrams for some bistable
nonlinearities and plot the bounds obtained before.

The blue and the red lines in Figure [5.8| represent the nontrivial solutions for the Dirichlet boundary
value problem, with boundary conditions = 0 and = 0, respectively. For the blue curve, the vertical axis
represents the L°°-norm. For the red curve, the vertical axis represents the L°°-norm when the curve
is above 6, and 0 — |ju — 0| when the curve is under 8. In this way, the minimal norm taken by the
solution of the following equation is expressed

—0zav = Af(0) xz € (0,1)
O<v<d x € (0,1)

Ficure 5.8. Left: Qualitative bifurcation diagram for the stationary solutions of a
bistable nonlinearity that is convex in (0,6) and concave in (#,1). Richt: bifurcation
dyagram for a general non-convex nonlinearity in (0, 9).

Remark 5.26 (Further bifurcations). Further bifurcation points for the boundary value 6 can occur when
increasing A. Bifurcating solutions that oscillate around 6 are not represented in the diagrams. Those
solutions appear only after the nontrivial solution above 6 and the nontrivial one below 6 have emerged.
This is due to the fact that oscillatory solutions of:

— 0z = A f(V) z € (0,1),
0<v<l1 x € (0,1),
v(0) =v(l) =0,
above/below 6 in a smaller set than the original set (0, 1), satisfy
— 0¥ = Af (V) xel,
f<v<l rxel,
v==0 x € 0l,

in a sub-interval I C (0,1). Therefore, I should be large enough so that such solution exists.

Note that this reasoning can also be applied in several space dimensions, using the monotonicity of the
eigenvalues with respect to domains scaling: If D C Q then A1(£2) < A1 (D) (see [49, Section 1.3.2])
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Remark 5.27 (Harmonic Oscillator). Note that if we linearize the ODE dynamics associated with the
elliptic problem around (6,0), one obtains the harmonic oscillator

(5.21) Ogav = —f'(0)v

- (:) = (—fv@)v) |

We observe that f/(#) corresponds to the frequency of the oscillations. This helps to heuristically under-
stand whether nontrivial solutions close to v = 6 can exist or not.

The general solution of is:
v(xz) = Asin ( f’(@)x) + Bcos ( f’(@)m) .

Imposing Dirichlet conditions lead us to the choice of B = 0. The length L = «/+/f'(6) is critical since
the stationary solution v = € becomes unstable in the first eigenfunction. Indeed, consider

Opu — Oggu = f(u) (z,t) € (0,L) x (0,T)
{u(O) =u(l)=40

and linearize it around v = 6:
Ot — Oppu = f'(0)u  (z,t) € (0,L) x (0,7),

{a(()) = a(L) = 0.

The first eigenvalue of is 72/L? — f'(6), which becomes unstable when L? > 72/ f’(9).

The same reasoning can be applied for other bifurcations points.

(5.22)

6. GRAPHICAL REPRESENTATION OF 1-D BARRIERS

In this section, we aim to illustrate graphically the results obtained in the previous section in the context
of the system

— Ozt = (1l —u)(u—0) z€(0,1)

u(0)=u(l)=a

0<u<l1 x € (0,1).

With the change of variables v = u — a, we aim to illustrate how the following energy functional changes

1 v(z)
Ix(v,a) :/0 %vi )\{/0 f(era)ds}d:v,

depending on the parameter A and the Dirichlet condition a.

For representing these energy functionals, we consider its projection onto the subspace V' generated by
the first and third eigenvector of the Dirichlet Laplacian:

e1(x) := sin(nz), es(z) := sin(3rz),

which can be expressed as follows:

1 1 ae1+fes
I (o, By a) = Jxa(aer + Bes,a) = / 3 |adye1(x) + 53z€3(33)\2 —A {/ f(s +a)ds ¢ dz,
0 0

« and B being the coordinates in the e; and es directions respectively.

In Figure we observe how other critical points, aside of the constant steady-state 0, may appear
for the Dirichlet condition = 0, as the measure of the domain A = L? increases. Of course, these 2-d
plots, although they illustrate the qualitative behavior of J, do not represent its full infinite-dimensional
complexity.

Critical points can be local minima, saddle points or local maxima for the functional under consideration.
It is worth noting that the functional J cannot have local maxima, since the PDE is a gradient system
driven by the functional J. There is always a high frequency stable eigenmode for the linearization of the
system around any steady-state. This is a consequence of the fact that the eigenvalues of the Laplacian
tend to infinity, A,, — 4o00. This means, in particular, that every steady-state has a stable manifold
associated to the semilinear parabolic dynamics, and that, accordingly, it cannot be a local maximum
of J. Figure |6.2| represents how the functional evolves as A changes. This helps understanding why the
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A=1329, a=0.33

0.5
€1

FIGURE 6.3. Energy functional J;“*(c, 3,6). The values of the functional above 3 are
represented as 3 in the picture. The white crosses indicate the critical points of the
functional.

solution of

- xxU:Af(u) T E (Oa 1)7
f<u<l z € (0,1),
u =4,

emerges for a smaller value of A than the solution of:

—0O0zgu=Af(u) x€(0,1),
(6.1) O<u<? xz € (0,1)

u=0.

Figure [6.3| exhibits two local minima, two mountain passes or saddles and one local maximum. Note,

however, that we are representing the restriction of the functional in a low frequency subspace.

explains the presence of local maxima, even if the complete functional J does not have any.

In order to compute numerical approximations of the minimizer of the functional J, i.e.

1
1 2
mi —vs — AF - F d
veHé((l)Tll)ﬂC/O [2% (Flv+a) (@) | dx

C .= {’UELOO(O,l) s.t. - b <v(ar) < ba, b1,bo ZO,}

we employ a finite difference discretization of the functional and IpOpt [121]

This



37

In Figure [6.4] we plot different solutions, corresponding to various boundary conditions, and, in green,
we represent a section of the nontrivial solution in the whole real line R

6&zu:::f(u) r €R,
O<u<l1 x €R,

which corresponds to the homoclinic orbit around (0,0) in the phase plane discussed in the previous
section.

Solutions for A = 267.54

Space

FIGURE 6.4. The blue and red lines corresponds to nontrivial solutions with Dirichlet
conditions 0 and € respectively. In green, a section of the ground state solution defined
in the whole space R.

7. PATHS OF STEADY-STATES AND THE CONTROL STRATEGY

In this section, we will focus on the reaction-diffusion model with a bistable nonlinearity and its control to
the constant steady-state 6, as a paradigm of controlling the dynamics towards an unstable equilibrium
using the staircase method.

In the previous sections, we have analyzed and described the possible emergence of barrier steady-states
and we have shown that, whenever such barriers exist, we cannot expect that all initial data can be driven
to the final steady-states 0 or 6.

The steady-states 0 and 1 are linearly stable. This can be easily proved by linearization and the fact that
/(1) < 0 and f'(0) < 0. However, since the steady-states 0 and 1 also play the role, respectively, of a
subsolution and a supersolution, all other solutions with controls constrained in [0, 1], cannot reach them
in finite time, but just at an exponential rate in infinite time.

In the case of the constant steady-state 6, being away from the limits of the constraints 0 and 1, in
principle, there is no impediment for its reachability in a long enough finite time horizon, with suitable
controls. However, different difficulties may arise. On one hand, it might be an unstable steady-state.
On the other one, there may exist other non-constant solutions of the elliptic problem, taking the same
boundary value 6 on the boundary. For these reasons, understanding whether and how 8 can be attained,
without violating the bilateral constraints, is not immediate. For instance, when multiple elliptic solu-
tions exist with boundary value 6, the trivial strategy of setting the boundary condition equal to 6 to
spontaneously attract the trajectory towards the constant stead-sate 8 does not suffice.

In this section, we will analyze and describe how the system can be controlled to the steady-state 6,
avoiding both instability and multiplicity issues.

The staircase method ensures that if there is a connected path of admissible steady-states in the interior
of the admissibility region, the dynamics can be controlled from any initial configuration to any final one
in the vicinity of that path. In fact, once the paths have been constructed, the control strategy consists
of two phases:
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(1) Dynamic phase. For the given initial datum to be controlled, to find a control function a steering
the system from this initial configuration to an element of the path.

(2) Quasistatic phase. Application of the staircase method along the path to reach the target in large
time.

Therefore we will now address the construction of admissible paths of steady-states for the one-dimensional
problem under consideration.

We will split the discussion in two situations. When F'(1) > 0 (remind that F(t) = f(f f(s)ds), barriers
can exist and one cannot have controllability to 6 for all admissible initial data. When F'(1) = 0, barriers
do not exist and the controllability to € holds for any admissible initial data, regardless of the stability
of §. The case F(1) < 0 can be treated as the case F'(1) > 0, by reversing the roles of 0 and 1. Later on
we will also analyze which states are path connected to the steady-state = 0 and the steady-state = 6.

