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Abstract

We consider the numerical approximation of incompressible non-Newtonian flow by

means of the finite element method, where the constitutive law is defined through

an implicit relation GGG(SSS,DDD(u)) = 0. The setting considered in this work captures

models widely used in applications, such as the Bingham and the Carreau–Yasuda

constitutive relations. Since in general it is not possible to solve for the shear stress SSS

in the constitutive relation, the emphasis is placed on formulations treating the shear

stress as a variable.

Under the assumption that the constitutive relation defines a monotone graph

with r-growth, and that the finite element spaces satisfy appropriate inf-sup stability

conditions, the first part of the thesis extends earlier results in the literature to provide

a convergence result that guarantees that a subsequence of the numerical approxi-

mations converges weakly to a solution of the system, in the optimal range r > 2d
d+2

,

where d is the spatial dimension. The qualitative nature of this convergence result

is a consequence of the generality of the framework of implicitly constituted fluids,

for which e.g. higher regularity estimates are not available. Computational exam-

ples show, nevertheless, that the numerical scheme considered exhibits the expected

convergence rates, in the situations where these are available.

In the second part of the thesis we develop an augmented Lagrangian precondi-

tioner for a stress-velocity-pressure formulation of the steady system. The precondi-

tioner involves a specialised multigrid algorithm that makes use of a space decompo-

sition that captures the kernel of the divergence operator, and non-standard intergrid

transfer operators. Although the current theory for robust multigrid works only for

symmetric and positive-definite systems (and thus does not apply to the systems

considered in this thesis), the resulting preconditioner exhibits remarkable robustness

properties.

In the final chapter of the thesis, the extension to the anisothermal case is carried

out. We employ an implicit constitutive relation that allows for a temperature depen-

dence of rheological parameters such as the viscosity and the yield stress, and provide

convergence results for the unsteady forced convection system that takes the vis-

cous dissipation term SSS :DDD(u) into account, and for the steady Oberbeck–Boussinesq

approximation. For the latter an augmented Lagrangian preconditioner is also in-

troduced; this preconditioner exhibits robust convergence behaviour when applied to

the Navier–Stokes and power-law systems, including temperature-dependent viscos-

ity, heat conductivity, and viscous dissipation.
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Chapter 1

Introduction

In the classical theory of continuum mechanics, the balance laws of momentum, mass,

and energy do not determine the behaviour of a system completely. Additional in-

formation that captures the manner in which the material to be studied responds to

given stimuli is needed; this is what is commonly known as a constitutive relation.

A constitutive relation establishes a relationship between thermodynamic fluxes and

thermodynamic affinities; for instance, it can relate the stress to the deformation

gradient in elasticity theory, or the heat flux and the temperature in the case of an

heat conducting fluid.

If a fluid occupies part of a space represented by a connected open set Ω ⊂ Rd,

where d ∈ {2, 3}, then the evolution of the system during a given time interval [0, T ),

for T > 0, is determined by the usual equations of balance of mass, momentum,

angular momentum and energy, which in Eulerian coordinates take the form [MP16]:

∂ρ

∂t
+ div(ρu) = 0, (1.1a)

∂(ρu)

∂t
+ div(ρu⊗ u) = divTTT + ρf , (1.1b)

TTT = TTT>, (1.1c)

∂(ρ(e+ 1
2
|u|2))

∂t
+ div(ρ(e+ 1

2
|u|2)u) = div(TTTu− q) + ρf · u. (1.1d)

Here:

• u : [0, T )× Ω→ Rd is the velocity field;

• ρ : [0, T )× Ω→ R is the density;

• TTT : (0, T )× Ω→ Rd×d is the Cauchy stress;

• e : [0, T )× Ω→ R is the internal energy;
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• q : (0, T )× Ω→ Rd is the heat flux;

• f : (0, T )× Ω→ Rd is a (given) body force.

Moreover, the second law of thermodynamics requires the following inequality to be

satisfied:

TTT :DDD(u) + pth divu− 1

θ
q · ∇θ ≥ 0, (1.2)

where pth is the thermodynamic pressure and θ is the temperature. This inequality

imposes a restriction on the choice of constitutive relations.

Incompressible non-Newtonian models

This thesis will focus entirely on incompressible and homogeneous fluids; in this case
dρ
dt

= 0 and the conservation of mass equation (1.1a) reduces to

divu = 0. (1.3)

In addition, the Cauchy stress can be split in two components:

TTT = −pI + SSS, (1.4)

where I is the identity matrix, p : (0, T )×Ω→ R is the pressure (mean normal stress),

and SSS : (0, T )× Ω→ Rd×d
sym is the shear stress (hereafter referred only as “stress”). It

should be noted that a more careful derivation of this system would require one

to perform e.g. a singular limit in which the speed of sound in the fluid tends to

infinity [FN17], or to treat the function p as the Lagrange multiplier associated to

the constraint requiring that the fluid only undergoes isochoric processes [MR05] (the

interpretation of p as a Lagrange multiplier is not always appropriate, especially when

dealing with non-Newtonian behaviour, see [Raj15]). In particular, what we refer to

as the “pressure” in this work is not the thermodynamic pressure, which has to be

specified constitutively.

One of the simplest forms of the constitutive relation between the stress and the

rate of strain is given by the Newtonian constitutive relation:

SSS = 2µDDD, (1.5)

where µ > 0 is the (shear) viscosity of the fluid, and DDD = DDD(u) := 1
2
(∇u +∇u>) is

the symmetric velocity gradient. This relation is linear and isotropic, and it leads to

what is commonly referred to as the (incompressible) Navier–Stokes system:

∂tu+ div(u⊗ u)− div(2νDDD(u)) +∇p = f ,

divu = 0,
(1.6)

2



where ν := µ
ρ∗

is the kinematic viscosity (ρ∗ is the constant density of the fluid),

and the pressure has been rescaled p 7→ p
ρ∗

. Note that the energy equation (1.1d)

decouples because there is no temperature dependence in either the momentum or

mass equations.

The first contributions to the mathematical theory of the incompressible Navier–

Stokes system written in the modern language of functional analysis were the seminal

works by Leray [Ler34] and Hopf [Hop50] (see also [KL63]), in which existence of

weak solutions for large data was established. The uniqueness of a solution in the

class of weak solutions remains a notoriously hard problem [CJW06].

The Newtonian constitutive relation (1.5) can be used to describe the flow of fluids

like water and honey under everyday conditions [Sar10], but most of the fluids encoun-

tered in practice exhibit behaviour that cannot be captured by it; these are usually

termed non-Newtonian fluids. Perhaps the simplest example of such responses is that

of shear-thinning (sometimes called pseudoplastic) fluids, for which the viscosity can

be observed to decrease with the shear-rate; some examples include ball-point pen

ink, fabric conditioner, lubricating grease, blood, molten polystyrene, just to name a

few [BHW89, Yas79, ABH05]. This type of response can be modeled, for instance,

with the Ostwald–de Waele constitutive relation (also called the power-law model)

[Ost25, dW23]:

SSS = K|DDD|r−2DDD K > 0, r > 1, (1.7)

the Carreau–Yasuda relation [Car72, Yas79]:

SSS =
[
ν∞ + (ν0 − ν∞)(1 + Γ|DDD|2)

r−2
2

]
DDD ν0, ν∞ ≥ 0, Γ > 0, r > 1, (1.8)

or that of Sisko [Sis58]:

SSS =
(
ν∞ + α|DDD|r−2

)
DDD ν∞, α > 0, r > 1. (1.9)

When r > 2, the constitutive relations (1.7)–(1.9) actually describe shear-thickening

fluids (sometimes called dilatant fluids), for which the viscosity increases with shear

rate. This response is less common, and can be found for example in uncooked corn

starch with water (oobleck).

The relations (1.7)–(1.9) can be written in the form SSS = S(DDD) := ν(|DDD|)DDD (models

of this form are sometimes called quasi-Newtonian), and they have in common that

they are r-coercive, i.e. there exists a positive constant c∗ such that

S(DDD) :DDD ≥ c∗(|S(DDD)|r′ + |DDD|r), (1.10)
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where r′ > 1 is the number such that 1
r

+ 1
r′

= 1, and τ :σ := tr(τ>σ) denotes the

Frobenius inner product between two matrices σ, τ ∈ Rd×d
sym. This condition leads to

a priori estimates that suggest that the appropriate Sobolev space for the velocity

field u is W 1,r(Ω)d.

Furthermore, the relations (1.7)–(1.9) are also monotone, that is, for any DDD1,DDD2 ∈
Rd×d

sym, the following condition holds

(S(DDD1)− S(DDD2)) : (DDD1 −DDD2) ≥ 0. (1.11)

The mathematical analysis of systems with the structure mentioned above was

pioneered by Ladyzhenskaya [Lad69] and Lions [Lio69]. Their existence proof is

based on methods of monotone operator theory, and assumes that r ≥ 3d+2
d+2

(r ≥ 3d
d+2

in the stationary case); this restriction ensures that the velocity u is an admissible

test function in the weak formulation, which implies that there is an energy identity

available, and so Minty’s trick can be applied to identify the nonlinear limit in the

constitutive relation.

The results of Lions and Ladyzhenskaya were extended to the range r > 2(d+1)
d+2

(r > 2d
d+1

in the steady case), by employing an L∞-truncation technique in the works

[FMS97, Růž97, Wol07]. The application of a Lipschitz truncation made it possible

to extend further the existence result to the range r > 2d
d+2

[FMS03, DMS08, DRW10,

BDF12, BDS13] (see also related results in [MNRR96, MNR93, BBN94, Ama94,

MNR01, BdV05, DR05, BP07, BKR11]). This can be considered the optimal range

because it guarantees that W 1,r(Ω)d compactly embeds into L2(Ω)d, and thus the

convective term can be handled as a compact perturbation.

Another type of non-Newtonian response is that of fluids with a yield stress (also

called viscoplastic fluids). These are materials which flow only when the magnitude

of the shear stress SSS exceeds some critical value, and otherwise behave like a solid;

this is usually expressed by means of the dichotomy: |SSS| ≤ τ∗ ⇐⇒ DDD = 0,

|SSS| > τ∗ ⇐⇒ SSS = 2ν(|DDD|)DDD +
τ∗
|DDD|DDD,

(1.12)

where τ∗ ≥ 0 is the yield stress, and ν is a function defining for example any of the

relations (1.7)–(1.9). This is usually called the Herschel–Bulkley constitutive relation

[HB26], and when ν(|DDD|) ≡ ν0 is a constant then it is called the Bingham constitutive

relation [Bin22]. Such models can be used to describe waxy crude oil, toothpaste,

paint, pastes, drilling muds, and mango jam, among other things [BDY83, GW10,
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BS13, LF09] (see [BFO14] for a nice survey on various aspects of the modeling and

simulation of viscoplastic fluids).

There exist mainly two approaches in the mathematical analysis of viscoplastic

flow: the use of variational methods by framing the problem in terms of variational

inequalities [DL76, FG83, Lad68, NW79, Ser91, LS95, FS00], or by enforcing the

constitutive relation pointwise and approximating it with regularised constitutive laws

[She02, MRS05, ER12]; with the exception of [ER12], all the results are restricted to

the case r > 3d+2
d+2

(r > 3d
d+2

in the stationary case);recall the coercivity property (1.10)

associated with ν. While it is possible to study (1.12) as a model of the form SSS = S(DDD),

this forces one to consider it as a discontinuous or multi-valued constitutive relation

(this is the point of view taken in [GMŚ07, Mam07]); an important observation is

that (1.12) can be very naturally written as a continuous implicit relation instead:

2ν(|DDD|)DDD =
(|SSS| − τ∗)+

|SSS| SSS, (1.13)

where it is assumed that the expression on the right hand side takes the value 0 when

SSS = 0. This motivates the introduction of a general constitutive relation of the form

GGG(·,SSS,DDD(u)) = 0 a.e. in Q, (1.14)

where GGG : Q × Rd×d
sym × Rd×d

sym → Rd×d
sym; here Q is used to denote the parabolic cylinder

(0, T )×Ω. The relationship between SSS and DDD is not necessarily explicit anymore, and

the equation (1.14) is even more general in that it allows the constitutive relation

to vary with space and time. The framework of implicitly constituted fluids was

introduced by Rajagopal in [Raj03, Raj06]; this provided an alternative approach to

the phenomenological theory of constitutive relations that enabled the description

of complex rheological behaviour not achievable by the traditional models, and has

been very fruitful in the modeling of non-Newtonian fluids (see e.g. [MPR10, PR12,

LRR13, PP15, JP15] for further developments). A very important feature of implicitly

constituted models is that they are compatible with the thermodynamical framework

of Rajagopal and Srinivasa [RS00, RS04, RS08] that guarantees the consistency of

the constitutive relations with the second law of thermodynamics. This procedure

consists of specifying constitutive relations for the Helmholtz free energy and the rate

of entropy production (two scalar quantities), and using that information to derive a

relation between the tensorial quantities SSS and DDD in a way that the thermodynamical

consistency is guaranteed (as opposed to trying to verify it a posteriori). This method

has been used to obtain completely new constitutive relations, e.g. to model the

vulcanization of rubber [KR11], or the response of asphalt binder [MRT15].
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The framework defined by (1.14) can also incorporate very naturally models in

which the viscosity depends on the shear stress SSS (this type of response can be ob-

served in ice, poly(vinyl choride) solutions and molten polyethylene, for instance

[MB65, SMP94, Gle55, See64, Bla95, PW03]), such as the Ellis constitutive relation

(see e.g [MB65]):

SSS =
ν0

1 + α|SSS|q−2
DDD ν0, α > 0, q ∈ (1, 2), (1.15)

or the model introduced by Glen [Gle55]:

SSS = α|SSS|q−2DDD α > 0, q > 1. (1.16)

The symmetric treatment of SSS and DDD by models of the type (1.14) also offers the

possibility of swapping the roles of SSS and DDD in models with an activation parameter

such as (1.12). This leads to constitutive relations describing an inviscid Euler fluid

before activation (SSS = 0), and a power-law or Navier–Stokes fluid when the mag-

nitude of the symmetric velocity gradient surpasses some critical value. Models of

this type (sometimes called of activated Euler type) had not been studied prior to

the introduction of implicitly constituted models, due to the prevalence of explicit

relations of the kind SSS = S(DDD) in the literature, and merit further consideration (see

[BMR20] for a classification of various models defined by implicit constitutive rela-

tions); one possible application could be the simulation of boundary layers, where the

basic assumption is that the effects of viscosity are negligible away from solid walls.

Although they will not be considered in this work, models with a pressure depen-

dent viscosity and/or yield stress are in fact more naturally written as an implicitly

constituted relation [BMR09, HLS12, JFP06]:

TTT = −pIII +

(
2ν(|DDD|, p) +

τ(p)

|DDD|

)
DDD =

(
2ν(|DDD|, 1

d
tr(TTT)) +

τ(1
d

tr(TTT))

|DDD|

)
DDD. (1.17)

Such models would not be entirely justified with the traditional approach, since in

classical continuum mechanics it is assumed that the constraint forces do not perform

work, and therefore the constitutively determined part cannot depend on the pressure

[Raj03]. Implicitly constituted theories are also advantageous in the modeling of

viscoelastic fluids [Raj03], fluids that exhibit a non-monotone response between SSS

and DDD [JP18, JMPT19], and elastic solids, including models with nonlinear behaviour

at small strains [Raj07, Raj10, Raj14, BMRS14].

For a rigorous mathematical analysis of models of implicitly constituted fluids of

the type (1.14), the reader is referred to [BGMŚ09, BGMŚ12]. Existence of weak

6



solutions for problems of this type was obtained in [BGMŚ09] and [BGMŚ12] for the

steady and unsteady cases, respectively. Some extensions include [BMPS18, MZ18,

PR18, BM16], where additional physical responses are incorporated into the system.

Boundary conditions

An important issue in the modeling of fluid flow is the choice of boundary conditions.

In this work, the analysis will consider internal flows only, that is, we will assume

that u · n = 0 on ∂Ω, where n denotes the outward pointing normal vector to Ω.

Let us denote the tangential component of the velocity by uτ := u − (u · n)n. In

the mathematical modeling of viscous fluids the most widespread choice is the no-slip

condition:

uτ = 0, (1.18)

which assumes that the fluid sticks to solid walls. An important issue that arises

as a consequence of this choice is that, for unsteady flow in Lipschitz domains (such

as the polyhedral domains used commonly with the finite element method), even

for Newtonian flow, the pressure is in general only a distribution in time [Tem84]:

p ∈ W−1,∞(0, T ;L2(Ω)), which can cause technical difficulties.

In some applications it has been observed that the no-slip condition (1.18) does not

provide an adequate approximation to experimental results: in certain regimes fluids

exhibit some degree of slip at the walls [HL03, Den01, Den04]. Navier’s boundary

condition is perhaps the simplest boundary condition that allows for slip [Nav23]:

uτ = −γ(SSSn)τ γ > 0. (1.19)

Besides it being potentially a better model, the advantage of Navier’s boundary con-

dition is that (under appropriate conditions), it allows one to obtain a globally inte-

grable pressure p ∈ L1((0, T ) × Ω). Boundary conditions can themselves be consid-

ered as constitutive relations and one should ensure that they are thermodynamically

consistent [MP16]. Further generalisations have appeared in the literature in which

the boundary condition can even be defined implicitly h(uτ , (SSSn)τ ) = 0 (see e.g.

[BM17, BMR20]), but these will not be considered in this thesis.

The temperature equation

So far we have mainly discussed models that neglect thermal effects, but in applica-

tions they can be of fundamental importance (e.g. the viscosity of most liquids de-

creases with temperature) [Bri31, SW59, CSC+78, YPS81, SDL85, Sze98, AHMM03].
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In this work we will assume that the internal energy and the temperature are related

through the linear equation e = cvθ, where cv > 0 is the specific heat capacity at

constant volume. As a constitutive relation we will exclusively work with Fourier’s

law:

q = −κ(θ)∇θ, (1.20)

where κ > 0 is the heat conductivity and it possibly depends on the temperature. If

we multiply the momentum equation (1.1b) by u and substract the resulting equation

from the energy balance (1.1d), we obtain a form of the temperature equation that

is more commonly employed in applications:

∂t(ρ∗cvθ) + div(ρ∗cvθu)− div(κ(θ)∇θ) = SSS :DDD(u). (1.21)

When dealing with weak solutions, the equations (1.21) and (1.1d) are in general no

longer equivalent, as the argument requires one to test the momentum equation with

u. The effects of viscous dissipation are very often neglected and the equation is

written as

∂tθ + u · ∇θ − div(κ̃(θ)∇θ) = 0, (1.22)

where κ̃ := κ
cvρ∗

is the thermal diffusion rate. The effects of viscous heating have

been observed in many applications to be non-negligible (see e.g. [HMW75, THTS74,

VPC76, Ost58]), and for the most part we will give a preference to the system (1.21)

over (1.22).

When the viscous dissipation term SSS :DDD(u) is neglected, besides a possible tem-

perature dependence in the rheological parameters, the momentum and temperature

equations are only coupled through the advection term u ·∇θ, leading to what is usu-

ally termed forced convection: heat is transported mainly thanks to the fluid motion.

An additional heat transport mechanism that is often considered is that of natural

convection, for which the main assumption is that the body force is given by gravity

and that the variation of density depends linearly on the temperature perturbations:

f = −ged,
ρ− ρ∗ = ρ∗β(θ − θC),

(1.23)

where g is the acceleration due to gravity, ed is the unit vector pointing against gravity,

β is the volumetric coefficient of thermal expansion, and ρ∗ and θC are reference values

for the density and temperature, respectively. This is called the Oberbeck–Boussinesq
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approximation [Obe79, Bou03] and leads to the system:

ρ∗∂tu+ ρ∗ div(u⊗ u)− divSSS +∇p = −ρ∗βg(θ − θC)ed in Ω, (1.24a)

divu = 0 in Ω, (1.24b)

ρ∗cp(∂θ + u · ∇θ)− div(κ(θ)∇θ) = 0 in Ω, (1.24c)

where cp is the specific heat capacity at constant pressure. Strictly speaking, a rig-

orous derivation of the system (1.24) involves performing a singular limit in which

one assumes that the fluid is mechanically incompressible but thermally compressible

[GG76, RRS96, FN09, KR16]. Viscous dissipation can also be taken into account by

the Oberbeck–Boussinesq approximation, and the following equation would be used

instead of (1.24c) (see [KRT00, KRT06] for a rigorous derivation):

ρ∗cp∂tθ + ρ∗cp div(uθ) + βρ∗gθu · ed − div(κ(θ)∇θ) = SSS :DDD(u). (1.24d)

The addition of the adiabatic heating term βρ∗gθu · ed is necessary to ensure the

energy is appropriately balanced [BLP92, THTS74].

The incompressible system with (1.21) and the Oberbeck–Boussinesq system (1.24)

have different origins; e.g. the temperature appearing in (1.21) is an absolute tem-

perature (and is therefore strictly positive), while the one appearing in (1.24) is a

perturbation with respect to a reference temperature. However, both systems have a

similar enough structure so that the same tools can be used to analyse them.

Several works have been published that tackle the question of existence of solutions

for systems describing incompressible heat-conducting fluids, but some simplifying

assumptions were usually made: viscous dissipation was ignored in [Mor88, Kag93,

Gon90, His91, HY92, MRT94, DG98, SK00, FN09], the works [Con97, CM97, Con00,

MRT94] employed a setting in which the velocity u is an admissible test function in the

balance of momentum (which excludes the Navier–Stokes model in three dimensions),

and a weaker notion of solution such as a distributional solution or a weak solution

with a defect measure was considered in [Lio96, DG98, Rou01, NR01, ABG09] (see

also [Ama95, Ben11] for existence results for strong solutions with small data). The

main difficulty in the analysis is that the viscous heating term SSS :DDD(u) is a priori only

in L1, which makes the application of compactness arguments problematic.

A breakthrough came with the work of Buĺıček, Feireisl, and Málek [BFM09]

(see also [FM06]), where it was observed that, even though it contains additional

couplings, the equation for the total energy (1.1d) is more amenable to weak con-

vergence arguments than (1.21) and therefore should be preferred in the analysis; in
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particular, the existence of bona fide weak solutions for the Navier–Stokes–Fourier

system with temperature-dependent viscosity and heat-conductivity was established

for large data. The relation (1.21) becomes an inequality:

∂t(ρ∗cvθ) + div(ρ∗cvθu)− div(κ(θ)∇θ) ≥ SSS :DDD(u), (1.25)

which acts as an entropy inequality and provides a generalisation of the concept of

suitable weak solutions of the isothermal Navier–Stokes system of Caffarelli, Kohn and

Nirenberg [CKN82]. This existence result was extended by Maringová and Žabenský

to the implicitly constituted setting [MZ18], employing a constitutive relation that

in particular captured the Bingham and activated Euler models with temperature-

dependent viscosity and activation parameters. A drawback of this approach is that

the equation for the total energy (1.1d) contains the pressure p, and thus boundary

conditions that allow some slip such as (1.19) must be employed, in order to guarantee

its global integrability.

Numerical approximation of non-Newtonian flow

The past couple of decades have seen many contributions to the numerical analy-

sis of systems with an r-structure (recall (1.10)). Usually employing tools firstly

developed for the study of elliptic and parabolic p-Laplace-type systems [GM75,

Cho89, BL93a, BL94a, Far98, DER07, BR20a, BR20b], the first results dealing with

non-Newtonian flow neglected the convective term and focused mostly on a priori

[BN90, DG90, BL93b, San93, BL94b, Bao02, BBDR12, Hir13, ER18] and a poste-

riori [BEA91, Sim95, Pad97, BB98, CF01, BS08] error estimates, often focusing on

Carreau’s constitutive relation. Of special importance we mention the works of Hirn

and Belenki et al. [BBDR12, HLS12], where (motivated by ideas from Barrett and

Liu [BL94b]), a nonlinear measure of the error (the so-called quasi-norms) allowed

the authors to establish optimal error estimates for r ≤ 2. This argument was then

extended to the unsteady case in [ER18]. For a different approach for the quasi-Stokes

system with singular forcing see also the recent work [OS20].

