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Abstract

We consider a convex set Ω and look for the optimal convex sensor ω ⊂ Ω of a given measure that minimizes
the maximal distance to the points of Ω. This problem can be written as follows

inf{dH(ω,Ω) | |ω|= c and ω ⊂ Ω},

where c ∈ (0, |Ω|), dH being the Hausdorff distance.
We show that the parametrization via the support functions allows us to formulate the geometric optimal

shape design problem as an analytic one. By proving a judicious equivalence result, the shape optimization
problem is approximated by a simpler minimization of a quadratic function under linear constraints. We then
present some numerical results and qualitative properties of the optimal sensors and exhibit an unexpected
symmetry breaking phenomenon.
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1 Introduction
The optimal shape and placement of sensors frequently arises in industrial applications such as urban planning
and temperature and pressure control in gas networks. Roughly, a sensor is optimally designed and placed if
it assures the maximum observation of the phenomenon under consideration. Naturally, it is often designed in
a goal oriented manner, constrained by a suitable PDE, accounting for the physics of the process. For more
examples and details, we refer to the following non exhaustive list of works [19, 18, 17, 10]. Recently, with the
emergence of data driven methods, several authors considered approaches based on Machine Learning in order
to accelerate the computational methods, we refer for example to [20, 22, 24, 26].

Here, we address the problem in a purely geometric setting, without involving the specific PDE model. We
consider a simple and natural geometric criterion of performance, based on distance functions. But, as we shall
see, tackling it will require to employ geometric analysis methods.

More precisely, we address the issue of designing an optimal sensor inside a given set in such a way to mini-
mize the maximal distance from the sensor to all the points of the largest domain. This type of questions naturally
arises in optimal resources distribution problems as one wants to minimize the maximal distance between the re-
sources and the species present in the considered environment. Also in urban planning, it makes sense to look
for the optimal design and placement of some facility (for example a park or an artificial lake) inside a city while
taking into account a certain equity criterion that consists in minimizing the maximal distance from any point in
the city to the facility. These problems can then be formulated in a shape optimization framework. Indeed, given
a set 
 � R2, and a mass fraction c 2 (0; j
j), the problem can be mathematically formulated as follows:

inffsup
x2


d(x; !) j j!j= c and ! � 
g;

where d(x; !) := infy2!kx�yk is the minimal distance from x to !. In fact, the problem can be written in terms
of the classical Hausdorff distance dH (see Section 2.2) as when ! � 
, one has

sup
x2


d(x; !) = dH(!;
):

We are then interested in considering the following problem

inffdH(!;
) j j!j= c and ! � 
g; (1)

where c 2 (0; j
j).

By using a homogenization strategy, which consists in uniformly distributing the mass of the sensor over 

(see Figure 1), we see that problem (1) does not admit a solution as the infimum vanishes and is asymptotically
attained by a sequence of disconnected sets with an increasing number of connected components. It is then
necessary to impose additional constraints on ! in order to obtain the existence of optimal solutions. In the
present paper, we focus on the convexity constraint and assume that both the set 
 and the sensor ! are planar
convex bodies. Then, given a convex bounded domain 
 2 R2, we are interested in the numerical and theoretical
study of the following problem:

inffdH(!;
) j ! is convex, j!j= c and ! � 
g; (2)

where c 2 (0; j
j).

Figure 1: The homogenization strategy.
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A �rst important result of the present paper is the following:

Theorem 1 The functionf : c 2 [0; j
 j] 7 �! inf f dH (!; 
) j ! is convex,j! j= c and ! � 
 g is continuous
and strictly decreasing. Moreover, for everyc 2 [0; j
 j], problem(2) admits solutions and is equivalent to the
following shape optimization problems:

(I) minf dH (!; 
) j ! is convex,j! j� c and! � 
 g.

(II) minfj ! j j ! is convex; dH (!; 
) = f (c) and! � 
 g.

(III) minfj ! j j ! is convex; dH (!; 
) � f (c) and! � 
 g,

in the sense that any solution of one of the problems also solves the other ones.

