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Abstract

Quantitative analysis of systems exhibiting turbulence is challenging due to the lack of exact

solutions and the cost of accurate simulations, but asymptotic or time-averaged properties

can often be bounded rigorously using the background method. This rests on the construc-

tion of a background field for the system subject to a spectral constraint, which requires

that a background-field-dependent linear operator has non-negative eigenvalues. This thesis

develops techniques for the numerical optimisation of background fields and their corre-

sponding bounds.

First, bounds on the asymptotic energy of solutions of the Kuramoto–Sivashinsky equa-

tion are optimised by solving the Euler–Lagrange (EL) equations for the optimal background

field using a time-marching algorithm. It is demonstrated that convergence to incorrect so-

lutions occurs unless the derivation of the EL equations accounts for the multiplicity of

eigenvalues in the spectral constraints.

Second, semidefinite programmes (SDPs) are formulated to approximately solve opti-

misation problems subject to a class of integral inequalities on function spaces, to which

spectral constraints can often be reduced. More precisely, inner and outer approximations

of the feasible set of an integral inequality with one-dimensional compact integration domain,

whose integrand is quadratic in the test functions and affine in the optimisation variables,

are constructed using linear matrix inequalities.

These SDP-based techniques, implemented in the MATLAB toolbox QUINOPT, are

then utilised to bound the dissipation coefficient Cε in stress-driven shear flows, and further

improved to bound the Nusselt number Nu in Bénard–Marangoni convection at infinite

Prandtl number. The results suggest that the existing analytical bounds on Cε attain the

optimal asymptotic scaling, while those on Nu may be lowered by a logarithmic factor

upon constructing a non-monotonic background field. It is also concluded that semidefinite

programming will offer an efficient, robust, and flexible framework to optimise background

fields if the computational challenges presented by large-scale SDPs can be addressed.
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Chapter 1

Introduction

Systems governed by nonlinear partial differential equations (PDEs), whose dynamics are

characterised by complex evolution over time and space, are ubiquitous in physics and engi-

neering. The most notable example is perhaps that of fluid flows, which become turbulent

when the force driving the flow is increased. Turbulent flows are a paradigm for dynamical

systems whose behaviour is chaotic, in the sense that they may appear to lack any spatio-

temporal coherence and that they are extremely sensitive to the initial condition. Such

systems are therefore often referred to as turbulent.

Given the widespread occurrence of turbulent systems, deriving a quantitative description

of their properties is of interest across many scientific disciplines and industries. For instance,

a quick but reliable prediction of the aerodynamic drag of a certain wing-body configura-

tion would enable aircraft manufacturers to assess the performance of innovative aircraft

concepts, and therefore optimise them in order to minimise fuel consumption. Similarly,

knowing how much heat is transported by ocean currents and how much heat, mass, and

energy are exchanged by the ocean and the atmosphere is indispensable in climate science to

develop accurate climate models for weather forecasting (Cushman-Roisin & Beckers, 2011,

chapter 1). As a final example, quantifying the strength of the convective flow of magma

in planetary cores can answer questions in astrophysics, such as how mantle convection

influences the magnetic field of the Earth (Biggin et al., 2012).

Quantitative analysis of a turbulent system, however, often requires sophisticated meth-

ods even if one is interested only in its long-time behaviour or on the time average of a

certain quantity, such as aerodynamic losses or the heat transported by a convecting fluid.

Asymptotic or average properties are the result of highly-nonlinear and seemingly chaotic

processes that take place across a wide range of space and time scales. Consequently, an

exact quantitative description of the average or asymptotic behaviour of a turbulent system

is normally not available unless one analyses in detail its complex spatio-temporal evolution.

To further complicate matters, the state of a system governed by PDEs is a function of space
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and time, so the phase space is infinite-dimensional. This makes the mathematical analysis

challenging: closed-form solutions of PDEs are unavailable in all but a few exceptional cases,

and even proving that a unique solution exists at all times often demands advanced theo-

retical methods. For example, proving that the Navier–Stokes equations, which ostensibly

describe the flow of incompressible fluids, possess a unique smooth solution given smooth

initial conditions is a famous open problem (Carlson et al., 2006). In addition, while it is

sometimes possible to prove that the asymptotic dynamics are governed only by a finite

number of determining modes (Robinson, 2001, chapters 13–16), these are rarely known

explicitly and their number often remains large. All these factors not only hinder analytical

progress, but also pose limits to the range of turbulent systems that can be studied through

direct numerical simulation (DNS) due to the large computational resources required to fully

resolve all relevant spatio-temporal scales.

One approach to bypass the difficulties outlined above is to look for rigorous bounds on

the long-time or time-averaged properties of a turbulent system, rather than try to compute

their value exactly. Bounds are attractive because, as will be explained below, they can

be found without numerical integration of the system’s turbulent dynamics. Consequently,

they give useful quantitative results for systems that are currently beyond the reach of ex-

periments or DNSs. In addition, one can derive bounds that apply to all trajectories in

phase space, meaning that they are valid for all possible ways in which the system can

evolve, independently of the initial condition. Finally, the mathematical analysis used to

derive rigorous bounds proceeds directly from the equations of motion without any addi-

tional ad-hoc assumptions, such as the closure hypotheses used in many classical theories of

hydrodynamic turbulence (Doering & Constantin, 1992). Consequently, one obtains rigor-

ous results against which phenomenological theories and simplified models can be tested in

order to validate or reject them.

In the context of turbulent incompressible fluid flows, the derivation of rigorous bounds

on time averages was pioneered by Malkus, Howard, and Busse (see for example Malkus,

1954; Howard, 1963, 1972; Busse, 1970, 1979). These authors were inspired by the hypoth-

esis that turbulence organises itself to maximise the transport of a certain quantity, such

as heat in convective flows or momentum in shear flows (Malkus, 1954). This suggests the

use of variational calculus to find the flow field that maximises the transport of the relevant

quantity. Of course, considering flows that satisfy the full equations of motion leads to a

variational problem just as difficult as solving the original PDEs. Nonetheless, progress can

be made by carrying out the maximisation over a larger set of flow fields, which satisfy only a

subset of integral constraints derived from the governing equations. Since any flow observed
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Chapter 1. Introduction

(a) (b) (c)

Figure 1.1: Possible background fields for a two-dimensional pressure-driven channel flow.
(a) A piecewise-linear profile. (b) A piecewise-cubic profile. (c) A sinusoidal profile. In all
panels, the background velocity is purely horizontal, varies only in the vertical direction,
and vanishes at the walls. None of the profiles satisfies the equations governing the flow.

in reality must also satisfy these constraints, the maximum of this variational problem is a

rigorous upper bound on the physically realised turbulent transport. One then hopes that

enforcing only a few constraints suffices to obtain a bound that is quantitatively accurate

and, most importantly, whose scaling with the relevant non-dimensional parameters (say,

the Reynolds number in shear flows or the Rayleigh and Prandtl numbers in convection)

is the same as for experimentally or numerically observed flows. However, finding the op-

timal flow fields typically requires the construction of a sophisticated hierarchy of nested

boundary layers (the so-called multi-α solution method, see e.g. Busse, 1979) even when one

only enforces incompressibility, a global power balance, and a suitably horizontal-and-time

averaged version of the equations of motion.

The main limitation of the Malkus–Howard–Busse (MHB) approach to bounding time

averages is that a rigorous bound is obtained only upon finding the optimal flow field among

all admissible ones. This difficulty was overcome in the 1990s by Doering & Constantin, who

introduced the so-called background method to bound the time average of flow functionals

related to the volume-averaged energy dissipation (see for example Doering & Constantin,

1992, 1994, 1996; Constantin & Doering, 1995a,b). The background method relies on the de-

composition of the flow variables into a steady background field, which satisfies the boundary

conditions but is otherwise arbitrary, and a time-dependent fluctuation field, which satisfies

homogeneous boundary conditions. Note that the background field need not solve the gov-

erning equations, nor need it correspond to the time average of any physically realised flow:

the “unphysical” horizontal velocity fields sketched in figure 1.1, for example, are all valid

background velocity fields for a two-dimensional pressure-driven channel flow. Once the

decomposition into the background and fluctuation fields is introduced into the equations

of motion, an argument similar to the “energy stability” analysis (see Straughan, 2004, for

a good introduction to the subject) shows that the functional of interest can be bounded

as a function of the background field, provided that a certain quadratic form that depends
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on it is positive semidefinite. This condition is equivalent to the non-negativity of the spec-

trum of a certain linear operator that depends affinely on the background field and, for this

reason, it has become widely known as the spectral constraint. The key observation is that,

while one would like to optimise the bound over all background fields that satisfy the spec-

tral constraint and the prescribed boundary conditions (hereafter referred to as admissible

background fields), doing so is not required because the construction of any admissible back-

ground field yields a rigorous bound. In particular, one can consider a simple background

field—typically, a piecewise-linear one like that shown in figure 1.1(a)—and use well-known

functional estimates to show that the spectral constraint holds.

The fact that the solution of an infinite-dimensional variational problem is not required

to produce a rigorous bound represents a great simplification compared to the MHB bound-

ing approach. This was key to the success of the background method, which, since its first

formulation, has been applied to bound time-averaged properties of a range of wall-bounded

flows. Examples include: plane Couette flow (Doering & Constantin, 1992, 1994; Marchioro,

1994; Nicodemus et al., 1997a); pressure-driven channel flow (Constantin & Doering, 1995b);

stress-driven parallel shear flows (Tang et al., 2004; Hagstrom & Doering, 2014); Rayleigh–

Bénard convection with a variety of velocity and thermal boundary conditions (Doering

& Constantin, 1996; Constantin & Doering, 1996; Otero et al., 2002; Wittenberg & Gao,

2010; Wittenberg, 2010; Whitehead & Doering, 2011; Goluskin & Doering, 2016); Rayleigh–

Bénard convection at infinite Prandtl number (Constantin & Doering, 1999; Doering &

Constantin, 2001; Yan, 2004; Doering et al., 2006; Otto & Seis, 2011; Whitehead & Doering,

2012; Whitehead & Wittenberg, 2014); Bénard–Marangoni convection (Hagstrom & Doer-

ing, 2010); convection in porous media (Doering & Constantin, 1998; Otero et al., 2004);

internally-heated convection (Whitehead & Doering, 2012; Goluskin, 2015, 2016).

It should also be remarked that, before Doering & Constantin’s formulation of the back-

ground method, similar ideas had been applied to study the long-term dynamics of the

Kuramoto–Sivashinky equation (Kuramoto & Tsuzuki, 1975, 1976; Sivashinsky, 1980). This

is a nonlinear PDE with a hydrodynamic-type nonlinearity that arises, among others, when

studying reaction-diffusion systems near instability (Kuramoto & Tsuzuki, 1975, 1976), the

propagation of flame fronts (Sivashinsky, 1977, 1980; Michelson & Sivashinsky, 1977), and

the evolution of surface waves in thin liquid films (Sivashinsky & Michelson, 1980). More-

over, it has become a paradigm for systems characterised by long-wavelength instability,

i.e., whose Fourier spectrum is unstable at small wavenumbers (Wittenberg, 2002). In this

context, the decomposition into a background field and a perturbation was used to prove
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asymptotic bounds for the total kinetic energy of the system (Nicolaenko et al., 1985; Collet

et al., 1993; Goodman, 1994; Molinet, 2000; Bronski & Gambill, 2006).

The relation between the background method and the MHB approach to bounding time

averages was elucidated by Kerswell (1998, 1999, 2001), who showed that the two techniques

are dual. This means that the variational problems formulated with the background and

MHB methods describe the same saddle point of a certain Lagrangian functional: the for-

mer from above, the latter from below (Kerswell, 1998, 1999, 2001; Plasting & Ierley, 2005).

Consequently, the optimal bound available to the background method coincides with that

obtained from the solution of the MHB variational problem. Duality also offers a useful in-

terpretation of the background field: modulo rescaling, it corresponds to one of the Lagrange

multipliers enforcing the dynamical constraints in the MHB method.

Despite the conceptual advantages offered by the background method compared to the

MHB approach, the construction of a “good” background field remains a fundamental chal-

lenge. While simple profiles and relatively straightforward estimates of the spectral con-

straint often suffice to obtain non-trivial bounds, their asymptotic scaling with the system

parameters may not capture that of the fully optimal result. The best example of this

issue comes from the study of Rayleigh–Bénard convection—the buoyancy-driven motion

of an incompressible fluid bounded by horizontal plates and heated from below—at infi-

nite Prandtl number. In this case one seeks an upper bound on the Nusselt number Nu,

the non-dimensional measure of the vertical heat transfer enhancement by convection, as

a function of the non-dimensional thermal forcing described by the Rayleigh number Ra.

The traditional background method analysis for this problem requires the construction of a

Ra-dependent background temperature field, τ , which varies only in the vertical direction,

matches the temperature of the top and bottom plates, and satisfies an appropriate spectral

constraint. Both the solution of the dual MHB variational problem using asymptotic meth-

ods (Chan, 1971) and a careful numerical optimisation of the background field (Ierley et al.,

2006) suggest the optimal bound Nu . Ra1/3 at large Ra. However, restricting attention

to piecewise-linear background fields such as those sketched in figures 1.2 yields at best

Nu . Ra2/5 when the background field is constant in the bulk of the layer (Doering & Con-

stantin, 2001; Otero, 2002), and Nu . Ra7/20 when it is allowed to vary linearly (Plasting

& Ierley, 2005).

This example highlights that optimisation of the background field is fundamental if

bounds obtained with the background method are to provide accurate quantitative pre-

dictions in practice, or at least as accurate as the method allows. The solution of the

variational problem for the optimal bound, however, is difficult to obtain, mostly due to
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(a)

τ(z)

z

Tbot

Ttop

(b)

τ(z)

z
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Ttop

Figure 1.2: Piecewise-linear background temperature fields, denoted τ(z), for the back-
ground method analysis of infinite-Prandtl-number Rayleigh–Bénard convection. (a) Con-
stant bulk profile, yielding Nu . Ra2/5 (Doering & Constantin, 2001; Otero, 2002). (b)
Linearly varying bulk profile, yielding Nu . Ra7/20 (Plasting & Ierley, 2005). In both pan-
els, z indicates the vertical direction, Ttop denotes the temperature of the top plate, and

Tbot is the (higher) temperature of the bottom plate.

the non-standard nature of the spectral constraint to be imposed on the background field.

The classical approach is to consider the Euler–Lagrange (EL) equations for the optimal

background and fluctuation fields, derived using the calculus of variations after enforcing

the spectral constraint with the usual Lagrange multiplier technique (Doering & Constantin,

1996). An immediate obstacle is that the EL equations are nonlinear, so their solution is

often beyond the reach of analytical work (but see Kerswell, 1997, for an example of how the

duality between the background method and the MHB approach can be exploited to obtain

asymptotic results). The second difficulty is that the EL equations admit multiple solu-

tions, which in geometric terms correspond to different stationary points of the Lagrangian

functional of the variational problem. However, all but one of these solutions are “spurious”,

in the sense that the corresponding background field does not actually satisfy the spectral

constraint imposed by the background method, and therefore does not yield a valid bound.

To avoid convergence to such spurious solutions, the numerical optimisation of back-

ground fields via the EL equations has traditionally required extremely careful computations.

Nicodemus et al. (1997b, 1998) extended preliminary results by Doering & Hyman (1997) for

plane Couette flow using a sophisticated two-stage solution of the boundary-eigenvalue prob-

lem associated with the spectral constraint (recall that this is a positivity condition on the

spectrum of a linear operator dependent on the background field). However, they considered

a restricted form of background field, so their bound can only be consider “semi-optimal”.

Similar semi-optimal bounds have also been computed in the context of Rayleigh–Bénard

convection by considering piecewise-linear profiles and implementing a simpler vanishing de-

terminant technique (Otero et al., 2004; Plasting & Ierley, 2005; Wittenberg & Gao, 2010).

The full optimisation of the background field for plane Couette flow was carried out by Plast-

ing & Kerswell (2003), who employed numerical continuation to track the correct solution of
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the EL equations for increasing Reynolds numbers. This strategy was also utilised by Tang

et al. (2004) to optimise bounds on the energy dissipation of stress-driven shear flows, after

the imposed stress was approximated by a localised body force.

More recently, Wen et al. (2013, 2015) proposed a numerical method that does not rely

on numerical continuation, and that appears to be robustly applicable to a wide range of

problems. The idea is that, in order to solve the EL equations for the optimal background

and fluctuation fields, one can consider all variables to be time-dependent, add suitable

time derivatives to the EL equations, and evolve an initial guess for the solution forward in

time until convergence to a steady state. This amounts to applying the gradient method

to find a saddle point of the Lagrangian functional of the variational problem for the opti-

mal background field, a strategy whose seeds can be found also in an attempt by Gambill

(2006, chapter 6) to optimise background fields for the Kuramoto–Sivashinsky equation.1

Such a “time-marching” approach is attractive because one can leverage established and

computationally efficient numerical integration techniques, and its practical efficacy has

been demonstrated in the context of two-dimensional porous-media convection at infinite

Prandtl-Darcy number. Additionally, and perhaps more importantly, it seems that the

time-marching method cannot converge to spurious solutions. Indeed, for three classical

problems in fluid mechanics (two-dimensional porous-media convection, plane Couette flow,

and two-dimensional Rayleigh–Bénard convection with stress-free isothermal boundaries)

Wen et al. (2015) have proven that spurious solutions are linearly unstable equilibria of the

time-dependent EL equations, and therefore cannot be attracting states.

Such proofs, however, apply only to particular optimal background field problems en-

countered in fluid dynamics, all of which share a similar structure. A general argument is

yet unavailable, and whether the time-marching algorithm can be successfully utilised in

other contexts remains an open question. To provide at least a partial answer, in this thesis

the time-marching algorithm will be applied to optimise bounds on the asymptotic energy

of solutions of the Kuramoto–Sivashinsky equation, derived using the background method.

It will be demonstrated that when the EL equations for the optimal background field are

formulated following the steps outlined by Wen et al. (2015), the time-marching procedure

converges to spurious solutions. It will also be shown that a modification of the EL equa-

tions seems to resolve the issue in practice, enabling the robust computation of the optimal

background field. However, a proof that spurious solutions are linearly unstable remains

unavailable because the argument proposed by Wen et al. (2015) cannot be extended.
1Gambill (2006) did not solve the full EL equations for the Kuramoto–Sivashinsky problem, and only

computed “semi-optimal” background fields. However, his numerical method is a time-dependent formulation
of the gradient method, very similar to that proposed by Wen et al. (2013, 2015).
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There are two other issues that deserve further attention. First, even when convergence

of the time-marching method to spurious solutions can be rigorously excluded, one cannot

guarantee that the desired steady-state solution will actually be reached. As already noted

by Wen et al. (2015), for certain initial conditions the solution of the time-dependent EL

equations may approach a periodic orbit or a chaotic attractor. This was not the case

for the problems solved so far, but the lack of convergence to any steady state remains a

possible issue in general. Second, there exist optimal background field problems for which

the EL equations appear not to be solvable. The difficulty is that, while the convexity of the

variational problem guarantees the existence of a unique optimal background field (Doering

& Constantin, 1996), an optimal fluctuation field may not always be found. This problem

is encountered, for example, when trying to optimise the background field for Bénard–

Marangoni convection at infinite Prandtl number: an extra boundary condition arises when

deriving the EL equation for the optimal fluctuation, which is therefore over-constrained in

general (see chapter 6 for more details). For such optimal background field problems, all

existing numerical methods—including the time-marching algorithm by Wen et al. (2015)—

do not seem applicable, because they rely on a direct solution of the EL equations.

For the reasons just described, this thesis will investigate whether it is possible to optimise

background fields using alternative computational techniques, which do not require the

solution of the EL equations. Building on work by Fantuzzi & Wynn (2015), a new approach

will be developed, based on the fact that a spectral constraint on the background field

requires that a linear operator, affinely dependent on the background field, has non-negative

eigenvalues. Thus, a spectral constraint can be seen as the infinite-dimensional equivalent of

a linear matrix inequality (LMI), a positive semidefinitess condition on a matrix whose entries

depend affinely on a set of optimisation variables (see chapter 2 for a precise definition).

Optimisation problems with LMIs, known as semidefinite programmes (SDPs), are well

known in the optimisation community and efficient algorithms for their solution (with proven

convergence guarantees) exist. In addition, finely tuned implementations are available in

open-source software packages such as SeDuMi (Sturm, 1999, 2002), SDPT3 (Toh et al.,

1999; Tütüncü et al., 2003), and Mosek (Andersen et al., 2009). This suggests a “discretise-

then-optimise” strategy, according to which the infinite-dimensional variational problem for

the optimal background field is first recast as a finite-dimensional SDP, and then solved

using general-purpose optimisation algorithms. Such a line of work contrasts the traditional

approach based on the derivation and numerical solution of the EL equations, which can

instead be interpreted as an “optimise-then-discretise” strategy.
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One final open problem is how, if at all, numerical optimisation of the background fields

can be used to inform rigorous analysis. In fact, one is often interested in bounding the

properties of turbulent systems at asymptotically large values of the governing parameters

(say, as the Reynolds number of a certain turbulent flow tends to infinity). Numerically

optimal bounds at fixed, large parameter values can give a strong indication of the best

possible asymptotic behaviour, but one would like to construct analytically a background

field that achieves it. When piecewise-linear or similarly simple profiles do not suffice, back-

ground fields modelled on the numerically optimal ones may be used. However, considerable

ingenuity is often required to identify which features of the optimal background fields af-

fect the asymptotic behaviour of the corresponding bounds, and which ones do not. One

way to assist the analysis is to optimise the bounds numerically, but only over restricted

classes of background fields. For instance, if the fully optimal background fields are non-

monotonic, then optimising bounds only over monotonic background fields can reveal if

non-monotonicity is important. One benefit of the SDP-based numerical methods devel-

oped in this thesis is that extra constraints can be imposed easily, provided that they admit

an LMI representation. The extent to which this flexibility can be taken advantage of in

order to aid the analytical construction of near-optimal background fields will be examined

in chapter 6, in the context of Bénard–Marangoni convection at infinite Prandtl number.

1.1 Outline of the thesis

The general mathematical notation used in this work is defined in section 1.2 below, although

additional notation is also introduced as needed throughout the thesis.

Chapter 2 gives a brief overview of Lagrangian duality for finite-dimensional linear op-

timisation problems, of linear matrix inequalities, and of semidefinite programmes. This

chapter is not meant as an extensive review of semidefinite programming, but rather as a

short introduction for non-expert readers. For this reason, only notions that are essential

for this thesis are covered, while algorithms for the solution of SDPs are not described.

The time-marching algorithm of Wen et al. (2015) is applied to bound the asymptotic

energy of the solution of the Kuramoto–Sivashinsky equation in chapter 3. Numerical re-

sults demonstrate that convergence to spurious solutions can occur, but also that a small

modification of the method appears to remove this problem. This modification is suggested

by the interpretation of the relevant spectral constraints as an infinite-dimensional LMI, so

chapter 3 serves as further motivation for the development of SDP-based methods.

27



Section 1.2. Notation

Chapter 4 develops strategies based on semidefinite programming that can be used to

solve variational problems arising from the background method analysis. For many classical

background method problems, a multi-dimensional spectral constraint can be transformed

into a set of one-dimensional spectral constraints upon consideration of Fourier expansions in

all but one spatial direction. Each of these Fourier-transformed spectral constraints requires

the positivity of an integral quadratic form on a space of functions. Consequently, chapter 4

focusses on optimisation problems subject to a particular class of one-dimensional integral

inequality constraints, which encompasses many Fourier-transformed spectral constraints.

The methods developed in chapter 4 are subsequently applied to bound the energy dissi-

pation in stress-driven shear flows (chapter 5) and the convective heat transport in Bénard–

Marangoni convection at infinite Prandtl number (chapter 6). Chapter 6 also demonstrates

that semidefinite programming allows for the identification of key properties of the optimal

background field, to be exploited in rigorous analysis. Other advantages and limitations of

optimisation methods based on SDPs are discussed throughout chapters 4–6.

Finally, chapter 7 summarises the main findings of this work, highlights remaining open

questions, and outlines challenges to be addressed by future research.

1.2 Notation

As usual, Nn is the set of non-negative n-dimensional multi-indices (non-negative integer n-

tuples), Rn is the n-dimensional Euclidean space, Cn is the 2n-dimensional space of complex-

valued n-component vectors, Rm×n is the space of m × n matrices, and Sn is the space of

n × n real-valued symmetric matrices. The real and imaginary parts of a complex-valued

quantity q (either a complex number or a complex-valued function) are denoted by Re(q)

and Im(q), respectively, while q∗ is the complex conjugate of q.

Vectors and matrices are denoted, respectively, by lower- and upper-case boldface char-

acters, e.g., a vector v ∈ Rn and a matrix A ∈ Rm×n. Exceptions to this rule are the zero

vector and the zero matrix, both denoted by 0. The identity matrix is denoted by I, and 1

is the vector of ones. For clarity, the size of the zero and identity matrices is sometimes in-

dicated by subscripts, e.g., 0m×n or In. All vectors should be understood as column vectors

unless otherwise stated. For any vector or matrix, the superscript T denotes transposition.

The usual `p (1 ≤ p <∞) and `∞ norms of a vector v ∈ Kn (K ≡ R or K ≡ C) are

‖v‖p :=

(
n∑
i=1

|vi|p
) 1

p

, ‖v‖∞ := max
1≤i≤n

|vi| ,
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and the shorthand notation ‖v‖ ≡ ‖v‖2 is also used for the standard Euclidean norm.

The range, null space, trace, and rank of a matrix A ∈ Rm×n are denoted by img(A),

ker(A), tr(A), and rank(A), respectively. The Frobenius inner product of matrices A,B ∈
Rm×n, denoted by 〈A,B〉, is defined as 〈A,B〉 := tr(ATB). Accordingly, the Frobenius

norm of A ∈ Rm×n is

‖A‖f := 〈A,A〉 =

 n∑
i=1

m∑
j=1

|Ai,j |2
 1

2

.

Given vectors u, v ∈ Rn, the inequalities u ≥ v and u > v should be interpreted

element-wise, i.e., ui ≥ vi and ui > vi for i = 1, . . . , n. For a matrix A ∈ Sn, the notation

A � 0 (resp. A � 0) means that A is positive semidefinite (resp. positive definite), i.e.,

all its eigenvalues are non-negative (resp. positive) or, equivalently, vTAv ≥ 0 (resp. > 0)

for all v ∈ Rn. In addition, the inequalities A � B and A � B should be interpreted,

respectively, as A−B � 0 and A−B � 0.

Given an open bounded set Ω ⊂ Rn, let the compact set Ω̄ be its closure and, with the

shorthand notation dnx := dx1 · · · dxn, denote its n-dimensional volume by

|Ω| :=
∫

Ω
dnx.

For a positive integer q, Cm(Ω̄,Rq) is the space of m-times continuously differentiable

functions mapping Ω̄ to Rq; the shorthand notation Cm(Ω̄) is also used instead of Cm(Ω̄,R).

Moreover, given 1 ≤ p < ∞, Lp(Ω,Rq) is the usual Lebesgue space of p-integrable vector-

valued functions, while L∞(Ω,Rq) is the space of essentially bounded functions. The stan-

dard Lebesgue norms of f ∈ Lp(Ω,Rq) and g ∈ L∞(Ω,Rq), denoted by ‖f‖p and ‖g‖∞,

are

‖f‖p :=

[∫
Ω

n∑
i=1

|fi(x)|p dnx

] 1
p

, ‖g‖∞ := max
i=1, ..., n

[
ess sup
x∈Ω

gi(x)

]
.

Recall that the essential supremum, ess sup, is the smallest supremum over all sets Ω Z

with Z a zero-measure set (Robinson, 2001, section 1.4.3).

For α ≥ 1, the α-th derivative of a function f(x) is denoted by ∂αf . When α = 1 and

α = 2, however, primes (e.g., f ′) are used where convenient to lighten the notation. When

differentiating a multi-variable functions α times with respect to one of its variables, the

differentiation variable is specified explicitly, for instance ∂αx f := ∂αf
∂xα .

Let u = u(t,x, z) be a real-valued function of a time variable t ∈ [0,+∞), a horizontal

coordinate vector x ∈ Ω ⊂ Rd, and a vertical coordinate z ∈ (a, b) with (a, b) bounded. The
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overline notation u denotes the horizontal and infinite-time average of u, while 〈u〉 denotes
its volume and infinite-time average. More precisely,

u(z) := lim sup
T→+∞

1

|Ω|T

∫ T

0

∫
Ω
u(t,x, z) ddx dt,

〈u〉 := lim sup
T→+∞

1

(b− a) |Ω|T

∫ T

0

∫ b

a

∫
Ω
u(t,x, z) ddx dz dt.

Given functions f(x) and g(x) with x > 0, the notation f ∼ g indicates that f and g are

asymptotically equivalent up to a positive constant, meaning that there exists a constant

C > 0 such that

lim
x→+∞

f(x)

g(x)
= C.

Similarly, the notation f . g indicates that f is asymptotically bounded by g up to a

positive constant, meaning that there exists a constant C > 0 such that

lim
x→+∞

f(x)

g(x)
≤ C.

Finally, functionals are denoted by calligraphic letters and their arguments are specified

inside curly braces. Thus, F{u} denotes the functional F acting on u. The functionals

encountered in this work are defined on affine spaces of functions u : Ω → Rn that satisfy

linear boundary conditions (homogeneous, inhomogeneous, or periodic) on the boundary of

Ω. Let such an affine function space be denoted by U = {u = u0 + v, v ∈ V } where u0 is

any function satisfying the prescribed boundary conditions and V is the linear space defined

by the homogeneous version of the boundary condition. Then, u + hv ∈ U for all u ∈ U ,

h ∈ R, and v ∈ V , so F{u+ hv} is well defined. Given u ∈ U , the variation (or functional

derivative) of F at u is the functional δFδu : V → R such that

δF
δu
{v} := lim

h→0

F{u+ hv} − F{u}
h

,

provided that the limit exists and is finite. If V is a Hilbert space and δF
δu is a bounded

linear functional, then δF
δu can be identified with an element of V by virtue of the Riesz

representation theorem (see for instance Zeidler, 1995, section 2.10). In such cases, the

notation δF
δu is used also to indicate this representing element.
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Chapter 2

Lagrangian duality, linear matrix
inequalities and semidefinite
programming: a review

Linear matrix inequalities and linear optimisation problems with linear matrix inequalities,

known as semidefinite programmes, are well known in the optimisation and control com-

munities. These concepts, together with the idea of Lagrangian duality, play a major role

in this thesis, so they are briefly reviewed here. The purpose of this chapter is to give a

self-contained introduction to material that will be utilised throughout chapters 3–6. For an

in-depth treatment of Lagrangian duality, linear matrix inequalities, and semidefinite pro-

gramming the reader is referred to the excellent works by Boyd et al. (1994), Vandenberghe

& Boyd (1996), Boyd & Vandenberghe (2004), and Parrilo (2013).

2.1 Lagrangian duality

This section offers a brief introduction to Lagrangian duality for inequality-constrained

optimisation problems. The material is adapted from Boyd & Vandenberghe (2004, chapter

5), and we refer the interested reader to their work for a detailed treatment of the subject.

Let x = (xi)
n
i=1 ∈ Rn be an optimisation variable, let f0, . . . , fm : Ω ⊆ Rn → R be given

functions, and consider the optimisation problem (referred to as the primal problem)

min
x∈Ω

f0(x),

s.t. fi(x) ≥ 0, i = 1, . . . , m.

(2.1)

Assume that the problem is feasible, meaning that there exists a feasible point x ∈ Ω that

satisfies the inequality constraints, that there exists an optimal point x?, which minimises

f0(x) subject to the constraints, and that the optimal value p? := f0(x?) is finite.
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Lagrangian duality provides a way to study (2.1) by augmenting the objective func-

tion using the constraints. Given y = (yi)
m
i=1 ∈ Rm, the Lagrangian function (or simply

Lagrangian) for (2.1) is

L(x,y) := f0(x)−
m∑
i=1

yi fi(x), (2.2)

and the Lagrange dual function, or simply dual function, is defined as

g(y) := inf
x∈Ω

L(x,y). (2.3)

The vector y is known as the dual variable, and each entry yi is known as the Lagrange

multiplier for the inequality constraint fi(x) ≥ 0.

The dual function is useful to derive lower bounds on the optimal value p? of (2.1). In

fact, for any y ≥ 0 one has

g(y) = inf
x∈Ω

L(x,y) ≤ L(x?,y) = f0(x?)−
m∑
i=1

yi fi(x
?) ≤ f0(x?) = p?, (2.4)

where the last inequality holds because y ≥ 0 and fi(x?) ≥ 0. In particular, the best lower

bound on p? is found upon solving the so-called dual problem associated with (2.1),

sup
y

g(y)

s.t. y ≥ 0.

(2.5)

Let d? denote the optimal value of the dual problem (2.5). The property that d? ≤ p? is

known as weak duality, and it holds for a general problem. If the equality d? = p? is satisfied,

then the dual problem gives a sharp bound on p? and one says that strong duality holds.

Strong duality does not always hold, but if the primal problem (2.1) is convex (meaning

that f0, −f1, . . . , −fm are convex functions) then a sufficient condition for strong duality,

known as Slater’s condition, can be established (Boyd & Vandenberghe, 2004, section 5.2.3).

The following definitions are required.

Definition 2.1. The affine hull of a set Ω ∈ Rn, denoted aff(Ω), is the affine space spanned

by Ω, i.e.,

aff(Ω) :=

{
x ∈ Rn : ∃k ∈ N, x1, . . . , xk ∈ Ω, θ1, . . . , θk ∈ R

such that
k∑
i=1

θi = 1 and x =
k∑
i=1

θixi

}
.
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Definition 2.2. For x ∈ Rn, let B(x, r) := {x ∈ Rn : ‖x‖ < r} be the open ball centred

at x with radius r. The relative interior of a set Ω ∈ Rn, denoted relint(Ω), is the set

relint(Ω) := {x ∈ Ω : B(x, r) ∩ aff(Ω) ⊂ Ω for some r > 0} .

In other words, the relative interior of a set Ω ∈ Rn is the interior of Ω when viewed as

a subset of the affine hull aff(Ω).

Proposition 2.1 (Slater’s condition, Boyd & Vandenberghe, 2004, section 5.3.2). Assume

that the optimisation problem (2.1) is convex, meaning that f0, −f1, . . . , −fm are convex

functions. If there exists x0 ∈ relint(Ω) such that fi(x0) > 0 for all i = 1, . . . , m, then

strong duality holds. Furthermore, there exists a dual variable y? such that y? ≥ 0 and

g(y?) = d?, i.e., the dual problem (2.5) attains its optimal value.

To conclude this section, suppose that strong duality holds for (2.1). Let x? and y? be

the optimal solutions of the primal problem (2.1) and the dual problem (2.5), respectively.

Then, the pair (x?,y?) is a saddle point for the Lagrangian L(x,y) (Boyd & Vandenberghe,

2004, section 5.4), in the sense that for all x ∈ Ω and all y ≥ 0

L(x?,y) ≤ L(x?,y?) ≤ L(x,y?). (2.6)

Consequently, an optimal solution of (2.1) can be computed by finding a saddle point of

L(x,y), and in particular by solving the max-min or min-max problems

p? = sup
y≥0

inf
x∈Ω

L(x,y), p? = inf
x∈Ω

sup
y≥0

L(x,y). (2.7)

2.2 Linear matrix inequalities

Let y = (yi)
m
i=1 ∈ Rm be an optimisation variable and Fi ∈ Sn, i = 0, . . . , m be given

symmetric matrices. A linear matrix inequality (LMI) is a constraint of the form

F (y) := F0 −
m∑
i=1

yiFi � 0. (2.8)

In other words, an LMI is a positive semidefiniteness condition on a symmetric matrix F (y),

whose entries depend affinely on y (any such matrix can be rewritten in the above form). It

is not difficult to check that (2.8) is a convex constraint on y, meaning that its feasible set

S := {y ∈ Rm : F (y) � 0} is convex. Indeed, if two vectors y, z ∈ Rm satisfy (2.8), then

for any θ ∈ [0, 1] so does their convex combination θy + (1− θ)z.
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Figure 2.1: (a) Feasible set of the LMI in example 2.1, enclosed within the ellipse 2y2
1 −

2y1y2 + y2
2 − 2y1 + y2 = 0. (b) Feasible set of the LMI in example 2.2, defined by the

polynomial inequalities p0(y) ≥ 0, p1(y) ≥ 0, p2(y) ≥ 0, p3(y) ≥ 0, and p4(y) ≥ 0.

Example 2.1. Let y ∈ R2 and consider the 2× 2 LMI

F (y) :=

2y1 − y2 y2

y2 2− 2y1 + y2

 � 0.

This LMI can be rewritten in the form (2.8) with

F0 =

0 0

0 2

 , F1 =

−2 0

0 2

 , F2 =

 1 −1

−1 −1

 .
The feasible set of this LMI can be found analytically by requiring that the eigenvalues of

F (y) are non-negative, which is true when 2y2
1−2y1y2 +y2

2−2y1 +y2 ≤ 0. This polynomial

inequality defines the ellipse plotted in figure 2.1(a).

Example 2.2. Let y ∈ R2 and consider the 5× 5 LMI

F (y) =



3y1 y2 − y1 2y2 y2 − 1 0

y2 − y1 5− y2 −y2 y1 0

2y2 −y2 2− y1 y1 + y2 0

y2 − 1 y1 y1 + y2 2 + y2 −1

0 0 0 −1 5


� 0.

This LMI can be rewritten in the form (2.8) with

F0 =



0 0 0 −1 0

0 5 0 0 0

0 0 2 0 0

−1 0 0 2 −1

0 0 0 −1 5


, F1 =



−3 1 0 0 0

1 0 0 −1 0

0 0 1 −1 0

0 −1 −1 0 0

0 0 0 0 0


, F2 =



0 −1 −2 −1 0

−1 1 1 0 0

−2 1 0 −1 0

−1 0 −1 −1 0

0 0 0 0 0


.
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As in the previous example, the feasible set of the LMI can be found by requiring that all

eigenvalues of F (y) are non-negative. The eigenvalues are the roots of the characteristic

polynomial p(t) = det[F (y)− tI] = t5− p4(y)t4 + p3(y)t3− p2(y)t2 + p1(y)t− p0(y), where

p0(y) := 20y4
1 + 20y3

1y2 − 106y3
1 − 5y2

1y
2
2 − 226y2

1y2 − 133y2
1 + 88y1y

2
2 − 43y1y2

+ 295y1 − 363y2
2 + 110y2 − 50,

p1(y) := 4y4
1 + 4y3

1y2 − 41y3
1 − y2

1y
2
2 − 105y2

1y2 − 176y2
1 + 48y1y

2
2 − 29y1y2 + 364y1

− 341y2
2 + 129y2 + 45,

p2(y) := −4y3
1 − 12y2

1y2 − 60y2
1 + 6y1y

2
2 − 4y1y2 + 161y1 − 99y2

2 + 47y2 + 121,

p3(y) := −6y2
1 + 30y1 − 9y2

2 + 5y2 + 67,

p4(y) := 2y1 + 14.

Consequently, by Descartes’ rule of signs, the 5× 5 LMI above is feasible if y belongs to the

region of the R2 plane defined by the polynomial inequalities pi(y) ≥ 0, i = 1, . . . , 4. As

illustrated in figure 2.1(b), this region is convex.

2.3 LMI-representable constraints

Linear matrix inequalities can be used to represent many types of constraints typically

encountered in optimisation. This section reviews some LMI-representable constraints that

will be encountered in chapters 4–6. Throughout, y ∈ Rm denotes the optimisation variable.

Linear inequalities. Let A ∈ Rn×m and b ∈ Rn be given. The n linear inequalities

Ay ≥ b are clearly equivalent to the diagonal LMI



m∑
j=1

yjA1,j − b1 0 · · · 0

0
m∑
j=1

yjA2,j − b2
...

...
. . . 0

0 · · · 0

m∑
j=1

yjAn,j − bn


� 0. (2.9)

Convex quadratic constraints. Let A ∈ Sm be a given positive definite matrix. Let

b ∈ Rm and c ∈ R also be given. Since A � 0 by assumption, Schur’s complement

condition (Boyd & Vandenberghe, 2004, appendix A.5.5) implies that the convex quadratic
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constraint yTAy − bTy − c ≤ 0 is equivalent to the LMI

A−1 y

yT bTy + c

 � 0. (2.10)

Second-order cone constraints. Let A ∈ Rn×m, b ∈ Rn, c ∈ Rm and d ∈ R be given.

The convex constraint ‖Ay + b‖ ≤ cTy + d is known as a second-order cone constraints

(SOCC). Upon squaring both sides of the inequality, the SOCC can be posed as an LMI

because, by Schur’s complement condition (Boyd & Vandenberghe, 2004, appendix A.5.5),

one has

‖Ay + b‖ ≤ cTy + d ⇔

(cTy + d)I Ay + b

(Ay + b)T cTy + d

 � 0. (2.11)

Polynomial sum-of-squares constraints. Let x ∈ Rn and let p(x) be a polynomial

of degree 2d, whose coefficients depend affinely on the optimisation variable y ∈ Rm. A

sufficient condition for p(x) to be non-negative for all x is that it can be written as a

sum of squares of polynomials of degree no larger than d. The set of vectors y for which

p admits such a sum-of-squares (SOS) decomposition can be represented using an LMI.

Indeed, Parrilo (2003) demonstrated that p(x) admits an SOS decomposition if and only if

there exists a positive semidefinite matrix Q ∈ Ss with s :=
(
n+d
d

)
such that

p(x) = m(x)TQm(x), (2.12)

wherem(x) is the vector of monomials of the form xα1
1 xα2

2 · · ·xαnn of degree no larger than d.

Comparing coefficients on both sides of (2.12) yields a set of equalities involving y and Q,

which can be used to express some of the entries ofQ in terms of y. Then, since p(x) depends

affinely on y by assumption, the requirement that Q is positive semidefinite becomes an

LMI for y and any entries of Q that have not been eliminated. Consequently, one can

optimise over SOS polynomials using LMIs.

Example 2.3. Let x,y ∈ R2 and consider the parametric polynomial

p(x) = (y1 + y2) + 2y1x1 − 2y2x1x2 + x2
1 + (2− y2)x2

2.

With m(x) = [1, x1, x2]T and Q ∈ S3, comparing coefficients on both sides of (2.12) yields

Q1,1 = y1 + y2, Q1,2 = y1 Q1,3 = 0, Q2,2 = 1, Q2,3 = −y2 Q3,3 = 2− y2.
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Consequently, for given values of the parameters y1 and y2, the polynomial p(x) admits an

SOS decomposition if 
y1 + y2 y1 0

y1 1 −y2

0 −y2 2− y2

 � 0.

Example 2.4. Let x ∈ R, y ∈ R2 and consider the parametric polynomial

p(x) = 1− y2 + 2y1x+ (2 + y2)x2 + x4.

With m(x) = [1, x, x2]T and Q ∈ S3, comparing coefficients on both sides of (2.12) yields

Q1,1 = 1− y2, Q1,2 = y1 Q2,2 + 2Q1,3 = 2 + y2, Q2,3 = 0 Q3,3 = 1.

At this stage, one can choose which variables to eliminate using these equality constraints.

For instance, upon rewriting all entries of Q in terms of y1, y2, and Q1,3 one concludes that

the polynomial p(x) admits an SOS decomposition for given y1 and y2 if there exists Q1,3

such that

F1(y1, y2, Q1,3) :=


1− y2 y1 Q1,3

y1 2 + y2 − 2Q1,3 0

Q1,3 0 1

 � 0.

If, instead, the entries of Q are expressed in terms of y1, y2, and Q2,2 one has that for given

y1 and y2 the polynomial p(x) admits an SOS decomposition if there exists Q2,2 such that

F2(y1, y2, Q2,2) :=


1− y2 y1

2+y2−Q2,2

2

y1 Q2,2 0

2+y2−Q2,2

2 0 1

 � 0.

As one would expect, these two LMIs are equivalent for the purposes of determining

for which values of y1 and y2 the polynomial p(x) admits an SOS decompositions. In fact,

although their feasible sets

S1 :=
{

(y1, y2, Q1,3) ∈ R3 : F1(y1, y2, Q1,3) � 0
}
,

S2 :=
{

(y1, y2, Q2,2) ∈ R3 : F2(y1, y2, Q2,2) � 0
}
,

are different subsets of R3, their projections on the (y1, y2) plane coincide. This is illustrated

in figure 2.2, which shows the projections of S1 and S2 onto the coordinate planes.
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Figure 2.2: Panels (a)–(c): projections on the coordinate planes of the feasible set S1 of
the LMI F1(y1, y2, Q1,3) � 0 in example 2.4. Panels (d)–(f): projections on the coordinate

planes of the feasible set S2 of the LMI F2(y1, y2, Q2,2) � 0 in example 2.4.

2.4 Semidefinite programmes

Let X ∈ Sn be a matrix optimisation variable with n(n + 1)/2 independent degrees of

freedom, and let m ≤ n(n + 1)/2. A semidefinite programme (SDP) is an optimisation

problem of the form (known as standard primal form)

min
X∈Sn

〈F0,X〉

s.t. 〈Fi,X〉 = bi, i = 1, . . . , m,

X � 0,

(2.13)

where Fi ∈ Sn, i = 0, . . . , m, and b ∈ Rm are given problem data. In other words, an SDP

in standard primal form consists of the minimisation of a linear function of X subject to

m affine equality constraints and the requirement that X is positive semidefinite. This can

be done efficiently using a variety of algorithms (see Boyd et al., 1994; Parrilo, 2013, and

references therein), and many software packages that implement them are available open-

source. The most common examples are SeDuMi (Sturm, 1999, 2002), SDPT3 (Toh et al.,

1999; Tütüncü et al., 2003), and Mosek (Andersen et al., 2009).

Since the constraint X � 0 is a particular type of LMI, it is perhaps not surprising that

SDPs are closely related to optimisation problems with LMI-representable constraints. The

link comes from Lagrangian duality: the dual problem associated with an SDP in standard

primal form is a problem with an LMI constraint. To derive the dual problem, one augments

the objective in (2.13) with the constraints using a vector of Lagrange multipliers y ∈ Rm
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for the equality constraints, and a matrix Lagrange multiplier Z for the LMI X � 0. The

Lagrangian for the SDP (2.13) is

L(X,y,Z) := 〈F0,X〉 −
m∑
i=1

yi (〈Fi,X〉 − bi)− 〈X,Z〉

=

〈
F0 −

m∑
i=1

yiFi −Z,X
〉

+ bTy, (2.14)

and the dual function is

g(y,Z) = inf
X

L(X,y,Z) =


bTy if F0 −

∑m
i=1 yiFi −Z = 0,

−∞, otherwise.
(2.15)

As in section 2.1, the dual function yields a lower bound on the optimal value p? of (2.13).

To see this, note that 〈X,Z〉 ≥ 0 for anyX,Z � 0: upon writingX =
∑n

i=1 λiviv
T
i , where

λi ≥ 0 is the i-th eigenvalue and vi is the corresponding eigenvector, one has

〈X,Z〉 = tr

(
n∑
i=1

λiviv
T
i Z

)
=

n∑
i=1

λi tr
(
viv

T
i Z
)

=
n∑
i=1

λiv
T
i Zvi ≥ 0. (2.16)

Then, it is relatively straightforward to check that for any vector y and any matrix Z � 0

g(y,Z) = inf
X

L(X,y,Z) ≤ inf
X�0,

〈Fi,X〉=bi

L(X,y,Z) ≤ p?. (2.17)

Consequently, the dual problem associated with (2.13) is

max
y∈Rm,Z∈Sn

bTy

s.t. F0 −
m∑
i=1

yiFi = Z,

Z � 0,

(2.18)

from which the matrix Z can be eliminated to arrive at the LMI-constrained optimisation

problem

max
y∈Rm

bTy

s.t. F0 −
m∑
i=1

yiFi � 0.
(2.19)

Note that the optimal value of (2.19) is a strict lower bound on the optimal value of (2.13)

unless strong duality holds. Slater’s condition guarantees that this is the case, and moreover
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that the optimal value of (2.19) is attained by an optimal point y?, if there exists X0 � 0

satisfying the equality constraints in (2.13).

The argument outlined above can be reversed to show that the dual of optimisation

problems with an LMI (or LMI-representable) constraint in the form (2.19) is an SDP in

the standard primal form (2.13). Similarly, the relevant version of Slater’s condition states

that strong duality holds and there exists an optimal point X? that attains the optimal

value of (2.13) if there exists y ∈ Rm such that F0 −
∑m

i=1 yiFi � 0.

Given the strong link between SDPs in standard primal form and LMI-constrained prob-

lems, the latter are often also referred to as SDPs. Indeed, problem (2.19) is known in the

literature as an SDP in standard dual form. To further simplify the presentation through-

out the rest of this thesis, moreover, it will be convenient to call an SDP any optimisation

problem of the form

max
y∈Rm

bTy

s.t. By = c,

Fi(y) � 0, i = 1, . . . , q,

(2.20)

where b ∈ Rm is the cost vector, B ∈ Rp×m and c ∈ Rp define p affine equality constraints

(it is assumed that rank(B) = p < m, so there are no redundant equalities and the problem

is not over-constrained), and Fi(y) � 0, i = 1, . . . , q, are LMIs. Problems with LMI-

representable constraints will also be called SDPs. This slight abuse of terminology is

justified because multiple LMIs F1(y) � 0, . . . , Fq(y) � 0 are equivalent to the block-

diagonal LMI 
F1(y)

. . .

Fq(y)

 � 0.

Moreover, the affine equality constraints on y can be eliminated upon considering the change

of variable y = v+Dỹ, where v is any vector satisfying Bv = c, D ∈ Rm×(m−p) is a matrix

such that img(D) ≡ ker(B), and ỹ ∈ Rm−p is the new optimisation variable. Consequently,

optimisation problems of the general form (2.20) can always be rewritten as single-LMI,

equality-free problems, and therefore also as dual-standard-form SDPs.

2.5 A useful complementarity result

Suppose that the SDP (2.13) and the LMI-constrained problem (2.19) are strongly dual,

so their optimal values coincide, and assume that these are attained by optimal points X?
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and y?. According to Slater’s condition, this is guaranteed if there exist a strictly positive

definite X satisfying the equality constraints in (2.13) and a vector y in (2.19) such that

F0 −
∑m

i=1 yiFi � 0. Then, the following complementarity result holds.

