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Abstract

We consider a convex set Ω and look for the optimal convex sensor ω ⊂ Ω of a given measure that minimizes
the maximal distance to the points of Ω. This problem can be written as follows

inf{dH(ω,Ω) | |ω|= c and ω ⊂ Ω},

where c ∈ (0, |Ω|), dH being the Hausdorff distance.
We show that the parametrization via the support functions allows us to formulate the geometric optimal

shape design problem as an analytic one. By proving a judicious equivalence result, the shape optimization
problem is approximated by a simpler minimization of a quadratic function under linear constraints. We then
present some numerical results and qualitative properties of the optimal sensors and exhibit an unexpected
symmetry breaking phenomenon.
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1 Introduction
The optimal shape and placement of sensors frequently arises in industrial applications such as urban planning
and temperature and pressure control in gas networks. Roughly, a sensor is optimally designed and placed if
it assures the maximum observation of the phenomenon under consideration. Naturally, it is often designed in
a goal oriented manner, constrained by a suitable PDE, accounting for the physics of the process. For more
examples and details, we refer to the following non exhaustive list of works [19, 18, 17, 10]. Recently, with the
emergence of data driven methods, several authors considered approaches based on Machine Learning in order
to accelerate the computational methods, we refer for example to [20, 22, 24, 26].

Here, we address the problem in a purely geometric setting, without involving the specific PDE model. We
consider a simple and natural geometric criterion of performance, based on distance functions. But, as we shall
see, tackling it will require to employ geometric analysis methods.

More precisely, we address the issue of designing an optimal sensor inside a given set in such a way to mini-
mize the maximal distance from the sensor to all the points of the largest domain. This type of questions naturally
arises in optimal resources distribution problems as one wants to minimize the maximal distance between the re-
sources and the species present in the considered environment. Also in urban planning, it makes sense to look
for the optimal design and placement of some facility (for example a park or an artificial lake) inside a city while
taking into account a certain equity criterion that consists in minimizing the maximal distance from any point in
the city to the facility. These problems can then be formulated in a shape optimization framework. Indeed, given
a set Ω ⊂ R2, and a mass fraction c ∈ (0, |Ω|), the problem can be mathematically formulated as follows:

inf{sup
x∈Ω

d(x, ω) | |ω|= c and ω ⊂ Ω},

where d(x, ω) := infy∈ω∥x−y∥ is the minimal distance from x to ω. In fact, the problem can be written in terms
of the classical Hausdorff distance dH (see Section 2.2) as when ω ⊂ Ω, one has

sup
x∈Ω

d(x, ω) = dH(ω,Ω).

We are then interested in considering the following problem

inf{dH(ω,Ω) | |ω|= c and ω ⊂ Ω}, (1)

where c ∈ (0, |Ω|).

By using a homogenization strategy, which consists in uniformly distributing the mass of the sensor over Ω
(see Figure 1), we see that problem (1) does not admit a solution as the infimum vanishes and is asymptotically
attained by a sequence of disconnected sets with an increasing number of connected components. It is then
necessary to impose additional constraints on ω in order to obtain the existence of optimal solutions. In the
present paper, we focus on the convexity constraint and assume that both the set Ω and the sensor ω are planar
convex bodies. Then, given a convex bounded domain Ω ∈ R2, we are interested in the numerical and theoretical
study of the following problem:

inf{dH(ω,Ω) | ω is convex, |ω|= c and ω ⊂ Ω}, (2)

where c ∈ (0, |Ω|).

Figure 1: The homogenization strategy.

2



A first important result of the present paper is the following:

Theorem 1 The function f : c ∈ [0, |Ω|] 7 −→ inf{dH(ω,Ω) | ω is convex, |ω|= c and ω ⊂ Ω} is continuous
and strictly decreasing. Moreover, for every c ∈ [0, |Ω|], problem (2) admits solutions and is equivalent to the
following shape optimization problems:

(I) min{dH(ω,Ω) | ω is convex, |ω|≤ c and ω ⊂ Ω}.

(II) min{|ω| | ω is convex, dH(ω,Ω) = f(c) and ω ⊂ Ω}.

(III) min{|ω| | ω is convex, dH(ω,Ω) ≤ f(c) and ω ⊂ Ω},

in the sense that any solution of one of the problems also solves the other ones.

In addition to its importance from a theoretical point of view (as we shall see in Section 4), the equivalence
result above allows to drastically simplify the numerical resolution of problem (2): indeed, as it is explained in
Section 5.1 the equivalent problem (III) can be reformulated via the support functions h and hΩ of the sets ω
and Ω in the following analytical form:

inf
h∈H1

per(0,2π)

1
2

∫ 2π

0
(h′2 − h2)dθ,

h′′ + h ≥ 0 (in the sense of distributions),

hΩ − f(c) ≤ h ≤ hΩ.

where H1
per(0, 2π) is the set of H1 functions that are 2π-periodic and c ∈ [0, |Ω|]. This analytical problem is then

approximated by a finite dimensional problem involving the truncated Fourier series of the support functions h
as in [2, 3], which yields to a simple minimization problem of a quadratic function under linear constraints. For
more details on the support function parametrization, we refer to Section 2.1 and for the complete description of
the numerical scheme used in the paper, we refer to Section 5.

One could expect that solutions of (2) will inherit the symmetries of the set Ω. We show that this is not always
the case and highlight a symmetry breaking phenomenon appearing when Ω is a square, see Figure 2. Our result
can be stated as follows:

Theorem 2 Let Ω = [0, 1]× [0, 1] be the unit square. There exists a threshold c0 ∈ (0, 1) such that:

• If c ∈ [c0, 1], then the solution of (2) is given by the square of area c and same axes of symmetry as Ω.