In addition to its importance from a theoretical point of view (as we shall see in Section 4), the equivalence
result above allows to drastically simplify the numerical resolution of problem (2): indeed, as it is explained in
Section 5.1 the equivalent problem(III ) can be reformulated via the support functionsh andh
 of the sets!
and
 in the following analytical form:

8
>>><

>>>:

inf
h2 H 1

per(0 ;2� )

1
2

R2�
0 (h02 � h2)d�;

h00+ h � 0 (in the sense of distributions);

h
 � f (c) � h � h
 :

whereH 1
per(0; 2� ) is the set ofH 1 functions that are2� -periodic andc 2 [0; j
 j]. This analytical problem is then

approximated by a �nite dimensional problem involving the truncated Fourier series of the support functionsh
as in [2, 3], which yields to a simple minimization problem of a quadratic function under linear constraints. For
more details on the support function parametrization, we refer to Section 2.1 and for the complete description of
the numerical scheme used in the paper, we refer to Section 5.

One could expect that solutions of (2) will inherit the symmetries of the set
 . We show that this is not always
the case and highlight a symmetry breaking phenomenon appearing when
 is a square, see Figure 2. Our result
can be stated as follows:

Theorem 2 Let 
 = [0 ; 1] � [0; 1] be the unit square. There exists a thresholdc0 2 (0; 1) such that:

• If c 2 [c0; 1], then the solution of(2) is given by the square of areac and same axes of symmetry as
 .

• If c 2 [0; c0), then the solution of(2) is given by a suitable rectangle.

c = 0 :7 c = 0 :5 c = 0 :2 c = 0 :1 c = 0

Figure 2: Optimal shapes when
 is a square, forc 2 f 0:7; 0:5; 0:2; 0:1; 0g.

The paper is organized as follows: in Section 2, we present the notations used and recall some classical results
on the support function which is a classical parametrization of convex sets that allows to formulate the considered
geometric problems as purely analytic ones. In section 3, we present the proof of Theorem 1. Section 4 is devoted
to the proof of Theorem 2 and some qualitative properties of intrinsic interest: namely, we prove that when the set

 is a polygon, the optimal sensor is also a polygon. At last, in Section 5, we present a numerical framework for
solving the problem and show that thanks to the equivalence result of Theorem 1, problem (2) can be numerically
addressed by a simple minimization of a quadratic function under some linear constrains.
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2 Notations and useful results

2.1 De�nition of the support function and classical results

If 
 is convex (not necessarily containing the origin), its support function is de�ned as follows:

h
 : x 2 R2 7 �! supfhx; yi j y 2 
 g:

Since the functionsh
 satisfy the scaling propertyh
 (tx ) = th 
 (x) for t > 0, it can be characterized by its
values on the unit sphereS1 or equivalently on the interval[0; 2� ]. We then adopt the following de�nition:

De�nition 3 The support function of a planar bounded convex set
 is de�ned on[0; 2� ] as follows:

h
 : [0; 2� ) 7 �! sup
���

cos�
sin �

�
; y

�
j y 2 


�
:

Figure 3: The support function of the convex
 .

The support function has some interesting properties:

• It allows to provide a simple criterion of the convexity of
 . Indeed,
 is convex if and only ifh00

 + h
 � 0

in the sense of distributions, see for example [21].

• It is linear for the Minkowski sum and dilatation. Indeed, if
 1 and
 2 are two convex bodies and�; � > 0,
we have

h� 
 1 + � 
 2 = �h 
 1 + �h 
 2 ;

see [21, Section 1.7.1].

• It allows to parametrize inclusion in a simple way. Indeed, if
 1 and
 2 are two convex sets, we have


 1 � 
 2 () h
 1 � h
 2 :

• It also provides elegant formulas for some geometrical quantities. For example the perimeter and the area
of a convex body
 are given by

P(
) =
Z 2�

0
h
 (� )d� and j
 j=

1
2

Z 2�

0
h
 (� )(h00


 (� ) + h
 (� ))d� =
1
2

Z 2�

0
(h0



2 � h2


 )d�;

and the Hausdorff distance between two convex bodies
 1 and
 2 is given by

dH (
 1; 
 2) = max
� 2 [0;2� ]

jh
 1 (� ) � h
 2 (� )j;

see [21, Lemma 1.8.14].
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2.2 Notations

• Kc corresponds to the class of planar, closed, bounded and convex subsets of
 , wherec 2 [0; j
 j].

