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In this thesis, we focus on designing first order numerical algorithms for some

optimal control problems with partial differential equation (PDE) constraints.

The first part is focused on some PDE-constrained optimal control problems

with additional box or sparsity control constraints. We design some operator

splitting type algorithms for these problems, and their common feature is that

the PDE constraints and the additional box or sparsity control constraints are

treated separately in numerical implementation. In particular, we develop an

inexact Uzawa method and an inexact alternating direction method of multipliers

for elliptic and parabolic optimal control problems with box control constraints,

respectively; and a primal-dual hybrid gradient algorithm for a sparse optimal

control problem with diffusion-advection equation constraint. The second part is

focused on the bilinear optimal control of an advection-reaction-diffusion system,

where the control variable arises as the velocity field in the advection term. For

this problem, we prove the existence of optimal controls, derive the first-order

optimality conditions in general settings, and design a nested conjugate gradient

method. These new algorithms are designed in accordance with the structures

of the problems under consideration, and they can be implemented easily. Their

efficiency is promisingly validated by the results of some preliminary numerical

experiments and convergence properties are also studied.
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Chapter 1

Introduction

In this chapter, we first introduce some optimal control problems with partial

differential equation (PDE) constraints considered in this thesis. Then, some

first order numerical algorithms are introduced, which are closely related to the

methods we will use for solving the optimal control problems. Finally, the outline

of this thesis is presented.

1.1 Optimal control problems with PDE con-

straints

Generally, an optimal control problem with PDE constraints can be abstractly

represented as

min
y∈Y,u∈U

J(y, u), s.t. e(y, u) = 0, u ∈ Uad, y ∈ Yad, (1.1)

where U and Y are Banach spaces, Uad ⊂ U and Yad ⊂ Y are closed convex

sets; J : Y × U → R is the objective functional which usually consists of a data

fidelity term and a regularization term; the operator e : Y × U → Z with Z a

Banach space, and e(y, u) = 0 represents a PDE or a system of coupled PDEs.

The state variable y ∈ Y describes the state (e.g., temperature distribution)

of the considered system modeled by e(y, u) = 0; the control variable u ∈ U

is a parameter (e.g., source term) that shall be adapted in an optimal way; the

1



1.1. Optimal control problems with PDE constraints

control constraint u ∈ Uad and the state constraint y ∈ Yad describe some physical

restrictions and realistic requirements. We assume that for each u ∈ Uad there

exists a unique solution y(u) such that e(y(u), u) = 0. Then, the optimal control

problem (1.1) can be written as a reduced form:

min
u∈U

Ĵ(u) := J(y(u), u), u ∈ Uad, y(u) ∈ Yad,

which plays an important role in theoretical analysis and algorithmic design for

optimal control problems with PDE constraints, see e.g., [49, 81, 83, 103, 171].

Optimal control problems with PDE constraints capture important applica-

tions in various scientific areas, such as physics, chemistry, engineering, medicine

and financial engineering. We refer to, e.g. [81, 82, 83, 103, 125, 171], for

a few references. These problems have received tremendous attentions in the

past decades mainly since the pioneering work of J. L. Lions [125], see, e.g.,

[81, 82, 83, 126, 194, 196]. Solving these problems is usually very challenging,

from both theoretical analysis and algorithmic design perspectives. For instance,

state equations are coupled with additional control or state constraints, the di-

mensionality after proper discretization is extremely high, and coefficient matri-

ces after discretization are possibly extremely ill-conditioned. Because of these

difficulties, there are not too many efficient algorithms in the literature, especially

for some optimal control problems with time-dependent PDE constraints.

Despite the fact that there exist many different types of PDEs, to expose our

main ideas clearly, we will focus on (bi-)linear elliptic and parabolic type optimal

control problems, which have a wide range of applications in e.g., diffusion, heat

flow, elastic deformation, and thermal treatment in cancer therapy, we refer to

e.g., [83, 103, 171] for more discussions.

1.1.1 Elliptic optimal control problems with control con-

straints

We consider the following elliptic optimal control problem with control con-

straints

min
y∈Y,u∈Uad

J(y, u) :=
1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω), (1.2)

2



1.1. Optimal control problems with PDE constraints

where y ∈ Y := H1
0 (Ω) and u ∈ U := L2(Ω) satisfy the following elliptic equation:Ky = u in Ω,

y = 0 on Γ.
(1.3)

In (1.2)-(1.3), Ω ⊂ Rd (d ≥ 1) is a convex polyhedral domain with boundary

Γ := ∂Ω, and the desired state yd ∈ L2(Ω) is given. The admissible set Uad is

defined by

Uad = {u ∈ L∞(Ω)|a ≤ u(x) ≤ b, a.e. in Ω} ⊂ L2(Ω),

where −∞ < a < b < +∞ are two given constants.

In the equation (1.3), the linear second-order elliptic operator K is defined

by

Ky = −
d∑
i=1

∂

∂xi

d∑
j=1

aij
∂y

∂xj
+ c0y,

where 0 ≤ c0 ∈ L∞(Ω), 0 < aij ∈ L∞(Ω),∀1 ≤ i, j ≤ d are given coefficients. In

addition, we assume that the matrix-valued function (aij)1≤i,j≤d satisfies aij = aji

and
d∑
i=1

d∑
j=1

aij(x)ξiξj ≥ γ‖ξ‖2, ∀ξ = {ξi}di=1 ∈ Rd a.e. in Ω, (1.4)

with γ ≥ 0 and ‖ · ‖ the canonical Euclidean norm of Rd.

The problem (1.2)-(1.3) has a wide range of applications in various areas,

such as deformation of elastic membranes, heat conduction, and electrostatics;

we refer to [83, 171] for further discussions. Existence and uniqueness of the

solution to the problem (1.2)-(1.3) have been proved in [125].

Let IUad(·) be the indicator function of the admissible set Uad and suppose

that (y∗, u∗) is the unique solution of the problem (1.2)-(1.3). Then, following

the standard arguments as those in [171], it is easy to show that the optimality

condition of the problem (1.2)-(1.3) reads as
(αI + ∂IUad)(u

∗) + p∗ 3 0,

K∗p∗ = y∗ − yd,
Ky∗ = u∗,

(1.5)

3



1.1. Optimal control problems with PDE constraints

where ∂IUad is the subdifferential of IUad , p
∗ is the corresponding adjoint variable,

and K∗ is the adjoint operator of K. Clearly, the optimality condition (1.5) can

be equivalently written as the following nonlinear saddle point problem 0 ∈ (A+ G)(w) +B∗v − c,

0 = Bw − d,
(1.6)

with

A =

αI 0

0 I

 , B =
(
I −K

)
, w =

u∗
y∗

 , v = p∗, c =

 0

yd

 (1.7)

d = 0 and G(w) =
{ν

0

 |ν ∈ ∂IUad(u)
}
. (1.8)

Since the problem (1.2)-(1.3) is convex, the optimality condition (1.5) is also

sufficient. Accordingly, we can solve the nonlinear saddle point problem (1.6) to

obtain the optimal solution of (1.2)-(1.3).

1.1.2 Parabolic optimal control problems with control con-

straints

Typically, an optimal control problem with a parabolic PDE constraint and

a box constraint on the control variable reads:

min
y∈Y,u∈Uad

J(y, u) :=
1

2

∫∫
Q

|y − yd|2dxdt+
α

2

∫∫
O
|u|2dxdt (1.9)

and the state equation e(y, u) = 0 is specified as
∂y

∂t
− ν∆y + a0y = uχO, in Ω× (0, T ),

y = 0, on Γ× (0, T ),

y(0) = ϕ,

(1.10)

where Ω is a bounded domain in Rd (d ≥ 1) and Γ = ∂Ω is the boundary of Ω;

ω is an open subset of Ω and 0 < T < +∞; the domain Q = Ω × (0, T ) and

O = ω × (0, T ). The target function yd is given in L2(Q) and the admissible set

Uad is defined by

Uad = {v|v ∈ L∞(O), a ≤ v(x; t) ≤ b a.e. inO} ⊂ L2(O).

4



1.1. Optimal control problems with PDE constraints

In addition, we denote by χO the characteristic function of the set O. The

constant α > 0 is a regularization parameter; a and b are given constants; the

initial value ϕ is given in L2(Ω). The coefficients a0 (≥ 0) ∈ L∞(Q) and ν

is a positive constant. The problem (1.9)–(1.10) plays an important role in

e.g., physics, chemistry, and engineering, see [81, 82, 83, 194, 196]. Existence

and uniqueness of the solution to the problem (1.9)–(1.10) can be proved in a

standard argument as studied in [125]; we refer to [171] for the details.

1.1.3 Sparse optimal control problems with PDE con-

straints

In optimal control problems with PDE constraints, usually we can only put

the controllers in some small regions instead of the whole domain under inves-

tigation. As a consequence, a natural question arises: how to determine the

optimal locations and the intensities of the controllers? This concern inspires

a class of optimal control problems where the controls are sparse i.e., they are

only non-zero in a small region of the domain; and the so-called sparse optimal

control problems are obtained. Sparse optimal control problems usually appear

in a variety of applications including optimal actuator placement [164], polution

source identification [34, 56, 124, 123], and impulse control [44]; and they have

been intensively studied in the literature, see e.g., [31, 32, 33, 36, 116, 164, 161],

and references therein.

To the best our knowledge, the first work dedicated to the sparse optimal

control of PDEs is [164], where the following elliptic optimal control problem

with L1-regularized objective functional is considered.

min
y∈H1

0 (Ω),u∈Uad
J(y, u) =

1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω) +
β

2
‖u‖L1(Ω), (1.11)

where y and u satisfy the following state equation:
−

d∑
i=1

∂

∂xi

d∑
j=1

aij
∂y

∂xj
+ c0y = u in Ω,

y = 0 on Γ.

(1.12)
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1.1. Optimal control problems with PDE constraints

In (1.11)-(1.12), Ω ⊂ Rd (d ≥ 1) is a convex polyhedral domain with boundary

Γ := ∂Ω, and the desired state yd ∈ L2(Ω) is given. The constants α > 0 and

β > 0 are regularization parameters. The coefficients 0 ≤ c0 ∈ L∞(Ω), 0 < aij ∈
L∞(Ω),∀1 ≤ i, j ≤ d. In addition, we assume that the matrix-valued function

(aij)1≤i,j≤d satisfies (1.4). The admissible set Uad is defined by

Uad = {u ∈ L∞(Ω)|a ≤ u(x) ≤ b, a.e. in Ω} ⊂ L2(Ω),

where a, b ∈ L2(Ω) with a < 0 < b almost everywhere.

Uniqueness and existence of the solution to the problem (1.11)-(1.12) has been

proved in [164]. We note that if α = 0 and Uad = L2(Ω), the problem (1.11)-

(1.12) is not well-posed because the existence of a solution cannot be guaranteed

due to the non-reflexivity of L1(Ω). Due to the presence of the nonsmooth L1-

regularization term, the structure of the optimal control of (1.11)-(1.12) differs

significantly from what one obtains for the usual smooth L2- regularization like

(1.2)-(1.3). Precisely, as analyzed in [164, 180], the optimal control of (1.11)-

(1.12) has small support, and the support is adjustable in terms of the tuning

of the regularization parameter β in (1.11). Indeed, it has been shown in [164]

that the optimal control is zero on the whole domain Ω when the parameter β is

sufficiently large. More study on optimal control problems with L1-regularized

objective functional can be found in e.g., [31, 161, 180].

In many applications, it is desirable to place the controllers only in finitely

many points of the domain, or along a line (in two-dimensional space), or on a

surface (in three-dimension space). This motivates us to use controllers that are

localized in a set of Lebesgue measure zero, which can be achieved by modeling

the controls in measure spaces. In particular, one can use a measure norm of the

controls as the regularization term in the objective functional, then the resulting

optimal controls have the desired sparsity property. For instance, elliptic optimal

control problems in measure spaces have been considered in e.g., [32, 46], in which

the following optimal control problem is considered:

min J(y, u) =
1

2
‖y − yd‖2

L2(Ω) + α‖u‖M(Ω), (1.13)

subject to the elliptic equation (1.12). Above, the parameter α > 0 and the

target yd ∈ L2(Ω) are given; we denote byM(Ω) the space of all bounded Borel

6



1.1. Optimal control problems with PDE constraints

measures on Ω and the corresponding norm is given by

‖u‖M(Ω) = sup
φ∈C0(Ω),‖φ‖C0(Ω)≤1

∫
Ω

φdu,

where C0(Ω) is the space of all continuous functions with compact support in

Ω, endowed with the norm ‖φ‖C0 = supx∈Ω |φ(x)|∞. The problem (1.13) is well-

posed and has a unique optimal control in M(Ω), see e.g., [46] for the details.

Additionally, it has been shown in [46] that the optimal control of (1.13) is

nonzero only on the sets where the constraint on the adjoint variable is active;

and the larger the regularization parameter α, the smaller the support of the

optimal control. Other types of optimal control problems in measure spaces

have also been studied in the literature, we refer to [32, 33, 36, 116] for a few

references.

In addition, it is worth mentioning that the initial conditions of some diffu-

sion systems can also be considered as the control variables in sparse optimal

control problems. The resulting optimal control models play a crucial role in the

sparse initial source identification for diffusion systems, see e.g., [34, 35, 120, 134].

Hence, how to solve these sparse optimal control problems efficiently is one of the

central concerns for solving sparse initial source identification problems. We fo-

cus on this topic in Chapter 4, where we will propose a new optimal control based

numerical approach to solve the sparse initial source identification for diffusion

systems and present an efficient optimization algorithm to solve the resulting

sparse optimal control problem.

1.1.4 Bilinear optimal control of an advection-reaction-

diffusion system

In a typical mathematical model of an optimal control problem with PDE

constraints, either boundary or internal locally distributed controls are usually

used (see e.g., (1.3) and (1.10)); these controls have localized support and are

called additive controls because they arise in the model equations as additive

terms. It is worth noting that additive controls describe the effect of external

added sources or forces and they do not change the principal intrinsic properties

7



1.1. Optimal control problems with PDE constraints

of the controlled system. Hence, they are not suitable to deal with processes

whose principal intrinsic properties should be changed by some control actions.

For instance, if we aim at changing the reaction rate in some chain reaction-type

processes from biomedical, nuclear, and chemical applications, additive controls

amount to controlling the chain reaction by adding into or withdrawing out of a

certain amount of the reactants, which is not realistic. To address this issue, a

natural idea is to use certain catalysts or smart materials to control the systems,

which can be mathematically modeled by optimal control problems with bilinear

controls. We refer to [112] for more detailed discussions.

Bilinear controls, also known as multiplicative controls, enter the model as

coefficients of the corresponding partial differential equations (PDEs). These

bilinear controls can change some main physical characteristics of the system

under investigation, such as a natural frequency response of a beam or the rate

of a chemical reaction. In the literature, bilinear controls of distributed param-

eter systems have become an increasingly popular topic and bilinear optimal

control problems constrained by various PDEs, such as elliptic equations [115],

convection-diffusion equations [17], parabolic equations [111], the Schrödinger

equation [108] and the Fokker-Planck equation [66], have been widely studied

both mathematically and computationally.

In particular, bilinear controls play a crucial role in optimal control problems

modeled by advection-reaction-diffusion systems. On one hand, the control can

be the coefficient of the diffusion or the reaction term. For instance, a system

controlled by the so-called catalysts that can accelerate or slow down various

chemical or biological reactions can be modeled by a bilinear optimal control

problem for an advection-reaction-diffusion equation where the control arises as

the coefficient of the reaction term [111]; this kind of bilinear optimal control

problems have been studied in e.g., [17, 28, 111, 112]. On the other hand, the

systems can also be controlled by the velocity field in the advection term, which

captures important applications in e.g., bioremediation [90], environmental re-

mediation process [121], and mixing enhancement of different fluids [128]. We

note that there is a very limited research being done on the velocity field con-

trolled bilinear optimal control problems; and only some special one-dimensional

8



1.1. Optimal control problems with PDE constraints

space cases have been studied in [90, 109, 121] for the existence of an optimal

control and the derivation of first-order optimality conditions. To the best of our

knowledge, no work has been done yet to develop efficient numerical methods

for solving multi-dimensional bilinear optimal control problems controlled by the

velocity field in the advection term. This motivates us to study the following

bilinear optimal control problem constrained by an advection-reaction-diffusion

equation, where the control enters into the model as the velocity field in the

advection term.

Let Ω be a bounded domain of Rd with d ≥ 1 and let Γ be its boundary. We

consider the following bilinear optimal control problem:u ∈ U ,J(u) ≤ J(v),∀v ∈ U ,
(BCP)

with the objective functional J defined by

J(v) =
1

2

∫∫
Q

|v|2dxdt+
α1

2

∫∫
Q

|y − yd|2dxdt+
α2

2

∫
Ω

|y(T )− yT |2dx, (1.14)

and y = y(t;v) the solution of the following advection-reaction-diffusion equation
∂y

∂t
− ν∇2y + v · ∇y + a0y = f in Q,

y = g on Σ,

y(0) = φ.

(1.15)

Above and below, Q = Ω × (0, T ) and Σ = Γ × (0, T ) with 0 < T < +∞;

α1 ≥ 0, α2 ≥ 0, α1 + α2 > 0; the target functions yd and yT are given in L2(Q)

and L2(Ω), respectively; the diffusion coefficient ν > 0 and the reaction coefficient

a0 are assumed to be constants; the functions f ∈ L2(Q), g ∈ L2(0, T ;H1/2(Γ))

and φ ∈ L2(Ω). The set U of the admissible controls is defined by

U := {v|v ∈ [L2(Q)]d,∇ · v = 0}.

Clearly, the control variable v arises in (BCP) as a flow velocity field in the

advection term of (1.15), and the divergence-free constraint ∇ · v = 0 implies

that the flow is incompressible. One can control the system by changing the

flow velocity v in order that y and y(T ) are good approximations to yd and yT ,

respectively. Note that the objective functional J in (BCP) is nonconvex due to

the nonlinear relationship between the state y and the control v.

9



1.2. Some first order numerical algorithms

1.2 Some first order numerical algorithms

1.2.1 Conjugate gradient methods for optimization prob-

lems in Hilbert spaces

Since their invention in the 1950s, conjugate gradient (CG) methods have

been proved to be easy to implement, low memory requirements, quite robust,

and fast convergent. Consequently, CG methods are popular and very efficient

for solving various linear and nonlinear problems, see e.g., [78, 138] and refer-

ences therein. To introduce CG methods briefly, we follow [78] and discuss their

applications to the following prototypical optimization problem in Hilbert spaces.u ∈ V,

J(u) ≤ J(v),∀v ∈ V,
(1.16)

where V is a real Hilbert space equipped with the inner product (·, ·) and the

corresponding norm ‖ · ‖, J : V → R is a differentiable functional. To guarantee

the existence of a solution to (1.16), we further assume that J is coercive and

weakly lower semi continuous over V , i.e.,

lim
‖v‖→+∞

J(v) = +∞

and

if lim
n→+∞

vn = v weakly in V, then lim inf
n→+∞

J(vn) ≥ J(v).

Concerning the differentiability of J , we assume that J is either Fréchet-differentiable

or Gâteaux-differentiable, and denote by DJ(v) ∈ V ′ the differential of J at

v ∈ V . Here and in what follows, V ′ is the dual space of V and we denote by

〈·, ·〉 the duality pairing between V ′ and V .

Following [78], CG algorithms for solving problem (1.16) read as follows:

Initialize u0 ∈ V , and solve g0 ∈ V,

(g0, v) = 〈DJ(u0), v〉,∀v ∈ V.

If g0 = 0, then u = u0; otherwise set w0 = g0.

10
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For k ≥ 0, uk, gk and wk being known, the last two different from 0, one

computes uk+1, gk+1 and wk+1 as follows:

Compute the stepsize ρk by solving the following optimization problem ρk ∈ R,

J(uk − ρkwk) ≤ J(uk − ρwk),∀ρ ∈ R.
(1.17)

Update uk+1 and gk+1, respectively, by

uk+1 = uk − ρkwk,

and solving  gk+1 ∈ V,

(gk+1, v) = 〈DJ(uk+1), v〉,∀v ∈ V.
(1.18)

If gk+1 = 0, take u = uk+1; otherwise,

Compute either

βk =
‖gk+1‖2

‖gk‖2
, (Fletcher-Reeves update)

or

βk =
(gk+1, gk+1 − gk)

‖gk‖2
, (Polak-Ribière update)

and then update

wk+1 = gk+1 + βkw
k.

Do k + 1→ k and return to (1.17).

In practice, the implementation of CG algorithms requires the solutions of the

linear variational problem (1.18) and the one-dimensional minimization problem

(1.17) to update the descent direction and to compute the optimal step size,

respectively. Suppose that the objective functional J is quadratic, namely, the

functional J(v) in (1.16) is given by

J(v) =
1

2
a(v, v)− L(v),

11
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where the bilinear functional a : V × V → R is continuous, V -elliptic, and

symmetric; L : V → R is linear and continuous. In this case, it is easy to show

that

〈DJ(w), v〉 = a(w, v)− L(v), ∀v, w ∈ V,

and the solution of the minimization problem (1.17) verifies

ρk =
(gk, wk)

a(wk, wk)
.

For a generic objective functional J , problem (1.17) usually has no closed-

form solution. Hence, the step size ρk can not be computed exactly and it can

only be determined by some line search strategies (see e.g., [138]) or solving the

problem (1.17) iteratively. For instance, the Newton method is suggested in [78]

for solving the problem (1.17) to compute the step size. To be concrete, it is

easy to see that problem (1.17) is a particular case of the following minimization

problem:  ρ̂ ∈ R,

J(u− ρ̂w) ≤ J(u− ρw),∀ρ ∈ R.
(1.19)

Let j(ρ) = J(u− ρw), we then have

j′(ρ) = −〈DJ(u− ρw), w〉, and j′′(ρ) = 〈D2J(u− ρw)w,w〉.

Applying the Newton method to the solution of (1.19), we obtain the following

iterative scheme

An initial value ρ0 is given in R;

For k ≥ 0,

ρk+1 = ρk +
〈DJ(u− ρkw), w〉
〈D2J(u− ρkw)w,w〉

.

The convergence properties of CG methods in both of finite and infinite di-

mensional spaces have been widely studied in the literature, we refer to [75, 78,

138] and references therein for the details. Some other variants of CG methods

and more discussions on the implementation of CG methods including precondi-

tioning and restart strategies have also been discussed in the above references.
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1.2.2 Inexact Uzawa methods for saddle point problems

Inexact Uzawa methods for linear saddle point problems

A typical linear saddle point problem appearing in discretized PDEs can be

written as finding w ∈ H1 and v ∈ H2 such thatAw +B>v − f = 0,

Bw − g = 0,
(1.20)

where H1 and H2 are two finite dimensional Hilbert spaces, f ∈ H1 and g ∈ H2

are given, A : H1 → H1 is a linear, symmetric, and positive definite operator,

B : H1 → H2 is a linear operator and B> : H2 → H1 is the adjoint operator

of B. For concrete applications of (1.20), see, e.g., [25, 41, 65] for the mixed

finite element discretization of elasticity problems, Stokes equations and Maxwell

equations; and [49, 103, 171] for the application of Lagrangian multiplier type

methods to optimal control problems; and [42] for some parameter identification

problems. Throughout, the Ladyzhenskaya-Babuška-Brezzi (LBB) condition in

[15] is assumed. That is, for some positive number c0, it holds that

〈BA−1B>v, v〉 = sup
u∈H1

〈v,Bu〉2

〈Au, u〉
≥ c0‖v‖2. (1.21)

Here, ‖ · ‖ denotes the norm in the space of H1 or H2 corresponding to its

respective inner product 〈·, ·〉, whichever is clear according to the function type

in the specific context under discussion despite of the same notation. As analyzed

in [15], this condition ensures that the problem (1.20) is well defined with a unique

solution point.

For iterative methods solving (1.20) in the literature, we refer to the Arrow-

Hurwicz and Uzawa methods in [2, 5, 6, 21, 150], penalty and multiplier methods

in [2, 50, 100, 139, 148], Krylov subspace methods in [20, 29, 61, 83, 141, 156, 179].

We also refer to the survey paper [10] and references therein for a thorough dis-

cussion. In particular, Uzawa-type methods have been widely used for various

applications, especially for some large-scale problems arising in scientific com-

puting areas, because of their economical requirement of memory and simplicity

of implementation. Let us recall the classic Uzawa method in [2, 150] for solving

13



1.2. Some first order numerical algorithms

(1.20): wk+1 = A−1(−B>vk + f),

vk+1 = vk + ω(Bwk+1 − g),
(1.22)

where ω > 0 is a relaxation parameter. As analyzed in [158], ω ∈ (0, 2/ρ(BA−1B>))

ensures the convergence of (1.22), where ρ(·) denotes the spectrum radius of an

operator. As pointed out in [10], if we use the first equation in (1.22) to elim-

inate wk+1 from the second one, it is easy to see that (1.22) can be written

as a stationary Richardson iteration applied to the following Schur complement

system:

Sv = BA−1f − g,

where the Schur complement S is defined as S := BA−1B>. Despite the simplic-

ity of the iterative scheme, the exact Uzawa method (1.22) requires computing

A−1, which might be computationally expensive and thus the first equation in

(1.22) might need to be solved iteratively, as discussed in [43, 78]. It is also an-

alyzed in, e.g. [21, 57, 105], that the exact Uzawa method (1.22) may converge

slowly if the Schur complement is not well conditioned.

These concerns have then motivated many authors to consider inexact or

preconditioned variants of the Uzawa method; we refer to [21, 57, 105, 150, 152]

for a few references. Following [21], a class of inexact Uzawa type methods (1.22)

can be unified as: wk+1 = Q−1
A (QAw

k − Awk −B>vk + f),

vk+1 = vk +Q−1
B (Bwk+1 − g),

(1.23)

where QA : H1 → H1 and QB : H2 → H2 are two symmetric positive definite

operators playing the role of preconditioners of A and S, respectively. Obviously,

if QA = A and QB = 1
ω
I, the framework of inexact Uzawa methods (1.23) reduces

to the exact version (1.22). In practice, QA and QB are chosen such that Q−1
A and

Q−1
B can be easily computed and that Q−1

B S is well conditioned; see [21, 57, 105]

for insightful discussions. It is shown in [21] that the framework of inexact

Uzawa methods (1.23) converges linearly as long as the preconditioners defining

the framework are properly scaled.
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Inexact Uzawa methods for nonlinear saddle point problems

The linear saddle point problem (1.20) can be generalized in different per-

spectives. For instance, the operator A in (1.20) can be replaced with a generic

nonlinear operator F : H1 → H1 and consequently the following generic nonlin-

ear saddle point problem can be obtained:F (w) +B>v − f = 0,

Bw − g = 0.
(1.24)

Such nonlinear saddle point problems arise in, e.g., augmented Lagrangian for-

mulations of inverse problems [42], electromagnetic Maxwell equations [41], and

the nonlinear optimization problem [173]. The nonlinear operator F arising in

these applications is indeed strongly monotone. It is generally difficult to solve

the first nonlinear equation in (1.24) exactly, and thus various inexact Uzawa

methods targeting inexact solutions of the nonlinear equation have been exten-

sively studied in the literature. For example, setting H1 = Rn and H2 = Rm

with m ≤ n, the following inexact Uzawa method is proposed in [40]:F (wk+1) = −B>vk + f + δk,

vk+1 = vk +Q−1
k (Bwk+1 − g),

(1.25)

where the vector δk ∈ Rn represents an allowable error for solving the nonlin-

ear equation at the k-th iteration, and Qk are symmetric and positive definite

matrices that should be adjusted iteratively. The global convergence and local

superlinear convergence rate of the inexact Uzawa method (1.25) are proved in

[40] under the conditions that F (w) is Lipschitz continuous, {‖δk‖} converges to

zero and ‖Q−1
k ‖ are uniformly bounded for all k. In [106], it is suggested that

the equations in (1.20) and the second equation in (1.24) are solved iteratively

(e.g., by the preconditioned nonlinear CG method) so as to avoid computing the

inverses of QA, QB and Qk. The linear convergence rate in an energy-norm is

established therein for (1.25), provided that the exact generalized Jacobian of

F (w) in the sense of Clarke (see [45]) is approximated by a well-chosen precondi-

tioner for solving the Schur complement problem related to the second equation

in (1.24). Note that the Lipschitz continuity of F (w) is also required in [106] for

its convergence analysis.
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1.2.3 Alternating direction method of multipliers

We consider the following optimization problem:

min
v∈V

F (Bv) +G(v), (1.26)

where V is a Hilbert space, the operator B ∈ L(V,H) with H a Hilbert space,

the functionals F : H → R ∪ {+∞} and G : V → R ∪ {+∞} are proper,

convex, and lower semicontinuous, and satisfy dom(F ◦B)∩ dom(G) 6= ∅, which

guarantees the existence of a solution to the problem (1.26). A wide range of

problems in mathematics, physics, statistics, signal processing, imaging, etc.,

can be modeled in the form of (1.26), such as flow of a viscous plastic fluid in a

pipe [67], elasto-plastic problems [78], PDE-constrained optimization problems

[125], obstacle problems [73], simplified friction problems, and image restoration

problems [76]. Numerical methods for solving the problem (1.26) can be found

in e.g., [67, 73, 76].

Here, we focus on the application of the alternating direction method of

multipliers (ADMM) to the solution of (1.26). For this purpose, we introduce an

auxiliary variable q ∈ H satisfying q = Bv, then it is easy to see that problem

(1.26) is equivalent to the following optimization problem with linear constraints

and a separable objective functional: min
(v,q)∈V×H

F (q) +G(v)

s.t. q = Bv.
(1.27)

Let β > 0 be a penalty parameter, then the augmented Lagrangian associated

with (1.27) can be defined by

Lβ(v, q;µ) = F (q) +G(v) + (µ,Bv − q) +
β

2
‖Bv − q‖2,

where (·, ·) and ‖ · ‖ are the inner product and norm defined on the space H,

respectively. The corresponding saddle point problem reads: find {u, p;λ} ∈
V ×H ×H such that

Lβ(u, p;µ) ≤ Lβ(u, p;λ) ≤ Lβ(v, q;λ), ∀{v, q;µ} ∈ V ×H ×H. (1.28)

Generally, the existence of a solution for problem (1.27) does not imply that the

saddle point problem (1.28) has a solution and such an existence result has to be
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verified in each specific case. Despite of this fact, one can show that the converse

holds, see e.g., [80].

Theorem 1.1. Suppose that {u, p;λ} ∈ V × H × H is a saddle point of the

augmented Lagrangian functional Lβ, then {u, p} is a solution to the problem

(1.27) and u = Bp.

To compute such saddle points, the augmented Lagrangian method (ALM)

(proposed by H. Hestenes [100] and M. Powell [148] individually) reads as:{
{un+1, pn+1} = arg min

v∈V,q∈H
Lβ(v, q;λn), (1.29a)

λn+1 = λn + β(Bun+1 − pn+1). (1.29b)

The convergence of ALM in infinite dimensional settings has been proved in

e.g., [67, 73, 76, 80]. Concerning the implementation of ALM, the main difficulty

is usually the solution of the minimization problem (1.29a), mainly because the

variables v and q are coupled together. To address this issue, a natural idea is

to utilize the separable structure of the problem (1.27) and treat the variables v

and q individually. As a consequence, we obtain the following ADMM algorithm,

where the minimization problem (1.29a) is decomposed into two parts and they

are solved in the Gauss-Seidel manner.
pn+1 = arg min

q∈H
Lβ(un, q;λn), (1.30a)

un+1 = arg min
v∈V

Lβ(v, pn+1;λn), (1.30b)

λn+1 = λn + β(Bun+1 − pn+1). (1.30c)

The ADMM was first proposed by R. Glowinski and A. Marrocco [72] for

solving nonlinear elliptic equations; its convergence and convergence rate have

been intensively studied in the literature, see e.g.,[19, 67, 73, 76, 80, 95, 97, 130].

A key feature of the ADMM is that the decomposed subproblems (1.30a) and

(1.30b) are usually much easier than the ALM subproblem (1.29a), which makes

the ADMM a benchmark algorithm in various areas such as image processing,

statistical learning, data mining, and so on; we refer to [19, 53, 77] for some

review papers on the ADMM.

We note that for some specific cases, the subproblems (1.30a) and (1.30b) are

simple enough to have closed-form solutions. However, generally, the subprob-

lems (1.30a) and/or (1.30b) can only be solved iteratively and inexactly when
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implementing the ADMM. In this regard, various inexact versions of the ADMM

in different settings can be found in the literature. For example, inexact versions

of the ADMM for the generic case have been discussed in [52, 54, 137, 189].

These works require summable conditions on the sequence of accuracy (repre-

sented in terms of either the absolute or relative errors). The proximal ADMM,

which adds appropriate quadratic terms to regularize the subproblems and may

alleviate these subproblems for some cases by specifying the proximal terms ap-

propriately, has been studied in, e.g., [22, 92].

Finally, we remark that the ADMM is closely related to the Douglas-Rachford

splitting method which was first studied by Douglas and Rachford in [51] for

heat conduction equations and then generalized by Lions and Mercier in [127]

to nonlinear cases. In particular, the ADMM applied to the problem (1.27) is

equivalent to the Douglas-Rachford splitting method applied to the dual problem

of (1.27) with a proper time step size and an initial value; we refer to e.g., [38, 80]

for the detailed discussions.

1.2.4 Primal-dual hybrid gradient methods

Introducing now an auxiliary variable µ ∈ H and applying the standard

Fenchel-Rockafellar duality (see e.g., [55, Chapter VII]), we can show that (1.27)

is equivalent to the following saddle point problem:

min
v∈V

max
µ∈H

G(v) + (µ,Bv)− F ∗(µ), (1.31)

where F ∗(µ) := supq∈H(q, µ) − F (q) is the convex conjugate of F (q). Clearly,

the problem (1.31) is a primal-dual formulation of (1.27). To solve such a saddle

point problem numerically, the following primal-dual hybrid gradient (PDHG)

method was proposed in [37].
un+1 = arg min

v∈V
{G(v) + (λn, Bv) +

1

2r
‖v − un‖2}, (1.32a)

ūn = un+1 + τ(un+1 − un), (1.32b)

λn+1 = arg max
µ∈H
{(µ,Būn)− F ∗(µ)− 1

2s
‖µ− λn‖2}, (1.32c)

where τ ∈ [0, 1] is the combination parameter and r, s > 0 are step sizes of the

primal and dual step, respectively. The PDHG method does not require specific
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initial iterates; its subproblems are usually much easier than the original model

for some concrete applications; and its implementation is very easy. All these

advantages make the PDHG very competitive with other kind of methods; and

it has been widely used in various areas such as image processing [37, 60, 192],

statistical learning [85], and inverse problems [8, 47, 168, 169, 170, 178].

The convergence and a worst-case O(1/k) convergence rate measured by the

iteration complexity of the PDHG method (1.32) with τ = 1 have been analyzed

in [37]. For the case of τ = 0, its convergence was established in [60] under some

asymptotic conditions on the step size sequences. When the step sizes are fixed,

it has been shown in [94] by a simple counterexample that the PDHG method

(1.32) with τ = 0 is not necessarily convergent even with tiny constant step sizes.

Hence, some additional conditions are required to guarantee the convergence of

this special case. For instance, it was proved that the PDHG (1.32) with τ = 0

and constant step sizes is convergent if one function in the model (1.31) is strongly

convex. With this additional condition, a worst-case O(1/k) convergence rate

measured by the iteration complexity was also established therein.

It is worth mentioning that, as discussed in [37], the PDHG method (1.32)

is closely related to some well-known numerical methods, such as the extrapo-

lational gradient method [113], the Douglas-Rachford splitting method [51], and

the alternating direction method of multipliers [72]. In particular, when τ = 0

in (1.32b), the the PDHG method (1.32) corresponds to the Arrow-Hurwicz al-

gorithm [2], which has been studied in [193] for total variation image restoration

problems. Additionally, it has been shown in [95] that the PDHG method (1.32)

with τ = 1 is essentially an application of the proximal point algorithm [153].

Additionally, we note that some variants of (1.32) have been proposed in the

literature to improve the numerical efficiency and alleviate the restrictions on

the parameters in (1.32), see e.g., [85, 93, 94, 95, 168, 170]. In particular, for

the case of τ ∈ [0, 1] in (1.32b), an algorithmic framework of generalized PDHG

schemes was proposed in [93], which allows the output of the PDHG subroutine

to be further updated by correction steps with constant step sizes. With different

choices of parameters, some generalized PDHG schemes can be specified from the

algorithmic framework and they are usually more efficient than the classical one
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(1.32). In [95], some PDHG-based prediction-correction schemes are proposed

and the combination parameter τ can be relaxed to [−1, 1] which is broader than

that in (1.32).

1.3 Outline of the thesis

The remaining part of this thesis is organized as follows.

In Chapter 2, we consider a class of nonlinear saddle point problems in the

form of (1.6) and propose an algorithmic framework based on some inexact Uzawa

methods in the literature. Under mild conditions, the convergence of this algo-

rithmic framework is uniformly proved and the linear convergence rate is esti-

mated. By choosing application-tailored preconditioners, we specify an efficient

algorithm by the algorithmic framework for solving the elliptic optimal control

problem with control constraints (1.2)-(1.3). The resulting algorithm does not

need to solve any optimization subproblems or systems of linear equations in

its iteration; each of its iterations only requires the projection onto a simple

admissible set, four algebraic multi-grid V-cycles and a few matrix-vector mul-

tiplications. Its numerical efficiency is then demonstrated by some preliminary

numerical results.

In Chapter 3, we focus on the implementation of the well-known alternating

direction method of multipliers (ADMM) to the parabolic optimal control prob-

lem with control constraints (1.9)–(1.10). The ADMM decouples the control con-

straint and the parabolic state equation at each iteration. As a result, the main

computation of each ADMM iteration is for solving an unconstrained parabolic

optimal control subproblem. Because of its inevitably high dimensionality after

the space-time discretization, the parabolic optimal control subproblems have to

be solved iteratively and inexactly. Hence, the implementation of the ADMM

must be embedded by an internal iterative process for solving these parabolic op-

timal control subproblems. We propose an easily implementable inexactness cri-

terion for these subproblems; and obtain an inexact version of the ADMM whose

execution consists of two-layer nested iterations. The strong global convergence
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of the resulting inexact ADMM is proved rigorously in an infinite-dimensional

Hilbert space; and the worst-case convergence rate measured by the iteration

complexity is also established. We illustrate by the CG method how to execute

the inexactness criterion, and show the efficiency of the resulting ADMM–CG

iterative scheme numerically. Additionally, we consider an optimal control prob-

lem constrained by the wave equation with control constraints to show that our

philosophy in algorithmic design can be easily extended to other optimal control

problems and hence the proposed inexact ADMM can be deliberately specified

as various algorithms for a wide range of optimal control problems.

In Chapter 4, we consider the sparse initial source identification for diffusion

systems. It is well-known that such a problem is exponentially ill-posed because

of the strong smoothing property of diffusion systems. Computationally, we

propose an efficient optimal control based two-stage numerical approach. First,

we formulate the sparse initial source identification problem as an optimal con-

trol problem with L2 +L1-regularized functional, where the L1-term detects the

sparsity of the initial sources and the L2-term guarantees the well-posedness of

the problem while avoiding numerical ill-conditioning problems. Then, we con-

sider a structure enhancement stage, which consists of solving two simple and

low-dimensional optimization problems in terms of the spatial variable and the

intensities, to identify the locations and intensities of the sources, respectively.

To solve the resulting optimal control problem, we advocate the well-known

Primal-Dual Hybrid Gradient (PDHG) method. The PDHG method is cheap

and easy to implement, as it decouples the optimal control problem into two

simpler subproblems and only requires solving two PDEs at each iteration. To

further improve the numerical efficiency of the PDHG method, we introduce a

generalized PDHG-based prediction-correction algorithmic framework and prove

its convergence rigorously. The efficiency of the proposed approach is compared

with other optimization procedures based on the Gradient Descent methodology,

and validated through several numerical results.