7.1. The case F(1) > 0. Recall that a bistable nonlinearity is such that f < 0 on (0,6) and f > 0
on (6,1), with f(0) < 0, f/(1) < 0, f/(#) > 0. In this subsection, we assume that the primitive,
F(u) = [, f(s)ds, evaluated at 1 is positive, F(1) > 0. We denote by 6; the nontrivial value such that
F(61) = 0. For the prototypical bistable nonlinearity, f(u) = u(l — u)(u — ), one has that F(1) = 0
when 6§ = 1/2 and F(1) > 0 when 6 < 1/2.

Hereafter we present the strategy in [98] for finding the connected path of steady-states for the constrained
controllability of the one-dimensional problem

Opu — Oz = f(u) (z,t) € (0,L) x (0,7),

w(0,t) = a1 (t) te (0,7),
u(L,t) = as(t) t e (0,7),
0<u(z,0)<1 x € (0,L),

using the phase-plane analysis.

More precisely, we look for a path of steady-states with fixed length, 6:

— Ozt = f(u) x € (0,L),
T.1) {u(O) =ay, u(L)=as,

connecting to the stationary solution.

We emphasize that it might not always be possible to do this for any initial data in case barriers arise.
Recall that for barrier steady-states, the maximum of the barrier solution is necessarily above 6. This
implies, in particular that the initial data that are above the barrier cannot be controlled to the steady-
state 6.

7.1.1. The control strategy in [98]. The length of the space-domain, L, is chosen so that 0 is the only
steady-state with null boundary conditions, i. e. L < L*. In this way, choosing the null constant
control for the parabolic problem, one approaches asymptotically this null steady-state as time increases.
Afterwards, once the solution is close to 0, one implements a control strategy to control the trajectory to
an element of the path connecting to the constant steady-state 6.

The following region of the phase-plane plays an important role in this construction.

Definition 7.1. Let I" be the region in the phase-plane that the homoclinic orbit (v, ) p—o(u) = £1/—2F(v)

encloses i.e.
= {(wv) €06 xR:  —/"2F() < v, < V-2F()

with 61 € (0,1) such that F(6;) =0 (see Figure [7.1]).

More specifically one proceeds in the following way:

(1) Step 1. Stabilize to 0. Set both controls at the boundary points x = 0, L to be = 0 for the
parabolic equation. For L < L* (see Definition the solution will approach the stationary
solution 0 in the L norm as time increases.

(2) Step 2. Control to a steady-state in I'. Since the state converges to 0 as t — +o0o, there
exists a time ¢ so that the maximum of the solution of the parabolic problem is strictly below
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FIGURE 7.1. Invariant region I' (in blue) for the nonlinearity f(s) = s(1 — s)(s — 1/3).

the minimum solution of
- MCU:f(’U) xE(OaL)
v(0) =v(L) =
O<v<e

€

for 0 < € < 0, that we denote as v..

At that time we set the controls to take the value € on the boundary. By Theorem 178]),
we know that the parabolic solution is going to converge to a steady-state with boundary value
€. This steady limit takes values below € and above 0. We keep the ¢ boundary-control long
enough until the state is close enough to v.. Once the proximity is sufficient we can apply a local
controllability result to reach the steady-state v. exactly in a time horizon of length 1. At this
point it is important to guarantee that we do not violate the constraints. But this can be done in
a time horizon of length one, provided the distance to v, is small enough (see [93, Lemma 8.3]).
Step 3. Construction of the path of steady-states towards 6. Now we build the connected
path of steady-states, connecting v, with the stationary solution @, corresponding to the Dirichlet
boundary control #. To do this it is sufficient to build the steady-states corresponding to the
Cauchy data at = 0, interpolating those of v. and 6

v*(0) = (1 —s)e+ sb
{8@4}5(0) = 0x(1 — 8)ve.
We then solve the corresponding Cauchy problems
~0,0" = F0)
v*(0) = (1 —s)e+ sb
0:v°(0) = 0,(1 — s)v..
This path ends at # by uniqueness of the solution of the ODE system:

—OggV = f(’l))
v(0) =6
0

This gives the boundary controls corresponding to the path of steady-states
uj = v°(0)
uy = v°(L).
Note however that their values at x = L are not straightforward since they emerge out of the
solutions of the Cauchy problems solved from x =0 to x = L.
This path connects continuously the steady state v. with the steady state 6, due to the con-

tinuous dependence of the initial data of the ODE system. Furthermore, all elements of the path
respect the bilateral bounds 0 and 1. This is a consequence of the following facts:
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e There is an invariant region I such that (0,0) € 9T" and (6,0) € T". Moreover, I is included in
the admissible set of states and it is star-shaped with respect to (0,0). This is a consequence
of the fact that f(s) < 01in (0,6) and f(s) > 0 in (0,6;).

e In step 2, we reach a stationary curve that lies inside I'. (Proof in Proposition

e The control strategy in [98] is based on tracing a line between the Cauchy data in one
extreme of the curve obtained in step 2 and those of the target (the point (#,0)). This line
lies inside the invariant region I'; hence, by solving the ODE problem from x = 0 up to
x = L, we obtain a set of stationary solutions, that are guaranteed to lie in I" and hence are
admissible.

At this Step the following result is relevant:

Proposition 7.2. T is an invariant region.

Proof. T is enclosed by a homoclinic curve. By the uniqueness of solutions of the ODE, the result
follows. |

Remark 7.3. Note that the convexity property of I' is not needed. Indeed it suffices that there
exists a continuous curve [ : [0,1] — R? such that I(s) € T for all s € [0, 1], connecting the point
1(0) = (v(0),9,v(0)) to I(1) = (6,0).

(4) Step 4. Application of the staircase method along the arc of steady-states generated before.

Figure illustrates how the invariant region can be used to construct admissible continuous paths of
steady-states, in particular, connecting the constant steady-states 0 and 6.

0 1Admissible Continuous Path in the Phase Portrait Admissible path in [0, L]

FIGURE 7.2. L = 8 > Ly, 8 = 0.33. Left: A path of steady-states of system
connecting the steady-states (0,0) and (6,0). In black the steady-states of that are
part of a continuous path connecting to the constant stationary solution @ are represented.
The red crosses are the corresponding boundary controls. Right: The stationary path
plotted in the space domain. In red the curve of maximum value in the invariant region
I', and in green the initial condition and in blue the constant steady-state 6.

7.1.2. Connected symmetric path. Note that the arguments above employ a path of connected steady
states in which the boundary values at z = 0 and = L do not coincide. Therefore the path of steady-
states built does not guarantee that these states are symmetric with respect to = L/2. This symmetry
can be guaranteed by a different argument that we describe now.

As a consequence of this fact, the reaction-diffusion system can be controlled using the same applied
control at x = 0 and x = L, so that the trajectory remains symmetric with respect to z = L/2 at all
times, when the initial datum is symmetric (Note that the constant target 6 is obviously symmetric as
well). This improved construction allows for an easier extension to the multi-dimensional case.

This new construction is inspired on the symmetry of the phase plane dynamics (the symmetry of radial
solutions of the Poisson equation in several space dimensions).

More precisely, we proceed as follows:
e Instead of imposing the boundary conditions at one extreme x = 0 (the Cauchy data for the

ODE), as above, we impose the values at the middle point = L/2. By symmetry, we know that
it is a critical point of the solution of ODE, and hence it lies in the horizontal axis of the phase
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015 Continuous Path in the Phase Portrait Continuous path in [0, L]
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FiGUurReE 7.3. L = 1, 6§ = 0.33. Representation of the “even strategy” in the phase
portrait of system . Left: in black, the steady-states of that constitute the
connected path of stationary solutions, connecting to 6. In red, the values of the Dirichlet
controls. Right: the stationary path in the space domain. The red curve represents the
nontrivial elliptic solution in R, that corresponds to the homoclinic orbit in the phase
plane. In green the initial steady-state from which the path of steady-states departs.

portrait. We now solve the ODE from « = L/2 to = L (and backwards to = 0) to extend
the solution to the interval « € (0, L). The obtained set of steady-states takes then the boundary
values

v¥(L) =v*(0) =a® s€]0,1]

where a® is the value of the solution at x = L, which is the same as that at x = 0.

More precisely, let
) <x; (”1) ,L/2>
]

()= ()

with initial data at 2 = L/2 being (v, v2)T and consider:

(7.2) a® = PO <L; ((1 —s)u(L/2) + 39) ,L/2> :

be the solution of

0

where P is the projection on the first component, and v, is the even stationary solution to which
we arrived after step 2 in the procedure above.
e ¢° is continuous with respect to s due to continuous dependence on the initial data. This leads
to a continuously connected set of solutions to the boundary value problem associated with a®.
e Notice that the trajectories lie in " since the path (v(L/2)(1 — s) + s6) lies in the horizontal axis
inside the invariant region I'.