• If X andY are two subsets ofRn , the Hausdorff distance between the setsX andY is de�ned as follows

dH (X; Y ) = max(sup
x 2 X

d(x; Y ); sup
y2 Y

d(y; X )) ;

whered(a; B) := inf b2 B ka � bk quanti�es the distance from the pointa to the setB . Note that when
! � 
 , as it is the case in the problems considered in the present paper, the Hausdorff distance is given by

dH (!; 
) := sup
x 2 


d(x; ! ):

• If 
 is a convex set, thenh
 corresponds to its support function as de�ned in Section 2.1.

• Given a convex set
 , we denote by
 � t its inner parallel set at distancet � 0, which is de�ned by


 � t := f x j d(x; @
) � tg:

• H 1
per(0; 2� ) is the set ofH 1 functions that are2� -periodic.

3 Proof of Theorem 1

For the convenience of the reader, we decomposed the proof in 3 parts: �rst, we prove the existence of solu-
tions of problem (2). Then, we prove the monotonicity and continuity of the functionf : c 2 [0; j
 j] 7 �!
minf dH (!; 
) j ! 2 K cg. At last, we present the proof of the equivalence between the four shape optimization
problems stated in Theorem 1.

3.1 Existence of minimizers

Proposition 4 Problem(2) admits solutions.

Proof.
First, we note that the functional! 7 �! dH (!; 
) is 1-Lipschitz (thus continuous) with respect to the Haus-

dorff distance. Indeed, for every convex sets! 1 and! 2, we have

jdH (! 1; 
) � dH (! 2; 
) j= jkh
 � h! 1 k1 �k h
 � h! 2 k1 j � k h! 1 � h! 2 k1 = dH (! 1; ! 2):

Let (! n ) be a minimizing sequence for problem (2), i.e., such that! n 2 K c and

lim
n ! + 1

dH (! n ; 
) = inf f dH (!; 
) j ! 2 K cg:

Since all the convex sets! n are included in the bounded set
 , we have by Blaschke's selection Theorem (see
[21, Th 1.8.7]) that there exists a convex set! � � 
 such that(! n ) converges up to a subsequence (that we also
denote by(! n )) to ! � with respect to the Hausdorff distance. By the continuity of the volume functional with
respect to the Hausdorff distance, we have

j! � j= lim
n ! + 1

j! n j= c;

which means that! � 2 K c. Moreover, by the continuity of! 7 �! dH (!; 
) with respect to the Hausdorff
distance, we have that

lim
n ! + 1

dH (! n ; 
) = dH (! � ; 
) :

This shows that! � is a solution of problem (2).
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3.2 Monotonicity and continuity

Proposition 5 The functionf : c 2 [0; j
 j] 7 �! minf dH (!; 
) j ! 2 K cg is continuous and strictly decreasing.

Proof. Continuity:
Let c0 2 (0; j
 j). By Proposition 4, for everyc 2 [0; j
 j], there exists! c solution of the problem

minf dH (!; 
) j ! 2 K cg:

• We �rst show aninferior limit inequality . Let (cn )n � 1 a sequence converging toc0 such that

lim inf
c! c0

dH (! c; 
) = lim
n ! + 1

dH (! cn ; 
) :

Since all the convex sets! cn are included in the bounded set
 , we have, by Blaschke selection theorem
and the continuity of the functional! 7 �! d(!; 
) and the volume, the existence of a set! � 2 K c0 that is
a limit of a subsequence still denoted by(! cn ) with respect to the Hausdorff distance. We then have

f (c0) � dH (! � ; 
) = lim
n ! + 1

dH (! cn ; 
) = lim inf
c! c0

dH (! c; 
) = lim inf
c! c0

f (c):

• It remains to provea superior limit inequality . Let (cn )n � 1 a sequence converging toc0 such that

lim sup
c! c0

f (c) = lim
n ! + 1

f (cn ):

Let us now consider the following family of convex sets

Qc :=

(
(! c0 ) � � c if c � c0;

(1 � tc)! c0 + tc
 if c > c0;

where� c is chosen inR+ in such a way that

j(! c0 ) � � c j= c

andtc is chosen in[0; 1] in such a way that

j(1 � tc)! c0 + tc
 j= c:

The mapc 2 [0; j
 j] 7 �! Qc is continuous with respect to the Hausdorff distance andQc0 = ! c0 .