In Chapter 5, we consider the bilinear optimal control problem (BCP). Such

a problem is generally challenging from both theoretical analysis and algorith-

mic design perspectives mainly because the state variable depends nonlinearly on
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the control variable and an additional divergence-free constraint on the control

is coupled together with the state equation. Mathematically, the proof of the

existence of optimal solutions is delicate, and up to now, only some results are

known for a few special cases where additional restrictions are imposed on the

space dimension and the regularity of the control. We prove the existence of op-

timal controls and derive the first-order optimality conditions in general settings

without any extra assumption. Computationally, the well-known conjugate gra-

dient (CG) method can be applied conceptually. However, due to the additional

divergence-free constraint on the control variable and the nonlinear relation be-

tween the state and control variables, it is challenging to compute the gradient

and the optimal stepsize at each CG iteration, and thus nontrivial to implement

the CG method. To address these issues, we advocate a fast inner preconditioned

CG method to ensure the divergence-free constraint and an efficient inexactness

strategy to determine an appropriate stepsize. An easily implementable nested

CG method is thus proposed for solving such a complicated problem. Efficiency

of the proposed nested CG method is promisingly validated by the results of

some preliminary numerical experiments
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Chapter 2

An Inexact Uzawa Algorithmic

Framework for Nonlinear Saddle

Point Problems with

Applications to Elliptic Optimal

Control Problem

Motivated by (1.6), we consider a class of nonlinear saddle point problems in

the form of  0 ∈ (A+ G)(w) +B>v − f,

0 = Bw − g,
(2.1)

where H1 and H2 are two finite dimensional Hilbert spaces, f ∈ H1 and g ∈ H2

are given, A : H1 → H1 is a linear, symmetric, and positive definite operator,

B : H1 → H2 is a linear operator and B> : H2 → H1 is the adjoint operator of

B, the operator G : H1 → 2H1 is maximal monotone and we use the notation

(A + G)(w) := {Aw + ν|ν ∈ G(w)}. Throughout, we also assume the LBB

condition (1.21) which ensures that the solution set of (2.1) is nonempty yet not

unique, as to be shown in Lemma 2.1.

Besides the elliptic optimal control problem with control constraints (1.2)-

(1.3), the consideration of (2.1) is also strongly motivated by a number of appli-
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2.1. An inexact Uzawa algorithmic framework

cations, such as the obstacle problem [68], the flow of a viscous plastic fluid in a

pipe [78], the elasto-plastic problem [73] and the Cahn-Hilliard equation with an

obstacle potential [86]. For these applications, G is usually the subdifferential of

a nonsmooth convex function (e.g., the indicator function of a convex set) which

is not required to be Lipschitz continuous. We refer to [118, 119] for more such

applications.

2.1 An inexact Uzawa algorithmic framework

2.1.1 Algorithmic framework

To solve the nonlinear saddle point problem (2.1), it is natural to consider

extending the framework of inexact Uzawa methods (1.23) which is applicable

to the linear saddle point problem (1.20). The aforementioned advantages of

(1.23) are important for tackling large-scale problems arising in the mentioned

application areas. To discern the detail of this extension, let us introduce two

symmetric positive definite operators QA : H1 → H1 and QB : H2 → H2 such

that QA − A and QB − S are symmetric and positive semi-definite, and rewrite

(1.23) as QA − A −B>

0 −QB

wk
vk

+

f
g

 =

 QAw
k+1

Bwk+1 −QBv
k+1

 . (2.2)

It is obvious that the linear saddle point problem (1.20) can be represented asQA − A −B>

0 −QB

w
v

+

f
g

 =

 QAw

Bw −QBv

 . (2.3)

In addition, we rewrite (2.1) asQA − A −B>

0 −QB

w
v

+

f
g

 ∈
(G +QA)(w)

Bw −QBv

 . (2.4)

Then, comparing the model’s extension from (2.3) to (2.4), it is natural to think

of replacing QA in the right-hand side of (2.2) with (G + QA) and to use the
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resulting iterative scheme for (2.4):QA − A −B>

0 −QB

wk
vk

+

f
g

 ∈
 (G +QA)(wk+1)

Bwk+1 −QBv
k+1

 . (2.5)

We rewrite (2.5) aswk+1 = (QA + G)−1(QAw
k − Awk −B>vk + f),

vk+1 = vk +Q−1
B (Bwk+1 − g),

(2.6)

and this is our new inexact Uzawa algorithmic framework for the nonlinear saddle

point problem (2.1).

Note that the operator (QA+G)−1 in (2.6) is single-valued because QA is pos-

itive definite and G is maximal monotone. Obviously, the algorithmic framework

(2.6) reduces to the framework of inexact Uzawa methods (1.23) if the linear

saddle point problem (1.20) is considered, i.e., when G ≡ 0. Similar as (1.23),

QA and QB play the role of preconditioners of A and S, respectively. All advan-

tageous features of (1.23) for better numerical performance are also inherited in

(2.6).

In addition, as for the linear saddle point problem (1.20), if QA = A and

QB = 1
ω
I(ω > 0) in (2.6), then the resulting algorithm reduces towk+1 = (A+ G)−1(−B>vk + f),

vk+1 = vk + ω(Bwk+1 − g).
(2.7)

As (1.22), we also call (2.7) the exact Uzawa method for the nonlinear saddle

point problem (2.1). In fact, it can be shown that some applications of the

classic augmented Lagrangian method proposed in [100, 148] to, e.g., a class

of elliptic variational inequalities of the second kind in [73], are special cases

of the exact Uzawa method (2.7). Finally, for the special case where G is the

sum of the subdifferential of a nonsmooth convex function and a skew symmetric

matrix or a positive definite operator, the algorithmic framework (2.6) is reduced

to the Arrow-Hurwitz-type method in [118] (subject to a difference of constants

associated with the preconditioners QA and QB) and the preconditioned Uzawa

method in [119] (with QA = A in (2.6)), respectively. Note that the discussion

on how to choose the preconditioners QA and QB in [118] is mainly theoretical,
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while we focus on finding appropriate application-tailored preconditioners so as

to specify the inexact Uzawa algorithmic framework (2.6) as implementable and

efficient algorithms for given specific applications.

2.1.2 Our objectives

The first purpose is to study the convergence for the inexact Uzawa algorith-

mic framework (2.6) in the generic setting of the nonlinear saddle point problem

(2.1). We shall prove the convergence and estimate the linear convergence rate

for the sequence generate by (2.6) under the same condition for the easier case

(1.23) in [21], i.e.,

(Convergence Condition) QA � A and QB � S. (2.8)

Hereafter, by A1 � A2 (resp., A1 � A2), we mean A1 − A2 is symmetric and

positive semidefinite (resp., definite), for two given symmetric positive definite

operators A1 and A2.

Another purpose of this chapter is to investigate how to specify the inexact

Uzawa algorithmic framework (2.6) as an efficient algorithm when it is applied

to the elliptic optimal control problem with control constraints (1.2)-(1.3). The

key is choosing appropriate preconditioners QA and QB; we shall show how to

employ the algebraic multi-grid (AMG) V-cycle techniques in [63, 185] to find

high-quality preconditioners for this specific application. As a result, an efficient

algorithm is derived for solving the elliptic optimal control problem with control

constraints (1.2)-(1.3).

2.2 Convergence

In this section, we prove the convergence of the sequence {ηk} generated by

the inexact Uzawa algorithmic framework (2.6) under the convergence condition

(2.8).
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Despite that the algorithmic framework (2.6) is intrinsically inspired by (1.23),

theoretical analysis for the convergence and linear convergence rate of (2.6) is

generally more difficult because of the presence of the maximal monotone opera-

tor G. More specifically, convergence analysis for the linear case (1.23) is critically

based on estimating the bound of the spectral radius of the corresponding itera-

tive matrix (after representing the iterative scheme as a fixed point form), while

this technique is not available for the nonlinear case (2.1). In addition, con-

vergence results in the mentioned literature [40, 106] for the generic nonlinear

saddle point problem (1.24) are not applicable either, because G in (2.1) is not

necessarily Lipschitz continuous. On the other hand, it is not difficult to extend

the analysis in [118] to the general case (2.1) and establish the convergence for

the algorithmic framework (2.6). Here, we give a new proof for the convergence

by analyzing the strict contraction property of the sequence generated by (2.6).

This new perspective is also preparatory for proving the linear convergence rate

in Section 2.3.

First, we summarize some useful results and present some assumptions for

further analysis. We denote by η ∈ H1 × H2, Q : H1 × H2 → H1 × H2 and

ϕ : H1 ×H2 → 2H1×H2 , respectively, as the following:

η :=

w
v

 , Q :=

QA − A 0

0 QB

 and ϕ(η) :=

G(w) + Aw +B>v − f
−Bw + g

 .

(2.9)

Obvious, ϕ−1(0) gives the solution set of (2.1) and we denote S := ϕ−1(0).

Lemma 2.1. The solution set S of (2.1) is nonempty.

Proof. According to the LBB condition (1.21), the operator B is surjective.

Thus, there exists a w0 ∈ H1 such that Bw0 = g. If B is injective, it is ob-

vious that we have w0 = B−1g and there exists a v∗ ∈ H2 such that

0 ∈ G(B−1g) + AB−1g +B>v∗ − f.

If B is not injective, then the kernel space Ker(B) of B is nonempty.

Let {ψ1, ψ2, . . . , ψnB} ∈ H1 be a basis of Ker(B) and Ψ :=
(
ψ1, ψ2, . . . , ψnB

)
the operator from RnB to H1. Then, any w ∈ H1 satisfying Bw = g can be
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represented as Ψζ + w0 for some ζ ∈ RnB . Since A is positive definite and G
is maximal monotone, it is easy to verify that the operator Ψ>AΨ is positive

definite and the operator Ψ>G(Ψ ·+w0) is maximal monotone. This means there

must exist one and only one ζ∗ ∈ RnB such that

0 ∈ Ψ>G(Ψζ∗ + w0) + Ψ>A(Ψζ∗ + w0)−Ψ>f.

Therefore, there exists h∗ ∈ G(Ψζ∗ + w0) such that h∗ + A(Ψζ∗ + w0) − f is in

the orthogonal complement space of Ker(B), i.e., the image space of B> (see,

e.g. [157]). Hence, there exists a v∗ ∈ H2 satisfying

0 = h∗ + A(Ψζ∗ + w0) +B>v∗ − f.

We denote w∗ := Ψζ∗ +w0. Then, it follows from Bw∗ = g and h∗ ∈ G(w∗) that

0 ∈

G(w∗) + Aw∗ +B>v∗ − f
−Bw∗ + g

 ,

which means (w∗, v∗)> is a solution point of (2.1). Hence, the solution set S of

(2.1) is nonempty.

Remark 2.1. According to the proof above, we notice that the components w of

all solution points of (2.1) are indeed identical because of the uniqueness of ζ∗,

despite that the other component v is not necessarily unique (which is due to the

presence of G).

Throughout, we require the preconditioners QA and QB in (2.6) to satisfy

the convergence condition (2.8). With this condition, we know Q � 0. Thus, we

denote by ‖η‖Q =
√
η>Qη the semi norm and it holds that

‖η‖Q ≤
√
ρ(Q)‖η‖. (2.10)

In addition, we define dist(ι,D) and distQ(ι,D), respectively, as

dist(ι,D) := inf
ξ∈D
‖ι− ξ‖ and distQ(ι,D) := inf

ξ∈D
‖ι− ξ‖Q,

for a given subset D and ι in the same space. Then it follows from (2.10) that

distQ(ι,D) ≤
√
ρ(Q) · dist(ι,D). (2.11)

Next, we prove two useful lemmas.
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2.2. Convergence

Lemma 2.2. For A and B in (2.1), if the preconditioners QA and QB satisfy

the convergence condition (2.8), then it holds that

A−B>Q−1
B B � 0.

Proof. It follows from the LBB condition (1.21) that the Schur complement S =

BA−1B> is positive definite and thus it is invertible. Since we have QB � S

from the convergence condition (2.8), it holds that

B>S−1B � B>Q−1
B B. (2.12)

Therefore, it suffices to show A−B>S−1B � 0. For this purpose, we introduce

Π := I − A−1B>S−1B. It is easy to show that Π2 = Π and AΠ = Π>A.

Therefore, we have

〈AΠx, x〉 = 〈AΠ2x, x〉 = 〈Π>AΠx, x〉 = 〈AΠx,Πx〉 ≥ 0, ∀x ∈ H1.

We thus obtain that A−B>S−1B = AΠ � 0 and the desired result follows from

(2.12) directly.

Lemma 2.3. There exists a constant L1 > 0 such that

‖(QA + G)−1(QAw1 − Aw1 −B>v1 + f)

− (QA + G)−1(QAw2 − Aw2 −B>v2 + f)‖QA
≤L1‖η1 − η2‖Q, ∀η1, η2 ∈ H1 ×H2.

(2.13)

Proof. To verify this inequality, we first need to prove the following inequality:

‖(QA + G)−1h1 − (QA + G)−1h2‖QA ≤ ‖Q−1
A (h1 − h2)‖QA ,∀h1, h2 ∈ H1. (2.14)

For this purpose, let

u1 = (QA + G)−1h1 and u2 = (QA + G)−1h2,∀h1, h2 ∈ H1.

Then, we have

−QAu1 + h1 ∈ G(u1) and −QAu2 + h2 ∈ G(u2).

Since the operator G is monotone, we have

〈−QA(u1 − u2) + (h1 − h2), u1 − u2〉 ≥ 0.
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2.2. Convergence

We then obtain

‖u1 − u2‖2
QA
≤ 〈Q−1

A (h1 − h2), u1 − u2〉QA ≤ ‖Q−1
A (h1 − h2)‖QA‖u1 − u2‖QA ,

which implies (2.14) directly.

Moreover, let hi = QAwi−Awi−B>vi+f ∈ H1, for i = 1, 2. Then, it follows

from (2.14) that

‖(QA + G)−1(QAw1 −Aw1 −B>v1 + f)− (QA + G)−1(QAw2 −Aw2 −B>v2 + f)‖QA

≤‖Q−1
A ((QA −A)(w1 − w2)−B>(v1 − v2))‖QA

≤‖Q−1
A (QA −A)(w1 − w2)‖QA + ‖Q−1

A B>(v1 − v2))‖QA

≤
(√
‖(QA −A)>/2Q−1

A (QA −A)1/2‖+

√
‖Q−>/2B BQ−1

A B>Q
−1/2
B ‖

)
‖η1 − η2‖Q.

If we set

L1 =
√
‖(QA − A)>/2Q−1

A (QA − A)1/2‖+

√
‖Q−>/2B BQ−1

A B>Q
−1/2
B ‖,

the assertion (2.13) is proved.

Next, we prove that the sequence {ηk} generated by the inexact Uzawa al-

gorithmic framework (2.6) is contractive with respect to the solution set S. The

contraction property is crucial for establishing the convergence of the sequence.

Theorem 2.1. Let η∗ = (w∗, v∗)> ∈ S, that is, 0 ∈ (A+ G)(w∗) +B>v∗ − f,

0 = Bw∗ − g,
(2.15)

and {ηk = (wk, vk)>} be the sequence generated by the inexact Uzawa algorithmic

framework (2.6). With the convergence condition (2.8), we have

‖ηk+1 − η∗‖2
Q ≤ ‖ηk − η∗‖2

Q − ‖ηk+1 − ηk‖2
Q. (2.16)

Proof. From (2.6), it is easy to verify that{
QA(wk − wk+1)− Awk −B>vk + f ∈ G(wk+1), (2.17)

QB(vk − vk+1) +Bwk+1 − g = 0, (2.18)

and (2.15) can be written as{
−Aw∗ −B>v∗ + f ∈ G(w∗), (2.19)

Bw∗ − g = 0. (2.20)
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Subtracting (2.19) and (2.20) from (2.17) and (2.18) respectively, and using the

maximal monotonicity of G, we obtain

〈(QA − A)(wk − wk+1)− A(wk+1 − w∗)−B>(vk − v∗), wk+1 − w∗〉 ≥ 0, (2.21)

QB(vk − vk+1) +B(wk+1 − w∗) = 0.(2.22)

Then, we derive that

〈Q(ηk − ηk+1), ηk+1 − η∗〉

= 〈(QA − A)(wk − wk+1), wk+1 − w∗〉+ 〈QB(vk − vk+1), vk+1 − v∗〉
(2.21)

≥ 〈A(wk+1 − w∗), wk+1 − w∗〉+ 〈B>(vk − v∗), wk+1 − w∗〉

+ 〈QB(vk − vk+1), vk+1 − v∗〉
(2.22)
= 〈A(wk+1 − w∗), wk+1 − w∗〉 − 〈vk − v∗, QB(vk − vk+1)〉

+ 〈QB(vk − vk+1), vk+1 − v∗〉

= 〈A(wk+1 − w∗), wk+1 − w∗〉 − 〈vk − vk+1, QB(vk − vk+1)〉
(2.22)
= 〈A(wk+1 − w∗), wk+1 − w∗〉 − 〈B>Q−1

B B(wk+1 − w∗), wk+1 − w∗)〉

= 〈(A−B>Q−1
B B)(wk+1 − w∗), wk+1 − w∗〉.

(2.23)

It follows from Lemmas 2.2 and (2.23) that

〈Q(ηk − ηk+1), ηk+1 − η∗〉 ≥ 0,

which implies

‖ηk+1 − η∗‖2
Q ≤ ‖ηk − η∗‖2

Q − ‖ηk+1 − ηk‖2
Q,

and we complete the proof.

With these preparations, we are now able to prove the convergence of the

inexact Uzawa algorithmic framework (2.6).

Theorem 2.2. Let {ηk = (wk, vk)>} be the sequence generated by the inexact

Uzawa algorithmic framework (2.6). Then, we have

‖wk − w∗‖ → 0 and dist(vk,Sv)→ 0,

where Sv := {v∗|(w∗, v∗) ∈ S}.
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2.2. Convergence

Proof. First, we need to show that the sequence {ηk} is bounded. It follows from

(2.16) that, for any integer K > 0 and η∗ ∈ S, we have

‖ηK − η∗‖2
Q +

K−1∑
k=0

‖ηk+1 − ηk‖2
Q ≤ ‖η0 − η∗‖2

Q,

which implies that ‖ηk+1 − η∗‖2
Q is bounded and that

lim
k→∞
‖ηk+1 − ηk‖2

Q = 0.

As a result, ‖vk − v∗‖QB is bounded. It is clear that ‖wk+1 − w∗‖QA is also

bounded. Indeed, we have

‖wk+1 − w∗‖QA = ‖(QA + G)−1(QAw
k − Awk −B>vk + f)

− (QA + G)−1(QAw
∗ − Aw∗ −B>v∗ + f)‖QA

(2.13)

≤ L1‖ηk − η∗‖Q.

(2.24)

In addition, the boundedness of ‖ηk − η∗‖ is guaranteed by the positive definite-

ness of both QA and QB. Therefore, the sequence {ηk} is bounded.

To show that any cluster point of {ηk} is a solution point of the problem

(2.1), let η∞ be a cluster point of {ηk} with lim
l→∞

ηkl = η∞. We first prove that

η∞ ∈ S. Recall limk→∞ ‖ηk+1 − ηk‖2
Q = 0. We can derive that

lim
k→∞
‖wk+1 − wk‖QA = lim

k→∞
‖(QA + G)−1(QAw

k − Awk −B>vk + f)

− (QA + G)−1(QAw
k−1 − Awk−1 −B>vk−1 + f)‖QA

(2.13)

≤ lim
k→∞

L1‖ηk − ηk−1‖Q = 0,

and

lim
k→∞
‖vk+1 − vk‖QB = 0.

We thus have limk→∞ ‖ηk+1 − ηk‖ = 0, which implies that

lim
l→∞
‖wkl+1 − wkl‖ = 0, and lim

l→∞
‖vkl+1 − vkl‖ = 0.
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Then, one can derive that

‖(QA + G)−1(QAw
∞ −Aw∞ −B>v∞ + f)− w∞‖QA

= ‖(QA + G)−1(QAw
∞ −Aw∞ −B>v∞ + f)− lim

l→∞
wkl‖QA

≤ ‖(QA + G)−1(QAw
∞ −Aw∞ −B>v∞ + f)

− lim
l→∞

(QA + G)−1(QAw
kl −Awkl −B>vkl + f)‖QA

+ ‖ lim
l→∞

(QA + G)−1(QAw
kl −Awkl −B>vkl + f)− lim

l→∞
wkl+1‖QA

+ ‖ lim
l→∞

wkl+1 − lim
l→∞

wkl‖QA

= lim
l→∞
‖(QA + G)−1(QAw

∞ −Aw∞ −B>v∞ + f)

− (QA + G)−1(QAw
kl −Awkl −B>vkl + f)‖QA

(2.13)

≤ lim
l→∞

L1‖η∞ − ηkl‖Q = 0,

and

lim
l→∞
‖Q−1

B (QBv
kl +Bwkl+1 − g)− vkl+1‖ = ‖Q−1

B (Bw∞ − g)‖ = 0.

Therefore, we conclude that: 0 ∈ (A+ G)w∞ +B>v∞ − f,

0 = Bw∞ − g,

which implies that η∞ is a solution point of the problem (2.1).

As mentioned in Remark 2.1, the components w of solution points of the

nonlinear saddle point problem (2.1) are identical. We thus have ‖wk − w∗‖ →
0. It is easy to verify that dist(vk,Sv) → 0. Otherwise, there should exist a

subsequence {vkl} of {vk} such that dist(ηkl ,S) ≥ dist(vkl ,Sv) ≥ ε0 for some

ε0 > 0. Let η∗ be a cluster point of {ηkl}. Then we have dist(η∗,Sv) ≥ ε0

which contradicts with the above conclusion of any cluster point of {ηk} being a

solution point of the problem (2.1). We thus complete the proof.

Remark 2.2. Compared with (2.17), (2.18) and (2.19), (2.20), it is easy to

verify that ηk+1 is a solution point of the problem (2.1) if and only if ηk+1 = ηk.

It also holds that limk→∞ ‖ηk+1 − ηk‖ = 0. Therefore, given a tolerance ε > 0,

we can use ‖ηk+1− ηk‖ ≤ ε as a stopping criterion to numerically implement the

inexact Uzawa algorithmic framework (2.6).
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2.3 Linear convergence rate

In this section, we further consider the linear convergence rate for the inex-

act Uzawa algorithmic framework (2.6). It turns out that some techniques in

variational analysis, especially some sophisticated techniques recently initiated

in [130, 182, 188] for convergence analysis of various algorithms in optimiza-

tion, are useful for our analysis. It seems to be the first time to consider such

variational analysis techniques to derive the linear convergence rates for inexact

Uzawa type methods in the context of saddle point problems. More specifically,

we shall derive the linear convergence rate of (2.6) under mild conditions which

can be easily satisfied by various concrete applications of the nonlinear saddle

point problem (2.1).

To discuss the linear convergence rate for (2.6), we make the following as-

sumption.

Assumption 2.1. The set-valued mapping ϕ defined in (2.9) is metrically sub-

regular around (η∗, 0), ∀η∗ ∈ S. That is, ∀η∗ ∈ S, there exist a neighborhood

Bε(η∗) of η∗ and κ ≥ 0 such that

dist(η,S) ≤ κ · dist(0, ϕ(η)), ∀η ∈ Bε(η∗).

More details about the metric subregularity can be found in, e.g. [187].

We first prove a useful lemma which plays a key role in analyzing the linear

convergence rate for (2.6).

Lemma 2.4. Let {ηk} be the sequence generated by the inexact Uzawa algorith-

mic framework (2.6). If Assumption 2.1 is satisfied, then there exist constants

K0 > 0 and κ̄ ≥ 0 such that, for any k ≥ K0, it holds that

dist(ηk+1,S) ≤ κ̄‖ηk+1 − ηk‖Q.

Proof. Because of Theorem 2.2, we know that any cluster point of {ηk}∞k=1 is a

solution point of the problem (2.1). Moreover, the proof of Theorem 2.2 indicates

that the set of the cluster points Sc is bounded. Let {B ε
2
(η∗)}, η∗ ∈ S, ε > 0 be
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2.3. Linear convergence rate

an open covering of the bounded closed set S̄c, i.e., the closure of Sc. There exist

finite open sets {B εi
2

(η∗i )}, η∗i ∈ S, i = 1, . . . , i0 such that S̄c ⊆
⋃
i=1,...,i0

{B εi
2

(η∗i )}.
Hence, there exists K0 > 0 such that, for any k > K0, there is always one solution

point η∗jk ∈ S, jk ∈ {i = 1, . . . , i0} such that ηk+1 ∈ Bεjk (η∗jk). Then, Assumption

2.1 shows that, for some κjk ≥ 0, we have

dist(ηk+1,S) ≤ κjk · dist(0, ϕ(ηk+1)).

It follows from (2.6) and the definition of ϕ(η) in (2.9) that(QA − A)(wk − wk+1)

QB(vk − vk+1)

 ∈ ϕ(ηk+1).

Then, we obtain

dist(ηk+1,S) ≤ κjk · dist(0, ϕ(ηk+1))

≤ κjk(‖(QA − A)(wk − wk+1)‖+ ‖QB(vk − vk+1)‖)

≤ κjk(
√
ρ(QA − A) +

√
ρ(QB))‖ηk+1 − ηk‖Q

≤
(

max
i=1,...,i0

{κi}
)
· (
√
ρ(QA − A) +

√
ρ(QB))‖ηk+1 − ηk‖Q.

Therefore, with κ̄ = (maxi=1,...,i0{κi}) · (
√
ρ(QA − A) +

√
ρ(QB)) ≥ 0, the result

is proved.

Next, we prove a local convergence property of the sequence {dist2Q(ηk+1)}.

Theorem 2.3. Let {ηk} be the sequence generated by the inexact Uzawa algo-

rithmic framework (2.6). If Assumption 2.1 is satisfied, then there exists K0 > 0

such that, for any k ≥ K0, it holds that

dist2Q(ηk+1,S) ≤ (1 +
1

ρ(Q)κ̄2
)−1dist2Q(ηk,S).

Proof. From (2.16), we have

dist2Q(ηk+1,S) ≤ dist2Q(ηk,S)− ‖ηk+1 − ηk‖2
Q, ∀k ≥ 0.

By virtue of the inequality (2.11) and Lemma 2.4, there exist K0 > 0 and κ̄ ≥ 0

such that

1√
ρ(Q)

distQ(ηk+1,S) ≤ dist(ηk+1,S) ≤ κ̄‖ηk+1 − ηk‖Q, ∀k ≥ K0. (2.25)
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Consequently, we have

dist2Q(ηk+1,S) ≤ dist2Q(ηk,S)− 1

ρ(Q)κ̄2
dist2Q(ηk+1,S), ∀k ≥ K0,

and the proof is complete.

Now, we can prove a similar theorem concerning the same property but glob-

ally. Techniques in [62, 130] are useful for proving the theorem.

Theorem 2.4. Let {ηk} be the sequence generated by the inexact Uzawa algo-

rithmic framework (2.6). If Assumption 2.1 is satisfied, then for all k ≥ 0, there

exists κ̃ > 0 such that

dist2Q(ηk+1,S) ≤ (1 +
1

κ̃2
)−1dist2Q(ηk,S). (2.26)

Proof. First, it follows from (2.25) that

distQ(ηk+1,S) ≤
√
ρ(Q)κ̄‖ηk+1 − ηk‖Q, ∀k ≥ K0.

Therefore, we only need to consider the case k < K0. Let

ε := min
0≤k<K0

{‖ηk+1 − ηk‖Q},

then we have

‖ηk+1 − ηk‖Q ≥ ε, ∀k < K0.

Recall the contraction property of {ηk} in (2.16). There exists a constant C > 0

such that ‖ηk+1 − η∗‖Q ≤ C. We thus have

distQ(ηk+1,S) ≤ ‖ηk+1 − η∗‖Q ≤
C

ε
‖ηk+1 − ηk‖Q, ∀k < K0.

Let κ̃ := max{
√
ρ(Q)κ̄, C

ε
}. We have

distQ(ηk+1,S) ≤ κ̃‖ηk+1 − ηk‖Q, ∀k ≥ 0.

Taking (2.16) into account, we immediately obtain

dist2Q(ηk+1,S) ≤ (1 +
1

κ̃2
)−1dist2Q(ηk,S), ∀k ≥ 0,

and the proof is complete.
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Based on Theorem 2.4, the global linear convergence rate of the sequences

{wk} and {vk} can be derived directly. We present these results in the following

theorem.

Theorem 2.5. Let {ηk} be the sequence generated by the inexact Uzawa algo-

rithmic framework (2.6). If Assumption 2.1 is satisfied, then for all k ≥ 0, there

exist κ̃ > 0, L2 > 0 and L3 > 0 such that

‖wk+1 − w∗‖ ≤ L2(1 +
1

κ̃2
)−

k
2 distQ(η0,S), (2.27)

and

dist(vk+1,Sv) ≤ L3(1 +
1

κ̃2
)−

k+1
2 distQ(η0,S), (2.28)

where Sv = {v∗|(w∗, v∗) ∈ S}.

Proof. By setting L3 =
√
ρ(Q−1

B ), the second inequality (2.28) follows from (2.26)

directly. We then focus on the first inequality (2.27) in the following discussion.

According to (2.24), we have

‖wk+1 − w∗‖ ≤ ρ(Q−1
A )‖wk+1 − w∗‖QA ≤ ρ(Q−1

A )L1‖ηk − η∗‖Q.

Since it is shown in Lemma 2.1 that the components w of all solution points of

(2.6) are identical, taking infimum with respect to η∗ on the inequality above

yields

‖wk+1 − w∗‖ ≤ ρ(Q−1
A )L1distQ(ηk,S).

It follows from Theorem 2.4 that

distQ(ηk,S) ≤ (1 +
1

κ̃2
)−

k
2 distQ(η0,S).

Thus we have

‖wk+1 − w∗‖ ≤ ρ(Q−1
A )L1(1 +

1

κ̃2
)−

k
2 distQ(η0,S).

The proof is complete with L2 = ρ(Q−1
A )L1.

Note that Assumption 2.1 can be easily satisfied by many popular choices

of the abstract operator G. Examples include the subdifferential of a convex

function such as the indicator function of a box constraint and the L1-norm
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function; see, e.g., [154] for more details. As a result, according to Theorem

2.5, the linear convergence rate holds for the resulting algorithms generated via

the inexact Uzawa algorithmic framework (2.6) for some concrete applications

including the elliptic optimal control problem with control constraints which will

be discussed in the next section.

2.4 Application to elliptic optimal control prob-

lems

With the proved convergence and linear convergence rate, it is promising to

consider the inexact Uzawa algorithmic framework (2.6) for various applications.

Meanwhile, the highly abstract and general algorithmic framework (2.6) becomes

practical only when the preconditionersQA andQB are chosen appropriately for a

specific application of the nonlinear saddle point problem (2.1) in abstract form.

To illustrate how to choose application-tailored preconditioners in (2.6) for a

given application and thus derive an efficient algorithm via the framework (2.6),

we consider an elliptic optimal control problem with control constraints, which is

a fundamental problem in various areas (see, e.g., [18, 30, 49, 103, 125, 145, 171]).

2.4.1 Problem statement

We consider the elliptic optimal control problem with control constraints

min
y∈H1

0 (Ω),u∈C
J(y, u) =

1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω), (2.29)

where y and u satisfy the following state equation:Ky = u in Ω,

y = 0 on Γ.
(2.30)

In (2.30), Ω ⊂ Rd(d ≥ 1) is a convex polyhedral domain with boundary Γ := ∂Ω,

and the desired state yd ∈ L2(Ω) is given. The admissible set C is defined by

C = {u ∈ L∞(Ω)|a ≤ u(x) ≤ b, a.e. in Ω} ⊂ L2(Ω),
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2.4. Application to elliptic optimal control problems

where −∞ < a < b < +∞ are two given constants. If a = −∞ and b = +∞,

then the problem (2.29) reduces to the unconstrained case.

In the equation (2.30), the linear second-order elliptic operator K is defined

by

Ky = −
d∑
i=1

∂

∂xi

d∑
j=1

aij
∂y

∂xj
+ c0y,

where 0 ≤ c0 ∈ L∞(Ω), 0 < aij ∈ L∞(Ω),∀1 ≤ i, j ≤ d are coefficients. In

addition, we assume that the matrix-valued function (aij)1≤i,j≤d satisfies aij = aji

and
d∑
i=1

d∑
j=1

aij(x)ξiξj ≥ γ‖ξ‖2, ∀ξ = {ξi}di=1 ∈ Rd a.e. in Ω,

with γ ≥ 0 and ‖ · ‖ the canonical Euclidean norm of Rd. Under these assump-

tions, the bilinear form a(·, ·) : H1
0 ×H1

0 → R associated with K can be defined

by

a(y, v) =
d∑
i=1

d∑
j=1

∫
Ω

aij(x)
∂y

∂xj

∂v

∂xi
dx+

∫
Ω

c0yvdx. (2.31)

The existence and uniqueness of the solution point to the problem (2.29) can

be proved in a similar way as discussed in [125]; more details can be found in

[103].

To characterize the solution point u∗ of the problem (2.29), we introduce an

adjoint variable p. It is then well known (e.g., see [103]) that the first-order

optimality conditions of (2.29) can be stated as below.

Theorem 2.6. Suppose that u∗ ∈ C is the unique solution of the problem (2.29).

Then the following first-order optimality conditions hold:

0 ∈ ∂IC(u∗) + αu∗ + p∗, (2.32)Ky
∗ = u∗ in Ω,

y∗ = 0 on Γ,
(2.33)

K
∗p∗ = y∗ − yd in Ω,

p∗ = 0 on Γ,
(2.34)

where y∗ and p∗ are the state and adjoint variables associated with u∗, respec-

tively, IC(u) the indicator function of the admissible set C and ∂IC(u) the sub-

differential of IC and K∗ is the adjoint of the operator K.
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2.4. Application to elliptic optimal control problems

Since the problem (2.29) is convex, the optimality conditions (2.32)-(2.34)

are also sufficient. Accordingly, we can solve (2.32)-(2.34) to obtain the optimal

solution of (2.29).

2.4.2 Finite element discretization

In this subsection, we discuss the finite element discretization of the problem

(2.29) in order to solve it numerically.

Let Th be a quasi-uniform triangulation of Ω̄, and T be an element of Th
satisfying Ω̄h =

⋃
T∈Th T . In the case that Ω is a convex polyhedral domain, we

have Ω = Ωh. Let hT denote the diameter of the element T in Th and h = max
T∈Th

{hT}. Let P1 denote the space of polynomials with degree ≤ 1 and define the

finitely dimensional spaces Vh and V 0
h , respectively, as,

Vh := {vh|vh ∈ C(Ω̄); vh |T ∈ P1,∀T ∈ Th},

V 0
h := {vh|vh ∈ Vh, vh |∂Ω= 0}.

We use Vh to approximate H1(Ω) and L2(Ω); and V 0
h to approximate H1

0 (Ω).

Moreover, let {φi(x)}ni=1 be the piecewise linear basis functions of Vh satisfying

φi(x) ≥ 0,∀i = 1 · · ·n, and vh =
n∑
i=1

viφi(x),∀vh ∈ Vh. (2.35)

Then, we can approximate the problem (2.29) by the following finitely dimen-

sional optimal control problem:

min
y∈V 0

h ,u∈Vh

1

2
‖yh − ydh‖2

L2(Ωh) +
α

2
‖uh‖2

L2(Ωh) + ICh(uh)

s.t. a(yh, vh) = (uh, vh),∀vh ∈ Vh.
(2.36)

In (2.36), ydh ∈ Vh is an approximation of yd, and Ch denotes the discrete admis-

sible set defined by

Ch := Vh ∩ C = {vh =
n∑
i=1

viφi(x)|a ≤ vi ≤ b, 1 ≤ i ≤ n}.

In [30], the convergence of the finite element discretization is discussed. We

cite this result below.
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Theorem 2.7. (cf. [30]) Let u∗ and u∗h be the optimal solutions of the problem

(2.29) and (2.36), respectively. Then, there holds:

lim
h→0

1

h
‖u∗ − u∗h‖L2(Ω) = 0.

This theorem implies that the convergence rate of the finite element dis-

cretization is of order o(h), which will be validated by numerical results to be

presented in Section 2.5.

Moreover, for numerical implementation, we define the mass matrix M and

stiffness matrix K, respectively, as follows

Mij =

∫
Ωh

φi(x)φj(x)dx, Kij = a(φi(x), φj(x)), ∀1 ≤ i, j ≤ n.

Using these notations, the discrete optimal control problem originating from

(2.29) in matrix-vector form is given by

min
y∈Rn,u∈Rn

1

2
‖y − yd‖2

M +
α

2
‖u‖2

M + IC(u)

s.t. Ky = Mu,

(2.37)

where y = {yi}ni=1, u = {ui}ni=1 and yd = {ydi}ni=1, and the discrete admissible

set C is given by

C = {u ∈ Rn|a ≤ ui ≤ b, 1 ≤ i ≤ n}.

By introducing the adjoint variable p ∈ Rn, the optimality conditions of (2.37)

read as 
0

Myd

0

 ∈


αM + ∂IC 0 M>

0 M −K>

M −K 0



u

y

p

 . (2.38)

2.4.3 (2.38) is a special case of (2.1)

In this subsection, we illustrate that the nonlinear saddle point system (2.1)

includes the discrete optimality conditions (2.38) as a special case. Hence, the

inexact Uzawa algorithmic framework (2.6) is implementable for (2.38).
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To proceed the discussion, we introduce

A =

 αM 0

0 M

 , B =
(
M −K

)
, w =

 u

y

 , (2.39)

v = p, Θ(w) = IC(u), f =

 0

Myd

 , g = 0. (2.40)

Then, the optimality conditions (2.38) can be reformulated as f

g

 ∈
 A+ ∂Θ B>

B 0

 w

v

 , (2.41)

which is a special case of (2.1) with G = ∂Θ. Clearly, for the unconstrained case,

there is no ∂Θ, and the nonlinear saddle point (2.41) reduces to the linear saddle

point problem (1.20).

2.4.4 Difficulties of implementing (2.6) for (2.38)

In this subsection, we look into details for the implementation of (2.6) to

(2.38). In particular, as mentioned, it is important to choose appropriate precon-

ditionersQA andQB in accordance with the specific structure of the model (2.38).

First, according to (2.39), we know that the Schur complement S = BA−1B>

is reduced to 1
α
M + KM−1K> for the specific nonlinear saddle point problem

(2.41), and as well studied in, e.g. [58], ρ(S) is of order O(h−2).

Let us now observe the application of the exact Uzawa method (2.7) to (2.38),

which reads as 
0 ∈ ∂IC(uk+1) + αMuk+1 +M>pk, (2.42a)

0 = Myk+1 −K>pk −Myd, (2.42b)

0 = pk+1 − pk − ω(Muk+1 −Kyk+1). (2.42c)

As discussed in Section 1.1 for linear saddle point problems, the implementation

of (2.42a)-(2.42c) has some numerical difficulties as listed below.

1. Since M is symmetric and positive definite, the u-subproblem (2.42a) is

equivalent to the following optimization problem:

min
u∈Rn

IC(u) +
α

2
‖u+

pk

α
‖2
M . (2.43)
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2.4. Application to elliptic optimal control problems

The problem (2.43) usually has no closed-form solution because M is not

diagonal, despite the simplicity of IC(u). Thus, inner iterations should be

embedded into the implementation of (2.42a); hierarchically nested iter-

ations and hence the lack of rigorous analysis for the convergence of the

overall scheme (2.42) are thus caused.