Remark 7.4. Notice that this procedure does not depend on the length L of the space interval. The only
requirement is to be able to reach an even (with respect to x = L/2) stationary state inside the invariant
region I'. Therefore, for every L > 0, there exists a path connecting 0 with 6.

Figures provide a graphical representation of the construction above for different values of
L: L <Ly Ly <L <L*and L* < L. Figures and represent the value at the boundary of
the continuous path of steady-states for different values of L. Figures and [7.7] also represent the
bifurcation diagrams depending on the parameter a. One observes, in particular, the number of steady-
states emerging along the path.

In view of this construction, when the goal is to drive the system to the target 6, the key question becomes
whether we may, out of the given initial configuration, drive the dynamics of the reaction-diffusion system
into the set I', and this, sometimes, despite the possible presence of barrier functions.

7.2. A non returning path. The following result describes the admissible steady-states from which a
connected path of steady-states can be constructed, connecting to the steady states 6 and 0.
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015 Continuous Path in the Phase Portrait Continuous path in [0, L]
Ao

FIGURE 7.4. L = 8, 6§ = 0.33. Representation of the “even strategy” in the phase
portrait of system . Left: in black, the representation of the steady-states of
connecting to 6. In red, the values of the Dirichlet controls. Right: the plot of the
stationary states along the space domain. The red curve represents the nontrivial elliptic
solution in R, i. e. the homoclinic orbit in the phase plane. In green the initial condition.

Continuous path Bifurcation diagram with respect to a Bifurcation diagram with respect to a

_— 0 0

min,
max u,

FIGURE 7.5. L = 8, § = 0.33. Left: Trace a(s) of the connected path of the steady
states in equation as a function of the shooting parameter 0 < s < 1. Middle:
The minimum of the steady-states u, depending on the boundary value a along the
path. Note that for a given boundary value a, there might be two solutions associated
with a inside the path. Right: The maximum of the steady-states u, depending on the
boundary value a along the path.

Continuous Path in the Phase Portrait Continuous path in [0, L]

FIGURE 7.6. L = 20, # = 0.33. The “even strategy” is represented in the phase portrait
of system . Left: in black, the plot of the steady-states of , constituting a con-
nected path leading to the stationary solution . In red, the values of the corresponding
boundary controls. Right: the stationary path plotted in the space domain. The red
curve is the nontrivial elliptic solution in R, corresponding to the homoclinic orbit in the
phase plane. In green the steady-state v. from which the path departs.
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FIGURE 7.7. L = 20, 6 = 0.33. Left: trace of the connected path of the steady states
a(s) as a function of the shooting parameter 0 < s < 1 in equation . Middle:
The minimum of the steady-states u, depending on the boundary value a along the
path. Note that for a given boundary value a, there might be two solutions associated
with a inside the path. Right: The maximum of the steady-states u, depending on the
boundary value a along the path.

Proposition 7.5. Let w be an admissible steady-state. Consider L > L* and let u; be the minimum
non-trivial solution with respect to the L> norm of the problem:

_aerL = f(@L) HAS (OaL)u
0<u; <1 z € (0,L),
up,(0) =ug (L) =0.

If

max w(z) < max uy,

2€[0,L] 2€[0,L]

and

1
5111575(0)2 + F(w(0)) < F (ﬂcgl[g,)i] uL> ,

there are connected paths of steady-states, connecting w to 8 and to 0, respectively.

Moreover, if w is symmetric, the second condition is not needed, and there is a path that is constituted
by symmetric states with respect to x = L/2.

Proof. We present a brief sketch of the proof.

Let A denote the closed region between u; and the vertical axis in the phase plane. Any point in A fulfills
the conditions of Proposition

From any given steady-state, we first generate a path towards a symmetric steady-state w*(z).

To do this, we use the trajectory in the phase portrait to which the initial steady-state belongs to (note
that the first integral w2 /2 + F(w) is preserved along the trajectory). Then, since w,(0)?/2+ F(w(0)) <
F(max,epo,rjur), we know that F'(max,epo,z)w*(2)) < F(maxyep,jur). We can then use the same
argument as in the previous section (taking the Dirichlet and Neumann conditions in L/2) to build a
connected path of steady-states that goes from w* to w = 0. The admissibility of the path follows by the
fact that u; is the minimum solution of the elliptic problem and that the boundary of I' is a homoclinic
orbit (hence it is associated with a solution to the problem in the whole real line). This assures that any
symmetric admissible trajectory in the phase plane within the interior of the set A\ T’ will not attain the
axis u = 0, since, otherwise, u; would not be the minimum solution.

O

As explained before, when implementing the staircase strategy for control, given that one needs to apply
local exact controllability results for heat-likes equations, and that this necessarily requires that controls
and trajectories oscillate, the paths of steady-states considered cannot saturate the constraints.

Of course one may also build other paths of steady-states that saturate the constraints or even go beyond
them. But these paths cannot be used when considering the control of the reaction-diffusion system
under the given constraints.
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Proposition 7.6. When L > L* there is an admissible connected path of steady-states, continuous with
respect to the L™ topology, connecting the stationary solution uw = 0 with the minimal non-trivial solution

of
- acxu:f(u) Z'G(O,L)
u(0) =u(L)=0
O<u<l1 z € (0,L).

Proof. Consider the following ODE system, with Cauchy data at = L/2 depending on the parameter
s €10,1]:

(7.3)

As before, we will use this system to construct a path of stationary steady-states. We start from s = 0. By
the uniqueness of the ODE solutions, y = 0 is the unique solution. Then, consider the family of solutions
of depending upon the parameter s that are defined on x € [0, L] (solving the ODE forward and
backward in time). Let s* € [0, 1] be such:

s* = Srer%(i)nl]{||ys|\Loo((o,L)) s.t. y® solves ([7.3), with y*(L) = y*(0) = 0, ||y*|| == ((0,)) < 1}

This s* € [0,1] exists because L > L*. The path of steady-states is:
v :]0,8"] — L*(0,L) s— y°.

By the continuous dependence on the initial data, the path is continuous with respect to s with values
in L> (0, L). Let

and let

We have that:

I960) = 5l = 0 =0+ [ Fl0001) = Fr| < = 2o+ [ 1P = Pl
<llyo—zoll+ [ sup IV Fllecly(r) = 20l
0 zeR?:|z||<max{|lyllee,||zllLoo}

< C(L, [[ylloos 12l0) lyo = 2ol-
0

Proposition 7.7. When [ bistable with F(1) > 0 and L > L*, it does not exist any admissible control
function bringing u; to 0.

Proof. By the comparison principle, and given that the controls remain non-negative, the solution will
always remain above the non-trivial steady state u; fulfilling the constraints. This makes it impossible
that the controlled solution reaches the null steady-state. (|

Remark 7.8. In Theorem the assumption that the path has to be uniformly away of the
minimal and maximal values of the control is imposed.

In this section we have shown that, even when L > L*, we can build a path of admissible steady-states
outside T connecting u; and 0 (not satisfying (4.12])). But we have also seen that this path cannot be
used to control the dynamics while preserving the constraints. This shows that the assumption is
not of a technical nature, but rather a necessary one.
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Continuous Path in the Phase Portrait Continuous path in [0, L]

FIGURE 7.8. f(s) =s(1—s)(s—0), 0 =0.33, L =12. Left: Connected path of steady-
states from 0 to the minimal nontrivial solution u; in the phase plane. This path has
elements outside the invariant region I'. Right: The connected path in the physical
space.

7.3. The case F(1) = 0: even and not even controls. When F(1) = 0 (which, for the prototypical
cubic nonlinearity, corresponds to 6 = 1/2), whatever the length L of the space-interval is, any even
initial data of the reaction-diffusion system can be driven to any state on a connected path of steady-
states connecting to 0, 6, and 1.

For instance, using the fact that, when F(1) = 0, the traveling wave profile connecting 0 to 1 is a
stationary solution. Then the sections of the traveling wave profile to space-intervals of length L provide
a path of steady-states depending continuously on the boundary data.

Hereafter we point out the main relevant aspects of the particular case F(1) = 0:

(1) The region T is defined by the two standing traveling waves connecting the points (0,0) and
(1,0).

(2) By uniqueness of the ODE and the fact that the traveling wave connects the points (0,0) and
(1,0), there cannot exist an admissible nontrivial solution with boundary values 0 or 1.

(3) Any symmetric admissible steady-state is inside T

Remark 7.9 (A simpler dynamic strategy). In this case a simpler control strategy can be developed.
Indeed, according to Theorem ( ), the convergence to 0 and to 1 in infinite time holds, since
they are the only stationary solutions taking boundary values 0 and 1, respectively. Then, the path of
admissible steady-states connecting any even solution to 1 or 0 is not needed in this case.

Proposition 7.10. Let L > 0 be arbitrary, and assume that F(1) = 0. Then there exists a connected
path of steady-states connecting 0 and 1.