Proposition 2.2. Assume that strong duality holds for (2.13) and (2.19), and that their

common optimal value is attained by optimal points X? and y?. Then, the complementarity

condition 〈F (y?),X?〉 = 0 holds. Moreover, if F (y?) has rank n − r for some integer r,

0 ≤ r ≤ n, then rank(X?) ≤ r.

Proof. Since X? and y? are optimal solutions of (2.13) and (2.19) and strong duality holds,

bTy? = 〈F0,X
?〉. Moreover, since X? � 0 and F (y?) � 0, one has 〈F (y?),X?〉 ≥ 0. Then,

bTy? ≥ bTy? − 〈F (y?),X?〉 = bTy? − 〈F0,X
?〉+

m∑
i=1

y?i 〈Fi,X?〉︸ ︷︷ ︸
=bi

= bTy?.

The first inequality must therefore be an equality, which implies 〈F (y?),X?〉 = 0. Moreover,

if F (y?) has rank n − r, then it can be written as F (y?) = UΛUT, where Λ ∈ Sn−r is

the diagonal matrix of strictly positive eigenvalues and U ∈ Rn×(n−r) is the matrix of

corresponding eigenvectors. Similarly, if rank(X?) = p ≤ n, then X? = V ΓV T with

Γ ∈ Sp the diagonal matrix of strictly positive eigenvalues and V ∈ Rn×p the matrix of

corresponding eigenvectors. Consequently, the properties of the trace inner product imply

0 = 〈F (y?),X?〉 =
〈
UΛUT,V ΓV T

〉
=

〈
Λ,
(
V TU

)T
Γ
(
V TU

)〉
.

This means that V TU = 0, i.e., the p-dimensional eigenspace of X? must be orthogonal to

the (n− r)-dimensional eigenspace of F (y?). Therefore, p = rank(X?) ≤ r.

Proposition 2.2 enables a useful low-rank representation of the Lagrangian of the LMI-

constrained problem (2.19) when a lower bound on the rank of its optimal solution is avail-

able. In fact, if it can be established that F (y?) has rank at least n− r, then the Lagrange

multiplier X for the LMI constraint in (2.19) may be assumed to take the rank-r form

X =
∑r

i=1 viv
T
i for some vectors v1, . . . , vr. Note that these vectors need not be orthonor-

mal, and that although the rank-r form forcesX � 0 there is no loss of generality because to

derive the dual of (2.19) one eventually restricts attention to positive semidefinite Lagrange

multipliers. Consequently, the Lagrangian for (2.19) can be written as

L(y, v1, . . . , vr) = bTy −
r∑
i=1

vTi F (y)vi. (2.21)
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Figure 2.3: (a) A possible sparsity pattern for a 6 × 6 symmetric matrix. (b) Graph
representation of the sparsity pattern in panel (a). (c) A different sparsity pattern for a

6× 6 symmetric matrix. (d) Graph representation of the sparsity pattern in panel (c).

When r � n, the low-rank representation of the positive semidefinite Lagrange multiplier

X can be exploited to reduce the computational resources required to solve extremely large

SDPs (Burer et al., 2002; Burer & Monteiro, 2003, 2005; Burer & Choi, 2006). In addition,

the low-rank form (2.21) of the Lagrangian will become useful in chapter 3.

2.6 Chordal decomposition of LMIs

A challenge for the practical solution of SDPs is that while state-of-the-art software packages

can handle multiple LMIs very efficiently, the computational cost of a single LMI grows non-

linearly as a function of its size. This section reviews the method of chordal decomposition,

developed by Fukuda et al. (2000), Nakata et al. (2003), and Kim et al. (2011) to replace a

large, sparse LMI with a set of multiple, smaller LMIs.

The method begins with the realisation that the sparsity pattern of a matrixX ∈ Sn can

be represented by a graph G(V,E), where V = {1, . . . , n} is the set of vertices in the graph

and E ⊆ V × V is a set of edges (or connections) between vertices such that (i, j) ∈ E if

Xi,j 6= 0. For instance, the graphs shown in figures 2.3(b,d) correspond to 6× 6 symmetric

matrices with sparsity patterns illustrated in figures 2.3(a,c). To exploit the link between

matrices and graphs, it is necessary to introduce some terminology used in graph theory.

Consider a graph G(V,E) with vertices V = {1, . . . , n} and edges E ⊆ V × V . A vertex

i ∈ V is called simplicial if all of its neighbours are pairwise connected, meaning that if

j, k 6= i are any two distinct vertices such that (i, j) ∈ E and (i, k) ∈ E, then (j, k) ∈ E. A

subset of vertices C ⊆ V such that (i, j) ∈ E for any distinct vertices i, j ∈ C is called a

clique. The number of vertices in C is denoted by |C|, and if C is not a subset of any other

clique it is called a maximal clique. It can be shown (Blair & Peyton, 1993, Lemma 3) that

a simplicial vertex belongs to one and only one maximal clique. A cycle of length k is a set

of pairwise distinct vertices {v1, . . . , vk} ⊆ V such that (vk, v1) ∈ E and (vi, vi+1) ∈ E for

all i = 1, . . . , k− 1, while a chord is an edge joining two non-consecutive vertices in a cycle.

For example, the graph in figure 2.3(b) has maximal cliques C1 = {1, 2, 3}, C2 = {1, 4, 5},
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and C3 = {1, 5, 6}, which are also cycles of length 3. Vertices 2, 3, 4, and 6 are simplicial

and belong to one and only one clique, while vertices 1 and 5 are not simplicial. The cycle

{1, 4, 5, 6} has length 4 and has a chord, (1, 5). Similarly, the graph in figure 2.3(d) has

maximal cliques C1 = {1, 2, 3}, C2 = {1, 4}, C3 = {1, 6}, C4 = {4, 5}, and C5 = {5, 6}.
Clique C1 is a cycle of length 3, while {1, 4, 5, 6} is a cycle of length 4 and has no chords.

Vertices 2 and 3 are simplicial and belong only to clique C1, while vertices 1, 4, 5, and 6 are

not simplicial.

A graph is called chordal if every cycle of length larger than 3 has at least one chord,

and the sparsity pattern of a matrix is said to be chordal if its associated graph is so. Thus,

the sparsity pattern illustrated in figure 2.3(a) is chordal, since the only cycle of length 4

of the corresponding graph in figure 2.3(b) has the chord (1, 5). Instead, since the cycle

{1, 4, 5, 6} of the graph in figure 2.3(d) has no chords, the sparsity pattern in figure 2.3(c)

is not chordal. Chordality is an extremely useful property because the question of whether

a matrix with chordal sparsity pattern is positive semidefinite can be answered utilising the

maximal cliques of the underlying graph (Agler et al., 1988). To make this idea precise, let

C1, . . . , Cp be the maximal cliques of a chordal graph and, for each k = 1, . . . , p, define

Ek ∈ R|Ck|×n according to

(Ek)i,j =


1, if Ck(i) = j,

0, otherwise.
(2.22)

Here, Ck(i) denotes the i-th vertex in the clique Ck, when the vertices are sorted in the

natural ordering. In other words, the matrix Ek is such that, given a |Ck| × |Ck| matrix Y ,

the operation ET
k Y Ek creates a sparse n×n matrix such that Y is the principal submatrix

identified by Ck, while all other entries are zero. For instance, consider the chordal graph in

figure 2.3(b), whose maximal cliques are C1 = {1, 2, 3}, C2 = {1, 4, 5}, and C3 = {1, 5, 6}.
For k = 2 and Y ∈ S3 one has

E2 =


1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

 , ET
2 Y E2 =



Y1,1 0 0 Y1,2 Y1,3 0

0 0 0 0 0 0

0 0 0 0 0 0

Y1,2 0 0 Y2,2 Y2,3 0

Y1,3 0 0 Y2,3 Y3,3 0

0 0 0 0 0 0


.

Using this notation, the key result due to Agler et al. (1988) may be stated as follows.
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Figure 2.4: Graph representation of the sparsity pattern of LMI (2.23) in example 2.5.
The graph is chordal and has two maximal cliques, C1 = {1, 2, 3, 4} and C2 = {4, 5}.

Theorem 2.3 (Agler et al., 1988). Assume that X ∈ Sn has a chordal sparsity pattern and

that the associated graph G{V,E} has p maximal cliques C1, . . . , Cp. Then, X � 0 if and

only if there exist symmetric matrices Yk ∈ S|Ck|, k = 1, . . . , p, such that Yk � 0 for all

k = 1, . . . , p and X =
∑p

k=1E
T
k YkEk.

Note that the “if” part of the theorem is immediate and does not rely on chordality.

Instead, the “only if” part relies on the facts that chordal graphs have at least one simplicial

vertex (Blair & Peyton, 1993, Lemma 1), which belongs to one and only one maximal clique,

and that any graph obtained by removing a simplicial vertex and all edges connecting to

it is also chordal (Blair & Peyton, 1993). The interested reader can find a complete and

relatively simple proof of Theorem 2.3 in a recent work by Kakimura (2010).

In the context of SDPs, Theorem 2.3 means that when problem (2.19) has a large and

sparse LMI with chordal sparsity pattern, it can be substituted with an equivalent set

of smaller LMIs (each as large as the corresponding maximal clique) plus a set of affine

equality constraints. This procedure can be automated using the MATLAB package Spar-

seCoLO (Fujisawa et al., 2009), and it can substantially improve computational efficiency if

the maximal cliques of the chordal graph are small (Nakata et al., 2003; Kim et al., 2011).

Example 2.5. To illustrate how the chordal decomposition method described above is

implemented in practice, consider the 5× 5 LMI from example 2.2,

F (y) =



3y1 y2 − y1 2y2 y2 − 1 0

y2 − y1 5− y2 −y2 y1 0

2y2 −y2 2− y1 y1 + y2 0

y2 − 1 y1 y1 + y2 2 + y2 −1

0 0 0 −1 5


� 0. (2.23)

The graph representing its sparsity pattern, shown in figure 2.4, has two maximal cliques,

C1 = {1, 2, 3, 4} and C2 = {4, 5}, and is chordal because the only cycle of length 4 has one
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Figure 2.5: Projections on the coordinate planes (y1, y2), (y1, (Y2)4,4), and (y2, (Y2)4,4)
of the joint feasible set of the two LMIs in (2.24). Also shown in panel (a) is the boundary

of the feasible set of the original 5× 5 LMI (2.23) ( ).

chord. Consequently, Theorem 2.3 implies that (2.23) holds if there exists matrices

Y1 :=


(Y1)1,1 (Y1)1,2 (Y1)1,3 (Y1)1,4

(Y1)1,2 (Y1)2,2 (Y1)2,3 (Y1)2,4

(Y1)1,3 (Y1)2,3 (Y1)3,3 (Y1)3,4

(Y1)1,4 (Y1)2,4 (Y1)3,4 (Y1)4,4

 � 0, Y2 :=

(Y2)1,1 (Y2)1,2

(Y2)1,2 (Y2)2,2

 � 0,

such that 

(Y1)1,1 (Y1)1,2 (Y1)1,3 (Y1)1,4 0

(Y1)1,2 (Y1)2,2 (Y1)2,3 (Y1)2,4 0

(Y1)1,3 (Y1)2,3 (Y1)3,3 (Y1)3,4 0

(Y1)1,4 (Y1)2,4 (Y1)3,4 (Y1)4,4 + (Y2)1,1 (Y2)1,2

0 0 0 (Y2)1,2 (Y2)2,2.


= F (y).

Upon eliminating all entries of Y1 and Y2 except for (Y1)4,4, one concludes that the original

LMI (2.23) holds for given values y1 and y2 if there exists (Y1)4,4 such that


3y1 y2 − y1 2y2 y2 − 1

y2 − y1 5− y2 −y2 y1

2y2 −y2 2− y1 y1 + y2

y2 − 1 y1 y1 + y2 (Y1)4,4

 � 0,

2 + y2 − (Y1)4,4 −1

−1 5

 � 0. (2.24)

Figure 2.5 shows the joint feasible set of these two LMIs. As one would expect, the projection

on the (y1, y2) plane coincides with the feasible set of the original LMI (2.23), which is plotted

in figure 2.1(b) and whose boundary is shown in figure 2.5 to ease the comparison. This

confirms that the LMIs in (2.24) are equivalent to (2.23). So, the size of the largest LMI

can be reduced by introducing an extra variable and increasing the number of LMIs.
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Chapter 3

Asymptotic energy bounds for the
Kuramoto–Sivashinsky equation
using time-marching methods

The Kuramoto–Sivashinsky (KS) equation is a PDE with a hydrodynamic-type nonlinear-

ity that describes the weakly nonlinear dynamics of reaction-diffusion systems (Kuramoto &

Tsuzuki, 1975, 1976), flame front oscillations (Sivashinsky, 1977, 1980; Michelson & Sivashin-

sky, 1977), and waves on the surface of thin liquid films (Sivashinsky & Michelson, 1980).

This chapter studies the one-dimensional version of the KS equation,

∂tu+ u ∂xu+ ∂2
xu+ ∂4

xu = 0, (3.1)

considered on [−`, `] with periodic boundary conditions (BCs) and zero-average initial con-

ditions (ICs):
∂αxu(−`) = ∂αxu(`), α = 0, . . . , 3, (3.2a)

u(x, 0) = u0(x),

∫ `

−`
u0(x) dx = 0. (3.2b)

With such boundary and initial conditions, (3.1) has a unique solution at all times in the

appropriate function space (see, for example, Robinson, 2001, chapter 17). The domain

half-size ` is the governing parameter and the trivial solution u(x, t) = 0 is globally asymp-

totically stable when ` < π. Windows of chaotic dynamics are observed as ` is increased

through π (Hyman & Nicolaenko, 1986; Hyman et al., 1986), making the KS equation (3.1)

a paradigm for chaotic systems.

It is a long-standing conjecture (Wittenberg, 2002) that, at large `, the asymptotic kinetic

energy of solutions of the KS equation grows proportionally to `,

E := lim sup
t→∞

‖u(x, t)‖22 ∼ `. (3.3)
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Many researchers have tried to prove this fact by deriving upper bounds on E . Nicolaenko

et al. (1985) proved that E . `5 for odd solutions of (3.1). Their argument relied on

the application of the so-called background method: they considered fluctuations v(x, t) =

u(x, t)−φ(x) from a steady background field φ(x), chosen subject to certain constraints that

ensure boundedness of ‖v‖22 as t → ∞ (see section 3.1 for more details). The restriction

to odd solutions is justified because (3.1) is invariant under the transformation u(x, t) →
−u(−x, t), so if the initial condition is odd, then the solution remains odd at all times.

Goodman (1994) subsequently extended the result to generic solutions, while Collet et al.

(1993) improved the bound to E . `16/5 with a more careful choice of background field.

More recently, Bronski & Gambill (2006) proved that E . `3, which to this date remains the

best result obtained with the background method.1 Bronski & Gambill (2006) also showed

that the scaling of their bound with ` cannot be improved if the form of the background

field is restricted such that φ′(x) = c + q(x), where c is a constant and q(x) a function

with compact support on (−`, `). This partially proved the hypothesis, already put forward

by Wittenberg (2002), that a bound proportional to `3 is optimal within the background

method. Strong numerical evidence of this fact has recently been provided by Fantuzzi &

Wynn (2015), who employed semidefinite programming to optimise φ.

In this chapter, the optimisation of the background field for the KS equation will be

repeated using a time-marching method proposed by Wen et al. (2013, 2015). The essence

of this approach is to find a saddle point of the Lagrangian of the variational problem for the

optimal φ by solving a time-dependent version of the Euler–Lagrange (EL) equations that

describe stationary points of the Lagrangian. It will be shown that although this strategy

has been employed successfully by Wen et al. (2013, 2015) to solve some optimal background

field problems arising in fluid dynamics, its application to the KS equation is not straight-

forward. The main difficulty, showcased in section 3.3, is that convergence to an incorrect

solution can occur when the Lagrangian is constructed as inferred from the examples given

by Wen et al. (2013, 2015). Precisely, the computed φ solves the EL equations, but is not the

optimal background field because it does not satisfy the constraints arising from the back-

ground method analysis. Section 3.4 demonstrates that this problem seems to be resolved

by considering a different Lagrangian, but this requires additional non-trivial insight on the

constraints on φ. Another issue is that convergence of the time-marching method to the

optimal background field cannot be guaranteed even when the correct Lagrangian is used.

This is true also for the problems considered by Wen et al. (2013, 2015), but they could
1More sophisticated mathematical arguments have resulted in better bounds. For example, by carefully

comparing solutions of the KS equation to so-called entropy solutions of the inviscid Burger’s equation,
Giacomelli & Otto (2005) proved that E = o(`3), in the sense that lim`→+∞ `

−3E = 0.
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Chapter 3. Asymptotic bounds for the KS equation using time-marching methods

at least establish that if a steady solution of the time-dependent EL equation is obtained,

then the computed background field is necessarily the optimal one. Their proof, however,

does not extend to the KS equation, so convergence to a background field that does not

satisfy the required constraints remains a theoretical possibility. Similar difficulties—both

in constructing the correct Lagrangian functional and in proving theoretical convergence

guarantees—may arise also when optimising background fields beyond the KS equation.

This motivates the development of alternative strategies for the computation of optimal

background fields, which can be applied when time-marching methods fail.

3.1 Background method analysis

An upper bound on the asymptotic energy of the solution of (3.1) can be derived with the

background method. This section describes the argument used by Collet et al. (1993), tuned

to arrive at the same variational problem for the optimal background field solved by Fantuzzi

& Wynn (2015). It is assumed that the initial condition for (3.1) is odd, so u(x, t) remains

odd at all times. Bounds obtained for odd solutions can be extended to general solutions

using standard arguments (Collet et al., 1993; Goodman, 1994).

The analysis begins by decomposing u(x, t) = φ(x) + v(x, t), with φ and v odd and

periodic, so (3.1) becomes

∂tv + φ∂xφ+ v ∂xφ+ φ∂xv + v ∂xv + ∂2
xv + ∂4

xv + ∂2
xφ+ ∂4

xφ = 0. (3.4)

Multiplying this equation by v, integrating by parts over [−`, `], and rearranging yields

d

dt

‖v‖22
2

= −
∫ ∣∣∂2

xv
∣∣2 − |∂xv|2 +

1

2
φ′ v2 dx−

∫
∂2
xv φ

′′ − ∂xv φ′ + φ′ φ v dx. (3.5)

Here and in what follows the limits of integration are omitted to lighten the notation.

Equation (3.5) is well defined if φ and v belong to the space Hp,o of square-integrable, odd,

and periodic functions on [−`, `] with two square-integrable and periodic derivatives,

Hp,o :=
{
v ∈ L2(−`, `) : v(−x) = −v(x), v(−`) = v(`),

and ∂αv ∈ L2(−`, `), ∂αv(−`) = ∂αv(`) for α ∈ {1, 2}
}
. (3.6)

In fact, any functions φ, v ∈ Hp,o must be at least continuously differentiable even if differ-

entiation is understood in the weak sense (see, for instance, Theorem 8.2 in Brezis, 2010).
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Section 3.1. Background method analysis

In particular one concludes that φ′ ∈ L∞(−`, `) and, therefore, the right-hand side of (3.5)

is bounded for all φ, v ∈ Hp,o.

Suppose now that φ is such that, for all w ∈ Hp,o and some ε > 0,

∫ ∣∣w′′∣∣2 − ∣∣w′∣∣2 + φ′w2 dx ≥ ε ‖w‖22 . (3.7)

Then, the symmetric bilinear form

B{f, g} :=

∫
f ′′g′′ − f ′g′ + φ′ f g dx (3.8)

is positive definite, and so it defines an inner product on Hp,o. Consequently, the Cauchy–

Schwarz inequality implies that |B{f, g}| ≤ (B{f, f})1/2(B{g, g})1/2 and one has

|B{v, φ}| ≤
(∫ ∣∣∂2

xv
∣∣2 − |∂xv|2 + φ′ v2 dx

) 1
2
(∫ ∣∣φ′′∣∣2 − ∣∣φ′∣∣2 + φ′φ2 dx

) 1
2

≤ 1

4

∫ ∣∣∂2
xv
∣∣2 − |∂xv|2 + φ′ v2 dx+

∫ ∣∣φ′′∣∣2 − ∣∣φ′∣∣2 dx, (3.9)

where the elementary inequality ab ≤ a2/4 + b2 was used to obtain the second inequality

and the term
∫
φ′φ2 dx vanishes by periodicity. Using (3.9) to estimate the second integral

on the right-hand side of (3.5) and rearranging yields

d

dt

‖v‖22
2
≤ −3

4

∫ ∣∣∂2
xv
∣∣2 − |∂xv|2 +

1

3
φ′ v2 dx+

∫ ∣∣φ′′∣∣2 − ∣∣φ′∣∣2 dx. (3.10)

At this stage, suppose that, in addition to satisfying (3.7), the background field φ is such

that all v ∈ Hp,o satisfy

∫ ∣∣v′′∣∣2 − ∣∣v′∣∣2 +
1

3
φ′ v2 dx ≥ 1

2
‖v‖22 . (3.11)

Then, after bounding the first term on the right-hand side of (3.10), Gronwall’s inequal-

ity (Doering & Gibbon, 1995, chapter 2) implies

lim sup
t→∞

‖v‖22 ≤
8

3

∫ ∣∣φ′′∣∣2 − ∣∣φ′∣∣2 dx. (3.12)

Finally, combining this result with the elementary estimate ‖u‖22 ≤ 2 ‖φ‖22 + 2 ‖v‖22 yields a

bound on the asymptotic energy E of the KS equation:

E ≤ 2

∫
8

3

∣∣φ′′∣∣2 − 8

3

∣∣φ′∣∣2 + |φ|2 dx. (3.13)
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Chapter 3. Asymptotic bounds for the KS equation using time-marching methods

Recalling that the background field φ must satisfy conditions (3.7) and (3.11), the best

bound on E obtainable within this bounding framework is given by

inf
φ(x), ε

2

∫
8

3

∣∣φ′′∣∣2 − 8

3

∣∣φ′∣∣2 + |φ|2 dx

s.t.
∫ ∣∣v′′∣∣2 − ∣∣v′∣∣2 +

(
1

3
φ′ − 1

2

)
v2 dx ≥ 0 ∀v ∈ Hp,o,∫ ∣∣w′′∣∣2 − ∣∣w′∣∣2 +

(
φ′ − ε

)
w2 dx ≥ 0 ∀w ∈ Hp,o,

ε > 0.

(3.14)

In fact, noticing that the infimum over ε > 0 coincides with the case ε = 0, after dropping

a factor of 2 from the objective it suffices to solve the variational problem

inf
φ(x)

∫
8

3

∣∣φ′′∣∣2 − 8

3

∣∣φ′∣∣2 + |φ|2 dx

s.t. Q1{v} :=

∫ ∣∣v′′∣∣2 − ∣∣v′∣∣2 +

(
1

3
φ′ − 1

2

)
v2 dx ≥ 0 ∀v ∈ Hp,o,

Q2{w} :=

∫ ∣∣w′′∣∣2 − ∣∣w′∣∣2 + φ′w2 dx ≥ 0 ∀w ∈ Hp,o.

(3.15)

It is an exercise in the calculus of variations to show that the objective function of this

variational problem is strictly convex, meaning that its second variation with respect to φ

is a positive definite functional. Consequently, the optimal value of (3.15) is attained by

a unique optimal background field. The rest of this chapter will focus on computing the

optimal φ for a given domain half-size ` using the time-marching method employed by Wen

et al. (2013, 2015) to solve optimal background field problems arising in fluid dynamics.

3.2 A problem with spectral constraints

In the language of the background method, (3.15) is a variational problem with two spectral

constraints. This terminology reflects the fact that each constraint requires a φ-dependent

linear operator to have non-negative eigenvalues. In fact, the constraints in (3.15) can be

replaced by

inf
v∈Hp,o

‖v‖2=1

Q1{v} = inf
v∈Hp,o

‖v‖2=1

∫ ∣∣v′′∣∣2 − ∣∣v′∣∣2 +

(
1

3
φ′ − 1

2

)
v2 dx ≥ 0, (3.16a)

inf
w∈Hp,o

‖w‖2=1

Q2{w} = inf
w∈Hp,o

‖w‖2=1

∫ ∣∣w′′∣∣2 − ∣∣w′∣∣2 + φ′w2 dx ≥ 0. (3.16b)

The restriction to unit-norm functions is justified because Q1 and Q2 are homogeneous

functionals and Q1{0} = Q2{0} = 0. Note also that φ′ ∈ L∞(−`, `) because φ ∈ Hp,o
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Section 3.2. A problem with spectral constraints

implies that the background field must be at least continuously differentiable on (−`, `).
Then, the following result applies.

Theorem 3.1. Let f ∈ L∞(−`, `) be periodic, let D be the linear operator defined by

Du := ∂4u+ ∂2u+ f u, and consider the eigenvalue problem
Du = σu, x ∈ (−`, `),

u(−x) = −u(x), x ∈ (−`, `),

∂αu(−`) = ∂αu(`), α ∈ {0, 1, 2, 3}.

(3.17)

(i) The eigenvalues of D are real and form at most a countable ordered sequence, {σk}k≥0,

such that σ0 > −∞ and limk→+∞ σk = +∞.

(ii) The minimum eigenvalue σ0 satisfies

σ0 = min
u∈Hp,o

‖u‖2=1

∫ `

−`

∣∣u′′∣∣2 − ∣∣u′∣∣2 + f u2 dx. (3.18)

Proof. See appendix A.1.

Theorem 3.1 guarantees that the infima in (3.16a) and (3.16b) are achieved and corre-

spond, respectively, to the minimum eigenvalues of the eigenvalue problems

∂4v + ∂2v +

(
1

3
∂φ− 1

2

)
v = λv, (3.19a)

∂4w + ∂2w + ∂φw = µw. (3.19b)

The constraints in (3.15), therefore, require that the eigenvalues of the linear operators on

the left-hand sides of (3.19a) and (3.19b) are non-negative. Using established terminology,

the minimum eigenvalues λ0 and µ0 will be referred to as ground-state eigenvalues, and the

corresponding eigenfunctions v0 and w0 will be referred to as ground-state eigenfunctions.

Remark 3.1. In addition to clarifying the nature of the constraints in (3.15), the eigenvalue

problems (3.19a) and (3.19b) provide an easy way to test if a candidate background field is

feasible. Indeed, one can simply employ one’s preferred numerical scheme to compute the

ground-state eigenvalues, and check their sign.

Remark 3.2. In section 3.4 it will be important to consider the multiplicity of the ground-

state eigenvalue for problems (3.19a) and (3.19b). A bound on this can be obtained by

noticing that if the background field φ is odd and periodic, then solving (3.19a) and (3.19b)

for odd and periodic eigenfunctions on the domain [−`, `] is the same as solving them on [0, `]
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Chapter 3. Asymptotic bounds for the KS equation using time-marching methods

with homogeneous Dirichlet conditions on v, w, and their second derivatives. In fact, the

second derivative of an odd, periodic function is so too, and any function that is both odd

and periodic on [−`, `] must vanish at x = 0 and at x = `. Then, a result by Everitt (1957) on

fourth-order Sturm–Liouville operators guarantees that each eigenvalue of problems (3.19a)

and (3.19b) is repeated at most twice, and one has

−∞ < λ0 ≤ λ1 < λ2 ≤ λ3 < . . . and −∞ < µ0 ≤ µ1 < µ2 ≤ µ3 < . . . . (3.20)

3.3 The original time-marching optimisation method

Background fields that satisfy the spectral constraints can be constructed analytically (see

for instance Collet et al., 1993) and, as explained in remark 3.2, the feasibility of a candidate

background field can be tested by solving the eigenvalue problems (3.19a) and (3.19b).

The challenge, both theoretical and computational, is to optimise the background field and

solve the full variational problem (3.15). This section will attempt to do so using a time-

marching optimisation method proposed by Wen et al. (2013, 2015). Note that this method

is described only through examples, from which a general approach must be inferred.

3.3.1 Formulation of a time-dependent problem

The starting point of the method proposed by Wen et al. (2013, 2015) is the derivation of

suitable Euler–Lagrange (EL) equations characterising the optimal background field. The

optimal value p? of (3.15) satisfies

p? = min
φ

max
v,w∈Hp,o

L{φ, v, w}, (3.21)

where

L{φ, v, w} :=

∫
8

3

∣∣φ′′∣∣2 − 8

3

∣∣φ′∣∣2 + φ2 dx−Q1{v} − Q2{w} (3.22)

is the Lagrangian of the problem. Non-negative Lagrange multipliers for the constraints

Q1{v} ≥ 0 and Q2{w} ≥ 0 are not necessary when forming the Lagrangian: they can

always be eliminated by rescaling v and w, taking advantage of the fact that Q1 and Q2 are

homogeneous functionals. Moreover, under the reasonable assumption that strong duality

holds for (3.15), the order of minimisation/maximisation in (3.21) is unimportant and the

min-max procedure can be carried out simultaneously (cf. section 2.1).2 Then, the optimal

background field φ and the optimal functions v, w are a saddle point of the Lagrangian,
2The assumption of strong duality is never mentioned explicitly by Wen et al. (2013, 2015), but it seems

essential to ensure that minimisation over φ and maximisation over v and w can be carried out concurrently.
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Section 3.3. The original time-marching optimisation method

and the characterising EL equations are found upon setting to zero the variations of L with

respect to φ, v, and w. One obtains

1

2

δL
δφ

:=
8

3
∂4φ+

8

3
∂2φ+ φ+

1

3
v ∂v + w ∂w = 0, (3.23a)

1

2

δL
δv

:= −∂4v − ∂2v −
(

1

3
∂φ− 1

2

)
v = 0, (3.23b)

1

2

δL
δw

:= −∂4w − ∂2w − ∂φw = 0. (3.23c)

These equations are to be solved on [−`, `] for odd, periodic functions φ, v and w, whilst

ensuring that φ also satisfies the spectral constraints.

The key idea put forward by Wen et al. (2013, 2015) at this stage is to drop the spectral

constraints, consider all variables to be time-dependent, add appropriate time derivatives

to (3.23a)–(3.23c), and solve the resulting time-dependent equations starting from suitable

initial guesses for φ, v, and w until convergence to a steady state (assuming that this occurs).

Such a steady-state solution clearly satisfies (3.23a)–(3.23c) and one obtains the optimal

solution of (3.15) if the steady-state background field φ satisfies the spectral constraints.3

To construct the time-dependent version of (3.23a)–(3.23c) one considers the rate of

change of the Lagrangian (3.22) over time. In fact, when time dependence is introduced one

has
dL
dt

=

∫
δL
δφ

∂tφ+
δL
δv

∂tv +
δL
δw

∂tw dx. (3.24)

Recalling (3.21), to minimise L with respect to φ and maximise it over v and w one should

choose ∂tφ = −α δLδφ , ∂tv = β δLδv , and ∂tw = γ δLδw for some α, β, γ > 0, where the relative

values of these parameters determine the importance of optimising L with respect to each

of its arguments. For instance, setting α� β, γ would prioritise minimisation over φ. The

choice α = β = γ = 1/2 is made here for simplicity, yielding the time-dependent equations

∂tφ+
8

3
∂4
xφ+

8

3
∂2
xφ+ φ+

1

3
v ∂xv + w ∂xw = 0, (3.25a)

∂tv + ∂4
xv + ∂2

xv +

(
1

3
∂xφ−

1

2

)
v = 0, (3.25b)

∂tw + ∂4
xw + ∂2

xw + ∂xφw = 0. (3.25c)

The linear terms in these equations are the same as in the KS equation (3.1) with the addition

of the stabilising term φ in (3.25a), and the nonlinear terms have a similar structure to the
3This can be guaranteed for the variational problems considered by Wen et al. (2015), but a general

result is not available. One may of course doubt that convergence to the correct solution is generic, and one
would be right: the results presented in this section demonstrate that solving the time-dependent version
of (3.23a)–(3.23c) does not yield the optimal solution of (3.15).
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nonlinearity of the KS equation. It is therefore reasonable to expect that, as for the KS

equation, the solution of (3.25a)–(3.25c) on [−`, `] with periodic BCs is unique for given ICs.

Under this assumption, it is not difficult to verify that when φ(x, 0), v(x, 0), and w(x, 0) are

odd, the functions φ(x, t), v(x, t), and w(x, t) remain odd at all instants in time. Thus, to

compute odd and periodic steady states it suffices to consider ICs that are so.

3.3.2 Implementation and results

In order to solve (3.25a)–(3.25c) numerically, the fields φ, v and w were discretised using

the N -dimensional sine series expansions


φ(x, t)

v(x, t)

w(x, t)

 =

N∑
n=1

1√
`


φ̂n(t)

v̂n(t)

ŵn(t)

 sin
(nπx

`

)
. (3.26)

Substituting these expansions into (3.25a)–(3.25c), multiplying by `−1/2 sin(mπ`−1x) for

each m = 1, . . . , N in turn, and integrating over [−`, `] yields a system of N ordinary dif-

ferential equations of the form da
dt = f(a), where the state vector a contains the expansion

coefficients in (3.26). For simplicity, these were solved in MATLAB using the built-in func-

tion ode113 for ` = 6π, 8π, 10π, and 12π using N = 100; in all cases the numerical results

change by less than 1% when N is increased to 120. To speed up the computation of steady

states, ode113 was stopped if ‖f(a)‖ ≤ 0.1 and Newton’s iterations were employed to find

a zero of the vector field f(a). Finally, the eigenvalue problems (3.19a) and (3.19b) were

solved using a Galerkin projection method based on the expansions (3.26) to check whether

the steady-state background field satisfied the spectral constraints. Results were qualita-

tively similar for all tested values of `, so only those obtained with ` = 10π are presented

below for the sake of brevity.

Three sets of ICs, illustrated in figure 3.1, were considered. The first, referred to as ic1,

consisted of unit-amplitude sinusoidal ICs φ(x, 0) = v(x, 0) = w(x, 0) = sin(π`−1x). The

other two sets of ICs, referred to as ic2 and ic3, were randomly generated profiles of the

form 
φ(x, 0)

v(x, 0)

w(x, 0)

 =
20∑
n=1

1√
`


φ̂n

v̂n

ŵn

 sin
(nπx

`

)
, (3.27)

with expansion coefficients drawn from the uniform distribution on [−1, 1]. This choice was

made so no “preferential” Fourier mode is artificially enforced by the ICs.
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Section 3.3. The original time-marching optimisation method

Figure 3.1: Initial conditions φ(x, 0), v(x, 0), and w(x, 0) used to solve (3.25a)–(3.25c)
with ` = 10π. ic1: unit-amplitude sinusoidal initial condition ( ). ic2: random initial
condition of the form (3.27) ( ). ic3: random initial condition of the form (3.27) ( ).

Figure 3.2: Steady-state solutions φss, vss, and wss of (3.25a)–(3.25c) for ` = 10π, com-
puted using initial conditions ic1 ( ), ic2 ( ), and ic3 ( ).

The steady state fields φss(x), vss(x), and wss(x) obtained using initial conditions ic1, ic2,

and ic3 are plotted in figure 3.2. It is immediately apparent that the time-marching solution

method described above suffers from lack of robustness: different ICs yield different steady

states. In addition, table 3.1 reveals that none of the computed steady-state background

fields corresponds to the optimal solution of (3.15) because in all cases at least one of

problems (3.19a) and (3.19b) has negative eigenvalues, meaning that at least one of the

spectral constraints is violated. (Note, however, that the spectral constraint Q2{w} ≥ 0 can

be considered satisfied for initial conditions ic1 and ic2 since all tabulated eigenvalues µn

are either positive or zero within reasonable numerical tolerances.)

Convergence to “spurious” solutions of the EL equations (3.23a)–(3.23c), which do not

satisfy the spectral constraints, is in stark contrast with the successful application of the

time-marching solution method reported by Wen et al. (2013, 2015). Such spurious solutions

are provably linearly unstable in the examples they considered. This is not the case here and

it can be confirmed by linearising (3.25a)–(3.25c) around each of the computed steady-state

solutions. Upon considering infinitesimal normal-mode perturbations from the steady states

of the form φ̃(x)eζt, ṽ(x)eζt, and w̃(x)eζt, with ζ ∈ C, equations (3.25a)–(3.25c) become a
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Table 3.1: First 10 eigenvalues for (3.19a) and (3.19b) when φ = φss is the steady state
computed with each of the three sets of initial conditions ic1, ic2, and ic3. Negative values
of λn and µn indicate violation of the spectral constraints Q1{v} ≥ 0 and Q2{w} ≥ 0,

respectively.

φss from ic1 φss from ic2 φss from ic3

n λn µn λn µn λn µn

0 −2.38×10−1 −4.39×10−8 −6.13×10−1 −2.12×10−15 −6.35×10−1 −1.25×10−2

1 −2.27×10−1 −1.88×10−15 −5.12×10−1 1.07×10−4 −5.64×10−1 8.12×10−15

2 −2.02×10−1 1.27 −4.59×10−1 7.97×10−2 −4.89×10−1 3.83×10−2

3 −1.59×10−1 1.28 −2.57×10−1 3.14×10−1 −4.02×10−1 1.58×10−1

4 −1.34×10−1 1.33 −1.41×10−1 3.66×10−1 −2.75×10−1 3.53×10−1

5 −9.75×10−2 1.36 −9.16×10−2 6.06×10−1 −1.83×10−1 5.24×10−1

6 −4.70×10−2 1.42 −1.91×10−2 1.38 −7.89×10−15 5.80×10−1

7 −1.30×10−2 1.44 3.07×10−15 1.39 3.91×10−3 7.50×10−1

8 −1.63×10−16 1.49 6.11×10−2 1.62 4.94×10−2 1.54
9 2.74×10−2 1.58 1.98×10−1 1.71 1.92×10−1 1.79
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Figure 3.3: Eigenvalues of the linear stability problem (3.28a)–(3.28c) (only the 20 eigen-
values with largest real part are shown). Panels (a)–(c) refer to the steady states computed
with initial conditions ic1, ic2, and ic3, respectively. Inserts in (b) and (c) show a detailed
view of the region −0.1 ≤ Re(ζ) ≤ 0.025, −0.1 ≤ Im(ζ) ≤ 0.1. All eigenvalues shown lie in

the open left half-plane. Solid lines indicate the real and imaginary axes.

linear eigenvalue problem of the form

8

3
∂4φ̃+

8

3
∂2φ̃+ φ̃+

1

3
vss ∂ṽ +

1

3
ṽ ∂vss + wss ∂w̃ + w̃ ∂wss = −ζφ̃, (3.28a)

∂4ṽ + ∂2ṽ +
1

3
ṽ ∂φss +

1

3
vss ∂φ̃−

1

2
ṽ = −ζṽ, (3.28b)

∂4w̃ + ∂2w̃ + ∂φss w̃ + wss ∂φ̃ = −ζw̃. (3.28c)

The corresponding steady states φss, vss, and wss are linearly unstable if there exists an

eigenvalue ζ with Re(ζ) > 0, while they are linearly stable if Re(ζ) < 0 for all eigenvalues.

Figure 3.3 illustrates the 20 eigenvalues with largest real part obtained for each of the

three different steady states plotted in figure 3.2 (pairs of complex conjugate eigenvalues are

counted as a one). In each case, all eigenvalues have strictly negative real part, confirming

that each of the computed steady-state solutions of (3.25a)–(3.25c) is linearly stable.
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It should be remarked that the existence of steady solutions that are linearly stable

but do not satisfy at least one of the spectral constraints does not mean that solving the

time-dependent equations (3.25a)–(3.25c) may never return the optimal solution of prob-

lem (3.15). Indeed, if the corresponding solution of the EL equations were a linearly stable

and locally attracting equilibrium for (3.25a)–(3.25c), it would suffice to consider an IC

within its local basin of attraction. However, proving that the desired unknown steady state

is a local attractor may not be straightforward. Moreover, even if it were possible to prove

at least linear stability, estimating the local basin of attraction of an unknown equilibrium

seems a formidable challenge. In practice, therefore, the existence of linearly stable but spu-

rious solutions of the EL equations prohibits a successful application of the time-marching

solution method described above. Fortunately, a simple modification discussed in the next

section allows for the resolution of this problem.

3.4 A modified time-marching optimisation method

One possible way to resolve the failure of the time-marching solution method described

in the previous section is suggested by an informal analogy between problem (3.15) and

optimisation problems with LMIs (cf. chapter 2). This is motivated by the fact that both a

spectral constraint and an LMI require that the eigenvalues of a certain linear operator are

non-negative, the difference being the dimension of the space on which this linear operator is

defined. It is therefore useful to consider the finite-dimensional equivalent of (3.15), meaning

an LMI-constrained optimisation problem of the form

min
y∈Rm

c(y)

s.t. F1(y) � 0,

F2(y) � 0,

(3.29)

where the matrices F1(y),F2(y) ∈ Sn depend affinely on y ∈ Rm and c : Rm → R is a convex

cost function. The exact form of c will not be important in the following discussion, but

to make the analogy with (3.15) evident one may consider c(y) = yTCy for some positive

definite matrix C ∈ Sm.

Suppose that strong duality holds for (3.29) and that the minimum cost is achieved by

an optimal solution y?. Suppose also that one can determine a priori that each Fi(y?),

i = 1, 2, has at most r zero eigenvalues, the other ones being positive. Then, the rank of

each Fi(y?), i = 1, 2, is no less than n − r, and an argument similar to that described in
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section 2.5 shows that the Lagrangian for (3.29) can be written in the low-rank form

L(y, v1, . . . , vr,w1, . . . , wr) = c(y)−
r∑
i=1

vTi F1(y)vi −
r∑
i=1

wT
i F2(y)wi. (3.30)

In this expression, the vectors vi, . . ., vr and wi, . . ., wr are dual variables, with respect to

which the Lagrangian should be maximised.

Just like (3.29) is the finite-dimensional equivalent of (3.15), when r = 1 the Lagrangian

function (3.30) is the finite-dimensional equivalent of the Lagrangian (3.22). To see this

more clearly, let D1 and D2 be the φ-dependent differential operators on the left-hand sides

of (3.19a) and (3.19b), respectively. In other words, D1 and D2 satisfy

D1v = ∂4v + ∂2v +

(
1

3
∂φ− 1

2

)
v, D2w = ∂4w + ∂2w + ∂φw. (3.31)

Then, integration by parts using periodicity yields

Q1{v} =

∫
v D1v dx, Q2{w} =

∫
wD2w dx, (3.32)

so when r = 1 the termsQ1{v} andQ2{w} in (3.22) are, respectively, the infinite-dimensional

version of the matrix-vector products vT1 F1(y)v1 and wT
1 F2(y)w1 in (3.30).

This correspondence suggests that considering (3.22) as the Lagrangian for the variational

problem (3.15) is tantamount to assuming that, when φ is the optimal background field, the

operators D1 and D2 have at most one zero eigenvalue (all others being strictly positive).

Since the optimality conditions (3.23b) and (3.23c) imply that D1 and D2 must have at least

one zero eigenvalue when φ is the optimal background field, if one considers (3.22), then one

is implicitly assuming that the ground-state eigenvalue of D1 and D2 for the optimal φ is

a simple zero. This assumption, however, is unjustified: the eigenvalues of D1 and D2 may

have multiplicity 2 (cf. remark 3.2 in section 3.2) and there is no reason to exclude that, for

the optimal φ, the ground-state eigenvalues are repeated zeros.

These observations indicate that the failure of the time-marching optimisation method

described in section 3.3 may be due to the Lagrangian (3.22) being incorrect, in the sense

that it is not the most general Lagrangian satisfying (3.21). Instead, an analogy with (3.30)

for r = 2 motivates one to consider a Lagrangian with two “copies” of each spectral constraint

(as many as the largest possible multiplicity of the associated ground-state eigenvalues), i.e.,

L{φ, v1, v2, w1, w2} :=

∫
8

3

∣∣φ′′∣∣2 − 8

3

∣∣φ′∣∣2 + φ2 dx−
2∑
i=1

Q1{vi} −
2∑
i=1

Q2{wi}. (3.33)
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3.4.1 Modified time-dependent Euler–Lagrange equations

The EL equations characterising the optimal background field can be found by setting to

zero the variations of the Lagrangian with respect to all of its arguments. When the modified

Lagrangian (3.33) is considered, one obtains

8

3
∂4φ+

8

3
∂2φ+ φ+

1

3
(v1 ∂v1 + v2 ∂v2) + w1 ∂w1 + w2 ∂w2 = 0, (3.34a)

−∂4v1 − ∂2v1 −
(

1

3
∂φ− 1

2

)
v1 = 0, (3.34b)

−∂4v2 − ∂2v2 −
(

1

3
∂φ− 1

2

)
v2 = 0, (3.34c)

−∂4w1 − ∂2w1 − ∂φw1 = 0, (3.34d)

−∂4w2 − ∂2w2 − ∂φw2 = 0. (3.34e)

The corresponding time-dependent equations can be formulated by considering the total

time derivative of the Lagrangian, recalling that this must be minimised with respect to φ,

and maximised with respect to v1, v2, w1, and w2. One obtains

∂tφ+
8

3
∂4
xφ+

8

3
∂2
xφ+ φ+

1

3
(v1 ∂xv1 + v2 ∂xv2) + w1 ∂xw1 + w2 ∂xw2 = 0, (3.35a)

∂tv1 + ∂4
xv1 + ∂2

xv1 +

(
1

3
∂xφ−

1

2

)
v1 = 0, (3.35b)

∂tv2 + ∂4
xv2 + ∂2

xv2 +

(
1

3
∂xφ−

1

2

)
v2 = 0, (3.35c)

∂tw1 + ∂4
xw1 + ∂2

xw1 + ∂xφw1 = 0, (3.35d)

∂tw2 + ∂4
xw2 + ∂2

xw2 + ∂xφw2 = 0. (3.35e)

As in section 3.3.1, it is reasonable to assume that (3.35a)–(3.35e) have a unique solution

when solved on [−`, `] with periodic BCs and odd ICs. One can therefore compute odd and

periodic stationary solutions by solving (3.35a)–(3.35e) with odd and periodic ICs.

3.4.2 Implementation and results

Equations (3.35a)–(3.35e) were solved for ` = 10π using the same numerical setup described

in section 3.3.2 (computations for ` = 6π, 8π, and 12π gave similar results and are not

reported for brevity). Three different sets of ICs were considered, which are illustrated

in figure 3.4. The first, denoted ic1 to parallel the notation of section 3.3, consisted of

one-wavenumber sinusoidal ICs, φ(x, 0) = v1(x, 0) = w1(x, 0) = sin(π`−1x) and v2(x, 0) =

w2(x, 0) = sin(2π`−1x). The ICs v2(x, 0) and w2(x, 0) must be linearly independent of
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Figure 3.4: Initial conditions φ(x, 0), v1(x, 0), v2(x, 0), w1(x, 0), and w2(x, 0) used to
solve (3.35a)–(3.35e) with ` = 10π. ic1: single-wavenumber sinusoidal initial condition
( ). ic2: random initial condition of the form (3.36) ( ). ic3: random initial condition

of the form (3.36) ( ).

v1(x, 0) and w1(x, 0), respectively, otherwise (3.35a)–(3.35e) reduce to (3.25a)–(3.25c) and

there would be no difference between the present computations and those of section 3.3.

However, linear independence need not be maintained for t > 0. The other two sets of ICs,

referred to as ic2 and ic3, consisted of random profiles of the form



φ(x, 0)

v1(x, 0)

v2(x, 0)

w1(x, 0)

w2(x, 0)


=

20∑
n=1

1√
`



φ̂n

v̂1,n

v̂2,n

ŵ1,n

ŵ2,n


sin
(nπx

`

)
, (3.36)

where, for the same reason given in section 3.3.2, the expansion coefficients were drawn

from the uniform distribution on [−1, 1]. The profiles generated for ic2 and ic3 satisfied

the required linear independence conditions.

Figure 3.5 shows the steady states computed using each set of ICs. The difference with

the results presented in section 3.3 is striking: although v1, v2, w1, and w2 converge to

different steady states, the steady-state background fields φss are the same in all cases (their

Fourier coefficients agree up to 6 decimal places) and coincide with the “double shock” profile

obtained by Fantuzzi & Wynn (2015). Inspection of the eigenvalues of (3.19a) and (3.19b),

61



Section 3.4. A modified time-marching optimisation method

Figure 3.5: Steady-state solutions φss, v1,ss, v2,ss, w1,ss, and w2,ss of (3.35a)–(3.35e) for
` = 10π and initial conditions ic1 ( ), ic2 ( ), and ic3 ( ).

Table 3.2: First 10 eigenvalues for (3.19a) and (3.19b) when φ = φss is the steady state
computed with each of the three sets of initial conditions ic1, ic2, and ic3 using the modified
time-marching approach. Negative values of λn and µn indicate violation of the spectral

constraints Q1{v} ≥ 0 and Q2{w} ≥ 0, respectively.

φss from ic1 φss from ic2 φss from ic3

n λn µn λn µn λn µn

0 −5.75×10−14 −3.22×10−8 −9.25×10−14 −8.67×10−8 −6.21×10−14 −7.06×10−8

1 7.86×10−14 1.52×10−7 3.24×10−14 9.75×10−8 9.06×10−14 1.14×10−7

2 2.34×10−2 1.88 2.34×10−2 1.88 2.34×10−2 1.88
3 2.60×10−2 1.88 2.60×10−2 1.88 2.60×10−2 1.88
4 8.29×10−2 2.00 8.29×10−2 2.00 8.29×10−2 2.00
5 9.27×10−2 2.04 9.27×10−2 2.04 9.27×10−2 2.04
6 1.48×10−1 2.05 1.48×10−1 2.05 1.48×10−1 2.05
7 1.92×10−1 2.11 1.92×10−1 2.11 1.92×10−1 2.11
8 2.35×10−1 2.18 2.35×10−1 2.18 2.35×10−1 2.18
9 2.49×10−1 2.18 2.49×10−1 2.18 2.49×10−1 2.18

reported in table 3.2, confirms that φss satisfies both spectral constraints up to reasonable

numerical tolerances, so it is the optimal solution of (3.15).

Table 3.2 reveals also that when φ is the optimal background field, the ground-state

eigenvalues of both problems (3.19a) and (3.19b) are repeated zeros (within reasonable tol-

erances). It is therefore hardly surprising that the computations of section 3.3 did not solve

the variational problem (3.15) correctly: as described at the beginning of this section, the La-

grangian (3.22) implicitly assumed simple ground-state eigenvalues. The Lagrangian (3.33),

instead, allows for ground-state eigenvalues with multiplicity 2.
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Figure 3.6: (a) Orthonormal ground-state eigenfunctions, denoted u0 and u1, of the
eigenvalue problem (3.19a) when φ = φss is the optimal background field shown in figure 3.5.
(b) Orthonormal ground-state eigenfunctions, also denoted u0 and u1, of the eigenvalue

problem (3.19b) when φ = φss is the optimal background field shown in figure 3.5.