Using the de�nition off , we have

8n 2 N� ; f (cn ) � dH (Qcn ; 
) :

Passing to the limit, we get

lim sup
c! c0

f (c) = lim
n ! + 1

f (cn ) � lim
n ! + 1

dH (Qcn ; 
) = dH (! c0 ; 
) = f (c0):

As a consequence, we �nally getlim
c! c0

f (c) = f (c0), which proves the continuity off .

Monotonicity:
Let 0 � x < y � j 
 j. We consider! 2 K x and such thatf (x) = dH (!; 
) . We have

f (y) � dH ((1 � ty )! + ty 
 ; 
) = kh(1 � t y ) ! + t y 
 � h
 k1 = (1 � ty )kh! � h
 k1 = (1 � ty )f (x) < f (x);

wherety 2 (0; 1] is chosen such thatj(1 � ty )! + ty 
 j= y.
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3.3 The equivalence between the problems

We then obtain the following important proposition that provides the equivalence between four different shape
optimization problems.

Proposition 6 Let c 2 [0; j
 j]. The following shape optimization problems are equivalent

(I) minf dH (!; 
) j ! is convex,j! j= c and! � 
 g.

(II) minf dH (!; 
) j ! is convex,j! j� c and! � 
 g.

(III) minfj ! j j ! is convex; dH (!; 
) = f (c) and! � 
 g.

(IV) minfj ! j j ! is convex; dH (!; 
) � f (c) and! � 
 g,

in the sense that any solution to one of the problems also solves the other ones.

Proof. Let us prove the equivalence between the four problems.

• We �rst show that any solution of (I) solves (II): let! c be a solution to (I). Then for every convex! � 

such thatj! j� c, one has

dH (!; 
) � f (j! j) � f (c) = dH (! c; 
) ;

where we used the monotonicity off given by Theorem 5: therefore! c solves (II).

• Reciprocally, let now! c be a solution of (II): we want to show that! c must be of volumec. We notice that

f (c) � dH (! c; 
) � f (j! cj) � f (c);

where the �rst inequality follows as the problem (II) allows more candidates than in the de�nition off , and
the last inequality uses again the monotonicity off . Thereforef (c) = f (j! cj), and sincef is continuous
and strictly decreasing, we obtainj! cj= c, which implies that! c solves (I).

We proved the equivalence between problems (I) and (II); the equivalence between problems (III) and (IV) is
shown by similar arguments. It remains to prove the equivalence between (I) and (III).

• Let ! c be a solution of (I), which means that! c 2 K c anddH (! c; 
) = f (c). Then for every convex
! � 
 such thatdH (!; 
) = f (c), we have

f (c) = dH (!; 
) � f (j! j);

thus, sincef is decreasing, we getc = j! cj� j ! j, which means! c solves (III).

• Let now! 0
c be a solution of (III). We have

f (c) = dH (! 0
c; 
) � f (j! 0

cj);

thus, by monotonicity off we getc � j ! 0
cj. On the other hand, since! 0

c solves (III) and that there exists
! c solution to (I), we havej! 0

cj� c, which �nally gives j! 0
cj= c and shows that! 0

c solves (I).

4 Proof of Theorem 2 and some qualitative results

4.1 Saturation of the Hausdorff distance

Proposition 7 Let ! be a solution of problem(2). Then, there exist (at least) two different couples of points
(x1; y1); (x2; y2) 2 @! � @
 such that

kx1 � y1k= kx2 � y2k= dH (!; 
) :

Proof. Let us argue by contradiction. We assume that exist only one couple(x1; y1) 2 @! � @
 such that

kx1 � y1k= dH (!; 
) :

Let x 2 @! different fromx1. By cutting an in�nitesimal portion of the the convex! (see Figure 4), we obtain
a set! " such thatdH (!; 
) = dH (! " ; 
) (because we assumed that the Hausdorff distance is attained at only
one couple of points) andj! j> j! " j, for suf�ciently small values of" . Thus,! is not a solution of the third
problem of Proposition 6, which is absurd since! is assumed to be a solution of problem (2) (which is proven to
be equivalent to the later one in Proposition 6).
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Figure 4: The sets! (in red) and! " (in blue).