Proof. When F(1) = 0, the traveling wave profile v is a stationary solution in the whole real line R,
corresponding to the heteroclinic orbit in the phase portrait connecting 0 and 1:

—OzzV = f(U) z €R
v(+00) =0, v(—o0)=1
v(0) =1/2.

The restriction of v(- + ¢) to (0,L) is a stationary solution for any ¢ € R, and constitutes a connected
path of steady-states. O

Note however, that this path is not uniformly away from 0 or 1, in other words, it does not satisfy the
assumption of Theorem In particular, this means that we can only stabilize around these
stationary solutions but never control in finite time. Moreover, observe that the parameterization of the
path given ranges from —oo to +oo.

Figures and illustrate the paths connecting a steady-state to the stationary constant solu-
tions @, 1 and 0. Figures[7.10] [7.12] and [7.14] show its respective values at the boundary of the continuous
paths of steady-states while Figures [7.10] [7.12] and [7.14] represent their bifurcation diagrams.
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Continuous path in [0, L]

0.2 0.4 0.6

ot

0.8 1 0

FIGURE 7.9. L = 20, 8 = 0.5. The even path of steady-states from an initial condition
to the stationary solution 6 of system (5.9). Left: In black, the steady-states of (7.1]),
constituting a connected path of stationary solutions leading to 6. In red, the corre-
sponding values of the controls. Right: the stationary path plotted in the space domain,
the green curve being the initial steady-state.
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Bifurcation diagram with respect to a

F1GURE 7.10. Graph associated with the path shown in Figure Left: Connected
path of steady-states, in the horizontal axis the parameter s € [0,1] in the vertical axis
the boundary value. Center: The minimum value of u,, as a function of the boundary
value a. Right: The maximum value of u,, as a function of the boundary value a.
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FIGURE 7.11. L = 20, § = 0.5. Phase portrait representation of the path of even steady-
states of system connecting the initial condition with the constant steady-state 0.
Left: In black, the path of steady-states of connecting to the stationary solution 0.
In red, the values of the corresponding controls. Right: the stationary path plotted in
the space domain, the green curve being the initial steady-state.
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FIGURE 7.12. Graph associated with the path shown in Figure Left: Boundary
values of the connected path of steady-states as a function of the parameter s € [0, 1].
Center: The minimum value of u,, with respect to a, for the connected path of steady-
states. Right: The maximum value of u,, with respect to a.

02. Continuous Path in the Phase Portrait ntinuous path in [0,
0.1
S s
-0.1+
-0.2
0 0.2 0.4 0.6 0.8 1

FIGURE 7.13. L = 20, § = 0.5. Phase portrait representation of the path of even steady-
states of system connecting the initial condition with the constant steady-state 1.
Left: In black, the path of steady-states of connecting to the stationary solution 1.
In red, the values of the corresponding controls. Right: the stationary path plotted in
the space domain, the green curve being the initial steady-state.
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<
max u,

FIGURE 7.14. Graph associated with the path shown in Figure [T.13] Left: Boundary
values of the connected path of steady-states as a function of the parameter s € [0, 1].
Center: The minimum value of u,, with respect to a, for the connected path of steady-
states. Right: The maximum value of u,, with respect to a.
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8. SUMMARY OF THE CONTROL RESULTS

We have analyzed and described the nature of the steady-state solutions with non-homogeneous boundary
values, paying special attention to whether they lay without the limits established by the point-wise state-
constraints. We have also discussed their control consequences. Moreover, we have seen how to construct
paths of steady-states allowing to ensure controllability to steady-states, even when they are unstable.

8.1. Bistable Nonlinearities. In Figures[8.I] we represent a summary of the main results plotting both
the paths constituted by sections of the traveling wave profiles and the steady-states taking constant
values over the boundary. In the case of FI(1) = 0, traveling waves are stationary. Therefore, as discussed
previously, its restrictions on domains of length L give a connected path of steady-states between 0 and
1 naturally. However, note that this path does not pass through the constant stationary solution 6.

J
J

TWO*)I 0 TVVO<—~>1

N
\

TWy—0 TWeo 0

FIGURE 8.1. Left: Connectivity map for F(1) > 0. In red, an admissible continuous
path of steady-states connecting 0 and 6, existing for all L > 0. In green, an admissible
and continuous path of steady-states connecting 6 and 1, whose existence is guaranteed
for L < L*. In black, traveling waves for the Cauchy problem. The traveling wave from
0 to 1 is unique, while there are infinitely many traveling waves from 6 to 1 or to 0,
since the nonlinearity, when restricted to [#,1] or in [0, 6] is monostable and Theorem
applies. Right: Connectivity map for F(1) = 0. In red, admissible continuous paths
of steady-states connecting 0 and 6 and 6 to 1, respectively, existing for any L > 0.
The traveling wave from 0 to 1 is unique and stationary, giving a continuous path of
admissible steady-states connecting 0 and 1. In black, infinitely many non-stationary
traveling waves connecting 6 to 1 and to 0, respectively.

We now present the main control results for the bistable equations, which is an extended version of
Theorem 2 from [98].

Consider the following reaction-diffusion equation:
Ot — Opgu = f(u) (z,t) € (0,L) x (0,T),
(8.1) w(0) = a1(t), wu(L) = ax(t) te (0,7),
u(z,0) = uo(z) € [0,1],
where f is a C? bistable function satisfying f(0) = f(1) = f(6) = 0 for a certain § € (0,1). Let F be
defined as F(t) = [} f(s)ds and a1, a2 € L>((0,7);[0, 1)).
Condition 8.1. Let w be any stationary solution of satisfying:

1
(8.2a) ~—w,(0)> + F(w(0)) < F ( max uL>
2 z€[0,L]
8.2b < :
(8.20) el < Jmex

where u; is the minimum solution with respect to the infinity norm to the problem:
_a:rxﬂL = f (HL) S (O7L)7

(8.3) ur(0) =ur (L) =0,
0<up <1 x € (0,L),

In case the solution of (8.3)) does not exist, the condition is not necessary.
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Note that condition , in particular, requires that the maximum of the steady-state to be below the
maximum value of the minimum nontrivial solution w;. This fact, together with the energy requirement
(8.2a)), it assures that w is a supersolution with null boundary control. Since there is no barrier below
w, the solution with null control will approach the null state as time evolves. Then one may apply
the techniques exposed in the previous sections to reach the constant steady-state target 6. It is worth
noting that, even if we state the main results with constant steady-states as targets, one can use the same
methods to control to any element of the constructed paths of steady-states even if they are not constant.
In particular, if the system can be controlled to the constant steady-state 8 in large time, one can also

control it to any target (possibly requiring a larger time) that is path-connected in an admissible way to
0 (as long as the path is away of the prescribed bounds, see (4.12)) in Theorem and Subsection [7.2]).

Theorem 8.2. Assume f is bistable.
Case 1: F(1) > 0.

e The solution of the system can be driven asymptotically to O using the controls ai,as =0
— for any initial data ug iff L < L* (where L* is defined in .
— for any L > 0 if ug is below some steady-state w(x) satisfying Condition .
o The solution of system can be driven asymptotically to 1 using the controls a1,as =1 for
any initial data ug and for any L.
o There exists T, ; > 0 such that for every T > Ty,.1, the solution of system can be controlled
to 0 iff ug asymptotically goes to 0 when a = 0.
o Furthermore one has the following estimate for L*:

T . FQ) - F(9)
L* < 2V2 | ———~.
maxeo,1) f'(s) =b= F(1)?

Case 2: F(1) = 0.

e the solution of the system can be driven asymptotically to 0 (resp. 1) using the controls
ai,as =0 (resp. a;,ao = 1) for any L > 0 and any admissible ug.

e there exists T, ; > 0 such that for every T" > T 1 the solution of the system can be
controlled to 9 for every ug and every L > 0 and cmy admissible ug.

Proof. Case 1: F(1) > 0.

e The parabolic solution with the steady-state fulfilling as initial condition with control a = 0,
asymptotically goes to 0 (due to Remark and the fact that the steady states fulfilling condition
(8.1)) are path-connected with the steady-state 8). Therefore, by comparison, all initial conditions
below a steady-state fulfilling condition also converge asymptotically to 0 with control a = 0.

When barrier steady states do not exist, any admissible initial condition tends asymptotically
to 0 as ¢ = +o0o with control a = 0.

The estimates on L* are consequence of Theorems [5.13] and [5.14]

e The result concerning the convergence to the constant steady state 1 is a consequence of the
uniqueness of the steady-state 1 in the admissible set.

e As explained in Section [7] once the dynamics with null control is guaranteed to converge to the
steady state 0, the remaining task is to assure that the trajectory can be controlled to an element
of the path of steady-states.

Let ug be an initial datum such that the parabolic solution converges to 0 in C? with the
boundary condition a = 0. Then, there exists a time ¢* for which the solution will be below 6,
ie.

0<uw(z,t)y<@, Vt>t*, Vre(0L).