• If c ∈ [0, c0), then the solution of (2) is given by a suitable rectangle.

c = 0.7 c = 0.5 c = 0.2 c = 0.1 c = 0

Figure 2: Optimal shapes when Ω is a square, for c ∈ {0.7, 0.5, 0.2, 0.1, 0}.

The paper is organized as follows: in Section 2, we present the notations used and recall some classical results
on the support function which is a classical parametrization of convex sets that allows to formulate the considered
geometric problems as purely analytic ones. In section 3, we present the proof of Theorem 1. Section 4 is devoted
to the proof of Theorem 2 and some qualitative properties of intrinsic interest: namely, we prove that when the set
Ω is a polygon, the optimal sensor is also a polygon. At last, in Section 5, we present a numerical framework for
solving the problem and show that thanks to the equivalence result of Theorem 1, problem (2) can be numerically
addressed by a simple minimization of a quadratic function under some linear constrains.
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2 Notations and useful results

2.1 Definition of the support function and classical results
If Ω is convex (not necessarily containing the origin), its support function is defined as follows:

hΩ : x ∈ R2 7 −→ sup{⟨x, y⟩ | y ∈ Ω}.

Since the functions hΩ satisfy the scaling property hΩ(tx) = thΩ(x) for t > 0, it can be characterized by its
values on the unit sphere S1 or equivalently on the interval [0, 2π]. We then adopt the following definition:

Definition 3 The support function of a planar bounded convex set Ω is defined on [0, 2π] as follows:

hΩ : [0, 2π) 7 −→ sup

{〈(
cos θ

sin θ

)
, y

〉
| y ∈ Ω

}
.

Figure 3: The support function of the convex Ω.

The support function has some interesting properties:

• It allows to provide a simple criterion of the convexity of Ω. Indeed, Ω is convex if and only if h′′
Ω+hΩ ≥ 0

in the sense of distributions, see for example [21].

• It is linear for the Minkowski sum and dilatation. Indeed, if Ω1 and Ω2 are two convex bodies and α, β > 0,
we have

hαΩ1+βΩ2
= αhΩ1

+ βhΩ2
,

see [21, Section 1.7.1].

• It allows to parametrize inclusion in a simple way. Indeed, if Ω1 and Ω2 are two convex sets, we have

Ω1 ⊂ Ω2 ⇐⇒ hΩ1 ≤ hΩ2 .

• It also provides elegant formulas for some geometrical quantities. For example the perimeter and the area
of a convex body Ω are given by

P (Ω) =

∫ 2π

0

hΩ(θ)dθ and |Ω|= 1

2

∫ 2π

0

hΩ(θ)(h
′′
Ω(θ) + hΩ(θ))dθ =

1

2

∫ 2π

0

(h′
Ω
2 − h2

Ω)dθ,

and the Hausdorff distance between two convex bodies Ω1 and Ω2 is given by

dH(Ω1,Ω2) = max
θ∈[0,2π]

|hΩ1(θ)− hΩ2(θ)|,

see [21, Lemma 1.8.14].
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2.2 Notations
• Kc corresponds to the class of planar, closed, bounded and convex subsets of Ω, where c ∈ [0, |Ω|].

• If X and Y are two subsets of Rn, the Hausdorff distance between the sets X and Y is defined as follows

dH(X,Y ) = max(sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)),

where d(a,B) := infb∈B∥a − b∥ quantifies the distance from the point a to the set B. Note that when
ω ⊂ Ω, as it is the case in the problems considered in the present paper, the Hausdorff distance is given by

dH(ω,Ω) := sup
x∈Ω

d(x, ω).

• If Ω is a convex set, then hΩ corresponds to its support function as defined in Section 2.1.

• Given a convex set Ω, we denote by Ω−t its inner parallel set at distance t ≥ 0, which is defined by

Ω−t := {x | d(x, ∂Ω) ≥ t}.

• H1
per(0, 2π) is the set of H1 functions that are 2π-periodic.

3 Proof of Theorem 1
For the convenience of the reader, we decomposed the proof in 3 parts: first, we prove the existence of solu-
tions of problem (2). Then, we prove the monotonicity and continuity of the function f : c ∈ [0, |Ω|] 7 −→
min{dH(ω,Ω) | ω ∈ Kc}. At last, we present the proof of the equivalence between the four shape optimization
problems stated in Theorem 1.

3.1 Existence of minimizers
Proposition 4 Problem (2) admits solutions.

Proof.
First, we note that the functional ω 7 −→ dH(ω,Ω) is 1-Lipschitz (thus continuous) with respect to the Haus-

dorff distance. Indeed, for every convex sets ω1 and ω2, we have

|dH(ω1,Ω)− dH(ω2,Ω)|= |∥hΩ − hω1
∥∞−∥hΩ − hω2

∥∞| ≤ ∥hω1
− hω2

∥∞= dH(ω1, ω2).

Let (ωn) be a minimizing sequence for problem (2), i.e., such that ωn ∈ Kc and

lim
n→+∞

dH(ωn,Ω) = inf{dH(ω,Ω) | ω ∈ Kc}.

Since all the convex sets ωn are included in the bounded set Ω, we have by Blaschke’s selection Theorem (see
[21, Th 1.8.7]) that there exists a convex set ω∗ ⊂ Ω such that (ωn) converges up to a subsequence (that we also
denote by (ωn)) to ω∗ with respect to the Hausdorff distance. By the continuity of the volume functional with
respect to the Hausdorff distance, we have

|ω∗|= lim
n→+∞

|ωn|= c,

which means that ω∗ ∈ Kc. Moreover, by the continuity of ω 7 −→ dH(ω,Ω) with respect to the Hausdorff
distance, we have that

lim
n→+∞

dH(ωn,Ω) = dH(ω∗,Ω).