3.4.3 Non-uniqueness of steady states

The results presented in the previous section suggest that if the solution of (3.35a)–(3.35e)

reaches a steady state, then the steady-state background field φss is the optimal solution

of (3.15). As discussed at the end of section 3.1, this is unique. On the other hand,

figure 3.5 shows that different steady states v1,ss, v2,ss, w1,ss, and w2,ss are possible, so

solutions of (3.35a)–(3.35e) yielding the unique optimal φ are not unique themselves.

The existence of multiple steady solutions, all equally valid, is a consequence of the

fact that, when φ is the optimal solution of (3.15), the ground-state eigenvalues for prob-

lems (3.19a) and (3.19b) are repeated zeros. For instance, to see why v1,ss and v2,ss are not

unique, let u0 and u1 be the two orthonormal ground-state eigenfunctions for (3.19a), which

are plotted in figure 3.6(a). Since the corresponding ground-state eigenvalues are zero and

the steady states v1,ss and v2,ss satisfy (3.34b) and (3.34c), there exist α1, . . . , α4 ∈ R such

that

v1,ss = α1u0 + α2u1, v2,ss = α3u0 + α4u1. (3.37)

The contribution of v1,ss and v2,ss to (3.34a) can then be rewritten as

1

3
(v1,ss ∂v1,ss + v2,ss ∂v2,ss) =

1

6
∂
(
v2

1,ss + v2
2,ss

)
=

1

6
∂
(
Au2

0 + 2B u0 u1 + C u2
1

)
, (3.38)

where A := α2
1 + α2

3, B := α1α2 + α3α4, and C := α2
2 + α2

4. An infinite family of equivalent

steady states can therefore be constructed by varying the constants α1, . . . , α4 in (3.37)

whilst keeping the values A, B, and C constant. Table 3.3 demonstrates that this can

indeed be done: the three steady-state profiles shown in figure 3.5, obtained with the three

different sets of initial conditions ic1, ic2, and ic3, can be decomposed as in (3.37) with

different choices of α1, . . . , α4, all of which yield the same A, B, and C.
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Table 3.3: Coefficients α1, . . . , α4 and constants A, B, and C for the steady states v1,ss

and v2,ss computed using each of the three sets of initial conditions ic1, ic2, and ic3.

α1 α2 α3 α4 A B C

ic1 2.65 508.23 −487.07 2.77 237,245.75 4.72×10−8 258,305.65
ic2 189.41 468.24 448.74 −197.64 237,245.75 2.25×10−8 258,305.65
ic3 124.91 491.24 470.79 −130.34 237,245.75 −5.04×10−8 258,305.65

Table 3.4: Coefficients β1, . . . , β4 and constants D and E for the steady states w1,ss and
w2,ss computed using each of the three sets of initial conditions ic1, ic2, and ic3.

β1 β2 β3 β4 D E

ic1 0.10 −50.61 109.82 0.04 14, 623.00 −4.21×10−11

ic2 −31.52 77.50 82.09 29.75 14, 623.00 −1.96×10−11

ic3 27.89 −71.60 90.74 22.01 14, 623.00 5.02×10−11

A very similar argument explains why the steady states w1,ss and w2,ss need not be unique.

This time, let u0 and u1 be the two orthonormal ground-state eigenfunctions for (3.19b),

which are illustrated in figure 3.6(b). Observe that these eigenfunctions satisfy |u0(x)|2 =

|u1(x)|2 pointwise. For any solution w1,ss and w2,ss of the EL equations (3.34c) and (3.34e),

there exist real scalars β1, . . . , β4 such that

w1,ss = β1u0 + β2u1, w2,ss = β3u0 + β4u1. (3.39)

Recalling that |u0(x)|2 = |u1(x)|2, the contribution of w1,ss and w2,ss to (3.34a) becomes

w1,ss ∂w1,ss + w2,ss ∂w2,ss =
1

2
∂
(
w2

1,ss + w2
2,ss

)
=

1

2
∂
(
Du2

0 + 2E u0 u1

)
, (3.40)

where D :=
∑4

i=1 β
2
i and E := β1β2 + β3β4. Then, an infinity of equally valid steady states

can be constructed by varying β1, . . . , β4 whilst keeping D and E constant. Table 3.4

confirms that the different profiles w1,ss and w2,ss plotted in figure 3.5, computed using

initial conditions ic1, ic2, and ic3, can be constructed from (3.39) using different choices

of β1, . . . , β4, all resulting in the same values of D and E.

3.4.4 Linear stability of steady states

The ability to solve the variational problem (3.15) by evolving (3.35a)–(3.35e) from different

sets of ICs is evidence that the time-marching method based on the Lagrangian (3.33) is

robust. A proof of convergence to the correct steady state for any ICs seems difficult to obtain

because equations (3.35a)–(3.35e) are nonlinear. A simpler task is to try to show that if a

steady solution of (3.35a)–(3.35e) violates the spectral constraints, then it is not attracting
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and, therefore, will not be computed in practice. Wen et al. (2015) proved statements of this

kind for the examples considered in their work, and it is natural to wonder if their analysis

can be adapted to the present case.

The argument proposed by Wen et al. (2015) relies on formulating a connection between

the eigenvalue problems associated with the spectral constraints, (3.19a) and (3.19b), and

the eigenvalue problem for the linear stability analysis of steady solutions of (3.35a)–(3.35e).

The latter is derived by writing solutions of (3.35a)–(3.35e) as the sum of steady fields φss,

v1,ss, v2,ss, w1,ss and w2,ss, which satisfy (3.34a)–(3.34e), and infinitesimal perturbations

φ̃(x)eζt, ṽ1(x)eζt, ṽ2(x)eζt, w̃1(x)eζt, w̃2(x)eζt, (3.41)

where ζ ∈ C. Representing solutions in this way leads to the eigenvalue problem

8

3
∂4φ̃+

8

3
∂2φ̃+ φ̃+

1

3
∂ (v1,ssṽ1 + v2,ssṽ2) + ∂ (w1,ssw̃1 + w2,ssw̃2) = −ζφ̃, (3.42a)

∂4ṽ1 + ∂2ṽ1 +

(
1

3
∂φss −

1

2

)
ṽ1 +

1

3
v1,ss ∂φ̃ = −ζṽ1, (3.42b)

∂4ṽ2 + ∂2ṽ2 +

(
1

3
∂φss −

1

2

)
ṽ2 +

1

3
v2,ss ∂φ̃ = −ζṽ2, (3.42c)

∂4w̃1 + ∂2w̃1 + ∂φss w̃1 + w1,ss ∂φ̃ = −ζw̃1, (3.42d)

∂4w̃2 + ∂2w̃2 + ∂φss w̃2 + w2,ss ∂φ̃ = −ζw̃2. (3.42e)

To prove that a steady solution of (3.35a)–(3.35e) is linear unstable, hence not attracting, it

suffices to find one eigenfunction for (3.42a)–(3.42e) with eigenvalue ζ satisfying Re(ζ) > 0.

Problem (3.42a)–(3.42e) can be linked to the eigenvalue problems associated with the

spectral constraints, (3.19a) and (3.19b), by insisting that φ̃ = 0. With this choice, (3.42a)–

(3.42e) reduce to

1

3
∂ (v1,ssṽ1 + v2,ssṽ2) + ∂ (w1,ssw̃1 + w2,ssw̃2) = 0, (3.43a)

∂4ṽ1 + ∂2ṽ1 +

(
1

3
∂φss −

1

2

)
ṽ1 = −ζṽ1, (3.43b)

∂4ṽ2 + ∂2ṽ2 +

(
1

3
∂φss −

1

2

)
ṽ2 = −ζṽ2, (3.43c)

∂4w̃1 + ∂2w̃1 + ∂φss w̃1 = −ζw̃1, (3.43d)

∂4w̃2 + ∂2w̃2 + ∂φss w̃2 = −ζw̃2. (3.43e)

It is clear that (3.43b) and (3.43c) correspond to (3.19a) upon identifying ζ = −λ, while
(3.42d) and (3.42e) correspond to (3.19b) upon identifying ζ = −µ. This means that if the

steady background field φss violates the spectral constraint Q1{v} ≥ 0, then there exists
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ṽ1 that satisfies (3.43b) with ζ = −λ > 0. If, instead, φss violates the spectral constraint

Q2{w} ≥ 0, then there exists w̃1 that satisfies (3.43d) with ζ = −µ > 0. The strategy

proposed by Wen et al. (2015) is to use these observations to prove the following claim.

Claim 3.2. If φss does not satisfy at least one of the spectral constraints, then there exist

ζ ∈ R, ζ > 0, and functions ṽ1, ṽ2, w̃1, and w̃2 that satisfy (3.43a)–(3.43e).

Unfortunately, it does not appear possible to prove this result unless one makes additional

assumptions on φss, v1,ss, v2,ss, w1,ss and w2,ss. To see where the obstacle lies, suppose

for definiteness that φss violates the spectral constraint Q1{v} ≥ 0. For simplicity, set

w̃1 = w̃2 = 0 (a different choice does not seem to help) and recall that v1,ss and v2,ss are odd

and periodic on the domain [−`, `], so they must vanish at x = 0. Then, (3.43a) requires

v1,ss(x)ṽ1(x) + v2,ss(x)ṽ2(x) = 0 ∀x ∈ [−`, `]. (3.44)

The steady states v1,ss and v2,ss are linearly independent in general, so for (3.44) to hold

ṽ1 and ṽ2 must be linearly independent, too. In addition, ṽ1 and ṽ2 must satisfy (3.43b)

and (3.43c), respectively. Thus, they must be (a linear combination of) linearly independent

eigenfunctions of (3.19a) with the same eigenvalue λ = −ζ, so one must choose λ = −ζ to

be a repeated eigenvalue of (3.19a). An immediate obstacle is that, without further assump-

tions, one cannot guarantee that (3.19a) has any repeated negative eigenvalues. Moreover,

even when a degenerate negative eigenvalue exists, it is possible that its corresponding

eigenfunctions cannot be linearly combined to construct ṽ1 and ṽ2 such that (3.44) holds.

The latter problem is crucial, and is born out of a fundamental difference between the

analysis of this chapter and the proofs presented by Wen et al. (2015): equation (3.44) is a

pointwise condition, while for the problems studied by Wen et al. (2015) one obtains integral

conditions. For instance, when studying Rayleigh’s two-dimensional model for convection

one requires that4

∫ L

0
W (x, z)θ̃(x, z) + θ(x, z)W̃ (x, z) dx = 0 ∀z ∈ [0, 1], (3.45)

whereW and θ are the spurious steady solutions of the EL equations (whose instability is to

be proven) and W̃ , θ̃ are the corresponding perturbations. Since all functions are periodic in

x, one can satisfy (3.45) by taking W̃ and θ̃ as eigenfunctions of the spectral constraint with

negative eigenvalue that, in addition, share no Fourier modes with θ andW . The possibility

of exploiting orthogonality through the integral in (3.45) grants considerably more freedom
4This follows from equation (35) in Wen et al. (2015).
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compared to (3.44), and this difference is what ultimately prevents one from extending Wen

et al.’s approach and proving claim 3.2.

It is of course also possible that the claim is incorrect, and that to prove linear instability

of φss, v1,ss, v2,ss, w1,ss and w2,ss when one of the spectral constraints is violated one must

consider eigenfunctions of (3.42a)–(3.42e) with φ̃ 6= 0 and complex eigenvalues. However,

this makes the connection with the spectral constraints more difficult, and it does not seem

easy to make progress. A simpler approach is to restrict the attention to particular classes

of steady states, such that the uncertainty surrounding the multiplicity of the eigenvalues

of (3.19a) and (3.19b) can be circumvented. In this way, one can at least guarantee that

the time-marching method described in section 3.4 will not converge to certain types of

undesired steady states. The following result is an example of what can be proven.

Theorem 3.3. Suppose that φss, v1,ss, v2,ss, w1,ss and w2,ss solve the EL equations (3.34a)–

(3.34e) and satisfy at least one of the following conditions:

(i) φss violates the spectral constraint Q1{v} ≥ 0 and v2,ss = cv1,ss for a constant c 6= 0;

(ii) φss violates the spectral constraint Q2{w} ≥ 0 and w2,ss = cw1,ss for a constant c 6= 0.

Then, the tuple (φss, v1,ss, v2,ss, w1,ss, w2,ss) is a linearly unstable steady solution of the time-

dependent EL equations (3.35a)–(3.35e).

Remark 3.3. The existence of solutions of (3.34a)–(3.34e) that satisfy the conditions of

Theorem 3.3 is easily demonstrated. Recall from section 3.3 that one can find φ?, v? and

w? that solve (3.23a)–(3.23c) and such that φ? does not satisfy at least one of the spectral

constraints. Then, for any α, β ∈ [0, 1], the fields

φss = φ?, v1,ss =
√
α v?, v2,ss =

√
1− α v?, w1,ss =

√
β w?, w2,ss =

√
1− β w?, (3.46)

satisfy the conditions of Theorem 3.3.

Proof. Suppose that condition (i) holds and set φ̃ = w̃1 = w̃2 = 0 in (3.43a)–(3.43e). With

these choices, proving linear instability requires finding ζ > 0 and functions ṽ1, ṽ2 that

satisfy
∂ (v1,ss ṽ1 + c v1,ss ṽ2) = 0, (3.47a)

∂4ṽ1 + ∂2ṽ1 +

(
1

3
∂φss −

1

2

)
ṽ1 = −ζṽ1, (3.47b)

∂4ṽ2 + ∂2ṽ2 +

(
1

3
∂φss −

1

2

)
ṽ2 = −ζṽ2. (3.47c)
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This can be done easily: let ṽ1 = −cṽ2 and choose ṽ2 to be an eigenfunction of (3.19a)

with eigenvalue λ < 0, which exists because the spectral constraint Q1{v} ≥ 0 is violated

by assumption. Then, ζ = −λ is a real positive eigenvalue for (3.42a)–(3.42e) and the tuple

(φss, v1,ss, v2,ss, w1,ss, w2,ss) is a linearly unstable steady solution of (3.35a)–(3.35e). A similar

argument can be applied when condition (ii) holds.

3.5 Conclusions

This chapter described an attempt to employ the time-marching method proposed by Wen

et al. (2013, 2015) to optimise background fields for the one-dimensional KS equation on the

periodic domain [−`, `]. The construction of a suitable background field φ implies an upper

bound on the asymptotic kinetic energy E of solutions of the KS equation, and the scaling

of the best possible upper bound as a function of the domain’s half-size ` is of interest to

confirm that the background method cannot prove the conjecture that E ∼ ` when `� 1.

It has been shown that time-marching methods can indeed be utilised to solve the vari-

ational problem for the optimal φ. However, doing so requires careful consideration of how

the spectral constraints on the background field are handled when constructing the La-

grangian for the problem. The numerical results presented in section 3.3.2 demonstrate that

considering the Lagrangian (3.22), obtained by subtracting the spectral constraints from

the objective function as suggested by the examples given by Wen et al. (2013, 2015), is

not sufficient. Instead, the optimal φ could be computed irrespectively of the prescribed

initial guess when two copies of each spectral constraint were subtracted from the objec-

tive function, yielding the Lagrangian (3.33). The use of this Lagrangian was suggested by

an informal comparison between the variational problem for the optimal background field

and a certain LMI-constrained problem, motivated by the observation that both spectral

constraints and LMIs require the eigenvalues of a linear operator to be non-negative. This

comparison revealed that the Lagrangian should be consistent with the multiplicity of the

ground-state eigenvalues of this linear operator. Lagrangians of the form (3.22) worked well

for every problem studied by Wen et al. (2013, 2015), suggesting that either the ground-state

eigenvalues are simple, or their corresponding eigenfunctions possess some additional sym-

metries that make a simplified, “rank-one” solution possible. For the KS equation, instead,

the ground-state eigenvalues may be repeated with multiplicity 2 (and, in fact, are so for the

optimal background field), making it necessary to consider the modified Lagrangian (3.33).

It has also been demonstrated that studying the convergence properties of the time-

marching optimisation method requires careful analysis. One fundamental question that
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remains open is whether computations can converge to “spurious” solutions, which satisfy

the EL equations characterising stationary points of the Lagrangian, but violate at least one

of the spectral constraints. Wen et al. (2015) proved that this is impossible for a range of

optimal background field problems arising in fluid dynamics. Their proofs work by showing

that steady solutions of the time-dependent version of the EL equations are linearly unstable,

and hence not attracting, if one spectral constraint is violated. For the KS equation, however,

the same argument cannot be run because one cannot exploit orthogonality between spurious

steady solutions and the unstable eigenfunctions of the spectral constraint, a key ingredient

of the argument by Wen et al. (2015). Instead, only a particular class of spurious solutions

of the EL equations could be proven not to be attracting. Consequently, it cannot be ruled

out that, for certain ICs, the time-marching method returns an incorrect solution even if

the correct Lagrangian is used.

Given the difficulties encountered in optimising background fields for the KS equation

using time-marching methods, it is natural to wonder how easily these can be applied to

solve other variational problems arising from the study of dynamical systems using the back-

ground method. One issue is that, in order to construct the correct Lagrangian, one must

known a priori at least an upper bound on the multiplicity of the ground-states eigenval-

ues of the linear operator corresponding to each spectral constraint. For the KS equation,

this information could be obtained by appealing to symmetry and some existing results on

eigenvalue problems (cf. remark 3.2), but it is likely that the same will not be true for

more complex systems. Should a priori bounds on the multiplicity of ground-state eigen-

values not be available, an iterative procedure may be employed, wherein a guess for the

eigenvalue multiplicity is increased until the time-marching optimisation scheme converges

to a background field that satisfies all spectral constraints. However, convergence to such

a solution cannot actually be guaranteed even when the multiplicity of the ground-state

eigenvalues associated with the spectral constraints is known. One reason is that it does not

seem currently possible to generalise the argument put forward by Wen et al. (2015) and

exclude convergence to steady states that violate at least one spectral constraint. Another

reason is that, since the time-dependent equations to be solved are nonlinear, ICs may be

attracted to a periodic orbit or a chaotic attractor, rather than to a steady solution (Wen

et al., 2015). Of course, the lack of theoretical convergence guarantees may not be an issue

in practice, as demonstrated by the numerical results of section 3.4.2. Nonetheless, it may

be possible to construct a “pathological” optimal background field problem, for which the

time-marching method does not reach the correct solution for all but a small set of carefully

selected ICs.
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For these reasons, while time-marching methods remain attractive because they rely

on well established and widely known numerical integration techniques, it is desirable to

develop alternative approaches for the optimisation of background fields. One promising

strategy, already implemented by Fantuzzi & Wynn (2015) for the KS equation, is to take

advantage of the analogy between spectral constraints and LMIs, and construct optimal

background fields using semidefinite programming. This line of attack will be pursued

in the rest of this thesis. In fact, the next chapter (chapter 4) will go even further and

demonstrate how SDPs can be utilised to compute optimal or near-optimal solutions of

more general optimisation problems, subject to a particular class of affine and homogeneous

integral inequality constraints. This class of constraints encompasses the spectral constraints

encountered when the background method is utilised to study long-term or time-averaged

properties of many systems, including the KS equation, provided that one seeks background

fields parametrised by finitely many degrees of freedom (a mild restriction in practice). The

SDP-based methods developed in chapter 4 will be utilised in chapter 5 to compute near-

optimal background fields for stress-driven shear flows, while similar techniques, also based

on SDPs, will be employed in chapter 6 to optimise bounds on the average convective heat

transfer in Bénard–Marangoni convection at infinite Prandtl number.
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Chapter 4

Optimisation with affine
homogeneous quadratic integral
inequalities†

When the background method is applied to derive bounds on long-term or time-averaged

properties of chaotic systems governed by PDEs, the optimal background field is determined

by the solution of a variational problem with spectral constraints. For instance, it was shown

in chapter 3 that the background field φ yielding the best bound on the asymptotic kinetic

energy of the Kuramoto–Sivashinky equation solves

inf
φ∈Hp,o

∫ `

`

(
8

3

∣∣φ′′∣∣2 − 8

3

∣∣φ′∣∣2 + |φ|2
)

dx

s.t.
∫ `

`

[∣∣v′′∣∣2 − ∣∣v′∣∣2 +

(
1

3
φ′ − 1

2

)
v2

]
dx ≥ 0 ∀v ∈ Hp,o,∫ `

`

(∣∣w′′∣∣2 − ∣∣w′∣∣2 + φ′w2
)

dx ≥ 0 ∀w ∈ Hp,o,

(4.1)

where Hp,o is the space of odd and periodic square-integrable functions on [−`, `] with

square-integrable periodic derivatives.

Spectral constraints are particular instances of integral inequality constraints: the opti-

misation variables need to be determined such that a certain integral inequality holds for

all functions of a certain class. For spectral constraints, this is equivalent to requiring that

the eigenvalues of a certain linear, self-adjoint operator defined on this function class are

non-negative, but the same need not be true in general. Integral inequality constraints,

therefore, include but are not limited to spectral constraints.
†Most of the material presented in this chapter has been published in the following works:

Fantuzzi, G. and Wynn, A. (2016). Semidefinite relaxation of a class of quadratic integral inequalities. In:
Proceedings of the 55th IEEE Conference on Decision and Control, Las Vegas, NV, IEEE. pp. 6192–6197.
Available from: doi:10.1109/CDC.2016.7799221. c© 2016 IEEE
Fantuzzi, G., Wynn, A., Goulart, P. J. and Pachristodoulou, A. (2017). Optimization with affine ho-
mogeneous quadratic integral inequality constraints. IEEE Transactions on Automatic Control 62(12),
6221–6236. Available from: doi:10.1109/TAC.2017.2703927. c© 2017 IEEE
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Integral inequality constraints are commonly encountered when one is interested in the

analysis and/or control of systems governed by PDEs. For example, the stability of an

equilibrium of a PDE system with vector-valued state w(t,x) in a domain Ω ⊂ Rn, or of a

control policy designed to stabilise it, can be established by constructing a positive integral

Lyapunov functional V(t) = V{w(t, ·)} =
∫

Ω V [w(t,x)]dx whose time derivative, also an

integral quantity, is non-positive at all times (Straughan, 2004; Valmorbida et al., 2014a,

2016). Other input-to-state/output properties such as passivity, reachability, and input-to-

state stability can be studied in a similar way by constructing functions of the state variable

that satisfy certain integral inequalities (Ahmadi et al., 2014, 2016).

In all these situations, the problem is either to check whether certain integral inequalities

hold for all functions in a given set, or to optimise certain variables (for instance a background

field) while satisfying some integral inequality constraint. In the simplest case, one is faced

with an optimisation problem of the form

min
γ∈S

c(γ)

s.t. Fγ{w} :=

∫
Ω
Fγ(x,Dkw)dnx ≥ 0 ∀w ∈ H,

(4.2)

where H is a suitable function space, e.g. the space of all k-times differentiable functions

from Ω ⊆ Rn (typically n = 3 for physical systems) to Rq that satisfy a given set of boundary

conditions (BCs). The optimisation variable γ belongs to a finite- or infinite-dimensional

set S,1 c : S → R is a convex cost function, Fγ(·, ·) is a function that depends parametrically

on γ, and Dkw = [w1, ∂x1w1, ∂x2w1, . . . , ∂
k1
xnw1, . . . , ∂

kq
xnwq]

T lists all partial derivatives of

the components of w up to the order specified by the multi-index k = [k1, . . . , kq] (see

the end of this section for more details). Problems with additional constraints on γ and

multiple integral inequalities are common, but the former can always be incorporated into

the definition of S, while each integral inequality can be enforced individually. Consequently,

there is no loss of generality in considering problems of the form (4.2).

When the dependence on γ is affine, S is convex, and strong duality holds, problem (4.2)

could in principle be solved using the calculus of variations (for an introduction to the

subject, see Courant & Hilbert, 1953; Giaquinta & Hildebrandt, 1996) to solve the min-max

problem

min
γ

max
w
λ≥0

L{γ,w, λ} := c(γ)− λFγ{w}, (4.3)

1The set S is infinite-dimensional for problems arising from the application of the background method,
such as the one considered in chapter 3: the search for the optimal background field is an optimisation over
an infinite-dimensional class of functions.
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Chapter 4. Optimisation with affine homogeneous quadratic integral inequalities

where λ ≥ 0 is a Lagrange multiplier enforcing the integral inequality. This strategy under-

lies the time-marching methods described in chapter 3 and, as demonstrated there, requires

a very careful treatment of the constraint.

When the optimisation variable γ is finite-dimensional, and the integrand Fγ(·, ·) is

both linear with respect to Dkw and polynomial in x, an alternative is to transform (4.2)

into a semidefinite program (SDP) using integration by parts and moment relaxation tech-

niques (Bertsimas & Caramanis, 2006). More recently, it has been suggested that (4.2) can

be recast as an SDP even when the integrand is polynomial in Dkw (Papachristodoulou &

Peet, 2006; Valmorbida et al., 2014a, 2016, 2015): one relates the derivatives of the com-

ponents of w using integration by parts and algebraic identities, and then requires that the

polynomial integrand Fγ(x,Dkw) admits a sum-of-squares (SOS) decomposition over the

domain of integration. However, this approach is often impractical because SOS conditions

of very high degree are needed to achieve accurate results.

This chapter presents a different SDP-based approach to solving a particular class of

problems of type (4.2), which contains a number of non-trivial problems encountered in

the study of PDEs. In particular, the methods developed here apply to many variational

problems that arise when bounding time-averaged or long-term properties of PDE systems

using the background method, after a mild assumption on the form of the background

field is introduced. It will be assumed that Fγ is a homogeneous quadratic functional

over a one-dimensional compact domain. In other words, x ∈ Ω ≡ [a, b] ⊂ R with a

and b finite, and the integrand Fγ(x,Dkw) is a homogeneous quadratic polynomial with

respect to Dkw. It will also be assumed that the optimisation variable is finite-dimensional.

This requirement is necessary to enable computations and is true in many applications. For

instance, as described in example 4.1 below, when studying the nonlinear stability of a given

fluid flow using the method of energy (Straughan, 2004) one seeks the largest value of a scalar

parameter describing the forcing on the flow such that a certain integral inequality holds.

Other times, requiring that the optimisation variable is finite-dimensional is only a mild

restriction. This is the case when the background method is utilised to study PDE systems:

the background field should be optimised over an infinite-dimensional class of functions,

but since the optimal choice can be approximated arbitrarily accurately by a polynomial of

sufficiently high degree, optimising over the finite-dimensional space of degree-d polynomial

background fields suffices in practice when d is large.

The methods described in this chapter rely on Legendre series expansions to formulate

SDPs with better scaling properties than the SOS method of Valmorbida et al. (2016). The

main results of this chapter are:
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(i) the formulation of convergent outer approximations of the feasible set of (4.2) described

by linear matrix inequalities (LMIs), so convergent lower bounds for the optimal cost

can be computed with semidefinite programming;

(ii) the derivation of LMI-representable inner approximations for the feasible set of (4.2),

so upper bounds on its optimal value of can also be obtained by solving SDPs. These

complement the aforementioned lower bounds, and enable one to assess their quality.

Legendre polynomials are central to this chapter, so they are briefly reviewed in sec-

tion 4.1. Subsequently, section 4.2 defines the particular class of optimisation problems

considered in this chapter. Outer and inner SDP relaxations are formulated in sections 4.3

and 4.4, respectively. In section 4.5, some assumptions introduced to ease the exposition are

removed, and an extension of the inner/outer SDP relaxations to more general problems is

presented. Section 4.6 shows how SDP relaxations can be applied to some simple, yet non-

trivial problems arising from the analysis of PDEs, demonstrating the advantages of the pro-

posed approaches compared to the SOS method of Valmorbida et al. (2016), as well as some

limitations. The numerical experiments are carried out using QUINOPT (QUadratic INte-

gral OPTimisation), an add-on to the MATLAB optimisation toolbox YALMIP (Löfberg,

2004, 2009) developed as part of this work to assist the formulation of the SDP relaxations.

Comments on the computational cost of the proposed techniques are given in section 4.7.

Finally, section 4.8 offers concluding remarks and discusses possible future developments.

To streamline the presentation, some technical results are proven in appendix A.

The following notation will be used throughout this chapter. Recall that Nq is the set

of non-negative multi-indices of the form α = [α1, . . . , αq]. Given α ∈ Nq, the quantity

|α| = α1 + · · · + αq is known as the length of the multi-index. Moreover, if α,β ∈ Nq

with αi ≤ βi ≤ m for all i ∈ {1, . . . , q}, the difference β − α is defined as β − α =

[β1 − α1, . . . , βq − αq] ∈ Nq. Given w ∈ Cm([a, b],Rq), its derivatives of order between α

and β will be listed in the vector

D[α,β]w :=
[
∂α1u1, . . . , ∂

β1u1, ∂
α2u2, . . . , ∂

β2u2, . . . , ∂
βquq

]T
∈ Rq+|β−α|. (4.4)

All boundary values of such derivatives are collected in the vector

B[α,β]w :=

D[α,β]w(a)

D[α,β]w(b)

 ∈ R2(q+|β−α|). (4.5)

For simplicity, the notation Dβw and Bβw will be used instead of D[0,β]w and B[0,β]w.
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4.1 Legendre polynomials and Legendre series

The Legendre polynomial of degree n is defined over the interval [−1, 1] as

Ln(x) =
1

n! 2n
dn

dxn
(x2 − 1)n. (4.6)

All Legendre polynomials of degree n ≥ 2 can also be constructed using the relation

nLn(x) = (2n− 1)xLn−1(x)− (n− 1)Ln−2(x), (4.7)

with L0(x) = 1 and L1(x) = x. A straightforward induction argument using (4.7) proves

that Ln(±1) = (±1)n for all n ≥ 0, and it can be shown that ‖Ln‖∞ ≤ 1 .

The Legendre polynomials satisfy a number of other recurrence relations. A fundamental

fact used in this chapter is that (Agarwal & O’Regan, 2009, chapter 7, problem 7.8)

(2n+ 1)Ln(x) =
d

dx
[Ln+1(x)− Ln−1(x)] , n ≥ 1. (4.8)

The Legendre polynomials form a complete orthogonal basis for the Lebesgue space

L2(−1, 1) (Zeidler, 1995), and satisfy the orthogonality condition

∫ 1

−1
Ln Lm dx =

2δmn
2n+ 1

, (4.9)

where δmn is the usual Kronecker delta. This means that any square-integrable function u

can be expanded with a convergent series (in the L2 norm sense)

u(x) =

∞∑
n=0

ûnLn(x), ûn =
2n+ 1

2

∫ 1

−1
uLn dx, (4.10)

where the values ûn are known as Legendre coefficients. From (4.9) it follows that

‖u‖22 =

∫ 1

−1
|u|2 dx =

∞∑
n=0

2|ûn|2
2n+ 1

. (4.11)

If, in addition, u is continuously differentiable on [−1, 1], then its Legendre series expansion

converges uniformly. In fact, u is Lipschitz on [−1, 1] because, by Taylor’s theorem, for any

x, y ∈ [−1, 1] there exists z ∈ [x, y] such that |u(y) − u(x)| = |∂u(z)| |x − y| ≤ C |x − y|,
where C is a positive constant whose existence is guaranteed by the continuity of ∂u in

[−1, 1]. Uniform convergence follows from the Lipschitz condition according to Theorem XI

in Jackson (1930).
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4.2 A class of optimisation problems

As anticipated in the introduction, this chapter focusses on a particular class of optimisation

problems of type (4.2). This class, described below, is sufficiently general to enable the

solution of problems arising from applications of the background method to many fluid

dynamical systems, which are the main interest of this thesis (cf. chapters 5 and 6).

Let γ ∈ Rs be a vector of optimisation variables, and consider two integers m, q and two

multi-indices k = [k1, . . . , kq], l = [l1, . . . , lq] ∈ Nq such that

1 ≤ ki ≤ m− 1, i = 1, . . . , q, (4.12a)

ki ≤ li ≤ m, i = 1, . . . , q. (4.12b)

Moreover, let F0(x), . . . , Fs(x) ∈ Sq+|k| be matrices of polynomials of x of degree at most

dF and define

F (x;γ) := F0(x) +

s∑
i=1

γiFi(x). (4.13)

In other words, F (x;γ) is a symmetric matrix of polynomials of x of degree at most dF , the

coefficients of which are affine in γ. The focus of this chapter will be on linear optimisation

problems of type (4.2) subject to affine homogeneous quadratic integral inequalities with

compact domain of integration, meaning problems of the form

min
γ

cTγ

s.t. Fγ{w} :=

∫ 1

−1

(
Dkw

)T
F (x;γ)Dkw dx ≥ 0 ∀w ∈ H,

(4.14)

where c ∈ Rs is the cost vector, F (x;γ) is as in (4.13), and

H :=
{
w ∈ Cm ([−1, 1],Rq) : ABlw = 0

}
(4.15)

is the space of m-times continuously differentiable functions satisfying the p homogeneous

linear BCs defined by the matrix A ∈ Rp×2(q+|l|). There is no loss of generality in fixing the

integration domain for the functional Fγ to [−1, 1] because any compact interval [a, b] can

be mapped to it with a change of integration variable. An affine homogeneous quadratic

integral inequality is a convex constraint on γ, so (4.14) is a convex optimisation problem.

Remark 4.1. For the sake of generality, the space H can be defined by derivatives of higher

order than those appearing in Fγ{w}. This can always be achieved by adding zero columns

to A. In problems arising from the study of PDEs, this is not uncommon: H encodes the
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x

y

−1

1

0.5γ

Figure 4.1: Sketch of the shear flow considered in example 4.1. The two-dimensional fluid
layer extends to infinity along the x direction, is bounded at y = −1 by a solid boundary
and is driven at the surface (y = 1) by a shear stress of non-dimensional magnitude 0.5γ.

BCs of the solution of a PDE, which might involve all derivatives up to the order of the

PDE. On the other hand, Fγ{w} is typically derived from a weak formulation of the PDE,

after integrating some terms by parts.

Assumption 4.1. To ease the exposition, from here onwards the discussion will concentrate

on two-dimensional functions w = [u, v]T ∈ Cm([−1, 1],R2) and on uniform multi-indices

k = [k, k] and l = [l, l], where k and l satisfy (4.12a) and (4.12b). As discussed in section

4.5, however, the results presented in this chapter hold also for the general case.

Example 4.1. Consider a two-dimensional infinite layer of fluid bounded at y = −1 by a

solid wall and driven at the surface (y = 1) by a horizontal shear stress of non-dimensional

magnitude 0.5γ, as shown in figure 4.1. The flow is governed by the incompressible Navier–

Stokes equations, and admits a steady (time independent) solution in which the flow moves

horizontally with velocity w0 = (u0, v0) = (0.5γy + 0.5γ, 0) (see for example Tang et al.,

2004; Hagstrom & Doering, 2014). This steady flow is stable when the driving stress is

small. The critical value γcr(ξ) at which the steady flow is no longer guaranteed to be stable

with respect to a sinusoidal perturbation w(y)eiξx+σt—where w(y) = [u(y), v(y)]T is the

amplitude and ξ is the wavenumber—is given by

γcr(ξ) := arg min − γ

s.t.
∫ 1

−1

{
16

ξ2
[(∂2

yu)2 + (∂2
yv)2] + 8[(∂yu)2 + (∂yv)2]

+ξ2(u2 + v2) +
2γ

ξ
(v∂yu− u∂yv)

}
dy ≥ 0,

(4.16)

where the integral inequality should hold for all functions u, v ∈ C2([−1, 1]) satisfying the

homogeneous BCs

u(−1) = u(1) = ∂yu(−1) = ∂2
yu(1) = 0,

v(−1) = v(1) = ∂yv(−1) = ∂2
yv(1) = 0.

(4.17)

The reader is referred to Tang et al. (2004) or Hagstrom & Doering (2014) for more details.
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The constraint in (4.16) can be rewritten in matrix form as in (4.14) with k = l = [2, 2]

and

Dkw =



u

∂yu

∂2
yu

v

∂yv

∂2
yv


, F (x;γ) =



ξ2 0 0 0 −γ
ξ 0

0 8 0 γ
ξ 0 0

0 0 16
ξ2

0 0 0

0 γ
ξ 0 ξ2 0 0

−γ
ξ 0 0 0 8 0

0 0 0 0 0 16
ξ2


.

Note that the matrix F above can be written in the form (4.13) with s = 1. The reader can

easily verify that the BCs on u and v can also be rewritten in the matrix form ABlw = 0

with A ∈ R8×12; the details are omitted for brevity. For this problem, it is clear that

Fγ{w} ≥ 0 for γ = 0, and that definiteness is lost for sufficiently large γ. However, the

interaction of the BCs with this behavior makes the problem interesting and non-trivial to

solve. Upper and lower bounds for the optimal γ in (4.16) will be computed in section 4.6.1.

4.3 Outer SDP relaxations

The first approach to solve (4.14) is to derive a sequence of outer approximations for its

feasible set,

T := {γ ∈ Rs : ∀w ∈ H, Fγ{w} ≥ 0} . (4.18)

In other words, one looks for a family of sets {T out
N }N≥0 such that T ⊂ T out

N . As will be

demonstrated below, such sets can be found by relaxing the integral inequality Fγ{w} ≥ 0,

enforcing it only over a certain subset of the test function space H. Optimising the cost

function over T out
N then gives a lower bound for the optimal value of (4.14), and convergence

of this lower bound can be guaranteed subject to very mild conditions.

One way to construct an outer approximation set T out
N for the feasible set T of (4.14) is

to weaken the integral inequality constraint by enforcing it only for polynomials w of degree

N . Precisely, one restricts attention to

w = [u, v]T ∈ SN := H ∩ (PN × PN ) ⊂ H, (4.19)

where PN is the set of polynomials of degree no larger than N on [−1, 1]. The set SN is

non-empty for any degree bound N because H contains the zero polynomial, and it contains
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non-zero elements if N is large enough to guarantee sufficient degrees of freedom to satisfy

the BCs prescribed on H in (4.15). Finally, SN ⊂ SN+1 because PN ⊂ PN+1.

Now, let û0, . . . , ûN and v̂0, . . . , v̂N be the coefficients representing the polynomials u

and v in any chosen basis for PN , and define ϕN := [û0, . . . , ûN , v̂0, . . . , v̂N ]T. Since Fγ
in (4.14) is quadratic and the constraints imposed on H are linear, it is clear that there exist

a matrix QN (γ), affine in γ, such that

Fγ{w} = ϕN
TQN (γ)ϕN , (4.20)

and a matrix AN such that

w ∈ SN ⇔ ANϕN = 0. (4.21)

Upon selecting a matrix ΠN satisfying img(ΠN ) = ker(AN ), it follows that

T out
N := {γ ∈ Rs : ∀w ∈ SN , Fγ{w} ≥ 0}

=
{
γ ∈ Rs : ΠN

TQN (γ)ΠN � 0
}
. (4.22)

Moreover, the inclusion SN ⊂ SN+1 ⊂ H implies that the feasible set T of (4.14), defined

as in (4.18), satisfies

T ⊂ T out
N+1 ⊂ T out

N for all N ∈ N. (4.23)

Thus, {T out
N }N≥1 is a sequence of nested outer approximations of the feasible set of (4.14).

As anticipated above, optimising γ over each set T out
N yields a sequence of lower bounds

on the optimal value of (4.14). In particular, one can prove the following result.

Theorem 4.2. Let p∗ be the optimal value of (4.14) and, for each integer N , let p∗N be the

optimal value of the SDP

min
γ

cTγ

s.t. ΠN
TQN (γ) ΠN � 0.

(4.24)

Then, {p?N}N≥0 is a non-decreasing sequence of lower bounds for p?. Furthermore, if a

minimiser γ? exists in (4.14), then lim
N→∞

|p?N − p?| = 0.

Proof. See appendix A.2.

Remark 4.2. Clearly, infeasibility of the SDP (4.24) for a certain N provides a certificate of

infeasibility for (4.14). However, feasibility (resp. unboundedness) of (4.24) for any finite

N does not prove that (4.14) is indeed feasible (resp. unbounded).
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Unfortunately, Theorem 4.2 provides no control on the gap p? − p?N as a function of N .

In other words, an arbitrarily large N might be required for a given level of approximation

accuracy. Consequently, to assess the quality of the lower bounds on p? obtained with the

SDP (4.24) it is fundamental to formulate checkable conditions upon which upper bounds

can be placed on p?. This will be the subject of the next section.

4.4 Inner SDP relaxations

Upper bounds on the optimal value of problem (4.14), that complement the lower bounds

from Theorem 4.2, can be found by optimising the cost function over an inner approximation

T in
N of the true feasible set. Such an inner approximation can be constructed by replacing

the integral inequality Fγ{w} ≥ 0 with a stronger, but tractable, integral inequality over

the space H in (4.15). In particular, one looks for a lower bound Fγ{w} ≥ Gγ{w}, where
Gγ{w} is a functional whose non-negativity over H can be enforced via a set of LMIs.

Any γ such that Gγ{w} ≥ 0 on H is then also feasible for (4.14), and the corresponding

cost cTγ is an upper bound for the optimal value of (4.14). This strategy is somewhat

complementary to the approach followed in section 4.3, where the space H was replaced

with a finite-dimensional subspace SN in order to formulate LMIs.

4.4.1 Legendre series expansions

The key to constructing an inner approximation for the feasible set of problem (4.14) is to

find a functional Gγ : H → R such that Fγ{w} ≥ Gγ{w} for all w ∈ H. This can be done

by expanding the components u and v of w (recall the restriction to the two-dimensional

case made in assumption 4.1) and their derivatives using Legendre series such as

∂αu =
∞∑
n=0

ûαn Ln(x), ∂βv =
∞∑
n=0

v̂αn Ln(x), (4.25)

where Ln(x) is the degree-n Legendre polynomial and ûαn, v̂αn are the Legendre coefficients.

Legendre series expansions are useful because the Legendre polynomials are orthogonal

on [−1, 1], i.e.,
∫ 1
−1 Lm Ln dx = 0 if m 6= n. This property will be essential to formulate a set

of finite-dimensional, numerically tractable conditions enforcing the non-negativity of the

functional Fγ in (4.14). Firstly, orthogonality enables the exact representation of certain

functionals, so conservative estimates need not be introduced. Secondly, it promotes sparsity

in the finite-dimensional conditions because many of the terms involved can be shown to

vanish. Other polynomial basis functions, such as Chebyshev polynomials, may have more
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attractive numerical properties, but do not bring the same benefits because they are only

orthogonal with respect to a weight.

To avoid working with infinite series and to facilitate the analysis, it is convenient to

decompose the expansions in (4.25) into a finite sum and a remainder function. Precisely,

given i ∈ N, define the remainder functions

Uαi (x) =
∞∑

n=i+1

ûαn Ln(x), V β
i (x) =

∞∑
n=i+1

v̂βn Ln(x). (4.26)

Next, choose N ∈ N such that

N ≥ dF + k − 1, (4.27)

where dF is the degree of the polynomial matrix F defined in (4.13). Then, for each

α ∈ {1, . . . , k}, decompose the Legendre expansion of ∂αu and ∂βv as

∂αu =

N+α∑
n=0

ûαn Ln(x) + UαN+α(x), ∂βv =

N+β∑
n=0

v̂βn Ln(x) + V β
N+β(x). (4.28)

For notational ease, given integers 0 ≤ r ≤ s, the coefficients ûαr , . . . , ûαs will be recorded in

the vector

ûα[r,s] =
[
ûαr , . . . , ûαs

]T
∈ Rs−r+1, (4.29)

and a similar vector v̂β[r,s] will be considered for the coefficients v̂βr , . . . , v̂βs . Finally, for tech-

nical reasons that will be pointed out in section 4.4.2, it is also useful to introduce “extended”

decompositions for the highest-order derivatives, ∂ku and ∂kv. Specifically, consider

∂ku =

M∑
n=0

ûkn Ln(x) + UkM (x), ∂kv =
M∑
n=0

v̂kn Ln(x) + V k
M (x). (4.30)

where

M := N + 2k + dF . (4.31)

The following result relates the Legendre coefficients of a function u and its derivatives.

Lemma 4.3. Let u ∈ Cm([−1, 1]) and its derivatives up to order k ≤ m− 1 be expanded as

in (4.28), and let M be as in (4.31). For any α ∈ {1, . . . , k} and any two integers r, s with

0 ≤ r ≤ s ≤M + α− k, there exist matrices Bα
[r,s] and D

α
[r,s] such that

ûα[r,s] = Bα
[r,s]Dk−1u(−1) +Dα

[r,s]û
k
[0,M ]. (4.32)

Furthermore, Bα
[r,s] = 0 if r ≥ k − α.
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Proof. See appendix A.3.

This lemma simply states that, given the Legendre coefficients ûk0, . . . , ûkM of ∂ku, the

Legendre coefficients of all derivatives of order α < k can be computed uniquely if the

vector of boundary values Dk−1u(−1) is specified. These boundary values play the role of

integration constants, and should be treated as variables until specific BCs are prescribed.

For any integer n it is therefore useful to define the vector of variables

ǔn =
[(
Dk−1u(−1)

)T
, ûk0, . . . , ûkn

]T
∈ Rk+n+1. (4.33)

The boundary values of u and its derivatives can also be represented using Legendre

expansions. This is helpful because the integral inequality in (4.14) is only required to hold

for functions that satisfy prescribed BCs. In particular, the following lemma states that if

one knows the value of ∂αu at x = −1 for all α ∈ {0, . . . , k − 1} and the first M Legendre

coefficients of ∂ku, then for each α ∈ {0, . . . , k − 1} one can compute the boundary value

∂αu(1). This result, which may seem surprising at first, follows from simple integration

using the properties of the Legendre polynomials.

Lemma 4.4. Let u ∈ Cm([−1, 1]) and its derivatives up to order k ≤ m − 1 be expanded

as in (4.28), and let Bk−1u ∈ R2k be defined according to (4.5). Moreover, let M be as

in (4.31), and let ǔM ∈ Rk+M+1 be defined according to (4.33). There exists a matrix

GM ∈ R2k×(k+M+1) such that Bk−1u = GM ǔM .

Proof. See appendix A.4.

4.4.2 Legendre expansions of Fγ{w}

Recalling the definitions of Dkw from (4.4) and of Fγ{w} from (4.14), the latter is a sum

of terms of the form ∫ 1

−1
f ∂αu ∂βv dx, (4.34a)∫ 1

−1
f ∂αu ∂βudx, (4.34b)∫ 1

−1
f ∂αv ∂βv dx, (4.34c)

where α, β ∈ {0, . . . , k}. In each of these expressions, f = f(x;γ) denotes the appropri-

ate entry of the integrand matrix F (x;γ) and, consequently, it is a polynomial of degree

at most dF whose coefficients are affine in γ. For generality, the following discussion fo-

cusses on terms such as (4.34a), which involve both components u and v of w. Analogous

considerations can be made when considering terms of the form (4.34b) or (4.34c).
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Each term of the form (4.34a) can be conveniently analysed if ∂αu and ∂βv are substituted

by their decomposed Legendre expansions according to the following strategy:

• if α 6= k or β 6= k, use (4.28);

• if α = β = k, use the “extended” decomposition (4.30).

The reasons for this choice will be explained in remark 4.5. In either case, one can rewrite (4.34a)

as ∫ 1

−1
f ∂αu ∂βv dx = Pαβuv +Qαβuv +Rαβuv , (4.35)

where

Pαβuv :=

Nα∑
m=0

Nβ∑
n=0

ûαmv̂
β
n

∫ 1

−1
f Lm Ln dx, (4.36a)

Qαβuv :=

Nα∑
n=0

ûαn

∫ 1

−1
f Ln V

β
Nβ

dx+

Nβ∑
n=0

v̂βn

∫ 1

−1
f Ln U

α
Nα dx, (4.36b)

Rαβuv :=

∫ 1

−1
f UαNα V

β
Nβ

dx. (4.36c)

It should be understood that Nα = N +α and Nβ = N + β if (4.28) is used to expand ∂αu

and ∂βv, while Nα = Nβ = M = N + 2k + dF if (4.30) is used.

The term Pαβuv is finite-dimensional and, for any choice of α, β ∈ {0, . . . , k}, it can

be rewritten as a symmetric quadratic form for the vectors ûα[0,Nα] and v̂
β
[0,Nβ ]. Recalling

Lemma 4.3 and defining

ψM :=

ǔM
v̌M

 ∈ R2(k+M+1), (4.37)

where ǔM and v̌M are as in (4.33), one obtains the following result.

Lemma 4.5. Let Pαβuv be as defined in (4.36a) and let ψM be defined according to (4.37).

There exists a matrix P αβ
uv (γ) ∈ S2(k+M+1), whose entries depend affinely on γ, such that

Pαβuv = ψM
TP αβ

uv (γ)ψM .

The term Qαβuv is less straightforward to handle, because it couples the first Nα + 1

and Nβ + 1 modes of ∂αu and ∂βv, respectively, to the remainder functions V β
Nβ

and UαNα .

Considering the extended decomposition (4.30) for the Legendre series of ∂ku and ∂kv

enables one to write Qαβuv as a finite-dimensional matrix quadratic form for the vector ψM if

α 6= k or β 6= k (details can be found in appendix A.5). If α = β = k, on the other hand, one

cannot do the same unless f in (4.36b) is independent of x (in this case, the orthogonality of

the Legendre polynomials and the remainder functions implies that Qkkuv = 0). To decouple

the remainder functions from the other terms it is necessary to estimate Qkkuv.
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To make these ideas more precise, recall (4.37), (4.33), (4.29) and consider a family of

“deflation” matrices Ξn ∈ R2(M−n+1)×2(k+M+1) such that

ΞnψM =

ûk[n,M ]

v̂k[n,M ]

 , n = 0, . . . , M. (4.38)

Moreover, given four integers a ≤ b and c ≤ d, let Φ
[c,d]
[a,b] be a (b− a+ 1)× (d− c+ 1) matrix

whose ij-th element is defined as

(
Φ

[c,d]
[a,b]

)
i,j

=

∫ 1

−1
f Lmi Lnj dx, (4.39)

where mi and nj are the i-th and j-th elements of the sequences {a, . . . , b} and {c, . . . , d}.
Note that, strictly speaking, Φ

[c,d]
[a,b] depends on f , and its entries are affine on γ. Such

dependencies are not indicated explicitly to avoid complicating the notation further.