The analysis of the unsteady systems with an r-structure that takes into ac-

count the convective term began with the work of Diening, Prohl and Růžička [PR01,

DPR02] (see also the important contributions of Heywood and Rannacher to the

analysis of the Newtonian problem [HR82, HR86, HR88, HR90]). In those works,

suboptimal error estimates for some interval r ∈ (r0, 2], with r0 < 2, and a fully

implicit discretisation are obtained; these estimates yield a convergence result to the

strong solution that is known to exist, at least for short times, in the setting therein
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considered (the use of periodic boundary conditions is crucial). By adding a stabili-

sation term and using a semi-implicit discretisation, this result was extended to the

range r ∈ (3
2
, 2] in [DPR06]; the use of quasi-norms then allowed the authors to avoid

the stabilisation terms and to obtain an optimal estimate with respect to time for the

first time in [BDR09]. Finally, by combining ideas from [BDR09, BBDR12, DER07],

an optimal estimate with respect to both space and time was established in [BDR15].

The approach just described based on error estimates is likely to be of little use

in the analysis of implicitly constituted fluids, since there are no higher regularity

estimates available. For this reason, in this work we will aim for qualitative conver-

gence results that establish the weak convergence of (a subsequence of) the sequence

of numerical approximations to a weak solution of the system. This point of view

is taken in [CHP10], where convergence for the system with an explicit constitutive

relation with r-structure and no-slip boundary conditions is established for r > 2d+1
d+2

,

with the help of an L∞-truncation; see also [Emm08] for a convergence result related

to a two-step time discretisation for r ≥ 3d+2
d+2

.

Regarding the numerical analysis of implicitly constituted fluids, very few results

have been published so far. In [DKS13] the convergence of a finite element dis-

cretisation to a weak solution of the problem was proved for the steady case, and

the corresponding a-posteriori analysis was carried out in [KS16]. The analysis in

[DKS13] follows that of [BFM09], where in particular the nonlinear limit associated

with the constitutive relation is identified using Young measures; the development of

a discrete version of the Lipschitz truncation in that work made it possible to obtain

a convergence result in the range r > 2d
d+1

for discretely divergence-free elements,

and r > 2d
d+2

for exactly divergence-free elements. More recently, this approach was

extended to the time-dependent case in [ST19], where thanks to the addition of a

penalty term, convergence of a fully implicit discretization was established in the

optimal range r > 2d
d+2

. Also, several finite element discretisations were compared

computationally in [HMST17] for problems with Bingham and stress-power-law-like

rheology.

Numerical methods for the incompressible Navier–Stokes equations are usually

based on a velocity-pressure formulation, and extensive studies have been carried

out over the years in relation to this (see e.g. [GR86, BF91]). Such a formulation is

possible, because in the case of a Newtonian fluid the explicit constitutive relation SSS =

2νDDD(u) allows one to eliminate the shear stress SSS from the momentum equation. In

contrast, formulations that treat the stress as a fundamental unknown have also been

introduced to study problems in elasticity and incompressible flows [ABD84, BFT93,
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FF93, FM96, AW02, EHS08, FNP08, FNP09, How09, HW13]; the key advantages

of these formulations are that they are naturally applicable to nonlinear constitutive

models where it is not possible to eliminate the stress, and that they allow the direct

computation of the stress without resorting to numerical differentiation. In this work

we will consider the mathematical analysis of mixed formulations that treat the stress

as an unknown, and illustrate their performance by means of numerical simulations.

Knowing that a convergent discretisation is available, a natural question that

follows is how to solve the resulting discrete systems in an efficient manner. After

Newton linearisation the system takes the following form[
A B>

B 0

] [
z
p

]
=

[
f
g

]
, (1.26)

where z = (SSS,u), z = (θ,u)>, or z = (SSS, θ,u)>, depending on whether a 3-field

or a 4-field formulation is employed, and whether one is dealing with the isothermal

or anisothermal system; B represents the divergence operator acting on the velocity

space. After performing Gaussian elimination on the blocks, the problem of solving

(1.26) reduces to solving smaller systems involving A and the Schur complement

S := −BA−1B>. In many cases, such as in a velocity-pressure formulation of the

Stokes system, A represents a symmetric and coercive operator which can be inverted

efficiently, and so the challenge is to develop an effective and efficient approximation

for the Schur complement inverse S̃−1. For the Stokes system with constant viscosity

ν it is known that the choice S̃−1 = −νM−1
p , where Mp is the pressure mass matrix,

results in a spectrally equivalent preconditioner [SW94, MW11]. When the convective

term is introduced to the formulation, the performance of this strategy degrades as

the Reynolds number Re gets larger (meaning that the number of Krylov subspace

iterations per nonlinear iteration grows with Re) [EHS+06]. This loss of robustness

occurs also with other well-known preconditioners, such as the PCD [KLW02] and

LSC [EHS+06] preconditioners (see e.g. [ESW14]). Block preconditioners based on

PCD for the steady version of the Newtonian Oberbeck–Boussinesq system (1.24)

without viscous dissipation were proposed in [HK12, KABH17], where it was also

observed that the number of linear iterations increased strongly with the Rayleigh

number Ra.

Alternatively, one can consider the system with an augmented Lagrangian term,

with γ > 0: [
A+ γB>M−1

p B B>

B 0

] [
z
p

]
=

[
f + γB>M−1

p g
g

]
, (1.27)
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which has the same solution as (1.26), since Bz = g. The advantage of this is

that using the Sherman–Morrison–Woodbury formula (see e.g. [Bac06]), the Schur

complement can be approximated in a straightforward way:

S−1 = (−B(A+ γB>M−1
p B)−1B>)−1 = −(BA−1B>)−1 − γM−1

p

≈ −(ν + γ)M−1
p ,

and the approximation gets better as γ →∞. The difficulty now becomes solving the

linear system associated with top block A+γB>M−1
p B efficiently, since the augmented

Lagrangian term possesses a large kernel (the set of all discretely divergence-free

velocities). This approach was used for the 2D Navier–Stokes system by Benzi and

Olshanskii [BO06] and later extended to three dimensions by Farrell, Mitchell and

Wechsung [FMW19]. The strategy for efficiently solving the top block in these works

was based on ideas developed by Schöberl in the context of nearly incompressible

elasticity [Sch99b, Sch99a], where it became clear that constructing robust relaxation

and transfer operators is essential for obtaining a γ-robust multigrid algorithm.

Aim and Outline

The convergence results here could be considered an extension of the works [DKS13,

ST19, HMST17]. One of the advantages of the approach presented here with respect

to [DKS13, ST19] is that it can handle the constitutive relation in a more natural

way, since the stress plays a more prominent role in the weak formulation considered.

In addition, in [DKS13, ST19] no numerical simulations were presented. On the other

hand, while extensive numerical computations with 3-field and 4-field formulations

were performed in [HMST17], no convergence analysis of the methods considered was

discussed. The work presented here fills this gap.

After introducing the necessary tools and notation in Chapter 2, a convergence

result for a fully implicit, stress-velocity-pressure formulation of the isothermal sys-

tem is established in Chapter 3. The approximation scheme employed in Chapter

3 contains four levels: an approximation of the monotone graph by continuous and

explicit functions, the Galerkin and time discretisations, and a penalty term that en-

sures that the velocity becomes an admissible test function. The convergence proof is

based on compactness arguments and one of the crucial steps in the proof is to show

that the limiting functions satisfy the constitutive relation. A helpful tool we employ

in order to help with this step, is a localised version of Minty’s lemma for monotone
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graphs, which requires one to prove an inequality of the type:

lim sup
n→∞

∫
Q

SSSn :DDD(un) ≤
∫
Q

SSS :DDD(u). (1.28)

Whenever testing the momentum equation with the velocity is allowed, and thus

an energy identity is available, obtaining an inequality such as (1.28) is relatively

straightforward. In the final stages of the proof where the velocity is not an admissible

test function, the argument relies on the use of a Lipschitz truncation of the error

un − u. The contents of Chapter 3 have been published as:

P.E. Farrell, P.A. Gazca-Orozco, E. Süli. Numerical analysis of unsteady

implicitly constituted incompressible fluids: 3-field formulation. SIAM J. Numer.

Anal., 58(1):757–787, 2020.

The ideas of Benzi and Olshanskii [BO06] and Farrell et al [FMW19] are applied in

Chapter 4, with the aim of developing a preconditioner for the 3-field formulation of

the steady system, employing a discretisation based on the Scott–Vogelius pair for the

velocity and pressure, which has the advantage of preserving the divergence constraint

exactly (to machine precision and solver tolerances). This builds on previous work for

the Navier–Stokes system [FMSW20a]; the main challenge is the development of an

appropriate inner solver for the augmented stress-velocity block that is required in the

implicitly constituted non-Newtonian case. The inner system presents a saddle point

structure of its own, which we tackle with suitable monolithic multigrid techniques.

The work presented in this chapter has been accepted for publication as:

P.E. Farrell, P.A. Gazca-Orozco. An augmented Lagrangian preconditioner for

implicitly-constituted non-Newtonian incompressible flow. SIAM J. Sci. Comput.

To appear.

Although the literature dealing with the numerical computation of heat-conducting

fluids, including occasionally nonlinear rheology, is vast (as a very incomplete list of

references we can mention [BL90, BMPT95, ZVF06, TCP10, ÇK11, LBBA13, HK15,

DA16, DFG18]), relatively few consider temperature-dependent material parameters

(see e.g. [HL88, EL99, FG02, VWA05, TT05, PTBC08, CSD15, OZ17, AHMS18,

ABN18, AG20, AOS20]), and to our knowledge there are no rigorous convergence

results available for unsteady non-Newtonian flows. The first half of Chapter 5 is

devoted to filling this gap by performing a convergence analysis of a finite element

discretisation of the unsteady system of forced convection introduced by Maringová

and Žabenský [MZ18], thus establishing the first convergence result for the numerical
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approximation of unsteady heat-conducting implicitly constituted fluids. This re-

sult employs a quasi-compressible approximation and is of a highly technical nature,

due to the presence of the viscous dissipation term SSS :DDD(u). In order to present a

simplified version of the argument, we then proceed to analyse the steady Oberbeck–

Boussinesq system (1.24), supplemented with an implicit constitutive relation, and

obtain convergence of the numerical approximations to a weak solution of the system.

This last result in particular improves that of [DKS13] by employing reconstruction

operators, therefore obtaining convergence in the whole admissible range r > 2d
d+2

,

regardless of whether the elements are exactly divergence-free or not.

An augmented Lagrangian-based preconditioner (AL) for buoyancy-driven flow

was already presented in [KADH18] for a stabilised P1–P1 velocity-pressure pair, in

which the augmented velocity block was substituted by A + γB>diag(Mp)
−1B and

handled by GMRES preconditioned with algebraic multigrid; in that work it was

shown that the AL preconditioner performed better than non-augmented variants, at

least for Prandtl and Rayleigh numbers in the ranges 0.04 ≤ Pr ≤ 1, 500 ≤ Ra ≤
10000. In the final part of Chapter 5, we present an alternative preconditioner based

on the results of Chapter 4. Numerical experiments with the preconditioner will

show good performance with the Navier–Stokes and power-law models for a wider

range of non-dimensional numbers, even with temperature-dependent viscosity, heat

conductivity, and viscous dissipation. It is remarkable that the robustness properties

of the preconditioner hold in this case, given that the available parameter-robust

multigrid theory pioneered by Schöberl does not apply, since the block A is non-

symmetric and non-coercive. The results regarding the steady Oberbeck–Boussinesq

system from Chapter 5, both the convergence result and the augmented Lagrangian

preconditioner, have been submitted for publication:

P.E. Farrell, P.A. Gazca-Orozco, E. Süli. Finite element approximation and

augmented Lagrangian preconditioning for anisothermal implicitly-constituted

non-Newtonian flow. Math. Comp. Submitted.
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Chapter 2

Preliminaries

2.1 Function spaces

Throughout this work we will assume that Ω ⊂ Rd, where d ∈ {2, 3} is the spatial di-

mension, is a bounded Lipschitz polygonal domain, and we will use standard notation

for Lebesgue, Sobolev and Bochner–Sobolev spaces (for instance (W k,r(Ω), ‖·‖Wk,r(Ω))

and (Lq(0, T ;W n,r(Ω)), ‖ · ‖Lq(0,T ;Wn,r(Ω)))). We will define W k,r
0 (Ω) for r ∈ [1,∞)

as the closure of the space of smooth functions with compact support C∞0 (Ω) with

respect to the norm ‖ · ‖Wk,r(Ω) and we will denote the dual space of W 1,r
0 (Ω) by

W−1,r′(Ω). Here r′ is used to denote the Hölder conjugate of r, i.e. the number de-

fined by the relation 1/r + 1/r′ = 1. The duality pairing will be written in the usual

way using brackets 〈·, ·〉. The space of traces on the boundary of functions in W 1,r(Ω)

will be denoted by W 1/r′,r(∂Ω). When r = 2 we will write H1(Ω) := W 1,2(Ω) and

H−1(Ω) := (H1
0 (Ω))∗.

If X is a Banach space, Cw([0, T ];X) will be used to denote the space of continuous

functions in time with respect to the weak topology of X. For r ∈ [1,∞) and Γ ⊂ ∂Ω

we also define the following useful subspaces:

Lr0(Ω) :=

{
q ∈ Lr(Ω) :

∫
Ω

q = 0

}
,

L2
div(Ω)d := {v ∈ C∞0 (Ω)d : div v = 0}‖·‖L2(Ω) ,

W 1,r
0,div(Ω)d := {v ∈ C∞0 (Ω)d : div v = 0}‖·‖W1,r(Ω) ,

W 1,r
Γ (Ω) := {w ∈ C∞(Ω)d : w|Γ = 0}‖·‖W1,r(Ω) ,

Lrsym(Ω)d×d := {τ ∈ Lr(Ω)d×d : τ> = τ},
Lrsym,tr(Ω)d×d := {τ ∈ Lrsym(Ω)d×d : tr(τ ) = 0},
W

1/r′,r
00 (Γ) := {w ∈ W 1,r(Ω) : w = 0 on ∂Ω \ Γ}.
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In the definition of the space Lrtr(Q)d×d above, tr(τ ) denotes the usual matrix

trace of the d× d matrix function τ . In the various estimates the letter c will denote

a generic positive constant whose exact value could change from line to line, whenever

the explicit dependence on the parameters is not important.

When working with boundary conditions for the velocity that allow some slip, we

will employ function spaces for which only the normal component is required to be

zero:

C∞n (Ω)d := {v ∈ C∞(Ω)d : v · n = 0},
C∞n,div(Ω)d := {v ∈ C∞n (Ω)d : div v = 0},

W k,p
n (Ω)d := C∞n (Ω)d

‖·‖
Wk,p(Ω) , (2.1)

W k,p
n,div(Ω)d := {v ∈ W k,p

n (Ω)d : div v = 0},
W−1,p′

n (Ω)d := (W 1,p
n (Ω)d)∗,

where k ∈ N and p > 1. For these spaces appropriate Poincaré and Korn inequalities

also hold [BMR20] for r > 1:

‖v‖W 1,r(Ω)d ≤ c‖∇v‖Lr(Ω) ∀v ∈ W 1,r
n (Ω)d, (2.2a)

‖∇v‖Lr(Ω) ≤ c(‖DDD(v)‖Lr(Ω) + ‖v‖L2(∂Ω)) ∀v ∈ W 1,r
n (Ω)d with vτ ∈ L2(∂Ω)d,

(2.2b)

The advantage of the spaces (2.1) is that they admit a Helmholtz decomposition

with suitable regularity. In order to make this statement precise, suppose the following

Neumann problem

∆h = z in Ω,

∇h · n = 0 on ∂Ω, (2.3)∫
Ω

h = 0,

is W 2,q-regular; i.e. the mapping z ∈ Lq0(Ω) 7→ h ∈ W 2,q(Ω) is well defined and

bounded. Then by choosing z = divu and denoting the corresponding solution

of (2.3) by hu, with u ∈ W 1,q
n (Ω)d, and defining udiv := u − ∇hu, we have the

decomposition:

u = udiv +∇hu, (2.4)

where by construction divudiv = 0. Moreover, the following estimates hold

‖hu‖W 2,q(Ω) ≤ c‖u‖W 1,q(Ω), ‖udiv‖W 1,q(Ω) ≤ c‖u‖W 1,q(Ω), (2.5a)

‖hu‖W 1,q(Ω) ≤ c‖u‖Lq(Ω), ‖udiv‖Lq(Ω) ≤ c‖u‖Lq(Ω). (2.5b)
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The required W 2,q-regularity of the problem (2.3) is satisfied for any q > 1 if the

domain Ω is of class C1,1 or if the boundary is defined by piecewise smooth faces and

edges given by non-intersecting closed smooth curves, with some restriction on the

angles (see e.g. [Gri85, Prop. 2.5.2.3] or [MR10, Cor. 8.3.3]). However, since we wish

to work with polygonal/polyhedral domains, these results are of limited use here.

In two dimensions it is known that the desired regularity result holds in any convex

polygonal domain [Dau92], and the following lemma states the conditions required

for the result to hold in a convex three-dimensional polyhedral domain.

Lemma 2.1.1 ([MR10, Thm. 8.3.10]). Suppose that Ω ⊂ R3 is a convex polyhedral

domain with edges M1, . . . ,Ml and denote the interior angle between the two faces of

Ω with common edge Mi by θi, for i ∈ {1, . . . , l}. Consider the problem

∆u = f in Ω, ∇u · n = 0 on ∂Ω \ S, (2.6)

where S is the set of edge points and vertices. Then the following assertions hold

about the weak solution u ∈ W 1,2(Ω) of (2.6):

1. If f ∈ (W 1,p′(Ω))∗ with p ∈ [2,∞), then u ∈ W 1,p(Ω).

2. If f ∈ Lp(Ω) ∩ (W 1,2(Ω))∗ with p ∈ (1, 3] and we have that π
θi
> 2 − 2

p
for all

i ∈ {1, . . . , l}, then u ∈ W 2,p(Ω).

2.2 Interpolation inequalities

The following embeddings will be useful when deriving various estimates. Assume

that the Banach spaces (W1,W2,W3) form an interpolation triple in the sense that,

for all v ∈ W1,

‖v‖W2 ≤ c‖v‖λW1
‖v‖1−λ

W3
, for some λ ∈ (0, 1),

andW1 ↪→ W2 ↪→ W3. Then (cf. [Rou13]) Lr(0, T ;W1)∩L∞(0, T ;W3) ↪→ Lr/λ(0, T ;W2),

for r ∈ [1,∞) and, for all v ∈ Lr(0, T ;W1) ∩ L∞(0, T ;W3),

‖v‖Lr/λ(0,T ;W2) ≤ c‖v‖1−λ
L∞(0,T ;W3)‖v‖λLr(0,T ;W1). (2.7)

An example of an interpolation triple that can be combined with this result is given

by the Gagliardo–Nirenberg inequality, which states that for given p, r ∈ [1,∞), there

is a constant cp,r > 0 such that [DiB93]:

‖v‖Ls(Ω) ≤ cp,r‖∇v‖λLr(Ω)‖v‖1−λ
Lp(Ω) ∀ v ∈ W 1,r

0 (Ω) ∩ Lp(Ω), (2.8)
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provided that s ∈ [1,∞) and λ ∈ (0, 1) satisfy

λ =

1
p
− 1

s

1
d
− 1

r
+ 1

p

.

A particularly useful example can be obtained if we assume that r > 2d
d+2

and take

p = 2 and λ = d
d+2

:

‖v‖
L
r(d+2)
d (Q)

≤ c‖∇v‖λLr(Q)‖v‖1−λ
L∞(0,T ;L2(Ω)) ∀ v ∈ Lr(0, T ;W 1,r

0 (Ω))∩L∞(0, T ;L2(Ω)).

(2.9)

2.3 Compactness and continuity in time

In this work we will use Simon’s compactness lemma (see [Sim87]) instead of the

usual Aubin–Lions lemma to extract convergent subsequences when taking the dis-

cretisation limit in the time-dependent problem. The reason behind this choice is that

uniform estimates for the time derivative are needed in order to apply the Aubin–

Lions lemma, for which the stability of the L2-projection in Sobolev norms is essential,

which imposes some restrictions on the mesh (see e.g. [CT87]).

Assume that X and H are Banach spaces such that the compact embedding

X ↪→↪→ H holds. Simon’s lemma states that if U ⊂ Lp(0, T ;H), for some p ∈ [1,∞),

and it satisfies:

• U is bounded in L1
loc(0, T ;X);

•
∫ T−ε

0
‖v(t+ ε, ·)− v(t, ·)‖pH → 0, as ε→ 0, uniformly for v ∈ U ;

then U is relatively compact in Lp(0, T ;H).

Let X and V be reflexive Banach spaces such that X ↪→ V densely and let V ∗

be the dual space of V . The following continuity properties (see [Rou13]) will be

important when identifying the initial condition:

v ∈ L1(0, T ;V ∗), ∂tv ∈ L1(0, T ;V ∗) =⇒ v ∈ C([0, T ];V ∗), (2.10)

v ∈ L∞(0, T ;X) ∩ Cw([0, T ];V ) =⇒ v ∈ Cw([0, T ];X). (2.11)

2.4 Implicit constitutive relation and its approxi-

mation

In the mathematical analysis of these systems it is more convenient to work not with

the function GGG, but with its graph A, which is introduced in the usual way:

(DDD,SSS) ∈ A(·) ⇐⇒ GGG(·,SSS,DDD) = 0. (2.12)
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The essential assumption will be that A is a maximal monotone r-graph for some

r > 1, which means that the following properties hold for almost every z ∈ Q:

(A1) [A includes the origin] (0,0) ∈ A(z).

(A2) [A is a monotone graph] For every (DDD1,SSS1), (DDD2,SSS2) ∈ A(z),

(SSS1 − SSS2) : (DDD1 −DDD2) ≥ 0.

(A3) [A is maximal monotone] If (DDD,SSS) ∈ Rd×d
sym × Rd×d

sym is such that

(ŜSS− SSS) : (D̂DD−DDD) ≥ 0 for all (D̂DD, ŜSS) ∈ A(z),

then (DDD,SSS) ∈ A(z).

(A4) [A is an r-graph] There is a non-negative function m ∈ L1(Q) and a constant

c > 0 such that

SSS :DDD ≥ −m+ c(|DDD|r + |SSS|r′) for all (DDD,SSS) ∈ A(z).

(A5) [Measurability ] The set-valued map z 7→ A(z) is L(Q)–(B(Rd×d
sym) ⊗ B(Rd×d

sym))

measurable; here L(Q) denotes the family of Lebesgue measurable subsets of Q

and B(Rd×d
sym) is the family of Borel subsets of Rd×d

sym.

(A6) [Compatibility ] For any (DDD,SSS) ∈ A(z) we have that

tr(DDD) = 0⇐⇒ tr(SSS) = 0.

Assumption (A6) was not included in the original works [BGMŚ09, BGMŚ12, DKS13],

but it is needed for consistency with the physical property that SSS is traceless if and

only if the velocity field is divergence-free (see the discussion in [Tsc18]). To illustrate

this point, consider an implicit constitutive relation describing a Bingham fluid:

GGG(SSS,DDD) = (τ∗ + (|SSS| − τ∗)+)DDD− (|SSS| − τ∗)+SSS = 0, (2.13)

where τ∗ > 0 is the yield stress. The relation (2.13) induces a perfectly well defined

graph in Rd×d
sym,tr × Rd×d

sym,tr, but when considered in the bigger space Rd×d
sym × Rd×d

sym an

inconsistency appears: we could have admissible physical states with divu = 0 but

trSSS 6= 0 (e.g. by taking |SSS| ≤ τ∗ this does not lead to a contradiction), which does

not seem desirable from the modelling point of view. This could be addressed by

extending the relation to Rd×d
sym × Rd×d

sym in the following way:

G̃GG(SSS,DDD) = (τ∗ + (|SSSδ| − τ∗)+)(DDD− 1
d

tr(SSS)III)− (|SSSδ| − τ∗)+SSSδ = 0, (2.14)
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where SSSδ := SSS− 1
d

tr(SSS)III. The graph Ã induced by (2.14) coincides with the graph A
induced by (2.13) when the matrices are traceless, it does not present the inconsistency

mentioned above, and it can be proven to satisfy the assumptions (A1)–(A5) (see

[Tsc18]). However, this expression is more involved than the usual formulations of

such fluids. This problem is fixed by either introducing the assumption (A6) or by

working instead with graphs defined on Rd×d
sym,tr × Rd×d

sym,tr. The latter could be used

when performing the PDE analysis and the proofs would remain intact, but it is not

so convenient when dealing with numerical approximations, given that one cannot

always guarantee that the discrete velocities un are pointwise divergence-free (and so

DDD(un) does not necessarily belong to Rd×d
sym,tr). We therefore choose to introduce this

extra assumption.