2. For the y-subproblem (2.42b), it is usually a huge-scale system of linear

equations especially for fine discretization cases.

3. For the subproblem (2.42c), the main difficulty is that ω is forced to be

tiny for fine discretization cases and thus slow convergence is inevitable.

Recall that the scheme (2.42) is derived from the implementation of the

exact Uzawa method (2.7) to the problem (2.38). Hence, it can be regarded

as taking QB = 1
ω
I in (2.6) and the convergence condition (2.8) requires

that ω ≤ 1
ρ(S)

. As just mentioned, ρ(S) is of order O(h−2); thus ω is of

order O(h2) which is very small even for medium values of h. This may

easily lead to extremely slow convergence, see, e.g., the analysis in [21] for

linear saddle point problems.

2.4.5 Strategies

Now, we elaborate on our ideas for tackling the difficulties listed above. To

tackle the first difficulty, a natural idea is to add a proximal term 1
2
‖u−uk‖c0I−αM

to the objective function in (2.43). With some special choice of the constant

c0 > 0 such that c0I − αM � 0, the proximally regularized problem may have

a closed-form solution. Such a strategy has been widely used in areas such as

optimization and image processing, see e.g., [183, 186, 191]. For the problem

under our discussion, however, this proximal regularization technique seems not

to be useful because the convergence condition c0I − αM � 0 means that c0

depends on h and it can rarely be sufficiently large. Here, we consider the lump

mass matrix

W := diag(

∫
Ωh

φi(x)dx)ni=1,
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where φi(x), i = 1, · · · , n are basis functions defined in (2.35). It has been shown

in [184] that

W �M, ∀h > 0. (2.44)

Adding the proximal term α
2
‖u−uk‖W−M to the objective function, the problem

(2.43) is transformed to

min
u∈Rn

IC(u) +
α

2
‖u+W−1(

1

α
M>pk − (W −M)uk)‖2

W ,

whose optimality condition reads as

0 ∈ ∂IC(uk+1) + αWuk+1 − α(W −M)uk +M>pk. (2.45)

Since W is diagonal, we obtain

uk+1 = PC(W−1((W −M)uk − 1

α
M>pk)),

where PC is the projection onto the admissible set C and it usually can be easily

computed because of the simplicity of the set C.

For the second difficulty, we consider some iterative schemes that are tailored

for the system of linear equations. Since M is diagonally dominant, we can

choose D = 2 diag(M) which implies immediately that

D �M. (2.46)

With this choice, the computation of yk+1 is essentially the application of the

damped Jacobi iteration method to the y-subproblem (2.42b), which reads as:

yk+1 = yk −D−1(Myk −K>pk −Myd). (2.47)

As a result, we can update yk+1 element-wisely, which is computationally inex-

pensive and easily implementable.

Last, we discuss how to choose appropriate preconditioners QA and QB in

accordance with the specific structure of the model (2.38) to tackle the third diffi-

culty. First, taking (2.6) into account, we know that (2.45) and (2.47) essentially

imply that

QA :=

 αW 0

0 D

 ,
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2.4. Application to elliptic optimal control problems

and it follows from (2.44) and (2.46) that QA � A.

For the preconditioner QB, inspired by [21] for linear saddle point problems,

an ideal choice isQB = S. But it is generally too difficult to computeQ−1
B because

the condition number of S is of order O(h−4) which means S is extremely ill-

conditioned even for not very small values of h. Therefore, we need to choose

QB to balance the efficiency of the resulting algorithm and the computation of

Q−1
B . For this purpose, we note that the Schur complement S can be written as

S = (K +
1√
α
M)M−1(K +

1√
α
M)> − 2√

α
K.

According to the work [145, 146], the Schur complement S can be approximated

by

PB = (K +
1√
α
M)M−1(K +

1√
α
M)>, (2.48)

which drops off the term 2√
α
K in S. Let us recall a known result below.

Theorem 2.8. (cf [145].) Suppose that we approximate S by PB. Then, we can

bound the eigenvalues of P−1
B S as follows:

λ(P−1
B S) ∈ [

1

2
, 1],

which is independent of α and h.

Therefore, the positive definiteness of K and the theorem above ensure that

PB � S. (2.49)

This theorem also implies that we can use PB defined in (2.48) as a surrogate

of the preconditioner QB for the Schur complement S if we can approximate

the matrices (K + 1√
α
M) and (K + 1√

α
M)> efficiently. Thus, implementing

the inexact Uzawa algorithmic framework (2.6) for (2.38) with the surrogate PB

essentially requires to compute (K + 1√
α
M)−1 and (K + 1√

α
M)−>. The matrices

(K + 1√
α
M) and (K + 1√

α
M)>, however, are still ill-conditioned due to the

presence of the stiffness matrix K whose condition number is of order O(h−2)

(see, e.g. [58]). Hence, it is not practical to directly compute these two inverses.

Since K is the discretization of the linear second-order elliptic operator K, as

discussed in, e.g. [26, 172], a spectrally equivalent approximation of K can be

45



2.4. Application to elliptic optimal control problems

obtained by performing one or more multi-grid sweeps. We thus can follow some

well-studied literatures such as [181, 185] to execute two algebraic multi-grid

(AMG) V-circles to approximate the computations of (K + 1√
α
M)−1v and (K +

1√
α
M)−>v, respectively, for a given vector v. Note that, via the implementation of

AMG V-circles, the matrix (K + 1√
α
M) is implicitly approximated by a matrix,

denoted by G. Hence, the expression of G is unknown. As we shall show in

Section 6 by numerical results, this approximation is good enough to ensure very

fast convergence. The implementation of AMG V-circles is based on the iFEM

package developed in [39] with a Jacobian smoother.

2.4.6 A specific inexact Uzawa type algorithm for (2.29)

In summary, we choose the preconditioners QA and QB as

QA :=

 αW 0

0 D

 � A, and QB := τGM−1G> � PB � S, (2.50)

where the constant τ > 0 should be large enough to ensure QB � PB. Note

that it follows from (2.49) that QB � S. Moreover, since the algebraic multi-

grid process G is a spectrally equivalent approximation to K + 1√
α
M (see, e.g.,

[145, 146]), it is easy to determine the value of τ around 1 such that QB � S

is satisfied. More details will be shown in Section 2.5. We thus obtain the

following specified algorithm via inexact Uzawa algorithmic framework (2.6) for

the problem (2.37):
0 ∈ ∂IC(uk+1) + αWuk+1 − α(W −M)uk +M>pk, (2.51a)

0 = D(yk+1 − yk) +Myk −K>pk −Myd, (2.51b)

0 = pk+1 − pk −Q−1
B (Muk+1 −Kyk+1). (2.51c)

We would reiterate that in (2.50) the matrix G ≈ K + 1√
α
M (hence, G> ≈

(K + 1√
α
M)>) and the approximation is in an implicit manner, while there is no

need to know the explicit expression of G to implement (2.51). The reason is

that QB is approximated by the PB defined in (2.48), and thus the computation

of Q−1
B (Muk+1 − Kyk+1) in (2.51c) is realized via totally four AMG V-circles

implemented on (K + 1√
α
M) and (K + 1√

α
M)>, respectively, plus a matrix-

vector multiplication involving the matrix M . Since QA � A and QB � S,
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the convergence condition (2.8) is verified. As a result, the convergence of the

resulting algorithm (2.51) follows from Theorem 2.2 directly. Since IC is the

indicator function of a box constraint, Assumption 2.1 is satisfied. Therefore,

according to Theorem 2.5, the algorithm (2.51) indeed converges linearly. We

shall verify these theoretical results in Section 2.5.

Our explanations above indicate that, because of the well-chosen precondi-

tioners in (2.50), the algorithm (2.51) designed specially for the elliptic optimal

control problem with control constraints (2.37) is featured by the fact that each

of its iteration only requires computing a projection onto the admissible set (see

(2.51a)), four AMG V-cycles (see (2.51c)) and some matrix-vector multiplica-

tions. There is no any optimization problem or system of linear equations which

should be solved iteratively in its iterations, and thus nested iterations are com-

pletely avoided. Therefore, it is very easy to implement the specific algorithm

(2.51).

2.5 Numerical results

In this section, we test the elliptic optimal control problem with control con-

straints (2.29) and numerically verify the efficiency of the specific algorithm (2.51)

derived from the algorithmic framework (2.6).

First, we would like to mention that there are other numerical schemes in

the literature that can be applied to various elliptic optimal control problems

with control constraints. For example, one can regard the corresponding first-

order optimality conditions of the problem under discussion (2.32)-(2.34) as a

nonsmooth equation and then apply some so-called semismooth Newton (SSN)

type methods (see, e.g. [99, 103, 104, 147, 174]). In [14], the primal dual active

set (PDAS) method is proposed and it can be viewed as a combination of an

SSN type method with the active set strategy proposed in [101]. It is proved in

[174] that SSN type methods may have locally superlinear convergence rates and

they are capable of approaching high-precision solutions. Meanwhile, it is known

that SSN type methods require solving a possibly large-scale and ill-conditioned
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system of linear equations at each of their iterations, in order to compute the

Newton step, on top of that the convergence of SNN type methods usually de-

pends on well-chosen initial iterate. In addition, it follows from Theorem 2.7 that

the discretization error is o(h) and it accounts for the main part of the total error

of utilizing some numerical scheme to solve the problem (2.29). In this sense,

approaching an approximate solution in a very high precision may not necessar-

ily reduce the total error order, while significantly more computation loads are

caused. Therefore, it is also interesting to consider such a numerical scheme that

can find approximate solutions in medium-precision but with significantly less

computational time. The proposed inexact Uzawa algorithmic framework (2.6)

is such an effort.

We also notice that some schemes based on the so-called alternating direction

method of multipliers (ADMM) (see [72]) have been proposed in the literature

for solving the elliptic optimal control problem with control constraints, see e.g.

[162]. As the proposed algorithm (2.51), these ADMM type schemes do explore

the separate structures of the models under investigation and thus each iter-

ation consists of a projection onto the admissible set and a large-scale linear

saddle point problem. But solving the linear saddle point problems iteratively

per se may be computationally expensive, and it results in nested iterations and

hence causes new difficulties in rigorously ensuring the overall convergence. By

contrast, as elaborated in Section 5, the algorithm (2.51) derived from the algo-

rithmic framework (2.6) does not require to solve any optimization subproblems

or systems of linear equations numerically over the fine mesh. Therefore, because

of the aforementioned very different natures, we do not numerically compare the

algorithm (2.51) with SSN type and ADMM type methods in the literature.

Our codes were written in MATLAB R2016b and experiments were imple-

mented on a Surface Pro 5 laptop with 64-bit Windows 10.0 operation system,

Intel(R) Core(TM) i7-7660U CPU (2.50 GHz), and 16 GB RAM. To test our

proposed algorithm (2.51), we define the primal and dual residuals, respectively,

as:

ps := (‖uk − uk−1‖2
L2(Ω) + ‖yk − yk−1‖2

L2(Ω))
1
2 and ds := ‖pk − pk−1‖L2(Ω);

48



2.5. Numerical results

and the stopping criterion is set as

max(ps, ds) ≤ tol,

where tol > 0 is a prescribed tolerance. The initial values are set as u = 0, y = 0

and p = 0 for all experiments.

Example 1. We first consider the example given in [104]:

min
y∈H1

0 (Ω),u∈C
J(y, u) = 1

2
‖y − yd‖2

L2(Ω) + α
2
‖u‖2

L2(Ω)

s.t.

−∆y = u in Ω,

y = 0 on Γ,

where the domain Ω = (0, 1)×(0, 1) and constraints on the control variable u are

a = 0.3 and b = 1. In addition, we set the desired state yd = 4π2α sin(πx) sin(πy)+

yr, where yr denotes the solution associated with the problem−∆yr = r in Ω,

yr = 0 on Γ,

and r = min {1,max {0.3, 2 sin(πx) sin(πy)}}. It follows from the construction of

yd and r that u∗ = r is the unique solution of this example. The exact solution

u∗ on a grid with h = 2−6 is presented in Figure 2.1. Note that we only consider

the boundary condition y = 0 in order to simplify the process of constructing

an example with a known exact solution. In practice, it is not necessary to

assume the boundary condition y = 0; the scope to which our proposed method

can be applied is not affected by the boundary condition. Indeed, the state

equation is an elliptic problem with Dirichlet boundary condition; so we only

need to operate on interior points of the domain of the problem and thus the

boundary condition does not affect the coefficient matrix of the linear system

after discretization. Similar assumptions can be found in many literatures such

as [99, 101, 103, 145, 146].

We first set tol = 10−6 and test the algorithm (2.51) with different dis-

cretization mesh sizes: h = 2−i, i = 3, · · · , 10 and different regularization pa-

rameters: α = 10−j, j = 2, · · · , 6. For tests with h = 2−9, tol = 10−6, and

α = 10−j, j = 2, · · · , 6, the iteration numbers range between 43 and 66, which
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Figure 2.1: Exact solution u∗ of Example 1.

implies that the numerical performance of (2.51) is robust to various values of

the regularization parameter α. Hence, as [104], we just report the results for

α = 10−4 for succinctness. Accordingly, the value of τ for QB in (2.50) is tuned

to be 0.5. The numerical results with different mesh sizes h are presented in

Table 2.1. The computing time in the third column show that we can obtain a

medium-precision numerical solution in a short time even for fine discretization

cases such as h = 2−10. Compared with the result in [162], we observe that,

although less iteration numbers are reported therein, the ADMM-based scheme

in [162] requires much more computing time especially when the mesh size h is

small. As mentioned, it is because a linear saddle point problem in form of (1.20)

should be solved at each iteration and thus nested iterations are inevitable.

We also observe that the additional constraint in the admissible set does not

increase computing time for the algorithm (2.51). We further test the uncon-

strained case, i.e., a = −∞ and b = +∞, and compare it with the constrained

case for a fixed number of iterations (say, 100). The comparison is reported in

Table 2.2.

In Figure 2.4, we present the errors ‖u−u∗‖L2(Ω) and ‖y−y∗‖L2(Ω), the primal

and dual residuals with h = 2−6 and tol = 10−6. The results presented here verify

the linear convergence rate discussed in Section 2.3. Numerical results of y, y−yd
and u, u − u∗ with h = 2−6 and tol = 10−6 are reported in Figures 2.2 and 2.3,

respectively.

To validate the finite element discretization error estimates, we define the
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Table 2.1: Numerical results of the algorithm (2.51) for Example 1.

h Iter CPU(s)
‖y−yd‖L2(Ω)

‖yd‖L2(Ω)
J(y, u) ‖u‖L2(Ω)

2−3 41 0.103278 5.5599×10−2 2.6848×10−5 0.7055

2−4 48 0.170980 5.2592×10−2 2.8549×10−5 0.7294

2−5 47 0.284057 5.1871×10−2 2.9146×10−5 0.7375

2−6 47 0.435089 5.1684×10−2 2.9390×10−5 0.7399

2−7 47 0.785748 5.1640×10−2 2.9496×10−5 0.7423

2−8 47 2.396362 5.1628×10−2 2.9547×10−5 0.7430

2−9 47 11.192291 5.1626×10−2 2.9571×10−5 0.7433

2−10 47 49.309952 5.1625×10−2 2.9583×10−5 0.7434

Table 2.2: Computing time(s) comparison between unconstrained(U) and con-

strained(C) cases for Example 1.

h 2−3 2−4 2−5 2−6 2−7 2−8 2−9 2−10

U 0.1135 0.1815 0.2317 0.5108 1.2521 4.3241 19.1093 85.3758

C 0.1273 0.2556 0.4384 0.5899 1.2639 4.0090 19.7053 86.5423

Figure 2.2: Numerical solution y and error y − yd of Example 1.
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Figure 2.3: Numerical solution u and error u− u∗ of Example 1.
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Figure 2.4: Iteration error ‖u− u∗‖ and ‖y − y∗‖ (left), primal residual ps, dual

residual ds and objective function value (right) of Example 1.
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experimental order of convergence (EOC) as

EOC :=
log(e(h1))− log(e(h2))

log(h1)− log(h2)
, (2.52)

where e(h) > 0 is the error with L2-norm, and h1 and h2 denote two consecutive

mesh sizes. From (2.52), it is easy to show that, if e(h) = O(hβ), then EOC = β.

In addition, to eliminate the iteration error of the algorithm (2.51) , we set

tol = 10−9 in the following experiments. For this case, the discretization error

dominates the total error. For this purpose, we specify e(h) with respect to u

and y as, respectively,

eu(h) = ‖u∗ − u∗h‖L2(Ω), ey(h) = ‖y∗ − y∗h‖L2(Ω).

We report the numerical results in Table 2.3 for some choices of the mesh size

h. It is observed that the convergence order of the finite element discretization of

the control variable in our experiments is approximately O(h2). This empirically

validates the theoretically derived order of o(h) in Theorem 2.7. In addition,

the convergence order of the state variable y is O(h2) which coincides with the

theoretical result shown in [64]. Moreover, the third column in Table 2.3 shows

that it only requires less than 80s in the finest discretization case (h = 2−10)

to reach highly accurate solutions. This further validates the efficiency of the

algorithm (2.51) for solving the elliptic optimal control problem with control

constraints (2.29).

Table 2.3: Convergence order of finite element discretization for Example 1.

h Iter CPU(s) eu(h) EOC(u) ey(h) EOC(y)

2−3 77 0.124715 3.4529×10−3 ∼ 6.1846×10−5 ∼

2−4 83 0.166852 8.7410×10−4 1.9819 1.5136×10−5 2.0281

2−5 80 0.353843 2.1415×10−4 2.0291 3.8981 ×10−6 1.9597

2−6 82 0.511972 5.3773×10−5 1.9937 9.6936 ×10−7 2.0076

2−7 82 1.242614 1.3438×10−5 2.0005 2.4253×10−7 1.9987

2−8 82 3.433469 3.3609×10−6 1.9994 6.6031×10−8 2.0000

2−9 82 16.899456 8.4238×10−7 1.9963 1.5157×10−8 2.0000

2−10 82 74.143923 2.1271×10−7 1.9856 3.7853×10−9 2.0015
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Example 2. We consider the following problem:

min
y∈H1

0 (Ω),u∈C
J(y, u) := 1

2
‖y − yd‖2

L2(Ω) + α
2
‖u‖2

L2(Ω)

s.t.

−∆y + y = u in Ω,

y = 0 on Γ,

where the target function yd = sin(2πx) sin(2πy), Ω = (0, 1) × (0, 1), and the

admissible set C is given by

C = {v(x) ∈ L∞(Ω)| − 70 ≤ v(x) ≤ 70, a.e. in Ω} ⊂ L2(Ω).

We set the parameter α = 10−6 and the constant τ = 0.5. Compared with

Example 1, this example is more general and its exact solution is unknown.

Similar as Example 1, we first test the algorithm (2.51) for finding medium-

precision solutions with tol = 10−6 for different values of the mesh size h. Nu-

merical results are summarized in Table 2.4. It shows that the algorithm (2.51)

converges very fast. It is observed that the resulting iteration number seems not

to be affected by the mesh size. We fix the iteration number as 100 and compare

the computing time for both the constrained and unconstrained cases with dif-

ferent mesh size h. The results are reported in Table 2.5. It is verified again that

the additional constraint in the admissible set does not increase computing time

for the algorithm (2.51). We also report some numerical results with h = 2−6

and tol = 10−6 in Figures 2.5 and 2.6, respectively.

Table 2.4: Numerical results of the algorithm (2.51) for Example 2.

h Iter CPU(s)
‖y−yd‖L2(Ω)

‖yd‖L2(Ω)
J(y, u) ‖u‖L2(Ω)

2−3 76 0.169272 1.6454×10−2 8.7736×10−4 41.2225

2−4 75 0.175245 9.2394×10−2 7.9962×10−4 39.7361

2−5 76 0.307826 7.6773×10−3 7.8246×10−4 39.3749

2−6 73 0.461259 7.5190×10−3 7.7863×10−4 39.2832

2−7 69 0.899516 7.4743×10−3 7.7769×10−4 39.2608

2−8 65 2.749966 7.4641×10−3 7.7745×10−4 39.2553

2−9 60 14.249536 7.4613×10−3 7.7739×10−4 39.2538

2−10 59 49.860595 7.4606×10−3 7.7738×10−4 39.2535
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2.5. Numerical results

Table 2.5: Computing time (s) comparison between unconstrained (U) and con-

strained (C) cases for Example 2.

h 2−3 2−4 2−5 2−6 2−7 2−8 2−9 2−10

U 0.1633 0.2428 0.4106 0.7522 1.2153 3.9141 17.5494 82.7913

C 0.1685 0.2624 0.3938 0.6672 1.0936 3.6811 17.3901 80.3295

100 101

iteration

10-15

10-10

10-5

100

105

Ite
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Dual residual
Primal residual
Objective value

(a) Iteration result (b) y − yd

Figure 2.5: Iteration result(left) and error y−yd(right) with h = 1/64 of Example

2.

(a) y (b) u

Figure 2.6: Numerical solution y (left) and u (right) with h = 1/64 of Example

2.
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Chapter 3

Implementation of the ADMM

to Parabolic Optimal Control

Problems with Control

Constraints and Beyond

In this chapter, we consider the following optimal control problem with a

parabolic PDE constraint and a box constraint on the control variable:

min
u∈Uad,y∈L2(Q)

1

2

∫∫
Q

|y − yd|2dxdt+
α

2

∫∫
O
|u|2dxdt (3.1)

subject to the state equation
∂y

∂t
− ν∆y + a0y = uχO, in Ω× (0, T ),

y = 0, on Γ× (0, T ),

y(0) = ϕ,

(3.2)

where Ω is an open bounded domain in Rd (d ≥ 1) and Γ = ∂Ω is the piecewise

continuous boundary of Ω; ω is an open subset of Ω and 0 < T < +∞; the

domain Q = Ω× (0, T ) and O = ω× (0, T ). In (3.1)–(3.2), u and y are called the

control variable and state variable, respectively. The target function yd is given

in L2(Q) and the admissible set Uad is defined by

Uad = {v|v ∈ L∞(O), a ≤ v(x; t) ≤ b a.e. inO} ⊂ L2(O).
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3.1. Some existing algorithms

In addition, we denote by ∆ := ∇ · ∇ the Laplace operator and χO the charac-

teristic function of the set O. The constant α > 0 is a regularization parameter;

a and b are given constants; the initial value ϕ is given in L2(Ω). The coefficients

a0 (≥ 0) ∈ L∞(Q) and ν is a positive constant.

3.1 Some existing algorithms

3.1.1 Parabolic optimal control problems without control

constraints

For the special case of the problem (3.1)–(3.2) where Uad = L2(O), i.e., there

is no constraint on the control variable, the resulting problem is called an uncon-

strained parabolic optimal control problem and it has been well studied in some

earlier literatures such as [125] and some more recent ones such as [171]. There

is a rich set of papers discussing how to solve unconstrained parabolic optimal

control problems numerically; and methods in the literature can be generally

categorized as the “black-box” and “all-at-once” approaches. The “black-box”

approach commonly suggests substituting the state equation into the objective

functional to eliminate the state variable y, and treats an unconstrained parabolic

optimal control problem as an optimization problem with respect to the control

variable u. Note that each iteration of a “black-box” approach requires solving

the involved state equation. We refer to [81, 83] for some efficient “black-box”

type numerical schemes for unconstrained parabolic control problems with dif-

ferent types of control variables. On the other hand, the “all-at-once” approach

keeps the state equation in the constraints, and treats both the state and control

variables separately. The optimality condition of such a resulting constrained op-

timization problem after discretization can be represented as a linear saddle point

system, which can be solved by some efficient iterative solvers such as Krylov

subspace methods. We refer to [132, 144, 176] for more details. Both “black-box”

and “all-at-once” approaches can be combined with standard techniques such as

domain decomposition methods and multi-grid methods to further improve their

numerical performance; see, e.g., [7, 16, 70, 98, 131], for some intensive study.
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3.1. Some existing algorithms

3.1.2 SSN methods for parabolic optimal control prob-

lems with control constraints

In the literature, semi-smooth Newton (SSN) methods are state-of-the-art

for various optimal control problems with control constraints. For instance, SSN

methods have been intensively studied for optimal control problems with ellip-

tic PDE constraints; see, e.g., [101, 103, 175] and reference therein. A common

feature of SSN methods is that a semismooth Newton direction is constructed

by using a generalized Jacobian in sense of Clarke (see [45]) and then a Newton

iteration is expressed in terms of certain active set strategy which identifies the

active and inactive indices iteratively in accordance with the control constraints,

see, e.g., [14, 147]. In [14], some adaptive strategies have been proposed to

alleviate the computational load of the Newton iterations with the resulting iter-

atively varying coefficient matrices. As analyzed in [101], a SSN method with an

active set strategy can be explained as the primal-dual active set (PDAS) strat-

egy studied in [14] for certain problems such as linear-quadratic optimal control

problems with box control constraints, including the problem (3.1)–(3.2). The

convergence of the PDAS approach can be found in [117] while some numerical

results are also reported therein for parabolic boundary control problems with

d = 1. In [101], it has been proved that SSN methods possess locally superlinear

convergence and usually can find high-precision solutions, on the condition that

that some initial values can be deliberately chosen. Note that it is assumed by

default that the resulting Newton systems should all be solved exactly to val-

idate the theoretical analysis and hence the mentioned nice properties of SSN

type methods. Computationally, it is notable that the Newton systems arising in

SSN methods are usually ill-conditioned, and as commented in [166] that “it is

never solved without the application of a preconditioner”. Seeking appropriate

preconditioners so as to improve the spectral properties of the Newton systems is

indeed a major factor to ensure the success of implementing a SSN type method.

In the literature, e.g., [102, 147, 160, 165, 177], some preconditioned iterative

solvers were proposed for various SSN methods.

One motivation of considering SSN type methods for the general case of the

problem (3.1)–(3.2) with Uad ( L2(O) is that the indicator function of the ad-
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3.1. Some existing algorithms

ditional constraint on the control variable u ∈ Uad arising in the optimality

condition of the problem (3.1)–(3.2) is nonsmooth; hence gradient type methods

are not applicable, see e.g., [103, 171]. But, a particular obstacle of applying SSN

type methods to the problem (3.1)–(3.2) is that the simple box constraint on the

control variable is forced to be considered together with the main parabolic PDE

(3.2) simultaneously. Despite that the computational load of assembling the New-

ton systems can be alleviated by the adaptive strategies in [14], the varying active

sets require adjusting the preconditioners iteratively. Indeed, as commented in

[165], “we have recomputed the preconditioner for every application involving a

different active set” and that “the recomputation of the preconditioner needs to

be avoided”. Hence, the simple constraint on the control variable unnecessarily

complicates the Newton systems because of the request of active-set-dependent

preconditioning, and this feature makes it difficult to apply SSN type methods

to the problem (3.1)–(3.2).

Implementation of SSN type methods to the general case of the problem

(3.1)–(3.2) with d ≥ 2 is further restrained by the inevitably high dimensionality

of the resulting Newton systems. To elaborate, if we set the mesh sizes of both

the time and space discretizations as 1/100, then the dimensionality of the re-

sulting Newton system at each iteration is order of O(106) for d = 2 and O(108)

for d = 3. Hence, for some time-dependent problems such as (3.1)–(3.2) with

d ≥ 2, it is not practical to solve such large-scale Newton systems either exactly

or up to high precisions. It is thus necessary to discern some criterion that can be

implemented easily, and to investigate the convergence if these Newton systems

can only be solved up to certain levels of accuracy due to the difficulty of high

dimensionality. In the literature, usually some empirically perceived constant

accuracy is set a prior, and certainly fixing a constant accuracy by liberty may

unnecessarily result in either too accurate computation (hence slower conver-

gence) or too loose approximation (hence possible divergence) for the internal

iterations1. There seems still to lack of discussions on how to specify the in-

exactness criterion methodologically and how to prove the convergence of the

resulting inexact executions rigorously in the literature of SSN methods. Also,

1The same concerns also apply to the interior point methods in, e.g., [143], for different

types of optimal control problems.
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3.2. Conceptual application of ADMM

as mentioned in, e.g., [147], some SSN methods require the accuracy for internal

iterations to be increased when the mesh size for discretization becomes smaller.

This essentially increases the computational load for solving the Newton systems

and may significantly slow down the overall convergence if fine meshes are used

to discretize the problem (3.1)–(3.2).

3.2 Conceptual application of ADMM

Inspired by the aforementioned difficulties in the consideration of implement-

ing the well-studied SSN methods to the problem (3.1)–(3.2), our first motivation

is to design an algorithm that can treat the parabolic PDE constraint (difficult

one) and the box constraint on the control variable (easy one) separately in

its execution. A particular goal is that the subproblems associated with the

parabolic PDE constraint arising in different iterations should have invariant

coefficient matrices so that certain numerical strategy such as preconditioning

can be uniformly applied. To this end, it suffices to consider the well-studied

alternating direction method of multipliers (ADMM) which was first introduced

by Glowinski and Marroco in [72] for nonlinear elliptic problems.

Let us see how the ADMM can be applied to the problem (3.1)–(3.2) and

a prototype algorithm can be obtained immediately. For this purpose, we let

S : L2(O) −→ L2(Q) be an affine solution operator associated with the state

equation (3.2); and it is defined as

S(u) := y. (3.3)

It is clear that S is bounded, continuous and compact. More properties of the

operator S can be referred to [171]. With y = S(u), the problem (3.1)–(3.2) can

be rewritten as

min
u∈Uad

1

2α

∫∫
Q

|S(u)− yd|2dxdt+
1

2

∫∫
O
|u|2dxdt,

which is actually a scaled version of the problem (3.1)–(3.2). Further, by intro-

ducing an auxiliary variable z ∈ L2(O) such that u = z, the problem (3.1)–(3.2)
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3.2. Conceptual application of ADMM

can be written as the following separable convex optimization problem min
(u,z)∈L2(O)×L2(O)

J̃(u) + IUad(z)

s.t. u = z,
(3.4)

where IUad(·) is the indicator function of the admissible set Uad and

J̃(u) :=
γ

2

∫∫
Q

|S(u)− yd|2dxdt+
1

2

∫∫
O
|u|2dxdt, with γ =

1

α
. (3.5)

The augmented Lagrangian functional associated with the problem (3.4) can be

defined as

Lβ(u, z, λ) := J̃(u) + IUad(z)− (λ, u− z) +
β

2
‖u− z‖2,

in which (·, ·) and ‖ · ‖ are the canonical inner product and norm in L2(O),

respectively; λ ∈ L2(O) is the Lagrange multiplier associated the constraint

u = z, and β > 0 is a penalty parameter. To simplify the discussion, the

penalty parameter is fixed throughout our discussion. Then, implementing the

ADMM in [72] to (3.4), we immediately obtain the scheme
uk+1 = arg min

u∈L2(O)
Lβ(u, zk, λk), (3.6a)

zk+1 = arg min
z∈L2(O)

Lβ(uk+1, z, λk), (3.6b)

λk+1 = λk − β(uk+1 − zk+1). (3.6c)

3.2.1 Remarks on the direct application of ADMM

The ADMM can be regarded as a splitting version of the classic augmented

Lagrangian method (ALM) proposed in [100, 148]. At each iteration of the

ALM, the subproblem is decomposed into two parts and they are solved in the

Gauss-Seidel manner. A key feature of the ADMM is that the decomposed

subproblems usually are much easier than the ALM subproblems and it becomes

more likely to take advantage of the properties and structures of the model

under investigation. Also, it generally does not require specific initial iterates

to guarantee its satisfactory numerical performance. All these advantages make

the ADMM a benchmark algorithm in various areas such as image processing,

statistical learning, and so on; we refer to [19, 77] for some review papers on the

ADMM. In particular, the ADMM and its variants have been applied to solve
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3.2. Conceptual application of ADMM

some optimal control problems constrained by time-independent PDEs in, e.g.,[4,

91, 162]. In [84], the ADMM was applied to parabolic optimal control problems

with state constraints, and its convergence is proved without any assumption on

the existence and regularity of the Lagrange multiplier. In [83], the Peaceman–

Rachford splitting method (see [142]) which is closely related to the ADMM was

suggested to solve approximate controllability problems of parabolic equations

numerically.

On the other hand, the ADMM is a first-order algorithm; hence its conver-

gence is at most linear and it may not be efficient for finding very high-precision

solutions. For a numerical scheme solving the problem (3.1)–(3.2), total errors

consist of the discretization error resulted by discretizing the model and the it-

eration error resulted by solving the discretized model numerically. In general,

first-order numerical schemes such as the backward Euler finite difference method

or piecewise constant finite element method with the step size τ is implemented

for the time discretization (see e.g., [83, 133]). As a result, the error order of

the time discretization is O(τ) (see e.g., [133]) and this estimate may dominate

the magnitude of the total error. For such cases, pursuing too high-precision

solutions of the discretized model does not help reduce the total error and it is

more appropriate to just apply a first-order algorithm to find a medium-precision

solution of the discretized model. This also motivates us to consider the ADMM

(3.6) for the problem (3.1)–(3.2).

3.2.2 Difficulties and goals

It is straightforward to obtain the ADMM (3.6) for the problem (3.1)–(3.2).

But the scheme (3.6) is only conceptual, and it cannot be used immediately. As

will be shown in Section 3.3, the z-subproblem (3.6b) is easy; its closed-form

solution can be computed by the projection onto the admissible set Uad. But the

u-subproblem (3.6a) is essentially a standard unconstrained parabolic optimal

control problem, and it can only be solved iteratively by certain existing algo-

rithms. For instance, as studied in [81, 83], we can apply the conjugate gradient

(CG) method to solve it. Clearly, solving (3.6a) dominates the computation of
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3.3. An inexact ADMM

each iteration of the ADMM (3.6). Notice that the dimensionality of the time-

dependent u-subproblem (3.6a) after space-time discretization is inevitably high.

Hence it is impractical to solve these subproblems too accurately. Meanwhile,

there is indeed no necessity to pursue too accurate solutions for these subprob-

lems, especially when the iterates are still far away from the solution point.

Therefore, the subproblem (3.6a) should be solved iteratively and inexactly, and

the implementation of the ADMM (3.6) must be embedded by an internal it-

erative process for the subproblem (3.6a). Interesting mathematical problems

arise soon: How to determine an appropriate inexactness criterion to execute the

internal iterations for solving the subproblem (3.6a); and how to rigorously prove

the convergence for the ADMM scheme (3.6) with two-layer nested iterations?

Preferably, the inexactness criterion for solving the subproblem (3.6a) should

be easy to implement, free of setting empirically perceived constant accuracy a

prior, independent of space-time discretization mesh sizes and the regularization

parameter α, accurate enough to yield good approximate solutions which are

good enough to ensure the overall convergence, yet efficient to avoid unnecessar-

ily too accurate solutions so as to save overall computation. Moreover, though

the convergence of the original ADMM has been well studied in both earlier

literatures [67, 69, 76, 80] and recent literatures [96, 97], the scheme (3.6) with

the nested internal iterations subject to a given inexactness criterion should be

analyzed from scratch. In short, our goals are: (I) proposing an easily imple-

mentable and appropriately accurate inexactness criterion for solving the sub-

problem (3.6a) inexactly and hence an inexact version of the ADMM (3.6), (II)

establishing the convergence for the resulting inexact ADMM rigorously, (III)

specifying the inexact ADMM as concrete algorithms that are applicable to the

problem (3.1)–(3.2), and (IV) extending the inexact ADMM to other versions

that can be used for a range of other optimal control problems.

3.3 An inexact ADMM

In this section, we first take a closer look at the solutions of the subproblems

(3.6a)–(3.6c), and then propose an inexactness criterion for solving the subprob-
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3.3. An inexact ADMM

lem (3.6a) iteratively. An inexact version of the ADMM (3.6) with two-layer

nested iterations is thus proposed. For the simplicity of notations, hereinafter,

we denote by U and Y the space L2(O) and L2(Q), respectively.

3.3.1 Elaboration of subproblems

Subproblem (3.6a)

For the u-subproblem (3.6a), it follows from

Lβ(u, zk, λk) = J̃(u)− (λk, u− zk) +
β

2
‖u− zk‖2,

that the u-subproblem (3.6a) is equivalent to the following unconstrained parabolic

optimal control problem:

min
u∈U

jk(u) := J̃(u)− (λk, u− zk) +
β

2
‖u− zk‖2.

Let Djk(u) be the first-order derivative of jk at u. By perturbation analysis

discussed in [81, 83], we have

Djk(u) = u+ p|O + β(u− zk)− λk.

Hereafter, p is the adjoint variable associated with u and it is obtained from the

successive solution of the following two parabolic equations:

∂y

∂t
− ν∆y + a0y = uχO in Ω× (0, T ), y = 0 on Γ× (0, T ), y(0) = ϕ, (3.7)

and

− ∂p

∂t
− ν∆p+ a0p = γ(y − yd) in Ω× (0, T ), p = 0 on Γ× (0, T ), p(T ) = 0.

(3.8)

It is clear that the equation (3.7) is just the state equation (3.2) and it can be

characterized by the operator S with y = S(u). Furthermore, we denote by S∗

the adjoint operator of S. Then, it is easy to derive that S∗ : L2(Q) −→ L2(O)

satisfies p|O = S∗(γ(y − yd)), where p is the solution of the adjoint equation

(3.8). Then, we obtain the following first-order optimality condition of the u-

subproblem (3.6a).
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Theorem 3.1. Let uk+1 be the unique solution of the subproblem (3.6a). Then,

uk+1 satisfies

Djk(u
k+1) = uk+1 + pk+1|O + β(uk+1 − zk)− λk = 0, (3.9)

where pk+1 is the adjoint variable associated with uk+1.

Remark on β

According to (3.9), Djk(u
k+1) consists of the minimization of J̃(u) and the

satisfaction of the constraint on the control variable. It is natural to consider

choosing some value that is not different from 1 for β so that these two objectives

can be well balanced. Our numerical experiments show that, β = 2 or 3, is usually

a good choice to generate robust and fast numerical performance. Also, because

of this reason, we reformulate the original problem (3.1)–(3.2) as (3.4) with a

scaled objective functional J̃(u). If no scaling is considered, it is easy to show

that the optimality condition of the corresponding u-subproblem reads

α(uk+1 + pk+1|O) + β(uk+1 − zk)− λk = 0, (3.10)

and it implies that the penalty parameter β should be close to α in order to

balance the two objectives in (3.10). Since α is generally very small (e.g., less

than 10−3), β is also forced to be small for this case. According to our numerical

experiments, too small values of β may easily cause some stability and round-off

problems in numerical implementation, and they also easily result in unbalanced

magnitudes for the primal variables u and z, and the dual variable λ. All these

issues are inclined to deteriorate convergence of the ADMM.

Subproblem (3.6b)

For the z-subproblem (3.6b), notice that

Lβ(uk+1, z, λk) = J̃(uk+1) + IUad(z)− (λk, uk+1 − z) +
β

2
‖uk+1 − z‖2,

which implies that

zk+1 = arg min
z∈U

IUad(z)− (λk, uk+1 − z) +
β

2
‖uk+1 − z‖2.
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Hence, zk+1 is given by

zk+1 = PUad(u
k+1 − λk

β
), (3.11)

where PUad(·) denotes the projection onto the admissible set Uad:

PUad(v) := max{a,min{v, b}},∀v ∈ U.

3.3.2 Inexactness criterion

In this subsection, we propose an inexactness criterion that achieves the men-

tioned goals, and an inexact version of the ADMM (3.6) is obtained for the

problem(3.1)–(3.2). Various inexact versions of the ADMM in different settings

can be found in the literature. For example, inexact versions of the ADMM for

the generic case have been discussed in [52, 54, 137, 189]. These works require

summable conditions on the sequence of accuracy (represented in terms of ei-

ther the absolute or relative errors). Such a condition forces the subproblems to

be solved with increasing accuracy and requires specifying the accuracy (indeed

an infinite series of constants) a prior; both are difficult to be realized prac-

tically. A particular inexact version is the so-called proximal ADMM in, e.g.,

[22, 92], which adds appropriate quadratic terms to regularize the subproblems

and may alleviate these subproblems for some cases by specifying the proximal

terms appropriately. Because of the different and much more difficult setting in

the problem (3.1)–(3.2), however, a specific criterion tailored for the subproblem

(3.6a) should be found in order to solve it more efficiently.