This shows that ω∗ is a solution of problem (2).
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3.2 Monotonicity and continuity
Proposition 5 The function f : c ∈ [0, |Ω|] 7 −→ min{dH(ω,Ω) | ω ∈ Kc} is continuous and strictly decreasing.

Proof. Continuity:
Let c0 ∈ (0, |Ω|). By Proposition 4, for every c ∈ [0, |Ω|], there exists ωc solution of the problem

min{dH(ω,Ω) | ω ∈ Kc}.

• We first show an inferior limit inequality. Let (cn)n≥1 a sequence converging to c0 such that

lim inf
c→c0

dH(ωc,Ω) = lim
n→+∞

dH(ωcn ,Ω).

Since all the convex sets ωcn are included in the bounded set Ω, we have, by Blaschke selection theorem
and the continuity of the functional ω 7 −→ d(ω,Ω) and the volume, the existence of a set ω∗ ∈ Kc0 that is
a limit of a subsequence still denoted by (ωcn) with respect to the Hausdorff distance. We then have

f(c0) ≤ dH(ω∗,Ω) = lim
n→+∞

dH(ωcn ,Ω) = lim inf
c→c0

dH(ωc,Ω) = lim inf
c→c0

f(c).

• It remains to prove a superior limit inequality. Let (cn)n≥1 a sequence converging to c0 such that

lim sup
c→c0

f(c) = lim
n→+∞

f(cn).

Let us now consider the following family of convex sets

Qc :=

{
(ωc0)−τc if c ≤ c0,

(1− tc)ωc0 + tcΩ if c > c0,

where τc is chosen in R+ in such a way that

|(ωc0)−τc |= c

and tc is chosen in [0, 1] in such a way that

|(1− tc)ωc0 + tcΩ|= c.

The map c ∈ [0, |Ω|] 7 −→ Qc is continuous with respect to the Hausdorff distance and Qc0 = ωc0 .

Using the definition of f , we have

∀n ∈ N∗, f(cn) ≤ dH(Qcn ,Ω).

Passing to the limit, we get

lim sup
c→c0

f(c) = lim
n→+∞

f(cn) ≤ lim
n→+∞

dH(Qcn ,Ω) = dH(ωc0 ,Ω) = f(c0).

As a consequence, we finally get lim
c→c0

f(c) = f(c0), which proves the continuity of f .

Monotonicity:
Let 0 ≤ x < y ≤ |Ω|. We consider ω ∈ Kx and such that f(x) = dH(ω,Ω). We have

f(y) ≤ dH((1− ty)ω + tyΩ,Ω) = ∥h(1−ty)ω+tyΩ − hΩ∥∞= (1− ty)∥hω − hΩ∥∞= (1− ty)f(x) < f(x),

where ty ∈ (0, 1] is chosen such that |(1− ty)ω + tyΩ|= y.
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3.3 The equivalence between the problems
We then obtain the following important proposition that provides the equivalence between four different shape
optimization problems.

Proposition 6 Let c ∈ [0, |Ω|]. The following shape optimization problems are equivalent

(I) min{dH(ω,Ω) | ω is convex, |ω|= c and ω ⊂ Ω}.

(II) min{dH(ω,Ω) | ω is convex, |ω|≤ c and ω ⊂ Ω}.

(III) min{|ω| | ω is convex, dH(ω,Ω) = f(c) and ω ⊂ Ω}.

(IV) min{|ω| | ω is convex, dH(ω,Ω) ≤ f(c) and ω ⊂ Ω},

in the sense that any solution to one of the problems also solves the other ones.

Proof. Let us prove the equivalence between the four problems.

• We first show that any solution of (I) solves (II): let ωc be a solution to (I). Then for every convex ω ⊂ Ω
such that |ω|≤ c, one has

dH(ω,Ω) ≥ f(|ω|) ≥ f(c) = dH(ωc,Ω),

where we used the monotonicity of f given by Theorem 5: therefore ωc solves (II).

• Reciprocally, let now ωc be a solution of (II): we want to show that ωc must be of volume c. We notice that

f(c) ≥ dH(ωc,Ω) ≥ f(|ωc|) ≥ f(c),

where the first inequality follows as the problem (II) allows more candidates than in the definition of f , and
the last inequality uses again the monotonicity of f . Therefore f(c) = f(|ωc|), and since f is continuous
and strictly decreasing, we obtain |ωc|= c, which implies that ωc solves (I).

We proved the equivalence between problems (I) and (II); the equivalence between problems (III) and (IV) is
shown by similar arguments. It remains to prove the equivalence between (I) and (III).

• Let ωc be a solution of (I), which means that ωc ∈ Kc and dH(ωc,Ω) = f(c). Then for every convex
ω ⊂ Ω such that dH(ω,Ω) = f(c), we have

f(c) = dH(ω,Ω) ≥ f(|ω|),

thus, since f is decreasing, we get c = |ωc|≤ |ω|, which means ωc solves (III).

• Let now ω′
c be a solution of (III). We have

f(c) = dH(ω′
c,Ω) ≥ f(|ω′

c|),

thus, by monotonicity of f we get c ≥ |ω′
c|. On the other hand, since ω′

c solves (III) and that there exists
ωc solution to (I), we have |ω′

c|≥ c, which finally gives |ω′
c|= c and shows that ω′

c solves (I).

4 Proof of Theorem 2 and some qualitative results

4.1 Saturation of the Hausdorff distance
Proposition 7 Let ω be a solution of problem (2). Then, there exist (at least) two different couples of points
(x1, y1), (x2, y2) ∈ ∂ω × ∂Ω such that

∥x1 − y1∥= ∥x2 − y2∥= dH(ω,Ω).

Proof. Let us argue by contradiction. We assume that exist only one couple (x1, y1) ∈ ∂ω × ∂Ω such that

∥x1 − y1∥= dH(ω,Ω).