A very important consequence of Assumption (A5) (see [Tsc18]) is the existence

of a measurable function (usually called a selection) D : Q×Rd×d
sym → Rd×d

sym such that

(D(z,σ),σ) ∈ A(z) for all σ ∈ Rd×d
sym. In the existence results it will be useful to

approximate the selection using smooth functions. To that end, let us define the

mollification:

Dk(·,σ) :=

∫
Rd×dsym

D(·,σ − τ )ρk(τ ) dτ , (2.15)

where ρk(τ ) = kd
2
ρ(kτ ), k ∈ N, and ρ ∈ C∞0 (Rd×d

sym) is a mollification kernel. It is pos-

sible to check (see e.g. [Tsc18]) that this mollification satisfies analogous monotonicity

and coercivity properties to those of the selection D, i.e. we have that

• For every τ1, τ2 ∈ Rd×d
sym and for almost every z ∈ Q the monotonicity condition

(Dk(z, τ1)−Dk(z, τ2)) : (τ1 − τ2) ≥ 0 (2.16)

holds.

• There is a constant c∗ > 0 and a non-negative function g ∈ L1(Q) such that for

all k ∈ N, for every τ ∈ Rd×d, and for almost every z ∈ Q we have

τ : Dk(z, τ ) ≥ −g(z) + c∗(|τ |r
′
+ |Dk(z, τ )|r). (2.17)

• For any sequence {SSSk}k∈N bounded in Lr
′
(Q)d×d, we have for arbitrary BBB ∈ Rd×d

sym

and φ ∈ C∞0 (Q) with φ ≥ 0:

lim inf
k→∞

∫
Q

(Dk(·,SSSk)−D(·,BBB)) : (SSSk −BBB)φ(·) ≥ 0. (2.18)
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It is important to remark that (2.16), (2.17) and (2.18) are the essential properties; the

explicit form (2.15) of the approximation to the selection is not very important. There

are other ways to achieve the same result; for instance piecewise affine interpolation

or a generalised Yosida approximation could also be used (see [ST19, Tsc18]). The

following is a localized version of Minty’s lemma that will aid in the identification of

the implicit constitutive relation (for a proof see [BGM+12]).

Lemma 2.4.1. Let A be a maximal monotone r-graph satisfying (A1)–(A4) for some

r > 1. Suppose that {DDDn}n∈N and {SSSn}n∈N are sequences of functions defined on a

measurable set Q̂ ⊂ Q, such that:

(DDDn,SSSn) ∈ A(·) a.e. in Q̂,

DDDn ⇀ DDD weakly in Lr(Q̂)d×d,

SSSn ⇀ SSS weakly in Lr
′
(Q̂)d×d,

lim sup
n→∞

∫
Q̂

SSSn : DDDn ≤
∫
Q̂

SSS : DDD.

Then,

(DDD,SSS) ∈ A(·) a.e. in Q̂.

The requirement that (DDDn,SSSn) ∈ A(·) in Lemma 2.4.1 can be relaxed when using

certain kinds of graph approximations. For instance, when using the generalised

Yosida approximation then one only requires that the approximate solutions (DDDn,SSSn)

belong to the approximate graph An, which can simplify some convergence proofs.

This approximation is defined through (c.f. [Tsc18])

Dn(x,SSS) := {DDD ∈ Rd×d
sym : (DDD,SSS) ∈ An(x)}, (2.19)

where the approximate graph An is defined as follows

An(x) := {
(
DDD,SSS + 1

n
|DDD|r−2DDD

)
∈ Rd×d

sym × Rd×d
sym : (DDD,SSS) ∈ A(x)}, (2.20)

where x ∈ Ω. The relation (2.19) defines in fact a single-valued function that can be

employed in the definition of a finite element formulation.

Lemma 2.4.2. Let A be a maximal monotone r-graph satisfying (A1)–(A4) for some

r > 1, and let An be the generalised Yosida approximation defined by (2.20). Suppose

that {DDDn}n∈N and {SSSn}n∈N are sequences of functions defined on a measurable set

Q̂ ⊂ Q, such that:

(DDDn,SSSn) ∈ An(·) a.e. in Q̂,
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DDDn ⇀ DDD weakly in Lr(Q̂)d×d,

SSSn ⇀ SSS weakly in Lr
′
(Q̂)d×d,

lim sup
n→∞

∫
Q̂

SSSn : DDDn ≤
∫
Q̂

SSS : DDD.

Then,

(DDD,SSS) ∈ A(·) a.e. in Q̂.

2.5 Finite element approximation

In this section, the notation and assumptions regarding the finite element approxi-

mation will be presented. Consider a family of triangulations {Tn}n∈N of Ω satisfying

the following assumptions:

• (Affine equivalence). Given n ∈ N and an element K ∈ Tn, there is an affine

invertible mapping FK : K → K̂, where K̂ is the closed standard reference

simplex in Rd.

• (Shape-regularity). There is a constant cτ , independent of n, such that

hK ≤ cτρK for every K ∈ Tn, n ∈ N,

where hK := diam(K) and ρK is the diameter of the largest inscribed ball.

• The mesh size hn := maxK∈Tn hK tends to zero as n→∞.

Let V be defined as W 1,∞
0 (Ω)d or W 1,∞

n (Ω)d depending on whether the boundary

condition u = 0 or u · n = 0 is imposed on ∂Ω. For problems involving temperature

the aim is to consider Dirichlet boundary conditions imposed on a (relatively open)

subset ΓD of ∂Ω. We thus define the conforming finite element spaces associated with

the triangulation Tn as follows:

V n :=
{
v ∈ V : v|K ◦ F−1

K ∈ P̂V, K ∈ Tn
}
,

Mn :=
{
q ∈ L∞(Ω) : q|K ◦ F−1

K ∈ P̂M, K ∈ Tn
}
,

Σn :=
{
σ ∈ L∞sym(Ω)d×d : σ|K ◦ F−1

K ∈ P̂S, K ∈ Tn
}
,

Un :=
{
w ∈ W 1,∞

ΓD
(Ω) : w|K ◦ F−1

K ∈ P̂U, K ∈ Tn
}
,

where P̂V ⊂ W 1,∞(K̂)d, P̂M ⊂ L∞(K̂), P̂S ⊂ L∞sym(K̂)d×d, and P̂U ⊂ W 1,∞(K̂) are

finite-dimensional polynomial subspaces on the reference simplex K̂. Each of these
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spaces will be assumed to have a finite and locally supported basis. As in the con-

tinuous case, it will be useful to introduce the following finite-dimensional subspaces

for r > 1:

Mn
0 := Mn ∩ Lr′0 (Ω),

Σn
tr := Σn ∩ Lrsym,tr(Ω)d×d,

V n
div :=

{
v ∈ V n :

∫
Ω

q div v = 0, ∀ q ∈Mn

}
.

Assumption 2.5.1 (Approximability). For every s ∈ [1,∞) we have that

inf
v∈V n

‖v − v‖W 1,s(Ω) → 0 as n→∞ ∀v ∈ W 1,s
0 (Ω)d,

inf
q∈Mn

‖q − q‖Ls(Ω) → 0 as n→∞ ∀ q ∈ Ls(Ω),

inf
σ∈Σn

‖σ − σ‖Ls(Ω) → 0 as n→∞ ∀σ ∈ Ls(Ω)d×d,

inf
w∈Un

‖w − w‖W 1,s(Ω) → 0 as n→∞ ∀w ∈ W 1,s
ΓD

(Ω).

When employing boundary conditions for the velocity that allow slip, the first condition

holds instead for all v ∈ W 1,s
n (Ω)d.

Assumption 2.5.2 (Fortin Projector Πn
Σ). For each n ∈ N there is a linear projector

Πn
Σ : L1

sym(Ω)d×d → Σn such that:

• (Preservation of divergence). For every σ ∈ L1(Ω)d×d we have∫
Ω

σ :DDD(v) =

∫
Ω

Πn
Σ(σ) :DDD(v) ∀v ∈ V n

div.

• (Ls–stability). For every s ∈ (1,∞) there is a constant c > 0, independent of n,

such that:

‖Πn
Σσ‖Ls(Ω) ≤ c‖σ‖Ls(Ω) ∀σ ∈ Lssym(Ω)d×d.

Assumption 2.5.3 (Fortin Projector Πn
V ). For each n ∈ N there is a linear projector

Πn
V : W 1,1

0 (Ω)d → V n such that the following properties hold:

• (Preservation of divergence). For every v ∈ W 1,1
0 (Ω)d we have∫

Ω

q divv =

∫
Ω

q div(Πn
V v) ∀ q ∈Mn.

• (W 1,s–stability). For every s ∈ (1,∞) there is a constant c > 0, independent of

n, such that:

‖Πn
V v‖W 1,s(Ω) ≤ c‖v‖W 1,s(Ω) ∀v ∈ W 1,s

0 (Ω)d.
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When employing boundary conditions that allow slip, the space W 1,s
n (Ω)d is used in-

stead.

Assumption 2.5.4 (Projector Πn
M). For each n ∈ N there is a linear projector

Πn
M : L1(Ω)→Mn such that for all s ∈ (1,∞) there is a constant c > 0, independent

of n, such that:

‖Πn
Mq‖Ls(Ω) ≤ c‖q‖Ls(Ω) ∀ q ∈ Ls(Ω).

Assumption 2.5.5 (Projector Πn
U). For each n ∈ N there is a linear projector

Πn
U : W 1,1

ΓD
(Ω) → Un such that for all s ∈ (1,∞) there is a constant c > 0, inde-

pendent of n, such that:

‖Πn
Uw‖W 1,s(Ω) ≤ c‖w‖W 1,s(Ω) ∀w ∈ W 1,s

ΓD
(Ω).

It is not difficult to show that the approximability and stability properties imply

that for s ∈ [1,∞) we have:

‖σ − Πn
Σσ‖Ls(Ω) → 0 as n→∞ ∀σ ∈ Lssym(Ω)d×d,

‖v − Πn
V v‖W 1,s(Ω) → 0 as n→∞ ∀v ∈ W 1,s

0 (Ω)d,

‖q − Πn
Mq‖Ls(Ω) → 0 as n→∞ ∀ q ∈ Ls(Ω),

‖w − Πn
Uw‖W 1,s(Ω) → 0 as n→∞ ∀w ∈ W 1,s

ΓD
(Ω).

(2.21)

Remark 2.5.6. A very important consequence of the previous assumptions is the

existence, for every s ∈ (1,∞), of two positive constants βs, γs > 0, independent of

n, such that the following discrete inf-sup conditions hold (c.f. [EG16]):

inf
q∈Mn

0

sup
v∈V n

∫
Ω
q div v

‖v‖W 1,s(Ω)‖q‖Ls′ (Ω)

≥ βs, (2.22)

inf
v∈V ndiv

sup
τ∈Σn

∫
Ω
τ :DDD(v)

‖τ‖Ls′ (Ω)‖v‖W 1,s(Ω)

≥ γs. (2.23)

Example 2.5.7. There are several pairs of velocity-pressure spaces known to satisfy

the stability Assumptions 2.5.1 and 2.5.3 (see also the discussion in [Tsc18]). They

include the conforming Crouzeix–Raviart element, the MINI element, the P2–P0 ele-

ment and the Taylor–Hood element Pk–Pk−1 (see [BBDR12, BBF13, DKS13, GS03,

CR73]). In addition to stability, the Scott–Vogelius element Pk–Pdisc
k−1 also satisfies

the property that the discretely divergence-free velocities are pointwise divergence-free

(the stability can be guaranteed by assuming, for example, that k ≥ d and that the

mesh has been barycentrically refined, see [Qin94, Zha05, SV85]); another example

of a velocity-pressure pair with this property is given by the Guzmán–Neilan element
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[GN14b, GN14a]. To satisfy Assumptions 2.5.4 and 2.5.5, one could use the Scott–

Zhang interpolant [SZ90].

Sometimes it is easier to prove the inf-sup condition directly. For example, if the

space of discrete stresses consists of discontinuous Pk−1 polynomials (with k ≥ 2):

Σn = {σ ∈ L∞sym(Ω)d×d : σ|K ∈ Pk−1(K)d×d, for all K ∈ Tn},

and we have that DDD(V n) ⊂ Σn (e.g. we could take the Scott–Vogelius element Pk–Pdisc
k−1

for the velocity and the pressure), then the inf-sup condition follows from the fact that

for s ∈ (1,∞) there is a constant c > 0, independent of n, such that for any σ ∈ Σn

there is a τ ∈ Σn such that [San98]:∫
Ω

τ :σ = ‖σ‖sLs(Ω) and ‖τ‖Ls′ (Ω) ≤ c‖σ‖s−1
Ls(Ω).

In case a continuous piecewise polynomial approximation of the stress is preferred, for

the two-dimensional problem one could use the conforming Crouzeix–Raviart element

for the discrete velocity and pressure and the following space for the stress [Rua94]:

Σn = {σ ∈ C(Ω)2×2 : σ = σ>, σ|K ∈ (P1(K)⊕ B)2×2, for all K ∈ Tn},

where

B := span {λ2
1λ2λ3, λ1λ

2
2λ3, λ1λ2λ

2
3},

and {λj}3
j=1 are barycentric coordinates on K (for the three-dimensional analogue see

[Rua96]).

Remark 2.5.8. If the discretely divergence-free velocities are in fact exactly diver-

gence free, i.e. if v ∈ V n
div implies that div v = 0 pointwise, and DDD(V n) ⊂ Σn, then the

stress-velocity inf-sup condition (2.23) also holds for the subspace of traceless stresses.

Consequently, fewer degrees of freedom are needed to compute the stress unknowns.

2.6 Time discretisation

In this section we will describe the notation that will be used when performing the

time discretisation of the problem. Let {τm}m∈N be a sequence of time steps such

that T/τm ∈ N and τm → 0, as m → ∞. For each m ∈ N we define the equidistant

grid:

{tmj }T/τmj=0 , tj = tmj := jτm.
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This can be used to define the parabolic cylinders Qj
i := (ti, tj) × Ω, where 0 ≤ i ≤

j ≤ T/τm. Also, given a set of functions {vj}T/τmj=0 belonging to a Banach space X,

we can define the piecewise constant interpolant v ∈ L∞(0, T ;X) as:

v(t) := vj, t ∈ (tj−1, tj], j ∈ {1, . . . , T/τm}, (2.24)

and the piecewise linear interpolant ṽ ∈ C([0, T ];X) as:

ṽ(t) :=
t− tj−1

τm
vj +

tj − t
τm

vj−1, t ∈ [tj−1, tj], j ∈ {1, . . . , T/τm}. (2.25)

For a given function g ∈ Lp(0, T ;X), with p ∈ [1,∞), we define the time averages:

gj(·) :=
1

τm

∫ tj

tj−1

g(t, ·) dt, j ∈ {1, . . . , T/τm}. (2.26)

Then the piecewise constant interpolant g defined by (2.24) satisfies [Rou13]:

‖g‖Lp(0,T ;X) ≤ ‖g‖Lp(0,T ;X), (2.27)

and

g → g strongly in Lp(0, T ;X), as m→∞. (2.28)
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Chapter 3

Implicitly Constituted Fluids:
Isothermal Case

The goal of this chapter is to prove convergence of a three-field finite element approx-

imation of the following system:

∂tu− div(SSS− u⊗ u) +∇p = f in (0, T )× Ω,

divu = 0 in (0, T )× Ω,

(DDD(u),SSS) ∈ A(·) a.e. in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u(0, ·) = u0(·) in Ω,

(3.1)

where A(·) satisfies (A1)–(A6). The next section introduces the notation and tools

that will be useful in the analysis of the discrete problem.

3.1 Weak formulation

In this section we will present a weak formulation for the problem (3.1), where now

we assume that f ∈ Lr′(0, T ;W−1,r′(Ω)d), u0 ∈ L2
div(Ω)d and the graph A satisfies the

assumptions (A1)–(A6) for some r > 2d
d+2

. Similarly to previous works on the analysis

of implicitly constituted fluids, a Lipschitz truncation technique will be required when

proving that the limit of the sequence of approximate solutions satisfies the constitu-

tive relation. The theory of Lipschitz truncation for time-dependent problems is not

as well developed as in the steady case; here it will be necessary to work locally and

the equation plays a vital role (several versions of parabolic Lipschitz truncation have

appeared in the literature, see e.g. [DRW10, BGMŚ12, BDS13, DSSV17]). Since the

pressure will not be present in the weak formulation, it will be more convenient to use

the construction developed in [BDS13] because it preserves the solenoidality of the
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velocity. The following lemma states the main properties of this solenoidal Lipschitz

truncation.

Lemma 3.1.1. ([BDS13, ST19]) Let p ∈ (1,∞), σ ∈ (1,min(p, p′)) and let Q0 =

I0×B0 ⊂ R×R3 be a parabolic cylinder, where I0 is an open interval and B0 is an open

ball. Denote by αQ0, where α > 0, the α-scaled version of Q0 keeping the barycenter

the same. Suppose {el}l∈N is a sequence of divergence-free functions that is uniformly

bounded in L∞(I0;Lσ(B0)d) and converges to zero weakly in Lp(I0;W 1,p(B0)d) and

strongly in Lσ(Q0)d. Let {GGGl1}l∈N and {GGGl2}l∈N be sequences that converge to zero

weakly in Lp
′
(Q0)d×d and strongly in Lσ(Q0)d×d, respectively. Define GGGl := GGGl1 + GGGl2

and suppose that, for any l ∈ N, the equation∫
Q0

∂te
l ·w =

∫
Q0

GGGl :∇w ∀w ∈ C∞0,div(Q0)d. (3.2)

is satisfied. Then there is a number j0 ∈ N, a sequence {λl,j}l,j∈N with 22j ≤ λl,j ≤
22j+1−1, a sequence of functions {el,j}l,j∈N ⊂ L1(Q0)d, a sequence of open sets Bλl,j ⊂
Q0, for l, j ∈ N, and a function ζ ∈ C∞0 (1

6
Q0) with 1 1

8
Q0
≤ ζ ≤ 1 1

6
Q0

with the

following properties:

1. el,j ∈ Lq(1
4
I0;W 1,q

0,div(1
6
B0)d) for any q ∈ [1,∞) and supp(el,j) ⊂ 1

6
Q0, for any

j ≥ j0 and any l ∈ N;

2. el,j = ej on 1
8
Q0 \ Bλl,j , for any j ≥ j0 and any l ∈ N;

3. There is a constant c > 0 such that

lim sup
l→∞

λpl,j|Bλl,j | ≤ c2−j, for any j ≥ j0;

4. For j ≥ j0 fixed, we have as l→∞:

el,j → 0, strongly in L∞(1
4
Q0)d,

∇el,j ⇀ 0, weakly in Lq(1
4
Q0)d×d, ∀ q ∈ [1,∞);

5. There is a constant c > 0 such that:

lim sup
l→∞

∣∣∣∣∫
Q0

GGGl :∇el,j
∣∣∣∣ ≤ c2−j, for any j ≥ j0;

6. There is a constant c > 0 such that for any H ∈ Lp′(1
6
Q0)d×d:

lim sup
l→∞

∣∣∣∣∫
Q0

(GGGl1 +H) :∇el,jζ1Bcλl,j

∣∣∣∣ ≤ c2−j/p, for any j ≥ j0.
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3.1.1 Mixed formulation and time–space discretisation

Before we present the weak formulation, let us define

ř := min

{
r(d+ 2)

2d
, r′
}
.

The weak formulation for (3.1) then reads as follows.

Formulation Ǎ. Find functions

SSS ∈ Lr′sym,tr(Q)d×d,

u ∈ Lr(0, T ;W 1,r
0,div(Ω)d) ∩ L∞(0, T ;L2

div(Ω)d),

∂tu ∈ Lř(0, T ; (W 1,ř′

0,div(Ω)d)∗),

such that

〈∂tu,v〉+

∫
Ω

(SSS− u⊗ u) : DDD(v) = 〈f ,v〉 ∀v ∈ W 1,ř′

0,div(Ω)d, a.e. t ∈ (0, T ),

(DDD(u),SSS) ∈ A(·), a.e. in (0, T )× Ω,

ess lim
t→0+

‖u(t, ·)− u0(·)‖L2(Ω) = 0.

Remark 3.1.2. In the formulation above all the test-velocities are divergence-free

and as a consequence the pressure term vanishes. In this section we will carry out

the analysis for the velocity and stress variables only. It is known that even in the

Newtonian case the pressure is only a distribution in time, when working with a no-

slip boundary condition (see e.g. [Gal11]). An integrable pressure can be obtained if

Navier’s slip boundary condition is used instead [BGMŚ12], but in this chapter we

will confine ourselves to the more common no-slip boundary condition. The same

analysis carries over to the problem with Navier’s boundary condition; this will be

shown when dealing with the anisothermal problem in Chapter 5, where the existence

of an integrable pressure is essential.

From (2.10) we have that

u ∈ C([0, T ]; (W 1,ř′

0,div(Ω)d)∗) ↪→ Cw([0, T ]; (W 1,ř′

0,div(Ω)d)∗),

and since ř ≤ r′ we also know that L2
div(Ω)d ↪→ (W 1,ř′

0,div(Ω)d)∗. Combined with (2.11)

this yields u ∈ Cw([0, T ];L2
div(Ω)d) and hence the initial condition only makes sense

a priori in this weaker sense. However, for this problem it will be proved that it also

holds in the stronger sense described above.

For a given time step τm and j ∈ {1, . . . , T/τm}, let us define fj ∈ W−1,r′(Ω)d and

Dk
j : Ω × Rd×d

sym → Rd×d
sym as the time averages associated with f and Dk, respectively
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(recall (2.15) and (2.26)). The time derivative will be discretised using an implicit

Euler scheme; higher order time stepping techniques might not be advantageous here

because higher regularity in time of weak solutions to the problem is not guaranteed

a priori. The discrete formulation of the problem can now be introduced.

Formulation Ǎk,n,m,l. For j ∈ {1, . . . , T/τm}, find functions SSSk,n,m,lj ∈ Σn and

uk,n,m,lj ∈ V n
div such that:∫

Ω

(Dk
j (·,SSSk,n,m,lj )−DDD(uk,n,m,lj )) : τ = 0 ∀ τ ∈ Σn,

1

τm

∫
Ω

(uk,n,m,lj − uk,n,m,lj−1 ) · v +
1

l

∫
Ω

|uk,n,m,lj |2r′−2uk,n,m,lj · v

+

∫
Ω

(SSSk,n,m,lj :DDD(v) + B(uk,n,m,lj ,uk,n,m,lj ,v)) = 〈fj,v〉 ∀v ∈ V n
div,

uk,n,m,l0 = P n
divu0.

Here P n
div : L2(Ω)d → V n

div is simply the L2–projection defined through∫
Ω

P n
divv ·w =

∫
Ω

v ·w ∀w ∈ V n
div. (3.3)

Formulation Ãk,n,m,l contains four levels of approximation that can be described

as follows:

• Index k: refers to the approximation of the monotone graph by continuous and

explicit functions. This index is not required when the constitutive relation is

already smooth and explicit (such as with the usual power-law relation);

• Index m: refers to the time discretisation;

• Index n: refers to the Galerkin discretisation;

• Index l: refers to the penalty term whose goal is to ensure that the velocity

becomes an admissible test function (cf. the discussion below). This can be

avoided if r ≥ 3d+2
d+2

.

The time and space discretisation could in fact be described by employing a single

index, but we decided to keep them separate, so that the different levels of approxi-

mation become clear.