Recall that the optimality condition of the u-subproblem (3.6a) can be char-

acterized by (3.9). Since the u-subproblem (3.6a) is strongly convex, the above

necessary condition is also sufficient. Therefore, if ũ ∈ U satisfies Djk(ũ) = 0,

then ũ is the unique solution of the u-subproblem (3.6a). To propose an inex-

actness criterion, we define ek(u) as

ek(u) := (1 + β)u+ S∗(γ(S(u)− yd))− βzk − λk. (3.12)

It follows from the definitions of the solution operator S and its adjoint operator

S∗ that ek(u) can be written as

ek(u) = (1 + β)u+ p|O − βzk − λk, (3.13)
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where p is the adjoint variable associated with u.

It is clear that ek(u) = Djk(u) and uk+1 is the solution of the u-subproblem

(3.6a) at the (k + 1)-th iteration if and only if ek(u
k+1) = 0. Hence, we can

use ek(u) as a residual for the u-subproblem (3.6a). With the help of ek(u), we

propose the following inexactness criterion. For a given constant σ satisfying

0 < σ <

√
2√

2 +
√
β
∈ (0, 1), (3.14)

we compute uk+1 such that

‖ek(uk+1)‖ ≤ σ‖ek(uk)‖. (3.15)

The inexactness criterion (3.15) is mainly inspired by our previous work [190],

and it keeps all advantageous features of the criterion in [190]. Meanwhile, the

problem (3.1)–(3.2) in an infinite-dimensional Hilbert space is much more com-

plicated than the LASSO model considered in [190], and it is worthy to elaborate

on the details of executing the inexactness criterion (3.15). Indeed, the residual

ek(u) in (3.13) is derived from the first-order derivative of jk(u). Conceptually,

the computation of ek(u) requires the solutions of the state equation (3.2) and

the adjoint equation (3.8). Practically, the residual ek(u) can be calculated easily

by certain iterative scheme, see Algorithm 3.2 for the detail of implementing the

CG method.

Remark 3.1. We reiterate that the inexactness criterion (3.15) can be checked

by current iterates and it can be executed automatically during iterations. There

is no need to set any empirically perceived constant accuracy a prior, and it

is independent of the mesh sizes for discretization. Also, the relative error

‖ek(uk+1)‖/‖ek(uk)‖ is controlled by the constant σ (instead of summable se-

quences as proposed in many ADMM literatures) and it does not need to tend to

zero (hence, increasing accuracy can be avoided in iterations). All these features

make the inexactness criterion (3.15) easily implementable and more likely to

save computation.
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3.3.3 An inexact version of the ADMM (3.6) for (3.1)–

(3.2)

Based on the previous discussion, an inexact version of the ADMM (3.6) with

the inexactness criterion (3.15) can be proposed for the problem (3.1)–(3.2).

Algorithm 3.1 An Inexact Version of the ADMM (3.6) for (3.1)–(3.2)

Input: {u0, z0, λ0}> ∈ U × U × U , β > 0 and 0 < σ <
√

2√
2+
√
β
∈ (0, 1).

while not converged do

Compute ek(u
k) = (1 + β)uk + pk|O − βzk − λk.

Find uk+1 such that

‖ek(uk+1)‖ ≤ σ‖ek(uk)‖, with ek(u
k+1) = (1 + β)uk+1 + pk+1|O − βzk − λk.

Update the variable zk+1: zk+1 = PUad(u
k+1 − λk

β
).

Update the Lagrange multiplier λk+1: λk+1 = λk − β(uk+1 − zk+1).

end while

3.4 Convergence analysis

In this section, we prove the strong global convergence for Algorithm 3.1.

Though there are many works in the literature studying the convergence of the

ADMM and its variants, the convergence of Algorithm 3.1 should be proved

from scratch because of the specific inexactness criterion (3.15) and the setting

of the problem (3.1)–(3.2). In particular, the proof is essentially different from

that in [190], despite of some common ideas in the respective stopping criteria.

Note that the strong global convergence to be obtained is because of the strong

convexity of the objective functional J̃(u) in (3.4), which is usually absent for

many other problems such as the LASSO model considered in [190].
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3.4.1 Preliminary

To present our analysis in a compact form, we denote w ∈ W := U ×U ×U ,

v ∈ V := U × U and the function F (w) as follows:

w =


u

z

λ

 , v =

z
λ

 , and F (w) =


DJ̃(u)− λ

λ

u− z

 , (3.16)

where DJ̃(u) is the first-order derivative of J̃(u). We also define the norm

‖v‖H =
√

(v,Hv) :=

√
β‖z‖2 +

1

β
‖λ‖2, ∀v ∈ V, (3.17)

which is induced by the matrix operator

H =

βI 0

0 1
β
I

 .

With these notations, it is easy to see that the problem (3.4) can be characterized

as the following variational inequality: find w∗ = (u∗, z∗, λ∗)> ∈ W such that

VI(W,Uad, F ) : IUad(z)− IUad(z∗) + (w − w∗, F (w∗)) ≥ 0, ∀w ∈ W.(3.18)

We denote by W ∗ the solution set of the variational inequality (3.18); and it is

easy to show that the solution set W ∗ is a singleton.

From the definition of J̃ in (3.5), we know that it is strongly convex, i.e.

‖u− v‖2 ≤ (u− v,DJ̃(u)−DJ̃(v)), ∀u, v ∈ U. (3.19)

In addition, one can show that DJ̃ is Lipschitz continuous. Indeed, one has

DJ̃(u) = u+ p|O,

where p is the adjoint variable associated with u. We introduce a linear operator

S̄ : U −→ Y such that

S(v) = S̄v + S(0), ∀v ∈ U. (3.20)

Then, we can derive that

(u− v,DJ̃(u)−DJ̃(v)) ≤ κ‖u− v‖2, ∀u, v ∈ U, (3.21)

where κ = 1 + γ‖S̄∗S̄‖.
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3.4.2 Optimality conditions

Recall that in Algorithm 3.1, the u-subproblem (3.6a) is inexactly solved

subject to the inexactness criterion (3.15), and the z-subproblem (3.6b) and

λ-subproblem (3.6c) can be solved exactly. Hence, for the sequence wk+1 =

(uk+1, zk+1, λk+1)> generated by Algorithm 3.1, the first-order optimality condi-

tions can be expressed as:
DuLβ(uk+1, zk, λk) = ek(u

k+1), (3.22a)

IUad(z)− IUad(zk+1) + (z − zk+1, λk − β(uk+1 − zk+1)) ≥ 0, ∀z ∈ U,(3.22b)

λk+1 = λk − β(uk+1 − zk+1), (3.22c)

where DuLβ(uk+1, zk, λk) is the first-order partial derivative of Lβ (u, z, λ) with

respect to u at
(
uk+1, zk, λk

)>
.

To prove the convergence of Algorithm 3.1, it is crucial to analyze the residual

ek(u
k+1). It follows from (3.13) and (3.15) that

‖ek(uk+1)‖ ≤ σ‖ek(uk)‖ = σ‖ek−1(uk) + βzk−1 + λk−1 − βzk − λk‖

≤ σ‖ek−1(uk)‖+ σ‖βzk−1 + λk−1 − βzk − λk‖.
(3.23)

In addition, it follows from (3.22b) that

IUad(z
k)− IUad(zk+1) + (zk − zk+1, λk − β(uk+1 − zk+1)) ≥ 0, (3.24)

and

IUad(z
k+1)− IUad(zk) + (zk+1 − zk, λk−1 − β(uk − zk)) ≥ 0. (3.25)

Adding (3.24) and (3.25) together, we have

(zk+1 − zk, λk+1 − λk) ≤ 0. (3.26)

Then, it follows from (3.23) and (3.26) that

‖ek(uk+1)‖ ≤σ‖ek−1(uk)‖+ σ
(
‖βzk−1 − βzk‖2 + ‖λk−1 − λk‖2

) 1
2

=σ‖ek−1(uk)‖+ σ
√
β‖vk − vk−1‖H .

(3.27)

Moreover, we note that the condition (3.14) implies that

0 <
β

2

σ2

(1− σ)2
=

(
σ

2(1− σ)

)(
βσ

1− σ

)
< 1,

then there exits a constant µ > 0 such that

(1− µ

2

σ

1− σ
) > 0 and (1− 1

µ

σ

1− σ
β) > 0. (3.28)

These inequalities will be used later.
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3.4.3 Convergence

With above preparations, we are now in a position to prove the convergence

for Algorithm 3.1. To simplify the notation, let us introduce an auxiliary variable

w̄k as

w̄k =


ūk

z̄k

λ̄k

 =


uk+1

zk+1

λk − β(uk+1 − zk)

 . (3.29)

The role of w̄k is just for simplifying the notation in our analysis; it is not required

to be computed for implementing Algorithm 3.1. Next, we prove some results

which will be useful in the following discussion.

First of all, we analyze how different the point w̄k defined in (3.29) is from

the solution w∗ of (3.18) and how to quantify this difference by iterates generated

by Algorithm 3.1.

Lemma 3.1. Let
{
wk
}

= {(uk, zk, λk)>} be the sequence generated by Algorithm

3.1 and {w̄k} = {(ūk, z̄k, λ̄k)>} be defined as in (3.29). Then, for all w ∈ W ,

one has

IUad(z̄
k)− IUad(z) + (w̄k − w,F (w̄k))

≤ 1

2

(
‖vk − v‖2

H − ‖vk+1 − v‖2
H − ‖vk − vk+1‖2

H

)
+
(
uk+1 − u,DuLβ(uk+1, zk, λk)

)
.

(3.30)

Proof. We first rewrite DuLβ
(
uk+1, uk, λk

)
as

DuLβ(uk+1, zk, λk) = DJ̃(uk+1)− (λk − β(uk+1 − zk)) = DJ̃(uk+1)− λ̄k,

with which we obtain, for all w ∈ W , that

IUad(z)− IUad(z̄k) + (w − w̄k, F (w̄k))

= (u− uk+1, DJ̃(uk+1)− λ̄k)

+ IUad(z)− IUad(zk+1) + (z − zk+1, λ̄k) + (λ− λ̄k, uk+1 − zk+1)

= (u− uk+1, DuLβ(uk+1, zk, λk)) + (z − zk+1, λk − β(uk+1 − zk+1))

+ IUad(z)− IUad(zk+1) + β(z − zk+1, zk − zk+1) +
1

β
(λ− λ̄k, λk − λk+1)

(3.22b)

≥ (u− uk+1, DuLβ(uk+1, zk, λk)) + β(z − zk+1, zk − zk+1)

+
1

β
(λ− λk+1, λk − λk+1) +

1

β
(λk+1 − λ̄k, λk − λk+1).

(3.31)
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Applying the identity

(a− c, b− c) =
1

2

(
‖a− c‖2 − ‖a− b‖2 + ‖b− c‖2

)
(3.32)

to (3.31), we have

IUad(z)− IUad(z̄
k) + (w − w̄k, F (w̄k))

(3.32)

≥ (u− uk+1, DuLβ(uk+1, zk, λk)) +
β

2

(
‖z − zk+1‖2 − ‖z − zk‖2 + ‖zk − zk+1‖2

)
+

1

2β

(
‖λ− λk+1‖2 − ‖λ− λk‖2 + ‖λk − λk+1‖2

)
− (zk − zk+1, λk − λk+1)

(3.26)

≥ (u− uk+1, DuLβ(uk+1, zk, λk)) +
β

2

(
‖z − zk+1‖2 − ‖z − zk‖2 + ‖zk − zk+1‖2

)
+

1

2β

(
‖λ− λk+1‖2 − ‖λ− λk‖2 + ‖λk − λk+1‖2

)
, ∀w ∈W. (3.33)

Using the definition of H-norm in (3.17), the result (3.33) can be rewritten as

(3.30) and the proof is complete.

The difference between the inequality (3.30) and the variational inequality

reformulation (3.18) reflects the difference of the point w̄k from the solution

point w∗. For the right-hand side of (3.30), the first three terms are quadratic

and they are easy to manipulate over different indicators by algebraic operations,

but it is not that explicit how the last crossing term can be controlled towards

the eventual goal of proving the convergence of the sequence {wk}. We thus look

into this term particularly and show that the sum of these crossing terms over

K iterations can be bounded by some quadratic terms as well. This result is

summarized in the following lemma.

Lemma 3.2. Let
{
wk
}

= {(uk, zk, λk)>} be the sequence generated by Algorithm

3.1. For any integer K > 0 and µ satisfying (3.28), one has

K∑
k=1

(uk+1 − u,DuLβ(uk+1, zk, λk))

≤µ
2

K∑
k=1

σ

1− σ
‖uk+1 − u‖2 +

1

2µ

K−1∑
i=1

σ

1− σ
β‖vi − vi+1‖2

H

+
1

2µ

σ

1− σ

[
‖e0(u1)‖+

√
β‖v0 − v1‖H

]2

,∀u ∈ U.

(3.34)

Proof. First, it follows from (3.27) that

‖ek(uk+1)‖ ≤
k−1∑
i=0

σk−i
√
β‖vi − vi+1‖H + σk‖e0(u1)‖. (3.35)
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From (3.22a) and (3.35), for any µ > 0 satisfying (3.28) and u ∈ U , we have

K∑
k=1

(uk+1 − u,DuLβ(uk+1, zk, λk)) ≤
K∑
k=1

‖uk+1 − u‖‖ek(uk+1)‖

≤
K∑
k=1

k−1∑
i=0

σk−i
√
β‖uk+1 − u‖‖vi − vi+1‖H +

K∑
k=1

σk‖uk+1 − u‖‖e0(u1)‖

≤
K∑
k=1

k−1∑
i=1

σk−i
√
β‖uk+1 − u‖‖vi − vi+1‖H

+
K∑
k=1

σk‖uk+1 − u‖
[
‖e0(u1)‖+

√
β‖v0 − v1‖H

]
≤ µ

2

K∑
k=1

k−1∑
i=1

σk−i‖uk+1 − u‖2 +
1

2µ

K∑
k=1

k−1∑
i=1

σk−iβ‖vi − vi+1‖2
H

+
µ

2

K∑
k=1

σk‖uk+1 − u‖2 +
1

2µ

K∑
k=1

σk
[
‖e0(u1)‖+

√
β‖v0 − v1‖H

]2

=
µ

2

K∑
k=1

k−1∑
i=0

σk−i‖uk+1 − u‖2 +
1

2µ

K∑
k=1

k−1∑
i=1

σk−iβ‖vi − vi+1‖2
H

+
1

2µ

K∑
k=1

σk
[
‖e0(u1)‖+

√
β‖v0 − v1‖H

]2

.

Then, we have

K∑
k=1

(
uk+1 − u,DuLβ(uk+1, zk, λk)

)
≤ µ

2

K∑
k=1

σ − σk+1

1− σ
‖uk+1 − u‖2 +

1

2µ

K−1∑
i=1

σ − σK−i+1

1− σ
β‖vi − vi+1‖2

H

+
1

2µ

σ − σK+1

1− σ

[
‖e0(u1)‖+

√
β‖v0 − v1‖H

]2

≤ µ

2

K∑
k=1

σ

1− σ
‖uk+1 − u‖2 +

1

2µ

K−1∑
i=1

σ

1− σ
β‖vi − vi+1‖2

H

+
1

2µ

σ

1− σ

[
‖e0(u1)‖+

√
β‖v0 − v1‖H

]2

, ∀u ∈ U.

We thus complete the proof.

Now we can establish the strong global convergence of Algorithm 3.1.

Theorem 3.2. Let w∗ = (u∗, z∗, λ∗)> be the solution point of the variational

inequality (3.18) and
{
wk
}

= {(uk, zk, λk)>} be the sequence generated by Algo-

rithm 3.1. Then, we have the following assertions:
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(1) ‖ek(uk+1)‖ k→∞−→ 0, ‖zk − zk+1‖ k→∞−→ 0, ‖uk+1 − zk+1‖ k→∞−→ 0;

(2) uk
k→∞−→ u∗, zk

k→∞−→ z∗ and λk
k→∞−→ λ∗ strongly in U .

Proof. (1). First, it follows from (3.16), (3.19) and (3.29) that

(w − w̄k, F (w)− F (w̄k)) = (u− ūk, DJ̃(u)−DJ̃(ūk)) ≥ ‖u− uk+1‖2. (3.36)

Then, using the results (3.30) and (3.34) established in Lemma 3.1 and Lemma

3.2, respectively, we obtain

K∑
k=1

{
IUad(z̄

k)− IUad(z) + (w̄k − w,F (w))
}

=
K∑
k=1

{
IUad(z̄

k)− IUad (z) + (w̄k − w,F (w̄k)) + (w̄k − w,F (w)− F (w̄k))
}

(3.30)

≤ 1

2

(
‖v1 − v‖2

H − ‖vK+1 − v‖2
H

)
+

K∑
k=1

{
(uk+1 − u,DuLβ(uk+1, zk, λk))

−(w − w̄k, F (w)− F (w̄k))
}
−

K∑
k=1

1

2
‖vk − vk+1‖2

H

(3.34)(3.36)

≤ 1

2

(
‖v1 − v‖2

H − ‖vK+1 − v‖2
H

)
+

K∑
k=1

(
µ

2

σ

1− σ
− 1

)
‖uk+1 − u‖2

+
K−1∑
k=1

1

2

(
σ

1− σ
β

µ
− 1

)
‖vk − vk+1‖2

H −
1

2
‖vK − vK+1‖2

H

+
1

2µ

σ

1− σ

(
‖e0(u1)‖+

√
β‖v0 − v1‖H

)2

, ∀w ∈ W. (3.37)

For the solution point w∗, we have

IUad(z̄
k)− IUad (z∗) + (w̄k − w∗, F (w∗)) ≥ 0, ∀k ≥ 1.

Setting w = w∗ in (3.37), together with the above property, for any integer

K > 1, we have

K∑
k=1

(
1− µ

2

σ

1− σ

)
‖uk+1 − u∗‖2 +

K−1∑
k=1

(
1

2
− β

2µ

σ

1− σ

)
‖vk − vk+1‖2

H

≤ 1

2
‖v1 − v∗‖2

H +
1

2µ

σ

1− σ

(
‖e0(u1)‖+

√
β‖v0 − v1‖H

)2

− 1

2
‖vK+1 − v∗‖2

H −
1

2
‖vK − vK+1‖2

H .

(3.38)
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It follows from (3.28) that

(1− µ

2

σ

1− σ
) > 0 and (1− 1

µ

σ

1− σ
β) > 0.

Then, the inequality (3.38) implies

‖uk+1 − u∗‖ k→∞−→ 0 and ‖vk+1 − vk‖H
k→∞−→ 0. (3.39)

For any ε > 0, there exists k0, such that for all k ≥ k0, we have ‖vk+1−vk‖H < ε

and σk < ε. Then, for all k ≥ k0, it follows from (3.35) that

‖ek(uk+1)‖ ≤
k−1∑
i=0

σk−i
√
β‖vi − vi+1‖H + σk‖e0(u1)‖

=

k0−1∑
i=0

σk−i
√
β‖vi − vi+1‖H +

k−1∑
i=k0

σk−i
√
β‖vi − vi+1‖H + σk‖e0(u1)‖

≤
(√

β max
0≤i≤k0−1

‖vi − vi+1‖H
k0−1∑
i=0

σk−k0−i
)
σk0 + σk‖e0(u1)‖

+
(√

β max
k0≤i≤k−1

‖vi − vi+1‖H
k−1∑
i=k0

σk−i
)

≤ ε
[√

β max
0≤i≤k0−1

‖vi − vi+1‖H
k0−1∑
i=0

σk−k0−i +
√
β
k−1∑
i=k0

σk−i + ‖e0(u1)‖
]
,

which implies that

‖ek(uk+1)‖ k→+∞−→ 0.

In addition, since ‖vk+1 − vk‖H
k→∞−→ 0, we conclude that

‖zk+1 − zk‖ k→∞−→ 0 and ‖λk+1 − λk‖ k→∞−→ 0.

Then, from ‖uk+1 − zk+1‖ = 1
β
‖λk+1 − λk‖, we have ‖uk+1 − zk+1‖ k→∞−→ 0.

(2). From (3.39), we know that uk
k→∞−→ u∗ strongly in U . Combining with

‖uk+1− zk+1‖ k→∞−→ 0, one has zk
k→∞−→ z∗ strongly in U . From (3.18), it is easy to

verify that λ∗ = DJ̃(u∗). On the other hand, one has

λk = DJ̃(uk+1) + β(uk+1 − zk)− ek(uk+1).

We thus have

λk − λ∗ = DJ̃(uk+1)−DJ̃(u∗) + β(uk+1 − uk) + β(uk − zk)− ek(uk+1).
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Noting that uk
k→∞−→ u∗, uk − zk

k→∞−→ 0, ek(u
k+1)

k→∞−→ 0 and DJ̃ is Lipschitz

continuous (see (3.21)), we have

λk
k→∞−→ λ∗ strongly in U.

We thus complete the proof.

Remark 3.2. Clearly, it follows from Theorem 3.2 that the state variable yk =

S(uk) also converges strongly in Y to y∗ = S(u∗) since S is continuous.

Remark 3.3. Note that the convergence analysis for Algorithm 3.1 does not

depend on how the inexactness criterion (3.15) is satisfied and what the specific

form of the solution operator S is.

3.5 Convergence rate

In [96, 97], the ADMM’s O(1/K) worst-case convergence rate in both the

ergodic and non-ergodic senses have been initiated in the context of convex

optimization with consideration of the Euclidean space, where K denotes the

iteration counter. Recall that an O(1/K) worst-case convergence rate means

that an iterate, whose accuracy to the solution under certain criterion is of the

order O(1/K), can be found after K iterations of an iterative scheme. It can

be alternatively explained as that it requires at most O(1/ε) iterations to find

an approximate solution with an accuracy of ε. This type of convergence rate is

in the worst-case nature, and it provides a worst-case but universal estimate on

the speed of convergence. Hence, it does not contradict with some much faster

speeds which might be witnessed empirically for a specific application (as to be

shown in Section 3.7). In this section, we extend these results to Algorithm 3.1

in an infinite-dimensional Hilbert space.

3.5.1 Ergodic convergence rate

In this subsection, we follow [96] to establish an O(1/K) worst-case conver-

gence rate in the ergodic sense for Algorithm 3.1. We first introduce a criterion
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to measure the accuracy of an approximation of the variational inequality (3.18).

As analyzed in [62, 96], the solution set W ∗ of the variational inequality (3.18)

has the following characterization.

Theorem 3.3 (cf. [62]). Let W ∗ be the solution set of the variational inequality

(3.18). Then, we have

W ∗ =
⋂
w∈W

{ŵ ∈ W : IUad(z)− IUad(ẑ) + (w − ŵ, F (w)) ≥ 0} .

The above result indicates that ŵ ∈ W is an approximate solution of the

variational inequality (3.18) with an accuracy of ε > 0 if

IUad (ẑ)− IUad (z) + (ŵ − w,F (w)) ≤ ε. (3.40)

Next, we show an O(1/K) worst-case convergence rate for Algorithm 3.1.

Theorem 3.4. Let
{
wk
}

= {(uk, zk, λk)>} be the sequence generated by Algo-

rithm 3.1; and {w̄k} = {(ūk, z̄k, λ̄k)>} be defined as in (3.29). For any integer

K ≥ 1, we further define

ŵK =
1

K

K∑
k=1

w̄k. (3.41)

Then, for all w ∈ W , one has

IUad (ẑK)− IUad (z) + (ŵK − w,F (w))

≤ 1

K

[
1

2µ

σ

1− σ

(
‖e0(u1)‖+

√
β‖v0 − v1‖H

)2

+
1

2
‖v0 − v‖2

H

]
.

Proof. Recall the inequality (3.37). We then have

K∑
k=1

{
IUad(z̄

k)− IUad (z) + (w̄k − w,F (w))
}

≤ 1

2

(
‖v1 − v‖2

H − ‖vK+1 − v‖2
H

)
+

K∑
k=1

(
µ

2

σ

1− σ
− 1

)
‖uk+1 − u‖2

+
K−1∑
k=1

1

2

(
σ

1− σ
β

µ
− 1

)
‖vk − vk+1‖2

H −
1

2
‖vK − vK+1‖2

H

+
1

2µ

σ

1− σ

(
‖e0(u1)‖+

√
β‖v0 − v1‖H

)2

.

Then, using (3.28), for all w ∈ W , we have

IUad (ẑK)− IUad (z) + (ŵK − w,F (w))
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Convexity

≤ 1

K

K∑
k=1

{
IUad(z̄

k)− IUad (z) + (w̄k − w,F (w))
}

≤ 1

K

[
1

2µ

σ

1− σ

(
‖e0(u1)‖+

√
β‖v0 − v1‖H

)2

+
1

2
‖v1 − v‖2

H

]
,

which completes the proof.

The above theorem shows that after K iterations, we can find an approximate

solution of the variational inequality (3.18) with an accuracy of O(1/K). This

approximate solution is given in (3.41), and it is the average of all the points wk

which can be computed by all the known iterates generated by Algorithm 3.1.

Hence, this is an O(1/K) worst-case convergence rate in the ergodic sense for

Algorithm 3.1.

3.5.2 Non-ergodic convergence rate

In this subsection, we extend the result in [97] to show an O(1/K) worst-case

convergence rate in the non-ergodic sense for Algorithm 3.1.

We first need to clarify a criterion to precisely measure the accuracy of an

iterate to a solution point. It follows from (3.16) and (3.22) that for the iterate

(uk+1, zk+1, λk+1)> generated by Algorithm 3.1, for all w ∈ W , one has

IUad
(z)−IUad

(zk+1)+

w − wk+1, F (wk+1)) + (w − wk+1,


−β
(
zk − zk+1

)
− ek(uk+1)

0

1
β

(
λk+1 − λk

)

 ≥ 0.

Taking (3.18) into account, we can show that (uk+1, zk+1, λk+1)> is a solution

point of (3.18) if and only if ‖vk − vk+1‖2
H = 0 and ‖ek(uk+1)‖2 = 0. Hence,

it is reasonable to measure the accuracy of the iterate (uk+1, zk+1, λk+1)> by

‖vk−vk+1‖2
H and ‖ek(uk+1)‖2. Our purpose is thus to show that afterK iterations

of Algorithm 3.1, both ‖vk − vk+1‖2
H and ‖ek(uk+1)‖2 can be bounded by upper

bounds in order of O(1/K).

Theorem 3.5. Let
{
wk
}

= {(uk, zk, λk)>} be the sequence generated by Algo-

rithm 3.1. Then, for any integer K ≥ 1, we have

min
1≤k≤K

{
‖vk − vk+1‖2H

}
≤ 1

K

[
1

µ0
‖v1 − v∗‖2H +

1

µ0µ

σ

1− σ

(
‖e0(u1)‖+

√
β‖v0 − v1‖H

)2
]
,

(3.42)
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and

min
1≤k≤K

{
‖ek(uk+1)‖2

}
≤ 2

K

{(
σ

1− σ
√
β

)2 [ 1

µ0
‖v1 − v∗‖2H +

1

µ0µ

σ

1− σ

(
‖e0(u1)‖+

√
β‖v0 − v1‖H

)2
]}

+
2

K2

[(
σ

1− σ

)2

·
(
‖e0(u1)‖+

√
β‖v0 − v1‖H

)2
]
, (3.43)

where w∗ is the solution point, µ satisfies (3.28) and µ0 = 1− β
µ

σ
1−σ > 0.

Proof. According to the inequality (3.38) we obtain

K+1∑
k=1

(
1− µ

2

σ

1− σ

)
‖uk+1 − u∗‖2 +

K∑
k=1

(
1

2
− β

2µ

σ

1− σ

)
‖vk − vk+1‖2

H

≤ 1

2
‖v1 − v∗‖2

H +
1

2µ

σ

1− σ

(
‖e0(u1)‖+

√
β‖v0 − v1‖H

)2

,

which implies that

K∑
k=1

(
1

2
− β

2µ

σ

1− σ

)
‖vk−vk+1‖2H ≤

1

2
‖v1−v∗‖2H+

1

2µ

σ

1− σ

(
‖e0(u1)‖+

√
β‖v0 − v1‖H

)2
.

(3.44)

Consequently, we have

min
1≤k≤K

{
‖vk − vk+1‖2H

}
≤ 1

K

[
1

µ0
‖v1 − v∗‖2H +

1

µ0µ

σ

1− σ

(
‖e0(u1)‖+

√
β‖v0 − v1‖H

)2
]
,

and the assertion (3.42) is proved. Note that µ0 is positive following from (3.28).

In addition, it follows from the inequality (3.27) that

‖ek(uk+1)‖ ≤
k−1∑
i=0

σk−i
√
β‖vi − vi+1‖H + σk‖e0(u1)‖.

Summarizing the above inequality from k = 1 to k = K, we obtain

K∑
k=1

‖ek(uk+1)‖ ≤
K∑
k=1

{
k−1∑
i=0

σk−i
√
β‖vi − vi+1‖H + σk‖e0(u1)‖

}
. (3.45)

For the right-hand side of (3.45), we have the following estimate:

K∑
k=1

k−1∑
i=0

σk−i
√
β · ‖vi − vi+1‖H
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=
K−1∑
i=0

K∑
k=i+1

σk−i
√
β · ‖vi − vi+1‖H

=
K−1∑
i=0

σ − σK−i+1

1− σ
√
β · ‖vi − vi+1‖H

≤
K−1∑
i=0

σ

1− σ
√
β · ‖vi − vi+1‖H ,

and
K∑
k=1

σk‖e0(u1)‖ ≤ σ − σK+1

1− σ
‖e0(u1)‖ ≤ σ

1− σ
‖e0(u1)‖.

Then, by simple calculations, we have(
K∑
k=1

‖ek(uk+1)‖

)2

(3.45)

≤

(
K−1∑
i=0

σ

1− σ
√
β · ‖vi − vi+1‖H +

σ

1− σ
‖e0(u1)‖

)2

≤ 2

(
K−1∑
i=1

σ

1− σ
√
β · ‖vi − vi+1‖H

)2

+ 2

(
σ

1− σ
·
(
‖e0(u1)‖+

√
β‖v0 − v1‖H

))2

≤ 2

(
σ

1− σ
√
β

)2

·

(
K∑
i=1

‖vi − vi+1‖H

)2

+ 2

(
σ

1− σ

)2

·
(
‖e0(u1)‖+

√
β‖v0 − v1‖H

)2

≤ 2

(
σ

1− σ
√
β

)2

K ·

(
K∑
i=1

‖vi − vi+1‖2H

)
+ 2

(
σ

1− σ

)2

·
(
‖e0(u1)‖+

√
β‖v0 − v1‖H

)2

(3.44)

≤ 2

(
σ

1− σ
√
β

)2

K ·
[

1

µ0
‖v1 − v∗‖2H +

1

µ0µ

σ

1− σ

(
‖e0(u1)‖+

√
β‖v0 − v1‖H

)2
]

+2

(
σ

1− σ

)2

·
(
‖e0(u1)‖+

√
β‖v0 − v1‖H

)2
.

Further, we can derive that(
K · min

1≤k≤K
‖ek
(
uk+1

)
‖
)2

≤

(
K∑
k=1

‖ek(uk+1)‖

)2

≤ 2

(
σ

1− σ
√
β

)2

K ·
[

1

µ0

‖v1 − v∗‖2
H +

1

µ0µ

σ

1− σ

(
‖e0(u1)‖+

√
β‖v0 − v1‖H

)2
]

+2

(
σ

1− σ

)2

·
(
‖e0(u1)‖+

√
β‖v0 − v1‖H

)2

,

which implies

min
1≤k≤K

{
‖ek(uk+1)‖2

}
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≤ 1

K

{
2

(
σ

1− σ
√
β

)2

·
[

1

µ0
‖v1 − v∗‖2H +

1

µ0µ

σ

1− σ

(
‖e0(u1)‖+

√
β‖v0 − v1‖H

)2
]}

+
1

K2

[
2

(
σ

1− σ

)2

·
(
‖e0(u1)‖+

√
β‖v0 − v1‖H

)2
]
.

We thus complete the proof.

We note that both values in the right-hand sides of (3.42) and (3.43) are order

of O(1/K). Therefore, this theorem provides an O(1/K) worst-case convergence

rate in the non-ergodic sense for Algorithm 3.1.

3.6 Implementation of Algorithm 3.1

In this section, we discuss how to execute the inexactness criterion (3.15) so

as to specify Algorithm 3.1 as a concrete algorithm for the problem (3.1)–(3.2),

and delineate the implementation details.

Indeed, the u-subproblem (3.6a) is a typical unconstrained parabolic optimal

control problem and various numerical methods in the literature can be applied.

Whichever such method is applied, we should and only need to ensure that the

inexactness criterion (3.15) is satisfied in order to guarantee the overall conver-

gence of Algorithm 3.1. Below we illustrate by the CG method how to execute

the inexactness criterion (3.15) in the inner-layer iterations. Recall that the

u-subproblem (3.6a) is

uk+1 = arg min
u∈U

jk(u) =
γ

2
‖S(u)−yd‖2+

1

2
‖u‖2−(λk, u−zk)+

β

2
‖u−zk‖2, (3.46)

and the associated optimality condition is given in Theorem 3.1. Next, we show

that the optimality condition of the problem (3.46) can be characterized by a

symmetric and positive definite linear system, hence the CG method can be

applied. To this end, we first recall that the linear operator S̄ defined in (3.20)

satisfies

S(v) = S̄v + S(0), ∀v ∈ U.

Then, y = S̄u is equivalent to the following equation:

∂y

∂t
− ν∆y + a0y = uχO in Ω× (0, T ), y = 0 on Γ× (0, T ), y(0) = 0.
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In addition, it is easy to show that the adjoint operator S̄∗ : Y −→ U satisfies

S̄∗y = p|O, where p solves

−∂p
∂t
− ν∆p+ a0p = y in Ω× (0, T ), p = 0 on Γ× (0, T ), p(T ) = 0.

Hence, the u-subproblem (3.46) can be reformulated as

uk+1 = arg min
u∈U

jk(u) =
γ

2
‖S̄u+S(0)−yd‖2 +

1

2
‖u‖2− (λk, u− zk) +

β

2
‖u− zk‖2,

and the corresponding optimality condition is

(1 + β + γS̄∗S̄)uk+1 + γS̄∗(S(0)− yd)− λk − βzk = 0. (3.47)

Note that (3.47) is a symmetric and positive definite linear system of uk+1 and

the CG method can be applied. Obviously, at each iteration of Algorithm 1, we

need to solve a linear system discretized from (3.47), with the same coefficient

matrix, but different right-hand sides. Hence, a uniform preconditioner can be

applied when certain iterative method (e.g., CG method) is employed to solve

these linear systems. Recall that if SSN methods are applied, the coefficient

matrices of the resulting Newton systems vary iteratively and preconditioners

should also be adjusted iteratively. This is a major difference of the ADMM

from SSN methods for the problem (3.1)–(3.2) .

With the inexactness criterion (3.15), the CG method for solving the u-

subproblem (3.6a) is presented in Algorithm 3.2. Compared with the classical

CG method (see e.g., [75, Chapter 3] and [78, Chapter 2]), Algorithm 3.2 re-

quires updating the adjoint variable p to verify the specific inexactness criterion

(3.15). It is clear that the update of pkm+1 can be computed cheaply. Hence,

our proposed inexactness criterion (3.15) can be verified by negligible extra com-

putation. More discussions, including the convergence properties of CG type

methods applied to the solution of linear systems in Hilbert spaces, can also be

found in the mentioned references.

Now, with these discussions, Algorithm 3.1 can be specified as an ADMM–

CG two-layer nested iterative scheme for the problem (3.1)–(3.2). We list it as

Algorithm 3.3.

Remark 3.4. As mentioned, to execute the inexactness criterion (3.15), the CG

method can be replaced by other numerical schemes such as the preconditioned
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Algorithm 3.2 CG for the u-subproblem (3.6a)

Input uk0 = uk, pk0 = pk. Compute gk0 = uk0 + pk0|O + β(uk0 − zk) − λk, set

wk0 = gk0 and ek(u
k) = gk0 .

while ‖ek(ukm)‖ > σ‖ek(uk)‖ do

Solving ȳkm = S̄wkm and p̄km|O = S̄∗(γȳkm). Then compute the step size:

ρkm =
(gkm, w

k
m)

(ḡkm, w
k
m)
, with ḡkm = (1 + β)wkm + p̄km|O.

Update u, p, the gradient g and the residual ek(u
k
m+1) via:

ukm+1 = ukm − ρkmwkm, pkm+1 = pkm − ρkmp̄km,

gkm+1 = gkm − ρkmḡkm, ek(u
k
m+1) = gkm+1.

Compute rkm = ‖gkm+1‖2/‖gkm‖2, and then update wkm+1 = gkm+1 + rkmw
k
m.

end while

Output uk+1 = ukm+1 and pk+1 = pkm+1.

Algorithm 3.3 An ADMM–CG two-layer nested iterative scheme for the prob-

lem (3.1)–(3.2).

Output: {u0, z0, λ0}> in U × U × U , β > 0 and 0 < σ <
√

2√
2+
√
β
∈ (0, 1).

for k ≥ 0 do {uk, zk, λk} → uk+1 → zk+1 → λk+1 via

Compute uk+1 by the CG method in Algorithm 3.2;

Compute zk+1 by (3.11);

Update the Lagrange multiplier λk+1 = λk − β(uk+1 − zk+1).

end for

MinRes method in [144] which has been verified to be efficient for unconstrained

parabolic optimal control problems. Hence, depending on how to satisfy the in-

exactness criterion (3.15) internally, Algorithm 3.1 can be specified as various

algorithms.
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3.7 Numerical results of Algorithm 3.3 for (3.1)–

(3.2)

In this section, we report some preliminary numerical results to validate the

efficiency of Algorithm 3.3 for the parabolic optimal control problem (3.1)–(3.2).

All codes were written in MATLAB R2016b and numerical experiments were

conducted on a Surface Pro 5 laptop with 64-bit Windows 10.0 operation system,

Intel(R) Core(TM) i7-7660U CPU (2.50 GHz), and 16 GB RAM.

First, for numerical discretization, we employ the backward Euler finite dif-

ference method (with step size τ) for the time discretization and piecewise linear

finite element method (with mesh size h) for the space discretization. In order

to implement (3.11), we perform at each time step a nodal projection of the con-

tinuous piecewise affine function
(
uk+1
h − λkh

β

)
(nτ)(∈ V0h) over the convex set

Uad ∩ V0h, where Uad = {φ|φ ∈ L2(Ω), a ≤ φ ≤ b}, and (assuming that Ω is a

bounded polygonal domain of R2)

V0h = {φ|φ ∈ C0(Ω̄), φ|T ∈ P1,∀T ∈ Th, φ|Γ = 0}.

Here, Th is a triangulation of Ω and P1 is the space of the polynomial functions

of two variables of degree ≤ 1. In addition, we denote by P nodal
Uad∩V0h

the above

projection operator, which is defined byP nodal
Uad∩V0h

(φ) ∈ Uad ∩ V0h,∀φ ∈ V0h,

P nodal
Uad∩V0h

(φ)(Qk) = max{a,min{b, φ(Qk)}},∀k = 1, · · · , N0h.
(3.48)

In (3.48), {Qk}N0h
k=1 is the set of the vertices of triangulation Th not located on Γ.