Let x ∈ ∂ω different from x1. By cutting an infinitesimal portion of the the convex ω (see Figure 4), we obtain
a set ωε such that dH(ω,Ω) = dH(ωε,Ω) (because we assumed that the Hausdorff distance is attained at only
one couple of points) and |ω|> |ωε|, for sufficiently small values of ε. Thus, ω is not a solution of the third
problem of Proposition 6, which is absurd since ω is assumed to be a solution of problem (2) (which is proven to
be equivalent to the later one in Proposition 6).
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Figure 4: The sets ω (in red) and ωε (in blue).

4.2 Polygonal domains
Proposition 8 If the set Ω is a polygon, then any solution of problem (2) is also a polygon.

Proof. Let us denote by v1, . . . , vN , with N ≥ 3, the vertices of the polygon Ω and consider ω a solution of
problem (3).

The distance function x 7 −→ miny∈ω∥x − y∥ is convex, thus, it is well known that its maximal value on the
convex polygon Ω is attained at some vertices that we denote by (v′k)k∈J1,KK, where K ≤ N . Note that since
ω a solution of problem (3), we have K ≥ 2 by Proposition 7. Moreover, for every k ∈ J1,KK there exists a
unique uk ∈ ∂ω such that ∥v′k −uk∥= dH(ω,Ω), which is the projection of the vertex v′k onto the convex sensor
ω. Let us consider two successive projection points u1 and u2 and assume without loss of generality that their
coordinates are given by (0, 0) and (x0, 0), with x > 0, see Figure 5.

We consider the altitude h ≥ 0 defined as follows

h := sup{s | ∃x ∈ [0, x0], such that (x, s) ∈ ω}.

Let us argue by contradiction and assume that h > 0. For ε > 0, we consider ωε := ω ∩ {y ≤ h − ε}, see
Figure 5. For sufficiently small values of ε > 0, we have

dH(ωε,Ω) = dH(ω,Ω) and |ωε|< |ω|,

which means that ω is not a solution of the problem

min{|ω| | dH(ω,Ω) = f(c) and ω ⊂ Ω},

that is equivalent to problem (2) by Proposition 6. This provides a contradiction since ω is assumed to be a
solution of problem (2). We then have that h = 0, which means that the segment of extremities u1 and u2 is
included in the boundary of the optimal set ω. By repeating the same argument with the successive couple of
points uk and uk+1 (with the convention uk+1 = u1), we prove that the boundary of the optimal set ω is exactly
given by the union of the segments of extremities uk and uk+1 which means that ω is a polygon (of K sides).
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Figure 5: The polygon Ω and the sensor ω.

4.3 Application to the square: symmetry breaking
In this section, we combine the results of Propositions 6 and 8 to solve problem (3) when Ω is a square. This leads
to observe the non uniqueness of the optimal shape and a symmetry breaking phenomenon. The phenomenon
might seem surprising as one could expect that the optimal sensor will inherit all the symmetries of Ω.

Let Ω = [0, 1]× [0, 1], we are interested in solving problem (2) stated as follows

min{dH(ω,Ω) | ω ⊂ Ω is convex and |ω|= c}, (3)

with c ∈ [0, |Ω|].
Before presenting the proof, we present the solutions for different values of c:

c = 0.7 c = 0.5 c = 0.2 c = 0.1 c = 0

Figure 6: Optimal shapes when Ω is a square, for c ∈ {0.7, 0.5, 0.2, 0.1, 0}.

Remark 9 As one observes in Figure 6, for values of c close to |Ω|= 1, the optimal sensor is a square and thus
has the same symmetries of Ω, but for small values of c, the optimal sensor is no longer the square but a certain
rectangle. One should then note that the optimal sensor is not necessarily unique (as one can consider rotating
the rectangle with an angle π/2) and it does not necessarily inherit all the symmetries of the shape Ω (as it is not
symmetrical with respect to the diagonals of Ω).

Let us now present the details of the proof. By Propositions 6 and 8, problem (3) is equivalent to the problem

min{|ω| | ω ⊂ Ω is a convex quadrilateral and dH(ω,Ω) = δ}, (4)

with δ ∈ [0, 1
2 ]. In the following proposition, we completely solve problem (4).

Proposition 10 Let Ω = [0, 1]× [0, 1] be the unit square and δ ∈ [0, 1
2 ). The solution of problem (4) is given by
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• the square of vertices 

M1(δ
√
2
2 , δ

√
2
2 ),

M2(1− δ
√
2
2 , δ

√
2
2 ),

M3(1− δ
√
2
2 , 1− δ

√
2
2 ),

M4(δ
√
2
2 , 1− δ

√
2
2 ),

if δ ≤ 1
2
√
2

,

• and by one of the two rectangles of vertices

M1(δ cos θδ, δ sin θδ),

M2(1− δ cos θδ, δ sin θδ),

M3(1− δ cos θδ, 1− δ sin θδ),

M4(δ cos θδ, 1− δ sin θδ),

with θδ ∈ {arcsin
(

1
2
√
2δ

)
− π

4 ,
3π
4 − arcsin

(
1

2
√
2δ

)
}, if δ ∈ [ 1

2
√
2
, 1
2 ].