The form B is meant to represent the convective term and is defined for functions

u,v,w ∈ C∞0 (Ω)d as:

B(u,v,w) :=


−
∫

Ω

u⊗ v : DDD(w), if V n
div ⊂ W 1,r

0,div(Ω)d,

1

2

∫
Ω

u⊗w : DDD(v)− u⊗ v : DDD(w), otherwise.
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This definition guarantees that B(v,v,v) = 0 for every v for which this expression

is well defined, regardless of whether v is pointwise divergence-free or not, which is

very useful when obtaining a priori estimates; it reduces to the usual weak form of

the convective term whenever the velocities are exactly divergence-free. It is now

necessary to check that B can be continuously extended to the spaces involving time.

By standard function space interpolation, we have that for almost every t ∈ (0, T ):∫
Ω

|u(t, ·)⊗ v(t, ·) : DDD(w(t, ·))| ≤ ‖u(t, ·)‖L2ř(Ω)‖v(t, ·)‖L2ř(Ω)‖DDD(w(t, ·))‖Lř′ (Ω)

≤ ‖u(t, ·)‖
L
r(d+2)
d (Ω)

‖v(t, ·)‖
L
r(d+2)
d (Ω)

‖DDD(w(t, ·))‖Lř′ (Ω)

≤ c‖u(t, ·)‖W 1,r(Ω)‖v(t, ·)‖W 1,r(Ω)‖w(t, ·)‖W 1,ř′ (Ω).

As in the steady case (cf. [DKS13]), a more restrictive condition is needed in order to

bound the additional term in B whenever the elements are not exactly divergence-free.

Namely, if we assume that r ≥ 2(d+1)
d+2

(this is the analogue of the condition r ≥ 2d
d+1

in

the steady case) then there is a q ∈ (1,∞] such that 1
r

+ d
r(d+2)

+ 1
q

= 1, and therefore∫
Ω

|u(t, ·)⊗w(t, ·) : DDD(v(t, ·))| ≤ ‖u(t, ·)‖
L
r(d+2)
d (Ω)

‖DDD(v(t, ·))‖Lr(Ω)‖w(t, ·)‖Lq(Ω)

≤ c‖u(t, ·)‖W 1,r(Ω)‖v(t, ·)‖W 1,r(Ω)‖w(t, ·)‖W 1,ř′ (Ω).

On the other hand, using Hölder’s inequality we can also obtain the estimate

‖B(u,v,w)‖L1(0,T )≤ ‖u‖L2r′ (Q)‖v‖L2r′ (Q)‖w‖Lr(0,T ;W 1,r(Ω))

+‖u‖L2r′ (Q)‖w‖L2r′ (Q)‖v‖Lr(0,T ;W 1,r(Ω)),

which means that if the L2r′(Q)d norm of u is finite, then the additional restriction

r ≥ 2(d+1)
d+2

is not needed. Moreover, this would also imply that the velocity is an

admissible test function, which is useful in the convergence analysis. This motivates

the introduction of the penalty term in Formulation Ǎk,n,m,l. This formulation is a

four-step approximation in which the indices k, n,m, l refer to the approximation of

the graph by smooth functions, the finite element discretisation, the discretisation in

time, and the penalty term, respectively.

While Formulation Ǎk,n,m,l does not contain the pressure, in practice the in-

compressibility condition is enforced through the addition of a Lagrange multiplier

pk,n,m,lj ∈ Mn
0 , which could be thought of as the pressure in the system (the reason

for the omission of the pressure in the analysis is explained in Remark 3.1.2). For

this reason it is necessary to consider additional assumptions that guarantee inf-sup

stability of the spaces V n and Mn (see Assumptions 2.5.3 and 2.5.4). In case the
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problem does have an integrable pressure p, then it is expected that the sequence of

discrete pressures converges to it in L1(Q).

Remark 3.1.3. Assumption (A5) also implies the existence of a selection S : Q ×
Rd×d

sym → Rd×d
sym such that (τ ,S(z, τ )) ∈ A(z) for all τ ∈ Rd×d

sym, and some models

can be written more naturally with a selection of this form; the same analysis as the

one presented in this work can be applied to that situation. In fact, in practice it

is not necessary to find a selection in order to perform the computations, i.e. in the

simulations it is possible to work directly with the implicit function GGG.

Remark 3.1.4. In this work we did not consider a dual formulation, e.g. where we

seek SSS in H(div; Ω)-type spaces, because for the unsteady problem we do not have at

our disposal results that guarantee the integrability of divSSS.

In the next theorem, convergence of the sequence of discrete solutions to a weak

solution of the problem is proved. Since the ideas and arguments contained in the

proof follow a similar approach to the one presented in [ST19], we will not include

here all the details of the calculations unless there is a significant difference.

Theorem 3.1.5. Assume that r > 2d
d+2

, and let {Σn, V n,Mn}n∈N be a family of finite

element spaces satisfying Assumptions 2.5.1–2.5.3. Then for k, n,m, l ∈ N there

exists a sequence {(SSSk,n,m,lj ,uk,n,m,lj )}T/τmj=1 of solutions of Formulation Ǎk,n,m,l, and a

couple (SSS,u) ∈ Lr′sym,tr(Q)d×d×Lr(0, T ;W 1,r
0,div(Ω)d)∩L∞(0, T ;L2

div(Ω)d) such that the

corresponding time interpolants (recall (2.24) and (2.25)) uk,n,m,l, ũk,n,m,l and SSS
k,n,m,l

satisfy (up to a subsequence):

SSS
k,n,m,l

⇀ SSS weakly in Lr
′
(Q)d×d,

uk,n,m,l ⇀ u weakly in Lr(0, T ;W 1,r
0 (Ω)d), (3.4)

uk,n,m,l, ũk,n,m,l
∗
⇀ u weakly* in L∞(0, T ;L2(Ω)d),

and (SSS,u) solves Formulation Ǎ, with the limits taken in the order k →∞, (n,m)→
∞ and l→∞.

Proof. The idea of the proof is common in the analysis of nonlinear PDE: we obtain a

priori estimates and use compactness arguments to pass to the limit in the equation.

In order to prove the existence of solutions of Formulation Ǎk,n,m,l, we need to check

that given (SSSk,n,m,lj−1 ,uk,n,m,lj−1 ), we can find (SSSk,n,m,lj ,uk,n,m,lj ), for j ∈ {1, . . . , T/τm}.
Testing the equation with (SSSk,n,m,lj ,uk,n,m,lj ), we see that:∫

Ω

Dk(·,SSSk,n,m,lj ) :SSSk,n,m,lj +
1

l
‖uk,n,m,lj ‖2r′

L2r′ (Ω)
≤ 〈f ,uk,n,m,lj 〉+

1

τm

∫
Ω

uk,n,m,lj−1 · uk,n,m,lj .

(3.5)
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On the other hand, since all norms are equivalent in a finite-dimensional normed

linear space, there is a constant cn > 0 such that:

‖v‖W 1,r(Ω) ≤ cn‖v‖L2r′ (Ω) ∀v ∈ V n
div. (3.6)

The constant cn may blow up as n → ∞, but since n is fixed for now this does not

pose a problem. Now, recalling (2.17) and combining (3.5) and (3.6) with a standard

corollary of Brouwer’s Fixed Point Theorem (cf. [GR86, ch. IV, Cor. 1.1]) we obtain

the existence of solutions of Formulation Ǎk,n,m,l. In the first time step (i.e. j = 1), it

is essential to use the fact that the projection P n
div is stable:

‖P n
divu0‖L2(Ω) ≤ ‖u0‖L2(Ω). (3.7)

The estimate (3.6) suffices to guarantee the existence of discrete solutions, but in

order to pass to the limit n → ∞, an estimate that does not degenerate as n → ∞
is required. This uniform estimate is a consequence of the discrete inf-sup condition

(2.23):

γr‖uk,n,m,lj ‖W 1,r(Ω) ≤ ‖Dk
j (·,SSSk,n,m,lj )‖Lr(Ω). (3.8)

Therefore, the following a priori estimate holds:

sup
j∈{1,...,T/τm}

‖uk,n,m,lj ‖2
L2(Ω) +

T/τm∑
j=1

‖uk,n,m,lj − uk,n,m,lj−1 ‖2
L2(Ω)

+ τm

T/τm∑
j=1

‖SSSk,n,m,lj ‖r′
Lr′ (Ω)

+ τm

T/τm∑
j=1

‖uk,n,m,lj ‖rW 1,r(Ω) (3.9)

+

T/τm∑
j=1

‖Dk(·, ·,SSSk,n,m,lj )‖r
Lr(Qjj−1)

+
τm
l

T/τm∑
j=1

‖uk,n,m,lj ‖2r′

L2r′ (Ω)
≤ c,

where c is a positive constant that depends on the data; in particular, c is inde-

pendent of k, n,m and l. Let uk,n,m,l ∈ L∞(0, T ;V n
div) and ũk,n,m,l ∈ C([0, T ];V n

div)

be the piecewise constant and piecewise linear interpolants defined by the sequence

{uk,n,m,lj }T/τmj=1 (see (2.24) and (2.25)) and let SSS
k,n,m,l ∈ L∞(0, T ; Σn) be the piecewise

constant interpolant defined by the sequence {SSSk,n,m,lj }T/τmj=1 . Furthermore, define also

the piecewise constant interpolants:

f(t, ·) := fj(·), Dk
(t, ·, ·) := Dk

j (·, ·), t ∈ (tj−1, tj], j ∈ {1, . . . , T/τm}
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Then the discrete formulation can be rewritten as:∫
Ω

(Dk
(t, ·,SSSk,n,m,l)−DDD(uk,n,m,l)) : τ = 0 ∀ τ ∈ Σn

sym,∫
Ω

∂tũ
k,n,m,l · v +

1

l

∫
Ω

|uk,n,m,l|2r′−2uk,n,m,l · v

+

∫
Ω

(SSS
k,n,m,l

: DDD(v) + B(uk,n,m,l,uk,n,m,l,v)) = 〈f ,v〉 ∀v ∈ V n
div,

ũk,n,m,l(0, ·) = P n
divu0(·).

The a priori estimate (3.9) can in turn be written as:

‖uk,n,m,l‖2
L∞(0,T ;L2(Ω)) + τm‖∂tũk,n,m,l‖2

L2(Q) + ‖SSSk,n,m,l‖r′
Lr′ (Q)

(3.10)

+ ‖uk,n,m,l‖rLr(0,T ;W 1,r(Ω)) + ‖Dk(·, ·,SSSk,n,m,l)‖rLr(Q) +
1

l
‖uk,n,m,l‖2r′

L2r′ (Q)
≤ c.

Using the equivalence of norms in finite-dimensional spaces we also obtain

‖∂tũk,n,m,l‖L∞(0,T ;L2(Ω)) ≤ c(n)‖∂tũk,n,m,l‖L2(Q),

and together with the a priori estimate this implies that

‖ũk,n,m,l‖W 1,∞(0,T ;L2(Ω)) ≤ c(n,m). (3.11)

Therefore, up to subsequences, as k →∞ we have:

uk,n,m,l → un,m,l strongly in L∞(0, T ;L2(Ω)d),

ũk,n,m,l → ũn,m,l strongly in W 1,∞(0, T ;L2(Ω)d),

uk,n,m,l → un,m,l strongly in L2r′(Q)d,

uk,n,m,l → un,m,l strongly in Lr(0, T ;W 1,r
0 (Ω)d),

SSS
k,n,m,l → SSS

n,m,l
strongly in Lr

′
(Q)d×d,

Dk(·, ·,SSSk,n,m,l) ⇀ DDDn,m,l weakly in Lr(Q)d×d,

Dk
(·, ·,SSSk,n,m,l) ⇀ DDD

n,m,l
weakly in Lr(Q)d×d,

Dk
j (·,SSSk,n,m,lj ) ⇀ DDDn,m,l

j weakly in Lr(Ω)d×d, for j ∈ {1, . . . , T/τm}.

Since the function DDDk
j is simply an average in time, the uniqueness of the weak limit

implies that

DDDn,m,l
j (·) =

1

τm

∫ tj

tj−1

DDDn,m,l(t, ·) dt, j ∈ {1, . . . , T/τm}, (3.12)
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and that DDD
n,m,l

is the piecewise constant interpolant determined by the sequence

{DDDn,m,l
j }T/τmj=1 . Moreover, since the convergence of the velocity and stress sequences is

strong, it is straightforward to pass to the limit k →∞ and thus we obtain∫
Ω

(DDD
n,m,l −DDD(un,m,l)) : τ = 0 ∀ τ ∈ Σn,∫

Ω

∂tũ
n,m,l · v +

1

l

∫
Ω

|un,m,l|2r′−2 un,m,l · v

+

∫
Ω

(SSS
n,m,l

:DDD(v) + B(un,m,l,un,m,l,v)) = 〈f ,v〉 ∀v ∈ V n
div.

It is also clear that the initial condition ũn,m,l(0, ·) = P n
divu0(·) holds, since the expres-

sion on the right-hand side is independent of k. The identification of the constitutive

relation can be carried out using (2.18) in exactly the same manner as in [ST19],

which means that (the strong convergence is again essential):

(DDDn,m,l,SSS
n,m,l

) ∈ A(·), a.e. in (0, T )× Ω. (3.13)

The next step is to take the limit in both the time and space discretisations simulta-

neously. The weak lower semicontinuity of the norms and the estimate (3.10) imply

that:

‖un,m,l‖2
L∞(0,T ;L2(Ω)) + τm‖∂tũn,m,l‖2

L2(Q) + ‖SSSn,m,l‖r′
Lr′ (Q)

(3.14)

+ ‖un,m,l‖rLr(0,T ;W 1,r(Ω)) + ‖DDDn,m,l‖rLr(Q) +
1

l
‖un,m,l‖2r′

L2r′ (Q)
≤ c,

and

‖ũn,m,l‖2
L∞(0,T ;L2(Ω)) = ‖un,m,l‖2

L∞(0,T ;L2(Ω)) ≤ c, (3.15)

where c is a constant, independent of n,m and l. Consequently, there exist (not

relabelled) subsequences such that, as n,m→∞:

un,m,l
∗
⇀ ul weakly* in L∞(0, T ;L2(Ω)d),

ũn,m,l
∗
⇀ ul weakly* in L∞(0, T ;L2(Ω)d),

un,m,l ⇀ ul weakly in Lr(0, T ;W 1,r
0 (Ω)d),

SSS
n,m,l

⇀ SSSl weakly in Lr
′
(Q)d×d,

DDDn,m,l ⇀ DDDl weakly in Lr(Q)d×d,

DDD
n,m,l

⇀ DDD
l

weakly in Lr(Q)d×d,

1

l
|un,m,l|2r′−2un,m,l ⇀

1

l
|ul|2r′−2un,m,l weakly in L(2r′)′(Q)d.
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At this point it is a standard step to use the Aubin–Lions lemma to obtain strong

convergence of subsequences. However, following [ST19], we will instead use Simon’s

compactness lemma; this choice is made to avoid the need for stability estimates of

P n
div in Sobolev norms, which would require additional assumptions on the mesh. To

apply this lemma, it will be more convenient to work with the modified interpolant:

ûn,m,l(t, ·) :=

 un,m,l1 (·), if t ∈ [0, t1),

ũn,m,l(t, ·), if t ∈ [t1, T ].

Let ε > 0 be such that s+ ε < T and let v ∈ V n
div. Then, using the definition of ûn,m,l

we have∫
Ω

(ûn,m,l(s+ ε, x)− ûn,m,l(s, x)) · v(x) dx

=

∫ s+ε

max(s,τm)

∫
Ω

∂tû
n,m,l(t, x) · v(x) dx dt

=

∫ s+ε

max(s,τm)

∫
Ω

∂tũ
n,m,l(t, x) · v(x) dx dt

=

∫ s+ε

max(s,τm)

(
−1

l

∫
Ω

|un,m,l(t, x)|2r′−2un,m,l(t, x) · v(x) dx

−
∫

Ω

(SSS
n,m,l

(t, x) :DDD(v(x)) + B(un,m,l(t, x),un,m,l(t, x),v(x))) dx− 〈f(t),v〉
)

dt

≤ c(l)

((∫ s+ε

max(s,τm)

‖v‖rW 1,r(Ω) dt

)1/r

+

(∫ s+ε

max(s,τm)

‖v‖2r′

L2r′ (Ω)
dt

)1/2r′
)

≤ c(l)(ε1/r + ε1/2r
′
)
(
‖v‖W 1,r(Ω) + ‖v‖L2r′ (Ω)

)
.

Choosing v = ûn,m,l(s+ ε, ·)− ûn,m,l(s, ·) we conclude that∫ T−ε

0

‖ûn,m,l(s+ ε, ·)− ûn,m,l(s, ·)‖2
L2(Ω) ds→ 0, as ε→ 0.

On the other hand, the a priori estimates imply that ûn,m,l is bounded (uniformly in

n,m ∈ N) in L2(Q)d and L1(0, T ;W 1,r
0 (Ω)d). Moreover, since r > 2d

d+2
, the embedding

W 1,r(Ω)d ↪→ L2(Ω)d is compact and thus Simon’s compactness lemma guarantees the

strong convergence:

ûn,m,l → ul strongly in L2(Q)d. (3.16)

Since the interpolants converge to the same limit as τm → 0, using standard function

space interpolation (and recalling (2.9)) we also obtain that, as n,m→∞:

ũn,m,l → ul strongly in Lp(0, T ;L2(Ω)d), (3.17a)

un,m,l → ul strongly in Lp(0, T ;L2(Ω)d) ∩ Lq(Q), (3.17b)
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for p ∈ [1,∞) and q ∈ [1,max(2r′, q(d+2)
d

)).

Now, using the property (2.21), we can check that ul is actually divergence-free:

0 =

∫ T

0

∫
Ω

φΠn
Mq divun,m,l →

∫ T

0

∫
Ω

φ q divul ∀ q ∈ Lr′(Ω), φ ∈ C∞0 (0, T ). (3.18)

Furthermore, (2.21) also yields convergence of the initial condition, as n,m→∞:

ũn,m,l(0, ·) = P n
divu0 → u0 strongly in L2(Ω)d. (3.19)

The functions DDDl and DDD
l

can easily be identified using the property (2.28) and the

definition of the piecewise constant interpolant (3.12). Indeed, for an arbitrary σ ∈
C∞0 (Q)d×d we have, as n,m→∞:∫ T

0

∫
Ω

DDD
n,m,l

:σ =

∫ T

0

∫
Ω

DDDn,m,l :σ →
∫ T

0

∫
Ω

DDDl :σ. (3.20)

The uniqueness of the weak limit then implies that DDDl = DDD
l
.

Combining all these properties and using an analogous computation to (3.18) it is

possible to prove that the limiting functions are a solution of the following problem:∫ T

0

∫
Ω

(DDDl −DDD(ul)) : τ ϕ = 0 ∀ τ ∈ C∞0,sym(Ω)d×d, ϕ ∈ C∞0 (0, T ),

−
∫ T

0

∫
Ω

ul · v ∂tϕ−
∫

Ω

u0·vϕ(0) +

∫ T

0

∫
Ω

(SSSl − ul ⊗ ul) :DDD(v)ϕ

+
1

l

∫ T

0

∫
Ω

|ul|2r′−2ul · v ϕ =

∫ T

0

〈f ,v〉ϕ ∀v ∈ C∞0,div(Ω)d, ϕ ∈ C∞0 (−T, T ).

From the equation above and the estimate (2.9) we then see that the distributional

time derivative belongs to the spaces:

∂tu
l ∈ Lmin(r′,(2r′)′)(0, T ; (W 1,r

0,div(Ω)d ∩ L2r′(Ω)d)∗), (3.21a)

∂tu
l ∈ Lmin(ř,(2r′)′)(0, T ; (W 1,ř′

0,div(Ω)d)∗). (3.21b)

It is important to note that (3.21b) holds uniformly in l ∈ N, while (3.21a) does not.

Now, observe that

W 1,r
0,div(Ω)d ∩ L2r′(Ω)d ↪→ L2

div(Ω)d ↪→ (L2
div(Ω)d)∗ ↪→ (W 1,r

0,div(Ω)d ∩ L2r′(Ω)d)∗.

Combining this with (2.10), (2.11), and the fact that ul ∈ L∞(0, T ;L2
div(Ω)d) guar-

antees that ul ∈ Cw([0, T ], L2
div(Ω)d). Let v ∈ C∞0,div(Ω)d and ϕ ∈ C∞(−T, T ) be such

that ϕ(0) = 1; then the following equality holds:∫ T

0

∫
Ω

∂t(u
lϕ) · v = −

∫
Ω

ul(0, ·) · v ϕ(0). (3.22)
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On the other hand, using the equation we also have that:∫ T

0

∫
Ω

∂t(u
lϕ) · v =

∫ T

0

∫
Ω

∂tu
l · v ϕ+

∫ T

0

∫
Ω

ul · v ∂tϕ = −
∫

Ω

u0 · v ϕ(0). (3.23)

Comparing (3.22) and (3.23) we conclude that ul(0, ·) = u0(·). This proves that the

initial condition is attained in the weak sense expected a priori from the embeddings;

however, in this case the stronger condition

ess lim
t→0+

‖ul(t, ·)− u0(·)‖L2(Ω) = 0, (3.24)

holds. To see this, note that (3.17a) guarantees that, up to a subsequence, ũn,m,l(t, ·)→
ũl(t, ·) in L2(Ω)d for almost every t ∈ [0, T ], and therefore

‖ul(t, ·)− u0(·)‖2
L2(Ω) = lim sup

n,m→∞
‖ũn,m,l(t, ·)− ũn,m,l(0, ·)‖2

L2(Ω)

= lim sup
n,m→∞

(
‖ũn,m,l(t, ·)‖2

L2(Ω) − ‖ũn,m,l(0, ·)‖2
L2(Ω)

+2

∫
Ω

(ũn,m,l(0, ·)− ũn,m,l(t, ·)) · ũn,m,l(0, ·)
)

≤ lim sup
n,m→∞

(∫ t

0

〈f ,un,m,l〉+ 2

∫
Ω

(ũn,m,l(0, ·)− ũn,m,l(t, ·)) · ũn,m,l(0, ·)
)

≤
∫ t

0

〈f ,ul〉+ 2

∫
Ω

(ul(0, ·)− ul(t, ·)) · ul(0, ·),

for almost every t ∈ [0, T ]. Observe also that the monotonicity of the constitutive

relation was used to obtain the next to last inequality. Taking the limit t→ 0+ then

yields (3.24).

The identification of the constitutive relation, i.e. proving that (DDDl,SSSl) ∈ A(·)
almost everywhere, can be carried out with the help of Lemma 2.4.1. In order to

apply the lemma, the only thing that remains to be proved, since we already know

that (DDDn,m,l,SSS
n,m,l

) ∈ A(·) almost everywhere, is that:

lim sup
n,m→∞

∫ t

0

∫
Ω

SSS
n,m,l

:DDDn,m,l ≤
∫ t

0

∫
Ω

SSSl :DDDl, (3.25)

for almost every t ∈ [0, T ]; then taking t → T we obtain the result in the whole

domain Q. The proof of this fact is essentially the same as in [ST19] and we will not

reproduce it here. Moreover, the following energy identity holds:

1

2
‖ul(t, ·)‖2

L2(Ω) +

∫ t

0

∫
Ω

SSSl :DDD(ul) +
1

l

∫ t

0

‖ul‖2r′

L2r′ (Ω)
=

∫ t

0

〈f ,ul〉+ ‖u0‖2
L2(Ω). (3.26)
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In time-dependent problems obtaining an energy identity of this kind is not always

possible; in this case the energy equality (3.26) can be proved, since the velocity is

an admissible test function in space thanks to the fact that its L2r′-norm is under

control (some mollification is needed to overcome the low integrability in time, see

[Tsc18, Lio69]).