Note that the set L*((0,L),[0,0]) is an invariant region for the dynamics for every
boundary condition aq,as € L*((0,+00);[0,6]), thanks to the comparison principle (u = 0 is a
subsolution and u = # a supersolution).

By Theorem ( [78]), for any constant boundary condition, the state converges in C° to
a steady-state. If the boundary condition is chosen to be in [0,6], the state being within the
invariant region L>((0, L), [0, 6]), the solution will converge to a steady state in L>°((0, L), [0, 6]).

Observe that an admissible steady-state fulfilling

0<u<é, Ozu(L/2) =0,
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is in the invariant region I'. Moreover, this steady-state is path connected to 6 in an admissible
way. Therefore, it is enough to set a constant control a; = as € [0, 6] to assure convergence to a
steady-state w1, which is symmetric with respect « = L/2 and, as a consequence, a steady-state
belonging to I'.

Once the solution, after a long enough time horizon, is close enough to the steady-state uq, by
local controllability it can be exactly controlled to u;. Since wp is an element of the admissible
path connecting to the target steady-state 6, the proof can be completed applying the staircase
method.

Case 2: F(1) = 0.

e In this case, there do not exist non trivial admissible steady states taking both boundaries equal
to 0 (or 1). This implies that, by setting the control a; = az = 0 (resp. 1), any initial condition
asymptotically goes to 0 (resp. 1).

e As discussed in section [7] in this case, the invariant region in the phase plane is enclosed by the
two stationary travelling waves and the argument follows as in the case where F(1) > 0.

O

Remark 8.3. As noted in [106], 0 and 6 have the same w-limit when the control is set to 0 (a = 0).
Moreover, one can only build admissible steady-state paths between steady-states whose w limit, with
a = 0 as boundary condition, are not in comparison. The proof of this fact follows by contradiction.
Assume that there is an admissible path of steady-states between two admissible steady-states whose
w-limits for the a = 0 control are in comparison. Since, by hypothesis, a path exists, there will exist a
positive control function that, in finite time, will bring the first steady-state to the second one. However,
there will also exist another control function bringing the second steady state to the first one in finite
time by means of a positive control. This enters in contradiction with the comparison principle.

Remark 8.4. Moreover, if the initial data is symmetric with respect x = L/2, the path can be constructed
in a symmetric way and the results of Theorem hold with symmetric controls a;(t) = as(t) = a(t).

Remark 8.5. Several remarks are in order

e The fact that the parabolic equation can be controlled along symmetric paths, with equal controls
on both extremes x = 0 and x = L, is equivalent to controlling the dynamics in the half-interval
(0, L/2), with Dirichlet control at © = 0 and homogeneous Neumann boundary conditions at
x=1LJ2.

e The construction of paths of steady-states in several space dimensions was addressed in ,
with the control being active in the whole boundary. The analysis of the multi-dimensional case
with controls acting only on a subset of the boundary is an open problem (see Section [11]).

e The continuous path of steady-states connecting 0 and 1 exists but it does not fulfill the con-
straints 0 < w < 1. Thus, it is not of use when trying to control the dynamics within the
constraints (see Figure [8.2)).

Continuous Path in the Phase Portrait Continuous path in [0, L]

F1cURE 8.2. Non admissible continuous path from 0 to 1
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FICURE 8.3. fa(s) = s(d+ (12— 3d)s + (3d — 12)s?) for different values of d. The

integral between (0,1) of the three functions is the same, i.e. fol fa(s)ds = 1. The red
dashed line indicates the slope at the origin.

8.2. Monostable Nonlinearities. In this section we summarize the main results for monostable non-
linearities.

Theorem 8.6. Assume that f is monostable.
System (8.1)) can be asymptotically driven to:

e The constant steady-state 1 for any initial condition and any L > 0.
o The constant steady-state 0 for any initial condition if L? < \* where
)\1 (07 1)
maXse[o,1] f'(s)
A1(0,1) being the first eigenvalue of the Dirichlet Laplacian in (0,1).

<A <A < +o0,

Proof. As discussed in Section for every L > 0 there exists a unique admissible steady-state with
boundary conditions equal to 1, namely the constant steady-state = 1. This implies that for every
initial condition, setting the boundary controls equal to 1, the solution will asymptotically approach 1 as
t — +o00.

In Section[5.4 upper and lower bounds for the existence of nontrivial solutions have been presented. When
L is small enough, there does not exist a nontrivial admissible steady-state with 0 boundary conditions
and this implies that for any admissible initial condition the solution will asymptotically go to 0 as
t — +oo.

O

Following the computations in the proof of Theorem [5.14] for the bistable nonlinearity, it can be shown
that A = 8/F(1) for the monostable nonlinearity in dimension 1.

Remark 8.7. Note that, for A > A\*, the constant steady-state 0 may be stable. As an example, consider
the nonlinearity

fa(s) = s (d+ (12— 3d)s + (3d — 12)s°) ,
satisfying F(1) = [ fa(s)ds = 1, independently of d and f}(0) = d.
The steady-state 0 is linearly stable if:

72 — \f5(0) > 0.

For every L? > 8, a non-trivial solution exists. Therefore, for every L? > 8 we can choose d small enough
so that the steady state 0 is linearly stable while a barrier exists.

9. NUMERICAL SIMULATIONS

This section is devoted to present numerical implementations of optimal control strategies and illustrate
the results presented in the previous sections. We will perform four experiments, each one regarding
one of the topics discussed in these lecture notes. All the experiments are developed in an optimization
setting. More precisely, we will minimize various functionals J, depending on the controls objetive and
we will also consider different classes of admissible controls A. All the experiments will take the abstract
form of

9.1 in J(ug;
(9.1) min J (ua; uo)
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where u, solves:

Ot — Oppu = u(l — u)(u — 1/3) (z,t) € (0,L) x (0,T),
w(0,8) = a1(t), u(L,t) = as(t), te(0,7),
u(z,0) = ug(x).

The optimization experiments are implemented with IpOpt ( [121]) and are as follows:

(1) Experiment 1: Control towards 6. We analyze control strategy for Ly < L < L* considering:

J = l[u(T:a) =01, A= {ar,a2 € L(0, T [0,1])}.

In Figure we show how the control takes values below 6 = 1/3 during a substantial time
interval. This is natural since for L > Ly there is a nontrivial steady-state solution above 6 that
the dynamics is forced to cross. Furthermore, it can be observed that the final state is close to 6
as the theory predicts.

Controlled state Control

0.4
0.2

0 30
T x t

FiGURE 9.1. Experiment 1: Control towards 6. Controlled state for L = 8, T'= 30 and
initial datum ug(x) = 1.

(2) Experiment 2: Control in the presence of a barrier. The lack of controllability towards
0 for L > L* with initial datum ug = 1, due to the emergence of the barrier steady-state, is
illustrated in Figure In this case, the functional setting considered is the following one:

J = |u(T;a)|?, A= {al,ag e L=([0,T1; [0, 1])}.

Controlled state State Control

30 1 1
0.8 \ 0.8
0.6 \ 0.6
- \ S 04
0.4 e \
0.2
0.2 ol \
[, ] 0
0
0 0.2
0 20 p
x

FIGURE 9.2. Experiment 2: Control in the presence of a barrier. Controlled state for
L =20, T = 30 and initial datum ug = 1.

However, one can reach § when starting from uy = 0. In Figure [0.3] the functional:
J = uTia) - 02, A={ar,az € 10,7} 0, 1))},

is minimized.
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FiGURE 9.3. Experiment 2: Control in the presence of a barrier. Controlled state for
L =20, T =60 and initial datum ug = 0.

(3) Experiment3. Positivity of the minimal control time.

controllability in a short time horizon (Figure for

First, we observe the lack of

J = |u(T;a) — 0], A= {al,aQ e L=([0,T7; [0, 1])}.

In Figure [9.5] the functional minimized is the time horizon

J=T, A= {al,ag € L*([0,T];]0,1]) : the trajectory fulfills 8 — € < u,(T;up) < 0+ e}.

Numerically this can be achieved by first generating an initial guess minimizing the L? norm of
the difference of the final datum with the target on a given time horizon. In a second step, fixing
the number of time steps in the discretization scheme to be large enough, the minimization of
the time-horizon for control is achieved by minimizing At, the discretization time step in the
numerical approximation scheme. The control shown in Figure [9.5] shows that the minimal time

control is of bang-bang type.

Controlled state

I

\

State
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Control

FIGURE 9.4. Experiment 3. Positivity of the minimal control time. Controlled state for
L =20, T =15 and initial datum ug = 0.

Controlled state
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FI1GURE 9.5. Experiment 3. Positivity of the minimal control time. Controlled state in

minimal time for L = 20 and initial datum ug = 1.
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(4) Experiment 4. Quasistatic control strategy. In the following simulation we show a control
that approximately follows a path of steady-states connecting the steady-state 0 with the steady
state 8. For doing so, we set T' large, and we minimize

T
J :/ lla:||?dt, A= {al,ag € L>([0,T1;[0,1]) : 0 — € < uo(Thup) < 9+6}.
0

In Figure we observe snapshots of the parabolic controlled state which, in the phase plane,
are close to solutions of the elliptic equation.