Lemma 4.6. Let Qαβuv be as in (4.36b) and let dF be the degree of f(x;γ).

(i) If α 6= k or β 6= k, there exists a matrix Qαβ
uv (γ) ∈ S2(k+M+1), whose entries are affine

in γ, such that Qαβuv = ψM
TQαβ

uv (γ)ψM .

(ii) If α = β = k and dF ≥ 1, let M := M + 1− dF , define ∆ ∈ SdF as

∆ := diag

(
2

2(M + 1) + 1
, . . . ,

2

2(M + dF ) + 1

)
, (4.40)

and define Y (γ) ∈ R2dF×2dF as

Y (γ) :=
1

2

 0 Φ
[M+1,M+df ]

[M+1−dF ,M ]

Φ
[M+1,M+df ]

[M+1−dF ,M ] 0

 . (4.41)

Finally, let Qkk
uv ∈ S2dF and a diagonal matrix Σkk

uv ∈ S2 satisfy the LMI

Ω(Qkk
uv,Σ

kk
uv,γ) :=

 Qkk
uv Y (γ)

Y (γ)T Σkk
uv ⊗∆

 � 0, (4.42)

where ⊗ is the usual Kronecker product. Then, Qkkuv can be bounded as

Qkkuv ≥ −ψMT
(
ΞM

TQkk
uv ΞM

)
ψM −

∫ 1

−1

UkM
V k
M

T

Σkk
uv

UkM
V k
M

 dx. (4.43)

Proof. See appendix A.5.
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Remark 4.3. The case α = β = k, dF = 0 need not be considered: Qkkuv = 0 if dF = 0 because

the Legendre polynomials {Ln}Mn=0 are orthogonal to the remainder functions UkM , V
k
M .

Remark 4.4. The LMI (4.42) was chosen such that (4.43), essentially its Schur complement

condition, separates the contributions of ψM , UkM and V k
M . It will be demonstrated in

section 4.6.3 that inequality (4.43) is a source of conservativeness. In practical implementa-

tions, to make (4.43) as sharp as possible, the matricesQkk
uv and Σkk

uv are considered auxiliary

variables, to be optimised subject to (4.42).

Remark 4.5. Note that Qαβuv can be represented exactly only by using all Legendre coeffi-

cients of ∂ku, ∂kv up to order M . This is what motivates the use of the extended decompo-

sition (4.30) for these functions. Note also that, instead of using the bound (4.43), one could

write Qkkuv exactly using the vector ψM+dF . However, doing so is not useful because ψM+dF

is not decoupled from UkM , V k
M : for instance, the Legendre coefficients ûkM+i, 1 ≤ i ≤ dF

appear in the definition of UkM .

Lemmas 4.5 and 4.6 show that, for any α, β ∈ {0, . . . , k}, the terms Pαβuv and Qαβuv can

be either expressed exactly or bounded in terms of ψM , UkM and V k
M . If α = β = k, (4.36c)

also depends on UkM and V k
M . The following result reveals that Rαβuv can be bounded using

the same quantities when α 6= k or β 6= k.

Lemma 4.7. Suppose α 6= k or β 6= k, and let f̂(γ) = [f̂1(γ), , · · · , f̂dF (γ)]T be the vector

of Legendre coefficients of the polynomial f . There exist a positive semidefinite matrix

Rαβ
uv ∈ S2(M+k+1) with ‖Rαβ

uv ‖f ∼ Nα+β−2k−1 and a positive definite matrix Σαβ
uv ∈ S2 with

‖Σαβ
uv ‖f ∼ Nα+β−2k such that Rαβuv is bounded as

∣∣∣Rαβuv ∣∣∣ ≤ ‖f̂(γ)‖1ψMTRαβ
uv ψM + ‖f̂(γ)‖1

∫ 1

−1

UkM
V k
M

T

Σαβ
uv

UkM
V k
M

 dx. (4.44)

Proof. See appendix A.6.

Remark 4.6. The scaling of the Frobenius norms ofRαβ
uv and Σαβ

uv withN reflects the fact that

the magnitude of Rαβuv diminishes to zero as N is raised. Consequently, the conservativeness

of the estimates in Lemma 4.7 can be reduced by simply increasing N .

4.4.3 A lower bound for Fγ{w}

Lemmas 4.5–4.7 can be combined to find a lower bounding functional Gγ{w} for the integral
functional Fγ{w} in (4.14). To account for the different cases in Lemma 4.6, terms with

α = β = k are considered separately from terms with α 6= k or β 6= k.
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Let S(x;γ) be the symmetric matrix obtained from the rows and columns of the matrix

F (x;γ) in (4.14) corresponding to the entries ∂ku and ∂kv of Dkw. The contribution of

the terms with α = β = k to Fγ{w} is

∫ 1

−1

∂ku
∂kv

T

S(x;γ)

∂ku
∂kv

 dx. (4.45)

Assuming for generality that no entry of S(x;γ) is independent of x, it follows from

Lemma 4.5 and part (ii) of Lemma 4.6 that

∫ 1

−1

∂ku
∂kv

T

S(x;γ)

∂ku
∂kv

 dx ≥ ψMTΘ1ψM +

∫ 1

−1

UkM
V k
M

T

Θ2

UkM
V k
M

 dx, (4.46)

where

Θ1 := P kk
uu + 2P kk

uv + P kk
vv −ΞM

T
(
Qkk
uu + 2Qkk

uv +Qkk
vv

)
ΞM , (4.47a)

Θ2 := S −Σkk
uu − 2Σkk

uv −Σkk
vv . (4.47b)

Both matrices Θ1 and Θ2 depend affinely on γ through the matrices P kk
uu , P kk

uv , and P kk
vv .

The auxiliary variables Qkk
uu, Σkk

uu, Qkk
uv, Σkk

uv, Qkk
vv , and Σkk

vv introduced by Lemma 4.6

also appear linearly, and must satisfy suitable LMIs of the form (4.42). For notational

convenience, let

Y :=
{
Qkk
uu,Σ

kk
uu,Q

kk
uv,Σ

kk
uv,Q

kk
vv ,Σ

kk
vv

}
(4.48)

be the list of all auxiliary variables, and combine the three LMIs that they must satisfy into

the equivalent block-diagonal LMI

Ω(γ,Y) :=


Ω(Qkk

uu,Σ
kk
uu,γ) 0 0

0 Ω(Qkk
uv,Σ

kk
uv,γ) 0

0 0 Ω(Qkk
vv ,Σ

kk
vv ,γ)

 � 0. (4.49)

All terms contributing to Fγ{w} with α 6= k or β 6= k can instead be lower bounded

using Lemmas 4.5–4.7 to obtain expressions such as

∫ 1

−1
f ∂αu ∂βv dx ≥ ψMTΘαβ

uv ψM − ‖f̂(γ)‖1
∫ 1

−1

UkM
V k
M

T

Σαβ
uv

UkM
V k
M

 dx, (4.50)

where

Θαβ
uv := P αβ

uv +Qαβ
uv − ‖f̂(γ)‖1Rαβ

uv . (4.51)

86



Chapter 4. Optimisation with affine homogeneous quadratic integral inequalities

Contrary to the matrices Θ1 and Θ2, each Θαβ
uv does not depend affinely on γ because the

norm ‖f̂(γ)‖1 is a sum of absolute values of affine functions of γ.

Equations (4.46) and (4.50) imply that there exist a matrixQM = QM (γ,Y) ∈ S2(k+M+1)

and a positive definite matrix ΣM = ΣM (γ,Y) ∈ S2 such that, for all w,

Fγ{w} ≥ ψMTQMψM +

∫ 1

−1

UkM
V k
M

T

[S(x;γ)−ΣM ]

UkM
V k
M

 dx. (4.52)

Note that QM and ΣM are affine with respect to the variables listed in Y but are not affine

in γ because, as noted above, they depend on absolute values of affine functions of γ.

Remark 4.7. It is possible to improve on the generic lower bound (4.52) if, for at least one

of the terms of the form
∫ 1
−1 f(x;γ) |∂αu|2 dx in Fγ{w}, the function f is non-negative for

all values of the optimisation variable γ. In this case, the term Rααuu is non-negative and so

it can be dropped, rather than estimated using Lemma 4.7.

4.4.4 Projection onto the boundary conditions

The lower bound (4.52) holds for any continuously differentiable function w, irrespectively

of whether it satisfies the BCs prescribed on the function space H over which the positivity

of the functional Fγ{w} is of interest. Recalling (4.15), the BCs on H are given by the set

of p homogeneous equations

ABlw = 0. (4.53)

To enforce as many BCs as possible in (4.52) and to sharpen the lower bound over the

space H, one should rewrite (4.53) using Legendre expansions. Lemma 4.4 enables the

expansion of the boundary values of the first k − 1 derivatives of u and v, so let P be a

permutation matrix such that

Blw = P

Bk−1w

B[k,l]w

 . (4.54)

Then, (4.53) becomes

AP

Bk−1w

B[k,l]w

 = 0. (4.55)

A straightforward corollary of Lemma 4.4 and of (4.37) is that there exists a matrix J such

that Bk−1w = JψM , so (4.55) can be rewritten as

K

 ψM

B[k,l]w

 = 0, K := AP

J 0

0 I

 . (4.56)
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Any vector ψM satisfying (4.56) can be expressed in the form

ψM = ΠMζ, (4.57)

for some ζ ∈ Rp, where p is the dimension of ker(K) and ΠM is a computable projection

matrix. Note that ΠM may have linearly dependent columns, so the dimension of ζ may be

reduced further. This is important for practical efficiency but it makes no difference to the

following discussion, so the details are omitted to streamline the presentation.

Upon substituting (4.57) into (4.52), one concludes that if (4.49) holds, then Fγ{w} is
lower bounded over the space H defined in (4.15) as

Fγ{w} ≥ ζT ΠT
MQMΠM ζ +

∫ 1

−1

UkM
V k
M

T

[S(x;γ)−ΣM ]

UkM
V k
M

 dx. (4.58)

From (4.56) and (4.57) it is also possible to formulate a set of BCs that constrain the

remainder functions UkM and V k
M . It is also known that UkM and V k

M should be orthogonal

to all Legendre polynomials of degree less than or equal to M . However, these conditions

could not be enforced explicitly in (4.58) to obtain a stronger, but still useful, lower bound

on Fγ . Consequently, UkM and V k
M in (4.58) will be considered arbitrary functions.

4.4.5 Formulating an inner SDP relaxation

The integral inequality in (4.14) is satisfied if the right-hand side of (4.58) is non-negative

for all ζ and all functions UkM and V k
M . Recalling that the bound (4.58) is valid only if (4.49)

holds, one arrives at the following statement.

Proposition 4.8. Let M = M(N) be as in (4.31) for any integer N , and let Y be as

in (4.48). The set T in
N ⊂ Rs of values γ ∈ Rs for which there exist Y such that

Ω(γ;Y) � 0, (4.59a)

ΠM
TQM (γ,Y) ΠM � 0, (4.59b)

S(x;γ)−ΣM (γ,Y) � 0, ∀x ∈ [−1, 1], (4.59c)

is an inner approximation of the feasible set T of (4.14), meaning T in
N ⊂ T .

Conditions (4.59b) and (4.59c) are only sufficient, not necessary, to make the right-hand

side of (4.58) non-negative: as mentioned at the end of section 4.4.4, they do not take into

account the boundary and orthogonality conditions on the remainder functions. However,
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they are useful because they can be turned into tractable constraints. For example, (4.59b) is

not an LMI because, as already remarked after (4.52), QM (γ,Y) depends on absolute values

of affine functions of γ as a consequence of Lemma 4.7. However, (4.59b) can be readily

recast as an LMI by replacing each of these absolute values, say |f̂n(γ)|, with a slack variable

t subject to the additional linear constraints −t ≤ f̂n(γ) ≤ t (Boyd & Vandenberghe, 2004,

section 6.1.1). Moreover, (4.59c) is an LMI if the matrix S(x;γ) is independent of x, which

is true in many interesting and non-trivial cases such as example 4.1. When S(x;γ) does

depend on x, instead, (4.59c) is equivalent to the polynomial inequality

zT[S(x;γ)−ΣM (γ,Y)]z ≥ 0 ∀(x, z) ∈ [−1, 1]× R2. (4.60)

Although checking a polynomial inequality is generally NP-hard (Parrilo, 2003, section 2.1),

condition (4.60) can be turned into an LMI through a SOS relaxation (Parrilo, 2003). Us-

ing the so-called S-procedure (Tan & Packard, 2006), one introduces a tunable symmetric

polynomial matrix T (x) ∈ S2 and requires that the multivariate polynomials

p1(x, z) := zT[S(x;γ)−ΣM (γ,Y)− (1− x2)T (x)]z, (4.61a)

p2(x, z) := zTT (x)z, (4.61b)

are sums of squares. It is not difficult to see that these conditions imply (4.60) and, as

explained in section 2.3, SOS constraints can be reformulated as LMIs.

Once (4.59a)–(4.59c) are turned into LMIs, an upper bound for the optimal value of (4.14)

and, possibly, a feasible point that achieves it can be found by solving an SDP.

Theorem 4.9. Let M = M(N) be defined as in (4.31) for N ∈ N, let Y be as in (4.48),

and let T (x) ∈ S2 be a tunable polynomial matrix. Let p? be the optimal value of (4.14),

and let p?N be the optimal value of the SDP

min
γ,Y,T (x)

cTγ,

s.t. Ω(γ;Y) � 0,

ΠM
TQM (γ,Y) ΠM � 0,

zT
[
S(x;γ)−ΣM (γ,Y)− (1− x2)T (x)

]
z is SOS,

zTT (x)z is SOS.

(4.62)

Then, p? ≤ p?N and any feasible point for (4.62) is also feasible for (4.14). In particular, if

the point γ?N is optimal for (4.62), then it is feasible for (4.14) with objective value p?N .
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Remark 4.8. Contrary to the case of outer SDP relaxations described in section 4.3, one

cannot generally prove that the optimal value of (4.62) converges monotonically to that

of the original problem as N is increased. In fact, without further assumptions on the

functional Fγ{w} in (4.14), it is possible that (4.62) is infeasible for any N (meaning that

p?N = +∞) even if (4.14) is feasible (so p? < +∞). To confirm this, note that since the

matrix ΣM is positive definite, condition (4.59c) and its corresponding SOS relaxation are

feasible only if S(x;γ) can be made sufficiently positive definite for all x ∈ [−1, 1]. This is

not always possible, and one simple example is the integral inequality

∫ 1

−1

[
x2(∂u)2 + (∂v)2 − γuv

]
dx ≥ 0, (4.63)

where u and v are subject to the Dirichlet BCs u(−1) = u(1) = v(−1) = v(1) = 0. This

inequality is clearly feasible for γ = 0. Yet, (4.62) is infeasible for any N because S(x;γ) =[
x2 0
0 1

]
is not positive definite at x = 0. In fact, for this example any approach requiring

estimates of tail terms of series expansions will necessarily be ineffective. Conversely, with

the SOS method of Valmorbida et al. (2016) it was established that (4.63) is feasible for

|γ| ≤ 2.2. With the exception of such cases, however, the proposed inner SDP relaxations

work well in practice, and this will be demonstrated by means of examples in section 4.6. It

may even be possible to identify classes of integral inequalities for which the SDP (4.62) is

not only provably feasible, but such that the sequence of upper bounds {p?N}N∈N converges

to the optimal value of (4.14). This task, however, is left to future research.

4.5 Extensions

4.5.1 Inequalities with explicit dependence on boundary values

Integral inequalities arising from the study of PDEs are often derived from a weak formula-

tion of the PDE, after integrating some terms by parts. Occasionally, the BCs are such that

the boundary terms from such integrations by parts do not vanish. The results described

in the previous sections should therefore be extended to quadratic homogeneous functionals

that depend explicitly on boundary values. Such functionals take the general form

Fγ{w} :=

∫ 1

−1

[(
Blw

)T
Fbnd(x;γ)Blw

+
(
Blw

)T
Fmix(x;γ)Dkw

+
(
Dkw

)T
Fint(x;γ)Dkw

]
dx, (4.64)
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where Fint, Fmix and Fbnd are matrices of polynomials of degree at most dF of the form (4.13).

Note that this functional reduces to that in (4.14) when Fmix = 0, Fbnd = 0 and Fint = F .

The extension of Theorem 4.2 is immediate, because the boundary values of a polynomial

can be easily expressed in terms of the coefficients of the polynomial.

To extend Proposition 4.8 and Theorem 4.9, recall the definition of the permutation ma-

trix P in (4.54). Upon integrating the known matrix P TFbnd(x;γ)P , it follows from (4.37)

and Lemma 4.4 that there exists a symmetric matrix Qbnd
M (γ) such that

∫ 1

−1

(
Blw

)T
Fbnd(x;γ)Blw dx =

 ψM

B[k,l]w

T

Qbnd
M (γ)

 ψM

B[k,l]w

 . (4.65)

Moreover, let g(x;γ) be the column of the matrix P TFmix(x;γ) corresponding to the

entry ∂αu of Dkw. Each element gi(x;γ) is a polynomial of degree at most dF , written

in the Legendre basis with coefficients ĝi,0(γ), . . . , ĝi,dF (γ). Recalling from (4.27) that the

Legendre expansion of ∂αu has been decomposed using N ≥ dF + k − 1, one obtains

∫ 1

−1
gi(x;γ)∂αudx =

dF∑
m=0

∞∑
n=0

ĝi,m(γ)ûαn

∫ 1

−1
Lm Ln dx

=

[
2ĝi,0(γ),

2ĝi,1(γ)

3
, . . . ,

2ĝi,dF (γ)

2dF + 1

]
ûα[0,dF ]. (4.66)

With the help of Lemma 4.3, (4.37) and Lemma 4.4 it is then possible to find a matrix

Qmix
M (γ) that satisfies

∫ 1

−1

(
Blw

)T
Fmix(x;γ)Dkw dx =

Bk−1w

B[k,l]w

T ∫ 1

−1
P TFmix(x;γ)Dkw dx

=

 ψM

B[k,l]w

T

Qmix
M (γ)ψM . (4.67)

Note that (4.65) and (4.67) are exact formulae, and no approximation is made. Upon

combining these results with (4.52), one can construct a symmetric matrixQtot
M = Qtot

M (γ,Y)

such that

Fγ{w} ≥

 ψM

B[k,l]w

T

Qtot
M

 ψM

B[k,l]w

+

∫ 1

−1

UkM
V k
M

T

[S(x;γ)−ΣM ]

UkM
V k
M

 dx. (4.68)
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Finally, the BCs can be enforced by using (4.56) to write

 ψM

B[k,l]w

 = Λζ (4.69)

for some ζ ∈ Rp where, as before, p is the dimension of ker(K) and the matrix Λ satisfies

img(Λ) = ker(K). Thus, Proposition 4.8 and Theorem 4.9 hold also for problems with inte-

gral inequalities of the form (4.64) if one replaces (4.59b) and the corresponding constraint

in (4.62) with ΛTQtot
M (γ,Y)Λ � 0.

4.5.2 Higher-dimensional function spaces, generic multi-index derivatives

Theorems 4.2 and 4.9 were derived under the simplifying assumption 4.1, which restricted

attention to w ∈ Cm([−1, 1],R2) and to the particular multi-indices k = [k, k], l = [l, l]. All

results discussed so far, including the extensions presented in section 4.5.1, hold also when

one lets w ∈ Cm([−1, 1],Rq) with q ≥ 1 and when k, l ∈ Nq are generic multi-indices, as

long as they satisfy (4.12a) and (4.12b). In particular, if the q-dimensional multi-indices

k and l are uniform, meaning k = [k, . . . , k] and l = [l, . . . , l], then the proofs of all

results extend verbatim upon identifying the functions u, v used throughout sections 4.3

and 4.4 with any two components wi, wj of w. The extension to non-uniform multi-indices

k, l ∈ Nq requires only minor and largely uninteresting modifications, so the details are left

to the interested reader.

4.6 Computational experiments with QUINOPT

This section demonstrates the efficacy of the SDP-based solution techniques developed in this

chapter on some simple but non-trivial examples. The relevant SDPs were formulated using

QUINOPT (QUadratic INtegral OPTimisation), an open-source add-on for the MATLAB

optimisation toolbox YALMIP (Löfberg, 2004, 2009). QUINOPT implements the methods

presented in sections 4.3 and 4.4, including the extensions discussed in section 4.5. The outer

SDP relaxations of section 4.3 are implemented using Legendre polynomials because their

orthogonality promotes sparsity of the SDP data, thereby improving efficiency. The source

code, the scripts used to implement the problems considered in the following subsections,

and an online documentation with additional examples are available from

https://github.com/aeroimperial-optimization/QUINOPT (source code),

0. http://quinopt.readthedocs.io/ (documentation).
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Figure 4.2: Lower bounds ( ) and upper bounds ( ) on the optimal value of (4.16)
as a function of ξ for different values of N . The upper bound for N = 3 is infinite and so it

is not plotted. The bounds are indistinguishable for N = 9 and N = 12.

Computations were carried out on a PC with a 3.40 GHz Intel R© CoreTM i7-4770 CPU and

16 GB of RAM, using Mosek (Andersen et al., 2009) or SDPT3 (Toh et al., 1999; Tütüncü

et al., 2003) to solve the SDPs.

4.6.1 Stability of a stress-driven shear flow

Consider the system described in example 4.1, which is a model of flows driven by a shear

stress of magnitude 0.5γ. The optimisation problem (4.16) determines the largest value of

γ such that sinusoidal perturbations from the basic steady flow decay. QUINOPT was

used to formulate and solve SDPs (4.24) and (4.62) corresponding, respectively, to outer

and innner approximations of (4.16). Since in (4.16) one minimises the negative of γ, the

optimal values of these SDPs are, respectively, an upper bound and a lower bound for γcr,

the largest stress for which the basic flow is provably stable.

Figure 4.2 shows the bounds on γcr as a function of the wavenumber ξ, a parameter

in (4.16). These were computed for four different values of the Legendre series truncation

parameter N . No upper bounds are plotted for N = 3 because, in this case, only the zero

polynomial satisfies the BCs in (4.17), so (4.24) reduces to an unconstrained minimisation

problem yielding an infinite upper bound. Detailed numerical results, wall time, and the

number of primal and dual variables in the SDP relaxations2 (denoted n andm, respectively)

are reported in table 4.1 for two values of the wavenumber, ξ = 3 and ξ = 9. For compar-

ison, table 4.2 gives lower bounds on γcr computed with the inner SOS relaxation method

of Valmorbida et al. (2016) using polynomials of degree d, as well as the number of primal

and dual variables in the corresponding SDPs returned by YALMIP’s SOS module (Löfberg,

2009) and the wall time required to solve them.
2The number of primal variables, n, refers to the size of the positive semidefinite matrix variable once

the SDP is written in the standard primal form (2.13), cf. section 2.4. The number of dual variables, m, is
the size of the optimisation variable in the dual SDP (2.19).
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Table 4.1: Parameters of the outer and inner SDP relaxations of problem (4.16) for-
mulated with QUINOPT, as a function of the Legendre truncation parameter N and the
wavenumber ξ. Tabulated values are: upper and lower bounds on γcr (LB and UB), wall
time (t, in seconds), number of primal variables (n), and number of dual variables (m).

QUINOPT, outer QUINOPT, inner
ξ N n m UB t N n m LB t

3 3 0 1 +∞ 0.03 3 202 2 134.8594 0.09
3 6 36 1 140.4087 0.04 6 406 2 139.7656 0.10
3 9 144 1 139.7701 0.06 9 683 2 139.7700 0.08
3 12 324 1 139.7700 0.05 12 1030 2 139.7700 0.10

9 3 0 1 +∞ 0.03 3 202 2 0.0000 0.08
9 6 36 1 335.1022 0.04 6 406 2 323.5764 0.08
9 9 144 1 325.6764 0.05 9 683 2 325.6449 0.09
9 12 324 1 325.6455 0.05 12 1030 2 325.6453 0.10

Table 4.2: Parameters of the inner SDP relaxations of problem (4.16) formulated with the
SOS method of Valmorbida et al. (2016) using polynomials of degree d. Values, tabulated
for different d, are: lower bounds on γcr (LB), wall time (t, in seconds), number of primal

variables (n), and number of dual variables (m).

ξ = 3 ξ = 9

d n m LB t d n m LB t

4 805 230 79.4435 0.19 4 805 230 285.9021 0.18
8 2349 454 119.8619 0.28 8 2349 454 314.1146 0.27
16 7789 902 130.5796 0.68 16 7789 902 321.2403 0.65
32 28077 1798 134.4737 3.16 32 28077 1798 323.1421 2.98

The results show that, at least within the tested range of ξ, the upper and lower bounds

converge to each other at relatively small values of N (values in table 4.1 agree to at least

three decimal places for N = 12). This means that the techniques described in this chapter

can bound the optimal solution γcr of (4.16) both from above and from below extremely

accurately and efficiently. In addition, in this example the inner SDP relaxations converge

to the full problem (4.16) despite the lack of a proof of this fact in general (cf. remark 4.8).

Finally, the present techniques significantly outperform the SOS method of Valmorbida et al.

(2016), both in terms of computational cost and of quality of bounds.

4.6.2 Stability of a system of coupled PDEs

Let w = [u(t, x), v(t, x)]T and consider the system of PDEs

∂tw = γ∂2
xw +Aw, A =

1 1.5

5 0.2

 , (4.70)

94



Chapter 4. Optimisation with affine homogeneous quadratic integral inequalities

over the domain [0, 1], subject to the BCs u(0) = u(1) = v(0) = v(1) = 0. This system

was also studied by Valmorbida et al. (2014b, section V-D). The stabilising effect of the

diffusive term γ∂2
xw decreases with γ, until the equilibrium solution [u, v]T = [0, 0]T becomes

unstable. It can be shown that the amplitude of infinitesimal sinusoidal perturbations to

the zero solution grows exponentially in time if γ < γcr ≈ 0.3412. Since the system is linear,

it is stable with respect to finite-amplitude perturbations for all γ ≥ γcr.

Following Valmorbida et al. (2014b), the stability of the system with respect to arbitrary

perturbations is investigated by means of Lyapunov functionals of the form

V(t) =
1

2

∫ 1

0
wTP (x)w dx, (4.71)

where P (x) is a tunable polynomial matrix of given degree dP to be chosen such that, for

some c > 0,

V(t) ≥ c ‖w‖22 , (4.72a)

−dV
dt
≥ 0. (4.72b)

Note that since P (x) can always be rescaled by c without changing the sign of the inequal-

ities, one may fix c = 1 without any loss of generality.

After using (4.70) to compute dV
dt , it is relatively easy to see that the critical value of γ

at which (4.71) stops being a valid Lyapunov function for a given degree dP is given by

min
γ,P (x)

γ

s.t.
∫ 1

0
wT [P (x)− I]w dx ≥ 0,∫ 1

0
wTP (x)(−γ∂2

xw −Aw) dx ≥ 0.

(4.73)

Note that although the system state w is a function of time, the integral inequalities above

are imposed pointwise in time. Therefore, the time dependence can be formally dropped,

and (4.73) is in the form (4.14) with two integral inequalities.

Since the optimisation variables are γ and the coefficients of the entries of P (x), the

problem is not jointly convex in γ and P , so one cannot minimise γ directly. The problem

can be readily resolved by fixing a trial value for γ and checking whether a feasible P (x)

of degree dP exists. The optimal γ for (4.73), which must be finite because the system is

linearly unstable when γ = 0, is the value at which a feasible P (x) ceases to exist, and can

be determined with a simple bisection procedure.
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Table 4.3: Upper bounds (UB) and lower bounds (LB) on the optimal solution of (4.73)
obtained with Lyapunov functionals of the form (4.70) for different values dP , and for the
case P (x) = I. Also reported are: the average wall time (tUB and tLB, in seconds) required
to solve a single feasibility problem in the bisection procedure to compute the bounds; the
wall time required to minimise γ in the case P (x) = I; upper bounds on the optimal solution

of (4.73) computed by Valmorbida et al. (2014b).

dP UB by Valmorbida et al. (2014a) UB tUB LB tLB

P (x) = I 5 0.3925 0.26 0.3925 0.09
0 3.3333 0.3412 0.14 0.3412 0.12
2 0.5882 0.3412 1.32 0.3412 0.99
4 0.4347 0.3412 1.57 0.3412 1.07
6 0.4166 0.3412 1.82 0.3412 1.18

To formulate the SDPs (4.24) and (4.62), the domain of integration for the constraints

in (4.73) must be rescaled to [−1, 1]. Moreover, in light of remark 4.8, the second integral

inequality should be integrated by parts to prevent the inner SDP relaxation (4.62) from

being infeasible. Both tasks (rescaling and integration by parts) are performed automatically

by QUINOPT. Note that after rescaling and integration by parts the second integral

inequality in (4.73) depends explicitly on the unspecified boundary values ∂xu(±1) and

∂xv(±1), making the extensions discussed in section 4.5.1 necessary.

Table 4.3 reports upper and lower bounds for the optimal solution of (4.73) as a function

of the degree dP of P (x), obtained by applying the bisection procedure described above to

the SDPs (4.62) and (4.24) respectively. Also tabulated are results for the particular choice

P (x) = I, corresponding to the classical approach of taking the energy of the system as the

candidate Lyapunov function. In this case, a direct minimisation over γ could be performed.

Finally, the table reports the average wall time taken by QUINOPT to set up and solve

each feasibility problem in the bisection procedure used to optimise γ, and to minimise γ for

the particular case P (x) = I. In all computations, the Legendre series truncation parameter

was set to N = 10, while the degree of the matrix T (x) in (4.62) was set to 6. No significant

change is observed when either of these parameters is increased.

The numerical results demonstrate that stability can be established up to the known

critical value γcr ≈ 0.3412 for all choices of dP , but not when one chooses P (x) = I. This

drastically improves the conservative results, also reported in table 4.3, obtained by Valmor-

bida et al. (2014b) for the same problem using their SOS method (the original results are

for a parameter R = γ−1 and have been adapted). One concludes that the SDP relaxations

proposed in this chapter accurately approximate (4.73). This observation is particularly

significant for the inner SDP (4.62), which relies on typically conservative estimates and for

which no convergence result could be proven.
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Figure 4.3: Inner and outer approximations of the feasible set of (4.74), computed with
Mosek (Andersen et al., 2009). Sets plotted in each panel are: T in

N , blue boundary with
blue shading; T out

N , red boundary with red shading; T sos
N , black boundary with gray shading.

Panels (a)–(h) are for N = 2, 4, 6, 8, 12, 16, 24, and 32, respectively.

4.6.3 Feasible set approximation

As a final example, consider the problem of computing the entire unknown feasible set of

the integral inequality

∫ 1

−1

[
(∂u)2 + (∂v)2 + γ1x

2∂u ∂v + 2γ2uv
]

dx ≥ 0, (4.74)

where u and v are subject to the Dirichlet BCs u(−1) = 0, u(1) = 0, v(−1) = 0, v(1) = 0.

This inequality does not arise from a particular PDE, but was constructed to illustrate

some subtle properties of the proposed SDP relaxations and highlight the main sources of

conservativeness.

Outer and inner approximation sets T out
N and T in

N can be found using (4.24) and (4.62),

respectively. The boundaries of T out
N and T in

N were approximated by optimising the function

γ1 sin θ+γ2 cos θ for 300 equispaced values of θ ∈ [0, 2π]. When solving (4.62), the degree of

the tunable polynomial matrix T (x) was fixed to the smallest of N −2 and 6; the results do

not improve when this value is increased. Inner approximation sets can also be computed

with the SOS method of Valmorbida et al. (2016). The set obtained when this method is

applied with polynomials of degree N will be denoted T sos
N in the following.

Figure 4.3 illustrates the approximations T out
N , T in

N , and T sos
N obtained for for six val-

ues of N starting with N = 2, the minimum value satisfying (4.27). Computations were

repeated with two SDP solvers, Mosek (Andersen et al., 2009) and SDPT3 (Toh et al.,
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Table 4.4: Wall time (in seconds) for the computation of the sets T out
N , T in

N , and T sos
N as

a function of N . Tabulated values are for two SDP solvers: Mosek (Andersen et al., 2009)
and SDPT3 (Toh et al., 1999; Tütüncü et al., 2003).

Mosek SDPT3

N T out
N T in

N T sos
N T out

N T in
N T sos

N

2 0.55 1.41 1.09 10.5 25.4 21.5
4 0.73 2.19 2.69 11.6 30.9 45.1
6 0.82 2.29 5.90 12.1 35.5 86.0
8 1.22 2.75 12.8 14.5 42.9 167
12 1.88 3.37 56.6 16.1 51.4 194
16 2.91 4.11 218 21.1 58.2 600
24 6.65 5.79 1656 25.5 59.0 10500
32 11.1 8.52 5106 35.5 71.5 117000

1999; Tütüncü et al., 2003), and the required wall time is reported in table 4.4. Note that

Mosek is implemented in C, while SDPT3 is implemented in MATLAB. Surprisingly,

Mosek computes T in
N more efficiently than T out

N at large N , despite the latter being nomi-

nally cheaper. This is not the case for SDPT3, and the reason for these observations could

not be determined with certainty. However, it was observed that the computation of T out
N

requires solving SDPs with denser data matrices, which could cause Mosek to run slower.

Evidently, for high-degree relaxations the SOS approach developed by Valmorbida et al.

(2016) is much more computationally expensive than the methods proposed here. On the

other hand, while T sos
N seems to converge to T out

N as N increases, the inner approximation

sets T in
N do not: for this example, the conservativeness introduced by the estimates in

Lemmas 4.6 and 4.7 cannot be reduced by raising N .

Nevertheless, there are parts where the boundaries of T out
N and T in

N almost coincide even

for N as low as 4. In fact, the figures reveal that the inner approximation sets T in
N are only

over-constrained in the γ1 direction. This happens because γ2 appears only in the term∫ 1
−1 2γ2uv dx, to which the estimates of Lemma 4.7 are applied when formulating the inner

SDP relaxation. According to the decay rates stated in the Lemma, these estimates become

negligible at large N . On the contrary, γ1 appears in the term
∫ 1
−1 γ1x

2∂u ∂v dx, to which

the estimates in part (ii) of Lemma 4.6 must be applied. Despite efforts to tune the auxiliary

matrices in (4.43), the magnitude of such estimates does not decay compared to other terms

in the SDP as N is increased, limiting the range of feasible values of γ1.

4.7 Comments on computational cost

It may be checked that when w(x) ∈ Rq is subject to p independent boundary conditions,

the degree of the polynomials in the matrix F (x;γ) is at most dF , and γ ∈ Rs, then the
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N -th outer relaxation (4.24) is an SDP with an LMI of linear dimension q(N + 1)− p and

with s decision variables. The inner SDP relaxation (4.62), instead, has:

(i) an LMI of dimension 2|l|+ q(N + |k|∞ + dF + 2)− p, where |k|∞ := maxi∈{1, ..., q} ki;

(ii) a q × q matrix SOS constraint of degree degS(x;γ), where S(x;γ) is defined as in

section 4.4.3;

(iii) at most q(q + 1)/2 auxiliary LMIs of size 4 dF from Lemma 4.6;

(iv) at most (dF +1)(2 q+|k|+1)|k| linear inequalities to lift the absolute values introduced
by Lemma 4.7; and

(v) at most s+ q(q+ 1)(2 d2
F + dF + 2)/2 + (dF + 1)(2 q+ |k|+ 1)|k|/2 decision variables.

At the time of writing, general-purpose solvers are practical only for small to medium-size

SDPs. Therefore, even though the numerical examples of section 4.6 demonstrate that the

techniques developed in this chapter are cheaper than the SOS method of Valmorbida et al.

(2016), one might expect that they can be implemented only when q, dF , s and |k|∞ are

sufficiently small.

This is true to a certain extent, but the current poor scalability of software for SDPs

may not be too severe an issue for many problems of practical interest. One reason is that

the number of constraints in the inner SDP relaxation can be considerably smaller than

the worst-case count presented above. In fact, Lemma 4.6 introduces auxiliary LMIs and

variables only for the entries in the upper-triangular part of S(x;γ) that depend on x (the

restriction to the upper-triangular part follows from symmetry considerations). For example,

only one auxiliary LMI is needed for inequality (4.74). In addition, the size of the auxiliary

LMI associated with the entry Sij can be reduced to 4 × degSij , yielding considerable

savings if degS(x;γ)� dF . In the extreme case degS(x;γ) = 0, meaning that the matrix

S(x;γ) is independent of x, there are no auxiliary variables and LMIs from Lemma 4.6.

In this case, moreover, the q × q matrix SOS constraint becomes a q × q LMI, which is

cheaper to implement. This situation is common when energy-Lyapunov-function methods

are applied to turbulent fluid flows (see for instance Constantin & Doering, 1995b; Doering

& Constantin, 1994, 1996), so the techniques developed in this chapter are particularly

suited to tackle problems in this field. This has already been demonstrated by the results

of section 4.6.1, and further evidence will be given in chapter 5.

Another reason why only medium-size SDP relaxations are needed in many applications is

that a moderate Legendre truncation parameter N often suffices to obtain accurate bounds

on the objective function of problem (4.14). Approximately speaking, to obtain a good

bound one should choose N such that the minimiser w? of Fγ{w} at the optimal point
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γ = γ? is approximated sufficiently well by a polynomial of degree N (here it is assumed for

simplicity that the minimiser w? exists and is unique, but the argument can be extended

to cases in which multiple or no minimisers exist). This can often be done with moderate

N because w? is typically a “well-behaved” function: the highest-order derivatives of highly

oscillatory test functions w tend to give a large contribution to Fγ?{w}, making highly-

oscillatory minimisers unlikely.

Finally, computational efficiency can be improved by applying decomposition techniques

based on chordal sparsity (Fukuda et al. 2000; Nakata et al. 2003; Kim et al. 2011; see

also section 2.6). The development of solvers for large scale SDPs, which take advantage

of chordal sparsity as well as other “computationally friendly” structures, is also receiving

increasing attention, and new tools are being developed that should facilitate solving prob-

lems at larger scales. Recent examples include the solvers SCS (O’Donoghue et al., 2016)

and CDCS (Zheng et al., 2017a,b).

4.8 Concluding remarks

This chapter presented SDP-based methods to optimise a linear cost function subject to

a class of quadratic integral inequality constraints, characterised by one-dimensional com-

pact integration domains, homogeneous integrands, and affine dependence on the optimi-

sation variable. This class includes many problems that arise when studying the stability

of systems governed by PDEs, as well as when bounding time-averaged or long-term quan-

tities of interest using the background method. In fact, the proposed solution techniques

extend the approach taken by Fantuzzi & Wynn (2015) to bound the asymptotic energy

of the Kuramoto–Sivashinsky equation. It has been shown that, given an optimisation

problem subject to integral inequality constraints with the properties summarised above,

LMI-representable inner and outer approximations of its feasible set can be derived using

Legendre series expansions and functional estimates. As a result, upper and lower bounds

on the optimal value can be computed efficiently using semidefinite programming. In partic-

ular, the lower bounds obtained using outer approximations form a non-decreasing sequence

converging to the exact optimal cost value, provided that this is attained. Unfortunately,

the same is not true in general for the inner approximations, as confirmed by a simple

counterexample (cf. remark 4.8).

Although the steps leading to both inner and outer SDP relaxations are technical, they

are amenable to numerical implementation. To aid the formulation and solution of optimi-

sation problems with integral inequality constraints in practice, the methods developed in
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this chapter have been implemented in the MATLAB package QUINOPT, an open-source

add-on for the optimisation toolbox YALMIP. The capabilities of the software have been

demonstrated on non-trivial problems that arise when studying the stability of autonomous

systems of PDEs. In particular, the numerical results presented in section 4.6 are clear evi-

dence that the proposed methodologies can work extremely well in practice even though the

formulation of numerically tractable constraints relies on typically conservative estimates.

Future research should try to formalise these observations and, in particular, determine

conditions under which the feasibility and/or convergence of the inner SDP relaxations of

section 4.4 can be ensured. The results of section 4.6.3 suggest that doing so successfully

will require more stringent assumptions on the properties of the integral inequality than

assumed throughout this chapter.

While the class of integral inequalities considered in this chapter includes many non-

trivial problems, in particular some interesting problems arising in fluid dynamics, the anal-

ysis of systems governed by PDEs often leads to more general types of integral inequality

constraints. To enable the study of such systems, the present work should be extended

to (i) integral inequalities with explicit time dependence that arise from non-autonomous

PDEs, and (ii) inequalities over two- or higher-dimensional domains. Explicit polynomial

time dependence could be dealt with by relaxing the inner/outer LMI constraints, now

time-dependent, into matrix SOS conditions, although the (current) poor scalability of SOS

optimisation makes this strategy unlikely implementable. Multi-dimensional compact “box”

domains could be analysed by introducing Legendre expansions in each coordinate direction

and adapting the ideas presented in this chapter, while for more general domains—including

the non-compact case—other basis functions could be used. Doing so seems fairly straight-

forward in the case of outer approximations, but the estimates required to derive inner

approximations may become intractable. In addition, unless sparsity and/or problem struc-

ture are exploited, multi-dimensional inequalities are likely to be constrained by the current

computational limitations: with n spatial dimensions and q dependent variables (w ∈ Rq),

the LMI size for a simple outer approximations using polynomials of degree N is of the order

of magnitude of qNn.

Finally, the methods presented in this chapter should be extended to more general in-

tegral inequalities than the homogeneous quadratic type. Complete (i.e., inhomogeneous)

quadratic integral inequalities over spaces described by homogeneous BCs can be anal-

ysed with ideas similar to those discussed in section 4.5.1, and can already be handled by

QUINOPT. The details are not reported in this thesis for brevity. Inhomogeneous BCs

need not be studied, because they can always be “lifted” upon shifting the test functions in
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an integral inequality by a suitable polynomial. Extensions to higher-than-quadratic integral

inequalities are also essential if complex nonlinear systems of PDEs of interest in physics

and engineering are to be studied successfully using recent techniques based on dissipation

inequalities (Ahmadi et al., 2016).

Rather than pursuing these extensions, however, the rest of this thesis will focus on ap-

plying and further developing the methods presented in this chapter to study two particular

fluid dynamical systems. In chapter 5, QUINOPT will be utilised to compute optimal up-

per bounds on the energy dissipated by two- and three-dimensional shear flows driven by a

surface stress, very similar to the flow considered in example 4.1. It will demonstrated that

the optimal bounds can be computed accurately, but not across as wide a range of system

parameters as required to infer their asymptotic behaviour. In chapter 6, instead, SDPs

will be used to bound the average vertical heat transfer in Bénard–Marangoni convection at

infinite Prandtl number. These computation will rely on a slightly different outer approxi-

mation method than described in section 4.3, which yields LMIs with chordal sparsity. The

LMI decomposition methods described in section 2.6 can therefore be employed, enabling

the analysis of the flow for a much larger range of system parameters.
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Chapter 5

Bounds on energy dissipation in
stress-driven shear flows†

As discussed in chapter 1, a fundamental problem in many applications is to determine the

extent to which unsteady or turbulent flows enhance the dissipation of energy, the transport

of heat, or the mixing of a passive tracer compared to steady ones. Often, direct quantitative

analysis is challenging due to the lack of closed-form solutions to the Navier–Stokes equations

and due to the large computational cost of high-resolution numerical simulations. In some

cases, progress can be made using indirect methods that return upper or lower bounds for

the quantity of interest (dissipation, heat transport, mixing) instead of its exact value.

In the context of incompressible parallel shear flows the key quantity of interest is the

average bulk energy dissipation ε (equivalently, the non-dimensional dissipation coefficient

Cε), which in a statistically steady state must equal the average power required to drive the

flow. Direct evaluation of ε for all possible flow states is not feasible, but an upper bound

on it can be derived using the background method. The analysis rests on the decomposition

of the flow velocity into the sum of a steady background velocity φ = φ(z)e1 aligned with

the streamwise direction, which absorbs any inhomogeneous boundary conditions (BCs) but

is otherwise arbitrary, plus an incompressible perturbation ũ. Using an argument similar

to energy stability analysis, the dissipation coefficient Cε can be bounded from above as

a function of φ alone, provided that this satisfies all prescribed BCs and makes a certain

integral quadratic form Q{ũ} positive semidefinite for all possible perturbations. The latter

condition is a spectral constraint—meaning that it requires the eigenvalues of a φ-dependent,

self-adjoint, linear operator associated with the quadratic form Q{ũ} to be non-negative—

and amounts to an energy stability condition on φ as if it solved the governing equations.
†Results similar to those reported in this chapter, computed using analysis similar to that presented in

chapter 4 and with an ad-hoc numerical implementation, have been published in:
Fantuzzi, G. and Wynn, A. (2016). Optimal bounds with semidefinite programming: An application to stress
driven shear flows. Physical Review E 93(4), 043308. Available from: doi:10.1103/PhysRevE.93.043308.
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The classical plane Couette configuration, in which the flow of a horizontal layer of fluid

is driven by an imposed surface velocity, has been analysed extensively using the back-

ground method, analytically (see, for example, Doering & Constantin, 1992, 1994; Mar-

chioro, 1994; Nicodemus et al., 1997a,b, 1998) as well as numerically (Doering & Hyman,

1997; Nicodemus et al., 1997b, 1998; Plasting & Kerswell, 2003). Flows driven by a shear

stress imposed at the surface, instead, have been studied much less despite being relevant

both as a paradigm for shear-driven phenomena and as a model of geophysical flows forced

by winds (Hagstrom & Doering, 2014). For such stress-driven flows, Tang et al. (2004)

found that Cε ≤ Gr (7.531Gr0.5 − 20.3)−2, where the non-dimensional Grashoff number Gr

measures the strength of the imposed shear stress. This bound, valid for Gr & 500, is a fit

to numerical results obtained when the background method is applied to a slightly different

flow, wherein the applied stress is modelled using a body force localised near the surface. A

bounding problem that incorporates the fixed-shear boundary condition was not formulated

until the recent work by Hagstrom & Doering (2014), who used piecewise-linear background

fields to prove Cε ≤ 1/16 for Gr ≥ 16 in two spatial dimensions, and Cε ≤ 1/(2
√

2) uniformly

in Gr for three-dimensional flows.

The aim of this chapter is to compute the best bounds on Cε available within Hagstrom

& Doering’s background method analysis, which are of interest for two reasons. First, in

order to confirm that stress-driven flows can indeed be approximated well by flows driven

by a suitably chosen body force, a quantitative comparison of the two configurations is

needed. Hagstrom & Doering (2014) have already demonstrated that the approximation

is valid in terms of the energy stability properties of the laminar flow, which is the usual

Couette profile varying linearly with depth (cf. section 5.1 below), and one would like to

confirm that the same is true for the energy dissipation. Second, numerical optimisation of

background fields for flows driven by shear—meaning that the flow has either Neumann or

mixed Neumann–Robin inhomogeneous BCs—has so far only been attempted by Wittenberg

& Gao (2010), who optimised piecewise-linear background temperature fields for Rayleigh-

Bénard convection between imperfectly conducting plates. Fully optimal background fields

for flows subject to imposed boundary fluxes, however, have never been computed.

The solution of upper-bounding problems for shear-driven flows has traditionally been

seen as challenging because the expression for the bound depends on unknown boundary

values of the background field (Tang et al., 2004; Wittenberg, 2010; Wittenberg & Gao,

2010; Hagstrom & Doering, 2010, 2014). Similarly, the test functions for which the spec-

tral constraint must hold have prescribed boundary derivatives, instead of fixed boundary

values. Classical approaches, based on the solution of the Euler–Lagrange (EL) equations
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for the optimal background field, are therefore often complicated by the need to enforce so-

called natural boundary conditions (see, for instance, Courant & Hilbert, 1953, chapter IV,

section 5.1), which are not prescribed initially, but arise when insisting that the variational

derivatives of the problem’s Lagrangian must vanish. This difficulty will be bypassed here

because, instead of considering the EL equations, optimal bounds will be computed through

the solution of SDPs, obtained upon replacing the spectral constraint with a set of LMIs

derived with the Legendre series expansions methods developed in chapter 4.

The rest of this chapter is organised as follows. Section 5.1 introduces the equations used

to model stress-driven shear flows. These will be presented in three spatial dimensions, but

a two-dimensional model of the flow obtained by removing the horizontal direction normal

to the imposed shear will also be considered. The background method analysis by Hagstrom

& Doering (2014), which yields a variational problem for an upper bound on the dissipation

coefficient Cε, is reviewed in section 5.2. Section 5.3 demonstrates how bounds on Cε for the

two- and three-dimensional flow models can be optimised via semidefinite programming. The

LMIs used to enforce the spectral constraint on the background field can be formulated using

the analysis presented in chapter 4 and can be constructed in practice with QUINOPT, so

their derivation will only be outlined. Numerical results are presented and commented on

in section 5.4, while further discussion and conclusions are offered in section 5.5.

5.1 Equations of motion

Consider an incompressible fluid of kinematic viscosity ν and density ρ, confined to the

three-dimensional domain Ω3 ≡ [0,Γxh]× [0,Γyh]× [0, h], where h is the dimensional height

of the layer and Γx, Γy are the domain’s aspect ratios in the horizontal directions. The

dimensional position vector is x? = x?e1 + y?e2 + z?e3, where ei is the unit vector in the i-

th coordinate direction and the suffix ? indicates dimensional quantities. The fluid’s velocity

and pressure satisfy no-slip conditions at the bottom boundary (z? = 0) and are periodic in

the horizontal directions. The flow is driven by a shear stress τ applied at the top boundary

(z? = 1) along the x? direction. This configuration is illustrated in figure 5.1.

Following Tang et al. (2004), the problem is made non-dimensional using h as the length

scale and h2/ν as the time scale. Then, the relevant non-dimensional Navier–Stokes equa-

tions take the form

∂tu+ (u · ∇)u+∇p = ∇2u, (5.1a)

∇ · u = 0. (5.1b)
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x?

z?

y?

0

h

τ

u? = 0

Γyh

Γxh

Figure 5.1: Three-dimensional model of a shear flow, driven by a shear stress τ at z? = h.
The fluid’s velocity and pressure are periodic in the x? and y? directions with period Γxh

and Γyh, respectively, and satisfy no-slip condition at the bottom plate.

The non-dimensional velocity u = ue1 + ve2 + we3 has period Γx and Γy in the horizontal

x and y directions, respectively, and satisfies the vertical BCs

u|z=0 = 0, ∂zu|z=1 = Gr, ∂zv|z=1 = 0, w|z=1 = 0. (5.2)

In these expressions, the Grashoff number Gr := τh2/(ρν2) is a non-dimensional measure of

the strength of the imposed shear stress, and serves as the governing parameter of the flow.