4.2 Polygonal domains

Proposition 8 If the set
 is a polygon, then any solution of problem(2) is also a polygon.

Proof. Let us denote byv1; : : : ; vN , with N � 3, the vertices of the polygon
 and consider! a solution of
problem (3).

The distance functionx 7 �! miny2 ! kx � yk is convex, thus, it is well known that its maximal value on the
convex polygon
 is attained at some vertices that we denote by(v0

k )k2 J1;K K, whereK � N . Note that since
! a solution of problem (3), we haveK � 2 by Proposition 7. Moreover, for everyk 2 J1; K Kthere exists a
uniqueuk 2 @!such thatkv0

k � uk k= dH (!; 
) , which is the projection of the vertexv0
k onto the convex sensor

! . Let us consider two successive projection pointsu1 andu2 and assume without loss of generality that their
coordinates are given by(0; 0) and(x0; 0), with x > 0, see Figure 5.

We consider the altitudeh � 0 de�ned as follows

h := supf s j 9x 2 [0; x0]; such that(x; s) 2 ! g:

Let us argue by contradiction and assume thath > 0. For " > 0, we consider! " := ! \ f y � h � "g, see
Figure 5. For suf�ciently small values of" > 0, we have

dH (! " ; 
) = dH (!; 
) and j! " j< j! j;

which means that! is not a solution of the problem

minfj ! j j dH (!; 
) = f (c) and! � 
 g;

that is equivalent to problem (2) by Proposition 6. This provides a contradiction since! is assumed to be a
solution of problem (2). We then have thath = 0 , which means that the segment of extremitiesu1 andu2 is
included in the boundary of the optimal set! . By repeating the same argument with the successive couple of
pointsuk anduk+1 (with the conventionuk+1 = u1), we prove that the boundary of the optimal set! is exactly
given by the union of the segments of extremitiesuk anduk+1 which means that! is a polygon (ofK sides).
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Figure 5: The polygon
 and the sensor! .

4.3 Application to the square: symmetry breaking

In this section, we combine the results of Propositions 6 and 8 to solve problem (3) when
 is a square. This leads
to observe the non uniqueness of the optimal shape and a symmetry breaking phenomenon. The phenomenon
might seem surprising as one could expect that the optimal sensor will inherit all the symmetries of
 .

Let 
 = [0 ; 1] � [0; 1], we are interested in solving problem (2) stated as follows

minf dH (!; 
) j ! � 
 is convex andj! j= cg; (3)

with c 2 [0; j
 j].
Before presenting the proof, we present the solutions for different values ofc:

c = 0 :7 c = 0 :5 c = 0 :2 c = 0 :1 c = 0

Figure 6: Optimal shapes when
 is a square, forc 2 f 0:7; 0:5; 0:2; 0:1; 0g.

Remark 9 As one observes in Figure 6, for values ofc close toj
 j= 1 , the optimal sensor is a square and thus
has the same symmetries of
 , but for small values ofc, the optimal sensor is no longer the square but a certain
rectangle. One should then note that the optimal sensor is not necessarily unique (as one can consider rotating
the rectangle with an angle�= 2) and it does not necessarily inherit all the symmetries of the shape
 (as it is not
symmetrical with respect to the diagonals of
 ).

Let us now present the details of the proof. By Propositions 6 and 8, problem (3) is equivalent to the problem

minfj ! j j ! � 
 is a convex quadrilateral anddH (!; 
) = � g; (4)

with � 2 [0; 1
2 ]. In the following proposition, we completely solve problem (4).

Proposition 10 Let 
 = [0 ; 1] � [0; 1] be the unit square and� 2 [0; 1
2 ). The solution of problem(4) is given by
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