Controlled state State

400 1
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0.1
ol o [ e
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FIGURE 9.6. Experiment 4. Quasistatic control strategy. Controlled state for L = 20,
T = 400 and initial datum ug = 0.
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FIGURE 9.7. Experiment 4. Quasistatic control strategy. Left: Optimal constrained
control associated with Figure Right: Phase-plane plot of the steady-states (in
black) and snapshots of the parabolic state (in red).

10. EXTENSIONS AND RELATED PROBLEMS

10.1. Combining Allee control and boundary control.

10.1.1. Preliminaries. The goal of this subsection is to present the control strategy in [114] schematically.
In |114] the modeling of the control of a population of mosquitoes when sterile mosquitoes are released
is presented. This way of acting on the system allows to regulate the nonlinearity and, more precisely,
the Allee parameter 6:

00 — Opev = v(1 —v)(v — 0(t)) (x,t) €RxRT,

0<0() <1,

0 <wv(z,0) <1.
The goal in that article was to control the system approximately to a traveling wave solution in large

time. For this to be done the initial datum is assumed to have two different asymptotes

lim v(x,0) =14.

z—+o0

The strategy of the proof relies on the following arguments:
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e Fix 6 € (min(l_, 14 ), max(I_, 1)) for a long time interval and let the system converge exponen-
tially to a traveling wave profile.

Once the traveling wave is approximated a second step is needed to regulate (by translation)
the position of the traveling wave profile.

e Using the fact that, for the cubic nonlinearity, the profile of the traveling wave is the same for any
0, in a second step one can modify the value of the control # to move the center of the traveling
wave. Note that if § < 1/2 (resp. 6 > 1/2), the traveling wave moves in a direction so that the
value 1 (resp. 0) invades.

10.1.2. Combined Strategy. Combining both control strategies, i. e. the Allee threshold and the boundary
control, more targets can be achieved. In particular, the dynamics can be driven beyond the barriers
that might occur for a specific value of 8, by changing the value of the Allee threshold. Furthermore, one
can easily obtain the controllability in large time, to any steady-state inside I', for any 6, and to sections
of traveling waves. More precisely, let L > 0 and consider any target in the following set:

vr € U Ty U {v € L>((0,L);[0,1]) : Je€Rs.t. v(z) =TW(x + c)|[0 L]}
0e[0,1/2]
where, by the subscript 8 in 'y, we indicate the dependence with respect to 6 of the invariant region I'
and by TW we denote the traveling wave profile.

Consider the following control problem:
Opv — Ogrv = v(1 —v)(v —6()) (z,t) € (0,L) x (0,T),
v(0,t) = a1(t) wv(L,t) = a(t) te(0,7T),
0<w(z,0)<1 o(T)=wvr.

One may develop the following strategy:

Take 6 = 1/2 and keep a; = as = 0 for a long time interval. Since the null steady-state is the unique
steady-state for 6 = 1/2 with null boundary conditions, by Theorem [3.1] ( [78]), the solution tends to the
constant steady-state 0 as ¢ — +oo for any initial datum in L>°((0, L); [0, 1]).

® Ur € Uae[0,1/2] Ly
— Once the solution is close to the steady-state 0, one changes the value of the Allee control 6
to be a constant in the desired value 6 € (0,1/2) .
— Set a; = as = € and apply the strategy described in the previous sections, with the staircase
method, allowing to control the system to any steady state inside I'g.
o Ifur € {v € L*((0,L);[0,1)) : Jee R s.t. v(x) =TW(x + c)‘[O7L]}
Leaving the controls at a; = as = ¢ € (0,1), the solution will converge to a symmetric
stationary solution. All the symmetric stationary solutions are inside the invariant region I'y /5.
For 6 = 1/2, the traveling waves are stationary and they are seen in the phase portrait
connecting (0,0) and (1,0). As mentioned in Subsection the traveling waves are at the
border of T'y /5.
One can apply local controllability to control to a steady-state inside I';/; and then trace a
path to the target arc of the traveling wave while being inside I'; /5.

10.2. The multi-dimensional case. The results and techniques explained before can be extended in
several dimensions, [106]. Let us consider a bounded domain Q C R? with C? boundary and Lebesgue
measure || =1, A > 0, and the following dynamics:
Ou — Au = Af(u) (z,t) € Q2 x (0,7),
(10.1) u(z,t) = a(z,t) (x,t) € 9 x (0,T),
0<u(z,t)<1 (x,t) € Q x[0,T].

Note that A plays the role of a scaling parameter so to that the assumption |Q| = 1 does not reduce the
generality of our analysis.

In this context, the bounds derived in Section [5| also apply by slightly adapting the proofs.

The proof of Theorem [5.14]is adapted by finding the largest ball inside the domain to find a subsolution.
The proof of Theorem applies as well, and the final result will depend on the first eigenvalue that,

in turn, depends on the geometry of the domain. Indeed, the first Dirichlet eigenvalue depends on the
shape of the domain, not only on its size. This plays a relevant role since there are domains with large
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measure and large large first eigenvalue. The existence of steady-state barriers is a general feature of
these problems that is illustrated in Figure [10.1

09
1 08
0.8 07
0.6 06
05

10

FIGURE 10.1. Numerical simulation of the semilinear heat equation with nonlinearity
f(s) = s(1 —s)(1 — 9) with boundary value a(xz,t) = 0 leading to a barrier steady-state.

Note that, by extending the one-dimensional traveling wave to be constant in all other d — 1 remaining
dimensions, one obtains a traveling wave profile for the multi-dimensional case. Thus, when F(1) > 0,
the proof of the convergence to the constant steady-state 1 (with boundary controls = 1) follows by
comparison with the traveling wave solutions, as in the one-dimensional case, Proposition [5.25]

The construction of the continuous path of steady-states can be performed extending the domain €2 to a
larger ball containing it, see Figure [10.2]

FicURrE 10.2. Ball containing the original domain €.

One can then consider the radially symmetric solutions of
(10.2) —Au = Af(u) z € B, C R%,
as an ODE problem:
d—1
Urp (1) + up(r) = —f(u(r)), 7€ (0,Rpx),
u(0) = a, u,(0) =0,

(10.3)

where Rp y is the radius of the ball, after rescaling the parameter A to A = 1.

The key points of the qualitative behavior analysis of these radially symmetric solutions are the following;:

(1) Radial solutions of the problem (10.3)) dissipate: Assume that F'(1) > 0 and consider the energy
1
E(u,v) = 502 + F(u)

where F(u) = [} f(s)ds. Define the region:
M :={(u,v) € R* such that E(u,v) <0}.
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Note that the region defined by
I''={(u,v) €[0,61] x R such that |v| <+/—2F(u)}

satisfies I' C M. In fact, this region is the same than in the one dimensional case.
Now one considers an initial datum of the form (ug,0) € T', then the solution of (10.3) with
initial datum (ug,0) satisfies:

iE(u,v) =ovv, + f(u)v = — v? < 0.

dr
As a consequence (u,v) € I' for all r > 0 and the path is admissible and globally defined.
In Figure we represent the construction of the path.
Then, the restriction of the path defined in B, to the original domain ), leads the desired
path.
(2) Another important feature of the analysis of the multi-dimensional problem is the control to the
path of steady-states we just built. For this, one realizes that the minimum solution to
—Au = Af(u) x € 9,
O<u<l1 T € Q,
u=a(x) x € 08,

with a being the corresponding value related to the restriction of an element of the path in the ball
into €, is radial with respect to some ball, and therefore it belongs to a path of steady-states [106].

Path in the Phase Plane R=30

FIGURE 10.3. § = 1/3, R = 30 and d = 2. In blue the phase space description of the
invariant region. In black the radial trajectories forming the continuous path of steady-
states. The red stars indicate the values taken over the boundary.

10.3. Spatially Heterogeneous case. In this section, we discuss the more general model analyzed
in [84):

8tu—Au+<2VN,Vu>:f(u) xeNx(0,T),

N

(104) u(z,t) = alz, 1) r €09 x (0,T),
0 <u(zt) <1,

where N : R? — (0, +00) is a C™ function.

10.3.1. Modeling. In Section [2| the whole population N was assumed to be driven by an homogeneous
heat equation. But N can also be the solution of a non-homogeneous semilinear heat equation of the
form:

O N — AN = N(k(z) — N) (z,t) € 2 x(0,T),

ON

o 0

N(z,0) = No(z) >0,

(10.5) (z,t) € 9 x (0,T),
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where £ is a C* function. It is known that, for x > 0, there is only one positive steady-state of (10.5)), [74].