When subject to horizontal periodicity and the vertical BCs (5.2), equations (5.1a)–

(5.1b) admit the laminar flow solution u` = Gr z e1, p = constant. Note that u` is the

usual Couette profile, which varies linearly with depth. Energy stability analysis demon-

strates that the laminar flow is globally asymptotically stable, meaning that the energy of

perturbations of arbitrary initial amplitude decays to zero as time tends to infinity, when

Gr / 51.7300 (Tang et al., 2004; Hagstrom & Doering, 2014). This value was computed for

a horizontally infinite layer, so it is a (sharp) lower bound on the critical Grashoff number

GrE for energy stability of a fluid layer with finite horizontal periods Γx and Γy, because

in this case perturbations are characterised only by a finite number of Fourier modes. For

instance, under the assumption that the critical modes are streamwise invariant (hence, in-

dependent of Γx) one finds GrE ≈ 57.1989 for Γy = 2 and GrE ≈ 51.7305 for Γy = 3. More

details on energy stability analysis for finite periodic layers are given in appendix B.

The occurrence of unsteady and possibly turbulent flows cannot be excluded when Gr ≥
GrE .1 Irrespective of the steady or unsteady nature of the flow, its intensity can be quantified

by the average bulk energy dissipation rate per unit mass,

ε := 〈ν ‖∇?u?‖2〉 =
ν3

h4
〈‖∇u‖2〉, (5.3)

1Linear stability analysis was not carried out, but the close similarity with the classical plane Couette
flow suggests that the laminar flow is likely to be linearly stable at all Grashoff numbers.
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where ∇? is the dimensional gradient and angle brackets denote an average over volume

and infinite time (cf. section 1.2). The non-dimensional quantity associated with ε is the

dissipation coefficient

Cε :=
εh

u?(h)3
=

Gr
u(1)2

, (5.4)

where overlines denote horizontal and infinite-time averages (cf. section 1.2). The second

equality in (5.4) follows after space-time averaging the dot product of (5.1a) with u and

integrating by parts with the help of incompressibility and the BCs to prove the identity

〈‖∇u‖2〉 = Gru(1). (5.5)

Finally, the three-dimensional model described above can be rendered two-dimensional

simply by removing any variables, equations, and BCs associated with the y direction. The

laminar flow u` = Gr z e1 remains a steady solution, and is globally stable for Gr / 139.5396

(Hagstrom & Doering, 2014). Again, this value is a (sharp) lower bound on the critical

Grashoff number GrE for energy stability in finite periodic domains. For example, it is

shown in appendix B that GrE ≈ 139.5399 for Γx = 2 and GrE ≈ 148.6624 for Γx = 3. The

definitions of ε and Cε are unchanged, provided that volume averaging is understood over

the two-dimensional domain Ω2 ≡ [0,Γx]× [0, 1].

5.2 Bounds on the dissipation coefficient

The dissipation coefficient Cε can be bounded from above at any Grashoff number using

the background method (Hagstrom & Doering, 2014). The analysis, both in two and three

dimensions, begins by letting the velocity of the fluid be decomposed as u = φ(z)e1 + ũ,

where the background field φ(z) is subject to the inhomogeneous BCs

φ(0) = 0, φ′(1) = Gr. (5.6)

The perturbation field ũ is periodic in the horizontal directions, satisfies

ũ|z=0 = 0, ∂zũ|z=1 = 0, ∂z ṽ|z=1 = 0, w̃|z=1 = 0, (5.7)

and is governed by the Navier–Stokes equations in perturbation form,

∂tũ+ (ũ · ∇)ũ+∇p = ∇2ũ+ ∂2
zφ e1 − φ∂xũ− ∂zφ w̃ e1, (5.8a)

∇ · ũ = 0. (5.8b)
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Space-time averaging the dot product of ũ and (5.8a), followed by suitable integration

by parts using the incompressibility condition (5.8b) and the homogeneous BCs in (5.7),

shows that (cf. equation (37) in Hagstrom & Doering, 2014)

〈‖∇ũ‖2 + φ′ ∂zũ+ φ′ ũ w̃〉 −Gru(1) + Grφ(1) = 0. (5.9)

Moreover, substituting the background decomposition u = φ(z)e1 + ũ into (5.5) yields

Gru(1) = 〈‖∇ũ‖2 + 2φ′ ∂zũ〉+

∫ 1

0

∣∣φ′(z)∣∣2 dz. (5.10)

Subtracting 2×(5.9) from the right-hand side of (5.10) to eliminate the term φ′ ∂zũ and

noticing that φ(1) =
∫ 1

0 φ
′(z) dz by virtue of the BC φ(0) = 0 gives, after some rearrange-

ment,

u(1) = Gr−1〈‖∇ũ‖2 + 2φ′ ũ w̃〉+

∫ 1

0
2φ′(z)−Gr−1

∣∣φ′(z)∣∣2 dz. (5.11)

At this stage, consider the space of smooth perturbations

H :=
{
u ∈ C∞(Ωd,Rd) : u is horizontally periodic and satisfies (5.8b), (5.7)

}
, (5.12)

where d = 2 for the two-dimensional flow model and d = 3 for the three-dimensional one,

and suppose that φ is chosen such that

Q{u} := 〈‖∇u‖2 + 2φ′ uw〉 ≥ 0 ∀u ∈ H, (5.13a)

B{φ} :=

∫ 1

0
Gr−1

∣∣φ′(z)∣∣2 − 2φ′(z) dz < 0. (5.13b)

Then, Q{ũ} ≥ 0 for any perturbation2 and one can bound u(1) ≥ −B{φ} > 0. Using (5.4),

one concludes that the dissipation coefficient is bounded from above according to

Cε ≤
Gr

|B{φ}|2
. (5.14)

Condition (5.13a) is a spectral constraint on φ, and is needed to ensure that the term

involving the unknown perturbation ũ in (5.11) can be dropped. Any background field

that satisfies the spectral constraint subject to the BCs (5.6) will be called feasible and, if

in addition Q{u} is strictly positive for all non-zero u ∈ H, then φ will be called strictly
2That perturbations governed by (5.8a)–(5.8b) are smooth at all times if the initial condition is smooth

is unproven. Formally, one should consider weak solutions in a suitable Sobolev space, and use a density
argument to prove that the non-negativity of Q{u} for the smooth functions in H suffices to conclude non-
negativity for all weak solutions. This is not done here under the assumption that the velocity field of any
physically relevant incompressible flow is a smooth function of space.
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feasible. Note that, although strictly speaking Q{u} is defined as an average over both

space and infinite time, any time dependence can be ignored when testing its non-negativity

on H, and 〈·〉 can be interpreted as an average over the volume only. Thus, the spectral

constraint (5.13a) is a multi-dimensional integral inequality constraint on φ.

Condition (5.13b), instead, is simply needed to guarantee that the lower bound on u(1) is

positive, otherwise (5.14) cannot be deduced from (5.4). For the purposes of optimising the

background field, however, the negativity of B{φ} need not be imposed because there exist

feasible background fields—such as those constructed by Hagstrom & Doering (2014), or

smooth approximations thereof—for which the condition holds. The optimal φ is therefore

guaranteed to make B{φ} negative definite.

Finally, note that both the bound (5.14) and the spectral constraint depend only on the

derivative of the background field. This means that, for any background field such that φ′

satisfies the spectral constraint, the BC φ(0) = 0 can always be enforced by adding a suitable

constant to φ without affecting the value of B{φ}, and so it can be dropped. Consequently,

the best bound on Cε available to the background method analysis described above is found

upon solving the variational problem

min
φ

B{φ} =

∫ 1

0
Gr−1

∣∣φ′(z)∣∣2 − 2φ′(z) dz

s.t. Q{u} = 〈‖∇u‖2 + 2φ′ uw〉 ≥ 0 ∀u ∈ H,

φ′(1) = Gr.

(5.15)

This problem takes the same form for both the two- and the three-dimensional flow models,

provided that the average in the definition of the quadratic form Q{u} and the definition

test function space H are understood in the appropriate dimension. The analysis needed to

replace the spectral constraint with a set of sufficient finite-dimensional conditions, however,

differs slightly depending on the model’s dimension.

Remark 5.1. It is almost immediate to check that B{φ} = Gr−1 ‖φ′ −Gr‖22 − Gr. Hence,

to minimise the objective in (5.15) one would like to choose φ′(z) = Gr for all z ∈ [0, 1],

and hence φ(z) = Gr z. On the other hand, in order to be able to control the sign-indefinite

term in Q{u} and satisfy the spectral constraint, one requires that φ′ ≈ 0 across the domain

except near the boundaries, where w is small since it must vanish at the walls. This means

that, at least at large Gr, one expects the optimal background field to be characterised by

two boundary layers, in which φ′(z) ≈ Gr. In particular, one expects the boundary condition

φ′(1) = Gr to be satisfied even when it is not imposed explicitly in (5.15).
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Remark 5.2. The condition for energy stability of the laminar flow at a given Grashoff

number Gr0 is (Hagstrom & Doering, 2014; see also appendix B)

〈‖∇u‖2 + Gr0 uw〉 ≥ 0 ∀u ∈ H. (5.16)

At Grashoff number Gr (6= Gr0), choosing φ(z) = Gr z means that the spectral con-

straint (5.13a) reduces to (5.16) with Gr0 = 2Gr. In other words, the spectral constraint

for φ(z) = Gr z requires that the laminar flow profile is energy stable at twice the im-

posed Grashoff number. Consequently, the laminar flow is a feasible background field for

Gr ≤ GrE/2, where GrE is the critical Grashoff number for energy stability. Moreover, since

the laminar flow minimises B{φ} (cf. remark 5.1), it must be the optimal background field

for all Gr ≤ GrE/2, while for Gr > GrE/2 the optimal bounds on Cε must be larger than the

laminar dissipation value 1/Gr. This observation is useful to verify that bounds computed

with a finite-dimensional approximation of (5.15) converge to the true optimal solution as

the number of degrees of freedom included in the finite-dimensional problem increases.

5.3 Optimal bounds via semidefinite programming

For both the two- and the three-dimensional flow models, the background field problem (5.15)

can be implemented numerically as an SDP if three obstacles are overcome. The first one is

that the optimisation variable in (5.15) is infinite-dimensional because it is a function, but

in computations one can only consider finitely many decision variables. The second hurdle is

that SDPs minimise a linear objective function, but the objective in (5.15) is quadratic even

after restricting attention to background field described by a finite-dimensional parametri-

sation. Finally, one must find a way of enforcing the spectral constraint via computationally

tractable conditions.

5.3.1 Parametrisation of the background field

The first step to reduce (5.15) to any computationally tractable problem is to restrict the

attention to background fields φ that admit a finite-dimensional parametrisation. The op-

timal φ must be at least continuous and one expects it to be smooth, but it is unlikely that

it has a finite-dimensional representation in any of the traditional expansion bases for the

space of smooth functions. Nonetheless, an extension of the Weierstrass theorem (Peet &

Bliman, 2007) guarantees that the optimal φ can be approximated arbitrarily accurately

by a degree-P polynomial that satisfies the BCs in (5.6), provided that P is sufficiently
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large. Therefore, solving (5.15) over degree-P polynomial background fields—which clearly

admit a finite-dimensional representation—constitutes only a mild restriction so long as the

value P required to obtain a good approximation is not too large. In fact, the (sub)optimal

objective values computed in this way form a non-increasing sequence that converges to the

true optimal value of (5.15) as P is raised.

Since the background field enters (5.15) only via its derivative, it is convenient to intro-

duce a polynomial ansatz for φ′ directly, and recover φ by integration using the BC φ(0) = 0

when needed. In order to simplify the following analysis, it is also convenient to work in the

Legendre polynomial basis and write

φ′(z) =
P−1∑
n=0

φ̂n Ln(2z − 1), (5.17)

where Ln(ξ), ξ ∈ [−1, 1], is the Legendre polynomial of degree n (cf. section 4.1).

With this ansatz, the vector φ̂ := [φ̂0, . . . , φ̂P−1]T ∈ RP becomes the optimisation

variable in (5.15), and it must be chosen to enforce the spectral constraint and the BC

φ′(1) = Gr. The former will be discussed in sections 5.3.3 and 5.3.4 for the two- and

three-dimensional flows, respectively. The latter, instead, can be rewritten in terms of the

vector φ̂ after recalling from section 4.1 that Legendre polynomials take the boundary value

Ln(1) = 1 for all n ≥ 0. It is then not difficult to see that, for background fields defined

through (5.17),

φ′(1) = Gr ⇔ 1Tφ̂ = Gr. (5.18)

5.3.2 Formulation of a linear objective

When the polynomial ansatz (5.17) is introduced in the optimisation problem (5.15), the or-

thogonality condition (4.9) for the Legendre polynomials can be used to express the objective

function as

B{φ} = Gr−1 φ̂TBφ̂− 2 φ̂0, (5.19)

where

B := diag

(
2,

2

3
, . . . ,

2

2n+ 1
, . . . ,

2

2(P − 1) + 1

)
. (5.20)

Since algorithms for semidefinite programming minimise a linear function, the quadratic

objective B{φ} must be replaced with a linear one that bounds it from above. This can be

done without introducing any conservativeness by introducing a so-called slack variable s

such that

φ̂TBφ̂ ≤ s. (5.21)

111



Section 5.3. Optimal bounds via semidefinite programming

One can then minimise the linear function s − 2 φ̂0, which is a sharp upper bound for the

original objective B{φ} by virtue of (5.21). Note that the quadratic constraint (5.21) is

convex because B is a positive definite matrix and, as explained in section 2.3, one has

φ̂TBφ̂ ≤ s ⇔ S(φ̂, s) :=

B−1 φ̂

φ̂T s

 � 0. (5.22)

Consequently, when attention is restricted to degree-P polynomial background fields defined

through (5.17), problem (5.15) is equivalent to

min
φ̂, s

s− 2 φ̂0

s.t. Q{u} ≥ 0 ∀u ∈ H,

S(φ̂, s) � 0,

1Tφ̂ = Gr.

(5.23)

All that is left to do to make this optimisation problem an SDP is to replace the spectral

constraint with a finite number of LMIs or, more generally, of LMI-representable constraints.

The analysis for the two-dimensional flow model differs slightly from that needed in three

dimensions, so the two cases will be treated separately.

5.3.3 Analysis of the spectral constraint: two-dimensional flows

In two dimensions, each function u ∈ H can be expanded using the Fourier series

u(x, z) =
∑
m∈Z

Um(z) eiαmx, (5.24)

where αm := 2πm/Γx is the m-th horizontal wavenumber and each z-dependent Fourier

amplitude Um(z) := Um(z)e1 +Wm(z)e3 is a complex-valued vector field. The requirement

that the Fourier modes combine into the real-valued function u implies that U−m = U∗m

(both here and in the following, the superscript ∗ denotes complex conjugation).

Using expansion (5.24), the incompressibility condition (5.8b) requires

iαmUm(z) +W ′m(z) = 0, m ∈ Z, (5.25)

while the vertical BCs in (5.7) become

Um(0) = Wm(0) = U ′m(1) = Wm(1) = 0, m ∈ Z. (5.26)
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Since α0 = 0, (5.25) and (5.26) imply that W0(z) = 0, whereas for each m 6= 0 one can

express Um as a function of Wm. After substituting the Fourier series expansion (5.24) into

Q{u}, one can combine these observations with the identities U−m = U∗m and α−m = −αm
to show that

Q{u} = Γx

∫ 1

0

∣∣U ′0(z)
∣∣2 dz + 2Γx

+∞∑
m=1

Qm{Wm}, (5.27)

where

Qm{Wm} :=

∫ 1

0

1

α2
m

∣∣W ′′m(z)
∣∣2 + 2

∣∣W ′m(z)
∣∣2

+ α2
m |Wm(z)|2 − 2

αm
φ′(z) Im

[
W ′m(z)W ∗m(z)

]
dz. (5.28)

Note now that among all u ∈ H are those defined by a single Fourier mode, meaning

that Um = 0 for all but one value m. Then, it follows from (5.25), (5.26) and (5.27) that

Q{u} is non-negative on the function space H if and only if, for each positive integer m,

the quadratic form Qm{Wm} is positive semidefinite for all functions Wm that satisfy the

BCs

Wm(0) = Wm(1) = W ′m(0) = W ′′m(1) = 0. (5.29)

Such functions will be called admissible, and each of the conditions that Qm{Wm} ≥ 0 for

all admissible Wm will be referred to as a Fourier-transformed spectral constraint.

For any candidate background field, only a finite number of Fourier-transformed spectral

constraints need be considered because Qm{Wm} is always non-negative when m is suffi-

ciently large. Indeed, since the Legendre polynomials satisfy ‖Ln‖∞ = 1 (cf. section 4.1)

one has ∥∥φ′∥∥∞ ≤ P−1∑
n=0

∣∣∣φ̂n∣∣∣ ‖Ln‖∞ = ‖φ̂‖1. (5.30)

Combining this estimate with the Cauchy-Schwarz inequality and the elementary inequality

ab ≤ a2/(
√

2αm) + αmb
2/(2
√

2) yields

Qm{Wm} ≥ 2
∥∥W ′m∥∥2

2
+ α2

m ‖Wm‖22 −
2

αm

∥∥φ′∥∥∞ ∥∥W ′m∥∥2
‖Wm‖2 ,

≥ 2
∥∥W ′m∥∥2

2
+ α2

m ‖Wm‖22 −
2

αm
‖φ̂‖1

∥∥W ′m∥∥2
‖Wm‖2 ,

≥
(

1− ‖φ̂‖1√
2α2

m

)(
2
∥∥W ′m∥∥2

2
+ α2

m ‖Wm‖22
)
, (5.31)

so Qm{Wm} is non-negative if α2
m ≥ ‖φ̂‖1/

√
2. Consequently, for a given background field

φ, the Fourier-transformed spectral constraints are guaranteed to hold for m larger than the
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critical value

mcr(φ̂) :=

Γx
π

√
‖φ̂‖1
4
√

2

 , (5.32)

where b·c denotes the integer part of a number as usual. Thus, problem (5.23) for the

optimal degree-P polynomial background field is equivalent to

min
φ̂, s

s− 2 φ̂0

s.t. Qm{Wm} ≥ 0 ∀ admissible Wm, m = 1, 2, . . . , mcr(φ̂),

S(φ̂, s) � 0,

1Tφ̂ = Gr.

(5.33)

At this stage, note that each Fourier-transformed spectral constraint is an affine homo-

geneous integral inequality of the type studied in chapter 4, so the feasible set of (5.33)

can be approximated using LMIs to obtain an SDP. The inner approximations described

in section 4.4 are particularly useful because, according to Theorem 4.9, they enable one

to find upper bounds on the optimal value of (5.33). This, in turn, is no smaller than the

optimal value of the variational problem (5.15) for the fully optimal (i.e., not necessarily

polynomial) background field. Consequently, modulo numerical roundoff errors, by solving

inner SDP approximations of (5.33) one can estimate rigorously from above the best bound

on Cε available within the background method analysis of section 5.2. The outer approxi-

mations described in section 4.3, instead, are not as useful because they yield lower bounds

for the optimal value of (5.33), which cannot be related to the optimal value of (5.15). For

this reason, outer SDP approximations of (5.33) will not be considered.

To formulate inner approximations of (5.33), for each Fourier-transformed spectral con-

straint one rescales the integration domain in (5.28) to [−1, 1] by changing variables to

ξ = 2z − 1. Then, following the Legendre expansion strategy outlined in sections 4.4.1

and 4.4.2, one chooses an integer N ≥ P , so (4.27) is satisfied, and writes

Wm =
N∑
n=0

anLn(ξ) +A(ξ), A(z) :=
∑

n≥N+1

anLn(ξ), (5.34a)

W ′m =

N+1∑
n=0

bnLn(ξ) +B(ξ), B(z) :=
∑

n≥N+2

bnLn(ξ), (5.34b)

W ′′m =
N+P+3∑
n=0

cnLn(ξ) + C(ξ), C(z) :=
∑

n≥N+P+4

cnLn(ξ). (5.34c)
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The limits for the finite sums in these expression are chosen such that the complex-valued

coefficients {an}Nn=0 and {bn}N+1
n=0 can be expressed in terms of {cn}N+P+3

n=0 using the BCs

in (5.29) and Lemma 4.3,3 and such that part (i) of Lemma 4.6 can be applied when

expanding the last term in (5.28). Moreover, the BC W ′m(0) = 0 can be used to rewrite c0

in terms of the remaining coefficients {cn}N+P+3
n=1 . Hence, using (5.34a)–(5.34c) the quadratic

form Qm{Wm} in (5.28) can be expanded as a quadratic form of the vector

ω :=
[
Re(c1), . . . , Re(cN+P+3), Im(c1), . . . , Im(cN+P+3)

]T
∈ R2(N+P+3), (5.35)

plus some “tail” terms that depend on the remainder functions A(ξ), B(ξ), and C(ξ).

To make these ideas more precise, substitute expansions (5.34a)–(5.34c) into (5.28) af-

ter changing variables to ξ = 2z − 1. The orthogonality relation (4.9) for the Legendre

polynomials enables one to write Qm{Wm} = (P −Q+R)/2, with

P :=
16

α2
m

N+P+3∑
n=1

2 |cn|2
2n+ 1

+ 8
N+1∑
n=0

2 |bn|2
2n+ 1

+ α2
m

N∑
n=0

2 |an|2
2n+ 1

, (5.36a)

Q :=
8

αm

∫ 1

−1

dφ

dξ
Im

[
A∗(ξ)

N+1∑
n=0

bnLn(ξ) +B(ξ)

N∑
n=0

a∗nLn(ξ)

]
dξ, (5.36b)

R :=

∫ 1

−1

16

α2
m

|C(ξ)|2 + 8 |B(ξ)|2 + α2
m |A(ξ)|2 − 8

αm

dφ

dξ
Im [B(ξ)A∗(ξ)] dξ. (5.36c)

Using the BCs in (5.29) and Lemma 4.3 to write the coefficients {an}Nn=0 and {bn}N+1
n=0 in

terms of {cn}N+P+3
n=1 , it is clear that P is a quadratic form of the vector ω defined in (5.35).

Similarly, the proof of part (i) of Lemma 4.6 can be adapted to show that, by virtue of the

choice of limits for the finite sums in (5.34a)–(5.34c), the term Q is also a finite-dimensional

quadratic form for ω, which depends affinely on the Legendre coefficients of dφ
dξ . Therefore,

one can construct a real-valued symmetric matrix Qm(φ̂) ∈ S2(N+P+3), affinely dependent

on φ̂, such that

P −Q = ωTQm(φ̂)ω. (5.37)

Finally, after dropping the second and third terms from R and estimating the last term

using Lemma 4.7—which amounts to an application of the L1-L∞ Hölder inequality, the

Cauchy–Schwarz inequality, and Poincaré-type estimates to relate the norms ‖A‖2 and ‖B‖2
to ‖C‖2—one can construct a positive definite matrixR ∈ S2(N+P+3) and a positive constant

3All lemmas in chapter 4 are proven for real-valued Legendre expansion, but hold also in the complex-
valued case because they can be applied independently to the real and imaginary parts.
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κ, both independent of m, such that

R ≥
∫ 1

−1

16

α2
m

(
1− αm ‖φ̂‖1κ

)
|C(ξ)|2 dξ − 1

αm
‖φ̂‖1ωTRω. (5.38)

The quadratic form Qm{Wm} = (P −Q+R)/2 can then be bounded from below as

Qm{Wm} ≥
1

2
ωT
[
Qm(φ̂)− α−1

m ‖φ̂‖1R
]
ω

+
1

2

∫ 1

−1

16

α2
m

(
1− αm ‖φ̂‖1κ

)
|C(ξ)|2 dξ, (5.39)

and the m-th Fourier-transformed spectral constraint is satisfied if

Qm(φ̂)− α−1
m ‖φ̂‖1R � 0, (5.40a)

1− αm ‖φ̂‖1κ ≥ 0. (5.40b)

Conditions (5.40a) and (5.40b) can be recast as LMIs upon introducing a vector t ∈ RP

of slack variables such that −t ≤ φ̂ ≤ t, so ‖φ̂‖1 ≤ 1Tt. Therefore, upper bounds on the

optimal value of (5.23) can be computed by solving the SDP

min
φ̂, s, t

s− 2 φ̂0

s.t. Qm(φ̂)− α−1
m (1Tt)R � 0, m = 1, 2, . . . , mcr(φ̂),

1− αm (1Tt)κ ≥ 0, m = 1, 2, . . . , mcr(φ̂),

t− φ̂ ≥ 0,

t+ φ̂ ≥ 0,

S(φ̂, s) � 0,

1Tφ̂ = Gr.

(5.41)

The only difficulty preventing a direct implementation of (5.41) is that the number of

constraints is not known a priori because it depends on the optimisation variable. This

issue, however, is easily resolved in practice by employing an iterative procedure: fix an

integer m0, compute a candidate optimal φ̂ by solving (5.41) considering only constraints

withm ≤ m0, check a posteriori that eithermcr(φ̂) ≤ m0 or Qm{Wm} ≥ 0 for all admissible

Wm and all m ≤ mcr(φ̂), and repeat the process with larger m0 if any of these checks fail.

Remark 5.3. The role of mcr(φ̂) is that of an upper bound on the largest critical Fourier

mode, meaning the largest m for which the constraints in the SDP (5.41) are active. Of

course, if the critical modes were known a priori, one could solve the SDP by considering
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Figure 5.2: Compensated plots of (a) ‖R‖f as function of N , and (b) κ as function of N .
Results are plotted for P = 5 ( ), P = 10 ( ), P = 15 ( ), and P = 20 ( ).
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Figure 5.3: Compensated plots of the minimum diagonal element of the matrix Qm(φ̂)
as function of N . (a) Results for m = 1, Γx = 2, and P = 5 ( ), P = 10 ( ), P = 15
( ), and P = 20 ( ). (b) Results for P = 10, Γx = 2, and m = 1 ( ), m = 2 ( ),

m = 3 ( ), and m = 4 ( ).

only the corresponding constraints and still obtain the correct solution. It must be stressed,

however, that the number of constraints in (5.41) is unknown not due to the lack of knowledge

of the exact critical modes, but because mcr(φ̂) depends on φ̂. If the largest critical m could

be bounded independently of the decision variables, say as a function of the Grashoff number

alone, then the number of constraints in the SDP would be well defined and the iterative

procedure described above would not be required.

Remark 5.4. It is not obvious that the SDP (5.41) is feasible because the diagonal matrix

R and the constant κ appearing in its constraints are positive definite. When both P (the

degree of the polynomial background field) and N (the number of Legendre modes used to

expand each Fourier-transformed spectral constraint) are large, however, a strong argument

in support of feasibility can be made based on two observations. First, both R and κ arise

from the application of Lemma 4.7 to the φ-dependent term in (5.36c) and, as illustrated in

figure 5.2, one has ‖R‖f ∼ N−4, κ ∼ N−3. In contrast, as demonstrated in figure 5.3, the

smallest diagonal entry of Qm(φ̂) decays as N−1 (it can be verified that diagonal entries

are independent of φ̂). Hence, the adverse contribution of R and κ becomes vanishingly

small compared to the remaining terms as N is increased. Second, it seems reasonable to
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assume that there exists a strictly feasible polynomial background field φ∗ of sufficiently high

degree, for which the spectral constraint (5.13a) can be perturbed slightly without violating

it. Given the fast decay of ‖R‖f and κ with N one expects φ∗ to be a feasible solution of

the SDP (5.41), provided that this is formulated using sufficiently large P and N . However,

note also that the smallest N needed to make the condition 1−αm(1Tt)κ ≥ 0 feasible must

grow as m, and hence the wavenumber αm, is increased. Similarly, larger N is required to

make the LMI (5.40a) feasible at large m. This has repercussion on the cost of checking

that the optimal solution of (5.41) satisfies the Fourier-transformed spectral constraint for

all m ≤ mcr(φ̂), because the definition of mcr(φ̂) and the constraint 1Tφ̂ = Gr imply that

mcr(φ̂) =

Γx
π

√
‖φ̂‖1
4
√

2

 ≥
Γx
π

√
1Tφ̂

4
√

2

 ∼ √Gr. (5.42)

Thus, when Gr is high, verifying that a given background field is feasible by testing the

finite-dimensional conditions (5.40a) and (5.40b) can become computationally expensive.

Remark 5.5. Problem (5.23) for the optimal degree-P polynomial background field is very

closely related to that for the energy stability of the laminar flow. Results obtained for inner

SDP approximations of the latter (cf. section 4.6.1 and appendix B) suggest that not only

should the SDP (5.41) be feasible, but also that its optimal solution should converge to that

of (5.23) as N , the number of Legendre modes used to expand each Fourier-transformed

spectral constraint, is raised.4 As discussed in section 5.3.1, moreover, bounds on Cε ob-

tained with degree-P polynomial background fields converge to the fully optimal bounds

as P tends to infinity. Consequently, one expects that bounds on Cε computed via the

SDP (5.41) for large P and N—which are strictly speaking suboptimal due to the restric-

tions and estimates made to derive the SDP—can be considered fully optimal in practice.

5.3.4 Analysis of the spectral constraint: three-dimensional flows

The spectral constraint for three-dimensional flows can be analysed with steps similar to

those used in two dimensions. Following Tang et al. (2004), it will be assumed that the

critical test functions are streamwise invariant, i.e., constant along the x direction. This is

reasonable because comparing the spectral constraint to the energy stability condition (5.16)

for the laminar flow reveals that the former is an energy stability condition on the background

field as if it were a solution of the governing equations, and critical modes for stability tend

to be longitudinal rolls (Hagstrom & Doering, 2014). In addition, Nicodemus et al. (1997a)
4One could confirm this expectation by comparing the optimal value of (5.41) with that obtained using

an outer approximation of (5.33), but this is not done here.
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demonstrated that streamwise-varying modes do not affect the optimal background field for

plane Couette flow, and one expects the same to be true for the stress-driven shear flows

studied here given the similarity between the two flow configurations.

The assumption of streamwise invariance is not essential, but simplifies the analysis and,

most importantly, reduces the cost of computations because it enables one to expand test

functions u ∈ H for the spectral constraint using a Fourier series in the y direction only,

u(x, y, z) =
∑
m∈Z

Um(z) eiβmy. (5.43)

Here, βm := 2πm/Γy is the wavenumber and the complex-valued Fourier amplitudesUm(z) :=

Um(z)e1 + Vm(z)e2 + Wm(z)e3 satisfy U−m = U∗m, so u is real-valued. Incompressibility

requires that

iβmVm(z) +W ′m(z) = 0, m ∈ Z, (5.44)

while the BCs (5.7) become

Um(0) = Vm(0) = Wm(0) = U ′m(1) = V ′m(1) = Wm(1) = 0, m ∈ Z. (5.45)

Conditions (5.44) and (5.45) can be used to deduce thatW0(z) = 0, while Vm = iβ−1
m W ′m

for m 6= 0. Using the identities U−m = U∗m and β−m = −βm, the quadratic form Q{u}
in (5.13a) can then be expanded as

Q{u} = Γx Γy

∫ 1

0

∣∣U ′0(z)
∣∣2 +

∣∣V ′0(z)
∣∣2 dz + Γx Γy

∑
m≥1

Qm{Um,Wm}, (5.46)

where

Qm{Um,Wm} :=

∫ 1

0

∣∣U ′m(z)
∣∣2 + β2

m |Um(z)|2 +
1

β2
m

∣∣Wm(z)′′
∣∣2 + 2

∣∣Wm(z)′
∣∣2

+ β2
m |Wm(z)|2 + 2φ′(z) Re[Um(z)W ∗m(z)] dz. (5.47)

Noticing that among streamwise-invariant test functions u ∈ H are those with only one

non-zero Fourier amplitude, and using (5.44) to rewrite the BCs in (5.45) in terms of Um

andWm alone, one concludes that the spectral constraint holds if and only if for each integer

m the quadratic form Qm{Um,Wm} is positive semidefinite for all complex-valued functions

Um, Wm that safisty the BCs

Um(0) = W ′m(0) = Wm(0) = U ′m(1) = W ′′m(1) = Wm(1) = 0. (5.48)
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In fact, it suffices to consider real-valued Um and Wm because their real and imaginary

parts contribute two identical and independent terms to Qm{Um,Wm}. As in section 5.3.3,

real-valued functions that satisfy (5.48) will be called admissible, while for each m the

requirement that Qm{Um,Wm} ≥ 0 for all admissible Um and Wm will be called a Fourier-

transformed spectral constraint.

Combining straightforward functional estimates with (5.30) shows that, for any polyno-

mial background field φ defined through (5.17),

Qm{Um,Wm} ≥ β2
m ‖Um‖22 + 2‖φ̂‖1 ‖Um‖2 ‖Wm‖2 + β2

m ‖Wm‖22 , (5.49)

so the Fourier-transformed spectral constraint is guaranteed to hold when m is larger than

the critical value

mcr(φ̂) :=

⌊
Γy
2π

√
‖φ̂‖1

⌋
. (5.50)

Consequently, one can replace the original spectral constraint in (5.23) with a finite number

of Fourier-transformed spectral constraints, and optimise the background field by solving

min
φ̂, s

s− 2 φ̂0

s.t. Qm{Um,Wm} ≥ 0 ∀ admissible Um, Wm, m = 1, 2, . . . , mcr(φ̂),

S(φ̂, s) � 0,

1Tφ̂ = Gr.

(5.51)

Each Fourier-transformed spectral constraint in this problem is an affine homogeneous

integral inequality, and can be enforced using the inner approximation methods from sec-

tion 4.4. For each m, the functions Um and Wm can be expanded using Legendre se-

ries with only N terms considered explicitly. Following an argument similar to that out-

lined in section 5.3.3 for the two-dimensional flow, one can construct an affine matrix

Qm(φ̂) ∈ S2(N+P+3), a positive definite diagonal matrix R ∈ S2(N+P+3), and two posi-

tive constants κ, ζ such that Qm{Um,Wm} ≥ 0 for all admissible test functions if

Qm(φ̂)− ‖φ̂‖1R � 0, (5.52a)

1− ‖φ̂‖1κ ≥ 0, (5.52b)

1− β2
m ‖φ̂‖1ζ ≥ 0. (5.52c)

Note that R, κ, and ζ are independent of m and have properties similar to those of the

corresponding quantities for the two-dimensional flow discussed in remark 5.4. Conditions
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Chapter 5. Bounds on energy dissipation in stress-driven shear flows

(5.52a)–(5.52c) can be recast as LMIs by introducing a slack variable vector t ∈ RP subject

to −t ≤ φ̂ ≤ t and replacing ‖φ̂‖1 with 1Tt. One can therefore optimise the background

field φ by solving the SDP

min
φ̂, s, t

s− 2 φ̂0

s.t. Qm(φ̂)− (1Tt)R � 0, m = 1, 2, . . . , mcr(φ̂),

1− β2
m (1Tt)ζ ≥ 0, m = 1, 2, . . . , mcr(φ̂),

1− (1Tt)κ ≥ 0,

t− φ̂ ≥ 0,

t+ φ̂ ≥ 0,

S(φ̂, s) � 0,

1Tφ̂ = Gr,

(5.53)

using the same iterative procedure described at the end of section 5.3.3. The comments on

feasibility and convergence made in remarks 5.4 and 5.5 apply mutatis mutandis.

5.4 Results

Optimal background fields and the corresponding bounds on the dissipation coefficient Cε

for both two- and three-dimensional flows were computed for a selection of Grashoff numbers

by solving the SDPs (5.41) and (5.53). These were set up in MATLAB using QUINOPT

and solved with SDPT3 (Toh et al., 1999; Tütüncü et al., 2003) on a PC with a 3.40 GHz

Intel R© CoreTM i7-4770 CPU and 16 GB of RAM.

At each Gr, near-optimal bounds on Cε were computed by solving the SDPs with a

fixed initial guess m0 for the number of constraints, and increasing N (the number of

Legendre modes used to expand each Fourier-transformed spectral constraint) and P (the

degree of the background field) in an alternate fashion until the optimal value decreased

by less than 1%. If m0 ≤ mcr(φ̂) for the candidate solution vector φ̂, the feasibility of

all Fourier-transformed spectral constraints with m ≤ mcr(φ̂) was subsequently tested via

conditions (5.40a) and (5.40b) for the two-dimensional problem, and via conditions (5.52a)–

(5.52c) for the three-dimensional one. For reasons discussed in remark 5.4, if feasibility could

not be established for some value m > m0, the verification steps were repeated up to five

times after re-formulating the finite-dimensional conditions using larger N , denoted Nchecks

in the following. Every time, Nchecks was increased by 50. If after five attempts the candidate

solution could still not be verified, the optimisation was repeated after increasing m0 by 5.
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Table 5.1: Parameters used to set up and solve SDP (5.41) for a selection of Grashoff
numbers. Also reported are the wall time (in seconds) and peak memory (in MB) required
to set up the SDP, solve it with SDPT3, and post-process the solution. Tabulated values
of mcr(φ̂) are for the optimal background field, obtained using the tabulated values of m0

after one iteration of the procedure needed to determine the number of constraints in (5.41).

Γx Gr m0 P N Memory (MB) Time (s) mcr(φ̂) Nchecks

2 103 5 20 100 789 26 11 100
2 104 10 30 125 813 128 37 125
2 105 15 35 150 1192 562 115 350

3 103 5 20 100 854 26 17 100
3 104 10 30 125 941 192 56 125
3 105 25 35 150 1634 1098 173 350

Table 5.2: Parameters used to set up and solve SDP (5.53) for a selection of Grashoff
numbers. Also reported are the wall time (in seconds) and peak memory (in MB) required
to set up the SDP, solve it with SDPT3, and post-process the solution. Tabulated values
of mcr(φ̂) are for the optimal background field, obtained using the tabulated values of m0

after one iteration of the procedure needed to determine the number of constraints in (5.53).

Γy Gr m0 P N Memory (MB) Time (s) mcr(φ̂) Nchecks

2 102 5 35 100 704 48 4 100
2 103 10 40 125 983 270 13 125
2 104 10 45 150 1148 537 43 150

3 102 5 35 100 752 43 6 100
3 103 10 40 125 944 252 20 125
3 104 10 45 150 1063 500 64 150

Details of the parameters used in the computations for a selection of Grashoff numbers

are given in table 5.1 for the two-dimensional flow, and in table 5.2 for the three-dimensional

flow. For the tabulated values m0, identification of the correct number of constraints in the

SDPs required only one iteration. Also reported are the wall time and peak memory (as

measured by the operating system) required to set up the SDPs, solve them using SDPT3,

and post-process the solution. The reason for the disparity between N and P is that large

N is needed to ensure feasibility (cf. remark 5.4), whereas the optimal φ is well resolved

with modest P . In addition, computing near-optimal bounds for the three-dimensional flow

at a given Gr required higher P than in two dimensions in order to resolve finer structures

in the optimal background field.

5.4.1 Two-dimensional flows

The SDP (5.41) was successfully solved for 10 ≤ Gr ≤ 105 and for two values of the

horizontal period, Γx = 2 and Γx = 3. Figure 5.4 shows some of the optimal background
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Chapter 5. Bounds on energy dissipation in stress-driven shear flows

Figure 5.4: Numerically optimal background fields for the two-dimensional flow, computed
with (5.41) for Γx = 2. Profiles in panel (a) are for Gr = 10 ( ), Gr = 100 ( ), and
Gr = 500 ( ). Profiles in panel (b) are for Gr = 103 ( ), Gr = 104 ( ), and Gr = 105

( ). All profiles are normalised by their absolute value at z = 1 to ease the comparison.

Figure 5.5: (a) Numerically optimal upper bounds on Cε for the two-dimensional flow
model, computed with (5.41) for Γx = 2 ( ) and Γx = 3 ( ). Results are compared
to the analytical bound Cε ≤ 1/16 ( ) and the laminar dissipation value, 1/Gr ( ).
(b) The near-optimal bounds depart from the laminar dissipation value Cε = 1/Gr at
Gr = 0.5GrE ≈ 69.77 for Γx = 2 (•), and at Gr = 0.5GrE ≈ 74.33 for Γx = 3 (•). The

vertical axis in panel (b) is rescaled by Gr to ease the visualisation.

fields computed for Γx = 2, obtained by substituting the optimal solution φ̂ of (5.41)

into (5.17) and integrating the resulting polynomial φ′ subject to the BC φ(0) = 0 (cf.

section 5.3.1). To ease the visual comparison, the profiles are normalised by the magnitude

of their boundary value φ(1). Similar profiles were obtained for Γx = 3 and are not shown for

brevity. The optimal background fields coincide with the laminar flow profile φ = Gr z for

Gr ≤ 0.5GrE (cf. remark 5.2) and, as Gr is raised, two monotonic boundary layers develop.

Optimal background fields for the classical plane Couette flow behave similarly (Nicodemus

et al., 1997b), but in the shear-driven case the boundary layers are asymmetric due to the

different nature of the BCs at z = 0 (Dirichlet) and at z = 1 (Neumann).

Upper bounds on Cε were computed at each Gr by substituting the numerically optimal

background field into (5.14), and are plotted in figure 5.5(a). The results are compared to the

laminar dissipation coefficient 1/Gr, which is a sharp lower bound on Cε (Tang et al., 2004),
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Section 5.4. Results

and to the analytical upper bound Cε ≤ 1/16 = 0.0625 proven by Hagstrom & Doering

(2014). Unfortunately, the limited range of Gr for which (5.41) could be solved reliably does

not permit a confident estimation of the asymptotic behaviour of the optimal bound (the

computational issues at large Gr will be discussed further in section 5.5). Nonetheless, it

seems that the optimal bounds on Cε approach a constant value independently of Γx when

Gr→∞. What is evident, on the other hand, is the quantitative improvement compared to

the analytical bound, which is more than one order of magnitude larger than the numerical

one at Gr = 105.

Although energy stability analysis indicates that the laminar Couette flow is stable up

to the critical Grashoff number GrE ≈ 139.54 for Γx = 2 and GrE ≈ 148.66 for Γx = 3

(cf. table B.1 in appendix B), figure 5.5(b) shows that the numerical bounds deviate from

the laminar value Cε = Gr−1 when Gr > 0.5GrE . As discussed in remark 5.2, this is

to be expected for the full bounding problem (5.15), and confirms the expectation that

background fields and bounds on Cε computed with the SDP (5.41) approximate well the

fully optimal ones when the parameters P and N are sufficiently large. Consequently, while

strictly speaking the bounds plotted in figure 5.5(a) are only upper estimate for the best

possible bounds on Cε available to the background method analysis of section 5.2, in practice

they can be considered fully optimal.

Finally, for both values of Γx tested, the optimal bounds oscillate slightly for Grashoff

numbers in the range 102 . Gr . 104. The most likely reasons for this behaviour are that

computations are carried out in a periodic layer, so the Fourier-transformed spectral con-

straints need be enforced only at discrete wavenumbers, and the occurrence of bifurcations

in the critical Fourier modes, meaning that the constraints in (5.41) become active at more

values of m. Critical Fourier modes can be clearly identified by considering the quantity

λ0(m) := max
λ

λ

s.t. Qm{Wm} ≥ λ ‖Wm‖22 ∀ admissible Wm,

(5.54)

which corresponds to the smallest eigenvalue of the self-adjoint linear operator associated

with the quadratic form Qm{Wm}. The spectral constraint implies that λ0(m) must be

non-negative for all m, and critical modes are characterised by λ0(m) = 0. As an example,

values of λ0(m) corresponding to the optimal background field at Gr = 104 were computed

by solving (5.54) with QUINOPT for each m ≤ mcr(φ̂) and are plotted in figure 5.6. At

this Grashoff number, three bifurcations have occurred and there are four critical modes,

m = 1, 2, 4, and 5.
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Chapter 5. Bounds on energy dissipation in stress-driven shear flows

Figure 5.6: Values λ0(m) corresponding to the optimal background field for the two-
dimensional flow at Gr = 104, computed by solving (5.54) with QUINOPT. Critical Fourier

modes satisfy λ0(m) = 0.

Figure 5.7: Numerically optimal background fields for the three-dimensional flow, com-
puted with (5.53) for Γy = 3. Profiles in panel (a) are for Gr = 10 ( ), Gr = 100 ( ),
and Gr = 500 ( ). Profiles in panel (b) are for Gr = 1000 ( ), Gr = 5000 ( ), and
Gr = 10 000 ( ). All profiles are normalised by the magnitude of their value at z = 1 to

ease the comparison.

5.4.2 Three-dimensional flows

For the three-dimensional flow model, optimal background fields and bounds on Cε were

computed by solving the SDP (5.53) for 10 ≤ Gr ≤ 104 and two values of the horizontal

period in the y direction, Γy = 2 and Γy = 3. Note that the SDP is independent of the

period in the x direction, Γx, because it was derived under the assumption that the critical

modes for the spectral constraint are streamwise invariant.

A selection of optimal background fields computed with Γy = 3 is shown in figure 5.7, and

very similar results were obtained for Γy = 2. Interestingly, asGr is raised the boundary layer

near the top boundary (z = 1) overshoots the approximately constant value in the bulk of

the domain, making the optimal φ non-monotonic. The boundary layer near z = 0, instead,

develops two approximately linear sub-layers characterised by different slope: steeper near

the boundary, flatter towards the edge. The formation of such sub-layers seems to be related

to the occurrence of bifurcations in the number of critical Fourier modes in the SDP. As in
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Figure 5.8: (a) Values λ0(m) corresponding to the optimal background field for the three-
dimensional flow at Gr = 104, computed by solving (5.55) with QUINOPT. (b) Detailed
view of the region marked by a red rectangle in panel (a), showing the critical Fourier modes.

the two-dimensional case, these are characterised by λ0(m) = 0, where

λ0(m) := max
λ

λ

s.t. Qm{Um,Wm} ≥ λ
(
‖Um‖22 + ‖Wm‖22

)
∀ admissible Um,Wm.

(5.55)

Figure 5.8 demonstrates that three bifurcations have occurred at Gr = 104, the critical

Fourier modes beingm = 2, 5, 7, and 8 (note that these are different from the critical modes

for the two-dimensional flow at the same Grashoff number, cf. figure 5.6). Near-optimal

background fields for the classical plane Couette flow exhibit similar sub-layers (Nicodemus

et al., 1997b), suggesting that the qualitative structure of the optimal background field near

the bottom boundary is unaffected when the boundary condition at z = 1 is changed from

fixed velocity to fixed shear.

The optimal bounds on Cε are plotted in figure 5.9(a), along with the laminar dissipation

value Cε = 1/Gr, the approximate numerical bound Cε ≤ Gr (7.531Gr0.5 − 20.3)−2 found

by Tang et al. (2004) for Gr & 500, and the analytical bound Cε ≤ 1/(2
√

2) ≈ 0.3536 proven

by Hagstrom & Doering (2014). The bounds deviate from the laminar dissipation coefficient

at the expected value Gr = 0.5GrE (with GrE ≈ 57.20 for Γy = 2 and GrE ≈ 51.73 for

Γy = 3, cf. table B.2 in appendix B), confirming that the optimal solution of the SDP has

converged to that of the infinite-dimensional variational problem (5.15). The quantitative

improvement compared to the analytical bound is evident, the optimal results being more

than 10 times smaller at large Gr. In addition, although the range of Gr for which the

SDP (5.53) could be solved accurately does not reach the asymptotic regime, for both

values of Γy considered here the optimal bounds are in very good agreement with the fit to

the approximate numerical bounds by Tang et al. (2004). These were computed by replacing

the applied shear with a body force localised in a narrow region near the boundary, and
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Figure 5.9: (a) Numerically optimal upper bounds on Cε for Γy = 2 ( ) and Γy = 3
( ). Also shown are: the approximate numerical bound Cε ≤ Gr (7.531Gr0.5 − 20.3)−2

from Tang et al. (2004), valid for Gr & 500 ( ); the laminar dissipation coefficient Cε =
1/Gr ( ); the analytical bound Cε ≤ 1/(2

√
2) proven by Hagstrom & Doering (2014)

( ). (b) The numerically optimal bounds depart from the laminar dissipation value at
Gr = 0.5GrE ≈ 28.60 for Γx = 2 (•), and at Gr = 0.5GrE ≈ 25.87 for Γx = 3 (•). The

vertical axis in panel (b) is rescaled by Gr to ease the visualisation.

Hagstrom & Doering (2014) demonstrated that this approximation does not change the

critical Gr for energy stability of the laminar flow. The present results indicate that the

energy dissipation rate is also preserved, at least as far as upper bounds on the dissipation

coefficient are concerned. Given that the background method used to formulate the bounding

problem for Cε can be seen as a generalisation of energy stability theory, this observation is

perhaps not surprising.

5.5 Further discussion and conclusions

The optimal bounds on Cε appear to approach a constant as Gr grows to infinity for both

two- and three-dimensional flows, although the range of Grashoff numbers that could be

studied does not stretch sufficiently far into the predicted asymptotic regime to confidently

estimate the value of these constants. Barring unexpected changes in the behaviour of the

optimal bounds at larger Grashoff numbers and ignoring logarithmic corrections—which

would be difficult to identify even if the data spanned a much larger range of Gr—this ob-

servation has two implications. First, the analytical bounds proven by Hagstrom & Doering

(2014) using piecewise-linear background fields capture the asymptotic scaling of the opti-

mal bounds available within their bounding framework. This may not come as a surprise

given that the same is true for velocity-driven plane Couette flow (see, for example, Plas-

ting & Kerswell, 2003), and that this flow is very closely related to the stress-driven shear

flows studied here. Second, constant Cε means that the dissipation becomes independent

of the fluid’s viscosity in the limit of infinite Gr, in accordance with Kolmogorov’s theory
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of turbulence (Pope, 2000, chapter 6). However, it must be stressed that real flows whose

dissipation coefficient equals the bounds computed in this chapter are unlikely to exist (Tang

et al., 2004). Confirming this expectation, of course, requires a comparison with measure-

ments from experiments or numerical simulations, but unfortunately no such data seem to

be available in the literature.

It should be noted that the bounding problem formulated in section 5.2 can be improved

if, instead of subtracting 2×(5.9) from the right-hand side of (5.10) to obtain (5.11), one

subtracts an unspecified multiple a×(5.9). Optimisation over a, known in the literature as

a balance parameter, was first suggested by Nicodemus et al. (1997a) and can of course only

improve the bounds computed here with a = 2. On the other hand, the variational problem

for the optimal bounds on Cε obtained after the addition of the balance parameter is not

jointly convex in φ and a, so it cannot be solved directly using SDPs. This difficulty can

in principle be overcome by changing variables to obtain a convex problem (Chernyshenko,

2017). However, given previous experience with other flows (Nicodemus et al., 1998; Plasting

& Kerswell, 2003; Wen et al., 2013, 2015), it is expected that any improvements obtained by

tuning a in the asymptotic regime will be only quantitative, not qualitative, and therefore will

not offer additional insight as far as the scaling of the optimal bounds with Gr is concerned.