This nodal projection can facilitate the implementation of Algorithm 3.3; and

we refer to Remark 5 in [84] for more discussions.

For the linear systems arising at each time step of the discretized parabolic

equations, they are solved by the permuted LDL factorization in, e.g., [159],

because the coefficient matrices are sparse and invariant. Other methodologies

such as Krylov subspace methods, domain decomposition methods and multi-

grid methods can also be applied to further improve the numerical efficiency. In

addition, an adjoint approach is employed for the u-subproblem (3.6a), which

84



3.7. Numerical results of Algorithm 3.3 for (3.1)–(3.2)

requires storing the solution of the state equation (3.2) at each time step. This

is a demanding request on memory, and it may not be applicable for, e.g., time-

dependent problems in three-dimensional space, due to the huge scale of systems

after discretization. To tackle this issue, some memory saving methodologies can

be embedded into our algorithmic design. All these numerical techniques are

important but beyond the scope of our discussion; we refer to [158] for fast linear

algebra solvers and [13] for a memory saving strategy.

To test the efficiency of Algorithm 3, the primal residual πs and dual residual

ds are respectively defined as

πs =
‖zk − zk−1‖L2(O)

‖zk−1‖L2(O)

, ds =
‖uk − zk‖L2(O)

max{‖uk−1‖L2(O), ‖zk−1‖L2(O)}
.

The stopping criterion for all numerical experiments is

max{πs, ds} ≤ tol,

where tol > 0 is a prescribed tolerance. The initial values are set as u = 0, z = 0

and λ = 0 in the following discussion. For the constant σ in the inexactness

criterion (3.15), according to (3.14), we choose σ = 0.99
√

2√
2+
√
β

because larger

values of σ mean that the criterion is looser and hence less computation is needed

for solving the subproblems. In addition, we define the relative distance “RelDis”

and the objective functional value “Obj” as

RelDis := ‖y − yd‖2
L2(Q)/‖yd‖2

L2(Q) and Obj :=
1

2
‖y − yd‖2

L2(Q) +
α

2
‖u‖2

L2(O),

to verify the accuracy of the numerical solution.

Example 1. We consider an example of the problem (3.1)–(3.2) with a known

exact solution; it is a variant of the problem discussed in [1]. The model is

min
u∈Uad,y∈L2(Q)

1

2

∫∫
Q

|y − yd|2dxdt+
α

2

∫∫
Q

|u|2dxdt

s.t.


∂y

∂t
−∆y = f + u, in Ω× (0, T ),

y = 0, on Γ× (0, T ),

y(0) = ϕ,

(3.49)

with Ω = (0, 1)2, ω = Ω, T = 1. In (3.49), the function f ∈ L2(Q) is a source

term that helps us construct the exact solution without affection to the numerical
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implementation. We further lety = (1− t) sinπx1 sin πx2, p = α(1− t) sin 2πx1 sin 2πx2, ϕ = sinπx1 sin πx2,

f = −u+
∂y

∂t
−∆y, yd = y +

∂p

∂t
+ ∆p, u = min(a,max(b,− p

α
)).

Then, it is easy to verify that (u∗, y∗) := (u, y) is the optimal solution of the

problem (3.49). Moreover, the admissible set is

Uad = {v|v ∈ L∞(O),−0.5 ≤ v(x1, x2; t) ≤ 0.5 a.e. inO} ⊂ L2(O).

We set the regularization parameter α = 10−5 throughout.

We first test Algorithm 3.3 with different values of β to show how its perfor-

mance depends on the choice of β. As discussed in Section 3.3, β should be close

to 1 to balance the minimization of J̃(u) and the satisfaction of the control con-

straint u ∈ Uad. On the other hand, it is clear that the system (3.47) becomes

increasingly ill-conditioned as β decreases; and a smaller β tends to result in

slower convergence for the CG method. As a result, the trade-off between the in-

exactness criterion (3.15) and the conditioning of the u-subproblem (3.6a) should

also be considered for choosing β. The results with τ = h = 2−6 and different

values of β are reported in Table 3.1, in which the notation “ADMMIter” rep-

resents the total out-layer ADMM iteration numbers, “Mean/Max CG” denote

the average and maximum steps of the inner CG method, respectively. Results

in Table 3.1 empirically show that β = 2 or β = 3 is a good choice. In the

following, we choose β = 3.

Table 3.1: Numerical results of Algorithm 3.3 with different β for Example 1.

β 0.1 0.5 1 2 3 4 5

ADMMIter 297 60 29 20 22 25 29

Mean/Max CG 6.01/10 7.80/10 7.48/10 6.75/9 6.00/8 5.36/7 4.97/7

Next, we validate the efficiency of the inexactness criterion (3.15). We com-

pare Algorithm 3.3 with the intuitive implementation of the ADMM (3.6) whose

accuracy for solving the u-subproblem (3.6a) by the CG method is empirically

set as a constant a prior. For this set of numerical experiments, tol = 10−4

and various space mesh sizes h and time step sizes τ as h = τ = 2−i with

i = 5, 6, 7, 8, are considered. The accuracy for solving the u-subproblem (3.6a)
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is ‖ek(ukm+1)‖ ≤ 10−j with j an integer. We test various values for the accu-

racy constant: j = 2, 4, 6, 8, 10, which represent from low to very high levels of

accuracy. Numerical results are reported in Table 3.2, in which “ADMM1e−j”

denotes the accuracy constant for solving the u-subproblem (3.6a) is 10−j. Here

and in what follows, the notation “∼” means that the ADMM does not converge

within 500 iterations.

Table 3.2: Numerical comparison of Algorithm 3.3 and ADMM1e−k for Example

1.
Mesh Algorithm ADMMIter Mean/Max CG Time (s) RelDis Obj

ADMM1e−10 21 61.71/83 17.49 7.5987× 10−7 3.6825× 10−7

ADMM1e−8 21 44.81/65 16.94 7.5987× 10−7 3.6825× 10−7

2−5 ADMM1e−6 21 28.47/49 8.59 7.5986× 10−7 3.6825× 10−7

ADMM1e−4 21 13.30/32 4.23 7.5990× 10−7 3.6825× 10−7

ADMM1e−2 ∼ ∼ ∼ ∼ ∼
Algorithm 3 24 5.88/8 1.93 7.5954× 10−7 3.6823× 10−7

ADMM1e−10 19 60.20/94 196.68 6.7055× 10−7 3.5036× 10−7

ADMM1e−8 19 45.05/71 170.48 6.7055× 10−7 3.5036× 10−7

2−6 ADMM1e−6 19 27.47/48 93.65 6.7055× 10−7 3.5036× 10−7

ADMM1e−4 19 12.84/31 46.79 6.7056× 10−7 3.5035× 10−7

ADMM1e−2 ∼ ∼ ∼ ∼ ∼
Algorithm 3 22 6.00/8 20.86 6.7075× 10−7 3.5035× 10−7

ADMM1e−10 19 59.10/93 3372.30 6.5295× 10−7 3.4473× 10−7

ADMM1e−8 19 44.25/70 2884.61 6.5295× 10−7 3.4473× 10−7

2−7 ADMM1e−6 19 27.15/48 1653.10 6.5295× 10−7 3.4473× 10−7

ADMM1e−4 19 12.70/30 793.48 6.5299× 10−7 3.4473× 10−7

ADMM1e−2 ∼ ∼ ∼ ∼ ∼
Algorithm 3 20 6.20/8 307.06 6.5294× 10−7 3.4473× 10−7

ADMM1e−10 19 58.30/93 37106.76 6.4876× 10−7 3.4260× 10−7

ADMM1e−8 19 43.45/70 26570.61 6.4876× 10−7 3.4260× 10−7

2−8 ADMM1e−6 19 26.95/48 15801.55 6.4876× 10−7 3.4260× 10−7

ADMM1e−4 19 12.55/30 7627.94 6.4879× 10−7 3.4260× 10−7

ADMM1e−2 ∼ ∼ ∼ ∼ ∼
Algorithm 3 20 6.05/8 3839.67 6.4877× 10−7 3.4260× 10−7

According to Table 3.2, the automatically adjustable inexactness criterion

(3.15) is favorable for the implementation of ADMM (3.6). If the accuracy is

set as a constant a prior, then it is not easy to probe an appropriate value. An

either too large or too small value may result in troubles. For a too large value,

e.g., 10−2, the accuracy for solving the subproblems may not be sufficient and

the convergence may not be guaranteed. For a too small value, e.g., 10−8 or

10−10, the accuracy for solving the subproblems may be unnecessarily high and

it does not help accelerate the overall convergence. Especially, if the mesh size

for discretization is small, then the resulting u-subproblem is high dimensional

and it becomes less practical to solve it to a high precision. For the cases tested,

retrospectively, the accuracy 10−4 is a good choice. But there is neither theory

nor hint to fathom this value a prior. Indeed, as to be shown in Example 2, this
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value could be heavily dependent on the specific problem under discussion. The

inexactness criterion (3.15), however, can find an appropriate accuracy automat-

ically for finding an approximate solution of the u-subproblem (3.6a). Hence,

Algorithm 3.3 does not have these mentioned difficulties, and it generally works

well for all the tested cases. Table 3.2 also shows that the efficiency of Algorithm

3.3 is independent from the mesh size used for discretization. This is an impor-

tant feature to guarantee the numerical efficiency when an algorithm is applied

to the discretized version of some model with fine mesh for discretization, as

mentioned in some well-known works such as [14, 102, 103, 114].

Table 3.3: Numerical errors of Algorithm 3.3 with β = 3 and tol = 10−4 for

Example 1.

error h = τ = 2−5 h = τ = 2−6 h = τ = 2−7 h = τ = 2−8

‖u− u∗‖L2(O) 1.8421× 10−2 4.6767× 10−3 1.1715× 10−3 2.9013× 10−4

‖y − y∗‖L2(Q) 3.6426× 10−5 8.6088× 10−6 2.1106× 10−6 4.9269× 10−7

Since the ADMM (3.6) is a first-order algorithm and generally it is not fa-

vorable to generate iterates in very high precisions, it is necessary to verify if

the ADMM (3.6) can be accurate enough to guarantee the iterative accuracy. In

other words, whether or not it is still the discretization error that constitutes the

main part of the total error when the ADMM (3.6) is applied to the discretized

version of the problem (3.49). Recall that the solution of Example 1 is known.

In Table 3.3, we report the L2-error for the iterate (u, y) obtained by Algorithm

3.3 for various values of h and τ . For succinctness, we only give the results for

the case where β = 3 and tol = 10−4. It is clear from Table 3.3 that, when the

ADMM (3.6) is applied to the problem (3.49), the iterative accuracy is sufficient

and the overall error of u and y are both dominated by the discretization error.

Evolutions of the residuals and objective functional values with respect to

the outer ADMM iterations are displayed in Figure 3.1. These curves indicate

the fast convergence of Algorithm 3.3. In addition, the state variable y and the

control variable u, and the errors y∗− y and u∗−u at t = 0.25 with h = τ = 2−6

are depicted in Figures 3.2 and 3.3, respectively.

Example 2. We consider another case of the problem (3.1)–(3.2) where the

control region ω is a subset of the domain Ω. Let Ω = (0, 1)2, ω = (0, 0.25)2 ( Ω
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Figure 3.1: Residuals (left) and objective functional values (right) with respect

to outer ADMM iterations for Example 1.
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Figure 3.2: Numerical solutions y (left) and u (right) at t = 0.25 for Example 1.

Figure 3.3: Errors y∗ − y (left) and u∗ − u (right) at t = 0.25 for Example 1.
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and Q = Ω × (0, T ),O = ω × (0, T ) with T = 1. The regularization parameter

α = 10−6 and the admissible set is defined as

Uad = {v|v ∈ L∞(O),−300 ≤ v(x; t) ≤ 300 a.e. inO} ⊂ L2(O).

The target function yd is given by yd = et sin 4x1 sin 4x2, and the coefficients

ν = a0 = 1.

We set β = 3 and tol = 10−3 throughout, and test various choices of the

mesh size. The numerical results are summarized in Table 3.4. Residuals and

the objective functional values are plotted in Figure 3.4; numerical results for

y and u with h = τ = 2−6 at t = 0.5 are presented in Figure 3.5. We observe

that Algorithm 3.3 is also very efficient and robust for the small control region

case; and solving the u-subproblem (3.6a) subject to the inexactness criterion

(3.15) reduces the computational cost significantly. Similar conclusions as those

for Example 1 can be drawn for this example.

Figure 3.4: Residuals (left) and objective functional values (right) with respect

to outer ADMM iterations for Example 2.
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Figure 3.5: Numerical solutions y (left) and u (right) at t = 0.5 for Example 2.
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Table 3.4: Numerical comparison of Algorithm 3.3 and ADMM1e−k for Example

2.

Mesh Algorithm ADMMIter Mean/Max CG Time (s) RelDis Obj

ADMM1e−10 14 51.50/62 8.56 0.9388 0.3726

ADMM1e−8 14 41.86/52 6.64 0.9388 0.3726

2−5 ADMM1e−6 14 32.64/43 5.34 0.9388 0.3726

ADMM1e−4 14 23.00/32 3.70 0.9388 0.3726

ADMM1e−2 14 13.71/23 2.24 0.9388 0.3726

Algorithm 3 17 3.35/4 0.83 0.9388 0.3726

ADMM1e−10 16 51.63/62 110.05 0.9428 0.3812

ADMM1e−8 16 41.88/52 85.20 0.9428 0.3812

2−6 ADMM1e−6 16 32.31/43 64.43 0.9428 0.3812

ADMM1e−4 16 22.81/33 45.82 0.9428 0.3812

ADMM1e−2 16 13.25/23 27.15 0.9428 0.3812

Algorithm 3 18 3.39/4 9.29 0.9428 0.3812

ADMM1e−10 16 50.50/61 1834.32 0.9455 0.3821

ADMM1e−8 16 41.25/52 1550.68 0.9455 0.3821

2−7 ADMM1e−6 16 31.81/42 1291.11 0.9455 0.3821

ADMM1e−4 16 22.13/32 883.59 0.9455 0.3821

ADMM1e−2 16 12.81/23 401.55 0.9455 0.3821

Algorithm 3 18 3.33/4 129.33 0.9455 0.3821

ADMM1e−10 16 49.69/60 22540.18 0.9470 0.3817

ADMM1e−8 16 40.44/51 18869.58 0.9470 0.3817

2−8 ADMM1e−6 16 31.25/41 14969.83 0.9470 0.3817

ADMM1e−4 16 22.06/32 10437.38 0.9470 0.3817

ADMM1e−2 16 12.63/22 6281.95 0.9470 0.3817

Algorithm 3 18 3.33/4 1609.73 0.9470 0.3817
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3.8 Extensions

In previous sections, our discussion is focused on the parabolic optimal control

problem with control constraints (3.1)–(3.2) in order to expose our main ideas

clearly. The discussion can be easily extended to various other optimal control

problems. For instances, the objective functional in (3.1) can be replaced by the

L1-control cost functional in [161], and the control variable u can be replaced

by the Neumann or Dirichlet boundary control variable in [83]. In addition,

note that both of the proposed algorithmic design and the theoretical analysis

are independent of the specific form of the solution operator S defined in (3.3),

and they can be extended to various optimal control problems constrained by

other linear PDEs. To be more concrete, it is clear that the definition of ek(u) in

(3.12) is originated from the optimality system of (3.6a), and it only requires that

the solution operator S be affine (i.e., the linearity of the state equation (3.2)).

Hence, the parabolic state equation in (3.2) can be replaced by, e.g., the elliptic

equation [147], the wave equation [82], the convection-diffusion equation [83], or

the fractional parabolic equation [27]. In this section, we consider an optimal

control problem constrained by the wave equation to delineate the extensions.

Some notations and discussions analogous to previous ones are not repeated for

succinctness.

3.8.1 Model

We consider the following optimal control problem with control constraints:

min
u∈Uad,y∈L2(Q)

1

2

∫∫
Q

|y − yd|2dxdt+
α

2

∫∫
O
|u|2dxdt, (3.50)

and it is subject to the wave equation

∂2y

∂t2
−∆y = uχO in Ω× (0, T ), y = 0 on Γ× (0, T ), y(0) = y0,

∂y

∂t
(0) = y1.

(3.51)

Notation in (3.50)–(3.51) is the same as that in (3.1)–(3.2) except that the initial

conditions y0 ∈ H1
0 (Ω) and y1 ∈ L2(Ω). For the existence, uniqueness, and

regularity of the solution of (3.50)–(3.51), we refer to, e.g., [125].
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For the special case of (3.50)–(3.51) where d = 1 or ω = Ω, SSN type methods

have been studied in the literature, see, e.g., [114, 122, 129]. For the general case

of (3.50)–(3.51) where d ≥ 2 and ω ( Ω, similar difficulties as those mentioned

in the introduction for the problem (3.1)–(3.2) arise if SSN type methods are

applied. Below, we briefly show the details of extending Algorithm 3.1 to the

general case of (3.50)–(3.51).

3.8.2 Algorithm

Similarly, the direct implementation of ADMM to the problem (3.50)–(3.51)

reads as 
uk+1 = arg min

u∈L2(O)
L̄β(u, zk, λk), (3.52a)

zk+1 = arg min
z∈L2(O)

L̄β(uk+1, z, λk), (3.52b)

λk+1 = λk − β(uk+1 − zk+1), (3.52c)

where the augmented Lagrangian functional L̄β(u, z, λ) has the same form as the

Lβ(u, z, λ) in (3.6) except that the solution operator S is associated with the

wave equation (3.51) instead of the parabolic equation (3.2).

For the z-subproblem (3.52b), it amounts to computing the projection onto

the admissible set Uad; and the u-subproblem (3.52a) is an unconstrained optimal

control problem subject to the wave equation (3.51). Note that the u-subproblem

(3.52a) shares the same numerical challenges as the subproblem (3.6a); we may

apply the CG method such as [83] to solve it iteratively at each iteration. To

propose the inexactness criterion, we first need to introduce a residual ek(u)

for the u-subproblem (3.52a) as we have done in Section 3.3. For this purpose,

inspired by (3.12), we define ek(u) as

ek(u) := (1 + β)u+ S∗(
1

α
(S(u)− yd))− βzk − λk,

where S : L2(O) −→ L2(Q) is the solution operator associated with the wave

equation (3.51) and S∗ : L2(Q) −→ L2(O) is the adjoint operator of S. It is easy

to show that

ek(u) = (1 + β)u+ p|O − βzk − λk, (3.53)
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where p is the successive solution of the wave equation (3.51) and the following

adjoint equation:

∂2p

∂t2
−∆p =

1

α
(y−yd) in Ω×(0, T ), p = 0 on Γ×(0, T ), p(T ) = 0,

∂p

∂t
(T ) = 0.

(3.54)

Then, the inexactness criterion for computing uk+1 in (3.52a) is

‖ek(uk+1)‖ ≤ σ‖ek(uk)‖, (3.55)

with the constant σ given in (3.14).

Although the same letter in (3.13) is used, the definition of ek(u) in (3.53)

is determined by the wave equation (3.51) and the adjoint equation (3.54). It is

thus different from (3.13) for the parabolic equation (3.2) and its adjoint equation

(3.8). Embedding the inexactness criterion (3.55) into the ADMM scheme (3.52),

an inexact version of the ADMM (3.52) similar as Algorithm 1 is readily available

for the problem (3.50)–(3.51), and its convergence can be proved similarly. We

omit the details.

3.8.3 Numerical results

We test the ADMM scheme (3.52) with the inexactness criterion (3.55), and

report some preliminary numerical results for the problem (3.50)–(3.51) where

ω ( Ω and d = 2.

Example 3. Let us consider the following optimal control problem constrained

by the wave equation with a known exact solution:

min
u∈Uad,y∈L2(Q)

1

2

∫∫
Q

|y − yd|2dxdt+
α

2

∫∫
O
|u|2dxdt

s.t.



∂2y

∂t2
−∆y = f + uχO, in Ω× (0, T ),

y = 0, on Γ× (0, T ),

y(0) = y0,
∂y

∂t
(0) = y1,

(3.56)

where Ω = (0, 1)2, T = 1 and the control region ω = (0, 0.5)2 ( Ω. In addition,
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we set 
y = et sinπx1 sinπx2, p =

√
α(t− T )2 sin πx1 sin πx2,

u = min(a,max(b,− 1

α
p|O)), f = −uχO +

∂2y

∂t2
−∆y,

yd = y − ∂2p

∂t2
+ ∆p, y0 = sinπx1 sin πx2, y1 = sinπx1 sin πx2.

It is easy to verify that (u∗, y∗) := (u, y) is the solution point of the problem

(3.56). Moreover, we set the regularization parameter α = 10−4 and

Uad = {v|v ∈ L∞(O),−5 ≤ v(x; t) ≤ 0 a.e. inO} ⊂ L2(O).

By implementing the CG method to solve the u-subproblem (3.52a) subject

to the inexactness criterion (3.53), an ADMM–CG iterative scheme similar as

Algorithm 3.3 can be obtained for the problem (3.50)–(3.51). For numerical

discretization, we employ the central difference method (with step size τ) for the

time discretization and piecewise linear finite element method (with mesh size

h) for the space discretization. All notations and remarks in Section 3.7 are used

here again. Let β = 5 and tol = 10−5. We test the cases where the space mesh

size h and the time step size τ are h = τ = 2−i with i = 5, 6, 7, 8. Numerical

results are presented in Table 3.5.

Table 3.5: Numerical comparison of ADMM–CG and ADMM1e−k for Example

3.
Mesh Algorithm ADMMIter Mean/Max CG Time (s) RelDis Obj

ADMM1e−10 46 17.69/72 16.26 3.8248×10−3 1.6716×10−3

ADMM1e−8 46 12.75/31 11.89 3.8248×10−3 1.6716×10−3

2−5 ADMM1e−6 46 8.54/18 8.05 3.8248×10−3 1.6716×10−3

ADMM1e−4 46 4.89/11 4.86 3.8248×10−3 1.6716×10−3

ADMM1e−2 ∼ ∼ ∼ ∼ ∼
ADMM–CG 46 1.96/2 2.23 3.8248×10−3 1.6716×10−3

ADMM1e−10 48 16.75/23 168.04 3.7670×10−3 1.6197×10−3

ADMM1e−8 48 12.85/20 109.32 3.7670×10−3 1.6197×10−3

2−6 ADMM1e−6 48 8.77/15 89.06 3.7670×10−3 1.6197×10−3

ADMM1e−4 48 5.00/11 54.21 3.7670×10−3 1.6197×10−3

ADMM1e−2 ∼ ∼ ∼ ∼ ∼
ADMM–CG 49 1.96/2 24.29 3.7670×10−3 1.6197×10−3

ADMM1e−10 49 16.73/23 3511.81 3.7169×10−3 1.5845×10−3

ADMM1e−8 49 12.78/19 2198.52 3.7169×10−3 1.5845×10−3

2−7 ADMM1e−6 49 8.76/15 1814.87 3.7169×10−3 1.5845×10−3

ADMM1e−4 50 4.90/11 1131.26 3.7169×10−3 1.5845×10−3

ADMM1e−2 ∼ ∼ ∼ ∼ ∼
ADMM–CG 50 1.96/2 415.58 3.7169×10−3 1.5845×10−3

ADMM1e−10 50 16.42/22 49802.84 3.6863×10−3 1.5643×10−3

ADMM1e−8 50 12.46/19 31824.46 3.6863×10−3 1.5643×10−3

2−8 ADMM1e−6 50 8.54/15 24823.09 3.6863×10−3 1.5643×10−3

ADMM1e−4 50 4.94/11 10533.96 3.6863×10−3 1.5643×10−3

ADMM1e−2 ∼ ∼ ∼ ∼ ∼
ADMM–CG 51 1.96/2 4561.64 3.6863×10−3 1.5643×10−3
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According to Table 3.5, the ADMM–CG iterative scheme is also very efficient

for the general case of the problem (3.50)–(3.51) where ω ( Ω and d = 2. Similar

as the parabolic case, it suffices to solve the u-subproblem (3.52a) inexactly

subject to the criterion (3.55). The independence of the convergence to the

mesh size of discretization is also observed.

Evolutions of the residuals and objective functional values with respect to the

outer ADMM iterations are plotted in Figure 3.6. These curves indicate the fast

convergence of the ADMM–CG, despite the fact that the theoretical worst-case

convergence rate is only O(1/K). In addition, the iterative errors ‖yk − y∗‖ and

‖uk − u∗‖ in Figure 3.6 (right) show that the discretization errors dominate the

total errors of the numerical solution. This means the ADMM–CG finds a rather

precise iterative solution very fast. The control variable u, state variable y, and

the errors u∗−u and y∗− y at t = 0.75 with h = τ = 2−6 are depicted in Figures

3.7 and 3.8, respectively.

Figure 3.6: Residuals (left), objective functional value (middle), and errors of u

and y (right) with respect to the outer ADMM iterations for Example 3.
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Figure 3.7: Numerical solutions u (left) and y (right) at t = 0.75 for Example 3.
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Figure 3.8: Errors u∗ − u (left) and y∗ − y (right) at t = 0.75 for Example 3.
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Chapter 4

An Optimal Control based

Two-Stage Numerical Approach

for the Sparse Initial Source

Identification of

Diffusion-Advection Equations

4.1 Motivations

Inverse problems are ubiquitous in many contexts of science and engineering:

among other fields, we may mention applications in medical imaging [59], acous-

tics [71], machine learning [149], and oceanography [167]. A prototypical and

relevant example is the identification of moving pollution sources in either com-

pressible or incompressible fluids that can be described by diffusion-advection

systems [56, 87, 124, 123]. Such kind of inverse problem has important practical

applications in various areas of science and engineering. For instance, an accurate

estimation of pollution sources plays a crucial role in the environmental safeguard

of densely populated cities, see e.g., [56, 124]. Following [34, 35, 123, 134], such

a pollution sources identification problem can be mathematically modeled by
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an initial source identification problem of diffusion-advection systems. Mainly

inspired by applications that aim at identifying point-wise pollution sources

[56, 124, 123], a situation of particular concern is that the initial source is known

to be sparse, i.e., to have a support of Lebesgue measure zero. This motivates us

to consider the following sparse initial source identification problem of diffusion-

advection systems.

4.1.1 Problem statement

Let Ω ⊂ RN with N ≥ 1 be a bounded domain and let ∂Ω be its boundary.

We consider the following linear diffusion-advection equation
∂tu− d∆u+ v · ∇u = 0, (x, t) ∈ Ω× (0, T )

u = 0, (x, t) ∈ ∂Ω× (0, T )

u(x, 0) = u0(x), x ∈ Ω,

(4.1)

where 0 < T < +∞ is a given final time, d > 0 is the diffusivity coefficient and

the vector v is the velocity field of the advection. In what follows, we assume

d and v to be constant for simplicity, although the techniques we are going to

present can be adapted also to variable diffusivity and velocity fields.Then, the

corresponding sparse initial source identification problem reads as:

Problem 4.1. Given a target or observed function ud, we aim at identifying a

sparse initial condition û∗0 such that the corresponding final state û∗(·, T ) of (4.1)

is as close as possible to ud in the sense that

‖û∗(·, T )− ud‖L2(Ω) ≤ ε, a.e in Ω, ε ≥ 0. (4.2)

Moreover, since we are interested in the situation in which the initial source is

known to be sparse, it is sufficient to assume a priori that the initial condition

û∗0 to be determined is a linear combination of Dirac measures:

û∗0 =
∑̀
i=1

α̂∗i δ(x̂
∗
i ), x̂∗i ∈ Ω, (4.3)

where {α̂∗i }`i=1 ∈ R` and x̂∗i ∈ Ω, 1 ≤ i ≤ `, are the intensities and locations to be

identified, respectively. The number ` of locations is fixed and the Dirac measure

δ is defined by δ(x) = 1 if x = x̂∗i , and δ(x) = 0 otherwise.
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Above, the a priori assumption (4.3) implies that the support of û∗0 is {x̂∗i }`i=1 ⊂
Ω, whose Lebesgue measure is zero, and thus guarantees the initial source to

be identified is sparse. In general, Problem 4.1 is known to be exponentially

ill-posed, see, e.g., [107]. In particular, the strong smoothing property of the

equation (4.1) makes it difficult to design some numerical algorithms to identify

such a sparse initial source in the form of (4.3).

4.1.2 State-of-the-art

In the literature, some work has already been done for sparse initial source

identification problems, based on the natural idea of taking advantage of the

sparse nature of the initial condition. For instance, in [123], the sparse initial

source identification of the heat equation is solved by minimizing the `1-norm of

the initial condition, under the constraint that the corresponding final state of

the heat equation and the observations at the final time are close, through the

classical Bregman iteration method [24].

A widely used strategy to address sparse initial source identification prob-

lems is to formulate them as optimal control problems with partial differential

equations (PDEs) constraints, in which the initial condition is assumed to play

the role of a control term. This is the seminal idea at the basis of some research

articles, see e.g., [34, 35, 120, 134].

In [34], sparse optimal control techniques are used to identify sparse initial

sources for diffusion-convection equations. Existence and uniqueness of opti-

mal controls are proved, and necessary and sufficient optimality conditions are

obtained. Based on these conditions, the sparsity structure of the solutions is

derived, which relates to the initial sources to be identified. In [35], the ad-

joint methodology for sparse initial source identification problems governed by

parabolic equations is introduced. It is proved that the sparse initial condi-

tion can be recovered by minimizing its measure-norm under the constraint that

the corresponding solution and the given target are close at the final time. In

[120], the identification of an unknown sparse initial source for a homogeneous

parabolic equation is addressed by considering an optimal control problem, where

100



4.1. Motivations

the control variable is considered in the space of regular Borel measures and the

corresponding norm is used as a regularization term in the objective functional.

Under a certain structural assumption, the authors show that the initial source

is a finite linear combination of Dirac measures as that in (4.3).

It is remarkable that, in the above references, the sparse initial source identi-

fication problems are formulated as optimal control problems in measure spaces.

The presence of measures promotes the sparsity of the initial source but en-

tails appropriate discretization for measure-valued quantities and may invalidate

the application of some well-known numerical methods. For instance, the first-

order optimality condition cannot be reformulated in a non-smooth point-wise

form and thus the well-known semi-smooth Newton type methods cannot be

applied directly. Hence, some new numerical algorithms should be deliberately

designed from scratch. In this regard, we note that a Primal-Dual Active Point

(PDAP) method is proposed in [120] to solve the optimal control problem with

measures resulted from the sparse initial source identification of homogeneous

parabolic equations. At each iteration of the PDAP, one entails the solutions

of two parabolic equations to update the adjoint variable, an optimization sub-

problem to find a new support point, and a non-smooth optimization subprob-

lem to compute the new iterate. This non-smooth optimization problem has

no closed-form solution and can only be solved iteratively by some optimization

algorithm, such as the Semi-Smooth Newton (SSN) method suggested therein.

Hence, nested iterations are resulted, which may cause some new challenges in

the overall rigorous convergence and significant computational loads in the im-

plementation.

In [134], the sparse initial source identification for diffusion-advection equa-

tions is considered. As that in (4.3), the initial source is assumed to be a linear

combination of Dirac deltas and the optimal locations and intensities need to be

identified. To solve this problem, an optimal control based two-stage numerical

approach is proposed. First, the sparse initial source identification problem is

formulated as an optimal control problem with L1-regularized functional, where

the initial condition is treated as the control variable and is assumed to be in

L1(Ω) to promote the sparsity. The employment of measures is thus avoided,
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and various well-developed optimization algorithms can be applied directly to

solve the resulting optimal control problem. In particular, a Gradient Descent

(GD) method is suggested therein with the gradient computed by the adjoint

methodology. However, due to the smoothing property of diffusion systems,

the resulting optimal control (i.e., the identified initial source from the optimal

control problem) is not sparse as desired. Nevertheless, it has been empirically

observed that the local maxima/minima of the optimal control fall into the exact

locations where the actual initial sources are placed. Consequently, the optimal

locations are identified by determining where the maxima/minima of the op-

timal control are. Then, a post-processing is proposed, where a least squares

problem is solved to identify the corresponding optimal intensities of the ini-

tial source. Several test cases both in one and two-dimensional spaces validate

that this two-stage approach identifies the sparse initial sources very successfully

even in heterogeneous media. Despite this fact, we shall remark that the focus

in [134] is on the development and discussion of the numerical algorithm, but

from a mathematical viewpoint, the optimal control model considered in [134] is

not well-posed. In particular, since the control variable is considered in the non-

reflexive space L1(Ω), the existence of a solution to the optimal control problem

cannot be guaranteed.

For completeness, we mention that other types of optimal control problems

with sparsity properties have also been widely discussed in the existing litera-

ture. In [32, 36] for elliptic problems and in [33, 116] for parabolic problems,

distributed controls with strong sparsity properties are obtained by consider-

ing optimal control problems in the space of measures. Distributed elliptic and

parabolic optimal control problems with L1-regularized functional are discussed

in [161] and [164], respectively. The use of L1-regularization has been shown to

be very efficient to obtain optimal controls with support in small regions of the

domain, the domain being adjustable in terms of the tuning of suitable parame-

ters entering in the cost functional.
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4.1.3 Our numerical approach

To address Problem 4.1, we propose a new optimal control based two-stage

numerical approach, which consists of a sparsity detection stage and a structure

enhancement stage. Our approach is mainly inspired by [134], and it keeps all

advantageous features of the framework in [134] while avoids the aforementioned

issues encountered therein. First, in the sparsity detection stage, we treat the

initial condition u0 as a control variable and formulate Problem 4.1 as an optimal

control problem with L2 + L1-regularization. As to be shown in Section 4.2, the

presence of the L1-term can detect the sparsity of the initial source. However, as

observed in [134], the identified initial source from the optimal control problem

is not sparse due to the absence of the assumption (4.3) in the formulation of

the optimal control problem and the smoothing property of diffusion systems.

Hence, a structure enhancement stage should be complemented to ensure that

(4.3) holds while identify the locations {x̂∗i }`i=1 and the intensities {α̂∗i }`i=1.

To be concrete, we formulate Problem 4.1 in terms of the following optimal

control model:

min
u0∈L2(Ω)

J(u0) :=
1

2

∫
Ω

|u(·, T )− ud|2 dx+
α

2

∫
Ω

|u0|2 dx+ β

∫
Ω

|u0| dx, (4.4)

subject to the diffusion-advection equation (4.1). In (4.4), the constants α > 0

and β > 0 are regularization parameters. Similar as the model in [134], the

first term of J(u0) seeks for an initial condition u0 such that the correspond-

ing final state of equation (4.1) is as close as possible to ud; and the last term

detects the sparsity of the initial source. Meanwhile, inspired by [164], we intro-

duce the L2-regularization α
2

∫
Ω
|u0|2 dx to guarantee the well-posedness of (4.4)

while preventing possible ill-conditioning to allow for a more efficient numerical

resolution.

Clearly, our proposed model (4.4) operates in function spaces and avoids the

employment of measures. As a consequence, it can be easily addressed numeri-

cally and various well-developed optimization algorithms can be applied directly.

On the other hand, due to the introduction of the L2-regularization term, our pro-

posed model (4.4) is well-posed and allows identifying the sparse initial sources

much more efficiently than the one in [134] as to be validated by some numerical
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tests.

It is worth noticing that the control variable u0 in (4.4) is considered as

a general function in L2(Ω) and it is not assumed to be a linear combination

of Dirac measures as in (4.3). Therefore, one may further assume that u0 =∑`
i=1 αiδ(xi) with αi ∈ R and xi ∈ Ω in the formulation of (4.4). As a result,

the intensities {αi}`i=1 and the locations {xi}`i=1 become the control variables.

However, this leads to a non-convex optimization problem which is challenging

to be addressed both in terms of theory and algorithms. Meanwhile, it causes

practical difficulties related to the computation of the derivatives with respect

to {xi}`i=1. By contrast, our formulation (4.4) is convex and the computation of

the derivatives to u0 is relatively easier as to be shown in Section 4.2.2.

Moreover, when a certain gradient-based algorithm is employed to solve the

optimal control problem (4.4), the solutions of the state equation (4.1) and the

adjoint equation (4.8) (or its analogue) are always required to compute the gra-

dient. These are both diffusive processes that smooth out the corresponding

states. Because of that, as observed in [134], the recovered initial condition u0 is

outside the sparse ansatz (4.3). To validate this fact, we set T = 0.1, d = 0.05

and v = (1, 2)> in the equation (4.1) and solve the optimal control problem (4.4)

by the Primal-Dual Hybrid Gradient (PDHG) method described in Section 4.3.

Additional details are presented in Section 5.5. The numerical results are visual-

ized in Figure 4.1, where the left plot corresponds to the reference initial datum

û0 assigned a prior in the form of (4.3), while the right plot shows the recovered

initial datum u∗0 by solving the optimal control problem (4.4). We can clearly

see that û0 and u∗0 do not coincide, the latter one being of a non-sparse nature

and with intensities way below the ones of û0.

For the above reasons, once a numerical solution of the optimal control prob-

lem (4.4) is computed, a structure enhancement stage exploiting the assumption

(4.3) is necessary to identify the optimal locations {x̂∗i }`i=1 and the intensities

{α̂∗i }`i=1. To this end, inspired by [134], we propose to solve two simple and

low-dimensional optimization problems. More precisely, to identify the optimal

locations {x̂∗i }`i=1, we consider an optimization problem in terms of the spatial

variable x ∈ Ω, which is derived from the structural property of the solution
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Figure 4.1: Reference initial datum û0 (left) and recovered initial datum u∗0 (right)

by solving (4.4).

of the optimal control problem (4.4) stated in Theorem 4.3. Then, motivated

by the facts that the initial source û∗0 to be recovered is a linear combination

of Dirac measures and the associated final state û∗(·, T ) should be as close as

possible to ud, we solve a least squares problem to identify the optimal inten-

sities {α̂∗i }`i=1. An optimal control based two-stage numerical approach is thus

proposed for Problem 4.1. The validity of our proposed approach can be guaran-

teed mathematically. Meanwhile, it allows identifying the sparse initial sources

very successfully, even for some heterogeneous materials or coupled models as

validated by some numerical experiments in Section 5.5.

4.1.4 PDHG methods for the solution of (4.4)

We note that the identification of the optimal locations and intensities is

based on the solution of the optimal control problem (4.4) and thus it is of sig-

nificance to employ an efficient numerical algorithm for solving (4.4). To this

end, recall that the optimal control problem (4.4) is defined in function spaces

and various well-developed optimization algorithms can be applied directly. For

instance, SSN-type methods [175] or the Alternating Direction Method of Mul-

tipliers (ADMM) [72] can be conceptually applied and they indeed have been

successful in solving some other types of optimal control problems in the liter-

ature (we refer for instance to [84, 99, 103, 114, 163] for a few contributions in

this direction). Nevertheless, we note that at each iteration of SSN and ADMM,

a complicated large-scale and ill-conditioned saddle point system and an optimal

control subproblem should be iteratively solved, respectively, which are numeri-
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cally challenging and expensive for such a time-dependent model.

To avoid the above issues, we advocate the PDHG method [37], which has

been widely used in various areas, such as image processing [37, 193], inverse

problems [169], and statistical learning [85]. But its application for solving op-

timal control problems has not been sufficiently explored. As to be shown in

Section 4.3, the PDHG method decouples the original complicated optimal con-

trol problem (4.4) into two much simpler subproblems. At each iteration, the

main computational load consists of solving only two PDEs which can be ef-

ficiently addressed by various well-developed PDE solvers. Hence, the PDHG

method is very easy and cheap to be implemented. To further speed up the con-

vergence of PDHG method, we introduce a PDHG-based prediction-correction

algorithmic framework following [93, 95]. Moreover, we compare the numerical

efficiency of the PDHG with the GD described in [134], and we show that the

PDHG method yields significant improvements in the performance of the source

identification procedure.

4.2 Analysis of the optimal control problem (4.4)

In this section, we analyze the properties of the optimal control problem (4.4).