Proof. We denote by A1(0, 0), A2(1, 0), A3(1, 1) and A4(0, 1) the vertices of the square Ω and by B1, B2, B3

and B4 the balls of radius δ and centers respectively A1, A2, A3 and A4, see Figure 7.
Let ω be a solution of problem (4) (it is then also a solution of problem (3) by Proposition 6). By the result of

Proposition 8, since Ω is a square (in particular a polygon), the optimal shape ω is also a polygon with at most
four vertices. Since dH(ω,Ω) = δ, the polygon ω has four different vertices. Each one of them is contained in a
set Bk ∩Ω, with k ∈ J1, 4K. In fact, since the optimal set ω minimises the area for a given Hausdorff distance, we
deduce that all its vertices are located on the arcs of circles ∂Bk ∩ Ω given by the intersection of the boundaries
of the balls Bk and the square Ω. Indeed, if it were not the case, one could easily construct a convex polygon
strictly included in ω (thus, with strictly less volume) such that its Hausdorff distance to the square Ω is equal to
δ, see Figure 7

Figure 7: The polygon in red has a smallest area than the one in green and its Hausdorff distance to the square Ω
is equal to δ.
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Now that we know that each vertex of the optimal sensor ω is located on a (different) arc of circle ∂Bk ∩ Ω,
with k ∈ J1, 4K, let us denote them by 

M1(δ cos θ1, δ sin θ1),

M2(1− δ cos θ2, δ sin θ2),

M3(1− δ cos θ3, 1− δ sin θ3),

M4(δ cos θ4, 1− δ sin θ4),

where θ1, θ2, θ3, θ4 ∈ [0, π
2 ], see Figure 8.

Figure 8: Parametrization via the angles θ1, θ2, θ3 and θ4.

The area of the polygon ω can be expressed via the coordinates of its vertices as follows:

|ω|= 1

2

4∑
k=1

(xkyk+1 − xk+1yk),

where (xk, yk) correspond to the coordinates of the points Mk, with the convention (x5, y5) := (x1, y1).
We obtain by straightforward computations:

|ω|= 1− 1

2
δ

4∑
k=1

cos θk − 1

2
δ

4∑
k=1

sin θk +
1

2
δ2

4∑
k=1

(cos θk sin θk+1 + cos θk+1 sin θk),

with the convention θ5 = θ1.
We then perform a judicious factorization to obtain the following formula

|ω|= 1

2
((1− δ cos θ1 − δ cos θ3)(1− δ sin θ2 − δ sin θ4) + (1− δ cos θ2 − δ cos θ4)(1− δ sin θ1 − δ sin θ3)).

11



We then use the inequality a+ b ≥ 2
√
ab, where the equality holds if and only of a = b, and obtain

1− δ cos θ1 − δ cos θ3 = ( 12 − δ cos θ1) + ( 12 − δ cos θ3) ≥ 2
√

( 12 − δ cos θ1)(
1
2 − δ cos θ3),

1− δ sin θ2 − δ sin θ4 = ( 12 − δ sin θ2) + ( 12 − δ sin θ4) ≥ 2
√

( 12 − δ sin θ2)(
1
2 − δ sin θ4),

1− δ cos θ2 − δ cos θ4 = ( 12 − δ cos θ2) + ( 12 − δ cos θ4) ≥ 2
√

( 12 − δ cos θ2)(
1
2 − δ cos θ4),

1− δ sin θ1 − δ sin θ3 = ( 12 − δ sin θ1) + ( 12 − δ sin θ3) ≥ 2
√

( 12 − δ sin θ1)(
1
2 − δ sin θ3),

with equality if and only if
θ1 = θ3 and θ2 = θ4. (5)

We then write

|ω| ≥
√
(
1

2
− δ cos θ1)(

1

2
− δ cos θ3)

√
(
1

2
− δ sin θ2)(

1

2
− δ sin θ4)

+

√
(
1

2
− δ cos θ2)(

1

2
− δ cos θ4)

√
(
1

2
− δ sin θ1)(

1

2
− δ sin θ3)

and use again the inequality a+ b ≥ 2
√
ab to obtain

(6)
|ω|≥ 2

(
(
1

2
− δ cos θ1)(

1

2
− δ cos θ3)(

1

2
− δ sin θ2)(

1

2
− δ sin θ4)

) 1
4

·
(
(
1

2
− δ cos θ2)(

1

2
− δ cos θ4)(

1

2
− δ sin θ1)(

1

2
− δ sin θ3)

) 1
4

,

where the equality holds if and only if one has

(
1

2
−δ cos θ1)(

1

2
−δ cos θ3)(

1

2
−δ sin θ2)(

1

2
−δ sin θ4) = (

1

2
−δ cos θ2)(

1

2
−δ cos θ4)(

1

2
−δ sin θ1)(

1

2
−δ sin θ3).

(7)
By combining the equality conditions (5) and (7), we show that the inequality (6) is an equality if and only if

θ1 = θ3, θ2 = θ4 and

(
1

2
− δ cos θ1)(

1

2
− δ sin θ2) = (

1

2
− δ sin θ1)(

1

2
− δ cos θ2),

which is equivalent to
1
2 − δ cos θ1
1
2 − δ sin θ1

=
1
2 − δ cos θ2
1
2 − δ sin θ2

,

which holds if and only if θ1 = θ2, because the function θ 7 −→
1
2−δ cos θ
1
2−δ sin θ

is a bijection from [0, π
2 ] to [1 −

2δ, 1
1−2δ ].

We then conclude that the equality in (6) holds if and only if θ1 = θ2 = θ3 = θ4, which means that the optimal
sensor is a rectangle that corresponds to the value of θδ that minimizes the function

fδ : θ ∈ [0,
π

2
] 7 −→

(
1

2
− δ cos θ

)(
1

2
− δ sin θ

)
.

Since we have fδ(
π
2 − θ) = fδ(θ) for every θ ∈ [0, π

4 ], we deduce by symmetry that it is sufficient to study the
function fδ on the interval [0, π

4 ]; we have

∀θ ∈ [0,
π

4
], f ′

δ(θ) = δ(cos θ − sin θ)

(
−1

2
+ δ cos θ + δ sin θ

)
.