Another issue that deserves further discussion is the inability to optimise bounds at very

large Grashoff numbers. This is a current drawback of the SDP-based methods utilised in

this chapter, as one would like to be able to extract accurate scaling laws for large values of

Gr. One limiting factor is that, even though the memory and wall times required to solve the

largest SDP considered here are modest, computations at large Gr become less accurate and

prone to bad numerical conditioning. Carefully rescaling the SDP data is expected to enable

the extension of the present numerical results to larger Grashoff numbers, but unfortunately

there is no general rescaling rule to improve the conditioning of SDPs. Simply rescaling the

background field by various powers of Gr was not helpful, and devising a suitable rescaling

strategy remains a task for future research.

A second obstacle preventing computations at large Gr is that validating the solution

returned by the SDP solver can become a burden. Focussing on the two-dimensional problem

for definiteness and recalling equation (5.42), this is due to the cost of performing a number

of eigenvalue decompositions that grows at least as fast as
√
Gr to check that the LMI (5.40a)

holds for all Fourier modes up to the critical value mcr(φ̂). For example, at Gr = 105 and

with P = 35, Nchecks = 350, the eigenvalue decomposition of a 776 × 776 matrix had to

be computed 115 times for Γx = 2, and 173 times for Γx = 3 (cf. table 5.1). In these

cases, the validation step was the most time-consuming of the entire computation, and the
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situation can only be expected to worsen as Gr is raised. It may be possible to reduce wall

time if LMIs are tested by attempting a Cholesky decomposition, rather than computing

eigenvalues, but this was not tested. In addition, one could try to improve the boundmcr(φ̂)

on the largest critical wavenumber, which was derived here using only elementary estimates.

A final challenge comes from the fact that memory and time requirements of the algo-

rithms implemented in general-purpose SDP solvers such as SDPT3 become prohibitive for

problems with very large LMIs (Fukuda et al., 2000; Wen et al., 2010). This was not an is-

sue here, as computations were constrained by poor solver convergence, but, once numerical

conditioning is improved, SDPs with increasingly large LMIs will have to be solved as Gr is

raised in order to approximate the variational problem for the optimal bounds accurately.

This is especially true because the number of Fourier modes to be included in the SDP

increases due to bifurcations and, as discussed in remark 5.4, large LMIs are needed at high

wavenumbers. Therefore, limitations in the computing power available are likely to prevent

calculations at Gr well within the asymptotic regime (say, Gr ∼ 1010).

Fortunately, addressing the challenges posed by large SDPs is the subject of a very ac-

tive field of research, and a growing number of options are becoming available to try and

combat the increase in computational cost at high Gr. One possibility is to utilise first-

order algorithms to solve a large SDP either directly (Wen et al., 2010; O’Donoghue et al.,

2016), or by considering a low-rank reformulation of its Lagrangian (Burer & Monteiro,

2003, 2005; Burer & Choi, 2006). Such algorithms have a low memory footprint and are

effective if solutions of moderate accuracy are required, but convergence to high-accuracy

is often slow. Another strategy is to exploit sparsity to decompose large LMIs into a set

of smaller constraints, which can be handled more efficiently by existing software pack-

ages (Fukuda et al., 2000; Nakata et al., 2003; Kim et al., 2011; Sun et al., 2014; Pakazad

et al., 2017; see also section 2.6). This approach seems promising because, as illustrated

in figures 5.10(a,c), the LMIs corresponding to the Fourier-transformed spectral constraints

in (5.41) and (5.53) are sparse by virtue of the orthogonality of the Legendre polynomials

used in their formulation.5 On the other hand, the sparsity patterns are not chordal, and

performing so-called chordal extensions based on a symbolic Cholesky decomposition with

approximate-minimum-degree reordering (Fukuda et al., 2000) leads to consideration of the

denser matrices shown in figures 5.10(b,d). A decomposition of the chordal-extended LMIs

was attempted with the MATLAB package SparseCoLO (Fujisawa et al., 2009), but resulted
5It should be noticed that if polynomial expansions are used to replace each Fourier-transformed spectral

constraint with an LMI, then expansions in the Legendre basis are the best choice as far as sparsity is
concerned. In fact, the entries of each LMI are obtained by integrating products of polynomials in the basis,
and if these are not orthogonal with respect to the usual Lebesgue inner product, one generally obtains a
dense LMI.
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(a) (b)

(c) (d)

Figure 5.10: (a) Sparsity pattern of the LMIs corresponding to the Fourier-transformed
spectral constraints in (5.41). (b) Chordal extension of the matrix sparsity pattern shown
in panel (a). (c) Sparsity pattern of the LMIs corresponding to the Fourier-transformed
spectral constraints in (5.53). (d) Chordal extension of the matrix sparsity pattern shown
in panel (c). The sparsity patterns in panels (a) and (c) were obtained with QUINOPT for
P = 5 and N = 25, and their chordal extensions were obtained with a symbolic Cholesky

decomposition with approximate-minimum-degree reordering.

in minor performance improvements. These observations motivate the search for alternative

ways to replace spectral constraints with LMIs, not based on polynomial expansions, such

that chordal decomposition methods can be applied effectively. The next chapter, which fo-

cusses on optimising background fields for Bénard–Marangoni convection at infinite Prandtl

number, takes a first step in this direction.
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Chapter 6

Bounds on heat transfer for
Bénard–Marangoni convection at
infinite Prandtl number†

Bénard–Marangoni convection describes the motion of a layer of fluid driven by shear

stresses due to gradients in surface tension at the interface between the fluid and its sur-

roundings. This type of convection arises in a variety of industrial processes, including

drying of thin polymer films (Yiantsios et al., 2015), fusion welding (DebRoy & David,

1995), laser cladding (Kumar & Roy, 2009), and the growth of single-crystal semiconduc-

tors (Lappa, 2010, chapter 3 and references therein). It has also been observed in distillation

columns (Zuiderweg & Harmens, 1958; Patberg et al., 1983) and in differentially heated fluids

in microgravity environments, where buoyancy effects are negligible (Lappa, 2010, chapter

2). In addition to these applications, Bénard–Marangoni convection has recently received

increasing attention as a paradigm for shear-driven turbulent transport processes (Boeck &

Thess, 1998, 2001; Hagstrom & Doering, 2010), and can be considered the analogue of the

stress-driven shear flows studied in chapter 5 in the context of convective flows.

In spite of its relevance, the dynamics and heat transfer properties of Bénard–Marangoni

convection have been studied far less than those of its buoyancy-driven counterpart, Rayleigh–

Bénard convection. One fundamental question that remains largely unanswered is how the

net vertical heat transfer across the layer, described by the Nusselt number Nu, depends on

the external forcing, measured by the Marangoni number Ma. A phenomenological bound-

ary layer scaling analysis put forward by Pumir & Blumenfeld (1996) predicts a transition

from Nu ∼ Ma1/4 to Nu ∼ Ma1/3 as laminar convection rolls are replaced by turbulent

convection, with prefactors that depend on the Prandtl number Pr—the ratio of the fluid’s
†The material presented in this chapter has been published in:

Fantuzzi, G., Pershin, A. and Wynn, A. (2016). Bounds on heat transfer for Bénard–Marangoni
convection at infinite Prandtl number. Journal of Fluid Mechanics 837, 562-596. Available from:
doi:10.1017/jfm.2017.858.
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kinematic viscosity and its thermal diffusivity. Two-dimensional direct numerical simula-

tions (DNSs) at low Pr and large Ma (Boeck & Thess, 1998; Boeck, 2005) confirm the 1/3

scaling exponent for the turbulent regime when free-slip conditions are imposed on the veloc-

ity field, but Nu ∼ Ma1/5 is observed in the no-slip case. Moreover, further DNSs by Boeck

& Thess (2001) indicate that Bénard–Marangoni convection at high Prandtl number may

not be turbulent even when Ma is 104 times the value at which convection first appears.

Assuming that the observed stationary convection rolls remain stable as Ma is raised when

Pr is infinite, the same authors predict that Nu ∼ Ma2/9 in this limit.

Available experimental data (see Schatz & Neitzel, 2001; Eckert & Thess, 2006, and

references therein) do not reach the highly nonlinear regime, where these scaling laws are

thought to apply. As discussed in chapter 1, an alternative approach to confirm or disprove

the phenomenological models is to derive rigorous bounds on Nu as a function of Ma directly

from the governing equations using the background method. For convection problems, a

decomposition of the temperature field into the sum of a steady background temperature

field τ and a time-dependent fluctuation θ can be utilised to bound Nu as a function of

τ alone, provided that a certain spectral constraint holds for all admissible θ. As with all

applications of the background method, the problem that results is variational in nature:

optimise the bound on Nu over all background fields that satisfy the spectral constraint.

The background method has been applied extensively to the Rayleigh–Bénard problem in

a variety of configurations (see, for example, Doering & Constantin, 1996; Otero et al., 2002;

Doering et al., 2006; Wittenberg & Gao, 2010; Goluskin & Doering, 2016; more references

can be found in chapter 1). On the other hand, the only result for Bénard–Marangoni

convection is due to Hagstrom & Doering (2010), who used a monotonically decreasing,

piecewise-linear background temperature field to prove Nu ≤ 0.841×Ma1/2 at finite Prandtl

number, while Nu ≤ 0.838×Ma2/7 in the infinite-Pr limit.

This chapter investigates whether Hagstrom & Doering’s bound for Bénard–Marangoni

convection at infinite Prandtl number can be lowered, reducing the gap with the DNS re-

sults and phenomenological predictions by Boeck & Thess (2001). The infinite-Pr limit is

an attractive model for high-Prandtl-number fluids, such as the silicone oils used in exper-

iments (de Bruyn et al., 1996) or Earth’s mantle (Jones, 1977), because it gives accurate

quantitative predictions whilst simplifying the governing equations (Boeck & Thess, 2001).

Precisely, when Pr = ∞ the inertial term in the momentum equation drops out and, as a

result, the velocity field can be “slaved” to the temperature field, which remains the only

dynamical variable in the problem (see Hagstrom & Doering, 2010 or section 6.1 below).
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The primary aim of this chapter is to determine the best possible upper bound on Nu

when the background method is applied to the temperature field. To this end, Hagstrom &

Doering’s background method analysis will be revisited, leading to a new upper-bounding

variational principle for the Nusselt number that includes two balance parameters (Nicode-

mus et al., 1997a). One of these balance parameters can be optimised analytically, while the

remaining one and the background temperature field can be combined to formulate a con-

vex bounding problem in terms of a scaled background profile, which can be optimised via

semidefinite programming. For small-to-medium Marangoni numbers, say Ma . 106, this

can be done efficiently using QUINOPT and the Legendre expansion methods described in

chapter 4. However, in an attempt to resolve some of the computational issues discussed

in section 5.5, in this chapter SDPs will be formulated with a different approach, based

on piecewise-linear (rather than polynomial) expansions. Doing so makes the computation

feasible for Marangoni numbers up to Ma = 109, which is sufficiently large to conjecture

that the optimal bounds take the asymptotic form Nu . Ma2/7(lnMa)−1/2, meaning that

Hagstrom & Doering’s power-law bound is only logarithmically failing.

The second aim of this chapter is to identify which features of the optimal scaled

background temperature field are key to lowering the bound on Nu. For instance, non-

monotonicity plays an important role in the background method analysis for Rayleigh–

Bénard convection at infinite Pr (Plasting & Ierley, 2005; Doering et al., 2006), and it is

natural to ask if the same is true for the Bénard–Marangoni problem. Another important

issue is whether one can expect to improve Hagstrom & Doering’s bound using a relatively

simple background field, which is amenable to rigorous mathematical analysis. Answers to

these questions come from the minimisation of the bound on Nu over two restricted families

of scaled background fields: those that decrease monotonically, and those constrained by

convexity. Observations based on these additional numerical results are supported by analy-

sis of the variational principle for the bound, and suggest a possible way to prove rigorously

the conjectured logarithmic improvement on Hagstrom & Doering’s power-law bound.

The rest of this chapter is organised in the following way. Section 6.1 describes Pear-

son’s model (Pearson, 1958) for Bénard–Marangoni convection at infinite Prandtl number.

The background method with balance parameters is used in section 6.2 to derive an upper-

bounding principle for Nu, which is compared to that originally formulated by Hagstrom

& Doering (2010) in section 6.3. Section 6.4 is devoted to the numerical optimisation of

the background field, and the results are discussed in section 6.5 with the help of addi-

tional analysis. Challenges for computations in the asymptotic regime are commented on in

section 6.6, while section 6.7 summarises the main findings and offers concluding remarks.
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6.1 Pearson’s model

Consider a two-dimensional layer of incompressible fluid of depth h, density ρ, kinematic

viscosity ν, thermal diffusivity κ and thermal conductivity λ (all results obtained in this

chapter with a two-dimensional model may be extended to three dimensions as described

by Hagstrom & Doering, 2010). The fluid is heated from below at constant temperature,

and cooled at the surface with a fixed heat flux q. The problem is made non-dimensional

using h as the length unit, h2/κ as the time unit, and qh/λ as the temperature unit.

When the Prandtl number Pr = ν/κ is infinite, Pearson’s equations (Pearson, 1958) reduce

to (Hagstrom & Doering, 2010)

∇p = ∇2u, (6.1a)

∂tT + u · ∇T = ∇2T, (6.1b)

∇ · u = 0, (6.1c)

where u(x, z, t) = u(x, z, t)e1+w(x, z, t)e3 is the fluid’s velocity, p(x, z, t) is the pressure, and

T (x, z, t) is the temperature. All variables are assumed to be 2π-periodic in the horizontal

direction, meaning along the x axis, and satisfy the vertical boundary conditions (BCs)

u|z=0 = 0, w|z=1 = 0, T |z=0 = 0, ∂zT |z=1 = −1. (6.2)

The fluid is driven at the top boundary by surface tension forces due to local temperature

gradients, which induce motion in the bulk of the layer through the action of viscosity.

Mathematically, the situation is described by the additional BC

[∂zu+ Ma ∂xT ]z=1 = 0. (6.3)

The Marangoni number Ma = γqh2/(λρνκ), where γ is the negative of the derivative of the

surface tension with respect to the fluid’s temperature, describes the ratio of surface tension

to viscous forces, and is the governing non-dimensional parameter of the flow.

The conductive state u(x, z, t) = 0, p = constant, T (x, z, t) = −z is asymptotically

stable when Ma ≤ 66.84 (Fantuzzi & Wynn, 2017), while for Ma ≥ 79.61 it is linearly

unstable (Pearson, 1958) and convection sets in (Boeck & Thess, 1998, 2001). Taking the

divergence of (6.1a) and using (6.1c) gives ∇2p = 0, so taking the Laplacian of (6.1a) yields

∇4u = 0. Thus, each component of the ensuing convective velocity is bi-harmonic and can

be determined as a linear function of the temperature, which forces the velocity through
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Figure 6.1: Plot of the function fk(z) for k = 1 ( ), k = 3 ( ), k = 10 ( ), and
k = 100 ( ).

the BC (6.3). In particular the horizontal Fourier coefficients ŵk(z), k ∈ Z, of the vertical

velocity w are linear functions of the horizontal Fourier coefficients T̂k(z) of the temperature.

One finds (Hagstrom & Doering, 2010)

ŵk(z) = −Ma fk(z) T̂k(1), k ∈ Z, (6.4)

where f0(z) = 0 (so ŵ0 = 0 and w has zero horizontal mean), and

fk(z) =
k sinh k [kz cosh(kz)− sinh(kz) + (1− k coth k) z sinh(kz)]

sinh(2k)− 2k
, k ∈ Z {0}. (6.5)

Note that the function fk satisfies fk(z) ≤ 0 for z ∈ [0, 1], fk(0) = 0 = fk(1), and fk(z)→ 0

pointwise for all z ∈ (0, 1) as k → ∞ (see figure 6.1; note that the corresponding figure in

Hagstrom & Doering’s original paper is incorrect: they plot the negative of fk).

Convection enhances the vertical heat transport, and since the BC ∂zT |z=1 = −1 pre-

scribes the heat flux through the top surface, the net effect is a reduction in the temperature

drop across the layer. The key parameter to quantify this process is the Nusselt number

Nu := − 1

T (1)
=

1

〈|∇T |2〉
, (6.6)

where |∇T |2 = (∂xT )2 + (∂zT )2. The first equality in (6.6) defines the Nusselt number,

while the second one can be proven by integrating by parts the volume and infinite-time

average of T×(6.1b), using (6.1c) and the BCs (see Hagstrom & Doering, 2010).

6.2 Upper-bounding principle for the Nusselt number

The analysis begins by writing T (x, z, t) = τ(z) + θ(x, z, t), where the background field τ(z)

satisfies

τ(0) = 0, τ ′(1) = −1, (6.7)
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while the perturbation θ(x, z, t) is periodic in the horizontal direction and satisfies

θ|z=0 = 0, ∂zθ|z=1 = 0. (6.8)

Substituting this decomposition into (6.1b) yields

∂tθ + u · ∇θ = ∇2θ + τ ′′ − w τ ′. (6.9)

Averaging θ×(6.9) over the volume and infinite time, followed by appropriate integrations

by parts using (6.1c) and the BCs for θ in (6.8), shows that

〈
|∇θ|2 + τ ′ ∂zθ + τ ′w θ

〉
+ θ(1) = 0. (6.10)

Moreover, substituting the background field decomposition into (6.6) gives

Nu−1 + θ(1) + τ(1) = 0, (6.11a)

Nu−1 −
〈
|∇θ|2 + 2 τ ′ ∂zθ

〉
−
∥∥τ ′∥∥2

2
= 0. (6.11b)

After taking the linear combination α×(6.10)−β×(6.11a)+(6.11b) for scalar balance pa-

rameters α, β 6= 1 to be determined, using (6.8) to write θ(1) = 〈∂zθ〉, and rearranging one

arrives at
1

Nu
= −‖τ

′‖22 + β τ(1)

β − 1
+
α− 1

β − 1
Q{θ, w}, (6.12)

where

Q{θ, w} =

〈
|∇θ|2 +

α

α− 1
τ ′w θ +

(
α− 2

α− 1
τ ′ +

α− β
α− 1

)
∂zθ

〉
. (6.13)

Then, provided that the balance parameters are chosen to satisfy

α− 1

β − 1
> 0, (6.14)

one has
1

Nu
≥ −‖τ

′‖22 + β τ(1)

β − 1
+
α− 1

β − 1
inf
θ, w
Q{θ, w}, (6.15)

where the infimum is taken over all horizontally periodic fields θ that satisfy the BCs in (6.8)

and over all velocity fields w with horizontal Fourier coefficients given by (6.4). The key

simplification is that θ is not required to satisfy the nonlinear evolution equation (6.9). As

a result, it suffices to seek the infimum of Q{θ, w} over time-independent θ (and hence w),

and therefore interpret the average 〈·〉 in (6.13) as a volume average only.
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To compute the infimum in (6.15) one can substitute the horizontal Fourier expansions

for θ and w into (6.13). Noticing that θ̂k = T̂k for k 6= 0, because the background field τ is

independent of x, and that f0(z) = 0 for all z ∈ [0, 1] in (6.4), so ŵ0 = −Ma f0(z) T̂0(1) =

0 = −Ma f0(z) θ̂0(1), the Fourier coefficients ŵk can be expressed in terms of θ̂k as

ŵk(z) = −Ma fk(z) θ̂k(1), k ∈ Z. (6.16)

Moreover, θ̂−k = θ̂∗k (where ∗ denotes complex conjugation) because the Fourier modes must

combine into the real-valued temperature perturbation θ. Then, the quantity Q{θ, w} can
be expanded as

Q{θ, w} = Q0{θ̂0}+ 2
∑
k≥1

Qk{θ̂k} (6.17)

where

Q0{θ̂0} :=

∫ 1

0

∣∣∣θ̂′0(z)
∣∣∣2 +

(
α− 2

α− 1
τ ′(z) +

α− β
α− 1

)
θ̂′0(z) dz, (6.18)

while, since Fourier modes with k ≥ 1 do not contribute to the last term in (6.13),

Qk{θ̂k} :=

∫ 1

0

∣∣∣θ̂′k(z)∣∣∣2 + k2
∣∣∣θ̂k(z)∣∣∣2 − αMa

α− 1
τ ′(z) fk(z) Re

[
θ̂k(1) θ̂∗k(z)

]
dz. (6.19)

Now, the infimum of Q{θ, w} must be negative semidefinite since Q{0, 0} = 0, and it is

finite only if each functional Qk, k ≥ 0 is individually lower bounded because among all

perturbations θ, w are those with only one horizontal wavenumber. Thus,

inf
θ, w
Q{θ, w} = inf

k
inf
θ̂k

Qk{θ̂k}, (6.20)

where, in light of (6.8), the infimum on the right-hand side is sought over all complex-valued

functions θ̂k(z) that satisfy θ̂k(0) = 0 = θ̂′k(1). In appendix A.7 it is shown that

inf
θ̂0

Q0{θ̂0} = −‖(α− 2)τ ′ + α− β‖22
4(α− 1)2

. (6.21)

When k ≥ 1, instead, Qk is a homogeneous functional and so if it is lower bounded, then its

infimum must be exactly zero. The bound (6.15) is useful only if the infimum of Q{θ, w}
is finite, so one requires that Qk{θ̂k} is non-negative (which is equivalent to requiring that

the infimum is zero) for all values k and obtains

inf
θ, w
Q{θ, w} = −‖(α− 2)τ ′ + α− β‖22

4(α− 1)2
. (6.22)
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Substituting this into (6.15), using the BC τ(0) = 0 from (6.7) to write

τ(1) =

∫ 1

0
τ ′(z) dz, (6.23)

and simplifying the resulting expression yields

1

Nu
≥ −4α(β − 1)τ(1) + ‖ατ ′ + α− β‖22

4(α− 1)(β − 1)
=: B{τ, α, β}. (6.24)

This bound is valid if (6.14) holds, and if the background field τ is chosen to make the

functional Qk{θ̂k} in (6.19) positive semidefinite for all (integer) wavenumbers k ≥ 1. The

latter set of constraints can be combined into the single condition that

〈
|∇θ|2 +

α

α− 1
τ ′w θ

〉
≥ 0 (6.25)

for all perturbations θ, w—called admissible in the following—with zero horizontal mean and

that satisfy (6.8) and (6.16). Inequality (6.25), understood over all admissible perturbations,

is the expected spectral constraint on the background field τ .

Putting together all observations made so far, one concludes that the best bound on Nu

available within this framework is

sup
τ(z), α, β

B{τ, α, β} = −4α(β − 1)τ(1) + ‖ατ ′ + α− β‖22
4(α− 1)(β − 1)

s.t.
〈
|∇θ|2 +

α

α− 1
τ ′w θ

〉
≥ 0 ∀ admissible θ, w,

α− 1

β − 1
> 0,

τ(0) = 0,

τ ′(1) = −1.

(6.26)

Note that the strict inequality (α− 1)/(β − 1) > 0 may prevent the existence of an optimal

triple (τ, α, β) that achieves the optimal value of this problem.

Remark 6.1. Problem (6.26) is interesting because the Euler–Lagrange equations that should

characterise the optimal solution do not appear to be solvable. To see this, assume for

simplicity that α and β are fixed and satisfy (6.14). Recall also that the spectral constraint

requires Qk{θ̂k} ≥ 0 for all θ̂k satisfying θ̂k(0) = 0 = θ̂′k(1) and all wavenumbers k. To check

these conditions it suffices to consider real-valued functions θ̂k, since the real and imaginary

parts of θ̂k give identical and independent contributions to Qk{θ̂k}. Then, the Lagrangian
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of (6.26) can be written as

L{τ, θ̂k} := B{τ} −
∑
k≥1

Qk{θ̂k}, (6.27)

where the dependence on α and β has been dropped since they have been fixed for the

purposes of this argument. The variation of L with respect to θ̂k in the direction of a

function h satisfying h(0) = 0 = h′(1) is

δL
δθ̂k

=

∫ 1

0

[
θ̂′′k(z)− k2θ̂k(z) +

α

α− 1
τ ′(z) fk(z) θ̂k(1)

]
h(z) dz

+
α

α− 1
h(1)

∫ 1

0
τ ′(z) fk(z) θ̂k(z) dz. (6.28)

This variation must vanish for all h at the saddle point of the Lagrangian corresponding to

the optimal solution of (6.26), so the optimal θ̂k must satisfy the differential equation

θ̂′′k(z)− k2θ̂k(z) +
α

α− 1
τ ′(z) fk(z) θ̂k(1) = 0, (6.29)

plus the boundary and integral conditions

θ̂k(0) = 0, θ̂′k(1) = 0,

∫ 1

0
τ ′(z) fk(z) θ̂k(z) dz = 0. (6.30)

This problem is over-constrained and a function θ̂k satisfying both (6.29) and (6.30) does

not generally exist, except possibly for special combinations of τ and k. With all proba-

bility, therefore, the Euler–Lagrange equations for (6.26) admit no solution, and it is un-

clear whether numerical algorithms that rely on them, such as the time-marching algorithm

of Wen et al. (2013, 2015), can still be employed to compute the optimal bound on Nu.

6.2.1 Optimisation over β

The fact that the spectral constraint is independent of β makes it possible to find the optimal

β analytically. After setting to zero the first derivative of the right-hand side of (6.24) with

respect to β, and using (6.23) to rearrange, one finds two stationary values,

β+ = 1 +
∥∥α τ ′ + α− 1

∥∥
2
, β− = 1−

∥∥α τ ′ + α− 1
∥∥

2
. (6.31)

Inspection of the second derivative of the right-hand side of (6.24) with respect to β reveals

that when α is constrained by (6.14) both β+ and β− correspond to a local maximum.

Determining the optimal β therefore requires comparing the values of such local maxima.
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When β = β+, let α = λ/(λ − 1) with λ > 1 to satisfy (6.14). Using (6.23), one can

rewrite (6.24) as
1

Nu
≥ 1− ‖λ τ ′ + 1‖2 − λ τ(1)

2
. (6.32)

The spectral constraint (6.25) can also be expressed in terms of λ as

〈|∇θ|2 + λ τ ′w θ〉 ≥ 0 ∀ admissible θ, w. (6.33)

Upon introducing the scaled background field ρ(z) := λ τ(z) = α/(α− 1) τ(z), subject to a

suitably scaled version of the BCs in (6.7), the optimal bound on Nu corresponding to the

choice β = β+ is found by solving the variational problem

sup
ρ(z), λ

1− ‖ρ′ + 1‖2 − ρ(1)

2

s.t. 〈|∇θ|2 + ρ′w θ〉 ≥ 0 ∀ admissible θ, w,

ρ(0) = 0,

ρ′(1) = −λ,

λ > 1.

(6.34)

When β = β−, instead, let α = λ/(λ − 1) with λ < 1 to satisfy (6.14). Similar steps as

above show that, when setting β = β− in (6.24), the best possible bound on Nu is given by

the solution of an optimisation problem that differs from (6.34) only in the constraint for λ,

sup
ρ(z), λ

1− ‖ρ′ + 1‖2 − ρ(1)

2
,

s.t. 〈|∇θ|2 + ρ′w θ〉 ≥ 0 ∀ admissible θ, w,

ρ(0) = 0,

ρ′(1) = −λ,

λ < 1.

(6.35)

The key observation at this stage is that the suprema in (6.34) and (6.35) coincide despite

the different constraint on λ, and furthermore they are equal to the optimal value of

max
ρ(z)

1− ‖ρ′ + 1‖2 − ρ(1)

2
,

s.t. 〈|∇θ|2 + ρ′w θ〉 ≥ 0 ∀ admissible θ, w,

ρ(0) = 0.

(6.36)
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In fact, for any value of λ one can construct a feasible ρ(z) for either (6.34) or (6.35) that

approximates the solution of (6.36) arbitrarily accurately: simply let ρ0(z) be ε-suboptimal

and strictly feasible for (6.36), and choose ρ′(z) = ρ′0(z) in (6.34) or (6.35) except for an

infinitesimally thin layer near z = 1, where ρ′(z) = −λ. A rigorous proof is not given for

brevity, but note that a similar argument was also used by Goluskin (2015) in the context

of internally heated convection. The conclusion of the argument is quite satisfactory: the

bound on Nu is independent of whether one sets β = β+ or β = β− in (6.24).

6.2.2 An explicit value for the optimal β

The variational principle (6.36) has been obtained by optimising the balance parameter β as

a function of the other balance parameter, α, and the background field τ(z). Interestingly,

the optimality conditions for the solution ρ?(z) of (6.36) allow for the derivation of a precise

numerical value for the optimal β even though the optimal α and τ(z) are unknown. To

show this, introduce a variable s such that ‖ρ′ + 1‖2 ≤ s and rewrite (6.36) as

max
ρ(z),s

1− s− ρ(1),

s.t. 〈|∇θ|2 + ρ′w θ〉 ≥ 0 ∀ admissible θ, w,

ρ(0) = 0,∥∥ρ′ + 1
∥∥

2
≤ s.

(6.37)

The feasible set of this problem is convex, so the linear objective function is maximised on

the constraint boundary. Precisely, since for any ρ(z) one can set s = ‖ρ′ + 1‖2, the optimal

bound is attained on the boundary of the feasible set of the spectral constraint, i.e., when

inf
θ,w 6=0

〈|∇θ|2 + ρ′w θ〉 = 0. (6.38)

Given that the spectral constraint is homogeneous in θ and w, it suffices to restrict the

attention to admissible θ and w satisfying some normalisation condition N{θ, w} = 0 that

excludes the zero fields. The optimal scaled background field ρ?(z) and the optimal value

s? are then those that maximise the Lagrangian functional

L{ρ, s, θ, w, ζ, η, µ} := 1− s− ρ(1) + ζ 〈|∇θ|2 + ρ′w θ〉

+ η
(
s2 −

∥∥ρ′ + 1
∥∥2

2

)
+ µN{θ, w}, (6.39)

where ζ, η and µ are scalar Lagrange multipliers.
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Setting to zero the first variation of L with respect to ρ(z) shows that the optimal scaled

background field ρ?(z) must satisfy the natural boundary condition1

1 + 2 η + 2 η ρ′?(1) = 0. (6.40)

Moreover, by setting to zero the derivatives of L with respect to both s and η and eliminating

s one obtains

2 η
∥∥ρ′? + 1

∥∥
2
− 1 = 0. (6.41)

At this point, note that if ρ′(z) = −1 the spectral constraint in (6.37) reduces to the

“energy” stability condition of the conduction solution (Fantuzzi & Wynn, 2017). This

cannot be satisfied in the convective regime, so ‖ρ′? + 1‖2 6= 0, and using (6.41) to eliminate

η from (6.40) yields

1 +
∥∥ρ′? + 1

∥∥
2

+ ρ′?(1) = 0. (6.42)

This implies that −ρ′?(1) > 1, so ρ?(z) is also the optimal solution of (6.34) with λ = −ρ′?(1).

Recollecting the re-parametrisation α = λ/(λ− 1) one concludes that the optimal value of

the balance parameter α, denoted α?, is given by

α? =
ρ′?(1)

ρ′?(1) + 1
. (6.43)

Finally, since (6.34) was obtained by choosing β = β+ in (6.31), and since α?τ ′?(z)/(α?−1) =

ρ′?(z) by definition of the scaled background field, equations (6.43) and (6.42) reveal that

the optimal value of the balance parameter β is

β? = 1 + (α? − 1)
∥∥ρ′? + 1

∥∥
2

=
ρ′?(1) + 1− ‖ρ′? + 1‖2

ρ′?(1) + 1
= 2. (6.44)

6.3 Relation to Hagstrom & Doering’s variational problem

The bounding principle formulated by Hagstrom & Doering (2010) can be recovered upon

setting α = 2 and β = 2 in (6.26). These values clearly satisfy (6.14), and the choice β = 2

is optimal. The variational problem for the optimal background field becomes

max
τ(z)

−
∥∥τ ′∥∥2

2
− 2 τ(1),

s.t. 〈|∇θ|2 + 2 τ ′w θ〉 ≥ 0 ∀ admissible θ, w,

τ(0) = 0.

(6.45)

1Of course, ρ?(z)must also satisfy an Euler–Lagrange differential equation, but this will not be important.
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Strictly speaking one should also enforce the boundary condition τ ′(1) = −1, but this does

not limit the choice of τ for the same reasons discussed at the end of section 6.2.1.

To bring (6.45) in contact with the variational problem (6.36) for the optimal scaled

background field, let ϕ := 2τ and use the BC ϕ(0) = 0 to rewrite (6.45) as

max
ϕ(z)

1− ‖ϕ′ + 1‖22 − 2ϕ(1)

4
,

s.t. 〈|∇θ|2 + ϕ′w θ〉 ≥ 0 ∀ admissible θ, w,

ϕ(0) = 0.

(6.46)

It is clear that (6.36) and (6.46) have the same feasible set. It is also not difficult to see

that the optimal value of (6.36) is at least as large as that of (6.46), because

1− ‖ϕ′ + 1‖2 − ϕ(1)

2
− 1− ‖ϕ′ + 1‖22 − 2ϕ(1)

4
=

(
1− ‖ϕ′ + 1‖2

2

)2

≥ 0. (6.47)

In particular, using (6.36) it is almost immediate to obtain a 4.2% improvement for the

prefactor of Hagstrom & Doering’s bound, Nu ≤ 0.838Ma2/7, at least in the limit of infinite

Marangoni number. Precisely, it is proven in appendix A.8 that

Nu ≤ 0.803×Ma2/7 as Ma→∞. (6.48)

On the other hand, while the choice β = 2 is optimal (cf. section 6.2.2), it is not clear

whether optimising α implicitly by solving (6.36) improves the asymptotic behaviour of the

optimal bound on Nu compared to fixing α = 2 a priori. What can be shown is that if the

optimal bound obtained without optimising α has the asymptotic form Nu . Maγ1(lnMa)γ2

for some constants γ1 > 0 and γ2 ∈ R, then the bound obtained when α is optimised scales

in the same way. To see this, fix β = 2 and re-parametrise α = λ/(λ − 1), with λ > 1 to

satisfy (6.14). Optimisation over α is the same as optimisation over λ, and the bound on

Nu in (6.24) can be written in terms of λ as

1

Nu
≥ 1− λ2

4(λ− 1)

∥∥τ ′ + 1
∥∥2

2
. (6.49)

From this point onwards, the analysis is similar to that of the infinite-Pr Rayleigh–Bénard

problem (Plasting, 2004, chapter 6). First, let w = Ma w̃ and define the scaled Marangoni

number M = λMa to rewrite the spectral constraint (6.33) as

〈
|∇θ|2 +M τ ′ w̃ θ

〉
≥ 0 ∀ admissible θ, w̃. (6.50)
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Upon rescaling w = Ma w̃ the Marangoni number drops out of equation (6.16), so w̃ is a

(linear) function of θ only and the admissible test functions in (6.50) are independent of M .

Then, consider the family of background fields τM , parametrised by the scaled Marangoni

number M , that maximises the right-hand side of (6.49) for a fixed value λ > 1. In other

words, assume that τM solves the variational problem

min
τ(z)

∥∥τ ′ + 1
∥∥2

2

s.t.
〈
|∇θ|2 +M τ ′ w̃ θ

〉
≥ 0 ∀ admissible θ, w̃.

(6.51)

Moreover, write ∥∥τ ′M + 1
∥∥2

2
= 1− σ(M) (6.52)

for an appropriate function σ(M). Using (6.52) and recalling that M = λMa, the optimal

bound on Nu becomes
1

Nu
≥ λ2 σ(λMa)− (λ− 2)2

4(λ− 1)
. (6.53)

It is clear that, for any fixed λ > 1, the asymptotic scaling of the function σ(M) at large M

determines the asymptotic scaling of the optimal bound on Nu with Ma, and one obtains a

power-law bound with logarithmic corrections if σ(M) has the asymptotic form

σ(M) = cM−γ1 (lnM)−γ2 , (6.54)

where γ1 > 0, γ2 ∈ R and c > 0 are given constants.

Assume now that the function σ obtained by solving (6.51) as a function of M has the

asymptotic form (6.54). In this case, the bound on Nu in (6.53) at asymptotically large Ma

can be maximised over λ > 1 by requiring that

d

dλ

[
c λ2−γ1 Ma−γ1 (lnλMa)−γ2 − (λ− 2)2

4(λ− 1)

]
= 0. (6.55)

Straightforward algebra shows that the optimal λ > 1, denoted λ?, must satisfy

λ?−1 =
1− c λ−γ1? Ma−γ1 [ln(λ?Ma)]−γ2

1 + c(γ1 − 1)λ−γ1? Ma−γ1 [ln(λ?Ma)]−γ2 + γ2 c λ
−γ1
? Ma−γ1 [ln(λ?Ma)]−γ2−1 . (6.56)

An exact formula for λ? is not available, but an approximation can be found using asymptotic

methods. The details can be found in appendix A.9 and the result is

λ? = 2− c γ1 2−γ1 Ma−γ1(lnMa)−γ2 + higher-order terms. (6.57)
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This proves that, subject to the scaling hypothesis (6.54), the optimal λ tends to a constant

as Ma→∞, so optimising the balance parameters does not influence the asymptotic scaling

of the bound on Nu with Ma. One also concludes that the optimal balance parameter α =

λ/(λ−1) tends to 2 asMa grows to infinity, meaning that the choice α = 2 made by Hagstrom

& Doering (2010)—presumably motivated only by the convenience of eliminating the linear

terms when combining (6.10), (6.11a), and (6.11b) in the background method analysis—is

optimal as far as the leading-order asymptotic behaviour of the bound on Nu is concerned.

Provided that (6.54) holds, therefore, optimising the balance parameters not only does not

improve the asymptotic scaling of the optimal bound, but also does not lower the optimal

prefactor available to Hagstrom & Doering’s original upper-bounding principle.

6.4 Optimal bounds

The variational problem (6.36) for the optimal scaled background field ρ can be solved

numerically using SDPs. To show this, it is convenient to change variables once more and

consider a function φ such that

ρ(z) :=

∫ z

0
φ(ξ)− 1 dξ, (6.58)

so the boundary condition ρ(0) = 0 is satisfied. Since ρ′(z) = φ(z)−1, one can rewrite (6.36)

in terms of φ as

max
φ(z)

1− 1

2
‖φ‖2 −

1

2

∫ 1

0
φ(z) dz,

s.t. 〈|∇θ|2 + (φ− 1)w θ〉 ≥ 0 ∀ admissible θ, w.
(6.59)

Moreover, to employ semidefinite programming one needs a linear objective. Upon intro-

ducing a non-negative variable s such that ‖φ‖2 ≤ s and dropping both the constant 1 and

a factor of 1/2 from the objective function, it is not difficult to see that the optimal solution

of (6.59) is the same as that of the convex problem

max
φ(z), s

− s−
∫ 1

0
φ(z) dz,

s.t. 〈|∇θ|2 + (φ− 1)w θ〉 ≥ 0 ∀ admissible θ, w,

‖φ‖2 ≤ s.

(6.60)

As anticipated at the beginning of this chapter, the bound on Nu will also be optimised

over the restricted classes of monotonically decreasing and convex (scaled) background fields,

145



Section 6.4. Optimal bounds

i.e. such that ρ′(z) ≤ 0 and ρ′′(z) ≥ 0. This is achieved by solving the convex problems

max
φ(z), s

− s−
∫ 1

0
φ(z) dz,

s.t. 〈|∇θ|2 + (φ− 1)w θ〉 ≥ 0 ∀ admissible θ, w,

‖φ‖2 ≤ s,

φ(z) ≤ 1,

(6.61)

and

max
φ(z), s

− s−
∫ 1

0
φ(z) dz,

s.t. 〈|∇θ|2 + (φ− 1)w θ〉 ≥ 0 ∀ admissible θ, w,

‖φ‖2 ≤ s,

φ′(z) ≥ 0.

(6.62)

6.4.1 Computational methodology

As in chapter 4, the derivation of SDPs that approximate (6.60)–(6.62) is based on the

observation that their constraints are the infinite-dimensional equivalent of well-known types

of constraints. It has already been pointed out many times in this thesis that the spectral

constraint is the infinite-dimensional equivalent of an LMI. The norm constraint ‖φ‖2 ≤ s,

instead, is the infinite-dimensional version of a second-order cone constraint (SOCC), the

requirement that a vector y ∈ Rn+1 and a scalar s satisfy ‖y‖ ≤ s (a more general definition

of SOCCs is possible, cf. section 2.3, but is not needed here). Finally, the pointwise

constraints φ(z) ≤ 1 and φ′(z) ≥ 0 are the infinite-dimensional equivalent of element-

wise inequalities for a vector y ∈ Rn+1 of the form Ay ≤ b, with A ∈ Rm×(n+1) and

b ∈ Rm given. Since SOCCs and linear inequalities are LMI-representable (cf. section 2.3),

problems (6.60)–(6.62) can be solved numerically using SDPs if their constraints can be

discretised into their finite-dimensional analogues.

Contrary to the approach taken in chapters 4 and 5, here the discretisation will not

be carried out by considering polynomial expansions of the background field and of the

test functions in the spectral constraint. Instead, given a set of n + 1 collocation points

0 = z0 < z1 < . . . < zn−1 < zn = 1 and denoting φi = φ(zi) for all i = 1, . . . , n,

problems (6.60)–(6.62) will be implemented using the piecewise-linear ansatz

φ(z) =
n∑
i=0

φi ψi(z), (6.63)
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z

ψi(z)

0 z1 · · · zi−1 zi zi+1 · · · zn−1 1

1

Figure 6.2: Sketch of the piecewise-linear function ψi(z).

where ψi(z) is the unique piecewise-linear function satisfying ψi(zi) = 1 and vanishing at all

other nodes (cf. figure 6.2). Similar ansatze will be introduced below to expand the spectral

constraint. Clearly, the optimal solutions of problems (6.60)–(6.62) can be approximated

with arbitrary accuracy by background fields of the restricted form (6.63).

This choice is made in order to address some of the computational issues outlined in 5.

It will be shown that working with piecewise-linear functions leads to LMIs with chordal

sparsity, for which—contrary to the LMIs encountered in chapter 5—chordal decomposition

methods are effective. Using (6.63) is also advantageous because the optimal background

fields turn out to be non-smooth when monotonicity or convexity are enforced, so polyno-

mials of extreme degree are needed to approximate them accurately.2

When φ takes the form (6.63), problems (6.60)–(6.62) become optimisation problems for

the vector of nodal values

Φ := [φ0, . . . , φn]T ∈ Rn+1. (6.64)

The constraint ‖φ‖2 ≤ s naturally reduces to a SOCC because there exists a positive

definite matrix P = RTR such that

‖φ‖2 =

∫ 1

0

n∑
i,j=0

φi φj ψi(z)ψj(z) dz

1/2

=
(
ΦTP Φ

)1/2
= ‖RΦ‖ . (6.65)

The norm constraint ‖φ‖2 ≤ s then becomes the SOCC ‖RΦ‖ ≤ s.
The spectral constraint can be reduced to a set of LMIs in a similar way, after recalling

from section 6.2 that it is equivalent to the functional Qk{θ̂k} in (6.19) being non-negative

for all integer wavenumbers k ≥ 1 and all complex-valued functions θ̂k(z) satisfying θ̂k(0) =

0 = θ̂′k(1). The real and imaginary parts of θ̂k give identical and independent contributions

to Qk{θ̂k}, so it suffices to consider real-valued functions θ̂k(z) in the space

Γ :=
{
v(z) : [0, 1]→ R,

∥∥v′∥∥2

2
+ ‖v‖22 <∞, v(0) = 0, v′(1) = 0

}
. (6.66)

2This was noticed after trying to solve problems (6.61) and (6.62) via the polynomial expansion methods
implemented in QUINOPT.
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Recalling also that variables have been changed such that

α

α− 1
τ ′(z) = ρ′(z) = φ(z)− 1, (6.67)

the spectral constraint in (6.60)–(6.62) can be replaced with the infinite set of conditions

(referred to as Fourier-transformed spectral constraints)

Qk{v}=

∫ 1

0

∣∣v′(z)∣∣2 + k2 |v(z)|2 −Ma [φ(z)− 1] fk(z) v(1) v(z) dz ≥ 0

∀v ∈ Γ, k = 1, 2, . . . . (6.68)

Estimates detailed in appendix A.10 show thatQk{v} is non-negative on Γ for a candidate

φ(z) whenever

k > kc :=

(3
√

3

128

)1/4

Ma1/2 ‖φ− 1‖1/2∞

 , (6.69)

where b·c denotes the integer part of a number. The “cutoff” wavenumber kc represents an

upper bound on the largest critical wavenumber, i.e. the largest values of k for which the

infimum of the functional Qk in (6.68) over non-zero test functions is zero.

When k ≤ kc, instead, the inequality Qk{v} ≥ 0 can be approximated by an LMI if the

test function v is represented using the piecewise-linear ansatz3

v(z) =

n∑
i=0

vi ψi(z). (6.70)

It should be understood that v0 = 0 and vn = vn−1, so the boundary conditions v(0) = 0

and v′(1) = 0 are satisfied, but these substitutions are not made explicitly in (6.70) to

simplify the exposition. Inserting (6.70) and (6.63) into Qk{v} from (6.68) yields

Qk{v} =

n∑
i,j=0

vi vj

∫ 1

0
ψi(z)

′ψj(z)′ + k2 ψi(z)ψj(z) dz

+ Ma
n∑
i=0

vn vi

∫ 1

0
ψi(z) fk(z) dz

−Ma
n∑

i,j=0

φi vn vj

∫ 1

0
ψi(z)ψj(z) fk(z) dz. (6.71)

Since v0 = 0 and vn = vn−1, the right-hand side of (6.71) is a quadratic function of the

vector v := [v1, . . . , vn−1]T, and there exists a symmetric matrix Qk(Φ) ∈ Sn−1, affine with
3For simplicity, the test function v is discretised here using the same number of collocation points as φ,

but this need not be the case.
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respect to Φ, such that Qk{v} = vTQk(Φ)v. Consequently, for each wavenumber k ≤ kc

the Fourier-transformed spectral constraint can be approximated by the LMI Qk(Φ) � 0.

Finally, the piecewise-linear approximation (6.63) turns the pointwise inequality φ(z) ≤ 1

into the n + 1 constraints φi ≤ 1, i = 0, . . . , n, written succinctly as the element-wise

vector inequality Φ ≤ 1. Similarly, the condition φ′(z) ≥ 0 becomes a set of n inequalities

φi−1 − φi ≤ 0, i = 1, . . . , n, which can be written in the vector form AΦ ≤ 0 with

A :=


1 −1

. . . . . .

1 −1

 ∈ Rn×(n+1). (6.72)

After substituting (6.63) into the objective function of (6.60) and defining

c :=

[∫ 1

0
ψ0(z) dz, . . . ,

∫ 1

0
ψn(z) dz

]T
, (6.73)

one concludes that the infinite-dimensional variational problem (6.60) is approximated by

the SDP4

max
s,Φ

− s− cTΦ

s.t. Qk(Φ) � 0, k = 1, . . . , kc,

‖RΦ‖ ≤ s.

(6.74)

Similarly, (6.61) can be approximated as

max
s,Φ

− s− cTΦ

s.t. Qk(Φ) � 0, k = 1, . . . , kc,

‖RΦ‖ ≤ s,

Φ ≤ 1,

(6.75)

while (6.62) becomes

max
s,Φ

− s− cTΦ

s.t. Qk(Φ) � 0, k = 1, . . . , kc,

‖RΦ‖ ≤ s,

AΦ ≤ 0.

(6.76)

4Problems (6.74)–(6.76) are not SDPs in standard form, but the terminology is justified because linear
inequalities and SOCCs can be recast as LMIs (cf. section 2.3 and the discussion at the end of section 2.4).

149



Section 6.4. Optimal bounds

Remark 6.2. Using (6.63) means that only lower bounds on the optimal values of (6.60)–

(6.62) can be computed, because the true optimal φ(z) is unlikely to be piecewise linear.

Moreover, assuming (6.70) enforces the Fourier-transformed spectral constraint only over

a subset of the test function space Γ, which enlarges the set of feasible functions φ(z).

Consequently, (6.74)–(6.76) estimate from above lower bounds on the true optimal values

of (6.60)–(6.62), respectively. Compared to the polynomial approximation methods de-

veloped in chapter 4, this is a disadvantage, as one cannot guarantee that the numerical

optimum bounds the exact one from above or below. Unless one aims at formulating a

computer-assisted proof, however, this is not an issue because one expects the solutions

of (6.74)–(6.76) to converge to those of (6.60)–(6.62) as the number of discretisation points

increases. If rigorous computations were needed, one could try to adapt the analysis of

section 4.4 and estimate the error between functions in Γ and their piecewise-linear approx-

imation, thereby formulating SDPs to bound the optimal value of (6.60)–(6.62) rigorously

from below. This analysis is left to future work.

Remark 6.3. A major advantage of using SDPs is that monotonicity and convexity can be

enforced in a straightforward way using LMI-representable constraints, so problems (6.60)–

(6.62) can be solved computationally with the same optimisation algorithms. One can then

interrogate the bounding principle in a systematic way to identify key properties of its

optimal solution, which may be used to progress with rigorous mathematical analysis. This

applies not only to infinite-Pr Bénard–Marangoni convection, but to any convex upper-

bounding variational problem obtained from the application of the background method.

On the contrary, optimising over monotonic or convex background fields seems considerably

more challenging if one follows the classical Euler–Lagrange variational approach: one has to

solve a set of differential equations coupled to an inequality (in fact, a differential inequality

in the convex case). However, it does not appear possible to enforce inequalities using the

traditional numerical continuation strategies (Plasting & Kerswell, 2003) or the more recent

time-marching methods (Wen et al., 2013, 2015).

6.4.2 Comments on sparsity

The piecewise-linear basis functions ψi, i = 0, . . . , n, used to discretise the function φ and

the test function v in each Fourier-transformed spectral constraint have compact support.