First, the existence and uniqueness of an optimal control u∗0 are proved. Then,

we derive the optimality conditions and deduce some structural properties of u∗0.

4.2.1 Existence and uniqueness of an optimal control

Let us start by discussing the existence and uniqueness of an optimal control

u∗0 to the problem (4.4). This fact comes from a very standard argument.

As a matter of fact, the existence of u∗0 minimizing the functional J(u0) can

be proved by taking a minimizing sequence and using the compactness of the

map u0 ∈ L2(Ω) 7→ u(·, T ) ∈ L2(Ω), which can be easily obtained by adapting

the proof of [35, Lemma 2.3] and is a consequence of the smoothing properties

of the heat semi-group. We leave the details to the reader.
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Concerning the uniqueness, instead, this is a direct consequence of the strict

convexity of the functional. Indeed, suppose that the optimal control problem

(4.4) has two solutions u∗0,1 and u∗0,2. Then, if we denote

u0 :=
1

2

(
u∗0,1 + u∗0,2

)
we have

J(u0) = J

(
u∗0,1
2

+
u∗0,2
2

)
<

1

2
J
(
u∗0,1
)

+
1

2
J
(
u∗0,2
)

= inf(J),

which contradicts the fact that u∗0,1 and u∗0,2 are minimizers. We have then proved

the following theorem.

Theorem 4.1. There exists a unique solution u∗0 ∈ L2(Ω) of the optimal control

problem (4.4).

4.2.2 First-order optimality condition

To derive the first-order optimality condition, we introduce the Lagrangian

formulation

L(u, ψ) =
1

2

∫
Ω

|u(·, T )− ud|2 dx+
α

2

∫
Ω

|u0|2 dx+ β

∫
Ω

|u0| dx

+

∫ T

0

∫
Ω

ψ(−∂tu+ d∆u− v · ∇u) dxdt.

Let

ϕ(u0) = β

∫
Ω

|u0|dx (4.5)

and denote by

∂ϕ(u0) :=
{
λu0 ∈ L2(Ω) : ϕ(v)− ϕ(u0)− (λu0 , v − u0) ≥ 0,∀v ∈ L2(Ω)

}
the subdifferential of ϕ at u0 ∈ L2(Ω). Here and in what follows, we denote by

(·, ·) the canonical inner product in L2(Ω). Then, we compute the directional

derivative δL(u, ψ) as

δL(u, ψ) =

∫
Ω

(u(·, T )− ud)δu(·, T ) dx+ α

∫
Ω

u0δu0 dx+

∫
Ω

λu0δu0 dx
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+

∫ T

0

∫
Ω

ψ(−∂tδu+ d∆δu− v · ∇δu) dxdt, (4.6)

with

δu = 0 on ∂Ω× (0, T ). (4.7)

We now integrate by parts the last term in the above expression, obtaining∫ T

0

∫
Ω

ψ(−∂tδu+ d∆δu− v∇ · δu) dxdt

=−
∫

Ω

ψ(·, T )δu(·, T ) dx+

∫
Ω

ψ(·, 0)δu(·, 0) dx

+

∫ T

0

∫
Ω

(∂tψ + d∆ψ + v · ∇ψ)δu dxdt,

where we took into account (4.7) and the fact that we are assuming v to be

constant. Hence, we obtain from (4.6) that

δL(u, ψ) =

∫
Ω

(u(·, T )− ud − ψ(·, T ))δu(·, T ) dx+

∫
Ω

(αu0 + λu0 + ψ(·, 0))δu0 dx

+

∫ T

0

∫
Ω

(∂tψ + d∆ψ + v · ∇ψ)δu dxdt

or, equivalently,

δL(u, ψ) =

∫
Ω

(
αu0 + λu0 + ψ(·, 0)

)
δu0 dx

with the constraint that ψ is a solution of the adjoint (backward) equation
∂tψ + d∆ψ + v · ∇ψ = 0, (x, t) ∈ Ω× (0, T )

ψ = 0, (x, t) ∈ ∂Ω× (0, T )

ψ(·, T ) = u(·, T )− ud := ψT , x ∈ Ω.

(4.8)

This, in particular, implies that the gradient ∇J(u0) is given by the expression

∇J(u0) = ψ(·, 0) + αu0 + λu0 (4.9)

The above discussions lead to the following result.

Theorem 4.2. Suppose that u∗0 ∈ L2(Ω) is the unique solution of the optimal

control problem (4.4). Then, the following first-order optimality condition holds:

ψ∗(·, 0) + αu∗0 + λ∗u0
= 0,

where λ∗u0
∈ ∂ϕ(u∗0), and ψ∗ is the successive solution of the state equation (4.1)

and the adjoint equation (4.8) provided the initial datum u∗0.
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4.2.3 Structural properties of u∗0

Recall that λ∗u0
∈ ∂ϕ(u∗0) = β∂

∫
Ω
|u∗0|dx, and it follows from the results of

[110] that

λ∗u0
∈ βsign(u∗0),

where the set-valued function sign(·) is given by

sign(v) =


v

|v|
, if v 6= 0

{η : |η| ≤ 1}, otherwise.

We thus obtain that

λ∗u0
= β, a.e. on {x ∈ Ω : u∗0 > 0}

λ∗u0
= −β, a.e. on {x ∈ Ω : u∗0 < 0} (4.10)

|λ∗u0
| ≤ β, a.e. on {x ∈ Ω : u∗0 = 0},

which implies the following structural information for the solution u∗0.

Theorem 4.3. Let u∗0 ∈ L2(Ω) be the unique solution of the problem (4.4) and

λ∗u0
∈ β∂

∫
Ω
|u∗0|dx, then the support of u∗0 verifies

supp(u∗0) ⊂ {x ∈ Ω : λ∗u0
(x) = ±β}.

The above result implies the following structural property: for any x0 ∈ Ω,

the solution u∗0(x0) will be nonzero only if λ∗u0
reach its maximum β or minimum

−β at x0. Moreover, we can also show that for a fixed α, the larger the parameter

β, the smaller the support of the solution u∗0. Indeed, when β is sufficient large,

using some similar arguments as those in [164], we can prove that u∗0 = 0 on the

whole domain Ω.

Theorem 4.4. Let L : L2(Ω) → L2(Ω) be the solution operator associated with

the linear diffusion-advection equation (4.1), i.e. Lu0 = u(·, T ), and let L∗ denote

its adjoint. Then, if β ≥ β0 := ‖L∗ud‖L∞(Ω), the unique solution of the problem

(4.4) is u∗0 = 0.
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Proof. We first note that, with Lu0 = u(·, T ), the objective functional J(u0) in

(4.4) can be rewritten as

J(u0) =
1

2

∫
Ω

|Lu0 − ud|2 dx+
α

2

∫
Ω

|u0|2 dx+ β

∫
Ω

|u0| dx.

Then, it is easy to obtain that

J(u0)− J(0) =
1

2

∫
Ω

|Lu0|2 dx−
∫

Ω

Lu0ud dx+
α

2

∫
Ω

|u0|2 dx+ β

∫
Ω

|u0| dx

=
1

2
‖Lu0‖2

L2(Ω) − (u0,L∗ud) +
α

2
‖u0‖2

L2(Ω) + β‖u0‖L1(Ω)

≥ 1

2
‖Lu0‖2

L2(Ω) − ‖u0‖L1(Ω)‖L∗ud‖L∞(Ω) +
α

2
‖u0‖2

L2(Ω) + β‖u0‖L1(Ω)

=
1

2
‖Lu0‖2

L2(Ω) + (β − ‖L∗ud‖L∞(Ω))‖u0‖L1(Ω) +
α

2
‖u0‖2

L2(Ω).

If β ≥ β0, we have that J(0) ≤ J(u0) for any u0 ∈ L2(Ω), which implies that

the unique solution of the problem (4.4) is u∗0 = 0.

4.3 PDHG algorithms for the optimal control

problem (4.4)

In this section, we first elaborate the application of the PDHG method [37]

to the optimal control problem (4.4) and delineate the implementation details.

Then, following the ideas in [93, 95], we introduce in Subsection 4.3.3 a gen-

eralized PDHG algorithmic framework which allows the output of the PDHG

subroutine to be further updated by relaxation steps with constant step sizes.

With different choices of parameters, a class of generalized PDHG schemes can

be obtained for solving the problem (4.4). These generalized algorithms are usu-

ally more efficient than the original PDHG algorithm in practice, as we will show

in Section 4.7.

4.3.1 Iterative scheme of the PDHG method

Let us now briefly describe the PDHG methodology. To this end, let us define

f(Lu0) =

∫
Ω

|Lu0 − ud|2 dx and g(u0) =
α

2

∫
Ω

|u0|2 dx+ β

∫
Ω

|u0| dx.
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Then, the optimal control problem (4.4) can be reformulated as

min
u0∈L2(Ω)

f(Lu0) + g(u0). (4.11)

Introducing now an auxiliary variable p ∈ L2(Ω), by applying the standard

Fenchel-Rockafellar duality (see e.g., [55, Chapter VII]) we can show that (4.11)

is equivalent to the following saddle point problem:

min
u0∈L2(Ω)

max
p∈L2(Ω)

g(u0) + (p,Lu0)− f ∗(p) (4.12)

where f ∗(p) := supq∈L2(Ω)

(
(p, q)−f(q)

)
is the convex conjugate of f(q) and can

be explicitly computed as

f ∗(p) =
1

2

∫
Ω

|p|2 dx+ (p, ud).

Then, applying the PDHG method proposed in [37] to the problem (4.12),

we immediately obtain the following iterative scheme:
uk+1

0 = arg min
u0∈L2(Ω)

(
g(u0) + (pk,Lu0) +

1

2r
‖u0 − uk0‖2

L2(Ω)

)
, (4.13)

ūk0 = 2uk+1
0 − uk0, (4.14)

pk+1 = arg max
p∈L2(Ω)

(
(p,Lūk0)− f ∗(p)− 1

2s
‖p− pk‖2

L2(Ω)

)
. (4.15)

4.3.2 Implementation of the PDHG method (4.13)-(4.15)

In this subsection, we discuss the implementation details of the PDHG algo-

rithm. First of all, we observe that the u-subproblem (4.13) can be equivalently

reformulated as

uk+1
0 = arg min

u0∈L2(Ω)

(
α

2

∫
Ω

|u0|2 dx+ β

∫
Ω

|u0| dx+
1

2r
‖u0 − uk0 + rL∗pk‖2

L2(Ω)

)
,

(4.16)

where L∗p̄k := ζk(·, 0) is the solution at time t = 0 of the following backward

equation: 
∂tζ

k + d∆ζk + v · ∇ζk = 0, (x, t) ∈ Ω× (0, T )

ζk = 0, (x, t) ∈ ∂Ω× (0, T )

ζk(·, T ) = pk, x ∈ Ω.

(4.17)
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In addition to that, it can be readily checked (see e.g. [110]) that problem

(4.16) has the following closed-form solution

uk+1
0 = S βr

αr+1

(
uk0 − rζk(·, 0)

αr + 1

)
where, for any constant γ > 0, we denoted by Sγ the Shrinkage operator defined

as

Sγ(a) =


a− γ, a > γ

0, |a| ≤ γ

a+ γ, a < −γ.

Concerning instead the solution of the p-subproblem (4.15), the latter can be

computed explicitly taking into account that pk+1 has satisfy

∇p

(
(p,Lūk0)− f ∗(p)− 1

2s
‖p− pk‖2

L2(Ω)

) ∣∣∣∣
p=pk+1

= 0.

In particular, we have

pk+1 =
1

s+ 1
pk +

s

s+ 1

(
Lūk0 − ud

)
.

Clearly, at each iteration, the main computation of the PDHG method only

requires the solutions of one forward equation (4.1) and one backward equation

(4.17), and both of them can be efficiently solved by various well-developed PDE

solvers. Hence, the PDHG method is very cheap and easy to be implemented. On

the other hand, as discussed in the introduction, the numerical solution obtained

from (4.4) by the PDHG algorithm will not be as sparse as desired in (4.3) due

to the smoothing property of the equations (4.1) and (4.17). Hence, a structure

enhancement stage to be introduced in Section 4.6 should be considered in order

to identify a sparse initial condition in the form of (4.3) such that (4.2) holds.

4.3.3 A generalized PDHG-based prediction-correction al-

gorithmic framework

Inspired by [93, 95], we consider the following generalized PDHG-based prediction-

correction algorithmic framework presented in Algorithm 4.1, which can further
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improve the numerical efficiency of the PDHG method (4.13)-(4.15) in practice,

as to be shown in Section 4.7.

Algorithm 4.1 A generalized PDHG-based prediction-correction algorithmic

framework for (4.4)

input: initial values u0
0 ∈ L2(Ω) and p0 ∈ L2(Ω). Choose constants ρ > 0, σ >

0 and θ ∈ (0, 1], and step sizes r > 0, s > 0 such that the following condition

holds:

rs <
1

‖LL∗‖
. (4.18)

while not converged do

PREDICTION STEP: compute w̃k := (ũk0, p̃
k)> by

ũk0 = arg min
u∈L2(Ω)

(
g(u0) + (pk,Lu0) +

1

2r
‖u0 − uk‖2

L2(Ω)

)
(4.19a)

ūk0 = ũk0 + θ(ũk0 − uk0) (4.19b)

p̃ k = arg max
p∈L2(Ω)

(
(p,Lūk0)− f ∗(p)− 1

2s
‖p− pk‖2

L2(Ω)

)
(4.19c)

CORRECTION STEP: update the new iterate wk+1 := (uk+1
0 , pk+1)> via

uk+1
0 = uk0 − ρ(uk0 − ũk0) (4.20a)

pk+1 = pk − σ(pk − p̃ k) (4.20b)

end while

With different choices of parameters θ and ρ, σ, a class of new generalized

PDHG schemes can be obtained. We refer to [93] for the details. Here, in

particular, we take θ = 1 in (4.19b) and thus obtain a PDHG-based prediction-

correction (PDHG-PC) method. We note that the correction steps (4.20a) and

(4.20b) are easy to compute and the resulting subproblems (4.19a)-(4.19b) are

similar to those in (4.13)-(4.15). Hence, the implementation of the PDHG-PC

method for solving the optimal control problem (4.4) shares the similar routine

as the PDHG method (4.13)-(4.15). Clearly, if we further let σ = ρ = 1, the

PDHG-PC method reduces to the classical PDHG method (4.13)-(4.15).
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4.4 Convergence analysis of Algorithm 4.1

In this section, we prove the strong global convergence and derive the worst-

case O(1/K) convergence rate measured by the iteration complexity in both

the ergodic and non-ergodic senses for Algorithm 4.1 in the context of optimal

control problems. All the results can be extended to the classical PDHG method

(4.13)-(4.15) directly since it can be covered by Algorithm 4.1 with θ = 1 and

ρ = σ = 1.

4.4.1 Preliminaries

Denote (u∗0, p
∗)> ∈ L2(Ω)×L2(Ω) the saddle point of (4.12), which in particu-

lar means that u∗0 is the unique solution of (4.4). Then, the following variational

inequalities (VIs) hold (see (4.5) for the definition of ϕ):

ϕ(u0)− ϕ(u∗0) +
(
u0 − u∗0, αu∗0 + L∗p∗

)
≥ 0, ∀u0 ∈ L2(Ω), (4.21a)(

p− p∗, p∗ + ud − Lu∗0
)
≥ 0, ∀p ∈ L2(Ω). (4.21b)

We observe that the VIs (4.21a) and (4.21b) can be written in a compact form:

ϕ(u0)− ϕ(u∗0) +
(
w − w∗, F (w∗)

)
≥ 0, ∀w ∈ W, (4.22)

where

W = L2(Ω)× L2(Ω), w =

u0

p

 , F (w) =

 αu0 + L∗p
p− Lu0 + ud

 . (4.23)

Moreover, a direct calculation shows that, for all w1, w2 ∈ W ,(
w1 − w2, F (w1)− F (w2)

)
(4.24)

=
(
u0,1 − u0,2, α(u0,1 − u0,2)

)
+
(
u0,1 − u0,2,L(p1 − p2)

)
+
(
p1 − p2, p1 − u2

)
−
(
L(u0,1 − u0,2), p1 − p2

)
= ‖p1 − p2‖2

L2(Ω) + α‖u0,1 − u0,2‖2
L2(Ω), (4.25)

which implies that F is strongly monotone.
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Then, we rewrite also the iterative scheme (4.13)-(4.15) in a VI form. For

this purpose, we first note that the optimality conditions of (4.19a) and (4.19c)

are

ϕ(u0)− ϕ(ũk0) +
(
u0 − ũk0, αũk0 + L∗pk +

1

r
(ũk0 − uk0)

)
≥ 0, ∀u0 ∈ L2(Ω),(

p− p̃ k, p̃ k + ud − Lūk0 +
1

s
(p̃ k − pk)

)
≥ 0, ∀p ∈ L2(Ω),

respectively. Taking (4.14) into account, we obtain the following VIs:

ϕ(u0)− ϕ(ũk0) +
(
u0 − ũk0, αũk0 + L∗p̃ k − L∗(p̃ k − pk) +

1

r
(ũk0 − uk0)

)
≥ 0, ∀u0 ∈ L2(Ω),

(4.27a)(
p− p̃ k, p̃ k + ud − Lũk0 − θL(ũk0 − uk0) +

1

s
(p̃ k − pk)

)
≥ 0, ∀p ∈ L2(Ω). (4.27b)

To simplify the notation, we define the following matrix-form operators

D :=

ρI 0

0 σI

 , G :=

 1
r
I −L∗

−θL 1
s
I

 , K := GD−1, M := G+G∗−D∗KD.

(4.28)

With the notations in (4.23) and (4.28), the VIs (4.27a) and (4.27b), as well

as the correction steps (4.20a) and (4.20b), can be respectively written in the

following compact forms

ϕ(u0)− ϕ(ũk0) +
(
w − w̃k, F (w̃k) +G(w̃k − wk)

)
≥ 0, ∀w ∈ W, (4.29)

and

wk+1 = wk −D(wk − w̃k). (4.30)

We recall that in Algorithm 4.1, the combination parameter θ > 0, and the

step-sizes r, s > 0 are chosen such that

θ ∈ (0, 1], rs <
1

‖L∗L‖
. (4.31)

To prove the convergence of Algorithm 4.1, we further impose the following

condition: both K and M are self-adjoint and positive definite, namely,

K = K∗ and (Kw,w) ≥ c1‖w‖2
L2(Ω),

M =M∗ and (Mw,w) ≥ c2‖w‖2
L2(Ω), ∀w ∈ W,w 6= 0, (4.32)
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where c1 and c2 are two positive constants.

This condition (4.32) yields further restrictions, in addition to (4.31), on the

involved parameters in Algorithm 4.1. Using some similar arguments as those in

[93], we have the following result.

Lemma 4.1. Suppose that r and s satisfy (4.31). If we choose θ, ρ and σ such

that either

θ = 1 and ρ = σ ∈ (0, 2),

or

θ ∈ (0, 1), 0 < ρ ≤ 1 + θ −
√

1− θ and ρ = σθ,

then the matrix-form operators K andM defined in (4.28) satisfy the convergence

condition (4.32).

4.4.2 Global convergence of Algorithm 4.1

In this subsection, we prove the convergence of Algorithm 4.1 under the

conditions (4.31) and (4.32). Here and in what follows, we denote by ‖w‖A :=

(Aw,w),∀w ∈ W the norm induced by a self-adjoint and positive definite matrix-

operator A. First, we show the strict contraction property of the sequence wk

generated by Algorithm 4.1.

Theorem 4.5. Let wk = (uk0, p
k)> be the sequence generated by Algorithm 4.1

and w∗ = (u∗0, p
∗)> be the solution of problem (4.12). Suppose that the condition

(4.31) holds and the matrix-form operators K and M satisfy the convergence

condition (4.32). Then we have

‖wk+1−w∗‖2
K ≤ ‖wk−w∗‖2

K−‖wk− w̃k‖2
M−2‖p̃ k−p∗‖2

L2(Ω)−2α‖ũ k0 −u∗0‖2
L2(Ω).

(4.33)

Proof. First of all, it follows from (4.28) and (4.30) that the VI (4.29) can be

written as

ϕ(u0)−ϕ(ũk0)+
(
w− w̃k, F (w̃k)

)
≥
(
w− w̃k,K(wk−wk+1)

)
, ∀w ∈ W. (4.34)
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Under the condition (4.32), we apply the identity(
a− b,K(c− d)

)
=

1

2

(
‖a− d‖2

K − ‖a− c‖2
K
)

+
1

2

(
‖c− b‖2

K − ‖d− b‖2
K
)

to the right-hand side of (4.34) with

a = w, b = w̃k, c = wk, and d = wk+1.

We then obtain(
w − w̃k,K(wk − wk+1)

)
(4.35)

=
1

2

(
‖w − wk+1‖2

K − ‖w − wk‖2
K
)

+
1

2

(
‖wk − w̃k‖2

K − ‖wk+1 − w̃k‖2
K
)
. (4.36)

Considering the last two terms in (4.35) and using (4.28) and (4.30), we have

‖wk − w̃k‖2
K − ‖wk+1 − w̃k‖2

K

=‖wk − w̃k‖2
K − ‖(wk − w̃k)− (wk − wk+1)‖2

K

=‖wk − w̃k‖2
K − ‖(wk − w̃k)−D(wk − w̃k)‖2

K

=2
(
wk − w̃k,KD(wk − w̃k)

)
−
(
D(wk − w̃k),KD(wk − w̃k)

)
=2
(
wk − w̃k, G(wk − w̃k)

)
−
(
wk − w̃k,D∗KD(wk − w̃k)

)
=
(
wk − w̃k, (G+G∗ −D∗KD)(wk − w̃k)

)
=‖wk − w̃k‖2

M. (4.37)

Combining (4.34), (4.35) and (4.37), we obtain that

ϕ(u0)− ϕ(ũk0) +
(
w − w̃k, F (w̃k)

)
≥1

2

(
‖w − wk+1‖2

K − ‖w − wk‖2
K

)
+

1

2
‖wk − w̃k‖2

M, ∀w ∈ W. (4.38)

It follows from (4.38) that, for all w ∈ W ,

ϕ(ũk0)− ϕ(u0) +
(
w̃k − w,F (w)

)
+
(
w̃k − w,F (w̃k)− F (w)

)
≤ 1

2

(
‖wk − w‖2

K − ‖wk+1 − w‖2
K

)
− 1

2
‖wk − w̃k‖2

M. (4.39)

Moreover, we recall that (see (4.24))(
w̃k − w,F (w̃k)− F (w)

)
= ‖p̃ k − p‖2

L2(Ω) + α‖ũ k0 − u0‖2
L2(Ω).

Hence, setting w = w∗ in (4.39), and using (4.22), we finally obtain

‖wk+1−w∗‖2
K ≤ ‖wk−w∗‖2

K−‖wk− w̃k‖2
M−2‖p̃ k−p∗‖2

L2(Ω)−2α‖ũ k0 −u∗0‖2
L2(Ω).
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Theorem 4.5 shows that the sequence wk = (uk0, p
k)> generated by Algorithm

4.1 is strictly contractive. This, in turns, implies the convergence of wk to the

solution point w∗ of the problem (4.12), as we shall see in the following theorem.

Theorem 4.6. Let wk = (uk0, p
k)> be the sequence generated by Algorithm 4.1

and w∗ = (u∗0, p
∗)> be the solution of problem (4.12). Suppose that the condition

(4.31) holds and the matrix-form operators K and M satisfy the convergence

condition (4.32). Then uk0 converges to u∗0 strongly in L2(Ω) and pk converges to

p∗ strongly in L2(Ω).

Proof. First of all, it follows from (4.33) that

∞∑
k=0

(
‖w̃k − wk‖2

M + 2‖p̃ k − p∗‖2
L2(Ω) + 2α‖ũ k0 − u∗0‖2

L2(Ω)

)
≤ ‖w0 − w∗‖2

K.

This means that the series

∞∑
k=0

(
‖w̃k − wk‖2

M + 2‖p̃ k − p∗‖2
L2(Ω) + 2α‖ũ k0 − u∗0‖2

L2(Ω)

)
is convergent which, in particular, implies

‖w̃k − wk‖2
M → 0, ‖ũ k0 − u∗0‖2

L2(Ω) → 0, and ‖p̃ k − p∗‖2
L2(Ω) → 0, as k →∞.

(4.40)

Thus

p̃ k → p∗, ũ k0 → u∗0, strongly in L2(Ω). (4.41)

It follows from (4.32) and (4.40) that

‖w̃k − wk‖2
L2(Ω) = ‖ũk0 − uk0‖2

L2(Ω) + ‖p̃ k − pk‖2
L2(Ω) → 0,

which, in particular, yields

‖p̃ k − pk‖2
L2(Ω) → 0, and ‖ũ k0 − uk0‖2

L2(Ω) → 0, as k →∞.

This, together with (4.41), implies that

pk → p∗, uk0 → u∗0 strongly in L2(Ω).

Our proof is then concluded.
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4.4.3 Convergence rate of Algorithm 4.1

In this subsection, we analyze the convergence rate of Algorithm 4.1. In

particular, we establish an O(1/K) worst-case convergence rate in both ergodic

and non-ergodic senses.

An O(1/K) worst-case convergence rate means that an iterate whose accuracy

to the solution under certain criterion is of the order O(1/K) can be found after

K iterations of an iterative scheme. This can also be understood as the need of

at most O(1/ε) iterations to find an approximate solution with an accuracy of ε.

Besides, we emphasize that such a convergence rate is in the worst-case nature,

meaning that it provides a worst-case but universal estimate on the speed of

convergence. Hence, it does not contradict with some much faster speeds which

might be observed empirically for a specific application (as to be shown in Section

4.7).

Convergence rate in the ergodic sense

We first establish the O(1/K) worst-case convergence rate in the ergodic sense

for Algorithm 4.1 in the following theorem.

Theorem 4.7. Let wk = (uk0, p
k)> be the sequence generated by Algorithm 4.1

and w∗ = (u∗0, p
∗)> be the solution of the problem (4.12). For any K ∈ N, define

wK =
1

K + 1

K∑
k=0

w̃k, and u0,K =
1

K + 1

K∑
k=0

ũk0. (4.42)

Then we have

ϕ(u0,K)− ϕ(u∗0) +
(
wK − w∗, F (w∗)

)
≤ 1

2(K + 1)
‖w0 − w∗‖2

K.

Proof. Setting w = w∗ in (4.39), it follows from the monotonicity of F that

ϕ(ũk0)− ϕ(u∗0) +
(
w̃k − w∗, F (w∗)

)
≤ 1

2

(
‖wk − w∗‖2

K − ‖wk+1 − w∗‖2
K

)
.

(4.43)
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Summing the inequality (4.43) over k = 0, . . . K, we then have

1

K + 1

K∑
k=0

(
ϕ(ũk0)−ϕ(u∗0)

)
+

(
1

K + 1

K∑
k=0

w̃k − w∗, F (w∗)

)
≤ 1

2(K + 1)
‖w0−w∗‖2

K.

Then from the convexity of g and (4.42), we immediately obtain

ϕ(u0,K)− ϕ(u∗0) +
(
wK − w∗, F (w∗)

)
≤ 1

2(K + 1)
‖w0 − w∗‖2

K.

The above theorem shows that, after K iterations of Algorithm 4.1, we can

find an approximate solution with an O(1/K) accuracy. This approximate so-

lution is given by wK , and it is the average of all the points wk which can be

computed by all the known iterates generated Algorithm 4.1. Hence, this is an

O(1/K) worst-case convergence rate in the ergodic sense for Algorithm 4.1.

Convergence rate in the non-ergodic sense

Next, we establish the O(1/K) worst-case convergence rate in a non-ergodic

sense for Algorithm 4.1. For this purpose, we first need to define a criterion to

precisely measure the accuracy of an iterate.

It follows from (4.29) and G = KD that the specific sequence {wk}k≥0 with

wk given by Algorithm 4.1 is a solution point of (4.22) if ‖D(wk − w̃k)‖K = 0.

Hence, it is reasonable to use ‖D(wk − w̃k)‖K or ‖D(wk − w̃k)‖2
K to measure the

accuracy of an iterate wk to a solution point. We have the following result.

Theorem 4.8. Let wk = (uk0, p
k)> be the sequence generated by Algorithm 4.1

and w∗ = (u∗0, p
∗)> be the solution of the problem (4.12). Then for any K ∈ N,

we have

‖D(wK − w̃K)‖2
K ≤

1

c0(K + 1)
‖w0 − w∗‖2

K. (4.44)

Proof. We set w = w̃k+1 in (4.29) and obtain

ϕ(ũk+1
0 )− ϕ(ũk0) +

(
w̃k+1 − w̃k, F (w̃k) +G(w̃k − wk)

)
≥ 0. (4.45)

120



4.4. Convergence analysis of Algorithm 4.1

Moreover, we notice that (4.29) also holds for k := k + 1, which yields

ϕ(u0)− ϕ(ũk+1
0 ) +

(
w − w̃k+1, F (w̃k+1) +G(w̃k+1 − wk+1)

)
≥ 0, ∀w ∈ W.

Let w = w̃k in the above inequality. Hence, we have that

ϕ(ũk0)− ϕ(ũk+1
0 ) +

(
w̃k − w̃k+1, F (w̃k+1) +G(w̃k+1 − wk+1)

)
≥ 0. (4.46)

Adding up (4.45) and (4.46), and taking into account (4.24), we obtain that(
w̃k − w̃k+1, G(w̃k+1 − wk+1)−G(w̃k − wk)

)
≥ 0.

Furthermore, observing that w̃k− w̃k+1 = w̃k− w̃k+1 +wk−wk+wk+1−wk+1,

the above inequality yields(
wk−wk+1, G(w̃k+1−wk+1)−G(w̃k−wk)

)
≥ 1

2
‖(w̃k−wk)−(w̃k+1−wk+1)‖2

G∗+G,

(4.47)

where we used the fact that(
w,Gw

)
=

1

2

(
w, (G∗ +G)w

)
, ∀w ∈ W.

It follows from (4.28) and (4.30) that (4.47) is equivalent to(
wk−w̃k,D∗KD

(
(w̃k+1−wk+1)−(w̃k−wk)

))
≥ 1

2
‖(w̃k−wk)−(w̃k+1−wk+1)‖2

G∗+G.

(4.48)

Applying the identity

(
a,K(a− b)

)
=

1

2

(
‖a‖2

K − ‖b‖2
K + ‖a− b‖2

K
)

to the left-hand side of (4.48) with a = D(wk− w̃k) and b = D(wk+1− w̃k+1), we

obtain(
wk − w̃k,D∗KD

(
(w̃k+1 − wk+1)− (w̃k − wk)

))
(4.49)

=
1

2
‖D(wk − w̃k)‖2

K −
1

2
‖D(wk+1 − w̃k+1)‖2

K +
1

2
‖D(wk − w̃k)−D(wk+1 − w̃k+1)‖2

K.

Combining (4.48) and (4.49), we thus obtain

‖D(wk − w̃k)‖2
K − ‖D(wk+1 − w̃k+1)‖2

K

≥‖(w̃k − wk)− (w̃k+1 − wk+1)‖2
G∗+G − ‖D(wk − w̃k)−D(wk+1 − w̃k+1)‖2

K
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=‖(w̃k − wk)− (w̃k+1 − wk+1)‖2
G∗+G−D∗KD ≥ 0.

This implies that the sequence ‖D(wk − w̃k)‖2
K is non-increasing, i.e.

‖D(wk+1 − w̃k+1)‖2
K ≤ ‖D(wk − w̃k)‖2

K, ∀k ≥ 0. (4.50)

Furthermore, it follows from (4.33) and (4.32) that there exists a positive constant

c0 > 0 such that

‖wk+1 − w∗‖2
K ≤ ‖wk − w∗‖2

K − c0‖D(wk − w̃k)‖2
K,

which implies that

c0

∞∑
k=0

‖D(wk − w̃k)‖2
K ≤ ‖w0 − w∗‖2

K. (4.51)

Therefore, it follows from (4.50) and (4.51) that for any integer K > 0, we have

(K + 1)‖D(wK − w̃K)‖2
K ≤

K∑
k=0

‖D(wk − w̃k)‖2
K ≤

1

c0

‖w0 − w∗‖2
K.

Our proof is then complete.

We note that the number in the right-hand side of (4.44) is of order O(1/K).

Therefore, Theorem 4.8 provides an O(1/K) worst-case convergence rate in a

non-ergodic sense for Algorithm 4.1.

4.5 Space and time discretization

In this section, we describe the space-time discretization scheme employed in

our numerical simulations. Letting u : [0, T ]→ RNx , where Nx is the number of

grid points on Ω, a general discretization of the diffusion-advection equation in

(4.1) can be written in a compact form as:

Mu̇(t) + dAu(t) + vVu(t) = 0,

where the matrices A and V are associated with the Laplacian operator and the

advection field, respectively, while M is the mass matrix.
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In order to get a time discretized version of the above expression, we first

introduce a uniform partition of the time interval [0, T ]:

0 = t0 < t1 < . . . < tn < tn+1 < . . . < tNt = T,

with tn = n∆t for n = 0, 1, . . . , Nt and ∆t := T/Nt. We then denote un =

u(tn) ∈ RNx and apply an implicit Euler method on the mesh {tn}Ntn=0. The fully

discrete version of (4.1) thus reads as follows

(M + d∆tA + v∆tV)un = Mun−1.

Summarizing, the fully discrete scheme for the numerical resolution of the for-

ward dynamics (4.1) reads as: given u0 = u0, then for n = 1, 2, . . . , Nt, solve

un = (M + d∆tA + v∆tV)\Mun−1 (4.52)

In the same spirit, the fully discrete scheme for the numerical resolution of

the backward dynamics (4.8) and (4.17) reads as: given ψNt = ψT , for n =

Nt, Nt − 1, . . . , 1, solve

ψn−1 = (M + d∆tA− v∆tV)\Mψn

Note that the above fully discrete schemes are presented in a general form

which is preserved for any choice of the spatial discretization method, e.g., finite

element (FE) methods, finite difference (FD) methods or finite volume (FV)

methods. The discretization scheme chosen will only change the specific entries

of the matrices M, A and V.

In this paper, we will always use FE on equidistant structured meshes. For

this FE discretization, we employ triangular elements depicted in Figure 4.2 and
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the following pyramidal test functions

φk(x, y) =



x+ y

∆x
− 1, if (x, y) ∈ Region 1

y

∆x
, if (x, y) ∈ Region 2

∆x− x
∆x

, if (x, y) ∈ Region 3

1− x+ y

∆x
, if (x, y) ∈ Region 4

∆x− y
∆x

, if (x, y) ∈ Region 5

x

∆x
, if (x, y) ∈ Region 6

0, otherwise

(4.53)

Figure 4.2: Sketch of the regions for the pyramidal test functions defined in (4.53).

4.6 A structure enhancement stage for identi-

fying the optimal locations and intensities

As discussed in the introduction, due to the strong smoothing property of the

forward equation (4.1) and the backward equation (4.17), the numerical solution

of the optimal control problem (4.4) is not sparse as desired. This suggests the

need of introducing a second procedure to project the obtained non-sparse initial

source into the set of admissible sparse solutions in the form of (4.3) and identify

the locations x̂∗ := {x̂∗i }`i=1 and the intensities α̂∗ := {α̂∗i }`i=1. We thus obtain

an optimal control based two-stage numerical approach for solving Problem 4.1.
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4.6.1 Optimal locations identification

To identify the optimal locations, we recall (see (4.3)) that the initial condi-

tion to be recovered is assumed to be a linear combination of Dirac measures.

Then, it follows from Theorem 4.3 that the optimal locations x̂∗ can be deter-

mined by solving

x̂∗ = arg max
x∈Ω
|λu∗0(x)|.

Notice that λu∗0 = −αu∗0 − ψ∗(·, 0), which implies that

x̂∗ = arg max
x∈Ω
|αu∗0(x) + ψ∗(x, 0)|. (4.54)

Hence, with the solution u∗0 obtained by the PDHG algorithms described in

Section 4.3, we can compute the associated adjoint variable ψ∗(·, 0) by solving the

state equation (4.1) and the adjoint equation (4.8). Then, the optimal locations

can be determined via the solution of (4.54).

Additionally, we shall mention that, in [134], the optimal locations x̂∗ is

identified by solving

x̂∗ = arg max
x∈Ω
|u∗0(x)|, (4.55)

which is empirically derived from an observation that the local maxima of |u∗0(x)|
fall into the optimal locations. Despite the fact that the strategy (4.55) works well

in practice (at least for the numerical examples presented in [134]), in contrary

to (4.54), its validity seems to lack rigorous theoretical support.

4.6.2 Optimal intensities identification

In this subsection, we explain how to find the intensities {α̂∗i }`i=1 of the initial

sources once we have identified their locations {x̂∗i }`i=1 by solving (4.54). To this

end, we first note that the state equation (4.1) is linear. As a consequence, for

any u0 =
∑`

i=1 αiδ(xi) with αi ∈ R and xi ∈ Ω, the solution operator L verifies

Lu0 =
∑̀
i=1

αiLδ(xi), xi ∈ Ω.
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Recall that we aim at identifying a sparse initial condition u0 such that Lu0 is as

close as possible to the given target ud. Hence, to find the optimal intensities of

the initial source, we follow [134] and consider the following least square problem:

{α̂∗i }`i=1 = arg min
{αi}`i=1∈R`

1

2

∥∥∥∥∥∑̀
i=1

αiLδ(x̂∗i )− ud

∥∥∥∥∥
2

L2(Ω)

. (4.56)

By the numerical scheme described in Section 4.5, the discretized formulation

of (4.56) reads

α̂∗ = arg min
α∈R`

1

2
‖Lα− ud‖2, (4.57)

where α = {αi}`i=1, the vector ud ∈ RNx is a discretized version of ud, and each

column of the matrix L ∈ RNx×` contains the solution of (4.1) with u(x, 0) =

δ(x̂∗i ), 1 ≤ i ≤ `. Note that the support of the desired sparse initial source usually

consists of a few points, i.e. ` is generally small. Hence, the dimension of the

problem (4.57) is low and it can be solved efficiently through various existing

techniques. Here, we suggest to solve the corresponding normal equation

L>Lα̂∗ = L>ud, (4.58)

to find the vector of intensities α̂∗. Clearly, the problem (4.58) is a `×` symmetric

positive definite linear system and can be easily solved.

With the computed locations {x̂∗i }`i=1 and intensities {α̂∗i }`i=1, the recovered

initial source is thus given by

û∗0 =
∑̀
i=1

α̂∗i δ(x̂
∗
i ).

4.6.3 An optimal control based two-stage numerical ap-

proach for Problem 4.1

In view of the above considerations, the procedure for our source identification

Problem 4.1 needs to be complemented with the structure enhancement stage

we just described. The complete methodology is given by Algorithm 4.2.
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Algorithm 4.2 An optimal control based two-stage numerical approach for

Problem 4.1.
procedure SparseIdentification(ud)

compute u∗0 from the optimal control model (4.4) by Algorithm 4.1;

compute ψ∗(·, 0) by solving the state equation (4.1) and the adjoint equation

(4.8);

find the locations {x̂∗i }`i=1 by solving x̂∗ = arg max
x∈Ω
|αu∗0(x) + ψ∗(x, 0)|.

for i = 1, 2, . . . , ` do

compute L(:, i) by solving (4.52) with u0 = δ(x̂∗i )

end for

α̂∗ = (L>L)\L>ud

compute û∗0 =
∑`

i=1 α̂
∗
i δ(x̂

∗
i )
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4.7 Numerical experiments

In this section, we show several test cases where Algorithm 4.2 allows identi-

fying the sparse initial sources very successfully from reachable targets or noisy

observations, even for some heterogeneous materials or coupled models. All our

numerical results have been produced by implementing the aforementioned pro-

cedures in MATLAB R2016b on a Surface Pro 5 laptop with 64-bit Windows

10.0 operation system, Intel(R) Core(TM) i7-7660U CPU (2.50 GHz), and 16

GB RAM.