Now, (3.14) and the weak and weak* lower semicontinuity of the norms imply

that

‖ul‖2
L∞(0,T ;L2(Ω))+‖SSSl‖r

′

Lr
′
(Q)

+‖ul‖rLr(0,T ;W 1,r(Ω))+‖DDDl‖rLr(Q)+
1

l
‖ul‖2r′

L2r′ (Q)
≤ c, (3.27)

where c is a constant independent of l. From this we see that, up to subsequences, as

l→∞:

ul
∗
⇀ u weakly* in L∞(0, T ;L2(Ω)d),

ul ⇀ u weakly in Lr(0, T ;W 1,r
0 (Ω)d),

SSSl ⇀ SSS weakly in Lr
′
(Q)d×d, (3.28)

DDDl ⇀ DDD weakly in Lr(Q)d×d,

1

l
|ul|2r′−2ul → 0 strongly in L1(Q)d.

Furthermore, since ř ≤ r′ and r > 2d
d+2

, the embedding W 1,ř′

0,div(Ω)d ↪→ L2
div(Ω)d is

compact and hence by the Aubin–Lions lemma (taking into account (3.21b)) we have

the strong convergence:

ul → u strongly in L2(0, T ;L2(Ω)d). (3.29)

With the convergence properties (3.28) and (3.29) it is then possible to pass to the

limit and prove that the limiting functions satisfy:∫
Ω

(DDD−DDD(u)) : τ = 0 ∀ τ ∈ C∞0,sym(Ω)d×d, a.e. t ∈ (0, T ),

〈∂tu,v〉+

∫
Ω

(SSS− u⊗ u) :DDD(v) = 〈f ,v〉 ∀v ∈ C∞0,div(Ω)d, a.e. t ∈ (0, T ).

The same argument used to obtain (3.24) can be used here to prove that the initial

condition is attained in the strong sense:

ess lim
t→0+

‖u(t, ·)− u0(·)‖L2(Ω) = 0. (3.30)

Moreover, since the penalty term vanishes in the limit l → ∞, we can improve the

integrability in time:

∂tu
l ∈ Lř(0, T ; (W 1,ř′

0,div(Ω)d)∗). (3.31)
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To show that (DDD,SSS) ∈ A(·), Lemma 2.4.1 will once again be employed. The main

difficulty at this stage, just like in the previous works [DKS13, ST19], is that the

velocity is no longer an admissible test function (and therefore we do not have an

energy equality similar to (3.26)). The idea is now to work with Lipschitz truncations

of the error el := ul−u; it should be noted however that in the present case we need

to verify a number of additional hypotheses before Lemma 3.1.1 can be applied.

Note that equation (3.2) in Lemma 3.1.1 is written in divergence form. We then

need to make a preliminary step and write the penalty term in this form (see [ST19]).

Let B0 ⊂⊂ Ω be an arbitrary ball compactly contained in Ω and let q ∈ [1, (2r′)′).

Then from the standard theory of elliptic operators we know that for almost every

t ∈ [0, T ] there is a unique gl3(t, ·) ∈ W 2,q(B0)d ∩W 1,q
0 (B0) such that:∫

B0

∇gl3(t, ·) :∇v =
1

l

∫
B0

|ul(t, ·)|2r′−2ul(t, ·) · v ∀v ∈ C∞0,div(Ω)d,

‖gl3(t, ·)‖W 2,q(B0) ≤ c

∥∥∥∥1

l
|ul(t, ·)|2r′−2ul(t, ·)

∥∥∥∥
Lq(B0)

.

This means in particular (by (3.28) and standard function space interpolation) that

for a fixed time interval I0 ⊂⊂ (0, T ) we have:

gl3 → 0 strongly in Lq(I0;W 1,q(B0)d), ∀ q ∈ [1, (2r′)′). (3.32)

Defining Q0 := I0 ×B0 and

GGGl1 := SSSl − SSS,

GGGl2 := ul ⊗ ul − u⊗ u−∇gl3,

we readily see that the error el satisfies the equation∫
Q0

∂te
l ·w =

∫
Q0

(GGGl1 +GGGl2) :∇w ∀w ∈ C∞0,div(Q0)d. (3.33)

Additionally, as a consequence of (3.28), (3.32) and (3.29) we also have that for any

q ∈ [1,min(ř, (2r′)′), the sequence ul is bounded in L∞(I0;W 1,q(Q0)d) and that:

GGGl1 ⇀ 0 weakly in Lr
′
(Q0)d×d,

GGGl2 → 0 strongly in Lq(Q0)d×d,

ul → u strongly in Lq(Q0)d.

Consequently, the assumptions of Lemma 3.1.1 are satisfied. It now suffices to prove

for an arbitrary θ ∈ (0, 1) that

lim sup
l→∞

∫
1
8
Q0

[(DDD(ul)−D(·,SSS)) : (SSSl − SSS)]θ ≤ 0, (3.34)
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Once this has been shown, Chacon’s biting lemma and Vitali’s convergence theorem

will imply, together with Lemma 2.4.1, that (DDD,SSS) ∈ A(·) almost everywhere in 1
8
Q0

(see the details e.g. in [BGMŚ12]). From here then the result follows by observing

that Q can be covered by a union of such cylinders (e.g. by using a Whitney covering).

In order to prove (3.34), first let Bλl,j ⊂ Ω be the family of open sets and let

{el,j}l,j∈N be the sequence of Lipschitz truncations described in Lemma 3.1.1. If we

define

H l(·) := (DDD(ul)−D(·,SSS)) : (SSSl − SSS) ∈ L1(Q), (3.35)

then we have by Hölder’s inequality that∫
1
8
Q0

|H l|θ ≤ |Q|1−θ
(∫

1
8
Q0\Bλl,j

H l

)θ

+ |Bλl,j |1−θ
(∫

1
8
Q0

H l

)θ

.

The second term on the right-hand side can be dealt with easily, since H l is bounded

uniformly in L1(Q) thanks to the a priori estimate (3.27), and the properties described

in Lemma 3.1.1 imply that

lim sup
l→∞

|Bλl,j |1−θ ≤ lim sup
l→∞

|λrl,jBλl,j |1−θ ≤ c2−j(1−θ), for j ≥ j0, (3.36)

where c is a positive constant. For the first term, observe that∫
1
8
Q0\Bλl,j

H l =

∫
1
8
Q0

H l ζ 1Bcλl,j

=

∫
1
8
Q0

DDD(el) : (SSSl − SSS) ζ 1Bcλl,j
+

∫
1
8
Q0\Bλl,j

(DDD(u)−D(·,SSS)) : (SSSl − SSS)

≤
∣∣∣∣∣
∫

1
8
Q0

DDD(el,j) :GGGl1 ζ 1Bcλl,j

∣∣∣∣∣+

∣∣∣∣∣
∫

1
8
Q0

(DDD(u)−D(·,SSS)) : (SSSl − SSS)

∣∣∣∣∣
+

∣∣∣∣∣
∫
Bλl,j

(DDD(u)−D(·,SSS)) : (SSSl − SSS)

∣∣∣∣∣,
where ζ ∈ C∞0,div(1

6
Q0) is the function introduced in Lemma 3.1.1. Taking lim supl→∞

the assertion follows by taking j → ∞. In particular, we used for the first term

Lemma 3.1.1 part 6, with H = 0, for the second term the weak convergence of SSSl and

for the third term the fact that {SSSl}l∈N is bounded, together with (3.36). To conclude

the proof, note that the fact that u is divergence-free and Assumption (A6) imply

that tr(SSS) = 0, and so SSS ∈ Lr′sym,tr(Ω)d×d.

Remark 3.1.6. The same approach used in Theorem 3.1.5 can be used to define a 3-

field formulation for the steady problem and the unsteady problem without convection
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and the proof remains valid with some simplifications; for instance, for the steady

system without the convective term, only the indices k and n are needed. Furthermore,

in those cases the convergence of the sequence of discrete pressures can be guaranteed

in the corresponding Lebesgue spaces.

Remark 3.1.7. The argument used to prove the existence of the discrete solutions

is more involved here than in the works [DKS13, BGMŚ09], because the coercivity

with respect to ‖uk,n,m,lj ‖W 1,r(Ω) cannot be deduced from Formulation Ǎk,n,m,l by simply

testing with the solution. An alternative approach could be to include in the equation

an additional diffusion term of the form:

1

k

∫
Ω

|DDD(uk,n,m,lj )|r−2DDD(uk,n,m,lj ) :DDD(v),

which would be completely acceptable if we only cared about the existence of weak

solutions, but is undesirable from the point of view of the computation of the finite

element approximations, since it introduces an additional nonlinearity in the discrete

problem.

Remark 3.1.8. In the proof of Theorem 3.1.5 the limits k → ∞, (n,m) → ∞ and

l→∞ were taken successively. In contrast to the steady case considered in [DKS13],

here it is not known whether we can take the limits at once. The result is likely to

hold as well, but the proof would require a discrete version of the parabolic Lipschitz

truncation, which is not available at the moment.

Remark 3.1.9. In case the symmetric velocity gradient is a quantity of interest,

the approach presented here can be easily extended to a four-field formulation with

unknowns (DDD,SSS,u, p). The only additional assumption needed in that case would be

an inf-sup condition of the form:

inf
σ∈Σn

sup
τ∈Σn

∫
Ω
σ : τ

‖σ‖Ls′ (Ω)‖τ‖Ls(Ω)

≥ δs, (3.37)

where δs > 0 is independent of n.

3.2 Numerical experiments

According to the analysis carried out in the previous section, the addition of the

penalty term is necessary when r ∈ ( 2d
d+2

, 3d+2
d+2

). However, in the examples we observed

that the method converges regardless of whether the penalty term is present or not

(a comparison is carried out in Section 3.2.2). This could be an indication that the
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requirement to include this penalty term is only a technical obstruction and that there

might be a different approach to showing convergence of the numerical method that

could avoid its inclusion in the numerical method. On the other hand, it could also be

the case that exact solutions with more severe singularities than the ones considered

in our numerical experiments are needed to demonstrate pathological behaviour. In

any case, it appears that in most applications the penalty term can be safely omitted

and for this reason it is not discussed in the numerical examples below (excepting

Section 3.2.2).

3.2.1 Power-law fluid and orders of convergence

The framework presented in this work is so broad that in general it is not possible

to guarantee uniqueness of solutions; in particular it is not clear how error estimates

could be obtained. However, as this computational example will show, the discrete

formulations presented here appear to recover the expected orders of convergence in

the cases where these orders are known.

In the first part of this numerical experiment we solved the steady problem without

convection with a regularised power-law constitutive relation (as stated in Remark

3.1.6, the same 3-field approximation can be applied in this setting):

SSS = S(DDD) := 2ν
(
ε2 + |DDD2|

) r−2
2 DDD, (3.38)

where r > 1 and ε, ν > 0. This is one of the most common non-Newtonian models that

present a power-law structure (note that for r = 2 we recover the Newtonian model),

and has the advantage that it is not singular at the origin (i.e. when DDD = 0), unlike

the usual power-law constitutive relation. Observe that the constitutive relation is

smooth, and therefore only the limit n→∞ is needed in the results from the previous

section. The problem was solved on the unit square Ω = (0, 1)2 with a Dirichlet

boundary condition for the velocity defined so as to match the value of the exact

solution, which was chosen as:

u(x) = |x|a−1(x2,−x1)>, p(x) = |x|b, (3.39)

where a, b are parameters used to control the smoothness of the solutions. Define the

auxiliary function F := Rd×d → Rd×d
sym as:

F (BBB) := (ε+ |BBBsym|) r−2
2 BBBsym, (3.40)
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where BBBsym := 1
2
(BBB + BBBT ). In [BBDR12, Hir13] it was proved for systems of the

form (3.38) that if F (DDD(u)) ∈ W 1,2(Ω)d×d and p ∈ W 1,r′(Ω) then the following error

estimates hold:

‖F (DDD(u))− F (DDD(un))‖L2(Ω) ≤ ch
min{1, r

′
2
}

n ,

‖p− pn‖Lr′ (Ω) ≤ ch
min{ 2

r′ ,
r′
2
}

n .

In our case, the conditions F (DDD(u)) ∈ W 1,2(Ω)d×d and p ∈ W 1,r′(Ω) amount to

requiring that a > 1 and b > 2
r
− 1. These parameters were then chosen to be

a = 1.01 and b = 2
r
− 0.99 in order to be close to the regularity threshold. We

discretised this problem with the Scott–Vogelius element for the velocity and pressure

and discontinuous piecewise polynomials for the stress variables:

Σn = {σ ∈ L∞sym,tr(Ω)d×d : σ|K ∈ Pk(K)d×d, for all K ∈ Tn},
V n = {w ∈ W 1,r(Ω)d : w|∂Ω = u, w|K ∈ Pk+1(K)d for all K ∈ Tn},
Mn = {q ∈ L∞(Ω) : q|K ∈ Pk(K) for all K ∈ Tn}.

The problem was solved using firedrake [RHM+16] with ν = 0.5, ε = 10−5 and

k = 1 on a barycentrically refined mesh (obtained using gmsh [GR09]) to guarantee

inf-sup stability. The discretised nonlinear problems were linearised using Newton’s

method with the L2 line search algorithm of PETSc [BAA+17, BKST15]; the Newton

solver was deemed to have converged when the Euclidean norm of the residual fell

below 1× 10−8. The linear systems were solved with a sparse direct solver from the

umfpack library [Dav04]. In the implementation, the uniqueness of the pressure was

recovered not by using a zero mean condition but rather by orthogonalising against

the nullspace of constants with respect to the Euclidean norm. The experimental

orders of convergence in the different norms are shown in Tables 3.1 and 3.2 (note

that the tables do not contain the values of the numerical error, but rather the order

of convergence corresponding to the norm indicated in each column).

From Tables 3.1 and 3.2 it can be seen that the algorithm recovers the expected

orders of convergence. In the case of the stress we obtain the same order as for the

pressure, which seems natural from the point of view of the equation. In [Hir13] it

is claimed that for r < 2 the order of convergence for the velocity should be equal

to 1; in our numerical simulations the experimental order of convergence seems to

approach 2
r
, which is slightly larger than 1. This difference may be due to the fact

that in [Hir13] the author works with piecewise linear elements for the velocity while

here quadratic elements were employed.
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hn ‖F (DDD(u))‖L2(Ω) ‖u‖W 1,r(Ω) ‖p‖Lr′ (Ω) ‖SSS‖Lr′ (Ω)

0.5 0.9075 1.0180 0.3647 0.6692
0.25 0.9803 1.2160 0.5396 0.6697
0.125 1.0023 1.2975 0.6565 0.6713
0.0625 1.0062 1.3205 0.6706 0.6716
0.03125 1.0071 1.3319 0.6715 0.6716

Expected 1.0 - 0.667 -

Table 3.1: Experimental order of convergence for the steady problem without
convection with r = 1.5.

hn ‖F (DDD(u))‖L2(Ω) ‖u‖W 1,r(Ω) ‖p‖Lr′ (Ω) ‖SSS‖Lr′ (Ω)

0.5 0.9132 0.9361 0.4955 0.8434
0.25 0.9826 1.0652 0.7271 0.8822
0.125 1.0040 1.1073 0.8671 0.8948
0.0625 1.0078 1.1167 0.8916 0.8966
0.03125 1.0087 1.1197 0.8959 0.8968

Expected 1.0 - 0.889 -

Table 3.2: Experimental order of convergence for the steady problem without
convection with r = 1.8.
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In the second part of the experiment we employed again the power-law constitutive

relation (3.38), but now considering the unsteady system (3.1). The right-hand side,

initial condition and boundary condition were chosen so as to match the ones defined

by the exact solution:

u(t,x) = t|x|a−1(x2,−x1)>, p(t,x) = t2|x|b.

In [ER18], the following error estimate for the approximation of time-dependent sys-

tems of this form, but without convection, was obtained for r ∈ [ 2d
d+2

,∞):

‖u− un,m‖L∞(0,T ;L2(Ω)) + ‖F (DDD(u))− F (DDD(un,m))‖L2(Q) ≤ c
(
τm + h

min{1, 2
r
}

n

)
,

assuming that u0 ∈ W 1,r
0,div(Ω)d and that the following additional regularity properties

of the solution and the data hold:

‖∇F (DDD(u0))‖L2(Ω) + ‖∇SSS(DDD(u0))‖L2(Ω) ≤ c,

‖u‖W 1,2(0,T ;L2(Ω)) + ‖u‖L2(0,T ;W 2,2(Ω)) + ‖F (DDD(u))‖L2(0,T ;W 1,2(Ω)) ≤ c.

The same order of convergence was obtained in [BDR15] for r ∈ (3
2
, 2] in 3D for a

semi-implicit discretisation of the unsteady system with convection assuming that

u0 ∈ W 2,2
0,div(Ω)d, divSSS(DDD(u0)) ∈ L2(Ω)d and that the slightly different regularity

assumptions hold:

‖∂tu‖L∞(0,T ;L2(Ω)) + ‖F (DDD(u))‖W 1,2(Q) + ‖F (DDD(u))‖L2((5r−6)/(2−r))(0,T ;W 1,2(Ω)) ≤ c.

The problem was solved until the final time T = 0.1 with the same parameters as

above; observe that this choice of parameters guarantees that the required regularity

properties are satisfied. Table 3.3 shows the experimental order of convergence for

r = 1.7. The order of convergence for the natural norm ‖F (DDD(u))‖L2(Q) agrees with

the one expected from the theoretical results, while for the velocity we obtain a higher

order. This is again likely to be due to the fact that quadratic elements were employed

for the velocity variable, while the analysis was performed for linear elements.

3.2.2 Role of the penalty term

In this computational experiment we investigate the role of the penalty term in the al-

gorithm, to explore whether its presence is essential to ensure convergence. Similarly

to Section 3.2.1 we consider the steady problem first. The same exact solution was em-

ployed, because it allows us to carefully select its regularity. In this case Taylor–Hood
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hn τm ‖F (DDD(u))‖L2(Q) ‖u‖L∞(0,T ;L2(Ω))

0.5 0.001 0.9226 1.8703
0.25 0.0005 0.9865 1.9564
0.125 0.00025 1.0057 1.9497
0.0625 0.000125 1.0084 1.9440
0.03125 0.0000625 1.0075 1.9451

Expected 1.0 1.0

Table 3.3: Experimental order of convergence for the unsteady problem with
r = 1.7.

elements were employed for the velocity and pressure, and discontinuous piecewise

polynomials for the stress:

Σn = {σ ∈ L∞sym(Ω)d×d : σ|K ∈ P1(K)d×d, for all K ∈ Tn},
V n = {w ∈ W 1,r(Ω)d : wτ |∂Ω1 = 0, w|∂Ω2 = 0, w|K ∈ P2(K)d for all K ∈ Tn},
Mn = {q ∈ L∞(Ω) ∩ C(Ω) : q|k ∈ P1(K) for all K ∈ Tn}.

This question is only relevant when the discretely divergence-free elements are not

pointwise divergence-free, because otherwise the condition r > 2d
d+2

is sufficient to

allow us to pass to the limit in the convective term. In the steady case, without the

penalty term and with elements that are not exactly divergence-free, the convergence

of the finite element approximations still holds (see Remark 3.1.6), but assuming the

stronger assumption r > 2d
d+1

(cf. [DKS13]). According to this, the addition of the

penalty term is then necessary in the convergence analysis when the elements are not

exactly divergence-free and r ∈ ( 2d
d+2

, 2d
d+1

]. Table 3.4 shows the experimental orders of

convergence for r = 1.3 (just like in Section 3.2.1, the table shows not the numerical

error, but the experimental order of convergence).

In the experiment for the time-dependent problem we chose in this case the steady

state solution (3.39) with the same parameters described above and used it to define

the initial and boundary conditions. In this case, our convergence analysis dictates

that the addition of the penalty term is necessary when r ∈ ( 2d
d+2

, 3d+2
d+2

); however,

the result is expected to hold for r ∈ (2(d+1)
d+2

, 3d+2
d+2

) as well (see Remark 3.1.8). We

therefore chose a value of r in the interval ( 2d
d+2

, 2(d+1)
d+2

]. The experimental orders of

convergence for this case are shown in Table 3.5.

What we see in these experiments is that the method converges regardless of

whether there is a penalty term or not. As mentioned at the beginning of this section,

this could be an indication that the requirement to include this penalty term is only
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hn ‖F (DDD(u))‖L2(Ω) ‖p‖Lr′ (Ω)

0.5 0.97295673154 1.91148217955
0.25 1.00506435728 0.470815332994
0.125 1.0089872966 0.51434542432
0.0625 1.00879694502 0.472841717098
0.03125 1.00895395592 0.463776304819

Expected 1.0 0.461

Table 3.4: Experimental order of convergence for the steady problem with r = 1.3.

hn τm With Penalty Term Without Penalty Term

0.5 0.005 9.73599147231 5.502165863559
0.25 0.0025 1.008703378392 0.98183996942
0.125 0.00125 1.00651090357 1.00190875446
0.0625 0.000625 1.0154632500 1.00811647604
0.03125 0.0003125 1.028436230 1.01326314547

Expected 1.0 1.0

Table 3.5: Experimental order of convergence for the ‖F (DDD(u))‖L2(Q) norm for the
full problem with r = 1.3.

a technical obstruction and that there might be a different approach to showing

convergence of the numerical method that could avoid it. In any case, we believe that

in most applications the penalty term can be safely omitted.

3.2.3 Navier–Stokes/Euler activated fluid

In this section we will consider the classical lid–driven cavity problem with the non–

standard constitutive relation:
 DDD = δs

SSS
|SSS| + 1

2ν
SSS, if |DDD| ≥ δs,

SSS = 0, if |DDD| < δs,
if (x− 1

2
)2 + (y − 1

2
)2 ≤ (3

8
)2,

DDD = 1
2ν
SSS, otherwise,

(3.41)

where ν > 0 is the viscosity and δs ≥ 0. Constitutive relations of this type were

analysed for the first time in [BMR20]; the relation (3.41) is an example of an activated

fluid that in the middle of the domain transitions between a Newtonian fluid (i.e.

Navier–Stokes) and an inviscid fluid (i.e. Euler) depending on the magnitude of the

symmetric velocity gradient. As mentioned in Chapter 1, the fact that we can swap
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the roles of the stress and the symmetric velocity gradient in constitutive relations

without any problem is a significant advantage of the framework presented here.

The problem was solved on the unit square Ω = (0, 1)2 with the rest state as the

initial condition and with the following boundary conditions:

∂Ω1 = (0, 1)× {1}, ∂Ω2 := ∂Ω \ ∂Ω1,

u = 0 on (0, T )× ∂Ω2,

u = (x2(1− x)216y2, 0)> on (0, T )× ∂Ω1.

Although (3.41) has a complicated form, there is a continuous (in DDD) selection

available:

SSS = S(x, y,DDD) :=

 2ν
(
|DDD| − δs1B3/8(1/2)(x, y)

)+
DDD
|DDD| , if |DDD| 6= 0,

0, if |DDD| = 0.
(3.42)

While the selection stated in (3.42) is already continuous in DDD, Newton’s method

requires Fréchet-differentiability of S with respect to DDD and the constitutive law is

not smooth when |(x− 1
2
, y − 1

2
)| < 3

8
; therefore some regularisation was required for

the purpose of applying Newton’s method (an alternative would have been to use a

non-smooth generalisation such as a semismooth Newton method). For this problem

we chose a Papanastasiou-like regularisation (cf. [Pap87]); the Papanastasiou regu-

larisation has been successfully applied to several problems with Bingham rheology

[CGA+05, DT03, MH04]. The regularised constitutive relation reads:

DDD =

(
δs(1− exp(−M |SSS|))

|SSS| +
1

2ν

)
SSS for (x− 1

2
)2 + (y − 1

2
)2 ≤ (3

8
)2, (3.43)

where M > 0 is the regularisation parameter (as M →∞ we recover the constitutive

relation (3.41), see Figure 3.1); note that this is not related to the regularisation (2.15),

which has the goal of turning the measurable selection into a continuous function. For

the velocity and pressure we used Scott–Vogelius elements and discontinuous piece-

wise polynomials were used for the stress (cf. 3.2.1); the problem was implemented in

firedrake with k = 1, ν = 1
2
, using the same parameters for the linear and nonlinear

solvers described in the previous section, and continuation was employed to reach

the values M = 200 and δs = 2.5; more precisely, the problem was initially solved

with M = 100 and δs = 0 and that solution was used as the Newton guess for the

problem with M + 1 and δs + 0.05, repeating the procedure until the desired values

were reached. The time step was chosen as τm = 5 × 10−6 and the algorithm was
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Figure 3.1: Regularised constitutive relation for different values of M and δs = 2.

applied until the L2 norm of the difference of solutions at subsequent time steps was

less than 1× 10−6.