Moreover, the support of each ψi, i = 1, . . . , n − 1 overlaps only with that of ψi±1, while

the supports of the boundary functions φ0 and φn overlap only with those of φ1 and φn−1,

respectively. Recalling that v0 = 0 and vn = vn−1 to enforce the BCs on v, this means that
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Figure 6.3: (a) Sparsity pattern of the 9 × 9 matrix Qk(Φ) obtained with n = 10
collocation points. (b) Graph representation of the matrix sparsity pattern in panel (a).

in (6.71) v1 is coupled only to v2 and vn−1, and each vi, i = 1, . . . , n − 2 appears coupled

only to vi±1 and to vn−1. As a consequence, the matrix Qk(Φ) has a “tridiagonal arrow”

sparsity pattern, sketched in figure 6.3(a) for n = 10.

Such a sparsity pattern is chordal (cf. section 2.6) and its associated graph, shown in

figure 6.3(b) for the case n = 10, has n− 3 maximal cliques given by

Ci = {i, i+ 1, n− 1}, i = 1, . . . , n− 3. (6.77)

One can therefore apply Theorem 2.3 to replace the sparse LMI Qk(Φ) � 0 with an equiva-

lent set of n− 3 LMIs, each corresponding to the 3× 3 sub-matrix of Qk(Φ) defined by the

indices in Ci. Since the sub-matrices corresponding to consecutive cliques Ci and Ci+1 have

four common elements, three of which are independent because Qk(Φ) is symmetric, the

decomposition procedure requires the introduction of 3(n− 4) extra optimisation variables.

In practice, the cost of handling a very large number of such extra variables can offset the

benefits of splitting the original LMI. For this reason, when n is large it is convenient to per-

form a partial decomposition, wherebym consecutive maximal cliques are combined (Fukuda

et al., 2000; Nakata et al., 2003). Precisely, assume for generality that m is not a divisor of

n− 3, let p :=
⌊
n−3
m

⌋
, and define the p+ 1 sets of indices

Kj :=



jm⋃
i=(j−1)m+1

Ci, j = 1, . . . , p,

n−3⋃
i=pm+1

Ci, j = p+ 1.

(6.78)

One can check that each index set Kj , j = 1, . . . , p, has m + 2 elements, while Kp+1 has

n−1−pm elements (note that n−1−pm < m+2 by the definition of p). Decomposing the

LMI Qk(Φ) � 0 using the sets Kj instead of the maximal cliques Ci leads to an equivalent

set of p+ 1 LMIs, p of size (m+ 2)× (m+ 2) and one of size (n− 1− pm)× (n− 1− pm),

at the cost of introducing 3p extra optimisation variables.
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6.4.3 Implementation details

The SDPs (6.74)–(6.76) were implemented and solved in MATLAB using YALMIP (Löf-

berg, 2004) and SDPT3 (Toh et al., 1999; Tütüncü et al., 2003) on a PC with a 3.40 GHz

Intel R© CoreTM i7-4770 CPU and 16 GB of RAM. Each LMI Qk(Φ) � 0 was decomposed as

described in section 6.4.2 with m = 8, meaning that the largest implemented LMI had size

10×10. The Chebyshev nodes zi = [1−cos(πi/q)]/2, i = 0, . . . , q were utilised as collocation

points in the sub-interval (0.05, 0.98), while the finer distribution zi = [1 − cos(πi/4q)]/2,

i = 0, . . . , 4q was employed in the boundary sub-intervals [0, 0.05] and [0.98, 1]. After ini-

tial experiments, computations were run with q = 512, giving n = 873 collocation points in

total. All results presented in section 6.4.4 change by less than 0.1% if larger q is used.

Chebyshev nodes were chosen because they naturally cluster near the boundaries and

help resolve boundary layers near z = 0 and z = 1 in the optimal φ(z). These are expected

even if no boundary conditions are imposed because to maximise the objective function

in (6.60) one would like to choose φ(z) < 0, but setting φ(z) ≈ 1 in the bulk of the domain

is necessary to be able to satisfy the spectral constraint. However, it is possible to have

φ(z) < 0 in thin layers near the walls because the functions fk, which act as a weight on

φ in the Fourier-transformed spectral constraint (6.68), are small there for all k values (cf.

figure 6.1). These observations are confirmed by the numerical results in section 6.4.4.

While boundary layers can in principle be resolved with a sufficiently fine distribution of

Chebyshev points, refining the discretisation only near the boundaries through a secondary

set of Chebyshev nodes helps reduce computational cost. In fact, since the number of

rows and columns of each matrix Qk(Φ) grows linearly with the number of discretisation

points, so does the number of LMIs obtained after the large and sparse LMI Qk(Φ) � 0

is decomposed as described in section 6.4.2. Even ignoring the overhead due to the extra

optimisation variables introduced by the decomposition procedure, therefore, the overall

computational cost must grow at least linearly with the number of collocation points.

One complication to the implementation of (6.74) is that the cutoff wavenumber kc is not

known a priori, but it depends on Φ according to (6.69). Thus, the same iterative procedure

outlined in chapter 5 is employed: find the optimal Φ using an initial guess k0 for kc, update

the value of kc using (6.69), check if Qk(Φ) is positive semidefinite for all k ≤ kc, and repeat

the optimisation with the updated guess for kc if any of these checks fail.

A second hurdle is that solving (6.74) with this iterative procedure becomes expensive

when the Marangoni number is large because the cutoff wavenumber kc, and therefore the

number of LMI constraints, grows proportionally to Ma1/2. For example, at Ma = 2.5× 106
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the optimal φ satisfies ‖φ− 1‖∞ = 2, so (6.69) gives kc = 1 003; when all 1 003 LMIs are

considered in (6.74), SDPT3 takes more than 4 hours to converge. In an effort to reduce the

CPU time requirements, a trial-and-error procedure in which only a subset of wavenumbers

are considered in (6.74) was employed. Inspired by the numerical continuation method

used by Plasting & Kerswell (2003), the Marangoni number was progressively increased

according to the update rule Mai+1 = Mai× 101/p, which gives p+ 1 logarithmically spaced

points between successive powers of 10. Given the critical wavenumbers k1, . . . , km at one

Marangoni number, the SDP for the next Ma was solved considering only wavenumbers in

a window of width 2r around each ki, i = 1, . . . , m, i.e., values of k such that

k ∈
m⋃
i=1

[ki − r, ki + r]. (6.79)

The LMI Qk(Φ) � 0 was subsequently checked for all remaining wavenumbers up to the

cutoff value kc. If any of these checks failed, the optimisation was repeated after adding

the wavenumber with the largest constraint violation (i.e., corresponding to the matrix Qk

with the most negative eigenvalue) to the list of critical values.

6.4.4 Results

The SDPs (6.74)–(6.76) were successfully solved for Marangoni numbers up to Ma = 109

using the procedure described in section 6.4.3 with p = 19 and r = 10. At each value of

Ma, the optimal φ(z) was used to recover the optimal scaled background field ρ(z) and the

corresponding bound on the Nusselt number.

The most important results are the bounds on Nu, plotted in figure 6.4. Also shown

for comparison are: the analytical bound Nu ≤ 0.803Ma2/7 proven in appendix A.8; the

DNS results obtained by Boeck & Thess (2001); finally, the conductive value Nu = 1, which

bounds the Nusselt number from below. The results are plotted in two ways: compensated

by a factor of Ma−2/7 to aid the visual comparison with the asymptotic scaling of the

analytical bound, and compensated by Ma−2/7(lnMa)1/2. The main observation is that,

while a gap with the DNS data remains, the fully optimal bounds and those computed after

enforcing convexity grow more slowly than the analytical bound by (lnMa)1/2. In particular,

the fully optimal bound seems to exhibit the asymptotic behaviour

Nu ≤ 1.285Ma2/7(lnMa)−1/2. (6.80)

In contrast, the bound on Nu asymptotes to 0.535Ma2/7 when the background field is con-

strained to decrease monotonically. This suggests that the analytical bound attains the
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Figure 6.4: Comparison between: the fully optimal bounds on the Nusselt number,
computed using the solution of (6.60) ( ); the optimal monotonic bounds, computed
using the solution of (6.61) ( ); the optimal convex bounds, computed using the solution
of (6.62) ( ). Also shown are the conductive Nusselt number Nu = 1 ( ), the analytical
bound Nu ≤ 0.803Ma2/7 ( ), and the DNS data by Boeck & Thess (2001) (x). Data in
panel (a) are compensated byMa−2/7 to facilitate the visual comparison with the asymptotic
scaling of the analytical bound. Data in panel (b) are compensated by Ma−2/7(lnMa)1/2.

optimal asymptotic scaling available when ρ(z) is monotonic, but may be lowered by a

logarithm upon construction of a non-monotonic background field.

Figure 6.5 shows the derivative of the optimal scaled background field, computed with

each of the conic programmes (6.74)–(6.76), for a selection of values Ma. The derivative

ρ′(z) is plotted instead of ρ(z) because, by virtue of (6.58), problems (6.60)–(6.62) can

be rewritten in terms of ρ′(z) alone. Since ρ(z) can be recovered by integration using

the boundary condition ρ(0) = 0, the derivative ρ′(z) is the actual decision variable in

(6.60)–(6.62). To ease the comparison, the profiles have been normalised by the magnitude

of the boundary value ρ′(0), which converges to −2 from above with increasing Ma as

illustrated in figure 6.6(a). Figure 6.6(b) demonstrates that in the fully optimal case the

convergence is logarithmic. This was also observed when convexity was imposed, while

power-law convergence was observed for the monotonic profiles. Such evidence corroborates

the numerical conjecture that the optimal bound on Nu takes the asymptotic form (6.80).

As illustrated by figure 6.5, the optimal ρ′(z) is negative for Ma ≤ 186.12, meaning that

the corresponding scaled background field decreases monotonically for sufficiently small

Marangoni numbers. When Ma is raised, all profiles are characterised by boundary layers

separated by a bulk region where ρ′(z) ≈ 0. Note that the transition to the bulk region

is not smooth when monotonicity or convexity are enforced, which is one of the reasons

for preferring the piecewise-linear approximations of section 6.4.1 to the global polynomial

approximation used chapters 4 and 5. In the fully optimal case, ρ′(z) changes sign inside

both boundary layers to reach positive local maxima, so the corresponding scaled background
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field is characterised by non-monotonic boundary layers. Enforcing monotonicity removes

these local maxima and makes the boundary layers thinner, while convexity prevents the

local maximum near z = 0 and makes ρ′(z) constant across the boundary layer near z = 1.

Figure 6.7 offers a more detailed description of the boundary layer structure of the fully

optimal profiles for Ma ≥ 104 (very similar results for the optimal convex profiles are not

shown for brevity). Letting zbot and ztop denote the coordinates of the positive local maxima

of ρ′(z) near z = 0 and z = 1, respectively, the quantities δ := zbot and ε := 1 − ztop can

be taken as proxies for the thickness of each boundary layer. The boundary layer near the

bottom of the domain (z = 0) is approximately self-similar at large Marangoni numbers,

and least-squares power-law fits to the data in figures 6.7(a) and 6.7(c) for Ma ≥ 107 return

δ ≈ 3.8Ma−0.26, ρ′(zbot) ≈ 0.07. (6.81)

Note that the scaling exponent of δ is not far from −2/7 ≈ −0.286, suggesting that the width

of the boundary layer near z = 0 is one of the leading factors determining the scaling of

the bound on Nu. It is tempting to conjecture that, asymptotically, δ ∼ Ma−2/7(lnMa)1/2,

meaning that Nu ∼ δ−1, but unfortunately the finite precision of the numerical data does

not permit a clear identification of such a logarithmic trend. To obtain more precise values

requires the solution of the SDPs (6.74)–(6.75) to a level of accuracy beyond the capabilities

of SDPT3, and at considerably larger Ma (see section 6.6 for further discussion).
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ground fields; (c) the SDP (6.76) for the optimal convex background fields.

The situation is more complicated for the boundary layer near z = 1. In figure 6.7(b)

one can identify three distinct regions, each characterised by a different scaling of ε:

ε ≈ 1.65Ma−0.36 for Ma / 5× 104, (6.82a)

ε ≈ 11.8Ma−0.54 for 5× 104 / Ma / 3× 106, (6.82b)

ε ≈ 24.3Ma−0.58 for Ma ' 3× 106. (6.82c)

Approximate scaling laws for ρ′(ztop) could also be determined in the first and third regions:

ρ′(ztop) ≈ 0.34Ma−0.01 for Ma / 5× 104, (6.83a)

ρ′(ztop) ≈ 0.04Ma0.16 for Ma ' 3× 106. (6.83b)

Once again, these scaling laws are only tentative due to the finite precision to which the

SDPs for the optimal bounds could be solved. Note, however, that the large scatter in the

data points in figure 6.7(b) is simply due to plotting ε after rescaling by Ma0.54, which at

large Ma amplifies small numerical inaccuracies.

Changes in the scaling of the boundary layer near z = 1 correspond to bifurcations in the

critical wavenumbers for the conic programme (6.74). As illustrated in figure 6.8(a), new

critical wavenumbers appear at large values of k forMa ≈ 5×104 andMa ≈ 3×106. Another

intermediate branch of critical wavenumbers appears for Ma ≈ 108, but this does not seem

to influence the scaling of the boundary layer. Such bifurcations can be explained in terms of

the interaction, in the Fourier-transformed spectral constraint (6.68), between the boundary

layer of ρ′(z) = φ(z) − 1 and the function fk(z), which is almost entirely supported near

z = 1 at large k. As illustrated by figures 6.8(b)–(c), similar bifurcations were observed

when solving (6.76) but not when solving (6.75), probably because the boundary layer near

z = 1 of the optimal monotonic background fields is too thin to allow interesting interactions

for wavenumbers below the cutoff value kc.

157



Section 6.5. Towards an improved analytical bound

α
?
−

2

Figure 6.9: (a) Convergence of the optimal balance parameter α?, computed using (6.43)
and the fully optimal scaled background field, to the asymptotic value 2. (b) Plot of the

difference α? − 2, scaled by Ma2/7(lnMa)−1/2 ( ) and by Ma2/7 ( ).

Finally, figure 6.9 shows the variation with Ma of the optimal balance parameter α?,

computed using (6.43) and the fully optimal background field. The results clearly show that

α? converges to 2 as Ma is raised, and that the convergence rate is logarithmic,

α? − 2 ∼ Ma−2/7(lnMa)1/2. (6.84)

This observation is consistent with the analysis of section 6.3 and corroborates the numerical

conjecture that (6.80) is the correct functional form for the optimal bound on Nu.

6.5 Towards an improved analytical bound

The results presented in section 6.4.4 suggest that Hagstrom & Doering’s bound Nu .

Ma2/7 may be improved by the logarithmic factor (lnMa)−1/2. Despite the strong numerical

evidence, however, whether the optimal bound scales logarithmically whenMa→∞ remains

uncertain due to the limited range of Marangoni numbers spanned the present investigation

(see section 6.6 for more on this issue). In particular, one cannot rule out the occurrence

of further bifurcations in the critical wavenumbers that may cause a transition to a pure

power-law behaviour with scaling exponent of 2/7.

Uncertainty about the true asymptotic scaling notwithstanding, the numerical results

demonstrate that if the current analytical bound Nu . Ma2/7 can be improved, doing

so requires a background temperature profile with non-monotonic boundary layers. More

precisely, the optimal convex background fields and the corresponding bounds on Nu are

evidence that what is needed is a relatively simple non-monotonic boundary layer near z = 1,

while non-monotonicity near z = 0 only lowers the prefactor.

Taking advantage of these observations to improve the bound on Nu analytically, however,

is likely to require a careful analysis of the sign-indefinite term in each Fourier-transformed

158



Chapter 6. Bounds on heat transfer for infinite-Pr Bénard–Marangoni convection

spectral constraint, restated here in terms of the variable ρ(z) in the slightly rearranged

form

Qk{v}=
∥∥v′∥∥2

2
+ k2 ‖v‖22 −Ma v(1)

∫ 1

0
ρ′(z) fk(z) v(z) dz ≥ 0 ∀v ∈ Γ. (6.85)

For example, simply estimating

∣∣∣∣Ma v(1)

∫ 1

0
ρ′(z) fk(z) v(z) dz

∣∣∣∣ ≤ Ma |v(1)|
∫ 1

0

∣∣ρ′(z)∣∣ |fk(z)| |v(z)| dz (6.86)

and requiring

∥∥v′∥∥2

2
+ k2 ‖v‖22 −Ma |v(1)|

∫ 1

0

∣∣ρ′(z)∣∣ |fk(z)| |v(z)| dz ≥ 0 ∀v ∈ Γ, (6.87)

as done in appendix A.8 to prove the bound (6.48), forces the optimal ρ to decrease mono-

tonically. In fact, if ρ satisfies (6.87) and ρ′(z) ≥ 0 for z ∈ U ⊂ [0, 1], the profile

ρ̃′(z) :=


ρ′(z), z ∈ [0, 1] r U ,

0, z ∈ U ,
(6.88)

also satisfies (6.87), but decreases monotonically and gives a larger objective value in (6.36).

In light of the numerical results presented in section 6.4.4, one expects any bound obtained

using the estimate (6.86) to be no better than Nu . Ma2/7.

A better approach is to reformulate the Fourier-transformed spectral constraint (6.85)

before applying any estimates. Without any loss of generality, let δ ∈ (0, 1) and write

ρ′(z) =


g(z), 0 ≤ z ≤ δ,

h(z), δ ≤ z ≤ 1.

(6.89)

Here, δ represents the thickness of the boundary layer of the optimal background field near

z = 0. With this choice, the Fourier-transformed spectral constraint (6.85) becomes

Qk{v} =
∥∥v′∥∥2

2
+ k2 ‖v‖22 −Ma v(1)

∫ δ

0
g(z) fk(z) v(z) dz

−Ma v(1)

∫ 1

δ
h(z) fk(z) v(z) dz ≥ 0 ∀v ∈ Γ. (6.90)

Since this inequality is homogeneous in v and holds when v(1) = 0, it suffices to restrict

the attention to test functions normalised such that v(1) = 1. After adding and subtracting
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Ma
∫ 1
δ h(z)fk(z) dz one then needs to check that

∥∥v′∥∥2

2
+ k2 ‖v‖22 −Ma

∫ δ

0
g(z) fk(z) v(z) dz

+ Ma
∫ 1

δ
h(z) fk(z) [1− v(z)] dz −Ma

∫ 1

δ
h(z)fk(z) dz ≥ 0. (6.91)

If
∫ 1
δ h(z)fk(z) dz < 0, the last term in (6.91) gives a net positive contribution to the spectral

constraint, and can be used to control the sign-indefinite terms. Recalling from figure 6.1

that fk(z) ≤ 0, this requires h(z) > 0 over a sufficient portion of the interval (δ, 1), meaning

that the background field ρ should not decrease monotonically. Moreover, h(z) should be

supported in a boundary layer near z = 1 if the fourth term in (6.91) is to be controlled.

Consequently, a non-monotonic boundary layer near z = 1 helps enforcing the spectral

constraint. The situation is similar in infinite-Pr Rayleigh–Bénard convection (Doering

et al., 2006; Otto & Seis, 2011), so this observation is perhaps not surprising.

In addition to casting light on the role of the surface boundary layer, identity (6.91) may

also offer a starting point to improve the bound Nu . Ma2/7 analytically. Recalling the

boundary condition v(0) = 0 and the normalisation condition v(1) = 1, one possibility is to

use the fundamental theorem of calculus and the Cauchy–Schwarz inequality to bound

∣∣∣∣∫ δ

0
g(z) fk(z) v(z) dz

∣∣∣∣ ≤ ∫ δ

0
|g(z) fk(z)|

∣∣∣∣∫ z

0
v′(t) dt

∣∣∣∣ dz

≤
∥∥v′∥∥

2

∫ δ

0
|g(z) fk(z)|

√
z dz (6.92)

and ∣∣∣∣∫ 1

δ
h(z) fk(z) [1− v(z)] dz

∣∣∣∣ ≤ ∫ 1

δ
|h(z) fk(z)|

∣∣∣∣∫ 1

z
v′(t) dt

∣∣∣∣ dz

≤
∥∥v′∥∥

2

∫ 1

δ
|h(z) fk(z)|

√
1− z dz. (6.93)

Defining

ak :=

∫ δ

0
|g(z) fk(z)|

√
z dz, (6.94a)

bk :=

∫ 1

δ
|h(z) fk(z)|

√
1− z dz, (6.94b)

ck := −
∫ 1

δ
h(z)fk(z) dz (6.94c)

to ease the notation, a sufficient condition for (6.91) is that

∥∥v′∥∥2

2
−Ma (ak + bk)

∥∥v′∥∥
2

+ Ma ck ≥ 0, (6.95)
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which in turn is satisfied for all v if

ak + bk ≤ 2

√
ck
Ma

. (6.96)

Given a candidate background field, condition (6.96) can be checked for all wavenumbers

up to the ‘cutoff’ wavenumber kc in (6.69).

Improving the bound Nu . Ma2/7 via (6.96), however, may not be straightforward. To

illustrate one of the difficulties it is useful to consider a simple background field, whose

form is motivated by the shape of the derivatives of the optimal convex background fields in

figure 6.5, and by the fact that the corresponding bounds in figure 6.6(b) exhibit the same

asymptotic behaviour as the fully optimal one. Precisely, fix

g(z) = −2, h(z) =


0, δ ≤ z < 1− ε,

γ, 1− ε ≤ z ≤ 1,

(6.97)

with γ > 0 a constant (independent of Ma) and ε� 1 but such that 1/ε ≤ kc ∼ Ma1/2.

When k ≤ 1/ε, using the Taylor expansions fk(z) ∼ z2 near z = 0 and fk(z) ∼ k(z − 1)

near z = 1 gives

ak ∼ δ7/2, bk ∼ γ k ε5/2, ck ∼ γ k ε2. (6.98)

With these estimates, condition (6.96) can be rearranged as

δ7/2 . 2 ε

√
γ k

Ma

(
1−

√
γ kMa ε3

)
. (6.99)

When k ∼ 1 the two sides of (6.99) can be balanced by taking ε ∼ Ma−1/3 and δ ∼ Ma−5/21,

which yields

Nu ≤ 2

2δ − γε−
√
γ(γ + 2)ε

∼ δ−1 ∼ Ma5/21. (6.100)

Interestingly, the exponent 5/21 ≈ 0.238 is extremely close to that of the best power-law

fit Nu ∼ Ma0.24 to the DNS data by (Boeck & Thess, 2001, see equation (4) in their

paper). In these simulations convection takes the form of stationary rolls with energy only

at low wavenumbers, and the deviation from the theoretical asymptotic scaling exponent

2/9 ≈ 0.222 can be attributed to the contribution to the heat transfer of the thermal

boundary layer near the surface (see the discussion after equation (13) in Boeck & Thess,

2001). Although this contribution is expected to vanish asMa→∞, the background method

could yield a bound that agrees well with observations for a range of Marangoni numbers if

the stability of the rolls were deduced rigorously from the governing equations.
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The lack of such information, however, means that (6.96) must be satisfied for all values k

up to kc ∼ Ma1/2. In particular, setting k = 1/ε (which is no larger than kc by assumption)

shows that one must choose ε . Ma−1/2 and δ . Ma−2/7, so the eventual bound on Nu

cannot grow more slowly than ∼ Ma2/7. The issue remains when one lets γ increase with

Ma to mimic the behaviour of the numerically optimal profiles (cf. panel (d) in figure 6.7),

because what is gained in (6.99) is exactly outbalanced by the need of testing wavenumbers

up to kc ∼ γMa1/2. Thus, it is expected that to improve Hagstrom & Doering’s scaling

using (6.96) will require careful estimates of ak, bk and ck at large wavenumbers, perhaps

in conjunction with a more sophisticated choice of background field.

6.6 Challenges for computations in the asymptotic regime

As mentioned at the beginning of section 6.5, the true asymptotic nature of the numerically

optimal bound remains uncertain due to the limited range of Marangoni numbers that

could be studied. This kind of uncertainty is inherent to any numerical investigation, but

the challenges faced by SDPs in reaching the asymptotic regime deserve further discussion.

Contrary to what was observed in chapter 5, the main obstacle to computing bounds

for Ma � 109 is cost: despite exploiting sparsity, proceeding from Ma = 108 to Ma = 109

took more than 48 hours, and to achieve significant further progress would require computa-

tional resources beyond those available to the present investigation. One difficulty—already

pointed out in chapter 5—is that, at large Marangoni numbers, checking whether a candi-

date background field satisfies the Fourier-transformed spectral constraints up to the cutoff

wavenumber kc becomes a burden even when computations are parallelised. For exam-

ple, kc = 20 073 at Ma = 109, meaning that 20 073 eigenvalue or Cholesky decompositions

must be carried out after each iteration of the wavenumber-tracking procedure described

in section 6.4.3. The situation is worsened by the occurrence of bifurcations in critical

wavenumbers, because more iterations are needed to correctly track all critical branches.

Performance could be not improved by taking smaller steps in Ma, because doing so slows

progress towards higher Marangoni numbers. Increasing the parameter r in (6.79) also does

not help much, because the cost of adding more LMIs to the SDP at each iteration offsets

the reduction in number of iterations required to identify the critical wavenumbers.

A possible solution to the critical wavenumber identification problem could be to apply

the time-marching algorithm of Wen et al. (2013, 2015) to the optimality conditions for

the SDPs (6.74)–(6.76). This method appears to select the critical wavenumbers efficiently,

although convergence to the optimal background field can be slow (Wen et al., 2015). Fast
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but less accurate solvers for SDPs, such as SCS (O’Donoghue et al., 2016) may have similar

benefits and drawbacks, with the advantage that finely tuned open-source implementations

are readily available. Irrespective of which method is utilised, once the critical wavenumbers

have been identified the optimal solution can be computed to higher accuracy using SDPT3.

The numerical methodology described in section 6.4 and the possible improvements dis-

cussed above can of course be applied beyond Bénard–Marangoni convection. However,

studying the asymptotic regime of more complex background method problems will require

overcoming some additional obstacles. Spectral constraints with multiple test functions,

such as those encountered in shear flows (Plasting & Kerswell, 2003; see also chapter 5) or

convection at finite Prandtl number (Doering & Constantin, 1996; Otero et al., 2002), yield

SDPs with larger LMIs than those considered in this chapter. Current state-of-the-art SDP

solvers can handle many small LMIs efficiently, but the cost of a single LMI grows as a non-

linear function of its size. This is also an issue for problems with two- and higher-dimensional

background fields, because horizontal Fourier expansions do not allow for a mode-by-mode

decomposition of the spectral constraint, and after discretisation one obtains a single, large

LMI instead of a set of smaller, independent LMIs corresponding to each wavevector.

Interest in the development of algorithms for large-scale SDPs has recently grown (see,

for example, Sun et al., 2014; Madani et al., 2015; O’Donoghue et al., 2016; Pakazad et al.,

2017; Zheng et al., 2017a,b), and it is likely that more efficient solvers will become available

in the near future. Meanwhile, the (current) unfavourable scalability of algorithms for SDPs

can be mitigated by taking advantage of special properties of the particular background field

problem at hand. For instance, symmetries can be exploited to reduce the number of degrees

of freedom needed to discretise the background field or the test functions in the spectral

constraint (however, this is not the case for Bénard–Marangoni convection). The choice of

discretisation method also plays an important role because, as demonstrated in this and

the previous chapters, it directly impacts the sparsity of the eventual LMI. In this respect,

the piecewise-linear approximations considered in this chapter are more attractive than the

polynomial series expansions considered previously in this thesis, because they results in

LMIs with chordal sparsity pattern. The same is true when one uses multidimensional

piecewise-polynomial representations in the spirit of finite-element (FE) methods: approxi-

mately speaking, chordal sparsity arises from the fact that each element in the FE mesh is

coupled only to its neighbours, and only through the degrees of freedom at the boundary

elements. Exploiting chordal sparsity to decompose large LMIs into multiple smaller ones

proved extremely effective for the present study of Bénard–Marangoni convection, and the

same should be true for other background method problems.
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6.7 Conclusions

This chapter investigated the vertical heat transfer in Bénard–Marangoni convection of a

fluid layer with infinite Prandtl number by means of rigorous upper bounds on the Nus-

selt number. First, the background method analysis by Hagstrom & Doering (2010) was

extended to include balance parameters and formulate a new variational principle for the

bound. Doing so led to the new analytical result Nu ≤ 0.803 ×Ma2/7, the prefactor being

approximately 4.2% lower compared to the previous best bound, but it was demonstrated

that optimising the balance parameters cannot affect the asymptotic scaling of the optimal

bounds compared to Hagstrom & Doering’s original formulation. Using SDP approximations

of the upper-bounding variational problem, the bound on Nu was optimised over all back-

ground fields, as well as over two smaller families constrained, respectively, by monotonicity

and by convexity. The main results were the numerical conjecture that the fully optimal

bounds have the form Nu . Ma2/7(lnMa)−1/2 for large Marangoni numbers, and the ob-

servation that such a logarithmic bound requires a background field with a non-monotonic

boundary layer near the top boundary.

Whether the logarithmic scaling observed numerically can be proven analytically remains

an open question. The analysis presented in section 6.5 suggests a way forward by replacing

the spectral constraint with the sufficient condition (6.96). Using (6.96) is an attractive

option because it is easier to check than the spectral constraint for a candidate background

field, and the role of non-monotonicity is apparent. Moreover, the fact that enforcing (6.96)

at large wavenumbers seems to constrain the bound on Nu is reminiscent of the bifurcations

in critical wavenumbers observed in the numerical results (cf. figure 6.8). In summary, (6.96)

seems to capture the essential features of the spectral constraint.

Should (6.96) prove too strong, the analysis of the energy stability problem (Fantuzzi

& Wynn, 2017) may be adapted to derive an inequality that exactly enforces each Fourier-

transformed spectral constraint. The disadvantage is that such an inequality may not be

analytically tractable except for very simple choices of the background field. On the other

hand, it may be possible to check this condition numerically and confirm that a candi-

date background field can indeed achieve a logarithmic bound, leaving “only” the task of

constructing the correct estimates to prove so rigorously. Alternatively, one may consider

the Lagrangian dual of the variational problem obtained with background method. This

amounts to constructing the temperature and velocity fields that maximise the heat transfer

subject to the momentum equation (which in the infinite-Pr limit is an algebraic condition

relating temperature and velocity), the boundary conditions, and suitably averaged versions
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of the advection-diffusion equation for the temperature.5 However, only the fields achieving

the maximal heat transfer yield a bound on Nu, so the maximisation must be solved exactly,

and an asymptotic solution using Busse’s “multi-α” solution method (see for example Busse,

1979) is complicated both by the lack of vertical symmetry and by the Neumann BCs.

Irrespective of how the variational problem for the upper bound on Nu is analysed,

however, the numerical results presented in this chapter reveal that applying the background

method to the temperature field cannot close the gap with the phenomenological prediction

Nu ∼ Ma2/9 by Boeck & Thess (2001). It is possible that Boeck & Thess’s assumption that

steady convection rolls remain stable as Ma→∞ is incorrect, making a scaling exponent of

2/9 unattainable with any bounding method. Proving so rigorously requires a lower bound

on Nu that grows faster than Ma2/9, which can also not be achieved with the background

method because the unstable conduction solution saturates the constant lower bound Nu ≥
1. Further numerical simulations at high Ma seem essential to investigate the issue, and the

observation of steady convection rolls would provide further supporting evidence for Boeck

& Thess’s phenomenological prediction. Determining the stability of the steady rolls is of

interest also to reveal if the bifurcations in critical wavenumbers observed in the present

computations correspond to yet unobserved physical instabilities.

In case the scaling law Nu ∼ Ma2/9 were confirmed by further DNSs, the derivation of

rigorous bounds on Nu that exhibit the same asymptotic scaling will necessarily require

bounding techniques beyond the background method. Unfortunately, the formulation of

a wall-to-wall optimal transport problem (Hassanzadeh et al., 2014; Tobasco & Doering,

2017) is not suited to the study Bénard–Marangoni convection at infinite-Pr. In fact, the

optimal transport approach treats the temperature as a passively advected and diffusing

scalar, and one looks for the (generally time-dependent) incompressible velocity field that

maximises the passive vertical transport of heat subject to a maximum power budget. How-

ever, in infinite-Pr Bénard–Marangoni convection the flow velocity is a linear function of the

temperature field, which is effectively the only dynamical variable. This coupling is crucial

in the background method analysis, so improving the bound on Nu without taking it into

account seems unlikely.

It would then be tempting to formulate the “ultimate” optimal wall-to-wall transport

problem using the temperature as the decision variable, and let the flow velocity be specified

as a function of it. However, this corresponds to searching for the exact solution of the

equations of motion (6.1a)–(6.1c) with maximal heat transfer, so progress does not appear
5The duality between the two approaches was pointed out in chapter 1, and for a detailed discussion in

the context of Rayleigh–Bénard convection, the reader is referred to Plasting & Ierley (2005).
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possible. Difficulties remain when one drops the time dependence: maximising the heat

transfer among the steady solutions is not much easier, and in any case the eventual bound

would rely on the unproven assumption that unsteady flows cannot transport more heat than

steady ones. Nonetheless, the construction of exact solutions is of interest because knowledge

of a (possibly unstable) flow with Nusselt number Nuss places a strict limit on what can

be achieved by upper-bounding theory. In particular, any bounds that apply equally to all

solutions of (6.1a)–(6.1c) cannot be better than Nuss. Moreover, any flow with heat transfer

Nuss � const.×Ma2/9 would demonstrate that Boeck & Thess’s phenomenological scaling

applies at most to a particular subset of all possible convective flows.

While improving the rigorous upper bound on Nu using the “ultimate” wall-to-wall opti-

mal transport approach described above appears challenging, it may be possible to consider

successively weaker, tractable relaxations of it. The idea stems from the aforementioned re-

alisation that the background method analysis is dual to the problem of maximising the heat

transfer over all temperature (and associated velocity) fields that satisfy a set of constraints

obtained by averaging the heat equation (Plasting & Ierley, 2005). The upper bound on Nu

may therefore be improved by including additional constraints implied by the heat equation,

but not the heat equation itself. A simple way to do so is through a general bounding frame-

work that encompasses the background method (Chernyshenko et al., 2014; Chernyshenko,

2017). The essence of this approach is to construct a functional V of the flow variables

subject to a positivity condition akin to the spectral constraint in the background method.

Each term in this functional can be interpreted as enforcing a particular constraint implied

by the governing equations. Taking V to be the volume average of a quadratic polynomial of

the flow variables gives the same bound as the background method (Chernyshenko, 2017),

but experience with finite-dimensional systems (Fantuzzi et al., 2016; Goluskin, 2017; To-

basco et al., 2018) indicates that considering more general functionals—for instance, volume

averages of higher-than-quadratic polynomials of the flow variables—could yield significant

improvements. Although the construction of suitable functionals may be beyond the reach

of purely analytical work, in this case too can progress be guided by solving SDPs. Whether

bounds can be computed in the asymptotic regime is highly dependent on the availability of

efficient algorithms for semidefinite programming, but recent developments in this field (see,

for example, Sun et al., 2014; O’Donoghue et al., 2016; Zheng et al., 2017a,b) give hope that

Bénard–Marangoni convection and other turbulent hydrodynamic systems may be studied

successfully in the near future.

166



Chapter 7

Conclusions and outlook

The underpinning theme of this thesis has been the development and application of numer-

ical techniques for the optimisation of bounds, derived using the background method, on

asymptotic or time-averaged quantities that describe a turbulent system. The key idea of

the background method is to consider the evolution of the system around a steady back-

ground field and show that, if a certain integral quadratic form that depends affinely on

the background field is positive semidefinite (a condition known as the spectral constraint

because it requires that the eigenvalues of a self-adjoint operator are non-negative), then

the quantity of interest can be bounded in terms of the background field alone. Numeri-

cal optimisation of the background field and of the corresponding bound is essential if the

background method is to be truly useful, either to test phenomenological theories against

rigorous analysis of the system’s governing equations, or to make quantitative predictions

when direct numerical simulations necessitate prohibitively large resources. Until recently,

however, the construction of optimal background fields has demanded sophisticated numer-

ical strategies because, although optimality conditions in the form of Euler–Lagrange (EL)

equations can be formulated relatively easily, they often admit multiple solutions. Since only

one of these satisfies the spectral constraint, care must be taken to avoid the computation

of so-called “spurious” solutions, which satisfy the EL equations, but violate the spectral

constraint.

For three classical fluid dynamical systems (namely, two-dimensional porous media con-

vection, plane Couette flow, and two-dimensional Rayleigh–Bénard convection between

stress-free isothermal plates), Wen et al. (2013, 2015) demonstrated that spurious solutions

can be avoided by evolving a time-dependent version of the EL equations until a steady state

is reached. One question investigated in this thesis is whether the same is true for other

systems, and in chapter 3 this time-marching approach was applied to bound the asymp-

totic energy of solutions of the Kuramoto–Sivashinsky (KS) equation. For this system, the

variational problem for the optimal background field has two spectral constraints, and it was

167



observed that convergence to spurious solutions can occur unless possible degeneracies in the

eigenvalue problems associated with the spectral constraints are taken into account when

deriving the EL equations. Precisely, an informal analogy with finite-dimensional optimisa-

tion problems subject to linear matrix inequalities (LMIs) revealed that, when constructing

the Lagrangian functional for the optimal background field problem, one should include as

many independent “copies” of each spectral constraint as the largest possible multiplicity of

the ground-state eigenvalue of the corresponding linear operator. Ground-state eigenvalues

can have multiplicity 2 for the KS equation, and considering two copies of each spectral

constraint in the Lagrangian yields extra terms in the EL equations. These appear to de-

stabilise any spurious steady states, and thereby allow for the robust computation of the

optimal background field. Unfortunately, it was also demonstrated that the argument put

forward by Wen et al. (2015) to prove rigorously that spurious solutions are unstable does

not extend to the KS equation. Consequently, one cannot guarantee a priori that if the

time-marching algorithm converges to a steady state, then the corresponding background

field is the optimal one. Similar issues are likely to arise when optimising background fields

beyond the KS equation, and while it is conjectured that in most cases the time-marching

method will indeed converge to the desired optimal solution, its performance should be as-

sessed on a problem-by-problem basis until a more comprehensive theoretical convergence

analysis is carried out.

Motivated by the difficulties encountered in the study of the KS equation, the rest of this

thesis has focussed on the development of an alternative numerical approach to optimise

background fields. This was born out of the observations that the spectral constraint is the

infinite-dimensional equivalent of an LMI, and that it can often be posed as the condition

that a set of integral quadratic forms with one-dimensional compact domain of integration

are positive semidefinite. For these reasons, chapter 4 considered the problem of minimising

a linear cost function subject to a one-dimensional affine homogeneous integral inequality,

i.e., the requirement that an integral functional, affinely dependent on the decision variables,

is non-negative for all functions subject to prescribed homogeneous boundary conditions.

Legendre series expansions were used to show that the feasible set of an affine homogeneous

quadratic integral inequality can be approximated, either from the inside or from the outside,

by sets represented by LMIs. The optimal cost value can therefore be bounded rigorously

(modulo numerical roundoff errors), both from above and from below, through the solution

of SDPs. It was also proven that if the optimal cost value is attained by an optimal point,

then arbitrarily accurate lower bounds can be obtained with outer LMI approximations

constructed via truncated series expansions with sufficiently many terms. Convergence
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of the upper bounds computed with inner LMI approximations to the true optimal cost,

instead, could not be established, but numerical experiments demonstrate that it is often

observed in practice. Future work should try to determine for which sub-classes of integral

inequalities, if any, convergence of the upper bounds can be proven rigorously.

The series expansion techniques developed in chapter 4, implemented in an open-source

MATLAB toolbox called QUINOPT, were employed in chapter 5 to optimise bounds on

the energy dissipation coefficient Cε for two- and three-dimensional stress-driven shear flows.

Semidefinite programming proved robust and efficient when the Grashoff number Gr—the

non-dimensional measure of the strength of the imposed shear—was not too large (Gr ≤ 105

in two dimensions and Gr ≤ 104 in three dimensions). Optimisation of the background field

improves the constant (i.e., independent of Gr) analytical bounds proven by Hagstrom &

Doering (2014) by more than 10 times at the largest values of Gr considered in the computa-

tions. On the other hand, the optimal bounds on Cε appear to approach a constant value as

Gr grows, suggesting that Hagstrom & Doering’s results are optimal as far as their asymp-

totic scaling with Gr is concerned. Constant Cε would be consistent with Kolmogorov’s

theory of turbulence, according to which dissipation becomes independent of the fluid’s vis-

cosity at large Grashoff numbers. Of course, whether bounds obtained with the background

method capture the asymptotic scaling of the dissipation measured in real flows remains to

be seen, but this question could not be answered in this work due to the lack of readily avail-

able experimental/numerical data. In addition, it should be stressed that the asymptotic

behaviour of the optimal bounds was not determined with any degree of certainty, due to

the limited range of Gr that could be studied. In particular, in light of the results obtained

for shear-driven Bénard–Marangoni convection in chapter 6 (and summarised below), it may

be possible that the optimal bounds do not approach a constant, but rather decrease loga-

rithmically with Gr. To settle this matter, optimal bounds should be computed at values

of Gr well within the asymptotic regime, but it was not possible to do so here because the

SDPs set up by QUINOPT became increasingly ill conditioned as Gr was raised. This

issue should be investigated thoroughly in the future if semidefinite programming is to be

applied successfully to a wider range of optimal background field problems. As discussed

in section 5.5, however, accurate computations that extend far into the asymptotic regime

are also likely to be prevented by the prohibitively large computational resources currently

required to solve large SDPs accurately via general-purpose solvers.

A first attempt to alleviate the current poor scalability of algorithms for semidefinite

programming was made in chapter 6, which studied Bénard–Marangoni convection—the
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motion of a layer of fluid driven by shear stresses due to thermally induced gradients in sur-

face tension—at infinite Prandtl number. The background method with balance parameters

was applied to bound the Nusselt number Nu, the non-dimensional measure of the vertical

heat transfer enhancement due to convection, as a function of the Marangoni number Ma,

the non-dimensional measure of the thermal forcing. After changing variables to obtain a

convex variational problem for a scaled background temperature field, piecewise-linear ap-

proximations were utilised to turn the spectral constraint into a set of sparse LMIs that

can be implemented efficiently through chordal decomposition methods (cf. section 2.6 and

references therein). This made it possible to optimise the background field for Marangoni

numbers up to 109, giving compelling numerical evidence that the optimal bounds satisfy

Nu . Ma2/7(lnMa)−1/2 at large Ma. Further optimisation over the two restricted classes

of monotonic and convex background fields revealed that the asymptotic scaling of the an-

alytical bound Nu ≤ 0.803Ma2/7, also proven in this thesis, is optimal within the class of

monotonic background fields. On the contrary, non-monotonic boundary layers near the

surface of the fluid layer help to enforce the spectral constraint and lower the bound by a

logarithmic factor. The numerical results also suggest that a boundary layer profile with

constant slope suffices to lower a pure power-law bound, giving hope that a rigorous proof of

the logarithmic correction observed numerically may be within the reach of analytical work.

The overall conclusion stemming from the results presented throughout this thesis is that,

provided that the computational challenges associated with the solution of large SDPs can

be overcome in the future, semidefinite programming provides a very attractive framework

for the construction of optimal background fields. One reason is that the availability of soft-

ware packages for the formulation and solution of the relevant SDPs, such as the MATLAB

toolbox QUINOPT developed as part of this work, eliminates the need for the imple-

mentation of sophisticated, problem-specific numerical strategies and enables researchers to

concentrate on modelling and analysis. Another reason is that, since many types of con-

straints can be represented as LMIs, semidefinite programming offers a flexible optimisation

framework, in which constraints on the background field (for instance, monotonicity) can

be added or removed at will without requiring any changes to the numerical algorithm. As

demonstrated in chapter 6, one can therefore interrogate the bounding principles obtained

with the background method in a systematic way, in order to identify key properties of the

optimal background fields and guide rigorous mathematical analysis. However, it should

be remarked that the fluid dynamical systems studied in this thesis—shear flows driven by

surface stresses and Bénard–Marangoni convection at infinite Prandtl number—are among
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the simplest, and a successful application of semidefinite programming to more complex

systems is highly dependent on the resolution of a few outstanding issues.

From a theoretical perspective, the SDP approximations of integral inequalities devel-

oped in chapter 4 should be extended to allow for the discretisation of multi-dimensional

spectral constraints that cannot be reduced to one-dimensional integral inequalities through

Fourier expansions. Outer approximations, obtained when spectral constraints are enforced

only over finite-dimensional subsets of the test function spaces on which they are formally

required to hold, can be formulated in a relatively straightforward way upon discretising the

test functions using well-established spectral or finite-element methods. The construction

of numerically tractable inner approximations, instead, is expected to be more challeng-

ing because it requires infinite series expansions and functional estimates that, crucially,

depend on the properties of the chosen expansion basis. Obstacles are especially likely to

arise when working with geometrically complex domains (e.g., not “boxes” or similarly sim-

ple geometries), because a suitable expansion basis may not be available analytically. For

polytopic domains that can be “triangulated”, or covered exactly using a mesh of elements

with simple geometries, it may be possible to rigorously bound the difference between any

function defined on the domain and a piecewise-polynomial approximation on the mesh. In

fact, estimates of this kind may already be available because similar ideas lie at the core of

convergence analysis for finite-element methods. To derive inner approximations of integral

inequalities on non-polytopic domains, however, a fundamentally different strategy may be

needed.

From the point of view of numerical implementation, instead, one should address the

challenges posed by the degradation of numerical conditioning and by the considerable

computational resources currently required by state-of-the-art software packages to solve

large SDPs accurately. Given the growing interest in SDPs across a wide range of disciplines

(fluid mechanics, control, operations research, machine learning, and artificial intelligence

just to name a few) it is expected that more robust and more efficient algorithms for large-

scale SDPs will become available in the near future. In the meantime, it remains imperative

to reduce the size of the SDP approximation of a given background field problem as much

as possible, by taking advantage of any available special structures or symmetries. It also

seems fundamental to try to bridge the gap between the formulation of the SDP on the

one hand, and its numerical solution on the other. That this can significantly improve

performance has already been demonstrated in chapter 6, where the spectral constraint was

discretised using piecewise-linear approximations so as to obtain LMIs with chordal sparsity

patterns. Without doubt, the question of how an optimal background field problem can be
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reformulated into an SDP with chordal sparsity or other similar “computationally friendly”

structural properties should be addressed by future research.

Finally, it has recently become apparent that the background method is a particular in-

stance of a more general convex framework to bound time-averaged properties of dynamical

systems (Chernyshenko et al., 2014; Fantuzzi et al., 2016; Chernyshenko, 2017; Goluskin,

2017; Tobasco et al., 2018). Just like the construction of a background field satisfying one

or more spectral constraints lies at the heart of the background method, this more general

framework is centred around the construction of a so-called auxiliary functional, subject

to a certain inequality condition that implies the desired bound. Interestingly, for many

systems governed by ODEs (Tobasco et al., 2018) and perhaps also by PDEs, there ex-

ist auxiliary functionals that yield sharp bounds, meaning that there are solutions of the

governing equations for which the bounds are exact. An even more exciting observation

is that, just as demonstrated in this work for the background method, near-optimal auxil-

iary functionals can be searched for through the solution of SDPs—albeit often very large

ones. For this reason, the methods and results presented in this thesis can be considered a

stepping stone to the construction of such near-optimal auxiliary functionals. Naturally, it

remains to be seen exactly how far these ideas can be pushed, and whether complex systems

of physical or engineering relevance can be studied successfully without the investment of

considerable time and computing power. The hope, however, is that the insights gained by

optimising background fields using SDPs will help to guide the future development of pow-

erful, computer-assisted methods based on auxiliary functionals, which will enable accurate

and inexpensive quantitative analysis of complex systems across a wide range of fields and

applications.
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Appendix A

Miscellaneous proofs

A.1 Proof of Theorem 3.1

The proof of Theorem 3.1 presented here is an adaptation of arguments presented in chapter

6 of the book by Evans (2010) in the context of second-order elliptic PDEs.

Let u be any sufficiently smooth, odd and periodic function on [−`, `] such that Du =

∂4u+∂2u+fu is well defined. For any v ∈ Hp,o—whereHp,o is the space of square-integrable,

odd, and periodic functions on (−`, `) with two square-integrable periodic derivatives defined

in (3.6)—integration by parts implies

∫
v Du dx =

∫
u′′ v′′ − u′ v′ + f u v dx =: Q0{u, v}. (A.1)

As in chapter 3, here and for the rest of this section all integrals are over the interval (−`, `).
The symmetric bilinear form Q0{u, v} is well defined for all u, v ∈ Hp,o, and u ∈ Hp,o is

a weak solution of the eigenvalue problem (3.17) with eigenvalue σ if

Q0{u, v} = σ

∫
u v dx ∀v ∈ Hp,o. (A.2)

Clearly, if u satisfies (A.2), then for any λ ∈ R it also satisfies

Qλ{u, v} = (σ + λ)

∫
u v dx ∀v ∈ Hp,o, (A.3)

where

Qλ{u, v} :=

∫
u′′ v′′ − u′ v′ + (f + λ)u v dx. (A.4)

Consequently, if u is an eigenfunction of D with eigenvalue σ, then it is also an eigenfunction

of the operator Dλ defined by

Dλu := Du+ λu, (A.5)
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Section A.1. Proof of Theorem 3.1

with corresponding eigenvalue σ + λ. Conversely, if u is an eigenfunction of Dλ with eigen-

value η, then it is also an eigenfunction of D with eigenvalue σ = η− λ. Thus, to study the

eigenvalue problem (3.17) it suffices to analyse the eigenvalues of Dλ for some convenient

value of λ. This is possible thanks to the following result.

Lemma A.1. Let ‖u‖s be the Sobolev-type norm on Hp,o defined according to

‖u‖s :=
(∥∥u′′∥∥2

2
+
∥∥u′∥∥2

2
+ ‖u‖22

) 1
2
. (A.6)

There exist a constant α > 0 such that, for any λ ≥ α,

Qλ{u, u} ≥
1

2
‖u‖2s , u ∈ Hp,o. (A.7)

Proof. The assumption that f ∈ L∞(−`, `), integration by parts, the Cauchy–Schwarz in-

equality, and the elementary inequality ab ≤ a2/3 + 3b2/4 can be used to estimate

∥∥u′′∥∥2

2
+

1

2

∥∥u′∥∥2

2
= Q0{u, u}+

3

2

∫ ∣∣u′∣∣2 dx−
∫
f u2 dx

≤ Q0{u, u} −
3

2

∫
u′′ udx+ ‖f‖∞ ‖u‖22

≤ Q0{u, u}+
1

2

∥∥u′′∥∥2

2
+

(
9

8
+ ‖f‖∞

)
‖u‖22 . (A.8)

To conclude the proof, simply add 1
2 ‖u‖

2
2 to both sides, rearrange, and observe thatQλ{u, u} =

Q0{u, u}+ λ ‖u‖22 for any λ.