Since the set of positive steady states is a singleton and the steady state 0 is unstable, due to the gradient
structure of the semilinear heat equation under consideration, the solution of (10.5) converges to the

solution of (see [16])

—AN = N(k(z) — N) x €1,
10.6
(106) oN =0 x € 0.
ov

Taking N from (|10.6) and employing the same approximation done in Section [2| one gets the heteroge-
neous bistable equation ((10.4)).

The effect of the mother population N on the behavior of the system depends very much on the shape
of N.

Population N and drift effect Population N and drift effect

1
15
0.5
1
Drift Drift Drift —> ~<——| Drift
0.5
0
0 \
-0.5 - - - -0.5 -
-10 -5 0 5 10 -5 0 5

FIGURE 10.4. In blue the curve N(z), in orange the quotient —N,(x)/N (x) responsible

22

of the drift effect. Left N(z) = e~ "o, right N(z) = %

Figure shows the effect of the drift produced by N. In the right hand side of Figure the
drift pushes from the boundary towards the interior. For this reason, one intuitively expects that the
controllability will be easier to be achieved in that setting, since the effect of the boundary control will
be enhanced. On the other hand, in the left hand side of Figure one can see that the effect of the
boundary control is diminished by the drift. This will lead to the existence of new nontrivial steady-state
solutions that will act as barriers, as it is shown in the subsequent subsections.

These new barriers block the controllability from 0 to #. In Figure [I0.5 we illustrate the minimal
controllability time, that may blow up for some specific profiles N.

Minimum Controllability time Minimum Controllability time
80 T T T T T T T T
*
60 6
S * S
= 40 =4
= * =
*
20 e 2"
*
«********** ***
0 . . . . 0 T T T T T TP
0 0.005 0.01 0.015 0.02 0.025 0 10 20 30 40 50
1/c 1/o

FIGURE 10.5. Minimal controllability time from 0 to § = 1/3 as a function 1/o. Left:
2

minimal controllability time for the Gaussian N(x) = e~ 5. Right: N(z) = e .

10.3.2. Small drifts. In the controllability for small drifts is analyzed by means of a perturbation
method of the homogeneous path corresponding to N = 0.
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Consider a finite number of states on a path of steady-states for the homogeneous equation (with N = 0).
We then consider the model with a small drift term:

Oru — Au+ € (Vp(x), Vu) = f(u) x € Qx(0,T),
u(z,t) = a(z,1) x €00 x (0,1),
0 <u(z,t)<1 (x,t) € Q% [0,T].

The implicit function theorem can be applied to all the elements selected from the homogeneous path to
obtain a sequence of new steady-states for (10.3.2)), in a way that they remain close enough to the original
steady-states, and so that the staircase method can be applied (see Figure , see 84, Theorem 2]
for details. Note that, by this argument, we do not know if a continuous path of steady-states for the
perturbed problem exists. But the only requirement to apply the staircase method is to have a number
successive steady-states that are close enough each other, see Figure for an intuitive representation.

F1GURE 10.6. The blue dotted line represents the continuous path of steady-states for
the homogeneous equation. In red, the perturbed steady-states, linked to the unper-
turbed steady-states (black) that belong to a continuous path for the homogeneous equa-
tion.

This perturbative argument is a variant/improvement of the staircase method [93].

The perturbation method only applies for small €. In fact, Figure shows that we cannot expect this
method to work for large €. In the subsection below we shall see the apparence of such obstructions.

10.3.3. New barriers for large drifts. In the case of radially symmetric solutions of the multi-D problem,
the energy

E(u,v) = 1112 + F(u)

2

satisfies

d . 7& o d—1,

dr~ N r
= d d—1

—N ———-N

LN 2~ =N ),
then the energy decreases and the set:

E(u,v) <0

is positively invariant (see [84, Theorem 3]).

One can then conclude that if this differential inequality is fulfilled, there is an invariant region in the
phase portrait to which the stationary states 0 and 6 belong to.

However, in the opposite case, new barriers can appear even in the one-dimensional case. We sketch the
proof of the existence of the upper barrier as in Figure [10.7]

Let us consider the a Gaussian drift N(z) = e~*°/7. From the modeling perspective, this amounts to
say that there is a big concentration of individuals around = = 0. Consider, in addition, the following

boundary value problem:

_8wa:u+% = f(u) T € (_L’L)’
(10.7) {u(—L) =u(L) =a € {0,1}.
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Theorem 10.1 (Theorem 4, [84]). Let F(1) > 0. For every o > 0 with N(z) = e~* /%, there exists
L1 > 0 such that if L > L, 1 a solution of (10.7) satisfying the state constraints 0 < u <1 with a =1
exists. Moreover, there exists L, > 0 such that for every L > L, there exist a nontrivial solution with
a=0.

To prove the existence of the barrier function to reach 0, one can proceed with the same variational
arguments above. However, for proving the existence of the upper barrier, the same methods do not
apply, since the stationary solution 1 is a global minimum of the energy functional.

For this reason, in [84], Theorem is proved using phase plane techniques (the shooting method). It
consists on finding an initial condition for the system:

i ()= () ()
() - (&)

for which at a certain L, the trajectory of (10.8)) reaches 1.

(10.8)

Nontrivial solution, o =40 Trajectory for a=0.01

-

£

|
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-10
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FIGURE 10.7. Left: Upper barrier, solution of (10.7) for o = 40. Right: Sketch of the
phase-plane analysis for the trajectory leading to a solution of ((10.7])

Therefore, for large domains, for the Gaussian profile of N, one cannot guarantee the controllability to
any of the constant steady-states.

11. PERSPECTIVES

To better describe the perspectives emerging out of the work described in these lecture notes, we first
emphasize the limitations of the methods we have presented. One of the most illustrative limitations
arises when non-autonomous dynamics are considered.

1) Nonautonomous dynamics. Let us consider the system

Owu — p(t)Au = f(u) (z,t) € Q2 x (0,T)
(11.1) u(z,t) = a(z,t) (z,t) € 092 x (0,T)
0<wu(z,0) <1 x €

where a € L*((0,T) x 89;[0,1]), u € C*((0,T);RT) and f : R — R is bistable. Note that, since u(t) is
time dependent, the only possible steady-states (states w such that d;w = 0 for all t) are the constant
steady-states

w=0, w=0, w=1
since they cancel both the bistable nonlinearity and the parabolic operator.
Therefore, a path of steady states connecting any pair of steady-states cannot exist. Moreover, observe
that when p is a decreasing function, i.e. /' < 0, then the steady-state w = 6 becomes, loosely speaking,
more unstable as time advances.
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Linearizing the system around w = 6 and the control a = 6, we obtain:

Ov — ut)Av=f'()v (z,t) € 2 x (0,T)
(11.2) v(z,t) =0 (x,t) € 02 x (0,T)
v(z,t =0) =

Solving (|11.2]) one obtains
¢
Z cn(0) exp { "(0)t — )\n/ ,u(s)ds} en(x)
0

cn(0) = (vo, €n)12(), Where e, € H} () stands for n-th eigenfunction of the Dirichlet Laplacian and A,
its eigenvalue —Ae,, = Ape, in Q.

Note that if, for instance, fo s)ds is finite, then since f/(6) > 0, the solution will grow exponentially

after a certain critical time ¢*. Conversely, if 1 fo s)ds — +oo as t — 00, then every eigenmode will
become stable in large times.

There are two main questions to address:

e Can the time dependence of 1 create an obstruction to the controllability?

Let us consider F(1 fo s)ds > 0. Is there an initial datum wug € L°°(€; 0, 1]) such that
the solution u of the problem

O — pu(t)Au = f(u) (z,t) € 2 xRT
(11.3) u=1 (x,t) € 0Q x RT

never approaches w = 1 as t — +00? Equivalently, for every ¢ € RT, there exists an open set
w C Q such that the solution of (11.3)) satisfies:

u(z,t) < 0 if x € w?

Note that, since we are working with a bistable nonlinearity, if the state satisfies 8 < u < 1,
then, with control a = 1, it will asymptotically go to 1 as time goes to infinity. If the property
above holds, then, by the comparison principle, we would have a fundamental obstruction to the
controllability to w = 6 of non-autonomous nature, since, for the autonomous case p(t) = p, we
can always approach the steady state w = 1 asymptotically as ¢ — 400 by just choosing the
boundary control to be equal to 1.

One can gain further intuition about the fact that this situation is likely to occur in the
following example. Consider p such that there exists t* for which u(t*) = 0, then the equation
becomes uncontrollable due to the lack of diffusion.

e Universal control criteria? We lack of systematic methods to guarantee controllability under
state constraints. Existing methods are based either on dissipation plus local controllability or
on the staircase method that relies on paths of steady-states.

But, in the simple dynamics presented above, there cannot exist any steady-state paths and,
furthermore, there is no dissipativity towards w = 6. Thus, more general and precise criteria for
controllability are needed.

In Figure we show two simulations corresponding to different decay rates of p(-). The simulation
suggests that if 4/ << —1 the controllability might be lost, while it might still be achieved when |u/| is
small enough.