4.7.1 Generalities

We consider Problem 4.1 on the domain Ω × (0, T ) with Ω = (0, 2) × (0, 1)

and T = 0.1, and we test Algorithm 4.2 for two scenarios:

Scenario 1: the given function ud is reachable.

Scenario 2: the given function ud is observed with noise.

For each scenario, we further consider the following three cases:

Case I: diffusivity coefficient d = 0.05; advection vector v = (2,−2)> on

Ω.

Case II: diffusivity coefficient d = 0.08 on Ω1 = (0, 1)×(0, 1) and d = 0.05

on Ω2 = (1, 2)× (0, 1); advection vector v = (1, 2)> on Ω.

Case III: diffusivity coefficient d = 0.05 on Ω; advection vector v = (0, 0)>

on Ω1 = (0, 1)× (0, 1) and v = (0,−3)> on Ω2 = (1, 2)× (0, 1).

In Case I, several sources are to be identified in a homogeneous medium,

namely, the domain Ω is constituted by materials with same diffusivity constants.

In Case II, we consider the advection-diffusion equation modeled in a hetero-

geneous medium. To be concrete, the left half subdomain Ω1 = (0, 1) × (0, 1)
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and the right half one Ω2 = (1, 2)× (0, 1) are constituted by materials with dif-

ferent diffusivity constants. Consequently, the dynamics of the problem behaves

differently in each of them.

Finally, in Case III, we identify several initial sources for coupled-models.

This means that different equations are modeled on the left half (Ω1 = (0, 1) ×
(0, 1)) and the right half (Ω2 = (1, 2)× (0, 1)) of the domain Ω. More precisely,

the heat equation is used on Ω1 and the diffusion-advection equation is used on

Ω2.

The reference initial datum û0 to be recovered for all cases is displayed in

Figure 4.3 from front and above views.

Figure 4.3: Reference initial datum û0 for Cases I-III, front view (left) and above view

(right)
Reference initial state
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We implement the PDHG method (4.13)-(4.15) and the PDHG-PC method

derived from Algorithm 4.1 to solve the optimal control problem (4.4). Both of

them are repeated until the following stopping criterion is fulfilled:

ek := max

{
‖uk+1 − uk‖L2(Ω)

‖uk+1‖L2(Ω)

,
‖pk+1 − pk‖L2(Ω)

‖pk+1‖L2(Ω)

}
≤ tolPDHG

with tolPDHG = 10−5 or until we reach a maximum number of iterations kmax =

1000. Moreover, if there are no other specifications, we always use the following

parameters:

• Mesh sizes: ∆x = 0.02 and ∆t = 0.05.

• Regularization parameters: β = (∆x)4, α = 10−2.

• PDHG algorithm: θ = 1, r = 6, s = 0.578(≈ 0.999
r‖L∗L‖).
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• PDHG-PC algorithm: θ = 1, r = 6, s = 0.578, ρ = σ = 1.9.

• Initial values: u0
0 = 0, p0 = 0.

Moreover, we compare the numerical efficiency of our approach with the one

described in [134], and show that our methodology yields significant improve-

ments in the performance of the initial source identification procedure. For com-

pleteness, we review the approach in [134] briefly.

In [134], the initial source identification problem 4.1 was formulated as an

optimal control model but in the absence of a L2-regularization in the cost func-

tional (that is, when taking α = 0 in (4.4)). To address the resulting optimal

control problem numerically, a GD approach was employed, which consists of

looking for the minimizer u∗0 as the limit k → +∞ of the following iterative

process:

uk+1
0 = uk0 − ηk∇J(uk0). (4.59)

In (4.59), the parameter ηk > 0 is called the step-size and plays a fundamental

role in the convergence of the scheme. It is by now well-known that, if one takes

ηk constant small enough and the objective functional is regular enough (namely,

convex, differentiable, and with Lipschitz gradient), then (4.59) will eventually

converge to the minimum (see, e.g., [136, Section 2.1.5]).

Nevertheless, the choice of a constant step-size is most often not optimal: if ηk

is too small, the convergence velocity of GD may drastically decrease while, if ηk is

too large, one can generate overshooting phenomena and not be able to reach the

minimum of J . Hence, in numerical implementations, an adaptive choice of the

step-size is usually introduced (e.g., Armijo line search). In this regard, it is worth

recalling that these adaptive strategies require the evaluation of the objective

function value repeatedly, which in our case is numerically expensive because

each one of these evaluations requires solving a forward equation. For the above

reasons, in our implementation of GD we always considered a constant step-size

although, as we shall see, this choice contributes to making the GD methodology

less efficient when solving the source identification problem for (4.1).
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Finally, recall that the gradient ∇J(u0) has already been computed in (4.9)

and is given by the expression

∇J(u0) = ψ(·, 0) + αu0 + λu0 .

Consequently, the iterative scheme (4.59) becomes

uk+1
0 = uk0 − ηk(ψk0 + αuk0 + λuk0 )

with ψk0 = ψk(·, 0). It is clear that the computational load of each GD iteration

is the same as that of the PDHG. However, we shall stress that the convergence

of the GD algorithm can be proved rigorously only in the case of regular enough

functionals. In other words, if the gradient presents discontinuities, convergence

is not guaranteed. This is exactly the case of the optimal control problem (4.4),

as we already discussed in Section 4.2. Notwithstanding that, as we will see

in our numerical simulations, for the test cases that we will consider the GD

methodology is still capable to compute the correct solution u∗0. This is due to

the fact that the discontinuous part of the gradient λu0 is always bounded by the

parameter β (see (4.10)).

4.7.2 Reachable target ud case

We first test Algorithm 4.2 for Problem 4.1 where the target function ud is

reachable. In particular, we set the target function ud as the solution of (4.1)

corresponding to the initial condition u(x, 0) = û0. The reference ud for Case

I–III is presented in Figure 4.4.

Figure 4.4: The reference target ud for Case I-III (from left to right).

We apply the PDHG, PDHG-PC and the GD method in [134] to the model

(4.4). The efficiency (in terms of the number of iterations to converge) is collected
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in Table 4.1. First, from Table 4.1, we observe that the iteration numbers of

the PDHG and PDHG-PC algorithms are almost the same for all cases. We

thus conclude that the convergence of the PDHG and PDHG-PC algorithms are

robust with respect to the diffusion coefficient d and the convection coefficient

v, at least for the cases we considered. We also observe from Table 4.1 that

the PDHG-PC algorithm improves the numerical efficiency of PDHG by a factor

about 40%, and both of them are more efficient than the GD method.

Table 4.1: Numerical comparisons (in terms of the number of iterations to converge)

of different algorithms for Cases I-III.

Model (4.4) Model in [134]

PDHG PDHG-PC GD PDHG PDHG-PC GD

Case I 53 32 86 629 589 673

Case II 54 32 87 632 612 650

Case III 52 32 87 648 601 667

Furthermore, we recall that the PDHG and PDHG-PC algorithms are de-

scribed on the continuous level and their convergence properties are analyzed in

function spaces. Hence, mesh independent property of these algorithms can be

expected in practice, which means that the convergence behavior is independent

of the fineness of the discretization. This is confirmed by our numerical results

presented in Table 4.2.

Table 4.2: Iteration numbers with respect to different mesh sizes for Case I

Mesh size ∆t = 0.1,∆x = 0.05 ∆t = 0.05,∆x = 0.02 ∆t = 0.025,∆x = 0.0125

PDHG 61 53 49

PDHG-PC 37 32 29

For comparison purposes, we also implement the PDHG, PDHG-PC, and GD

methods for the model introduced in [134]. The efficiency of each methodology

is once again collected in Table 4.1. It is not surprising that a significantly

higher number of iterations is required because the model considered in [134]

excludes the term α
2

∫
Ω
|u0|2 dx and is much more ill-conditioned than the one we

considered.

For Case I, the recovered initial datum û∗0 by Algorithm 4.2 and the corre-

sponding final state uT are displayed in Figure 4.5. By comparing the plots in
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Figures 4.3 and 4.5, one can observe that both the locations and the intensities

of the initial condition are recovered very accurately. Furthermore, the recovered

initial and final states by the approach described in [134] are presented in Figure

4.6, which is almost the same as the one obtained by Algorithm 4.2c. All these

facts validate that the effectiveness and efficiency of our proposed approach.

Figure 4.5: The recovered initial datum û∗0 from front view (left) and above view

(middle), and the recovered target uT (right) by Algorithm 4.2 for Case I with a

reachable ud.
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Figure 4.6: The recovered initial datum û∗0 from front view (left) and above view

(middle), and the recovered target uT (right) by the approach in [134] for Case I with

a reachable ud.
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Similar to Case I, the results in Table 4.1 show that also in Case II and Case

III the PDHG-PC algorithm is the most efficient one and, compared with [134],

our proposed model (4.4) allows for a more efficient numerical resolution. Fur-

thermore, compared with Figures 4.3 and 4.4, the recovered initial datum û∗0 by

Algorithm 4.2 and the corresponding final state uT displayed in Figure 4.7 (Case

II) and Figure 4.9 (Case III) show that the locations and the intensities of the

sparse initial sources are recovered very accurately for heterogeneous materials.

Additionally, by comparing the plots in Figures 4.7 and 4.8, we conclude that our

results are as accurate as the ones obtained in [134] for Case II, but our approach

is numerically more efficient as shown in Table 4.1. The same conclusion can also

be drawn for Case III by comparing the plots in Figures 4.9 and 4.10.

133



4.7. Numerical experiments

Figure 4.7: The recovered initial datum û∗0 from front view (left) and above view

(middle), and the recovered target uT (right) by Algorithm 4.2 for Case II with a

reachable ud.
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Figure 4.8: The recovered initial datum û∗0 from front view (left) and above view

(middle), and the recovered target uT (right) by the approach in [134] for Case II with

a reachable ud.
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Figure 4.9: The recovered initial datum û∗0 from front view (left) and above view

(middle), and the recovered target uT (right) by Algorithm 4.2 for Case III with a

reachable ud.
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Figure 4.10: The recovered initial datum û∗0 from front view (left) and above view

(middle), and the recovered target uT (right) by the approach in [134] for Case III

with a reachable ud.
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4.7.3 Noisy observation ud case

In this subsection, we aim to identify a sparse initial source term u0 from

noisy observations ud = Lu0 + δ by Algorithm 4.2, where δ ∈ L2(Ω) is a given

noise term satisfying

‖Lu0 − ud‖/‖Lu0‖ ≈ 20%.

For convenience, we still consider a reference initial datum û0 as given in

Figure 4.3, and the corresponding noisy observations ud for Case I-III are dis-

played in Figure 4.11. As in the previous subsections, we employ the PDHG-PC

method to solve the optimal control problem (4.4). We observe that the iter-

ation numbers of the PDHG-PC for all test cases are almost the same as the

reachable target case and mesh-independent property can be observed. Hence,

we can conclude that the numerical efficiency of the PDHG-PC method is very

robust to the noisy observations.

The initial datum û∗0 recovered from the noisy observations ud by Algorithm

4.2 and the associated final state uT for Case I-III are presented in Figures 4.12,

4.13 and 4.14. Compared with the reference initial datum in Figure 4.3, we

observe that both the locations and the intensities of the sparse initial source are

recovered accurately from the noisy observations.

Figure 4.11: The noisy observation ud for Case I-III (from left to right).
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Figure 4.12: The recovered initial datum û∗0 from front view (left) and above view

(middle), and the recovered target uT (right) by Algorithm 4.2 for Case I with a noisy

observation ud.

Figure 4.13: The recovered initial datum û∗0 from front view (left) and above view

(middle), and the recovered target uT (right) by Algorithm 4.2 for Case II with a noisy

observation ud.

Figure 4.14: The recovered initial datum û∗0 from front view (left) and above view

(middle), and the recovered target uT (right) by Algorithm 4.2 for Case III with a

noisy observation ud.
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Chapter 5

Bilinear Optimal Control of an

Advection-Reaction-Diffusion

System

In this chapter, we intend to study the bilinear optimal control problem

(BCP) introduced in Section 1.1 both mathematically and computationally. For

convenience, we recall that the bilinear optimal control problem (BCP) reads asu ∈ U ,J(u) ≤ J(v),∀v ∈ U ,
(BCP)

with the objective functional J defined by

J(v) =
1

2

∫∫
Q

|v|2dxdt+
α1

2

∫∫
Q

|y − yd|2dxdt+
α2

2

∫
Ω

|y(T )− yT |2dx, (5.1)

and y = y(t;v) the solution of the following advection-reaction-diffusion equation
∂y

∂t
− ν∇2y + v · ∇y + a0y = f in Q,

y = g on Σ,

y(0) = φ.

(5.2)

Above and below, Ω is a bounded domain of Rd with d ≥ 1 and Γ is its boundary,

Q = Ω×(0, T ) and Σ = Γ×(0, T ) with 0 < T < +∞; α1 ≥ 0, α2 ≥ 0, α1+α2 > 0;

the target functions yd and yT are given in L2(Q) and L2(Ω), respectively; the
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diffusion coefficient ν > 0 and the reaction coefficient a0 are assumed to be

constants; the functions f ∈ L2(Q), g ∈ L2(0, T ;H1/2(Γ)) and φ ∈ L2(Ω). The

set U of the admissible controls is defined by

U := {v|v ∈ [L2(Q)]d,∇ · v = 0}.

We first study the well-posedness of (5.2), the existence of an optimal control

u, and its first-order optimality condition. Then, computationally, we propose an

efficient and relatively easy to implement numerical method to solve (BCP). For

this purpose, we advocate combining a conjugate gradient (CG) method with a

finite difference method (for the time discretization) and a finite element method

(for the space discretization) for the numerical solution of (BCP). Although these

numerical approaches have been well developed in the literature, it is nontrivial

to implement them to solve (BCP) as discussed below, due to the complicated

problem settings.

5.1 Difficulties and goals

5.1.1 Difficulties in algorithmic design

Conceptually, a CG method for solving (BCP) can be easily derived following

[83]. However, CG algorithms are challenging to implement numerically for the

following reasons: 1). The state y depends non-linearly on the control v despite

the fact that the state equation (5.2) is linear. 2). The additional divergence-free

constraint on the control v, i.e., ∇ · v = 0, is coupled together with the state

equation (5.2).

To be more precise, the fact that the state y is a nonlinear function of the

control v makes the optimality system a nonlinear problem. Hence, seeking a

suitable stepsize in each CG iteration requires solving an optimization problem

and it can not be as easily computed as in the linear case [83]. Note that com-

monly used line search strategies are too expensive to employ in our settings

because they require evaluating the objective functional value J(v) repeatedly
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and every evaluation of J(v) entails solving the state equation (5.2). The same

concern on the computational cost also applies when the Newton method is em-

ployed to solve the corresponding optimization problem for finding a stepsize. To

tackle this issue, we propose an efficient inexact stepsize strategy which requires

solving only one additional linear parabolic problem and is cheap to implement

as shown in Section 5.3.

Furthermore, due to the divergence-free constraint ∇·v = 0, an extra projec-

tion onto the admissible set U is required to compute the first-order differential

of J at each CG iteration in order that all iterates of the CG method are feasi-

ble. Generally, this projection subproblem has no closed-form solution and has

to be solved iteratively. Here, we introduce a Lagrange multiplier associated

with the constraint ∇·v = 0, then the computation of the first-order differential

DJ(v) of J at v is equivalent to solving a Stokes type problem. Inspired by

[75], we advocate employing a preconditioned CG method, which operates on

the space of the Lagrange multiplier, to solve the resulting Stokes type problem.

With an appropriately chosen preconditioner, a fast convergence of the resulting

preconditioned CG method can be expected in practice (and indeed, has been

observed).

5.1.2 Difficulties in numerical discretization

For the numerical discretization of (BCP), we note that if an implicit finite

difference scheme is used for the time discretization of the state equation (5.2),

a stationary advection-reaction-diffusion equation should be solved at each time

step. To solve this stationary advection-reaction-diffusion equation, it is well

known that standard finite element techniques may lead to strongly oscillatory

solutions unless the mesh-size is sufficiently small with respect to the ratio be-

tween ν and ‖v‖. In the context of optimal control problems, to overcome such

difficulties, different stabilized finite element methods have been proposed and

analyzed, see e.g., [9, 48]. Different from the above references, we implement

the time discretization by a semi-implicit finite difference method for simplicity,

namely, we use explicit advection and reaction terms and treat the diffusion term
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implicitly. Consequently, only a simple linear elliptic equation is required to be

solved at each time step. We then implement the space discretization of the

resulting elliptic equation at each time step by a standard piecewise linear finite

element method and the resulting linear system is very easy to solve.

Moreover, we recall that the divergence-free constraint ∇ · v = 0 leads to a

projection subproblem, which is equivalent to a Stokes type problem, at each

iteration of the CG algorithm. As discussed in [74], to discretize a Stokes type

problem, direct applications of standard finite element methods always lead to

an ill-posed discrete problem. To overcome this difficulty, one can use different

types of element approximations for pressure and velocity. Inspired by [74, 75],

we employ the Bercovier-Pironneau finite element pair [11] (also known as P1-P1

iso P2 finite element) to approximate the control v and the Lagrange multiplier

associated with the divergence-free constraint. More concretely, we approximate

the Lagrange multiplier by a piecewise linear finite element space which is twice

coarser than the one for the control v. In this way, the discrete problem is well-

posed and can be solved by a preconditioned CG method. As a byproduct of

the above discretization, the total number of degrees of freedom of the discrete

Lagrange multiplier is only 1
d2d

of the number of the discrete control. Hence, the

inner preconditioned CG method is implemented in a lower-dimensional space

than that of the state equation (5.2), implying a computational cost reduction.

With the above mentioned discretization schemes, we can relatively easily ob-

tain the fully discrete version of (BCP) and derive the discrete analogue of our

proposed nested CG method.

5.2 Existence of optimal controls and first-order

optimality conditions

In this section, first we present some notation and known results from the

literature that will be used in later analysis. Then, we prove the existence of

optimal controls for (BCP) and derive the associated first-order optimality con-

ditions. Without loss of generality, we assume that f = 0 and g = 0 in (1.15) for
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5.2. Existence of optimal controls and first-order optimality conditions

convenience.

5.2.1 Preliminaries

Throughout, we denote by Ls(Ω) and Hs(Ω) the usual Sobolev spaces for

any s > 0. The space Hs
0(Ω) denotes the completion of C∞0 (Ω) in Hs(Ω), where

C∞0 (Ω) denotes the space of all infinitely differentiable functions over Ω with a

compact support in Ω. In addition, we shall also use the following vector-valued

function spaces:

L2(Ω) := [L2(Ω)]d,

L2
div(Ω) := {v ∈ L2(Ω),∇ · v = 0 in Ω}.

Let X be a Banach space with a norm ‖·‖X . Then, the space L2(0, T ;X) consists

of all measurable functions z : (0, T )→ X satisfying

‖z‖L2(0,T ;X) :=

(∫ T

0

‖z(t)‖2
Xdt

) 1
2

< +∞.

With the above notation, it is clear that the admissible set U can be denoted

as U = L2(0, T ;L2
div(Ω)). Moreover, the space W (0, T ) consists of all functions

z ∈ L2(0, T ;H1
0 (Ω)) such that ∂z

∂t
∈ L2(0, T ;H−1(Ω)) exists in a weak sense, i.e.

W (0, T ) := {z|z ∈ L2(0, T ;H1
0 (Ω)),

∂z

∂t
∈ L2(0, T ;H−1(Ω))},

where H−1(Ω)(= H1
0 (Ω)′) is the dual space of H1

0 (Ω).

Next, we summarize some known results for the advection-reaction-diffusion

equation (1.15) in the literature for the convenience of further analysis.

The variational formulation of the state equation (1.15) reads: find y ∈
W (0, T ) such that y(0) = φ and ∀z ∈ L2(0, T ;H1

0 (Ω)),∫ T

0

〈
∂y

∂t
, z

〉
H−1(Ω),H1

0 (Ω)

dt+ ν

∫∫
Q

∇y · ∇zdxdt

+

∫∫
Q

v · ∇yzdxdt+ a0

∫∫
Q

yzdxdt = 0,

(5.3)

where 〈·, ·〉H−1(Ω),H1
0 (Ω) denotes the duality pairing between H−1(Ω) and H1

0 (Ω).

The existence and uniqueness of the solution y ∈ W (0, T ) to problem (5.3) can
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be proved by standard arguments relying on the Lax-Milgram theorem; we refer

to [125] for the details. For discussions on the space discretization in Section

5.4, we also need the variational formulation of the divergence-free constraint

∇ · v = 0:∫∫
Q

∇ · vqdxdt
(

= −
∫∫

Q

v · ∇qdxdt
)

= 0, ∀q ∈ L2(0, T ;H1
0 (Ω)).

Moreover, we can define the control-to-state operator S : U → W (0, T ),

which maps v to y = S(v). Then, the objective functional J in (BCP) can be

reformulated as

J(v) =
1

2

∫∫
Q

|v|2dxdt+
α1

2

∫∫
Q

|S(v)− yd|2dxdt+
α2

2

∫
Ω

|S(v)(T )− yT |2dx,

and the nonlinearity of the solution operator S implies that (BCP) is nonconvex.

For the solution y ∈ W (0, T ), we have the following estimates.

Lemma 5.1. Let v ∈ U and then the solution y ∈ W (0, T ) of the state equation

(1.15) satisfies the following estimate:

‖y(t)‖2
L2(Ω) + 2ν

∫ t

0

‖∇y(s)‖2
L2(Ω)ds+ 2a0

∫ t

0

‖y(s)‖2
L2(Ω)ds = ‖φ‖2

L2(Ω). (5.4)

Proof. We first multiply the state equation (1.15) by y(t) and then applying the

Green’s formula in space yields

1

2

d

dt
‖y(t)‖2

L2(Ω) = −ν‖∇y(t)‖2
L2(Ω) − a0‖y(t)‖2

L2(Ω). (5.5)

The desired result (5.4) can be directly obtained by integrating (5.5) over [0, t].

Above estimate implies that

y is bounded in L2(0, T ;H1
0 (Ω)). (5.6)

On the other hand,
∂y

∂t
= ν∇2y − v · ∇y − a0y,

and the right hand side is bounded in L2(0, T ;H−1(Ω)). Hence,

∂y

∂t
is bounded in L2(0, T ;H−1(Ω)). (5.7)
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Furthermore, since ∇ · v = 0, it is clear that∫∫
Q

v · ∇yzdxdt =

∫∫
Q

∇y · (vz)dxdt

=−
∫∫

Q

y∇ · (vz)dxdt = −
∫∫

Q

y(v · ∇z)dxdt,∀z ∈ L2(0, T ;H1
0 (Ω)).

Hence, the variational formulation (5.3) can be equivalently written as: find

y ∈ W (0, T ) such that y(0) = φ and ∀z ∈ L2(0, T ;H1
0 (Ω)),∫ T

0

〈
∂y

∂t
, z

〉
H−1(Ω),H1

0 (Ω)

dt+ν

∫∫
Q
∇y·∇zdxdt−

∫∫
Q

(v·∇z)ydxdt+a0

∫∫
Q
yzdxdt = 0.

5.2.2 Existence of Optimal Controls

With above preparations, we prove in this subsection the existence of optimal

controls for (BCP). For this purpose, we first show that the objective functional

J is weakly lower semi-continuous.

Lemma 5.2. The objective functional J given by (1.14) is weakly lower semi-

continuous. That is, if a sequence {vn} converges weakly to v̄ in U , we have

J(v̄) ≤ lim inf
n→∞

J(vn).

Proof. Let {vn} be a sequence that converges weakly to v̄ in U , and yn :=

y(x, t;vn) the solution of the following variational problem: find yn ∈ W (0, T )

such that yn(0) = φ and ∀z ∈ L2(0, T ;H1
0 (Ω)),∫ T

0

〈
∂yn
∂t

, z

〉
H−1(Ω),H1

0 (Ω)

dt+ ν

∫∫
Q

∇yn · ∇zdxdt

−
∫∫

Q

(vn · ∇z)yndxdt+ a0

∫∫
Q

ynzdxdt = 0.

(5.8)

It follows from (5.6) and (5.7) that there exists a subsequence of {yn}, still

denoted by {yn} for convenience, such that

yn → ȳ weakly in L2(0, T ;H1
0 (Ω)),

and
∂yn
∂t
→ ∂ȳ

∂t
weakly in L2(0, T ;H−1(Ω)).
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Since Ω is bounded, it follows directly from the compactness property (also known

as Rellich’s Theorem) that

yn → ȳ strongly in L2(0, T ;L2(Ω)).

Taking vn → v̄ weakly in U into account, we can pass the limit in (5.8) and

derive that ȳ(0) = φ and ∀z ∈ L2(0, T ;H1
0 (Ω)),∫ T

0

〈
∂ȳ

∂t
, z

〉
H−1(Ω),H1

0 (Ω)

dt+ν

∫∫
Q
∇ȳ·∇zdxdt−

∫∫
Q

(v̄·∇z)ȳdxdt+a0

∫∫
Q
ȳzdxdt = 0,

which implies that ȳ is the solution of the state equation (1.15) associated with

v̄.

Since any norm of a Banach space is weakly lower semi-continuous, we have

that

lim inf
n→∞

J(vn)

=lim inf
n→∞

(
1

2

∫∫
Q

|vn|2dxdt+
α1

2

∫∫
Q

|yn − yd|2dxdt+
α2

2

∫
Ω

|yn(T )− yT |2dx
)

≥1

2

∫∫
Q

|v̄|2dxdt+
α1

2

∫∫
Q

|ȳ − yd|2dxdt+
α2

2

∫
Ω

|ȳ(T )− yT |2dx

=J(v̄).

We thus obtain that the objective functional J is weakly lower semi-continuous

and complete the proof.

Now, we are in a position to prove the existence of an optimal control u to

(BCP). Recall the nonconvexity of (BCP). The uniqueness of optimal control u

cannot be guaranteed and only a local one can be pursued.

Theorem 5.1. There exists at least one optimal control u ∈ U such that J(u) ≤
J(v),∀v ∈ U .

Proof. We first observe that J(v) ≥ 0,∀v ∈ U . Then, the infimum of J(v) exists

and we denote it as

j = inf
v∈U

J(v),

which implies that there is a minimizing sequence {vn} ⊂ U such that

lim
n→∞

J(vn) = j.
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This fact, together with 1
2

∫∫
Q
|vn|2dxdt ≤ J(vn), implies that {vn} is bounded

in U . Hence, there exists a subsequence, still denoted by {vn}, that converges

weakly to u in U . It follows from Lemma 5.2 that J is weakly lower semi-

continuous and we thus have

J(u) ≤ lim inf
n→∞

J(vn) = j.

Since u ∈ U , we must have J(u) = j, and u is therefore an optimal control.

5.2.3 First-order Optimality Conditions

According to some literatures, e.g. [128], it is easy to know that J is Gâteaux

differentiable. Let DJ(v) be the first-order differential of J at v and u an optimal

control of (BCP). It is clear that the first-order optimality condition of (BCP)

reads

DJ(u) = 0.

In the sequel of this subsection, we discuss the computation of DJ(v), which will

play an important role in subsequent sections.

To compute DJ(v), we employ a formal perturbation analysis as in [83].

First, let δv ∈ U be a perturbation of v ∈ U , we clearly have

δJ(v) =

∫∫
Q

DJ(v) · δvdxdt, (5.9)

and also

δJ(v) =

∫∫
Q

v · δvdxdt+ α1

∫∫
Q

(y − yd)δydxdt+ α2

∫
Ω

(y(T )− yT )δy(T )dx,(5.10)

where δy is the solution of the sensitivity equation of (1.15)
∂δy

∂t
− ν∇2δy + δv · ∇y + v · ∇δy + a0δy = 0 in Q,

δy = 0 on Σ,

δy(0) = 0.

(5.11)

Consider now a function p defined over Q (the closure of Q); and assume

that p is a differentiable function of x and t. Multiplying both sides of the first
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equation in (5.11) by p and integrating over Q, we obtain∫∫
Q

p
∂

∂t
δydxdt− ν

∫∫
Q

p∇2δydxdt

+

∫∫
Q

δv · ∇ypdxdt+

∫∫
Q

v · ∇δypdxdt+ a0

∫∫
Q

pδydxdt = 0.

Integration by parts in time and application of Green’s formula in space yield∫
Ω

p(T )δy(T )dx−
∫

Ω

p(0)δy(0)dx

+

∫∫
Q

[
− ∂p

∂t
− ν∇2p− v · ∇p+ a0p

]
δydxdt+

∫∫
Q

δv · ∇ypdxdt

− ν
∫∫

Σ

(
∂δy

∂n
p− ∂p

∂n
δy)dxdt+

∫∫
Σ

pδyv · ndxdt = 0.

(5.12)

where n is the unit outward normal vector at Γ.

Next, let us take the L2 adjoint of the operator ∂
∂t
−ν∇2 +v ·∇+a0 in (5.11)

and consider the following adjoint system
−∂p
∂t
− ν∇2p− v · ∇p+ a0p = α1(y − yd) in Q,

p = 0 on Σ,

p(T ) = α2(y(T )− yT ).

(5.13)

In (5.13), the term α1(y − yd) is the derivative of the integrand of the objective

functional with respect to the state y, and the terminal time term α2(y(T )− yT )

comes from differentiating the objective functional integrand term at T . Assume

that the function p is the solution to (5.13). Then, it follows from (5.10), (5.11),

(5.12) and (5.13) that

δJ(v) =

∫∫
Q

(v − p∇y) · δvdxdt,

which, together with (5.9), implies that
DJ(v) ∈ U ,∫∫

Q

DJ(v) · zdxdt =

∫∫
Q

(v − p∇y) · zdxdt,∀z ∈ U .
(5.14)

From the discussion above, the first-order optimality condition of (BCP) can

be summarized as follows.
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Theorem 5.2. Let u ∈ U be an optimal control of (BCP). Then, it satisfies the

following optimality condition∫∫
Q

(u− p∇y) · zdxdt = 0,∀z ∈ U ,

where y and p are obtained from u via the solutions of the following two parabolic

equations: 
∂y

∂t
− ν∇2y + u · ∇y + a0y = f in Q,

y = g on Σ,

y(0) = φ,

(state equation)

and 
−∂p
∂t
− ν∇2p− u · ∇p+ a0p = α1(y − yd) in Q,

p = 0 on Σ,

p(T ) = α2(y(T )− yT ).

(adjoint equation)

5.3 An Implementable Nested Conjugate Gra-

dient Method

In this section, we discuss the application of a CG strategy to solve (BCP).

In particular, we elaborate on the computation of the gradient and the stepsize

at each CG iteration, and thus obtain an easily implementable algorithm.

5.3.1 A Generic Conjugate Gradient Method for (BCP)

Conceptually, implementing the CG method to (BCP), we readily obtain the

following algorithm:

(a) Given u0 ∈ U .

(b) Compute g0 = DJ(u0). If DJ(u0) = 0, take u = u0; otherwise set

w0 = g0.
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For k ≥ 0, uk, gk and wk being known, with the last two different from 0,

one computes uk+1, gk+1 and if necessary wk+1 as follows:

(c) Compute the stepsize ρk by solving the following optimization problem ρk ∈ R,

J(uk − ρkwk) ≤ J(uk − ρwk), ∀ρ ∈ R.
(5.15)

(d) Update uk+1 and gk+1, respectively, by

uk+1 = uk − ρkwk,

and

gk+1 = DJ(uk+1).

If DJ(uk+1) = 0, take u = uk+1; otherwise,

(e) Compute

βk =

∫∫
Q
|gk+1|2dxdt∫∫
Q
|gk|2dxdt

,

and then update

wk+1 = gk+1 + βkw
k.

Do k + 1→ k and return to (c).

The above iterative method looks very simple, but practically, the imple-

mentation of the CG method (a)–(e) for the solution of (BCP) is nontrivial.

In particular, it is numerically challenging to compute DJ(v), ∀v ∈ U and ρk

as illustrated below. We shall discuss how to address these two issues in the

following part of this section.

5.3.2 Computation of gradient

It is clear that the implementation of the generic CG method (a)–(e) for the

solution of (BCP) requires the knowledge of DJ(v) for various v ∈ U , and this

has been conceptually provided in (5.14). However, it is numerically challenging

to compute DJ(v) by (5.14) due to the restriction ∇ · DJ(v) = 0 which en-

sures that all iterates uk of the CG method meet the additional divergence-free
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constraint ∇ · uk = 0. In this subsection, we show that equation (5.14) can be

reformulated as a saddle point problem by introducing a Lagrange multiplier as-

sociated with the constraint ∇·DJ(v) = 0. Then, a preconditioned CG method

is proposed to solve this saddle point problem.

First of all, it follows from [125] that equation (5.14) can be reformulated as
DJ(v)(t) ∈ S, for a.e. t ∈ (0, T ),∫

Ω

DJ(v)(t) · zdx =

∫
Ω

(v(t)− p(t)∇y(t)) · zdx,∀z ∈ S,
(5.16)

where

S = {z|z ∈ [L2(Ω)]d,∇ · z = 0}.

Clearly, problem (5.16) is a particular case of
g ∈ S,∫

Ω

g · zdx =

∫
Ω

f · zdx,∀z ∈ S,
(5.17)

with f given in [L2(Ω)]d.

Introducing a Lagrange multiplier λ ∈ H1
0 (Ω) associated with the constraint

∇ · z = 0 and then it is clear that problem (5.17) is equivalent to the following

saddle point problem
(g, λ) ∈ [L2(Ω)]d ×H1

0 (Ω),∫
Ω

g · zdx =

∫
Ω

f · zdx+

∫
Ω

λ∇ · zdx,∀z ∈ [L2(Ω)]d,∫
Ω

∇ · gqdx = 0,∀q ∈ H1
0 (Ω),

(5.18)

which is actually a Stokes type problem.

For the solution of (5.18), we advocate a CG method inspired from [75, 78].

For this purpose, one has to specify the inner product to be used over H1
0 (Ω). As

discussed in [75], the usual L2-inner product, namely, {q, q′} →
∫

Ω
qq′dx leads to

a CG method with poor convergence properties. Indeed, using some arguments

similar to those in [74, 75], we can show that the saddle point problem (5.18) can

be reformulated as a linear variational problem in terms of the Lagrange mul-

tiplier λ. The corresponding coefficient matrix after space discretization with
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mesh size h has a condition number of the order of h−2, which is ill-conditioned

especially for small h and makes the CG method converges fairly slow. Hence,

preconditioning is necessary for solving problem (5.18). Efficient precondition-

ing strategies include, e.g., the augmented Lagrangian approach in [75, Section

4] or the grad-div stabilization approach for computational fluid dynamics in

[140]. Here, we follow [75, Section 7] and choose −∇ · ∇ as a preconditioner for

problem (5.18), and the corresponding preconditioned CG method operates in

the space H1
0 (Ω) equipped with the inner product {q, q′} →

∫
Ω
∇q · ∇q′dx and

the associated norm ‖q‖H1
0 (Ω) = (

∫
Ω
|∇q|2dx)1/2,∀q, q′ ∈ H1

0 (Ω). The resulting

algorithm reads as:

G1 Choose λ0 ∈ H1
0 (Ω).

G2 Solve 
g0 ∈ [L2(Ω)]d,∫

Ω

g0 · zdx =

∫
Ω

f · zdx+

∫
Ω

λ0∇ · zdx,∀z ∈ [L2(Ω)]d,

and 
r0 ∈ H1

0 (Ω),∫
Ω

∇r0 · ∇qdx =

∫
Ω

∇ · g0qdx,∀q ∈ H1
0 (Ω).

If
∫
Ω |∇r

0|2dx
max{1,

∫
Ω |∇λ0|2dx} ≤ tol1, take λ = λ0 and g = g0; otherwise set w0 = r0.

For k ≥ 0, λk, gk, rk and wk being known, with the last two different from

0, we compute λk+1, gk+1, rk+1 and if necessary wk+1 as follows:

G3 Solve 
ḡk ∈ [L2(Ω)]d,∫

Ω

ḡk · zdx =

∫
Ω

wk∇ · zdx,∀z ∈ [L2(Ω)]d,

and 
r̄k ∈ H1

0 (Ω),∫
Ω

∇r̄k · ∇qdx =

∫
Ω

∇ · ḡkqdx,∀q ∈ H1
0 (Ω),

and compute the stepsize via

ηk =

∫
Ω
|∇rk|2dx∫

Ω
∇r̄k · ∇wkdx

.
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G4 Update λk, gk and rk via

λk+1 = λk − ηkwk, gk+1 = gk − ηkḡk, and rk+1 = rk − ηkr̄k.

If
∫
Ω |∇r

k+1|2dx
max{1,

∫
Ω |∇r0|2dx} ≤ tol1, take λ = λk+1 and g = gk+1; otherwise,

G5 Compute

γk =

∫
Ω
|∇rk+1|2dx∫

Ω
|∇rk|2dx

,

and update wk via

wk+1 = rk+1 + γkw
k.

Do k + 1→ k and return to G3.

Clearly, one only needs to solve two simple linear equations at each iteration of

the preconditioned CG algorithm (G1)–(G5), which implies that the algorithm

is easy and cheap to implement. Moreover, due to the well-chosen preconditioner

−∇ · ∇, one can expect the above preconditioned CG algorithm to have a fast

convergence; this will be validated by the numerical experiments reported in

Section 5.5.

5.3.3 Computation of the Stepsize ρk

Another crucial step to implement the CG method (a)–(e) is the computation

of the stepsize ρk. It is the solution of the optimization problem (5.15) which is

numerically expensive to be solved exactly or up to a high accuracy. For instance,

to solve (5.15), one may consider the Newton method applied to the solution of

H ′k(ρ) = 0,

where

Hk(ρ) = J(uk − ρwk).

The Newton method requires the second-order derivative H ′′k (ρ) which can be

computed via an iterated adjoint technique requiring the solution of four parabolic

problems per Newton’s iteration. Hence, the implementation of the Newton

method is numerically expensive.
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The high computational load for solving (5.15) motivates us to implement

certain stepsize rule to determine an approximation of ρk. Here, we advocate the

following procedure to compute an approximate stepsize ρ̂k.

For a given wk ∈ U , we replace the state y = S(uk − ρwk) in J(uk − ρwk)

by

S(uk)− ρS ′(uk)wk,

which is indeed the linearization of the mapping ρ 7→ S(uk− ρwk) at ρ = 0. We

thus obtain the following quadratic approximation of Hk(ρ):

Qk(ρ) :=
1

2

∫∫
Q

|uk − ρwk|2dxdt+
α1

2

∫∫
Q

|yk − ρzk − yd|2dxdt

+
α2

2

∫
Ω

|yk(T )− ρzk(T )− yT |2dx,
(5.19)

where yk = S(uk) is the solution of the state equation (1.15) associated with uk,

and zk = S ′(uk)wk satisfies the following linear parabolic problem
∂zk

∂t
− ν∇2zk +wk · ∇yk + uk · ∇zk + a0z

k = 0 in Q,

zk = 0 on Σ,

zk(0) = 0.

(5.20)

Then, it is easy to show that the equation Q′k(ρ) = 0 admits a unique solution

ρ̂k =

∫∫
Q
gk ·wkdxdt∫∫

Q
|wk|2dxdt+ α1

∫∫
Q
|zk|2dxdt+ α2

∫
Ω
|zk(T )|2dx

, (5.21)

and we take ρ̂k, which is clearly an approximation of ρk, as the stepsize in each

CG iteration.