Note that when the ‘yield strain’ parameter δs vanishes, we recover the usual

Navier–Stokes system. On the other end, if δs is taken to be very large this could

be taken as an approximation of the incompressible Euler system in the center of the

square; notice how in Figure 3.2 the fluid picks up more speed in the middle of the

domain when δs > 0 due to the absence of viscosity. This could be an attractive

approach to simulating the effects of boundary layers, because it is backed up by a

rigorous convergence result; near the boundary the fluid could behave in a Newtonian

way and far away δs could be taken arbitrarily large so as to make the effects of the

viscosity negligible. This is just one of the possibilities that are yet to be explored

within this framework of implicitly constituted fluids and mixed formulations and will

be studied in more depth in future work.

Figure 3.3 shows the magnitudes of SSS and DDD along the line x = 0.65 for the steady

state of the non-Newtonian problem; it can be clearly seen that the stress is negligibly

small for low values of the symmetric velocity gradient in the center of the square

and it then suddenly becomes proportional to it. This transition is not the sharpest

in the figure because the regularisation parameter M was not taken sufficiently large,

but in the limit this would recover the non-smooth relation. In a sense this is similar

to solving a Navier–Stokes problem with high Reynolds number, so for high values

of M some stabilisation would be required in order to solve this system efficiently

(even more so if the Newtonian fluid outside of the activation region also has a high

Reynolds number); this will be the subject of future research.
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Figure 3.2: Streamlines of the steady state for the problem with δs = 2.5 (left) and
the Newtonian problem (right).

Figure 3.3: Magnitude of SSS and DDD at x = 0.65 for the problem with δs = 2.5.
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3.2.4 Cessation of the Couette flow of a Bingham fluid

The flow between two parallel plates induced by the movement at constant speed

of one of the plates receives the name of (plane) Couette flow. It is one of the few

examples of a configuration that allows us to find an exact solution for the steady

Navier–Stokes equations and it is well known that this solution has a linear profile.

In this numerical experiment we will take the Couette flow as the initial condition

and investigate the behaviour of the system when the plates stop moving. Physically

it is expected that the viscosity and no-slip boundary condition will slow down the

flow until it finally stops; it can be seen in [PGA99] that in the Newtonian case the

flow does reach the rest state, albeit in infinite time.

In this section we will solve system (3.1) with the Bingham constitutive relation

(c.f. (1.12)):  SSS = τy
DDD
|DDD| + 2νDDD, if |SSS| ≥ τy,

DDD = 0, if |SSS| < τy,

where ν > 0 is the viscosity and τy ≥ 0 is the yield stress. Interestingly, vis-

coplastic fluids in the configuration described above reach the rest state in a finite

time and there are theoretical upper bounds for the so called cessation time (see

[Glo84, HMP02]), which makes this a good problem to test the numerical algorithm.

Just as in the previous section, for this problem there is also a continuous selection

available:

DDD = D(SSS) :=

 1
2ν

(|SSS| − τy)+ SSS
|SSS| , if |SSS| 6= 0,

0, if |SSS| = 0.
(3.44)

For this experiment we again applied the Papanastasiou regularisation to the non-

smooth constitutive relation, in order to be able to apply Newton’s method. After

nondimensionalisation this regularised constitutive law takes the form (compare with

(3.43)):

SSS =

(
Bn

|DDD|(1− exp(−M |DDD|)) + 1

)
DDD, (3.45)

where Bn = τyL

νU
is the Bingham number (here U and L are a characteristic velocity

and length of the problem, respectively), and M > 0 is the regularisation parameter

(as M → ∞ we recover the non–smooth relation; compare with 3.1). The problem
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was solved on the unit square Ω = (0, 1)2 with the following boundary conditions:

∂Ω1 = {0} × (0, 1) ∪ {1} × (0, 1), ∂Ω2 := (0, 1)× {1} ∪ (0, 1)× {0},
u = 0 on (0, T )× ∂Ω2,

uτ = 0 on (0, T )× ∂Ω1,

−p+ SSSn · n = 0, on (0, T )× ∂Ω1,

where uτ denotes the component of the velocity tangent to the boundary and n is the

unit vector normal to the boundary. The initial condition was taken as a standard

Couette flow:

u(0,x) = (1− x2, 0)>.

For the velocity and pressure we used Taylor–Hood elements and discontinuous piece-

wise polynomials for the stress (cf. Section 3.2.2). This problem was implemented in

FEniCS [LMW11] using the same parameters for the nonlinear and linear solvers de-

scribed in the previous section, with k = 1 and a timestep τm between 5× 10−7 and

1× 10−6 for the different values of the Bingham number. We quantify the change in

the flow through the volumetric flow rate (observe that it is constant in x1):

Q(t) :=

∫ 1

0

(1, 0) · u(t,x) dx2,

whose evolution in time is shown in Figure 3.4 for different values of the Bingham

number. An exponential decay of the flow rate is observed in Figure 3.4, while for

positive values of the Bingham number this decay is much faster; these results agree

with the ones reported in [HMP02, CGA+05]. In [CGA+05] the problem was solved by

integrating a one-dimensional equation for u2; the framework presented here recovers

the results obtained there but at the same time has the advantage that it can be

applied to a much broader class of problems and geometries.

While the framework presented here offers a lot of flexibility with respect to the

possible ways of expressing the constitutive relations and the different regularisations,

in practice very small values of the regularisation parameter (or large, depending on

the definition) are needed in order to approximate the yield surfaces accurately, which

can prove challenging. This drawback seems to be inherent to any regularisation

based approach [PFM09, SW17]; however, a regularised constitutive relation can still

be useful to obtain qualitative features of the flow.
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Figure 3.4: Evolution of the volumetric flow rate.
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Chapter 4

Augmented Lagrangian
Preconditioner: Isothermal Case

In this chapter we will construct a preconditioner for the Newton linearisation of a

steady system describing an incompressible fluid:

− divSSS + div(u⊗u) +∇p = f on Ω,

divu = 0 on Ω,

u = ub on ∂Ω,

(4.1a)

where f ∈ Lr
′
(Ω)d and ub ∈ W 1/r′,r(∂Ω)d are given, for some r > 1. In order to

ensure the uniqueness of the pressure we impose a zero mean constraint
∫

Ω
p = 0.

The system is closed with an implicit constitutive relation of the form

GGG(·,SSS,DDD) := α(·, |SSS|2, |DDD|2)DDD− β(·, |SSS|2, |DDD|2)SSS = 0, (4.1b)

where α, β : Ω×[0,∞)2 → R+ are positive functions, and GGG : Ω×Rd×d
sym×Rd×d

sym → Rd×d
sym

satisfies the following assumptions:

(B1) The mapping (DDD,SSS) ∈ Rd×d
sym × Rd×d

sym 7→ GGG(x,SSS,DDD) is Fréchet-differentiable for

almost every x ∈ Ω.

(B2) The mapping x ∈ Ω 7→ GGG(x,SSS,DDD) belongs to L∞(Ω;Rd×d
sym) for every (DDD,SSS) ∈

Rd×d
sym × Rd×d

sym.

The differentiability assumption (B1) is needed because Newton’s method will be

applied to linearise the system. Let us denote by A : Ω → Rd×d
sym × Rd×d

sym the graph

defined by GGG (recall (2.12)). We will assume in addition that, for some r > 1, A(·)
satisfies assumption (A4) and a stricter version of (A3) from Section 2.4:
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(B3) [A is a strictly monotone graph] For every (DDD1,SSS1), (DDD2,SSS2) ∈ A(x),

(SSS1 − SSS2) : (DDD1 −DDD2) ≥ 0,

with strict inequality when (DDD1,SSS1) 6= (DDD2,SSS2).

Clearly these statements should hold now almost everywhere in Ω, as opposed to

Q (as this is now a problem not involving time). In the weak formulation of this

system we look for (SSS,u, p) ∈ Lr′sym,tr(Ω)d×d ×
(
u0 +W 1,r

0,div(Ω)d
)
× Lr̃0(Ω), where r̃ :=

min{r′, r∗/2}, such that

∫
Ω

SSS :DDD(v)−
∫

Ω

u⊗ u :DDD(v)−
∫

Ω

p div v =

∫
Ω

f · v ∀v ∈ W 1,r̃′

0 (Ω)d, (4.2a)

(DDD(u),SSS) ∈ A(·) a.e. in Ω, (4.2b)

−
∫

Ω

q divu = 0 ∀ q ∈ Lr′(Ω). (4.2c)

Observe that for a constitutive relation of the form (4.1b), the assumptions (B1)–

(B3) imply that A is a maximal monotone r-graph (i.e. (A1),(A2),(A3) and (A4)

are also satisfied), and under these conditions the results in Chapter 3 guarantee the

existence of a weak solution. Using the specific form (4.1b) is not strictly necessary,

but it has the advantage that it reduces the number of necessary assumptions, and

many models can be expressed in this form, in any case. The strict monotonicity

assumption (B3) is required to prevent the Jacobian from becoming singular, which

is necessary when employing Newton’s method.

The relation (4.1b) defines a general constitutive law with a power-law structure

describing a fluid with an effective viscosity that depends both on |DDD| and |SSS|; in this

setting the effective viscosity can be defined as:

µeff(·, |SSS|, |DDD|) :=
1

2

α(·, |SSS|2, |DDD|2)

β(·, |SSS|2 , |DDD|2)
. (4.3)

An important example that is captured by the assumptions above is the gener-

alised Carreau–Yasuda constitutive relation:

GGG(SSS,DDD) =
(
β1 + (1− β1)(1 + Γ1 |DDD|2)

r1−2
2

)
DDD

− 1

2ν

(
β2 + (1− β2)(1 + Γ2 |SSS|2)

2−r2
2(r2−1)

)
SSS,

(4.4)

where r1, r2 > 1, 1 ≥ β1, β2 ≥ 0 and ν,Γ1,Γ2 > 0 are given parameters. Note that

when β2 = 1 the relation (4.4) reduces to the Carreau–Yasuda constitutive relation
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(a) ν = 1, r1 = 1.2, r2 = 2.5,
β1 = 0.5, β2 = 0, Γ1 = Γ2 = 10.

0
2

4 0

2

40

20

40

|DDD|
|SSS|

µeff(|SSS|, |DDD|)

(b) ν = 1, r1 = 2.5, r2 = 3.5,
β1 = β2 = 0, Γ1 = 100, Γ2 = 20.

Figure 4.1: Effective viscosity for the generalised Carreau–Yasuda relation (4.4).
Shear-thinning and stress-thickening behaviour can be observed in (a) while (b)

presents only thickening behaviour.

(1.8), and when r1 = 2 = r2 or β1 = 1 = β2 it reduces to the usual Newtonian

relation SSS = 2νDDD. When r1 = 2, the relation (4.4) can for instance capture the

models with stress-dependent viscosity of Ellis (1.15) and Glen (1.16). Figure 4.1

shows the behaviour of the effective viscosity for two choices of the parameters.

Another example is given by regularisations of the Bingham constitutive relation

(c.f. (1.12)):  SSS = τy
DDD
|DDD| + 2νDDD, if |SSS| ≥ τy,

DDD = 0, if |SSS| < τy,
(4.5)

where ν > 0 and τy ≥ 0. Note that such a relation can be written using an expression

of the form (4.1b); for instance, it could be described using the following functions:

GGG1(SSS,DDD) = 2ν(τy + |2νDDD|)DDD− |2νDDD|SSS, (4.6a)

GGG2(SSS,DDD) =

{
DDD− 1

2ν
(|SSS| − τy)+ SSS

|SSS| , if SSS 6= 0,

DDD, if SSS = 0.
(4.6b)

However, the expressions in (4.6) do not satisfy the differentiability assumption (B1)

and so Newton’s method cannot be directly applied. As was done in Section 3.2.4, this

difficulty can be addressed by applying a suitable regularisation step. For example,
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the following functions could be used instead of (4.6):

G̃GG1(SSS,DDD) = 2ν(τy + |2νDDD|)DDD−
√
|2νDDD|2 + ε2SSS, (4.7a)

G̃GG2(SSS,DDD) =

(
2ν +

τy
|DDD|

)
(1− e−|DDD|/ε)DDD− SSS, (4.7b)

where ε is a positive small parameter. The relation defined by (4.7b) is the Papanasta-

siou regularisation (c.f. (3.45)), and while (4.7a) is related to the Bercovier–Engelman

regularisation [BE80], it is not usually written in this manner. This illustrates the

freedom that the framework presented here offers; it is up to the practitioner to find

the most convenient expression for a given constitutive relation.

Let us now take a barycentrically refined triangulation Tn of Ω. In this chapter

we will employ the Scott–Vogelius finite element pair for the velocity and pressure,

and discontinuous polynomials for the stress:

Σn = {σ ∈ L∞sym,tr(Ω)d×d : σ|K ∈ Pk(K)d×d, for all K ∈ Tn},
V n = {w ∈ W 1,r(Ω)d : w|∂Ω = ub, w|K ∈ Pk+1(K)d for all K ∈ Tn},
Mn = {q ∈ L∞0 (Ω) : q|k ∈ Pk(K) for all K ∈ Tn},

where k ≥ d. The fact that we can work with traceless stresses, and thus fewer

degrees of freedom, stems from the fact that the discretely divergence-free velocities

with the Scott–Vogelius element are in fact pointwise divergence-free (c.f. Remark

2.5.8). This property is highly desirable and its importance has been recognised in

recent years; see for instance the discussion in [JLM+17, LR19].

In the finite element formulation of (4.1) we look for (SSS,u, p) ∈ Σn × V n ×Mn

such that ∫
Ω

GGG(·,SSS,DDD(u)) : τ = 0 ∀ τ ∈ Σn, (4.8a)∫
Ω

SSS : DDD(v)−
∫

Ω

u⊗ u : DDD(v)−
∫

Ω

p div v =

∫
Ω

f · v ∀v ∈ V n, (4.8b)

−
∫

Ω

q divu = 0 ∀ q ∈Mn. (4.8c)

The results from Chapter 3 guarantee the existence of solutions of this finite element

discretisation and that they converge to a weak solution of (4.1) as the mesh is refined.

The nonlinear system (4.8) is solved using Newton’s method. Denoting the current

guess for the solution as (S̃SS, ũ, p̃), the linearisation procedure is defined by a correc-

tion step (S̃SS, ũ, p̃) 7→ (S̃SS, ũ, p̃) + (SSS,u, p) that is applied iteratively, where (SSS,u, p) is
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computed by solving a linear system, whose associated matrix presents the following

block structure: Q1 Q2C
> 0

C E B̃>

0 B̃ 0

SSSu
p

 . (4.9)

The linear operators in the matrix above are defined through the relations

〈Q1σ, τ 〉 :=

∫
Ω

∂SSSGGG(·, S̃SS,DDD(ũ))σ : τ ∀σ, τ ∈ Σn, (4.10a)

〈Q2C
>v, τ 〉 :=

∫
Ω

∂DDDGGG(·, S̃SS,DDD(ũ))DDD(v) : τ ∀v ∈ V n, τ ∈ Σn, (4.10b)

〈B̃v, q〉 := −
∫

Ω

q div v ∀v ∈ V n, q ∈Mn, (4.10c)

〈Cσ,w〉 :=

∫
Ω

σ : DDD(w) ∀σ ∈ Σn,w ∈ V n, (4.10d)

〈Ev,w〉 := −
∫

Ω

(ũ⊗ v + v ⊗ ũ) : DDD(w) ∀v,w ∈ V n. (4.10e)

Note that the differentiability and the strict monotonicity imply, together with the

Implicit Function Theorem, that Q−1
2 Q1 is either positive or negative definite. If the

convective term is neglected (or if Picard linearisation is used instead), with the help

of the inf-sup conditions (2.22) and (2.23) we can guarantee that (4.9) is invertible.

Although the invertibility of (4.9) is not clear when using Newton’s method, in this

work we will always employ it, because of its quadratic convergence rate (assuming

the current guess is sufficiently close to the solution).

4.1 Augmented Lagrangian preconditioner

4.1.1 Augmented Lagrangian stabilisation

After discretization and Newton linearization, the system has the following block

form: [
A B>

B 0

] [
z
p

]
=

[
f
g

]
, (4.11)

where z := (SSS,u)>, A is the stress-velocity block, and B represents the discrete

divergence on the velocity space (c.f. (4.9)). A popular approach to preconditioning

systems with this structure is based on the block factorization[
A B>

B 0

]−1

=

[
I −A−1B>

0 I

] [
A−1 0

0 S−1

] [
I 0

−BA−1 I

]
,
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where S = −BA−1B> is the Schur complement. If approximations Ã−1 and S̃−1

of A−1 and S−1 are available, they can be used in this formula to precondition the

coupled system. For a velocity-pressure formulation of the Stokes system, it is known

that the Schur complement is spectrally equivalent to the viscosity-weighted pressure

mass matrix [SW94, MW11]: S ∼ −ν−1Mp. Using (for instance) an algebraic multi-

grid cycle on A as Ã−1 and the inverse diagonal of the pressure mass matrix as S̃−1

results in a mesh-independent preconditioner for the Stokes system. As mentioned in

the Introduction, for the Navier–Stokes system this choice results in a solver whose

performance degrades badly as the Reynolds number Re increases, i.e. the number

of Krylov iterations per nonlinear iteration grows with Re [ES96]. Other precondi-

tioners such as the pressure convection-diffusion (PCD) [KLW02] and least-squares

commutator (LSC) [EHS+06] perform well for moderate Reynolds numbers, but their

performance still deteriorates as the Reynolds number grows [ESW14].

An alternative approach for dealing with the Schur complement approximation

was proposed by Benzi and Olshanskii [BO06] for a 2D Navier–Stokes problem and

later extended to the 3D problem by Farrell, Mitchell and Wechsung [FMW19]. The

main idea is to modify the system by adding an augmented Lagrangian term:[
A+ γB>M−1

p B B>

B 0

] [
z
p

]
=

[
f + γB>M−1

p g
g

]
, (4.12)

where γ > 0 is a parameter. Observe that this modification does not change the

solution of the system, since Bz = g. The addition of the term γB̃>M−1
p B̃ could be

interpreted as augmenting the weak formulation with the term

γ

∫
Ω

Πn
M div vΠn

M divw, for v,w ∈ V n, (4.13)

where Πn
M is the projection to the pressure space Mn. The Scott–Vogelius element

satisfies div(V n) ⊂ Mn, and so the projection Πn
M can actually be omitted in this

case. The term (4.13) could then be interpreted as a least-squares term that penalizes

the L2-norm of divu, and appears in other contexts, such as the iterated penalty and

artificial compressibility methods [Tem68, Cho67]. From the Sherman–Morrison–

Woodbury formula (see e.g. [Bac06]) we see that the inverse Schur complement of the

augmented matrix can be approximated as

S−1 = (−B(A+ γB>M−1
p B)−1B>)−1 = −(BA−1B>)−1 − γM−1

p

≈ −(ν + γ)M−1
p ≈ −γM−1

p ,
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with the approximation improving as γ → ∞ (cf. [FMW19]); see also [BO06] for

bounds on the spectrum of the preconditioned Schur complement as γ increases, for

the Oseen linearisation of the Navier–Stokes system.

The challenge is to develop an efficient solver for the augmented top block A +

γB>M−1
p B. This is not trivial as the augmented Lagrangian term has a large kernel

(the set of discretely divergence-free velocity fields) and so the matrix degenerates

as γ → ∞. The essential breakthrough for the Navier–Stokes system came with the

work [BO06], where a specialized multigrid operator was developed for the top block,

applying ideas developed by Schöberl for nearly incompressible elasticity [Sch99a,

Sch99b]. In this work we will apply these ideas to develop a robust multigrid operator

for the coupled stress-velocity block. The two main components needed to obtain a

robust multigrid solver are a robust relaxation and a robust prolongation operator,

which we will develop in the following sections. In the same spirit we mention the

work [FMSW20a], where a preconditioner for a Scott–Vogelius discretization of a

velocity-pressure formulation of the Newtonian system was developed.

It is important to note that the available theory for the development of robust

multigrid solvers assumes that the matrix A is symmetric and positive definite (SPD).

This assumption does not hold for the problem under consideration; the stress-velocity

block in (4.11) itself has a saddle point structure and is not symmetric. Nevertheless,

satisfying the requirements of the SPD case appears to give good performance in the

general case also, as observed in the computational experiments of previous works

[BO06, FMW19, FMSW20a]. The computational experiments of Section 4.2 demon-

strate that the preconditioner we propose possesses similarly excellent robustness with

respect to parameters arising in the implicit constitutive relation (4.1b).

As mentioned in Example 2.5.7, barycentric refinement guarantees the inf-sup sta-

bility of the Scott–Vogelius element pair for k ≥ d. However, constructing a multigrid

hierarchy by successive barycentric refinement creates degenerate elements. We there-

fore employ the alternative construction used in [FMSW20a]. The multigrid hierarchy

is obtained by taking a standard uniformly-refined hierarchy and barycentrically re-

fining on each level once; see Figure 4.2. The cells before barycentric refinement are

referred to as macro cells. An important consequence of this is the existence of local

Fortin operators on each macro cell, which are useful when trying to characterize

locally the space of divergence-free velocities [FMSW20b]. A disadvantage is that the

resulting mesh hierarchy is non-nested, which leads to some complications with the

prolongation operator in the multigrid algorithm.
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Figure 4.2: Non-nested two-level barycentrically refined mesh hierarchy in two di-
mensions.

Remark 4.1.1. Augmented Lagrangian preconditioners have been applied to flow

problems with variable viscosity and Bingham rheology before; see e.g. [HNV15, HN12].

In those works it is advocated that for the Schur complement approximation a viscosity-

weighted mass matrix should be used instead:

(Mµ)ij :=

∫
Ω

1

µ
φi φj, (4.14)

where µ denotes the variable (effective) viscosity and φi, φj are pressure basis func-

tions. A similar argument was presented in [GO09], where only the Schur complement

approximation without the augmented Lagrangian term was studied and spectral equiv-

alence results were obtained for the problem neglecting convection. However, in those

works a robust scalable solver for the augmented momentum block was not available

and the authors were limited to low values of γ (γ = 1 was used in their numerical

experiments), and so a better approximation for the Schur complement with (4.14)

was necessary. In contrast, the multigrid solver presented in this work for the stress-

velocity block will be γ-robust, which therefore allows for very large values of γ, and

thus excellent control of the Schur complement. It is consequently not necessary to

use (4.14), which requires reassembly at every Newton step.

4.1.2 Solving the top block: robust relaxation

From (4.12) and (4.9), we see that the augmented stress-velocity block can be written

as

An,γ := A+ γB>M−1
p B =

[
Q1 Q2C

>

C E

]
+ γ

[
0

B̃>

]
M−1

p

[
0 B̃

]
, (4.15)
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where γB>M−1
p B is symmetric and semi-definite and A is invertible. Relaxation

methods used in multigrid algorithms can often be framed in terms of subspace cor-

rection methods [Xu92, Xu01]. Let us define Zn := Σn×V n and consider the subspace

decomposition

Zn =
∑
i

Zi, (4.16)

where the sum is not necessarily direct. Denoting the natural inclusion by Ii : Zi →
Zn, we can define the restriction of An,γ to Zi as

〈Aizi,wi〉 := 〈An,γIizi, Iiwi〉, ∀ zi,wi ∈ Zi. (4.17)

The parallel subspace correction method, or additive Schwarz preconditioner, associ-

ated with (4.16) is then defined by the action

D−1
n,γ =

∑
i

IiA
−1
i I∗i . (4.18)

The multiplicative version, or sequential correction method, is similar, but applies the

correction step on each space sequentially. For instance, the Jacobi and Gauss-Seidel

smoothers are obtained by setting Zi = span{ϕi}, where {ϕi}i denotes a basis of Zn,

and using the parallel and sequential correction methods, respectively.