Lemma A.1 can be used to show that the eigenvalues of the linear operator D must

be bounded from below. Indeed, letting λ = −σ in (A.3) implies that any eigenfunction-

eigenvalue pair (u, σ) satisfies

Q−σ{u, v} = 0 ∀v ∈ Hp,o. (A.9)

The bilinear form Q−σ{u, v} is obviously bounded on Hp,o (using ‖·‖s as the underlying

norm) and Lemma A.1 implies that it is also positive definite for all σ ≤ −α. Then, the

Lax-Milgram theorem (Evans, 2010, section 6.2.1) guarantees that u = 0 is the only function

satisfying (A.9) for σ ≤ −α, so any eigenvalues of D must be such that σ > −α.
Now, fix any λ > α. The bilinear form Qλ{u, v} satisfies the hypotheses of the Lax-

Milgram theorem, and for any g ∈ L2(−`, `) there exists a unique u ∈ Hp,o such that

Qλ{u, v} =

∫
g v dx ∀v ∈ Hp,o. (A.10)
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LetK : L2(−`, `)→ L2(−`, `) be the linear operator such that the unique u satisfying (A.10)

is given by u = Kg. Note that if u ∈ Hp,o is an eigenfunction of problem (3.17) with

eigenvalue σ 6= −λ, then it is also an eigenfunction of the operator Dλ with eigenvalue

σ + λ 6= 0, and an eigenfunction of K with eigenvalue 1/(σ + λ). The latter observation

follows from the fact that, for all v ∈ Hp,o,∫
g v dx = Qλ{u, v} =

∫
v Dλudx = (σ + λ)

∫
u v dx = (σ + λ)

∫
Kg v dx. (A.11)

Then, part (i) of Theorem 3.1 is a direct consequence of the following result.

Proposition A.2. The linear operator K has at most a countable sequence of real and

non-negative eigenvalues that converge to zero. In addition, there exist a sequence {wk}k∈N
of eigenfunctions of K that form an orthonormal basis for L2(−`, `).

Proof. The result follows from the theory of self-adjoint compact operators (Evans, 2010,

appendix D.6) if one can show that K is a bounded, compact, self-adjoint operator mapping

L2(−`, `) to L2(−`, `), and that
∫
g Kg dx ≥ 0 for all g ∈ L2(−`, `).

The assumption that λ > αmeans that one can use (A.10), Lemma A.1, and the Cauchy–

Schwarz inequality to estimate

1

2
‖Kg‖2s ≤ Qλ{u, u} =

∫
g udx ≤ ‖g‖2 ‖u‖2 ≤ ‖g‖2 ‖u‖s = ‖g‖2 ‖Kg‖s . (A.12)

Consequently, there exists a constant C > 0 such that ‖Kg‖s ≤ C ‖g‖2 and, since Hp,o

is compactly embedded in L2(−`, `),1 one concludes that K is a bounded and compact

operator mapping L2(−`, `) to itself.

To show that K is self-adjoint, consider g, h ∈ L2(−`, `) and let u1 = Kg, u2 = Kh. The

bilinear form Qλ is symmetric, and it follows from (A.10) that

∫
hKg dx =

∫
hu1 dx = Qλ{u2, u1} = Qλ{u1, u2} =

∫
g u2 dx =

∫
g Kh dx. (A.13)

Finally, for any g ∈ L2(−`, `) let u = Kg and use (A.10) and Lemma A.1 to obtain

∫
g Kg dx =

∫
g udx = Qλ{u, u} ≥ 0. (A.14)

In order to prove part (ii) of Theorem 3.1, recall that the sequence {wk}k∈N of eigen-

functions of K is also a sequence of eigenfunctions for the operator Dλ in (A.5), as well as
1An equivalent result for Sobolev spaces of periodic functions is proven by Robinson (2001, appendix A)

using Fourier series expansions. Replacing the Fourier series with a sine series yields the result for Hp,o.
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for the operator D = D0 in problem (3.17). Recall also that, if {ηk}k∈N and {σk}k∈N are

the sequences of eigenvalues of Dλ and D, respectively, then σk = ηk − λ. Note that ηk > 0

for all k ∈ N and ηk → ∞ as k → ∞ because they are the reciprocal of the eigenvalues of

the operator K, which are non-negative and tend to zero according to Proposition A.2.

First, observe that u = wk satisfies (A.10) with g = ηkwk for any k ∈ N. Moreover,

setting u = wk and g = ηkwk in (A.10), integrating by parts, and rearranging gives

∫
w′′k v

′′ dx =

∫ [
(ηk − λ− f)wk − w′′k

]
v dx. (A.15)

The term in square brackets on the right-hand side of this identity is the second weak

derivative of w′′k by the very definition of weak derivatives, meaning that wk has at least

four weak derivatives. Consequently, for any u ∈ Hp,o it makes sense to use integration by

parts to write

Qλ{wk, u} =

∫
uDλwk dx = ηk

∫
uwk dx, (A.16)

where the second inequality follows because wk is an eigenfunction of Dλ with eigenvalue

ηk. This identity and the fact that the functions wk are orthonormal imply that, for all

k, l = 0, 1, . . . with k 6= l,

Qλ{wk, wk} = ηk

∫
w2
k dx = ηk, (A.17a)

Qλ{wk, wl} = ηk

∫
wk wl dx = 0. (A.17b)

Second, note that {wk}k∈N is an orthonormal basis for L2(−`, `), so any u ∈ Hp,o ⊂
L2(−`, `) can be written as

u =
∑
k≥0

ckwk, (A.18)

the series converging in the L2 sense. If, moreover, ‖u‖2 = 1, then the expansion coefficients

ck :=
∫
uwk dx are such that ∑

k≥0

ck
2 = ‖u‖22 = 1. (A.19)

In addition, the sequence {η−1/2
k wk}k∈N is an orthonormal basis for Hp,o when endowed

with the inner product defined by the positive definite2, symmetric, and bilinear form Qλ.
In fact, since {wk}k∈N is an orthonormal basis of L2(−`, `) it follows from (A.16) that u = 0

is the only member of Hp,o satisfying

Qλ{η−1/2
k wk, u} = 0, k = 0, 1, . . . . (A.20)

2Positive definiteness follows from Lemma A.1 because it has been assumed that λ > α.
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Consequently, any u ∈ Hp,o can be expanded as

u =
∑
k≥0

dk
wk√
ηk
, dk := Qλ{u, η−1/2

k wk}, (A.21)

the series converging in Hp,o. But (A.16) implies that

dk = Qλ{u, η−1/2
k wk} = Qλ{η−1/2

k u,wk} = η
1/2
k

∫
uwk dx = η

1/2
k ck, (A.22)

meaning that the series (A.18) converges not only in L2(−`, `), but also in Hp,o. Thus,

for any u ∈ Hp,o with ‖u‖2 = 1, equations (A.17a), (A.17b), (A.19) and the fact that

0 < η0 ≤ η1 ≤ . . . imply

Qλ{u, u} =
∑
k≥0

ηk ck
2 ≥ η0, (A.23)

and hence

inf
u∈Hp,o

‖u‖2=1

Q0{u, u} = inf
u∈Hp,o

‖u‖2=1

Qλ{u, u} − λ ≥ η0 − λ = σ0. (A.24)

Equality holds for u = w0 so the infimum is attained, proving part (ii) of Theorem 3.1.

A.2 Proof of Theorem 4.2

Define the norm ‖w‖2k :=
∫ 1
−1(Dkw)TDkw dx, consider the functional

Hγ{w} :=
Fγ{w}
‖w‖2k

, (A.25)

and let

t(γ) := inf
w∈H {0}

Hγ{w}, tN (γ) := inf
w∈SN {0}

Hγ{w}. (A.26)

These infima need not be achieved. Clearly, the sets T and T out
N are described by the

inequalities t(γ) ≥ 0 and tN (γ) ≥ 0, respectively, and one has the following result.

Lemma A.3. Suppose γ /∈ T , meaning that there exists εγ > 0 such that t(γ) ≤ −2εγ .

Then, there exists an integer Nγ such that tN (γ) ≤ −εγ for all N ≥ Nγ .

Proof. Let {wn}n≥0, wn ∈ H, wn 6= 0 be a minimising sequence for Hγ{w}, such that

lim
n→∞

Hγ{wn} = t(γ), (A.27)

and for each n define µn := ‖wn‖2k /(n + 1). Note that F
(
x,Dkw(x)

)
, the integrand of

Fγ{w}, and the product (Dkw(x))TDkw(x) are continuous with respect to all entries of
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the vector Dkw(x) at each fixed x ∈ [−1, 1]. Using

|Fγ{w} − Fγ{wn}| ≤ 2
∥∥∥F (x,Dkw)− F (x,Dkwn

)∥∥∥
∞

(A.28)

and a similar inequality for
∣∣∣‖w‖2k − ‖wn‖2k

∣∣∣, it is then not difficult to show that there exists

δn > 0 such that if

max
0≤α≤k

‖∂αw − ∂αwn‖∞ ≤ δn, (A.29)

then
|Fγ{w} − Fγ{wn}| ≤ µn, (A.30a)∣∣∣‖w‖2k − ‖wn‖2k

∣∣∣ ≤ µn. (A.30b)

Since the Weierstrass approximation theorem can be extended to linear subspaces of

continuously differentiable functions with prescribed boundary conditions (Peet & Bliman,

2007, Proposition 2), there exists a vector-valued polynomial Pn ∈ H of degree dn, Pn 6=
0, that satisfies (A.29). It may be assumed without loss of generality that dn < dn+1.

Using (A.30b) it can be shown that

n+ 1

n+ 2
≤ ‖wn‖2k
‖Pn‖2k

≤ n+ 1

n
(A.31)

and since Pn ∈ SN for all N ∈ {dn, . . . , dn+1− 1} one can utilise (A.30a), (A.30b), and the

definition of µn to write

tN (γ) ≤ Hγ{Pn} ≤
|Fγ{Pn} − Fγ{wn}|

‖Pn‖2k
+
‖wn‖2k
‖Pn‖2k

Hγ{wn} ≤
1

n
+
‖wn‖2k
‖Pn‖2k

Hγ{wn}.

(A.32)

Since t(γ) ≤ tN (γ), it follows from (A.27), (A.31), and (A.32) that tN (γ) − t(γ) ↓ 0 as

N (hence n) tends to infinity. Then, since t(γ) ≤ −2εγ by assumption, there exists Nγ ∈ N

such that

tN (γ) ≤ εγ + t(γ) ≤ εγ − 2εγ = −εγ < 0 ∀N ≥ Nγ . (A.33)

Armed with Lemma A.3, one can prove Theorem 4.2. That the sequence of optimal

values {p?N}N≥0 is non-decreasing follows from the inclusion T out
N+1 ⊂ T out

N . All that is left

to prove is convergence when (4.14) achieves its optimal value at an optimal point γ?. To

do so, suppose that the feasible set T of (4.14) is bounded. If this were not the case, one

could formulate an equivalent problem with bounded feasible set and for which γ? remains

an optimal solution simply by adding the constraint ‖γ‖ ≤ r for a sufficiently large r > 0.

186



Appendix A. Miscellaneous proofs

Since T is bounded, for any ε > 0 (different from that used in Lemma A.3), the set

K := {γ : ε ≤ dist(γ, T ) ≤ 2 ε}, (A.34)

where dist(γ, T ) = minη∈T ‖η − γ‖ is the usual euclidean distance of γ from T , is compact.

In addition, it only contains points that are infeasible for (4.14). By Lemma A.3, for each

γ ∈ K there exists an integer Nγ such that tN (γ) < 0 for all N ≥ Nγ , meaning that γ is

infeasible for (4.24) for all N ≥ Nγ .
At this stage, one can combine this observation with the compactness of K and the

continuity of tN (γ) with γ—the proof of this fact is not difficult and is left to the reader—

to find an integer N0 = N0(ε), a finite collection of points {γi}N0
i=1 in K, and positive

values {δi}N0
i=1 such that (i) the balls B(γi, δi) with centre γi and radius δi cover K, and (ii)

tN (γ) < 0 in each ball for all N ≥ N0. Consequently, all points in K are infeasible for the

outer SDP relaxation (4.24) when N ≥ N0.

Now, the feasible set T out
N of the outer SDP relaxation is convex, so in particular it is

connected. Then, it must be contained within an ε-neighbourhood of T for all N ≥ N0:

∀N ≥ N0, max
γ∈T out

N

dist(γ, T ) < ε. (A.35)

In particular, T out
N is bounded, and there exists a point γ?N with cTγ?N = p?N whose projection

onto T , denoted PT (γ?N ), satisfies ‖PT (γ?N )− γ?N‖ < ε. Then, for all N ≥ N0,

p? − ‖c‖ ε ≤ cTPT (γ?N )− ‖c‖ ε

= cT [PT (γ?N )− γ?N ] + p?N − ‖c‖ ε

≤ ‖c‖ ‖PT (γ?N )− γ?N‖+ p?N − ‖c‖ ε

< p?N .

(A.36)

Since p?N ≤ p? then p? − ‖c‖ ε ≤ limN→∞ p?N ≤ p? for any ε, and the proof of Theorem 4.2

is concluded by letting ε→ 0.

A.3 Proof of Lemma 4.3

The statement is trivial when α = k. For α ≤ k − 1, the fundamental theorem of calculus

can be applied to show that

(∂αu) (x) = ∂αu(−1) +

∫ x

−1
∂α+1u(t) dt = ∂αu(−1) +

∑
n≥0

ûα+1
n

∫ x

−1
Ln(t) dt. (A.37)
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Integration and summation can be exchanged because u ∈ Cm([−1, 1]) and k ≤ m − 1, so

the Legendre expansions of ∂αu, α ∈ {0, ..., k}, converge uniformly (cf. section 4.1).

The last expression in (A.37) can be integrated recalling that L0(x) = 1, L1(x) = x,

Ln(±1) = (±1)n and using the recurrence relation (4.8). Then,

∂αu = ∂αu(−1) + [L1+L0] ûα+1
0 +

∑
n≥1

[Ln+1 − Ln−1]
ûα+1
n

2n+ 1
. (A.38)

Rearranging the series and comparing coefficients with the Legendre expansion of ∂αu yields

ûα0 = ∂αu(−1) + ûα+1
0 − 1

3
ûα+1

1 , (A.39a)

ûαn =
ûα+1
n−1

2n− 1
− ûα+1

n+1

2n+ 3
, n ≥ 1. (A.39b)

Using these identities one can easily construct matrices Cα and Eα such that

ûα[r,s] = EαDk−1u(−1) +Cαûα+1
[r−1,s+1]. (A.40)

Here and in the following, it should be understood that negative indices should be replaced

by 0. Note that the matrices Cα and Eα depend on r and s, but this is not indicated

explicitly to ease the notation. Note also that (A.39) implies Eα = 0 if r ≥ 1.

Expressions similar to (A.40) can be built for all vectors ûα+i
[r−i,s+i], i ∈ {0, . . . , k−α−1}.

After some algebra, it is therefore possible to write

ûα[r,s] = Bα
[r,s]Dk−1u(−1) +

(
k−α−1∏
i=0

Cα+i

)
ûk[r−k+α,s+k−α], (A.41)

where

Bα
[r,s] := Eα +CαEα+1 + · · ·+

(
k−α−2∏
i=0

Cα+i

)
Ek−1. (A.42)

Note that, in light of (A.39), all matrices Eα+i, i ∈ {0, . . . , k−α−1}, are zero if r ≥ k−α.
Since s + k − α ≤ M by assumption, the last term in (A.41) can be rewritten in terms of

ûk[0,M ] (recall that r − k + α is replaced by 0 if it is negative). Defining

Dα
[r,s] :=

[
0(s−r+1)×(r−k+α),

k−α−1∏
i=0

Cα+i, 0(s−r+1)×(M−s−k+α)

]
, (A.43)

where subscripts indicate the size of the zero matrices, concludes the proof.
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A.4 Proof of Lemma 4.4

Recalling the definition of the vector of boundary values Bk−1u from (4.5), one only needs to

show that Dk−1u(1) can be expressed as linear combination of the entries of ǔM . Applying

the fundamental theorem of calculus as in appendix A.3, for any α ∈ {0, . . . , k− 1} it may

be shown that

∂αu(1) = ∂αu(−1) + 2ûα+1
0 . (A.44)

According to Lemma 4.3, ∂αu(1) can then be written as a linear combination of the entries

of ǔM . Repeating this argument for all α ∈ {0, . . . , k − 1} shows that the same is true for

all entries of Dk−1u(1), proving the existence of the matrix GM as desired.

A.5 Proof of Lemma 4.6

(i) Recall (4.26) and expand

Qαβuv =

Nα∑
m=0

+∞∑
n=Nβ+1

ûαmv̂
β
n

∫ 1

−1
f Lm Ln dx+

∞∑
m=Nα+1

Nβ∑
n=0

ûαmv̂
β
n

∫ 1

−1
f Lm Ln dx, (A.45)

where Nα = N + α and Nβ = N + β. Since f is a polynomial of degree at most dF ,

the product f Lm is a polynomial of degree at most m + dF , so it is orthogonal to any

Legendre polynomial Ln with n > m+ dF . In particular, it may be shown (Dougall, 1953)

that the integral
∫ 1
−1 fLnLm dx vanishes if |m − n| > dF . Using the short-hand notation

n = n+ 1− dF , one can therefore write

Qαβuv =


ûα
Nβ
...

ûαNα


T

Φ
[Nβ+1,Nα+dF ]

[Nβ ,Nα]


v̂βNβ+1

...

v̂βNα+dF

+


v̂β
Nα
...

v̂βNβ


T

Φ
[Nα+1,Nβ+dF ]

[Nα,Nβ ]


ûαNα+1

...

ûαNβ+dF

 . (A.46)

For generality, it has been assumed here that α, β and dF satisfy 1− dF ≤ α− β ≤ dF − 1,

so the vectors in (A.46) are well-defined. If the first (resp. second) of these conditions is

violated, then the first (resp. second) term in (A.46) simply vanishes.

Since Nα + dF ≤ M + β − k and Nβ + dF ≤ M + α − k, the conditions of Lemma 4.3

hold. In addition, the assumption that N ≥ dF + k − 1 guarantees that Nα ≥ k − β and

Nβ ≥ k − α, so Lemma 4.3 can be applied with no dependence on the boundary values.

Consequently, there exists a matrix Q(γ) such that

Qαβuv =
(
ûk[0,M ]

)T
Q(γ) v̂k[0,M ]. (A.47)
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Finally, the matrix Qαβ
uv is constructed by using (4.38) after taking the symmetric part of

the right-hand side of (A.47).

(ii) Let

ν :=
[
ûkM+1, . . . , û

k
M+dF

, v̂kM+1, . . . , v̂
k
M+dF

]T
. (A.48)

After replacing Nα and Nβ with M in (A.46), it may be verified using (4.38) that

Qkkuv = 2ψM
T ΞM

TY ν. (A.49)

By (4.42),

0 ≤

ΞMψM

ν

T Qkk
uv Y

Y T Σkk
uv ⊗∆

ΞMψM

ν


= ψM

T
(
ΞM

TQkk
uvΞM

)
ψM + νT

(
Σkk
uv ⊗∆

)
ν +Qkkuv. (A.50)

Now, Σkk
uv is a diagonal matrix by assumption. Then, the definitions of ∆ and ν imply

Qkkuv ≥ −ψMT
(
ΞM

TQkk
uvΞM

)
ψM−(Σkk

uv)1,1

M+dF∑
n=M+1

2|ûkn|2
2n+ 1

−(Σkk
uv)2,2

M+dF∑
n=M+1

2|v̂kn|2
2n+ 1

. (A.51)

The sums in (A.51) can be bounded by
∥∥UkM∥∥2

2
and

∥∥V K
M

∥∥2

2
by virtue of (4.11), giving (4.43).

A.6 Proof of Lemma 4.7

For each α ≤ k, the quantity ‖UαNα‖22 can be bounded in terms of the vector ûk[0,M ] and

‖UkM‖22 (a similar bound can be found for V β
Nβ

). To derive this bound, begin by noticing

that (4.26), (4.27), and (4.31) imply

1

2

∥∥UαNα∥∥2

2
=

M−k+α∑
n=Nα+1

(ûαn)2

2n+ 1
+

+∞∑
n=M−k+α+1

(ûαn)2

2n+ 1

=
(
ûk[0,M ]

)T
Hα û

k
[0,M ] +

+∞∑
n=M−k+α+1

(ûαn)2

2n+ 1
, (A.52)

where the matrixHα can be obtained from Lemma 4.3. Since (A.39b) is applied k−α times

to (ûαn)2 to compute Hα, and since n > Nα ≥ N , it follows that ‖Hα‖f ∼ N−2(k−α)−1.

When α = k, the last term in (A.52) is 1
2

∥∥UkM∥∥2

2
, so

1

2

∥∥∥UkNk∥∥∥2

2
=
(
ûk[0,M ]

)T
Hk û

k
[0,M ] +

1

2

∥∥∥UkM∥∥∥2

2
. (A.53)
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When α ≤ k − 1, instead, define

ωη :=
4

[2(M − k + η) + 1][2(M − k + η) + 5]
, η ∈ {0, . . . , k − 1}. (A.54)

Using (A.39), the elementary inequality (a − b)2 ≤ 2(a2 + b2), and appropriate changes of

indices one can estimate

+∞∑
n=M−k+α+1

(ûαn)2

2n+ 1
≤

+∞∑
n=M−k+α+1

2

2n+ 1

[
|ûα+1
n−1|2

(2n− 1)2
+
|ûα+1
n+1|2

(2n+ 3)2

]

≤
M−k+α+1∑
n=M−k+α

2|ûα+1
n |2

(2n+ 3)(2n+ 1)2
+

∞∑
n=M−k+α+2

4|ûα+1
n |2

(2n− 1)(2n+ 1)(2n+ 3)

≤
M−k+α+1∑
n=M−k+α

2|ûα+1
n |2

(2n+ 3)(2n+ 1)2
+ ωα+1

+∞∑
n=M−k+α+2

|ûα+1
n |2

2n+ 1
. (A.55)

Applying Lemma 4.3 to the first term on the right-hand side of (A.55) and substituting

back into (A.52) reveals that there exists a matrix Tα such that

1

2

∥∥UαNα∥∥2

2
≤
(
ûk[0,M ]

)T
Tα û

k
[0,M ] + ωα+1

+∞∑
n=M−k+α+2

|ûα+1
n |2

2n+ 1
. (A.56)

As for Hα, it may be verified that ‖Tα‖f ∼ N−2(k−α)−1.

Similar estimates can be carried out for the infinite sum on the right-hand side of (A.56).

By recursion, one can eventually construct a matrix Zα and a constant λα such that

1

2

∥∥UαNα∥∥2

2
≤
(
ûk[0,M ]

)T
Zα û

k
[0,M ] + λα

∥∥∥UkM∥∥∥2

2
. (A.57)

Note that ‖Zα‖f ∼ N−2(k−α)−1 and λα ∼ N−2(k−α), because every step of the recursion

procedure introduces a factor of N−2 according to (A.54). Moreover, the right-hand side

of (A.57) has the same form as (A.53), so for the rest of this section no distinction will be

made between the case α ≤ k − 1 and the case α = k.

The estimate (A.57) can be used in conjunction with Young’s inequality and (4.38) to

show that, for any ε > 0,

|Rαβuv | ≤ ‖f‖∞ψMT

Ξ0
T

εZα 0

0 1
εZβ

Ξ0

ψM
+ ‖f‖∞

(
ελα ‖Uk‖22 +

λβ
ε
‖Vk‖22

)
. (A.58)
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At this stage, set ε = (N + 1)β−α, such that ελα ∼ ε−1λβ ∼ Nα+β−2k and ‖εZα‖f ∼∥∥ε−1Zβ
∥∥
f ∼ Nα+β−2k−1. Additionally, let

Rαβ
uv := Ξ0

T

εZα 0

0 1
εZβ

Ξ0, Σαβ
uv :=

ελα 0

0 ε−1λβ

 . (A.59)

Recalling that the Legendre polynomials satisfy ‖Ln‖∞ ≤ 1 for all n ≥ 0 (Jackson, 1930),

equation (4.44) follows from the estimate

‖f‖∞ = sup
x∈[−1,1]

∣∣∣∣∣
p∑

n=0

f̂n(γ)Ln(x)

∣∣∣∣∣ ≤
p∑

n=0

∣∣∣f̂n(γ)
∣∣∣ =

∥∥∥f̂(γ)
∥∥∥

1
. (A.60)

A.7 Proof of (6.21)

Let θ̂0(z) = v(z) to simplify the notation. It is not difficult to check using the calculus of

variations that the infimum of Q0 over all test functions v that satisfy v(0) = 0 and v′(1) = 0

is not attained unless β = 2. This difficulty can be resolved by noticing that

inf
v(0)=0,
v′(1)=0

Q0{v} = min
A

min
v(0)=0,
v(1)=A

Q0{v}. (A.61)

In other words, one can replace the Neumann BC v′(0) = 0 with the Dirichlet condition

v(1) = A, solve the Dirichlet problem

Q?0(A) := min
v(0)=0,
v(1)=A

Q0{v}, (A.62)

and minimise Q?0(A) over A. Equation (A.61) is justified because for each value A, the min-

imum of the Dirichlet problem can be approximated with arbitrary accuracy by a function

that satisfies v′(1) = 0; for example, if v? is the minimiser of the Dirichlet problem (A.62)

for a given A, take

v(z) =


v?(z), 0 ≤ z ≤ 1− δ,

v?(1− δ), 1− δ ≤ z ≤ 1

(A.63)

for δ > 0 sufficiently small. A rigorous proof is omitted for brevity, but a similar argument

was given by Fantuzzi & Wynn (2017, appendix C).

The minimiser of the Dirichlet problem (A.62) satisfies the Euler–Lagrange equation

− 2 v′′ − α− 2

α− 1
τ ′′ = 0 (A.64)
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subject to the BCs v(0) = 0 and v(1) = A, and is given by

v?(z) =
α− 2

2(α− 1)
[τ(1) z − τ(z)] +Az. (A.65)

The corresponding minimum is

Q?0(A) = A2 +
(α− 2) τ(1) + α− β

α− 1
A+

(α− 2)2
[
|τ(1)|2 − ‖τ ′‖22

]
4(α− 1)2

. (A.66)

An expression for the minimum over A is readily found, and it can be rearranged in the

form (6.21) after noticing that τ(1) =
∫ 1

0 τ
′(z) dz by virtue of (6.7).

A.8 Proof of the bound (6.48)

Consider a piecewise-linear scaled background field of the form

ρ(z) =


−Rz 0 ≤ z ≤ δ,

−Rδ, δ ≤ z ≤ 1.

(A.67)

The boundary layer slope R > 0 and thickness δ > 0 should be chosen to satisfy the spectral

constraint (6.25) whilst optimising the bound on the Nusselt number,

1

Nu
≥ 1− ‖ρ′ + 1‖2 − ρ(1)

2
=

1−
√

1 +R (R− 2) δ +Rδ

2
. (A.68)

Recall from section 6.2 that the spectral constraint is equivalent to the quadratic form

Qk{θ̂k} in (6.19) being positive semidefinite for all wavenumbers k ≥ 1, and recall the change

of variables α/(α − 1)τ(z) = ρ(z). Although the test function θ̂k is complex valued, the

contributions of its real and imaginary parts to Qk{θ̂k} are identical and independent, so it

suffices to consider real-valued test functions. Consequently, R and δ must be chosen such

that, for all k ≥ 1,

Qk{v} =
∥∥v′∥∥2

2
+ k2 ‖v‖22 −MaRv(1)

∫ δ

0
fk(z) v(z) dz ≥ 0 (A.69)

for all real-valued functions v(z) that satisfy the BCs v(0) = 0 and v′(1) = 0.

To bound the sign-indefinite term in (A.69), note that the BC v(0) = 0 and the Cauchy–

Schwarz inequality imply

|v(1)| =
∣∣∣∣∫ 1

0
v′(z) dz

∣∣∣∣ ≤ ∥∥v′∥∥2
. (A.70)
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Moreover, since |fk(z)| = −fk(z) ≤ c z2 for c ≈ 0.943 (Hagstrom & Doering, 2010),

∣∣∣∣MaRv(1)

∫ δ

0
fk(z) v(z) dz

∣∣∣∣ ≤ MaRc
∣∣∣∣∫ δ

0

∫ z

0
z2 v′(ξ) dξ dz

∣∣∣∣ ∥∥v′∥∥2

= MaRc
∣∣∣∣∫ δ

0

∫ δ

ξ
z2 v′(ξ) dz dξ

∣∣∣∣ ∥∥v′∥∥2

=
MaRc

3

∣∣∣∣∫ δ

0

(
δ3 − ξ3

)
v′(ξ) dξ

∣∣∣∣ ∥∥v′∥∥2

≤ MaRc
3

√∫ δ

0
(δ3 − ξ3)2 dξ

∥∥v′∥∥2

2

=
MaRc δ7/2

√
14

∥∥v′∥∥2

2
. (A.71)

Inequality (A.69) therefore holds if

δ =

(
MaRc√

14

)−2/7

. (A.72)

With this choice of δ, the asymptotic behaviour of the bound (A.68) as Ma tends to infinity

is
1

Nu
≥
(√

14

c

)2/7
R (4−R)

4R2/7
Ma−2/7, (A.73)

and upon choosing R = 5/3 to maximise the prefactor one obtains

Nu ≤ 36

35

(
5 c

3
√

14

)2/7

Ma2/7 ≈ 0.803Ma2/7 as Ma→∞. (A.74)

A.9 Proof of (6.57)

Drop the suffix ? from λ? to ease the notation and rearrange (6.57) as

(λ− 1)

{
λγ1Maγ1 +

c

[ln(λMa)]γ2

[
γ1 − 1 +

γ2

ln(λMa)

]}
= λγ1Maγ1 − c

[ln(λMa)]γ2
. (A.75)

To solve this equation when Ma� 1 using asymptotic expansions, introduce the ansatz

λ = k0 + k1Ma−γ1(lnMa)−γ2 + · · · , (A.76)

where the notation + · · · means that higher-order terms are omitted. The exact form of the

higher-order terms is not important to determine the constants k0 and k1. Equation (A.75)

can be rewritten in a more convenient form using the fact that Ma � 1. To do this, one

begins by considering (λMa)γ1 , ln(λMa), and [ln(λMa)]p for a generic exponent p.
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First, use the fact that (1 + ε)γ1 = 1 + γ1ε+ · · · for ε� 1 to expand

(λMa)γ1 = Maγ1kγ10

[
1 +

k1

k0
Ma−γ1(lnMa)−γ2 + · · ·

]γ1
= Maγ1kγ10

[
1 + γ1

k1

k0
Ma−γ1(lnMa)−γ2 + · · ·

]
= Maγ1kγ10 + γ1k

γ1−1
0 k1(lnMa)−γ2 + · · · . (A.77)

Second, apply the properties of logarithms and the expansion ln(1 + ε) = ε+ · · · for ε� 1

to write

ln(λMa) = ln

{
Ma k0

[
1 +

k1

k0
Ma−γ1(lnMa)−γ2 + · · ·

]}
= lnMa + ln k0 + ln

[
1 +

k1

k0
Ma−γ1(lnMa)−γ2 + · · ·

]
= lnMa + ln k0 +

k1

k0
Ma−γ1(lnMa)−γ2 + · · · . (A.78)

Finally, (A.78) and the expansion (1 + ε)p = 1 + pε+ · · · yield

[ln(λMa)]p = (lnMa)p
[
1 + ln k0 (lnMa)−1 +

k1

k0
Ma−γ1(lnMa)−γ2−1 + · · ·

]p
= (lnMa)p

[
1 + p ln k0 (lnMa)−1 + p

k1

k0
Ma−γ1(lnMa)−γ2−1 + · · ·

]
= (lnMa)p + p ln k0 (lnMa)p−1 + p

k1

k0
Ma−γ1(lnMa)p−γ2−1 + · · · . (A.79)

Using (A.77) and (A.79) with p = −γ2, the right-hand side of (A.75), denoted by R,

becomes

R := λγ1Maγ1 − c

[ln(λMa)]γ2

= Maγ1kγ10 + γ1k
γ1−1
0 k1(lnMa)−γ2 + · · · − c (lnMa)−γ2 + · · ·

= Maγ1kγ10 +
[
γ1k

γ1−1
0 k1 − c

]
(lnMa)−γ2 + · · · . (A.80)

Similarly,
c

[ln(λMa)]γ2

[
γ1 − 1 +

γ2

ln(λMa)

]
= c(γ1 − 1)(lnMa)−γ2 + · · · , (A.81)

so the term in curly braces on the left-hand side of (A.75), denoted S for convenience,

becomes

S := λγ1Maγ1 +
c

[ln(λMa)]γ2

[
γ1 − 1 +

γ2

ln(λMa)

]
= Maγ1kγ10 + γ1k

γ1−1
0 k1(lnMa)−γ2 + · · ·+ c(γ1 − 1)(lnMa)−γ2 + · · ·

= Maγ1kγ10 +
[
γ1k

γ1−1
0 k1 + c(γ1 − 1)

]
(lnMa)−γ2 + · · · . (A.82)
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The left-hand side of (A.75), denoted L for simplicity, can then be expanded as

L := (λ− 1)S

=
(
k0 − 1 + k1Ma−γ1(lnMa)−γ2 + · · ·

)
×{

Maγ1kγ10 +
[
γ1k

γ1−1
0 k1 + c(γ1 − 1)

]
(lnMa)−γ2 + · · ·

}
= (k0 − 1)kγ10 Maγ1

+
{

(k0 − 1)
[
γ1k

γ1−1
0 k1 + c(γ1 − 1)

]
+ kγ10 k1

}
(lnMa)−γ2 + · · · . (A.83)

Equation (A.75) requires that L = R. Upon matching terms proportional to Maγ1 in (A.80)

and (A.83) one finds

kγ10 = (k0 − 1)kγ10 ⇒ k0 = 2. (A.84)

Similarly, after equating terms proportional to (lnMa)−γ2 in (A.80) and (A.83) and using

the fact that k0 = 2 one concludes that

γ12γ1−1k1 − c = γ12γ1−1k1 + c(γ1 − 1) + 2γ1k1 ⇒ k1 = −c γ1 2−γ1 . (A.85)

Substituting the values of k0 and k1 into (A.76) gives (6.57).

A.10 Proof of (6.69)

Since any test function v ∈ Γ vanishes at z = 0, integration by parts shows that for any

constant γ ≥ 0

γ |v(1)|2 − 2 γ

∫ 1

0
v v′ dz = 0. (A.86)

Adding this to the quadratic form Qk{v} in (6.68) and using the Cauchy–Schwarz inequality

to estimate the sign-indefinite terms yields

Qk{v}≥
∥∥v′∥∥2

2
+ k2 ‖v‖22 + γ |v(1)|2 − 2 γ

∥∥v′∥∥
2
‖v‖2 −Ma ‖(φ− 1) fk‖2 |v(1)| ‖v‖2 , (A.87)

so Qk{v} ≥ 0 if ∥∥v′∥∥2

2
− 2 γ

∥∥v′∥∥
2
‖v‖2 + ωk2 ‖v‖22 ≥ 0, (A.88a)

(1− ω) k2 ‖v‖22 −Ma ‖(φ− 1)fk‖2 |v(1)| ‖v‖2 + γ |v(1)|2 ≥ 0, (A.88b)

for some scalar ω ∈ (0, 1). Recalling that a quadratic form ax2 + bxy + cy2 is non-negative

for all x and y if b2 ≤ 4ac, and choosing γ =
√
ωk to complete the square in (A.88a), one
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Figure A.1: Plot of k3/ ‖fk‖22 ( ) along with its small-k asymptote, 1680k−1 ( ), and
its large-k asymptote, 16k4 ( ). The minimum (•) is at k ≈ 1.633.

obtains that Qk{v} ≥ 0 if

Ma2 ‖(φ− 1) fk‖22 ≤ 4 (1− ω)
√
ω k3. (A.89)

After setting ω = 1/3 to maximise the right-hand side, estimating

‖(φ− 1) fk‖2 ≤ ‖φ− 1‖∞ ‖fk‖2 , (A.90)

and rearranging, one arrives at

k3

‖fk‖22
≥ 3
√

3

8
Ma2 ‖φ− 1‖2∞ . (A.91)

Figure A.1 demonstrates that k3/ ‖fk‖22 has a minimum at k = kcrit ≈ 1.633, grows

asymptotically to 1680 k−1 as k → 0, and quickly asymptotes to 16 k4 for k > kcrit. In

fact k3/ ‖fk‖22 ≥ 16k4 so (A.91)—and hence the Fourier-transformed spectral constraint

Qk{v} ≥ 0—holds for all wavenumbers larger than the critical value

kc :=

(3
√

3

128

)1/4

Ma1/2 ‖φ− 1‖1/2∞

 . (A.92)
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Appendix B

Energy stability of stress-driven shear
flows in finite periodic domains

Consider the same stress-driven shear flow described in section 5.1. Energy stability analy-

sis (Hagstrom & Doering, 2014) shows that the laminar flow u` = Gr z e1 is globally stable

for all Grashoff numbers up to the critical value

GrE := sup
Gr

Gr,

s.t. E{u} :=

∫
Ωd

‖∇u‖2f + Gruw ddx ≥ 0 ∀u ∈ H,
(B.1)

where d = 2 or 3 depending on whether the two- or the three-dimensional flow model is

being considered. The space H, defined in equation (5.12), is the space of smooth functions

that satisfy incompressibility and the homogeneous version of the flow’s boundary conditions

(BCs), given explicitly in (5.7).

The energy stability problem (B.1) for two- and three-dimensional fluid layers that extend

to infinity in the horizontal directions (i.e., Γx,Γy →∞) was solved by Hagstrom & Doering

(2014), who established that GrE ≈ 51.7300 in three dimensions and GrE ≈ 139.5396 in

two dimensions. These values are (sharp) lower bounds on the largest GrE for a periodic

layer with finite aspect ratios Γx, Γy, because in this case perturbations are defined only

by a countable set of horizontal Fourier modes. This appendix describes how the critical

Grashoff number GrE for energy stability of the laminar flow in finite periodic layers can

be estimated accurately, from above and from below, using the methods of chapter 4. This

is done for two reasons. First, knowing GrE for prescribed finite values of the horizontal

periods Γx, Γy (Γx only in two dimensions) is useful to verify that the bounds on the energy

dissipation coefficients Cε computed in chapter 5 are correct. Second, it is demonstrated

that using SDPs is an attractive alternative to the traditional approach to energy stability

problems in fluid mechanics, based on the solution of boundary-eigenvalue problems.
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Section B.1. Energy stability in two dimensions

B.1 Energy stability in two dimensions

In two spatial dimensions, each function u ∈ H can be expanded using the same Fourier

series introduced in section 5.3.3. In fact, steps similar to those outlined in section 5.3.3

show that the functional E{u} is positive semidefinite for all u ∈ H if and only if, for all

positive integers m, the quadratic form

Em{Wm} :=

∫ 1

0

1

α2
m

∣∣W ′′m(z)
∣∣2 + 2

∣∣W ′m(z)
∣∣2 + α2

m |Wm(z)|2 − Gr
αm

Im
[
W ′m(z)W ∗m(z)

]
dz

(B.2)

is non-negative for all complex-valued functions Wm that satisfy the BCs

Wm(−1) = Wm(1) = W ′m(−1) = W ′′m(1) = 0. (B.3)

In these expressions, αm = 2πm/Γx is the wavenumber in the horizontal direction, Wm is

the vertical component of the m-th mode in the Fourier expansion of u, and the superscript

∗ denotes complex conjugation.

For any value of Gr, only a finite number of values m need be considered explicitly,

because Em{Wm} is positive when m is large. In fact, upon applying the Cauchy-Schwarz

inequality and the elementary inequality ab ≤ a2/(
√

2αm) + αmb
2/(2
√

2) one can bound

Em{Wm} ≥ 2
∥∥W ′m∥∥2

2
+ α2

m ‖Wm‖22 −
Gr
αm

∥∥W ′m∥∥2
‖Wm‖2

≥
(

1− Gr
2
√

2α2
m

)(
2
∥∥W ′m∥∥2

2
+ α2

m ‖Wm‖22
)
. (B.4)

Consequently, for any fixed Gr the inequality Em{Wm} ≥ 0 holds for all m such that

α2
m ≥ Gr/(2

√
2) or, equivalently, for all m larger than the critical value

mcr(Gr) :=

⌊
Γx
π

√
Gr

8
√

2

⌋
. (B.5)

Then, upon replacing the inequality1 E{u} ≥ 0 in problem (B.1) with the set of constraints

Em{Wm} ≥ 0, m ≤ mcr(Gr), one concludes that

GrE = sup
Gr

Gr,

s.t. Em{Wm} ≥ 0 ∀Wm satisfying (B.3), m = 1, 2, . . . , mcr(Gr).
(B.6)

1All functional inequalities should be understood as being imposed over the set of admissible argument
functions, even when this is not explicitly specified. For instance, the inequality E{u} ≥ 0 is imposed for all
u ∈ H, while the inequality Em{Wm} ≥ 0 is imposed for all Wm that satisfy (B.3).
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Appendix B. Energy stability of stress-driven shear flows in finite periodic domains

Table B.1: Upper and lower bounds on GrE for the two-dimensional flow model and two
values of the horizontal period, Γx = 2 and Γx = 3. The tabulated upper and lower bounds
were computed, respectively, through the solution of outer and inner SDP approximations

of (B.6) set up with QUINOPT using degree-N Legendre expansions.

Γx = 2 Γx = 3

N Lower bound Upper bound Lower bound Upper bound

2 0.000000 ∞ 0.000000 ∞
4 0.000000 ∞ 131.254405 ∞
6 46.831187 140.177761 148.653886 149.387859
8 139.539920 139.545729 148.662378 148.673814
10 139.539934 139.539943 148.662419 148.662430
12 139.539935 139.539935 148.662419 148.662419

This is an optimisation problem with affine homogeneous integral inequality constraints

of the type studied in chapter 4, so rigorous (modulo numerical roundoff error) upper and

lower bounds for GrE can be computed using semidefinite programming. More precisely,

after replacing each integral inequality Em{Wm} ≥ 0 with an LMI derived using the outer

approximation method of section 4.3 one calculates an upper bound on GrE , because the

constraints are relaxed. Instead, a lower bound is obtained when the inner approximation

technique of section 4.4 is employed because the constraints are strengthened.

The only complication preventing a direct implementation of inner and outer SDP ap-

proximations of (B.6) is that the number of constraints depends on the optimisation variable,

and is therefore unknown. However, one can use the same iterative procedure described at

the end of section 5.3.3. First, fix and integerm0 and compute an upper (resp. lower) bound

B on GrE by solving an outer (resp. inner) SDP approximation of (B.6) considering only

constraints with m ≤ m0. If m0 < mcr(B), check that the candidate bound B is actually

feasible by verifying that, for all m = m0 + 1, . . . , mcr(B), the quadratic forms Em{Wm}
are positive semidefinite for all functions Wm satisfying (B.3). If these checks fail, repeat

the optimisation with larger m0.

These steps were implemented in MATLAB for a range of values of the horizontal period

Γx, using SDPT3 to solve the inner and outer SDP approximations of (B.6) set up with

QUINOPT. As demonstrated in table B.1 for the cases Γx = 2 and Γx = 3, the upper

and lower bounds on GrE converge to each other as the degree of the Legendre expansions

carried out by QUINOPT, denoted by N in the table and in the following, is raised. The

bounds agree to 6 decimal places for N as low as 12, meaning that the optimal solution GrE

of the original infinite-dimensional problem (B.1) can be estimated accurately through the

solution of small SDPs.
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Section B.2. Energy stability in three dimensions

Figure B.1: Converged lower bounds on GrE for the two-dimensional flow model as a
function of the horizontal period Γx ( ). Also plotted are the asymptotic value GrE ≈
139.5396 computed by Hagstrom & Doering (2014) ( ) and converged lower bounds on
the critical Grashoff number for energy stability of individual Fourier modes: m = 1 ( ),

m = 2 ( ), m = 3 ( ), and m = 4 ( ).

Converged lower bounds on GrE , meaning that they improve by less than 0.1% when

N is increased, are shown in figure B.1 for Γx ≤ 8. Similarly converged upper bounds

are not plotted as they would be visually indistinguishable. As Γx grows to infinity, GrE

tends to the asymptotic value 139.5396 computed by Hagstrom & Doering (2014), which

bounds GrE from below at any Γx. The local minima of GrE saturate this lower bound and

correspond to pairs (m,Γx) such that αm = 2πm/Γx ≈ 3.1469. This value is in excellent

agreement with the critical wavenumber 3.146899 reported by Hagstrom & Doering (2014)

for the infinite-layer case. Finally, corner points correspond to values of Γx at which the

critical Fourier mode in (B.6) changes. To illustrate this more clearly, converged lower

bounds on the critical Grashoff number for the energy stability of individual Fourier modes

were computed by solving (B.6) after discarding the constraints for all but a single value m.

The results obtained when considering only m = 1, 2, 3, or 4 are also plotted in figure B.1.

B.2 Energy stability in three dimensions

To simplify the energy stability analysis in three dimensions, it will be assumed that the

critical perturbations are streamwise independent (Tang et al., 2004; Hagstrom & Doering,

2014). Then, a Fourier expansion in the cross-stream (y) direction similar to that used in

section 5.3.4 shows that E{u} is non-negative for all streamwise-independent perturbations

u ∈ H if and only if, for each positive integer m, the quadratic form

Em{Um,Wm} :=

∫ 1

0

∣∣U ′m(z)
∣∣2 + β2

m |Um(z)|2 +
1

β2
m

∣∣W ′′m(z)
∣∣2

+ 2
∣∣W ′m(z)

∣∣2 + β2
m |Wm(z)|2 + GrUm(z)Wm(z) dz (B.7)
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Appendix B. Energy stability of stress-driven shear flows in finite periodic domains

is positive semidefinite for all real-valued functions Um and Wm that satisfy the BCs

Um(0) = W ′m(0) = Wm(0) = U ′m(1) = W ′′m(1) = Wm(1) = 0. (B.8)

In these expressions, βm = 2πm/Γy is the wavenumber in the cross-stream direction, while

Um and Wm correspond to the streamwise and vertical components of the m-th Fourier

mode in the expansion of u.2

Upon estimating

Em{Um,Wm} ≥ β2
m ‖Um‖22 + Gr ‖Um‖2 ‖Wm‖2 + β2

m ‖Wm‖22 , (B.9)

one concludes that, for any value Gr, the quadratic form Em{Um,Wm} is non-negative if

β2
m ≥ Gr/2, which is true if m is above the critical value

mcr(Gr) :=

⌊
Γy
π

√
Gr
8

⌋
. (B.10)

Consequently, to compute the critical Grashoff number GrE for energy stability one can

replace the constraint E{u} ≥ 0 in (B.1) with the requirement that Em{Um,Wm} is positive
semidefinite for all m ≤ mcr(Gr), and then solve

GrE = sup
Gr

Gr,

s.t. Em{Um,Wm} ≥ 0, m = 1, 2, . . . , mcr(Gr).
(B.11)

Note that each constraint in this problem should be understood as being imposed for all func-

tions Um and Wm that satisfy the BCs (B.8). Note also that problem (B.11) is independent

of the period in the x direction (Γx) due to the assumption of streamwise invariance, and

one is interested in the variation of GrE with Γy, the period in the cross-stream direction.

As for the two-dimensional energy stability problem, GrE can be bounded from above

and from below with semidefinite programming after each integral inequality in (B.11) is

replaced with LMIs derived using the methods of chapter 4. Moreover, the same iterative

procedure described in the previous section should be employed because the number of

constraints in (B.11) depends on the decision variable and is unknown a priori.

Upper and lower bounds on GrE were computed for a range of values Γy ≤ 8, using

QUINOPT and SDPT3 to set up and solve all relevant SDPs. As in the two-dimensional
2Strictly speaking, the modes in the Fourier expansion of u are complex-valued, but in order to enforce

the non-negativity of the functional Em it suffices to consider real-valued functions. This can be justified
using an argument analogous to that outlined in section 5.3.4.

203



Section B.2. Energy stability in three dimensions

Table B.2: Upper and lower bounds on GrE for the three-dimensional problem and two
values of the horizontal period, Γx = 2 and Γx = 3, under the assumption that critical
modes are streamwise invariant. The tabulated upper and lower bounds were computed,
respectively, through the solution of outer and inner SDP approximations of (B.11) set up

with QUINOPT using degree-N Legendre expansions.

Γy = 2 Γy = 3

N Lower bound Upper bound Lower bound Upper bound

2 0.000000 ∞ 51.575997 ∞
4 57.195992 57.251133 51.729563 51.783832
6 57.198881 57.199042 51.730510 51.730546
8 57.198882 57.198883 51.730510 51.730511
10 57.198882 57.198882 51.730510 51.730510
12 57.198882 57.198882 51.730510 51.730510

Figure B.2: Converged lower bounds onGrE for the three-dimensional problem, computed
assuming that the critical modes are streamwise invariant, as a function of the horizontal
period Γy in the cross-stream direction ( ). Also plotted are the asymptotic value GrE ≈
51.7300 computed by Hagstrom & Doering (2014) ( ) and converged lower bounds on
the critical Grashoff number for energy stability of individual Fourier modes: m = 1 ( ),

m = 2 ( ), and m = 3 ( ).

case, the upper and lower bounds converge to each other as N , the degree of the Legendre

series expansions carried out by QUINOPT to set up the SDPs, is raised. Table B.2

demonstrates this for Γy = 2 and Γy = 3, but the same was observed for all other values Γy

considered. Converged lower bounds on GrE , computed by increasing N until the optimal

value of the inner SDP approximation of (B.11) increased by less than 0.1%, are plotted

in figure B.2. The critical Grashoff number for energy stability of the first three Fourier

modes (m = 1, 2, and 3) is also shown to demonstrate that sharp corners as Γy is increased

correspond to changes in the critical Fourier mode. Similar to the two-dimensional case,

the converged bounds on GrE approach the asymptotic value GrE ≈ 51.7300 computed

by Hagstrom & Doering (2014), and the local minima saturating this bound correspond to

pairs (m,Γy) such that βm ≈ 2.0856. This value agrees extremely well with the critical

wavenumber 2.085586 found by Hagstrom & Doering (2014) in the limit of infinite Γy.
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