12



The function gδ : θ 7 −→ − 1
2 + δ cos θ + δ sin θ is continuous and strictly increasing on [0, π

4 ]. Thus,

gδ([0,
π

4
]) = [gδ(0), gδ(

π

4
)] = [−1

2
+ δ,−1

2
+ δ

√
2].

Then, the sign of gδ on [0, π
4 ] (and thus the variation of fδ , see Figure 9) depends on the value of δ ∈ [0, 1

2 ).
Indeed:

• If δ ≤ 1
2
√
2

(i.e., gδ(π4 ) ≤ 0), then g′ < 0 on (0, π
4 ), which means that fδ is strictly decreasing on [0, π

4 ]

and thus attains its minimal value at θδ = π
4 .

• If δ > 1
2
√
2

(i.e., gδ(π4 ) > 0), then straightforward computations show that the function fδ is strictly

decreasing on [0, θδ] and increasing on [θδ,
π
4 ], with θδ = arcsin

(
1

2
√
2δ

)
− π

4 . Thus, fδ attains its minimal
value at θδ .
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Figure 9: The graphs of the function fδ for the cases: δ = 0.25 in the left and δ = 0.4 in the right.

5 Numerical simulations
In this section, we present the numerical scheme adopted to solve the problems in consideration in the present
paper. In particular, we focus on the following (equivalent) problems:

min{dH(ω,Ω) | ω is convex, |ω|= c and ω ⊂ Ω}, (8)

and
min{|ω| | ω is convex, dH(ω,Ω) ≤ d and ω ⊂ Ω}, (9)

where c, d ≥ 0.
As we shall see, even-though the problems are equivalent (see Theorem 6), problem (9) is much easier to

solve numerically as it is approximated by a simple problem of minimizing a quadratic function under linear
constraints.

5.1 Parametrization of the functionals
It is recalled in Section 2.1 that if both Ω and ω are convex, we have the following formulae for the Hausdorff
distance between ω and Ω

dH(ω,Ω) = ∥hΩ − hω∥∞:= max
θ∈[0,2π]

|hΩ(θ)− hω(θ)|

13



and the area of ω

|ω|= 1

2

∫ 2π

0

hω(h
′′
ω + hω)dθ =

1

2

∫ 2π

0

(h2
ω − h′

ω
2)dθ,

where hΩ and hω respectively correspond to the support functions of the convex sets Ω and ω.
On the other hand, the inclusion constraint ω ⊂ Ω can be expressed by hω ≤ hΩ on [0, 2π] and the convexity

of the sensor ω can also be analytically expressed as follows

h′′
ω + hω ≥ 0,

in the sense of distributions. We refer to [21] for more details and results on convexity.
Therefore, the use of the support functions allows to respectively transform the purely geometrical problems

(8) and (9) into the following analytical ones:

inf
h∈H1

per(0,2π)
∥hΩ − h∥∞,

h ≤ hΩ,

h′′ + h ≥ 0,

1
2

∫ 2π

0
h(h′′ + h)dθ = c.

(10)

and 

inf
h∈H1

per(0,2π)

1
2

∫ 2π

0
h(h′′ + h)dθ,

h ≤ hΩ,

h′′ + h ≥ 0,

∥hΩ − h∥∞≤ d.

(11)

where H1
per(0, 2π) is the set of H1 functions that are 2π-periodic.

Since {
h ≤ hΩ,

∥hΩ − h∥∞≤ d
⇐⇒ hΩ − d ≤ h ≤ hΩ,

problem (11) can be reformulated as follows
inf

h∈H1
per(0,2π)

1
2

∫ 2π

0
h(h′′ + h)dθ,

h′′ + h ≥ 0,

hΩ − d ≤ h ≤ hΩ.

(12)

To perform numerical approximation of optimal shape, we have to retrieve a finite dimensional setting. We
then follow the same ideas in [2, 3] and parametrize the sets via Fourier coefficients of their support functions
truncated at a certain order N ≥ 1. Thus, we look for solutions in the set

HN :=

{
θ 7 −→ a0 +

N∑
k=1

(ak cos (kθ) + bk sin (kθ)) | a0, . . . , aN , b1, . . . , bN ∈ R

}
.

This approach is justified by the following approximation proposition:

Proposition 11 ([21, Section 3.4])
Let Ω ∈ K2 and ε > 0. Then there exists Nε and Ωε with support function hΩε

∈ HNε
such that dH(Ω,Ωε) < ε.

We refer to [2, 4] for other and applications to different problems and some theoretical convergence results.
Let us now consider the regular subdivision (θk)k∈J1,MK of [0, 2π], where θk = 2kπ/M and M ∈ N∗. The

inclusion constraints hΩ(θ)−d ≤ h(θ) ≤ hΩ(θ) and the convexity constraint h′′(θ)+h(θ) ≥ 0 are approximated
by the following 3M linear constraints on the Fourier coefficients:

14



∀k ∈ J1,MK,


hΩ(θk)− d ≤ a0 +

N∑
j=1

(aj cos (jθk) + bj sin (jθk)) ≤ hΩ(θk),

a0 +
N∑
j=1

((1− j2) cos (jθk)aj + (1− j2) sin (jθk)bj) ≥ 0.

At last, the area of the convex set corresponding to the truncated support function of ω at the order N is given
by the following quadratic formula:

|ω|= πa20 +
π

2

N∑
j=1

(1− j2)(a2j + b2j ).

Thus, the infinitely dimensional problems (10) and (12) are approximated by the following finitely dimensional
ones: 

inf
(a0,a1,...,aN ,b1,...,bN )∈R2N+1

max
θ∈[0,2π]

hΩ(θ)− a0 −
N∑
j=1

(aj cos (jθ) + bj sin (jθ)),

∀k ∈ J1,MK, a0 +
N∑
j=1

(aj cos (jθk) + bj sin (jθk)) ≤ hΩ(θk),

∀k ∈ J1,MK, a0 +
N∑
j=1

((1− j2) cos (jθk)aj + (1− j2) sin (jθk)bj) ≥ 0,

πa20 +
π
2

N∑
j=1

(1− j2)(a2j + b2j ) = c.