When An,γ is symmetric and positive definite (e.g. as with a velocity-pressure

formulation of the Stokes system), one can investigate whether Dn,γ and An,γ are

spectrally equivalent, in order to study the effectiveness of the preconditioner defined

by (4.18). A useful fact in that case is that the square of the norm induced by Dn,γ

can be written as [Xu01]:

‖v‖2
Dn,γ = inf

vi∈Zi∑
i vi=v

‖vi‖2
Ai
. (4.19)

For example, for the Jacobi smoother we can obtain the bound (see [FMSW20b])

‖v‖2
Dn,γ =

∑
i

‖v‖2
An,γ ≤ c

1 + γ

h2
n

∑
i

‖v‖2
L2(Ω) ≤ c(1 + γ)h−2

n ‖v‖2
An,γ , (4.20)

where c is independent of n and γ. The estimate (4.20) degenerates as the mesh is

refined and this explains why it is usually not effective as a standalone solver, and so

it must be used in a multigrid hierarchy. In addition, the estimate also degenerates as

γ increases, so the preconditioner will not be robust with respect to γ. The following

result states the conditions needed to guarantee that the subspace correction method

is parameter-robust (a similar result for the multiplicative method can be found in

[LWXZ07]).
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Theorem 4.1.2 ([Sch99b, FMSW20b]). Let {Zi}i be a subspace decomposition of Zn

and denote the maximal number of overlapping subspaces of any one subspace by NO.

Assume that A is symmetric and positive definite and denote the kernel by

N n = {z ∈ Zn : B̃z = 0}. (4.21)

Assume that the pair Zn × Mn is inf-sup stable for the problem associated to the

bilinear form

〈B̄(z, p), (w, q)〉 := 〈Az,w〉 − 〈B̃w, p〉 − 〈B̃z, q〉, (4.22)

and that any v ∈ Zn and v0 ∈ N n satisfy

inf
z=

∑
i zi

zi∈Zi

∑
i

‖zi‖2
H1(Ω) ≤ c1(n)‖z‖2

L2(Ω),

inf
z0=

∑
i z0,i

z0,i∈Nn∩Zi

∑
i

‖z0,i‖2
H1(Ω) ≤ c2(n)‖z0‖2

L2(Ω).
(4.23)

Then the following holds for ĉ, c̃ > 0 independent of n and γ:

ĉ(c1(n) + c2(n))−1Dn,γ ≤ An,γ ≤ c̃NODn,γ. (4.24)

For the system (4.15), the kernel N n consists of all the vectors of the form (σ,u)>,

where u ∈ V n
div and σ ∈ Σn is arbitrary. An implicit assumption in Theorem 4.1.2 is

that the spaces in the decomposition (4.16) are sufficiently rich to capture the kernel:

N n =
∑
i

Zi ∩N n. (4.25)

Thankfully, a local characterisation of the kernel of the divergence operator for the

Scott–Vogelius discretisation on meshes with the macro element structure considered

here was recently obtained in [Wec19] (see also [FMSW20b]). In that work it was

proved that a kernel capturing space decomposition is obtained by setting

Zi := {v ∈ Zn : supp(v) ⊂ macrostar(qi)}, (4.26)

where for each vertex qi, the macrostar patch macrostar(qi) is defined as the union of

all macro elements touching the vertex (Figure 4.3 shows a two-dimensional example).

Proposition 4.1.3 ([Wec19, FMSW20b]). Assume that Ω is simply connected and

consider the subspace decomposition defined by (4.26). Then, for any z ∈ Zn and

z0 ∈ N n we have that

inf
z=

∑
i zi

zi∈Zi

∑
i

‖zi‖2
H1(Ω) ≤ c1(n)‖z‖2

L2(Ω),

inf
z0=

∑
i z0,i

z0,i∈Nn∩Zi

∑
i

‖z0,i‖2
H1(Ω) ≤ c2(n)‖z0‖2

L2(Ω).
(4.27)

65



Figure 4.3: Macrostar patches on a barycentrically refined mesh in two dimensions.

Consequently, the following holds for ĉ, c̃ > 0 independent of n and γ:

ĉ(c1(n) + c2(n))−1Dn,γ ≤ An,γ ≤ c̃NODn,γ. (4.28)

Remark 4.1.4. In some cases the analysis can be carried out in a slightly different

manner. For example, if we take a Bercovier–Engelman-like regularization of the con-

stitutive relation for an activated Euler fluid (this is the counterpart of the Bingham

constitutive relation where the roles of SSS and DDD are interchanged, see e.g. [BMR20])

GGG(SSS,DDD) = DDD−
(

1

2ν
+

τy√
ε2 + |SSS|2

)
SSS,

with ν, ε > 0 and τy ≥ 0, then the stress-velocity block in the linearised problem can

be split as follows:

Âν + Âε + γB>M−1
p B, (4.29)

where Âν corresponds to the operator arising from the Newtonian problem and Âε is

defined via

〈Âε(σ,v), (τ ,w)〉 := τy

∫
Ω

1√
ε2 + |S̃SS|2

[
III− S̃SS⊗ S̃SS

ε2 + |S̃SS|2

]
σ : τ , ∀ (σ,v), (τ ,w) ∈ Zh.

The splitting (4.29) could then be interpreted as a perturbation of the Newtonian

problem, which results in an operator that degenerates as ε → 0, γ → ∞, with a

kernel given by elements of the form (S̃SS,w) ∈ Zh, with divw = 0. Note that while

the kernel possesses a one-dimensional stress component, in practice this does not

appear to cause any difficulties for the preconditioner. An illustrative example for a

slightly more complicated problem will be shown in the final section of this work.

66



In the algorithm presented here, the relaxation solves will be performed additively.

For the patches depicted in Figure 4.3, each coupled stress-velocity solve for k = 2

(resp. k = 3) involves 31 (resp. 73) degrees of freedom for each component of the

velocity and 60 (resp. 156) degrees of freedom for the stress. This is much more

expensive than, say, a Jacobi smoother, but the resulting robustness in the algorithm

makes it worth the cost, and small local patchwise solves are quite well suited to

modern computing architectures.

Remark 4.1.5. When working with the full nonlinear problem including advection,

the macrostar iteration (4.16) & (4.26) is not effective as a relaxation method. How-

ever, as observed in [FMW19, FMSW20a], this difficulty can be overcome by applying

a small number of GMRES iterations preconditioned by the macrostar iteration as

relaxation.

4.1.3 Solving the top block: robust prolongation

As illustrated in [FMW19, FMSW20b], a robust multigrid algorithm also requires

a stable prolongation operator PN : V N → V n, mapping the space of coarse grid

functions V N into the space of fine grid functions V n, with a continuity constant

independent of γ. For the Stokes problem, the matrix A acts only on the velocity

space V n and is actually SPD and thus the whole matrix (4.15) defines a norm. We

could therefore write:

‖vN‖2
N,γ = ‖vN‖2

AN
+ γ‖ div vN‖2

L2(Ω),

‖PNvN‖2
n,γ = ‖PNvN‖2

An + γ‖ div(PNvN)‖2
L2(Ω),

where AN and An correspond to discretisations on the coarse and fine mesh, respec-

tively. The central difficulty is that the condition div vN = 0 does not necessarily

imply that div(PNvN) = 0, when PN is a standard prolongation operator based on

finite element interpolation, due to the non-nestedness of the mesh hierarchy. If not

addressed, this causes a lack of robustness in the multigrid solver for large γ. The

insight of Schöberl [Sch99a, Sch99b], later applied by Benzi and Olshanskii in [BO06],

and Farrell, Mitchell and Wechsung [FMW19, FMSW20b, FMSW20a], is that by per-

forming local Stokes solves it is possible to compute a correction to the prolongation

operator and ensure that divergence-free fields get mapped to (nearly) divergence-free

fields.
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Proposition 4.1.6 ([Wec19, FMSW20b]). Assume we can split Mn = M̃N ⊕ M̂n,

with M̃N ⊂MN . Let PN : V N → V n be a prolongation operator that is continuous in

the ‖ · ‖W 1,2(Ω) norm and that preserves the divergence with respect to M̃N , i.e.∫
Ω

div(PNvN)q̃N =

∫
Ω

div vN q̃N ∀ q̃N ∈ M̃N ,vN ∈ V N . (4.30)

Suppose further that there exists V̂ n ⊂ V n such that the pair V̂ n×M̂n is inf-sup stable

and that ∫
Ω

q̃N div v̂n = 0 ∀ q̃N ∈ M̃N , v̂n ∈ V̂ n, (4.31)

Given vN ∈ VN , define ṽn as the solution of the problem

〈An,γṽn, ŵn〉 = γ

∫
Ω

div(PNvN) div(ŵn) ∀ ŵn ∈ V̂ n. (4.32)

Then the prolongation operator P̃N : V N → V n defined by

P̃NvN := PNvN − ṽn, (4.33)

is continuous in the energy norm.

For the Scott–Vogelius discretisation on meshes with the macro element structure

shown in Figure 4.2, the interpolation is actually exact on the boundaries of the macro

cells, and therefore, as shown in [FMSW20b, FMSW20a], the divergence is preserved

with respect to the space

M̃N := {q ∈ L2(Ω) : q is constant on K ∈MN}, (4.34)

whereMN is the triangulation of coarse macro elements. Consequently, the following

choice of spaces satisfies the requirements of Proposition 4.1.6 (see [FMSW20b]):

M̂n := {qn ∈Mn : ΠM̃N qn = 0},
V̂ n := {vn ∈ Vn : supp(vn) ⊂ K for some K ∈MN},

(4.35)

where ΠM̃N denotes the orthogonal projection onto M̃N , and hence the prolongation

defined by (4.33) will be robust in γ. Observe that, by definition of the space Ṽ h,

the problem (4.32) decouples on the patches defined by the macro elements and can

therefore be computed independently on each macro cell (see Figure 4.4); this is

extremely important for the efficiency of the solver.

In the non-Newtonian setting, in the computation of the modified prolongation

operator it may seem more appropriate to alternatively employ on the left-hand side
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Figure 4.4: The correction to the prolongation operator is computed on the coarse
macro cells.

of (4.32) the operator defined by the Schur complement −CQ−1
1 Q2C

> (which reduces

to (4.32) in the Newtonian case). However, since the end-goal is to correct for the

error in the divergence introduced by the interpolation operator, we prefer to retain

(4.32) for the sake of simplicity and avoiding reassembly and refactorisation.

The prolongation operator for the stress variable σN ∈ ΣN 7→ σn ∈ Σn, between

spaces ΣN and Σn defined on the coarse and fine meshes respectively, is defined via

the Galerkin projection

‖σn − σN‖L2(Ω) = min
σ∈Σn

‖σN − σ‖L2(Ω). (4.36)

If we denote the basis of Σn by {ϕin}Nni=1, then the optimality condition for (4.36) takes

the form ∫
Ω

σn : ϕin =

∫
Ω

σH : ϕin ∀ i ∈ {1, . . . , Nn}, (4.37)

or written in matrix form:

Mnσn = Mn,NσN , (4.38)

where the mass matrices are defined as

(Mn)ij =

∫
Ω

ϕin : ϕjn i, j ∈ {1, . . . , Nn},

(Mn,N)ij =

∫
Ω

ϕin : ϕjN i ∈ {1, . . . , Nn}, j ∈ {1, . . . , NN},
(4.39)

where the basis of ΣN is denoted by {ϕiN}NNi=1.

Since the meshes are non-nested, the assembly of Mn,N requires the integration of

piecewise polynomial functions over the cells of either mesh. To integrate these accu-

rately we construct a supermesh of both input meshes [FM11], a common refinement

of both (see Figure 4.5). Over each supermesh cell the integrand of the right-hand
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(a) Coarse mesh TN . (b) Fine mesh Tn. (c) A supermesh of TH and
Th.

Figure 4.5: Example of a coarse mesh TN , a fine mesh Tn, and an associated
supermesh.

side of (4.37) is polynomial, and hence can be calculated accurately with standard

quadrature rules. Since the stress is approximated using discontinuous piecewise

polynomials, the mass matrix Mn is block diagonal, and is simple to invert exactly.

As rediscretization is employed to assemble coarse grid problems, the current guess

for the stress must be injected onto coarse grids. Injection is defined via a Galerkin

projection analogous to (4.36), and employs the same supermesh.

The theory developed in [LWXZ07] and [Sch99a] assumes that the operator A is

symmetric and positive definite, and therefore it does not cover the 3-field formulation

(4.9) since the top block has a saddle point structure and is non-symmetric due to the

convective term. However, we observe that the same strategy of using kernel capturing

space decompositions and a corrected prolongation operator yields preconditioners

with the same good qualities as in the symmetric and definite case. An overview of

the full algorithm can be found in Figure 4.6.

Remark 4.1.7. In the Stokes problem the operator appearing in the top block in (4.9)

reduces after augmentation to[
− 1

2ν
III C>

C 0

]
+ γB>M−1

p B. (4.40)

Note that if written in terms of matrices, the identity operator III becomes a mass

matrix for the space Σn. In this case the operator (4.40) also degenerates as ν → 0

or γ → ∞, but now it is not possible to perform the analysis in terms of a single

parameter γ̂ = γ/ν (as was done in [Wec19]), since the limits now have a different

character. As γ → ∞, the augmented Lagrangian term dominates and therefore its

kernel will play a role in the analysis; on the other hand, as ν → 0 the stress block

becomes instead the dominant term, and so it is the invertibility of the whole saddle

point operator A that suffers. This suggests that in order to extend the results of
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Continuation in rheological parameters

Newton solver with a line search

Krylov solver (FGMRES)

Full block inverse preconditioner

M−1p for approximate Schur complement inverse

F-cycle on stress-velocity block

Coarse grid correction

LU factorisation

Prolongation operator

Velocity: local solves on macro cells

Stress: supermesh projection

Relaxation

GMRES

Additive macrostar iteration

Figure 4.6: Overview of the algorithm.

[Sch99b, LWXZ07] to the case of saddle point matrices, a new approach has to be

found.

Remark 4.1.8. If the constitutive relation can be written in the form GGG(·,SSS,DDD) =

α̃(·, |DDD|2)DDD−SSS, then the shear stress SSS can be eliminated from the system and a velocity-

pressure formulation can be obtained. In this case the theory of [LWXZ07, Sch99a,

FMSW20b] does apply, assuming the convective term is neglected. One potential

difficulty, if several terms appear because of the non-Newtonian constitutive relation,

is that the different kernels could interact in such a way that this affects the properties

of the algorithm, but in practice this was not observed to be the case.

4.2 Numerical examples

All the numerical examples presented in this work were implemented using Firedrake

[RHM+16]. The macrostar patch solves for the relaxation and the local solves for the

prolongation operator in the multigrid algorithm were carried out with PCPATCH

[FKMW19], a recently developed preconditioner in PETSc [BAA+17] for matrix-

free multigrid relaxation via space decompositions. The L2 line search algorithm

[BKST15] was employed to improve the convergence of the Newton solver; the New-

ton solver was deemed to have converged when the Euclidean norm of the residual

fell below 1 × 10−8 and the corresponding tolerance for the linear solver was set to

1×10−10, unless specified otherwise. These tight tolerances are taken to challenge the

solver; in practical computations the tolerance on the linear solver should be dynam-

ically adjusted to minimise the computational work, using e.g. the Eisenstat–Walker
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algorithm [EW96]. The augmented Lagrangian parameter was taken as γ = 104,

to obtain excellent control of the Schur complement. In the implementation, the

uniqueness of the pressure was recovered not by enforcing a zero mean condition in

the variational formulation but rather by orthogonalizing against the nullspace of

constants in the Krylov solver.

4.2.1 Bingham flow between two plates

We first test our solver on a problem where the exact solution is known. Let Ω =

(0, L)× (−1, 1) with L > 0 and consider problem (4.1) with f = 0 and the Bingham

constitutive relation (4.5). A function that solves this problem exactly is given by

[AHOV11, GO09, HMST17]:

ue(x) :=


(C

2
(1− x2

2)− τy(1− x2), 0)>, if τy
C
≤ x2 ≤ 1,

(C
2

(1−
( τy
C

)2
)− τy(1− τy

C
), 0)>, if − τy

C
≤ x2 ≤ τy

C
,

(C
2

(1− x2
2)− τy(1 + x2), 0)>, if − 1 ≤ x2 ≤ − τy

C
,

(4.41a)

pe(x) := −C(x1 −
L

2
), (4.41b)

where C is the (negative) pressure gradient. The boundary datum ub is chosen so as to

match the values in the expression above. The problem was solved with L = 4, C = 2

and τy = 1 using the regularisation (4.7a). Secant continuation starting from ε = 1

was employed to obtain better initial guesses for Newton’s method; more precisely,

this means that given two previously computed solutions w1,w2 corresponding to the

parameters ε1, ε2, respectively, the initial guess for Newton’s method at ε is chosen

as
ε− ε2

ε2 − ε1

(w2 −w1) +w2. (4.42)

In this case the tolerances were chosen to be 1×10−10 and 1×10−12 for the nonlinear

and linear solvers, respectively. Tighter tolerances are used for this problem to ensure

convergence of the continuation scheme.

Figure 4.7 (a) shows the L2-distance between the numerical solution and the exact

solution (4.41), as ε decreases, for different values of the polynomial degree k and the

number of refinements in the mesh hierarchy l; it can be observed that at some

point the discretization error starts to dominate. Figure 4.7 (b) shows the velocity

profiles for different values of ε, including the exact solution. Table 4.1 shows the

average number of Krylov iterations per Newton step using two multigrid cycles with

5 relaxation sweeps per level as Ã−1. It can be seen in Table 4.1 that the number

of iterations remains under control, with only a slight increase for very small ε and
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Figure 4.7: Numerical solution of the Bingham flow between two plates.

one level of refinement; the number of Newton iterations also appears to exhibit

mesh-independence. In the practical computation of viscoplastic flow the approach

described here should be combined with an adaptive refinement of the mesh in order

to resolve the yield surface more accurately.

k # refs # dofs
ε

0.1 0.01 0.001 0.0001

2
1 2.8× 104 5 5 5.33 14
2 1.1× 105 4 3.57 3.83 2.66
3 4.5× 105 4 4 3.85 3.5

3 1 5.9× 104 2.4 2.6 2.44 3.5

Table 4.1: Average number of Krylov iterations per Newton step as ε decreases for
the Bingham flow between two plates.

4.2.2 Generalised Carreau–Yasuda fluid

In this experiment we employ the constitutive relation (4.4) and test the solver with

different values of the rheological parameters on the lid driven cavity problem. The

problem is solved on the square/cube (0, 2)d with f = 0, and boundary data

ub(x) :=

{
(x2(2− x)2, 0)>, if y = 2,

(0, 0)>, otherwise,

73



if d = 2, and

ub(x) :=

{
(x2(2− x)2z2(2− z)2, 0, 0)>, if y = 2,

(0, 0, 0)>, otherwise,

if d = 3. For the 3D problem the tolerance for the linear solver was set to 1× 10−8.

In this example a simple continuation algorithm was employed to reach the different

values of the parameters, e.g. the solution corresponding to ν is used as an initial

guess in Newton’s method for the problem with ν + δν, iterating the procedure until

the desired value is reached. For parameters for which the effective viscosity is small

(e.g. small ν), the problem will be convection dominated and hence some advective

stabilisation is required in (4.8). We choose to add a stabilising term based on jump

penalisation described in [BL08, DD76]:

Sh(v,w) :=
∑
K∈Mh

1

2

∫
∂K

δ h2
∂K J∇vK : J∇wK, (4.43)

where JzK denotes the jump of z across ∂K, h∂K is a function giving the size of

each face in ∂K, and δ is an arbitrary stabilisation parameter. In the numerical

experiments the stabilisation parameter was chosen to be cell-dependent and set to

5×10−3‖ũ‖L∞(K). In the experiments described in this section, 2 full multigrid cycles

with 4 relaxation sweeps per level were applied as Ã−1 when d = 2, and 1 cycle

with 6 relaxation sweeps when d = 3. These values were chosen so as to balance the

amount of inner and outer work (e.g. fewer relaxation sweeps result in less expensive

linear solves, but more iterations are needed); convergence is also achieved with fewer

relaxation sweeps, but the values chosen here resulted in a shorter time to solution.

Tables 4.2 and 4.3 show the average number of Krylov iterations per Newton step

for a problem with decreasing ν; it can be observed that the number of iterations

remains well controlled even for the lowest values of ν (in the Newtonian problem,

ν = 0.0002 would correspond to a Reynolds number of 10000).

A comparison with the preconditioner using a Jacobi smoother instead of the

macrostar iteration can be found in Table 4.4, for a given set of rheological parameters.

The experiments were performed on 12 Intel Xeon Silver 4116 CPUs. Very mild

parameters are considered for this comparison, since the Krylov solver with Jacobi

smoothing fails to converge otherwise (the solver using the AMG libraries Hypre

[FY02], ML [GSH+06], and GAMG [ABKP04] on the stress-velocity block failed to

converge altogether). We note that for our academic test problems, the preconditioner

employing a direct sparse solver for the stress-velocity block is still faster on the

workstation resources we had available, but we expect that the implementation could
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k # refs # dofs
ν

0.2 0.001 0.0005 0.0002

2
1 3.1× 104 4.25 3.5 4 5
2 1.2× 105 4.25 3.5 3.5 4
3 4.9× 105 4.25 3 2.5 3

3
1 6.5× 104 2.75 2. 2.5 2.5
2 2.5× 105 2.75 1.66 2 2.5
3 1.0× 106 2.5 2 1.5 1.5

Table 4.2: Average number of Krylov iterations per Newton step as ν decreases for
the 2D generalised Carreau–Yasuda relation with r1 = 1.8, r2 = 2.5, Γ1 = Γ2 = 200,

β1 = 0.9, β2 = 0.5.

k # refs # dofs
ν

0.2 0.002 0.0005 0.00028

3 1 9.2× 105 7.25 5 5.5 5.5

Table 4.3: Average number of Krylov iterations per Newton step as ν decreases for
the 3D generalised Carreau–Yasuda relation with r1 = 1.8, r2 = 2.5, Γ1 = Γ2 = 200,

β1 = 0.9, β2 = 0.5.

be optimised and the algorithm employing the macrostar iteration will scale better

on high performance computers. Other ways of lowering the cost of the algorithm,

such as employing H(div)–L2-type elements for the velocity and pressure, for which a

smaller star iteration would suffice to capture the kernel, will be the subject of future

research.

d (k,#refs) # dofs
macrostar Jacobi

# iters time (min.) # iters time (min.)

2 (2, 3) 4.9× 105 15 1.67 3040 107.81
3 (3, 1) 9.2× 105 10 37.33 753 70.35

Table 4.4: Runtime comparison and total number of Krylov iterations (# iters) for
a 2D problem with ν = 0.02, r1 = 1.8, r2 = 2.5, Γ1 = Γ2 = 200, β1 = 0.9, β2 = 0.5,

and a 3D problem with r1 = r2 = ν = 2.

Tables 4.5 and 4.6 show the number of average Krylov iterations for small r1 and

large Γ2, respectively, for two different values of γ. It can be observed that depending

on the parameter of interest, large values of γ improve the robustness of the algorithm.

In all the examples the solver appears to be robust with respect to the parameters
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γ k # refs # dofs
r1

1.66 1.25 1.11 1.07

104

2
1 3.1× 104 3.5 3.5 3.5 3.5
2 1.2× 105 3.5 3.5 3.5 3.5
3 4.9× 105 3 3.5 4 4

3
1 6.5× 104 2 2 2 2
2 2.5× 105 2 2 2 2.5
3 1.0× 106 2 2 2.5 2.5

1

2
1 3.1× 104 5 4 4 4
2 1.2× 105 4.5 4 3.5 3.5
3 4.9× 105 4 4 4 4

3
1 6.5× 104 4 4 3.5 3
2 2.5× 105 4 3.5 3 3
3 1.0× 106 4 3.5 3 3

Table 4.5: Average number of Krylov iterations per Newton step as r1 decreases for
the 2D generalised Carreau–Yasuda relation with ν = 0.01, r2 = 2, Γ1 = 125,

β1 = 0.7.

appearing in the constitutive relation and also exhibits mesh-independence.