The dynamics of (11.1) serves as a simple example to illustrate that new phenomena can arise for non-
autonomous dynamics. These type of dynamics are of paramount importance in mathematical biology.
One of the simplest examples are reaction-diffusion equations in growing domains [21]

Oyu — .UJamacu = f(u) (‘Tat) € (07l(t)) x (OvT)
(11.4) w(e,t) = a(e,t)  (0,6) € {0,1(6)} x (0,T)
0 <u(z,0)<1
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FIGURE 11.1. Space-time representation of the optimal control to w = 6 with initial data
w = 0. The spatial domain is the unit interval. The nonlinearity is f(s) = s(s—0)(1—s)
with 6 = 0.33 (therefore fo ) > 0) and the controls have been limited to take values
in [0, 1]. The optimal control problem consists on minimizing the L? distance of the final
state to w = 0. At the left, with diffusivity p(t) = 0.125exp(—4t), we observe a lack
of controllability from the initial state w = 0 to the target w = 6. At the right, with
diffusivity p(t) = 0.125exp(—2.5t), we observe controllability to the steaty-state w = 6.

where a € L°((0,T) x 99;1[0,1]) and I(t) € C*((0,T);RT). By scaling this model can be rewritten in
the form:
Opu — pAu = fu,t) (x,t) € QA x(0,T)
(11.5) u(z,t) = a(z,t) (z,t) € 9Q x (0,7)
0<u(z,0) <1
where a € L*((0,T) x 0%;[0,1]).

The treatment of the controllability of free boundary problems arising in many physical and biological
phenomena is also worth mentioning. In these problems, the domain itself is part of the unknowns of the
system and the evolution of the boundary is coupled with the state, as, for instance, in

Oyu — Nazzu = f(u) (.CL', t) € (07 l(t)) X (07 T)
(11.6) u(0,¢) = a(t) te (0,T)
’ U(t) = g(l(t),u(1,t),0,u(l,t)) t<€(0,T)
0 < u(z,0) <1

In such setting, even the controllability without state constraints is a challenging question .

In these notes we have mainly considered steady-states as targets. One could also consider, for instance,
periodic (in time) trajectories as targets as well. The staircase method seems to be insufficient for
tackling this problem. The need of developing new methods for handling more general target trajectories
is relevant both for autonomous and non-autonomous dynamics.

Here we mainly focused on scalar equations. These problems are even more challenging in the context of
reaction-diffusion systems with state constraints.

2) The construction of paths of steady-states. We lack of systematic methods to build paths of
steady-states and this requires, in each case, a fine understanding of the properties of the system under
consideration and a combination of ad-hoc arguments.

Building those paths for general equations of the form

Oru — div (A(z)Vu) + (b(x), Vu) = f(u, ) (z,t) € Q x (0,7),
u=a(x,t) (z,t) € 092 x (0,T),
0 <u(z,0) <1 z €Q,

is a highly non trivial task.
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These problems are relevant since heterogeneities are essential for modeling purposes, since, most often,
environments are diverse and/or space-dependent. For instance, the growth of the population can be
larger in some locations due to a higher capacity, or the diffusion might be smaller because of the
topopraphy of the territory where population diffuses. In [84], a particular type of heterogeneity is
considered.

In the multidimensional setting the problem of controlling the system with controls acting only on part of
the boundary is also worth considering. In [84,/106], the control is assumed to act on the whole boundary.
But one could consider more general problems of the following form, with controls localized on a subset
of the boundary:

(z,t) € 2 x(0,7),

(z,t) € n x (0,T),

(z,t) € 0Q\n x (0,7,

(z,t) € Q x[0,T],

with n C 0.

In this setting it is unclear what the structure of the set of admissible state-states is and how the paths

of steady-states can be constructed. The following general question arises:

Given two admissible steady-states, can we guarantee the existence (or not) of a path of admissible
steady-states linking the two steady-states, without explicitly constructing a path?

A partial negative answer is given in [106], where, using the comparison principle, the authors establish
a necessary condition for the existence of an admissible path between two steady-states.

Understanding the nature of the set of steady-states and its connectivity is a major problem, of indepen-
dent mathematical interest, with many potential applications, aside from control.

3) More general diffusion terms and systems. In these lecture notes, diffusion has been modeled by
the Laplace operator. However, there are several other relevant linear and nonlinear diffusion operators
whose analysis is even more challenging. This is the case, for instance, when considering the porous
medium equation [19}43},/87}/119|:

Oy — Oy (™) = f(u) (x,t) € (0,L) x (0,7,
w(0,t) = a1(t), u(L,t) = as(t) te(0,7),
0 <u(z,t) < (z,t) € (0,L) x [0,T].

or other nonlinear problems [3,/4].

The analysis of fractional diffusion, [2/12,47], and non-local reaction terms, [52], would require also of
important further developments.

Reaction-diffusion systems deserve a special mention. For instance, in the context of evolutionary game
theory, |53H55], one deals with more than two interaction strategies. Earlier in the paper we motivated
the problem with a two strategy game that was reduced to a single evolution equation. However, if we
deal with more strategies, the reduction to a scalar equation is not possible and one is led to consider
systems of the form:

Opur — i Auy = fi(ur,uz,uz) (1) € Qx (0,7),

Opug — paAug = fo(uy, ug, us) (z,t) € 2 x(0,T),

Opuz — p3Aug = fa(ur,uz,uz)  (z,t) € Q2 x (0,7),

uy = a(x,t) € [0,1] (x,t) € 02 x (0,T),
%ujz() (x,t) € 02 x (0,T) j=2,3,
0 < w(z,0) < 1 i=1,2,3.

The constrained controllability of linear parabolic systems has been implemented in [69]. Note, however,
that a phase plane analysis will be more intricate as the complexity of the nonlinear ODE system increases
significantly with the dimension.

In practical situations it may make sense to consider a continuum of strategies. For instance, in linguistics,
most of the individuals are not perfectly bilingual, and their mastery of the minority language can range
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within a continuum spectrum. Interactions among individuals can increase or decrease in this trait. We
refer to [7] for the modelling of these scenarios.

4) Optimal constrained controls

We have seen that the length of the domain is a crucial parameter to determine the controllability of
the equation. This fact can also be linked to the problem of optimal placement of controls. For large
domains, boundary control is not sufficiently effective. However, the situation might be different if we
consider interior control.

For instance, in the one-dimensional case, if we set homogeneous Neumann boundary conditions and a
pointwise control in the middle of the interval, by symmetry, we also observe the existence of fundamental
obstructions as the domain grows. But, if we allow ourselves to choose the region in which the control
is to be placed, one can clearly split the control region into small pieces distributed over the domain so
that barrier functions cannot exist.

This fact can be easily understood for one-dimensional homogeneous reaction-diffusion equations. How-
ever, the optimal placement of controllers in the multi-dimensional context is a challenging topic. For
related literature on the placement of sensors and actuators we refer to [99H101].

The existence of a minimal controllability time and the nature of minimal-time controls is another in-
teresting topic. Simulations suggest that a bang-bang control might be possible for the minimal time
control. One possible way to address these questions would be to make use of the Pontryagin maximum
principle (see [73] for similar questions).

It is also important to underline that the staircase method gives a way to control the system, in which the
trajectory remains inside a tubular neighborhood of the path of steady-states. Knowing that, generally
speaking, there is not a unique way to reach a specific configuration, the issue of analyzing the efficiency
of the different control methodologies arises. This problem can be addressed from the perspective of
different optimality criteria: the L?-norms of control/state to go from 0 to 6, for instance, the minimal
time, etc.

5) Other models and hyperbolic problems. The comparison principle played a strong role in the
analysis we conducted for parabolic models. However, the controllability issues are also relevant for
hyperbolic models, for instance, for the semilinear wave equation:

Oppu — O = f(u) (x,t) € (0,L) x (0,T),
u(z,t) = a(z,t) (z,t) € {0, L} x (0,7),
0<u(z,t)<1 (x,t) € (0,L) x [0,T).

The equation above has the same steady-states than the semilinear heat equation discussed in this text.
This means that the paths of steady-states and nontrivial solutions are the same. However, for the wave
equation, we do not have a maximum principle, and this means that barriers might be avoidable, see [94].

On the other hand, the damped semilinear wave equation (telegraph equation) might present, under
certain conditions, a maximum principle (see [42]). The same problems arise for other relevant systems
as well, for instance, in thermoelasticity, [125].

Generally speaking, control theory is intimately related to modeling issues. The natural constraints of
the process and model under consideration will typically give rise to new mathematical challenges from
a control perspective.

Diffusion models are appropriate for simple living species or chemicals. When dealing with intelligent
animals, the understanding of their motion in the environment is essential. In this situation finite-
dimensional models can also be appropriate, and the role of the network in which individuals move plays
a crucial role in the dynamics [90}113].
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