(13)

and 

inf
(a0,a1,...,aN ,b1,...,bN )∈R2N+1

πa20 +
π
2

N∑
j=1

(1− j2)(a2j + b2j ),

∀k ∈ J1,MK, hΩ(θk)− d ≤ a0 +
N∑
j=1

(aj cos (jθk) + bj sin (jθk)) ≤ hΩ(θk),

∀k ∈ J1,MK, a0 +
N∑
j=1

((1− j2) cos (jθk)aj + (1− j2) sin (jθk)bj) ≥ 0.

(14)

Remark 12 We conclude that the shape optimization problems considered in the present paper are approximated
by problem (14), which simply consists in minimizing a quadratic function under linear constraints.

5.2 Computation of the gradients
A very important step in shape optimization is the computation of the gradients. In our case, the convexity and
inclusion constraints are linear and the area constraint is quadratic. Thus, its gradients are obtained by direct
computations. Nevertheless, the computation of the gradient of the objective function in Problem (13) is not
straightforward as it is defined as a supremum. This is why we use a Danskin’s differentiation scheme [8] to
compute the derivative.

Proposition 13 Let us consider

g : (θ, a0, . . . , bN ) 7 −→ hΩ(θ)− a0 −
N∑

k=1

(ak cos (kθ) + bk sin (kθ))

and
j : (a0, . . . , bN ) 7 −→ max

θ∈[0,2π]
g(θ, a0, . . . , bN ).
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The function j admits directional derivatives in every direction and we have

∂j

∂a0
= −1,

and for every k ∈ J1, NK, 
∂j
∂ak

= max
θ∗∈Θ

− cos (kθ∗),

∂j
∂bk

= max
θ∗∈Θ

− sin (kθ∗),

where
Θ := {θ∗ ∈ [0, 2π] | G(θ∗, a0, . . . , bN ) = max

θ∈[0,2π]
G(θ, a0, . . . , bN )}.

Proof. Since the same scheme is followed for every coordinate, we limit our selves to present the proof for the fist
coordinate a0. In order to simplify the notations, we will write for every x ∈ R, j(x) = j(a0, . . . , ak−1, x, ak+1 . . . , bN )
and G(θ, x) = G(θ, a0, . . . , ak−1, x, ak+1 . . . , bN ).

For every t ≥ 0, we denote by θt ∈ [0, 2π] a point such that

G(θt, ak + t) = j(ak + t) = max
θ∈[0,2π]

G(θ, ak + t).

We have

j(ak + t)− j(ak) = G(θt, ak + t)−G(θ0, ak) ≥ G(θ0, ak + t)−G(θ0, ak) = −t cos (kθ0).

Thus,

∀θ0 ∈ Θ, lim inf
t→0+

j(ak + t)− j(ak)

t
≥ − cos (kθ0),

which means that

lim inf
t→0+

j(ak + t)− j(ak)

t
≥ max

θ0∈Θ
− cos (kθ0). (15)

Let us now consider a sequence (tn) of positive numbers decreasing to 0, such that

lim
n→+∞

j(ak + tn)− j(ak)

tn
= lim sup

t→0+

j(ak + t)− j(ak)

t
.

We have, for every n ≥ 0,

j(ak + tn)− j(ak) = G(θtn , ak + tn)−G(θ0, ak) ≤ G(θtn , ak + tn)−G(θtn , ak) = −tn cos (kθtn).

Thus,

lim sup
t→0+

j(ak + t)− j(ak)

t
= lim

n→+∞

j(ak + tn)− j(ak)

tn
≤ lim sup

n→+∞
− cos (kθn) = − cos (kθ∞),

where θ∞ is an accumulation point of the sequence (θn). It is not difficult to check that θ∞ ∈ Θ. Thus, we have

lim sup
t→0+

j(ak + t)− j(ak)

t
≤ max

θ0∈Θ
− cos (kθ0). (16)

By the inequalities (15) and (16) we deduce the announced formula for the derivative.

5.3 Numerical results
Now that we have parameterized the problem and computed the gradients, we are in position to perform shape
optimization. We use the ’fmincon’ Matlab routine. In the following figures we present the results obtained for
different shapes and different mass fractions c0 := α0|Ω|, where α0 ∈ {0.01, 0.1, 0.4, 0.7}.
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α0 = 0.7 α0 = 0.4 α0 = 0.1 α0 = 0.01

Figure 10: Obtained optimal shapes for α0 ∈ {0.01, 0.1, 0.4, 0.7} and different choices of Ω.

5.4 Optimal spherical sensors and relation with Chebychev centers
In this section, we show that the ideas developed in the last sections can be efficiently used to numerically solve
the problem of optimal placement of a spherical sensor inside the convex set Ω. We show also that this problem is
related to the task of finding the Chebychev center of the set, i.e., the center of the minimal-radius ball enclosing
the entire set Ω.