Altogether, with the stepsize given by (5.21), every iteration of the resulting

CG algorithm requires solving only three parabolic problems, namely, the state

equation (1.15) forward in time and the associated adjoint equation (5.13) back-

ward in time for the computation of gk, and the linearized parabolic equation

(5.20) forward in time for the stepsize ρ̂k. For comparison, if the Newton method

is employed to compute the stepsize ρk by solving (5.15), at least six parabolic

problems are required to be solved at each iteration of the CG method, which is

much more expensive numerically.
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Remark 5.1. To find an appropriate stepsize, a natural idea is to employ some

line search strategies, such as the backtracking strategy based on the Armijo–

Goldstein condition or the Wolf condition, see e.g., [138]. It is worth noting

that these line search strategies require the evaluation of J(v) repeatedly, which

is numerically expensive because every evaluation of J(v) for a given v requires

solving the state equation (1.15). Moreover, we have implemented the CG method

for solving (BCP) with various line search strategies and observed from the nu-

merical results that line search strategies always lead to tiny stepsizes making

extremely slow the convergence of the CG method.

5.3.4 A Nested CG Method for Solving (BCP)

Following Sections 5.3.2 and 5.3.3, we advocate the following nested CG

method for solving (BCP):

I. Given u0 ∈ U .

II. Compute y0 and p0 by solving the state equation (1.15) and the adjoint

equation (5.13) corresponding to u0. Then, for a.e. t ∈ (0, T ), solve
g0(t) ∈ S,∫

Ω

g0(t) · zdx =

∫
Ω

(u0(t)− p0(t)∇y0(t)) · zdx,∀z ∈ S,

by the preconditioned CG algorithm (G1)–(G5); and set w0 = g0.

For k ≥ 0, uk, gk and wk being known, with the last two different from 0,

one computes uk+1, gk+1 and if necessary wk+1 as follows:

III. Compute the stepsize ρ̂k by (5.21).

IV. Update uk+1 by

uk+1 = uk − ρ̂kwk.

Compute yk+1 and pk+1 by solving the state equation (1.15) and the adjoint

equation (5.13) corresponding to uk+1; and for a.e. t ∈ (0, T ), solve
gk+1(t) ∈ S,∫

Ω

gk+1(t) · zdx =

∫
Ω

(uk+1(t)− pk+1(t)∇yk+1(t)) · zdx,∀z ∈ S,
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by the preconditioned CG algorithm (G1)–(G5).

If
∫∫
Q |g

k+1|2dxdt∫∫
Q |g0|2dxdt ≤ tol, take u = uk+1; else

V. Compute

βk =

∫∫
Q
|gk+1|2dxdt∫∫
Q
|gk|2dxdt

, and wk+1 = gk+1 + βkw
k.

Do k + 1→ k and return to III.

5.4 Space and time discretizations

In this section, we discuss first the numerical discretization of the bilinear

optimal control problem (BCP). We achieve the time discretization by a semi-

implicit finite difference method and the space discretization by a piecewise linear

finite element method. Then, we discuss an implementable nested CG method

for solving the fully discrete bilinear optimal control problem.

5.4.1 Time Discretization of (BCP)

First, we define a time discretization step ∆t by ∆t = T/N , with N a positive

integer. Then, we approximate the control space U = L2(0, T ;S) by U∆t := (S)N ;

and equip U∆t with the following inner product

(v,w)∆t = ∆t
N∑
n=1

∫
Ω

vn ·wndx, ∀v = {vn}Nn=1,w = {wn}Nn=1 ∈ U∆t,

and the norm

‖v‖∆t =

(
∆t

N∑
n=1

∫
Ω

|vn|2dx

) 1
2

, ∀v = {vn}Nn=1 ∈ U∆t.

Then, (BCP) is approximated by the following semi-discrete bilinear control

problem (BCP∆t):u
∆t ∈ U∆t,

J∆t(u∆t) ≤ J∆t(v),∀v = {vn}Nn=1 ∈ U∆t,
(BCP∆t)
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where the objective functional J∆t is defined by

J∆t(v) =
1

2
∆t

N∑
n=1

∫
Ω

|vn|2dx+
α1

2
∆t

N∑
n=1

∫
Ω

|yn − ynd |2dx+
α2

2

∫
Ω

|yN − yT |2dx,

with {yn}Nn=1 the solution of the following semi-discrete state equation: y0 = φ;

for n = 1, . . . , N , with yn−1 being known, we obtain yn from the solution of the

following linear elliptic problem:
yn − yn−1

∆t
− ν∇2yn + vn · ∇yn−1 + a0yn−1 = fn in Ω,

yn = gn on Γ.
(5.22)

Remark 5.2. For simplicity, we have chosen a one-step semi-implicit scheme

to discretize system (1.15). This scheme is first-order accurate and reasonably

robust, once combined to an appropriate space discretization. The application

of second-order accurate time discretization schemes to optimal control problems

has been discussed in e.g., [29].

Remark 5.3. At each step of scheme (5.22), we only need to solve a simple linear

elliptic problem to obtain yn from yn−1, and there is no particular difficulty in

solving such a problem.

Remark 5.4. Note that usually a semi-implicit scheme is only conditionally

stable and its restriction on the time stepsize ∆t is problem-dependent. For

the diffusion-dominated case, we will show in Section 5.5 that the semi-implicit

scheme to be implemented works well empirically even with a relatively large

time stepsize. For the advection-dominated case, however, as well studied in the

literatures (e.g. [3, 12]), more restrictive conditions on the time stepsize are

usually required.

The existence of an optimal control to (BCP∆t) can be proved in a similar

way as what we have done for the continuous case. Let u∆t be an optimal control

of (BCP∆t) and then it verifies the following first-order optimality condition:

DJ∆t(u∆t) = 0,

where DJ∆t(v) is the first-order differential of the functional J∆t at v ∈ U∆t.
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Proceeding as in the continuous case, we can show that DJ∆t(v) = {gn}Nn=1 ∈
U∆t where 

gn ∈ S,∫
Ω

gn ·wdx =

∫
Ω

(vn − pn∇yn−1) ·wdx,∀w ∈ S,

and the vector-valued function {pn}Nn=1 is the solution of the semi-discrete adjoint

system below:

pN+1 = α2(yN − yT );

for n = N , solve 
pN − pN+1

∆t
− ν∇2pN = α1(yN − yNd ) in Ω,

pN = 0 on Γ,

and for n = N − 1, · · · , 1, solve
pn − pn+1

∆t
− ν∇2pn − vn+1 · ∇pn+1 + a0pn+1 = α1(yn − ynd ) in Ω,

pn = 0 on Γ.

5.4.2 Space Discretization of (BCP∆t)

In this subsection, we discuss the space discretization of (BCP∆t), obtaining

thus a full space-time discretization of (BCP). For simplicity, we suppose from

now on that Ω is a polygonal domain of R2 (or has been approximated by a

family of such domains).

Let TH be a classical triangulation of Ω, with H the largest length of the

edges of the triangles of TH . From TH we construct Th with h = H/2 by joining

the mid-points of the edges of the triangles of TH .

We first consider the finite element space Vh defined by

Vh = {ϕh|ϕh ∈ C0(Ω̄);ϕh|T ∈ P1,∀T ∈ Th}

with P1 the space of the polynomials of two variables of degree ≤ 1. Two useful

sub-spaces of Vh are

V0h = {ϕh|ϕh ∈ Vh, ϕh|Γ = 0} := Vh ∩H1
0 (Ω),
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and (assuming that g(t) ∈ C0(Γ))

Vgh(t) = {ϕh|ϕh ∈ Vh, ϕh(Q) = g(Q, t),∀Q vertex of Th located on Γ}.

In order to construct the discrete control space, we introduce first

ΛH = {ϕH |ϕH ∈ C0(Ω̄);ϕH |T ∈ P1, ∀T ∈ TH}, and Λ0H = {ϕH |ϕH ∈ ΛH , ϕH |Γ = 0}.

Then, the discrete control space U∆t
h is defined by

U∆t
h = (Sh)N ,

with

Sh = {vh|vh ∈ Vh × Vh,
∫

Ω

∇ · vhqHdx
(

= −
∫

Ω

vh · ∇qHdx
)

= 0,∀qH ∈ Λ0H}.

With the above finite element spaces, we approximate (BCP) and (BCP∆t)

by (BCP∆t
h )defined byu

∆t
h ∈ U∆t

h ,

J∆t
h (u∆t

h ) ≤ J∆t
h (v∆t

h ),∀v∆t
h = {vn,h}Nn=1 ∈ U∆t

h ,
(BCP∆t

h )

where the fully discrete objective functional J∆t
h is defined by

J∆t
h (v∆t

h ) =
1

2
∆t

N∑
n=1

∫
Ω

|vn,h|2dx+
α1

2
∆t

N∑
n=1

∫
Ω

|yn,h−ynd |2dx+
α2

2

∫
Ω

|yN,h−yT |2dx

(5.23)

with {yn,h}Nn=1 the solution of the following fully discrete state equation: y0,h =

φh ∈ Vh, where φh verifies

φh ∈ Vh, ∀h > 0, and lim
h→0

φh = φ, in L2(Ω),

and for n = 1, . . . , N , with yn−1,h being known, we obtain yn,h ∈ Vgh(n∆t) from

the solution of the following linear variational problem:∫
Ω

yn,h − yn−1,h

∆t
ϕdx+ ν

∫
Ω

∇yn,h · ∇ϕdx+

∫
Ω

vn,h · ∇yn−1,hϕdx

+

∫
Ω

a0yn−1,hϕdx =

∫
Ω

fnϕdx,∀ϕ ∈ V0h.

(5.24)

In the following discussion, the subscript h in all variables will be omitted for

simplicity.
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In a similar way as what we have done in the continuous case, one can show

that the first-order differential of J∆t
h at v ∈ U∆t

h is DJ∆t
h (v) = {gn}Nn=1 ∈ (Sh)N

where 
gn ∈ Sh,∫

Ω

gn · zdx =

∫
Ω

(vn − pn∇yn−1) · zdx,∀z ∈ Sh,
(5.25)

and the vector-valued function {pn}Nn=1 is the solution of the following fully dis-

crete adjoint system:

pN+1 = α2(yN − yT ); (5.26)

for n = N , solve
pN ∈ V0h,∫

Ω

pN − pN+1

∆t
ϕdx+ ν

∫
Ω

∇pN · ∇ϕdx =

∫
Ω

α1(yN − yNd )ϕdx,∀ϕ ∈ V0h,

(5.27)

then, for n = N − 1, · · · , 1, solve
pn ∈ V0h,∫

Ω

pn − pn+1

∆t
ϕdx+ ν

∫
Ω

∇pn · ∇ϕdx+

∫
Ω

pn+1vn+1 · ∇ϕdx

+ a0

∫
Ω

pn+1ϕdx =

∫
Ω

α1(yn − ynd )ϕdx,∀ϕ ∈ V0h.

(5.28)

It is worth mentioning that the so-called discretize-then-optimize approach is

employed here, which implies that we first discretize (BCP), and to compute the

gradient in a discrete setting, the fully discrete adjoint equation (5.26)–(5.28) has

been derived from the fully discrete objective functional J∆t
h (5.23) and the fully

discrete state equation (5.24). This implies that the fully discrete state equation

(5.24) and the fully discrete adjoint equation (5.26)–(5.28) are strictly in duality.

This fact guarantees that −DJ∆t
h (v) is a descent direction of the fully discrete

bilinear optimal control problem (BCP∆t
h ).

Remark 5.5. A natural alternative has been advocated in the literature: (i) De-

rive the adjoint equation to compute the first-order differential of the objective

functional in a continuous setting; (ii) Discretize the state and adjoint state equa-

tions by certain numerical schemes; (iii) Use the resulting discrete analogs of y

and p to compute a discretization of the differential of the objective functional.
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The main problem with this optimize-then-discretize approach is that it may not

preserve a strict duality between the discrete state equation and the discrete ad-

joint equation. This fact implies in turn that the resulting discretization of the

continuous gradient may not be a gradient of a discrete optimal control problem.

As a consequence, the resulting algorithm is not a descent algorithm and diver-

gence may take place. We refer to, e.g. [79, 89, 197], for more discussions on

the difference between the discretize-then-optimize and optimize-then-discretize

approaches.

5.4.3 A Nested CG Method for Solving the Fully Discrete

Problem (BCP∆t
h )

In this subsection, we propose a nested CG method for solving the fully

discrete problem (BCP∆t
h ). As discussed in Section 5.3, the implementation of

CG method requires the knowledge of DJ∆t
h (v) and an appropriate stepsize. In

the following discussion, we address these two issues by extending the results for

the continuous case in Sections 5.3.2 and 5.3.3 to the fully discrete settings; and

derive the corresponding CG algorithm.

First, it is clear that one can compute DJ∆t
h (v) via the solution of the N

linear variational problems encountered in (5.25). For this purpose, we introduce

a Lagrange multiplier λ ∈ Λ0H associated with the divergence-free constraint.

Then, problem (5.25) is equivalent to the following saddle point system
(gn, λ) ∈ (Vh × Vh)× Λ0H ,∫

Ω

gn · zdx =

∫
Ω

(vn − pn∇yn−1) · zdx+

∫
Ω

λ∇ · zdx,∀z ∈ Vh × Vh,∫
Ω

∇ · gnqdx = 0,∀q ∈ Λ0H .

(5.29)

As discussed in Section 5.3.2, problem (5.29) can be solved by the following

preconditioned CG algorithm, which is actually a discrete analogue of (G1)–

(G5).

DG1 Choose λ0 ∈ Λ0H .
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DG2 Solve
g0
n ∈ Vh × Vh,∫
Ω

g0
n · zdx =

∫
Ω

(vn − pn∇yn−1) · zdx+

∫
Ω

λ0∇ · zdx,∀z ∈ Vh × Vh,

and 
r0 ∈ Λ0H ,∫

Ω

∇r0 · ∇qdx =

∫
Ω

∇ · g0
nqdx,∀q ∈ Λ0H .

If
∫
Ω |∇r

0|2dx
max{1,

∫
Ω |∇λ0|2dx} ≤ tol1, take λ = λ0 and gn = g0

n; otherwise set w0 = r0.

For k ≥ 0, λk, gkn, r
k and wk being known, with the last two different from

0, we compute λk+1, gk+1
n , rk+1 and if necessary wk+1 as follows:

DG3 Solve 
ḡkn ∈ Vh × Vh,∫

Ω

ḡkn · zdx =

∫
Ω

wk∇ · zdx,∀z ∈ Vh × Vh,

and 
r̄k ∈ Λ0H ,∫

Ω

∇r̄k · ∇qdx =

∫
Ω

∇ · ḡknqdx,∀q ∈ Λ0H ,

and compute

ηk =

∫
Ω
|∇rk|2dx∫

Ω
∇r̄k · ∇wkdx

.

DG4 Update λk, gkn and rk via

λk+1 = λk − ηkwk, gk+1
n = gkn − ηkḡkn, and rk+1 = rk − ηkr̄k.

If
∫
Ω |∇r

k+1|2dx
max{1,

∫
Ω |∇r0|2dx} ≤ tol1, take λ = λk+1 and gn = gk+1

n ; otherwise,

DG5 Compute

γk =

∫
Ω
|∇rk+1|2dx∫

Ω
|∇rk|2dx

,

and update wk via

wk+1 = rk+1 + γkw
k.

Do k + 1→ k and return to DG3.
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Remark 5.6. Similar as the continuous case discussed in Section 3, we em-

ploy the preconditioned CG algorithm (DG1)–(DG5) to compute the gradient

DJ∆t
h (v) in order that all iterates of the CG method satisfy the divergence-free

constraint. To ensure the divergence-free constraint, other choices include some

exactly divergence-free finite element methods for space discretization such as the

H1
0 -conforming finite element methods based on the Scott–Vogelius elements [88],

some H(div)-conforming finite element methods based on the Raviart–Thomas

elements [151] or the Brezzi–Douglas–Marini elements [23].

To find an appropriate stepsize in the CG iteration for the solution of (BCP∆t
h ),

we note that, for any {wn}Nn=1 ∈ (Sh)N , the fully discrete analogue of Qk(ρ) in

(5.19) reads as

Q∆t
h (ρ) =

1

2
∆t

N∑
n=1

∫
Ω

|un − ρwn|2dx

+
α1

2
∆t

N∑
n=1

∫
Ω

|yn − ρzn − ynd |2dx+
α2

2

∫
Ω

|yN − ρzN − yT |2dx,

where the vector-valued function {zn}Nn=1 is obtained as follows: z0 = 0; for

n = 1, . . . , N , with zn−1 being known, zn is obtained from the solution of the

linear variational problem
zn ∈ V0h,∫

Ω

zn − zn−1

∆t
ϕdx+ ν

∫
Ω

∇zn · ∇ϕdx+

∫
Ω

wn · ∇ynϕdx

+

∫
Ω

un · ∇zn−1ϕdx+ a0

∫
Ω

zn−1ϕdx = 0,∀ϕ ∈ V0h.

As discussed in Section 5.3.3 for the continuous case, we take the unique solution

of Q∆t
h
′
(ρ) = 0 as the stepsize in each CG iteration, that is

ρ̂∆t
h =

∆t
∑N

n=1

∫
Ω
gn ·wndx

∆t
∑N

n=1

∫
Ω
|wn|2dx+ α1∆t

∑N
n=1

∫
Ω
|zn|2dx+ α2

∫
Ω
|zN |2dx

. (5.30)

Finally, with above preparations, we propose the following nested CG method

for the solution of the fully discrete problem (BCP∆t
h ).

DI. Given u0 := {u0
n}Nn=1 ∈ (Sh)N .

161



5.4. Space and time discretizations

DII. Compute {y0
n}Nn=0 and {p0

n}N+1
n=1 by solving the fully discrete state equation

(5.24) and the fully discrete adjoint equation (5.26)–(5.28) corresponding

to u0. Then, for n = 1, · · · , N solve
g0
n ∈ Sh,∫
Ω

g0
n · zdx =

∫
Ω

(u0
n − p0

n∇y0
n−1) · zdx,∀z ∈ Sh,

by the preconditioned CG algorithm (DG1)–(DG5), and set w0
n = g0

n.

For k ≥ 0, uk, gk and wk being known, with the last two different from 0,

one computes uk+1, gk+1 and if necessary wk+1 as follows:

DIII. Compute the stepsize ρ̂k by (5.30).

DIV. Update uk+1 by

uk+1 = uk − ρ̂kwk.

Compute {yk+1
n }Nn=0 and {pk+1

n }N+1
n=1 by solving the fully discrete state equa-

tion (5.24) and the fully discrete adjoint equation (5.26)–(5.28) correspond-

ing to uk+1. Then, for n = 1, · · · , N , solve
gk+1
n ∈ Sh,∫
Ω

gk+1
n · zdx =

∫
Ω

(uk+1
n − pk+1

n ∇yk+1
n−1) · zdx,∀z ∈ Sh,

(5.31)

by the preconditioned CG algorithm (DG1)–(DG5).

If
∆t

∑N
n=1

∫
Ω |g

k+1
n |2dx

∆t
∑N
n=1

∫
Ω |g0

n|2dx
≤ tol, take u = uk+1; else

DV. Compute

βk =
∆t
∑N

n=1

∫
Ω
|gk+1
n |2dx

∆t
∑N

n=1

∫
Ω
|gkn|2dx

, and wk+1 = gk+1 + βkw
k.

Do k + 1→ k and return to DIII.

Despite its apparent complexity, the nested CG method (DI)–(DV) is easy

to implement. Actually, one of the main computational difficulties in the imple-

mentation of the above algorithm seems to be the solution of N linear systems

(5.31), which is time-consuming. However, it is worth noting that the linear sys-

tems (5.31) are separable with respect to different n and they can be solved in
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parallel. As a consequent, one can compute the gradient {gkn}Nn=1 simultaneously

and the computation time can be reduced significantly.

Moreover, it is clear that the computation of {gkn}Nn=1 requires the storage

of the solutions of (5.24) and (5.26)–(5.28) at all points in space and time. For

large scale problems, especially in three space dimensions, it will be very memory

demanding and maybe even impossible to store the full sets {ykn}Nn=0 and {pkn}N+1
n=1

simultaneously. To tackle this issue, one can employ the strategy described in

e.g., [83, Section 1.12] that can drastically reduce the storage requirements at

the expense of a small CPU increase.

5.5 Numerical experiments

In this section, we report some preliminary numerical results validating the

efficiency of the proposed CG algorithm (DI)–(DV) for (BCP). All codes were

written in MATLAB R2016b and numerical experiments were conducted on

a Surface Pro 5 laptop with 64-bit Windows 10.0 operation system, Intel(R)

Core(TM) i7-7660U CPU (2.50 GHz), and 16 GB RAM.

Example 1. We consider the bilinear optimal control problem (BCP) on the

domain Q = Ω × (0, T ) with Ω = (0, 1)2 and T = 1. In particular, we take the

control v(x, t) in a finite-dimensional space, i.e. v ∈ L2(0, T ;R2). In addition,

we set α2 = 0 in (5.1) and consider the following tracking-type bilinear optimal

control problem:

min
v∈L2(0,T ;R2)

J(v) =
1

2

∫ T

0

|v(t)|2dt+
α1

2

∫∫
Q

|y − yd|2dxdt, (5.32)

where |v(t)| =
√
v1(t)2 + v2(t)2 is the canonical 2-norm, and y is obtained from

v via the solution of the state equation (5.2).

Since the control v is considered in a finite-dimensional space, the divergence-

free constraint ∇ · v = 0 is verified automatically. As a consequence, the first-

order differential DJ(v) can be easily computed. Indeed, it is easy to show
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that

DJ(v) =

{
vi(t) +

∫
Ω

y(t)
∂p(t)

∂xi
dx

}2

i=1

, a.e. on (0, T ),∀v ∈ L2(0, T ;R2),

(5.33)

where p(t) is the solution of the adjoint equation (5.13). The inner preconditioned

CG algorithm (DG1)-(DG5) for the computation of the gradient {gn}Nn=1 is thus

avoided.

In order to examine the efficiency of the proposed CG algorithm (DI)–(DV),

we construct an example with a known exact solution. To this end, we set ν = 1

and a0 = 1 in (5.2), and

y = et(−3 sin(2πx1) sin(πx2)+1.5 sin(πx1) sin(2πx2)), p = (T−t) sinπx1 sin πx2.

Substituting these two functions into the optimality condition DJ(u(t)) = 0, we

have

u = (u1,u2)> = (2et(T − t),−et(T − t))>.

We further set

f =
∂y

∂t
−∇2y + u · ∇y + y,

φ = −3 sin(2πx1) sin(πx2) + 1.5 sin(πx1) sin(2πx2),

yd = y − 1

α1

(
−∂p
∂t
−∇2p− u · ∇p+ p

)
, g = 0.

Then, it is easy to verify that u is a solution point of the problem (5.32). We

display the solution u and the target function yd at different instants of time in

Figure 5.1 and Figure 5.2, respectively.
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Figure 5.1: The exact optimal control u for Example 1.
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5.5. Numerical experiments

Figure 5.2: The target function yd at t = 0.25, 0.5 and 0.75 (from left to right)

for Example 1.

The stopping criterion of the CG algorithm (DI)–(DV) is set as

∆t
∑N

n=1 |gk+1
n |2

∆t
∑N

n=1 |g0
n|2
≤ 10−5.

The initial value is chosen as u0 = (0, 0)>; and we denote by u∆t and y∆t
h the

computed control and state, respectively.

First, we take h = 1
2i
, i = 5, 6, 7, 8, ∆t = h

2
and α1 = 106, and implement

the proposed CG algorithm (DI)–(DV) for solving the problem (5.32). The

numerical results reported in Table 5.1 show that the CG algorithm converges

fairly fast and is robust with respect to different mesh sizes. We also observe

that the target function yd has been reached within a good accuracy. Similar

comments hold for the approximation of the optimal control u and of the state

y of problem (5.32). By taking h = 1
27 and ∆t = 1

28 , the computed state y∆t
h

and y∆t
h − yd at t = 0.25, 0.5 and 0.75 are reported in Figures 5.3, 5.4 and 5.5,

respectively; and the computed control u∆t and error u∆t − u are visualized in

Figure 5.6.

Table 5.1: Results of (DI)–(DV) with different h and ∆t for Example 1.

Mesh sizes Iter ‖u∆t − u‖L2(0,T ;R2) ‖y∆t
h − y‖L2(Q)

‖y∆t
h −yd‖L2(Q)

‖yd‖L2(Q)

h = 1/25,∆t = 1/26 117 2.8820×10−2 1.1569×10−2 3.8433×10−3

h = 1/26,∆t = 1/27 48 1.3912×10−2 2.5739×10−3 8.5623×10−4

h = 1/27,∆t = 1/28 48 6.9095×10−3 4.8574×10−4 1.6516×10−4

h = 1/28,∆t = 1/29 31 3.4845×10−3 6.6231×10−5 2.2196×10−5

Furthermore, we tested the proposed CG algorithm (DI)–(DV) with h = 1
26

and ∆t = 1
27 for different penalty parameter α1. The results reported in Table 5.2
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5.5. Numerical experiments

Figure 5.3: Computed state y∆t
h , error y∆t

h − y and y∆t
h − yd (from left to right)

at t = 0.25 for Example 1.

Figure 5.4: Computed state y∆t
h , error y∆t

h − y and y∆t
h − yd (from left to right)

at t = 0.5 for Example 1.

Figure 5.5: Computed state y∆t
h , error y∆t

h − y and y∆t
h − yd (from left to right)

at t = 0.75 for Example 1.
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Figure 5.6: Computed optimal control u∆t and error u∆t − u for Example 1.
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5.5. Numerical experiments

show that the performance of the proposed CG algorithm is robust with respect

to the penalty parameter, at least for the example being considered. We also

observe that as α1 increases, the value of
‖y∆t
h −yd‖L2(Q)

‖yd‖L2(Q)
decreases. This implies

that, as expected, the computed state y∆t
h is closer to the target function yd when

the penalty parameter gets larger.

Table 5.2: Results of (DI)–(DV) with different α1 for Example 1.

α1 Iter CPU(s) ‖u∆t − u‖L2(0,T ;R2) ‖y∆t
h − y‖L2(Q)

‖y∆t
h −yd‖L2(Q)

‖yd‖L2(Q)

104 46 126.0666 1.3872×10−2 2.5739×10−3 8.7666×10−4

105 48 126.4185 1.3908×10−2 2.5739×10−3 8.6596×10−4

106 48 128.2346 1.3912×10−2 2.5739×10−3 8.5623×10−4

107 48 127.1858 1.3912×10−2 2.5739×10−3 8.5612×10−4

108 48 124.1160 1.3912×10−2 2.5739×10−3 8.5610×10−4

Example 2. We consider the bilinear optimal control problem (BCP) on the

domain Q = Ω × (0, T ) with Ω = (0, 1)2 and T = 1. Different from Example

1, the control v(x, t) of Example 2 is taken in the infinite-dimensional space

U = {v|v ∈ [L2(Q)]2,∇ · v = 0}. We set α2 = 0 in (5.1), ν = 1 and a0 = 1 in

(5.2), and consider the following tracking-type bilinear optimal control problem:

min
v∈U

J(v) =
1

2

∫∫
Q

|v|2dxdt+
α1

2

∫∫
Q

|y − yd|2dxdt, (5.34)

where y is obtained from v via the solution of the state equation (5.2).

First, we let

y = et(−3 sin(2πx1) sin(πx2) + 1.5 sin(πx1) sin(2πx2)),

p = (T − t) sinπx1 sin πx2, and u = PU(p∇y),

where PU(·) is the projection onto the set U .

We further set

f =
∂y

∂t
−∇2y + u · ∇y + y,

φ = −3 sin(2πx1) sin(πx2) + 1.5 sin(πx1) sin(2πx2),

yd = y − 1

α1

(
−∂p
∂t
−∇2p− u · ∇p+ p

)
, g = 0.
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Then, it is easy to show that u is a solution point of the problem (5.34). We

note that u = PU(p∇y) has no analytical solution and it can only be solved

numerically. Here, we solve u = PU(p∇y) by the preconditioned CG algorithm

(DG1)–(DG5) with h = 1
29 and ∆t = 1

210 , and use the resulting control u as a

reference solution for the example we considered.

Figure 5.7: The target function yd with h = 1
27 and ∆t = 1

28 at t = 0.25, 0.5 and

0.75 (from left to right) for Example 2.

The stopping criteria of the outer CG algorithm (DI)–(DV) and the inner

preconditioned CG algorithm (DG1)–(DG5) are respectively set as

∆t
∑N

n=1

∫
Ω
|gk+1
n |2dx

∆t
∑N

n=1

∫
Ω
|g0
n|2dx

≤ 5× 10−8, and

∫
Ω
|∇rk+1|2dx

max{1,
∫

Ω
|∇r0|2dx}

≤ 10−8.

The initial values are chosen as u0 = (0, 0)> and λ0 = 0; and we denote by u∆t
h

and y∆t
h the computed control and state, respectively.

First, we take h = 1
2i
, i = 6, 7, 8, ∆t = h

2
, α1 = 106, and implement the

proposed nested CG algorithm (DI)–(DV) for solving the problem (5.34). The

numerical results reported in Table 5.3 show that the CG algorithm converges fast

and is robust with respect to different mesh sizes. In addition, the preconditioned

CG algorithm (DG1)–(DG5) converges within 10 iterations for all cases and

thus is efficient for computing the gradient {gn}Nn=1. We also observe that the

target function yd has been reached within a good accuracy. Similar comments

hold for the approximation of the optimal control u and of the state y of problem

(5.34).

Taking h = 1
27 and ∆t = 1

28 , the computed state y∆t
h , the error y∆t

h − y

and y∆t
h − yd at t = 0.25, 0.5, 0.75 are reported in Figures 5.8, 5.9 and 5.10,

respectively; and the computed control u∆t
h , the exact control u, and the error
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Table 5.3: Results of (DI)–(DV) with different h and ∆t for Example 2.

Mesh sizes IterCG PCG ‖u∆t
h − u‖L2(Q) ‖y∆t

h − y‖L2(Q)
‖y∆t

h −yd‖L2(Q)

‖yd‖L2(Q)

h = 1/26,∆t = 1/27 443 9 3.7450×10−3 9.7930×10−5 1.0906×10−6

h = 1/27,∆t = 1/28 410 9 1.8990×10−3 1.7423×10−5 3.3863×10−7

h = 1/28,∆t = 1/29 405 8 1.1223×10−3 4.4003×10−6 1.0378×10−7

u∆t
h − u at t = 0.25, 0.5, 0.75 are presented in Figures 5.11, 5.12 and 5.13.

Figure 5.8: Computed state y∆t
h , error y∆t

h − y and y∆t
h − yd with h = 1

27 and

∆t = 1
28 (from left to right) at t = 0.25 for Example 2.

Figure 5.9: Computed state y∆t
h , error y∆t

h − y and y∆t
h − yd with h = 1

27 and

∆t = 1
28 (from left to right) at t = 0.5 for Example 2.
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Figure 5.10: Computed state y∆t
h , error y∆t

h − y and y∆t
h − yd with h = 1

27 and

∆t = 1
28 (from left to right) at t = 0.75 for Example 2.

Figure 5.11: Computed control u∆t
h and exact control u (left, from top to bottom)

and the error u∆t
h − u (right) with h = 1

27 and ∆t = 1
28 at t = 0.25 for Example

2.

Figure 5.12: Computed control u∆t
h and exact control u (left, from top to bottom)

and the error u∆t
h −u (right) with h = 1

27 and ∆t = 1
28 at t = 0.5 for Example 2.
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Figure 5.13: Computed control u∆t
h and exact control u (left, from top to bottom)

and the error u∆t
h − u (right) with h = 1

27 and ∆t = 1
28 at t = 0.75 for Example

2.
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Chapter 6

Conclusions and future works

In this chapter, we make some conclusions of this thesis and present some

directions for future works, which are summarized as below.

• In Chapter 2, we considered a class of application-driven nonlinear saddle

point problems and proposed an algorithmic framework based on some

known inexact Uzawa methods. The convergence and linear convergence

rate of the algorithmic framework were uniformly analyzed. Then, we

focused on an elliptic optimal control problem with control constraints

and discussed how to choose appropriate preconditioners to specify the

algorithmic framework as an easily implementable and efficient algorithm.

Preliminary numerical results were reported to verify all the theoretical

assertions including the convergence and linear convergence rate of our

proposed inexact Uzawa type algorithm, as well as the convergence order

of the finite element discretization.

Our philosophy in algorithmic design and techniques for theoretical anal-

ysis and numerical implementation can be easily extended to other prob-

lems such as the optimal control problems constrained by the convection-

diffusion equation [9] or Stokes equation [155], or elliptic variational in-

equalities of the second kind [78]. Moreover, our experiments empirically

revealed that the mesh size of finite element discretization does not effect

the performance of the proposed inexact Uzawa type algorithm. It will be
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interesting to fathom the theory behind.

• In Chapter 3, we focused on the implementation of the well-known alternat-

ing direction method of multipliers (ADMM) to parabolic optimal control

problems with control constraints. Direct implementation of ADMM de-

couples the control constraint and the parabolic state equation at each

iteration, while the resulting unconstrained parabolic optimal control sub-

problems should be solved inexactly. Hence, only inexact versions of the

ADMM are implementable for these problems. We proposed an easily im-

plementable inexactness criterion for these subproblems; and obtained an

inexact version of the ADMM whose execution consists of two-layer nested

iterations. The strong global convergence of the resulting inexact ADMM

was proved rigorously in an infinite-dimensional Hilbert space; and the

worst-case convergence rate measured by the iteration complexity was also

established. We illustrated by the CG method how to execute the inex-

actness criterion, and showed the efficiency of the resulting ADMM–CG

iterative scheme numerically. In particular, our numerical results validate

that usually a few internal CG iterations are sufficient to guarantee the

overall convergence of the ADMM–CG; hence there is no need to solve the

unconstrained parabolic optimal control problem at each iteration up to a

high precision. This fact significantly saves computation and contributes to

the efficiency of the ADMM–CG. As mentioned in Remark 3.1, the new in-

exactness criterion possesses a variety of features that are software-friendly

and hence important for softwarization and industrialization. In this sense,

we follow the fundamental concept of trustworthiness in software engineer-

ing (also in artificial intelligence) and call the proposed inexact ADMM, or

more concretely Algorithm 3.3, a trustworthy algorithm.

Our philosophy in algorithmic design can be easily extended to other op-

timal control problems; hence the proposed inexact ADMM can be delib-

erately specified as various algorithms for a wide range of optimal control

problems. For some challenging problems whose numerical study is limited

(such as the general case of (3.1)–(3.2) or (3.50)–(3.51) where ω ( Ω and

d ≥ 2), the algorithms specified from the inexact ADMM are attractive in

senses of numerical performance and easiness of coding. It is interesting
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and much more challenging to design operator splitting type algorithms

for optimal control problems constrained by some nonlinear PDEs in the

future.

• In Chapter 4, we have discussed the sparse initial source identification

for diffusion-advection equations. More precisely, we have designed an al-

gorithm capable of recovering the unique initial configuration leading the

solution of our model to match with a prescribed final target in a given time

horizon T . Our main interest being to identify moving pollution sources

traveling in either a compressible or incompressible fluid, we assumed that

the initial condition is a linear combination of Dirac measures indicating

the location of the sources, with their weights representing the intensity

of the sources. The algorithm we proposed to solve the source identifica-

tion problem is comprised of two steps. Firstly, we formulated an optimal

control problem with a suitable functional consists of three terms:

1. A first term seeking for an initial condition u0 such that the corre-

sponding solution, at time t = T , is as close as possible to the desired

target.

2. A second term, involving the L1 norm of the initial datum to detect

sparsity.

3. A third Tikhonov regularization term, introduced to guarantee the

well-posedness of the problem while improving the conditioning of

the optimal control problem.

We introduced a generalized PDHG-based prediction-correction algorith-

mic framework to obtain the location information of the sources by solving

the resulting optimal control problem. Secondly, an optimization problem

in terms of the locations and a least squares fitting corresponding to the

intensities are considered to find the optimal locations and intensities of

the sources, respectively. In our numerical simulations, we have considered

several test cases where the algorithm identifies the initial sources from a

reachable target or noisy observation very successfully even for some het-

erogeneous materials or coupled models.
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Nevertheless, our work left several unaddressed key aspects of the proposed

source identification problem, which will be to subject of future investiga-

tion.

1. First of all, our simulations have shown that the proposed algorithm is

capable of accurately recover the initial source configuration in short

time horizons. On the other hand, when the time horizon is too

large, the source identification for (4.1) is unsuccessful, as it can be

appreciated in Figure 6.1. This issue, highly related to the diffusivity

parameter and the ill-posedness of the backward heat problem, has

already been mentioned in previous research works (see e.g., [134,

135]). It would then be interesting to estimate the maximum final time

at which the recovery is still feasible and to design novel and efficient

algorithms allowing to address the source identification problem in

large time horizons. To the best of our knowledge, this important

issue is still open in the literature.

2. Another future direction would be to consider the case of strong jumps

in the material coefficients. When the diffusivities of the coupled

materials are very different from each other, we can observe in Figure

6.2 that the recovered initial source is not correct. A possible solution

would be to combine our approach with some splitting methods in

order to parallelize the computations in each of the subdomains.

3. Finally, it would be of interest to extend our proposed numerical ap-

proach to some more complicated geometries or nonlinear models.

• In Chapter 5, we studied the bilinear control of an advection-reaction-

diffusion system, where the control variable enters the model as a velocity

field of the advection term. Mathematically, we proved the existence of op-

timal controls and derived the associated first-order optimality conditions.

Computationally, the conjugate gradient (CG) method was suggested and

its implementation is nontrivial. In particular, an additional divergence-

free constraint on the control variable leads to a projection subproblem

to compute the gradient; and the computation of a stepsize at each CG

iteration requires solving the state equation repeatedly due to the nonlin-
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Figure 6.1: Numerical results for the case of v = (1, 2)T , T = 0.5 and d = 0.05.

Figure 6.2: Numerical results for the case of v = (1, 2)T , T = 0.1, d = 0.05 in

Ω1 = (0, 1)× (0, 1) and d = 0.5 in Ω2 = (1, 2)× (0, 1).
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ear relation between the state and control variables. To resolve the above

issues, we reformulated the gradient computation as a Stokes-type prob-

lem and proposed a fast preconditioned CG method to solve it. We also

proposed an efficient inexactness strategy to determine the stepsize, which

only requires the solution of one linear parabolic equation. An easily im-

plementable nested CG method was thus proposed. For the numerical

discretization, we employed the standard piecewise linear finite element

method and the Bercovier-Pironneau finite element method for the space

discretizations of the bilinear optimal control and the Stokes-type problem,

respectively, and a semi-implicit finite difference method for the time dis-

cretization. The resulting algorithm was shown to be numerically efficient

by some preliminary numerical experiments.

We focused in this chapter on an advection-reaction-diffusion system con-

trolled by a general form velocity field. In a real physical system, the veloc-

ity field may be determined by some partial differential equations (PDEs),

such as the Navier-Stokes equations. As a result, we meet some bilinear

optimal control problems constrained by coupled PDE systems. Moreover,

instead of (1.14), one can also consider other types of objective functionals

in the bilinear optimal control of an advection-reaction-diffusion system.

For instance, one can incorporate
∫∫

Q
|∇v|2dxdt and

∫∫
Q
|∂v
∂t
|2dxdt into

the objective functional to promote that the optimal velocity field has the

least rotation and is almost steady, respectively, which are essential in e.g.,

mixing enhancement for different flows [128]. All these problems are of

practical interest but more challenging from algorithmic design perspec-

tives, and they have not been well-addressed numerically in the literature.

Our current work has laid a solid foundation for solving these problems

and we leave them in the future.
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[114] A. Kröner, K. Kunisch and B. Vexler, Semismooth Newton methods for

optimal control of the wave equation with control constraints, SIAM Journal

on Control and Optimization 49 (2011), pp. 830–858.
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