We are then considering the following optimal placement problem

min{dH(B,Ω) | B is a ball included in Ω and of radius R}, (17)

with R ∈ [0, r(Ω)], where r(Ω) is the inradius of Ω that is the radius of the biggest ball contained in Ω.
Since the support function of a ball B of center (x, y) and radius R is simply given by hB : θ 7 −→ R +

x cos θ + y sin θ, problem (17) can be formulated in terms of support functions as follows:

min
(x,y)

{∥hΩ −R+ x cos θ + y sin θ∥∞ | ∀θ ∈ [0, 2π], R+ x cos θ + y sin θ ≤ hΩ(θ)}. (18)

Here also, as in Section 5.1, the inclusion constraint B ⊂ Ω (i.e., hB ≤ hΩ) can be approximated by a finite
number of linear inequalities

R+ x cos θk + y sin θk ≤ hΩ(θk),

where θk := 2kπ/M , with k ∈ J1,MK and M chosen equal to 500. Thus, we retrieve a problem of minimizing
the non linear function (x, y) 7 −→ ∥hΩ − R + x cos θ + y sin θ∥∞ (whose gradient is computed by using the
result of Proposition 13) with a finite number of linear constraints. In the following figures, we present some
numerical results:
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R = 3 R = 2 R = 1 R = 0.25

Figure 11: Optimal placement of spherical sensors with different radii R ∈ {0.25, 1, 2, 3}.

At last, we note that solving problem (17) with R = 0 is equivalent to finding the Chebychev center of Ω that
is the center of the minimal-radius ball enclosing the entire set Ω, see Figure 12. This center has been considered
by several authors in different settings especially in functional analysis, we refer for example to [1, 12, 15, 16].

Figure 12: Chebychev centers and circumcircles of different convex sets.

6 Conclusion and perspectives
The problems studied in the present paper involve the distance function, that is quite difficult to deal with from a
numerical perspective especially when performing numerical shape optimization. We would like to mention that
it can be interesting to use a suitable approximation of the distance function based on some PDE results in same
spirit of K. Crane et al. in [7], where the authors introduce a new approach to computing distance based on a heat
flow result of Varadhan [25], which says that the geodesic distance ϕ(x, y) between any pair of points x and y on
a Riemannian manifold can be recovered via a simple pointwise transformation of the heat kernel:

ϕ(x, y) = lim
t−→0

√
−4t log kt,x(y),

where kt,x(y) is called the heat kernel, which measures the heat transferred from a source x to a destination y
after time t. We refer to [7] and [25] for more details and to [23] for an extension to graphs. In the same spirit, one
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could use a suitable approximation of the distance function in terms of the solution of an elliptic PDE, inspired
by the following classical result:

Theorem 14 ([25, Th. 2.3])
Let Ω be an open subset of Rn and ε > 0, we consider the problem{

wε − ε∆wε = 0 in Ω
wε = 1 on ∂Ω

(19)

We have

lim
ε→0

−
√
ε lnwε(x) = d(x, ∂Ω) := inf

y∈∂Ω
∥x− y∥,

uniformly over compact subsets of Ω.

In the following figures, we plot the approximation of the distance function to the boundary obtained via the
result of Theorem 14.

Figure 13: Approximation of the distance function to the boundary via Varadhan’s result of Theorem 14, where
Matlab’s toolbox ’PDEtool’ to solve problem (19), with ε = 10−4.

We note that there are other results of approximation of the distance function via PDEs, see [9] and references
therein. We recall for example the following result of Bernd Kawohl:

Theorem 15 ([11, Th. 1]) We consider the problem{
−∆pup = 1 in Ω

up = 0 on ∂Ω

where ∆p corresponds to the p-Laplace operator, defined as follows

∆pv = div(|∇v|p−2∇v).

We have
lim

p→+∞
up(x) = d(x, ∂Ω) uniformly in Ω.

One advantage of such approximation methods is that they allow to introduce relevant PDE based problems
that may be easier to consider from a numerical point of view than the initial problems involving the distance
function and that are of intrinsic interest. Let us conclude by presenting some examples of such problems:
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• Case of multiple sensors on sets and networks. A natural problem related to the topic of the paper is to
optimally place N sensors (Sk) inside a set or a network Ω in such a way that any point in Ω is ”easily”
reachable from one of the sensors. This problem can be mathematically formulated as follows:

min{dH(Ω,∪N
k=1Sk) = max

y∈Ω
d(y,∪N

k=1Sk) | ∀k ∈ J1, NK, Sk ⊂ Ω}. (20)

where d(y,∪N
k=1Sk) is the minimal (geodesic if Ω is a network) distance from the point y to the union of the

sensors. If we consider (vε) a family of functions approximating the distance function y 7 −→ d(y,∪N
k=1Sk)

when ε goes to 0 (such as the ones defined in Theorems 14 and 15), we may consider approximating
problem (20) by the following one

min{max
y∈Ω

vε | ∀k ∈ J1, NK, Sk ⊂ Ω}. (21)

The advantage of such approximated problems is that they involve elliptic equations that are much easier
to deal with from both theoretical and numerical points of views.

Once problem (21) is solved, the next natural step would be to justify that the obtained solutions converge
to solutions of the initial problem (20). This is classically done by proving Γ-convergence results, see for
example [14, Section 6].

• About the average distance problem. Given a set Ω ⊂ Rn and a subset Σ ⊂ Ω, the average distance to
Σ is defined as follows:

Jp(Σ) :=

∫
Ω

d(x,Σ)pdx,

where p is a positive parameter. The main focus here is to study the shapes Σ that minimize the average dis-
tance and investigate their properties such as symmetries and regularity. This problem has been introduced
in [5, 6] and was studied by many authors in the last years. For a presentation of the problem, we refer
to [13] and to the references therein for related results. Even if these problems are easy to formulate, they
are quite difficult to tackle both theoretically and numerically. It is then interesting use the approximation
results of the distance function to approximate the functional Jp by some functional Jp,ε(Σ) :=

∫
Ω
vpεdx,

where (vε) is a family of functions uniformly converging to d(·,Σ) on Ω when ε goes to 0. We are then led
to consider shape optimization problems of functionals involving solutions of simple elliptic PDEs. Several
results for such functionals are easier to obtain such as Hadamard formulas for the shape derivatives which
are of crucial importance for numerical simulations.
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