Remark 4.2.1. The solver showed similar robustness properties with respect to the

other rheological parameters. However, in general extreme values of the parame-

ters could result in convergence issues for the nonlinear iterations. In practice, the

preconditioner presented here should then be coupled e.g. with a more sophisticated

continuation strategy for the nonlinear iterations, or with nested iteration.

4.2.3 Activated Euler Flow Past an Obstacle

Consider the constitutive relation of an Euler/power-law fluid (c.f. (3.41)): DDD = τy
SSS
|SSS| +DDD2, if |DDD| ≥ τy,

SSS = 0, if |DDD| < τy,
(4.44)

where DDD2 satisfies SSS = 2ν|DDD2|r−2DDD2, for some ν > 0 and r > 1. Observe that the

power-law nonlinearity can be inverted and we have that, for any DDD,SSS ∈ Rd×d
sym,

SSS = 2ν|DDD|r−2DDD⇐⇒ DDD =
1

2ν

( |SSS|
2ν

)r′−2

SSS. (4.45)
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γ k # refs # dofs
Γ2

10 1000 5000 10000

104

2
1 3.1× 104 4 3.66 4 4
2 1.2× 105 3.66 3.66 4 3.5
3 4.9× 105 3.66 3.66 4 4

3
1 6.5× 104 2.33 2 2.5 2.5
2 2.5× 105 2.33 2 2.5 2.5
3 1.0× 106 2.33 2 2.5 2.5

1

2
1 3.1× 104 9.66 20.3 32 34.5
2 1.2× 105 9 19.3 30.5 31.5
3 4.9× 105 8 17.3 26 27

3
1 6.5× 104 7.33 15.6 24 26
2 2.5× 105 6.33 13.6 20 21
3 1.0× 106 6 11.3 16.5 17.5

Table 4.6: Average number of Krylov iterations per Newton step as Γ2 increases for
the 2D generalised Carreau–Yasuda relation with ν = 0.01, r1 = 1.7, r2 = 3,

Γ1 = 10, β1 = 0.2, β2 = 0.9.

Using this fact we can write a regularized constitutive relation similar to the one

described in Remark 4.1.4:

GGG(SSS,DDD) = DDD−
(

1

2ν

∣∣∣∣ SSS2ν
∣∣∣∣r′−2

+
τy√

ε2 + |SSS|2

)
SSS,

where ε > 0. The problem was solved on the set Ω = (0, 2) × (0, 0.41) \ (0.3, 0.4) ×
(0.15, 0.25), with boundary data

u = (40.3x2(0.41−x2)
0.412 , 0)>, on ∂Ω1 := {x1 = 0} ∩ ∂Ω,

uτ = 0 and SSSn · n− p = 0 on ∂Ω2 := {x1 = 2} ∩ ∂Ω,

u = 0, on ∂Ω \ (∂Ω1 ∪ ∂Ω2),

(4.46)

where n is the outward normal vector to the boundary and uτ = u− (u ·n)n is the

tangential part of the velocity. Table 4.7 shows the number of Krylov iterations per

Newton step obtained using two full multigrid cycles with 3 relaxation steps per level

as Ã−1; the same robust behaviour as in the previous examples can be observed here.

Figure 4.8 shows the effective viscosity µeff := SSS
2DDD

for the solution of this problem

and for that of a regular shear-thinning power-law fluid. It can be observed that the

effective viscosity of the activated fluid greatly decreases far away from the obstacle,

which is a common assumption in the study of boundary layers.
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(a) Effective viscosity for an activated Euler/power-law fluid with r = 1.3, τy = 3, ν = 0.5,
and ε = 1× 10−5.

(b) Effective viscosity for a power-law fluid with r = 1.3 and ν = 0.5.

Figure 4.8: Effective viscosity for the flow past an obstacle.

k # refs # dofs
ε

0.2 0.01 0.0001 0.00001

2
1 3.5× 104 5 3 2 2
2 1.4× 105 5.66 4 2 2
3 5.6× 105 4.6 4 3 3

3
1 7.3× 104 2.66 2 1 1
2 2.9× 105 3 2 2 2
3 1.1× 106 3 2 2 2

Table 4.7: Average number of Krylov iterations per Newton step as ε decreases for
the Euler/power-law relation with ν = 0.5, r = 1.3, τy = 3.
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Chapter 5

The Anisothermal Problem

As mentioned in Chapter 1, in applications the thermal effects are often of fun-

damental importance and cannot be neglected. The purpose of this chapter is to

extend the results from previous chapters to cover the numerical approximation of

heat-conducting flow.

5.1 Unsteady forced convection flow

In this section we will focus on extending the convergence result presented in Chapter

3 to the non-isothermal system

∂tu− div(SSS− u⊗ u) +∇p = f in (0, T )× Ω,

divu = 0 in (0, T )× Ω,

∂tE + div((E + p)u− SSSu)− div(κ(θ)∇θ) = f · u in (0, T )× Ω,

(DDD(u),SSS, θ) ∈ A(·) a.e. in (0, T )× Ω,

u · n = 0 on (0, T )× ∂Ω,

κ(θ)∇θ · n = 0 on (0, T )× ∂Ω,

αuτ + (SSSn)τ = 0 on (0, T )× ∂Ω,

u(0, ·) = u0(·) in Ω,

θ(0, ·) = θ0(·) in Ω,

(5.1)

where α > 0 and κ,f ,u0, θ0 are given functions. Here n is the outward unit normal

vector, θ is the temperature, and E is the sum of internal and kinetic energies:

E =
1

2
|u|2 + cvθ, (5.2)

where cv > 0 is the specific heat capacity at constant volume. The tangential part

vτ of a vector v is defined as vτ := v− (v ·n)n. The graph A(·) ⊂ Rd×d
sym ×Rd×d

sym ×R
now includes the temperature and could be thought of as a regular graph for the
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stress and symmetric velocity gradient, but now parametrised by the temperature.

The existence of weak solutions to the problem (5.1) was shown in [MZ18] (see also

[BFM09]).

By multiplying the momentum equation by u and substracting the resulting equa-

tion from the balance of total energy, we find the form of the temperature equation

most commonly found in applications:

∂tθ + div(θu− κ(θ)∇θ) = SSS :DDD(u) in (0, T )× Ω. (5.3)

Equation (5.3) has the advantage that it does not contain the pressure and so in-

troduces fewer couplings between the different unknowns. The major difficulty is

that it is then not clear how to pass to the limit in the term SSS :DDD(u), which a priori

only belongs to L1(Q). The two forms of the energy equation are equivalent when-

ever testing with the velocity u is allowed; the key insight from Buĺıček, Málek and

Feireisl in [BFM09], is that the equation for the total energy contained in (5.1) is

more amenable to weak convergence arguments, and is therefore preferable in the

analysis. Whenever the velocity is not an admissible test function (e.g. as in the case

of the 3D Navier–Stokes system), the relation (5.3) can be obtained in the form of an

inequality, which plays the role of an entropy inequality:

∂tθ + div(θu− κ(θ)∇θ) ≥ SSS :DDD(u) in (0, T )× Ω. (5.4)

In this chapter we will work with an implicit constitutive relation defined by the

graph

(DDD,SSS, θ) ∈ A(·)⇐⇒ 2µ(θ)
(|DDD| − σ(θ))+

|DDD| DDD =
(|SSS| − τ(θ))+

|SSS| SSS, (5.5)

where τ, σ, µ : R→ R are continuous functions such that

0 ≤ τ(s), σ(s) ≤ c0,

c1 ≤ µ(s) ≤ c2,

τ(s)σ(s) = 0,

(5.6)

for all s ∈ R, for some positive constants c0, c1, c2. We will also assume that the heat

conductivity κ is a continuous function such that c1 ≤ κ(s) ≤ c2, for any s ∈ R. The

graph (5.5) defines a fluid with either Bingham or activated Euler rheology in which

the viscosity and activation parameters may depend on the temperature. Naturally,

this family of constitutive relations also includes the Navier–Stokes model with a

temperature-dependent viscosity (when τ ≡ 0 ≡ σ). The graph (5.5) was introduced

in [MZ18], where it was proved that, assuming the conditions (5.6) hold, it then
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satisfies monotonicity and coercivity conditions analogous to (A2) and (A4) from the

isothermal case.

Lemma 5.1.1 ([MZ18, Lemma 3]). Consider the graph A ⊂ Rd×d
sym×Rd×d

sym×R defined

by (5.5). If the conditions stated in (5.6) hold, then there exist two positive numbers

β1, β2 > 0 such that

SSS :DDD ≥ β1(|SSS|2 + |DDD|2)− β2, (5.7a)

(SSS− SSS) : (DDD−DDD) ≥ 0, (5.7b)

for any (SSS,DDD, θ), (SSS,DDD, θ) ∈ A.

Proof. This proof was presented in [MZ18], but we reproduce it here for the reader’s

convenience. Suppose that σ ≡ 0; the case τ ≡ 0 is treated analogously. Then, for

an arbitrary (SSS,DDD, θ) ∈ A we can write

DDD =
1

2µ(θ)

(SSS− τ(s))+

|SSS| SSS.

From (5.6) we then obtain

SSS :DDD =
|SSS|

2µ(θ)
(|SSS| − τ(θ))+ ≥ 1

2µ(θ)
((|SSS| − τ(θ))+)2

≥ 1

2c2

((|SSS| − c0)+)2 ≥ 1

2c2

( |SSS|2
4
− c2

0

)
.

(5.8)

On the other hand we have that

|DDD|2 =
1

(2µ(θ))2
((|SSS| − τ(θ))+)2,

which implies that

SSS :DDD ≥ 2µ(θ)|DDD|2 ≥ 2c1|DDD|2. (5.9)

Combining (5.8) and (5.9) yields (5.7a). Now, observing that µ > 0 and that the

mapping

σ 7→ (|σ| − τ(θ))+

|σ| σ,

is monotone, for θ ∈ R fixed, we conclude that for arbitrary (SSS,DDD, θ), (SSS,DDD, θ) ∈ A:

(SSS− SSS) : (DDD−DDD) =
1

2µ(θ)
(SSS− SSS) :

(
(|SSS| − τ(θ))+

SSS
SSS− (|SSS| − τ(θ))+

SSS
SSS

)
≥ 0,

which proves (5.7b).
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In the same spirit as [MZ18], in the numerical scheme we will employ a sequence

of continuous explicit approximations of the implicit constitutive relation (5.5); we

will say that (DDD,SSS, θ) ∈ Rd×d
sym × Rd×d

sym × R belongs to the approximate graph Ak, for

k ∈ N, if either of the two following relations hold:

DDD = Dk(SSS, θ) := min

{
n+

1

2µ(θ)
,

1
2µ(θ)

(|SSS| − τ(θ))+ + σ(θ)

|SSS|

}
,

SSS = Sk(DDD, θ) := min

{
n+ 2µ(θ),

2µ(θ)(|DDD| − σ(θ))+ + τ(θ)

|DDD|

}
.

(5.10)

Either of the two can be chosen, depending on whether one wishes to consider explicit

approximations of the stress in terms of the symmetric velocity gradient or vice-

versa. The functions Dk and Sk satisfy, uniformly in k ∈ N, the same coercivity and

monotonicity properties as those stated in Lemma 5.1.1. More importantly, there is

also a localised Minty lemma available.

Lemma 5.1.2 ([MZ18, Lemma 6]). Let U ⊂ Q be measurable, let A be defined by

(5.5) and let Ak be defined by (5.10). Now suppose {SSSk}k∈N, {DDDk}k∈N and {θk}k∈N
are sequences of measurable functions on Q satisfying

(DDDk,SSSk, θk) ∈ Ak a.e. in U,

SSSk ⇀ SSS weakly in L2(U)d×d,

DDDk ⇀ DDD weakly in L2(U)d×d,

θk → θ a.e. in U,

lim sup
k→∞

∫
U

SSSk :DDDk ≤
∫
U

SSS :DDD.

Then (DDD,SSS, θ) ∈ A almost everywhere in U and SSSk :DDDk ⇀ SSS :DDD weakly in L1(U).

An advantage of Lemma 5.1.2 is that the sequence is only required to belong

to the approximate graph Ak, which allows one to take the graph approximation

limit concurrently with other limits, as opposed to a graph approximation based on

mollification (c.f. Chapter 3). The same conclusion holds in the lemma assuming the

stronger condition (DDDk,SSSk, θk) ∈ A.

5.1.1 Convergence of the finite element approximations

Let us define

2̌ := min

{
d+ 2

d
, 2

}
. (5.11)
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Now, suppose we are given an initial velocity field u0 ∈ L2
div(Ω)d, an initial temper-

ature distribution θ0 ∈ L1(Ω) satisfying θ0 ≥ c for some positive constant c, a body

force f ∈ L2(0, T ;W−1,2
n (Ω)d), and a graph A satisfying (5.5) and (5.6). The weak

formulation for (5.1) then reads as follows.

Formulation Ã. Find functions

SSS ∈ L2
sym,tr(Q)d×d,

u ∈ L2(0, T ;W 1,2
n,div(Ω)d) ∩ L∞(0, T ;L2

div(Ω)d),

∂tu ∈ L2̌(0, T ;W−1,2̌
n (Ω)d),

p ∈ L2̌
0(Q),

θ ∈ L∞(0, T ;L1(Ω)) ∩ Ln(0, T ;W 1,n(Ω)) for n ∈ [1, 5
4
),

∂tθ ∈M(0, T ;W 1,m′(Ω)∗) for m ∈ [1, 10
9

),

∂tE ∈ L1(0, T ;W 1,m′(Ω)∗) for m ∈ [1, 10
9

),

where we are denoting the total energy by E := |u|2
2

+ θ, such that:

〈∂tu,v〉+

∫
Ω

(SSS− u⊗ u− p III) : DDD(v)

+α

∫
∂Ω

u · v = 〈f ,v〉 ∀v ∈ W 1,2̌′

n (Ω)d, a.e. t ∈ (0, T ),

〈∂tE,ψ〉+

∫
Ω

(SSSu− (E + p)u+ κ(θ)∇θ) · ∇ψ

+α

∫
∂Ω

|u|2ψ = 〈f ,uψ〉 ∀ψ ∈ W 1,∞(Ω), a.e. t ∈ (0, T ),

(DDD(u),SSS, θ) ∈ A, a.e. in Q,

θ ≥ c a.e. in Q,

ess lim
t→0+

‖u(t, ·)− u0(·)‖L2(Ω) = 0,

ess lim
t→0+

‖θ(t, ·)− θ0(·)‖L1(Ω) = 0.

In addition, we have that the following entropy inequality holds in the sense of mea-

sures

〈∂tθ, ψ〉+

∫
Ω

(−θu+ κ(θ)∇θ) · ∇u ≥
∫

Ω

SSS :DDD(u)ψ ∀ψ ∈ W 1,∞(Ω), ψ ≥ 0,

with equality achieved if d = 2. The ranges for n and m are written for d = 3, which

is the more restrictive case.

In this section we will assume that the space of discrete pressures Mn is H1(Ω)-

conforming; we could for instance employ the Taylor–Hood or the MINI element
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for the velocity and pressure. The result still holds for non-conforming elements,

assuming one makes sure the approximation of a Laplace problem using the finite

element space Mn is well posed (e.g. by employing an interior penalty formulation of

the Laplacian when using piecewise discontinuous pressures), but this generalisation

would only introduce technical complications without providing additional insight and

we therefore avoid it to improve readability. The motivation behind this assumption

is that we will employ a quasi-compressibility approximation of the form

divu = ε∆p,

where eventually the limit ε → 0 will be taken. This will ensure that uniform esti-

mates for the pressure that make it possible to pass to the limit are available.

For j ∈ {1, . . . , T/τm} let us denote the time averages of f by fj ∈ W−1,2
n (Ω)d

(see (2.26)). Similarly to Chapter 3, the problem will be discretised in time using

backward differences.

In order to restore admissibility of the velocity we will work with the modified

convective term defined, for k ∈ N and u,v,w ∈ C∞n (Ω)d, by

Bk(u,v,w) :=


−
∫

Ω

v ⊗ ((φku) ∗ ω1/k)div :∇w, if d = 3,

1

2

∫
Ω

w ⊗ u :∇v − v ⊗ u :∇w, if d = 2,

where ω1/k is a standard mollifier over a ball of radius 1/k, φk is a smooth function

such that dist(suppφk, ∂Ω) ≥ 1/k, and fdiv represents the solenoidal part of a function

f (recall (2.4)). Note that the continuity properties of the Helmholtz decomposition

imply that if vn → v strongly in Ls(Ω)d for some s ∈ [1,∞) as n→∞, then

((φkv
n) ∗ ω1/k)div → ((φkv) ∗ ω1/k)div strongly in Ls(Ω)d, (5.12)

and moreover if vk → v strongly in Ls(Ω)d as k → ∞ for some s ∈ [1, ,∞) and

div v = 0, then

((φkv
k) ∗ ω1/k)div → v strongly in Ls(Ω)d. (5.13)

The modified convective term defined above also has the usual skew-symmetry prop-

erty

Bk(u,v,v) = 0 ∀u,v ∈ C∞n (Ω)d, (5.14)

regardless of whether u is actually divergence-free or not, which is useful when ob-

taining a priori estimates. In the energy equation we will employ the convective term
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defined for θ, ψ ∈ C∞(Ω) and u ∈ C∞n (Ω)d:

Ck(u, θ, ψ) := −
∫

Ω

θ((φku) ∗ ω1/k)div · ∇ψ. (5.15)

This trilinear form also has the property that

Ck(u, θ, θ) = 0 ∀u ∈ C∞n (Ω)d, θ ∈ C∞(Ω). (5.16)

Formulation Ãk,n,m,l. Find functions SSSk,n,m,lj ∈ Σn, uk,n,m,lj ∈ V n, pk,n,m,lj ∈ Mn
0 ,

and θk,n,m,lj ∈ Um, for j ∈ {1, . . . , T/τm}, such that:∫
Ω

(Dk(SSSk,n,m,lj , θk,n,m,lj )−DDD(uk,n,m,lj )) : τ = 0 ∀ τ ∈ Σn,

1

τm

∫
Ω

(uk,n,m,lj − uk,n,m,lj−1 ) · v + α

∫
∂Ω

uk,n,m,lj · v −
∫

Ω

pk,n,m,lj div v

+

∫
Ω

SSSk,n,m,lj : DDD(v) + Bk(uk,n,m,lj ,uk,n,m,lj ,v) = 〈fj,v〉 ∀v ∈ V n,

−
∫

Ω

q divuk,n,m,lj =
1

l

∫
Ω

∇pk,n,m,lj · ∇q ∀ q ∈Mn,

1

τm

∫
Ω

(θk,n,m,lj − θk,n,m,lj−1 )ψ +

∫
Ω

κ(θk,n,m,lj )∇θk,n,m,lj · ∇ψ

+Ck(uk,n,m,lj , θk,n,m,lj , ψ) =

∫
Ω

SSSk,n,m,lj :Dk(SSSk,n,m,lj , θk,n,m,lj )ψ ∀ψ ∈ Um,

uk,n,m,l0 = P n
Vu0,

θk,n,m,l0 = Pm
U θ

n
0 ,

where P n
V and Pm

U denote the L2-projections onto V n and Um, respectively, and

θn0 := (ω1/n ∗ θ0), where ω1/n is a mollification kernel of radius 1/n (it is understood

that θ0 = c on Rd \ Ω). With this we then have that θn0 ≥ c almost everywhere, and

that

uk,n,m,l0 → u0 strongly in L2(Ω)d, as n→∞,
θk,n,m,l0 → θn0 strongly in L2(Ω)d, as m→∞, (5.17)

θn0 → θ0 strongly in L1(Ω)d, as n→∞.

In Formulation Ãk,n,m,l, the indices k, m, n, and l, refer to the approximation of

the implicit graph and convection term, the time discretisation and Galerkin limit

for the temperature, the Galerkin limit for the rest of the unknowns, and the quasi-

compressibility approximation, respectively. As in the proof of Theorem 3.1.5, in the

convergence argument we will need to take these limits in succession.
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Lemma 5.1.3. Suppose the material parameters satisfy condition (5.6) and suppose

that {Σn, Un, V n,Mn}n∈N is a family of finite element spaces satisfying Assumptions

2.5.2–2.5.5. Then, for the solutions of Formulation Ãk,n,m,l the following a priori

estimate holds:

sup
j∈{1,...,T/τm}

‖uk,n,m,lj ‖2
L2(Ω) +

T/τm∑
j=1

‖uk,n,m,lj − uk,n,m,lj−1 ‖2
L2(Ω) + τm

T/τm∑
j=1

‖SSSk,n,m,lj ‖2
L2(Ω)

+ τm

T/τm∑
j=1

‖DDD(uk,n,m,lj )‖2
L2(Ω) + τm

T/τm∑
j=1

α‖uk,n,m,lj ‖2
L2(∂Ω) +

τm
l

T/τm∑
j=1

‖∇pk,n,m,lj ‖2
L2(Ω)

+ τm

T/τm∑
j=1

‖Dk(SSSk,n,m,lj , θk,n,m,lj )‖2
L2(Ω) ≤ c,

sup
j∈{1,...,T/τm}

‖θk,n,m,lj ‖2
L2(Ω)+

T/τm∑
j=1

‖θk,n,m,lj − θk,n,m,lj−1 ‖2
L2(Ω)+ τm

T/τm∑
j=1

‖∇θk,n,m,lj ‖2
L2(Ω) ≤ cn,

where c > 0 is independent of k,m, n, l but cn > 0 might depend on n.

Proof. The first estimate can be obtained by testing the constitutive relation and mo-

mentum and mass equations with (SSSk,n,m,lj ,uk,n,m,lj , pk,n,m,lj ) and the proof is analogous

to that of the isothermal case; the inf-sup condition (2.23) is again needed to control

the norm ‖DDD(uk,n,m,lj )‖L2(Ω). For the second estimate, by testing the discrete energy

equation with θk,n,m,lj we obtain:

1

2τm
(‖θk,n,m,lj ‖2

L2(Ω) − ‖θk,n,m,lj−1 ‖2
L2(Ω) + ‖θk,n,m,lj − θk,n,m,lj−1 ‖2

L2(Ω)) + c1‖∇θk,n,m,lj ‖2
L2(Ω)

≤
∫

Ω

SSSk,n,m,lj :Dk(SSSk,n,m,lj , θk,n,m,lj )θk,n,m,lj

≤ ‖SSSk,n,m,lj ‖L∞(Ω)‖Dk(SSSk,n,m,lj , θk,n,m,lj )‖L2(Ω)‖θk,n,m,lj ‖L2(Ω)

≤ c̃n‖SSSk,n,m,lj ‖L2(Ω)‖Dk(SSSk,n,m,lj , θk,n,m,lj )‖L2(Ω)‖θk,n,m,lj ‖L2(Ω),

where c̃n > 0 is a norm-equivalence constant that might blow up with n. Therefore,

we have for an arbitrary i ∈ {1, . . . , T/τm}:

‖θk,n,m,li ‖2
L2(Ω) +

i∑
j=1

‖θk,n,m,lj − θk,n,m,lj−1 ‖2
L2(Ω) + τm

i∑
j=1

‖∇θk,n,m,lj ‖2
L2(Ω)

≤ c̃n

i∑
j=1

τm‖SSSk,n,m,lj ‖L2(Ω)‖Dk(SSSk,n,m,lj , θk,n,m,lj )‖L2(Ω)‖θk,n,m,lj ‖L2(Ω) + ‖θk,n,m,l0 ‖2
L2(Ω)

≤ c̃n

i∑
j=1

[(τm‖SSSk,n,m,lj ‖2
L2(Ω))

1/2(τm‖Dk(SSSk,n,m,lj , θk,n,m,lj )‖2
L2(Ω))

1/2]2
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+
i∑

j=1

‖θk,n,m,lj ‖2
L2(Ω) + ‖θk,n,m,l0 ‖2

L2(Ω)

≤ cn +
i∑

j=1

‖θk,n,m,lj ‖2
L2(Ω),

where we used the first estimate and the fact that ‖θk,n,m,l0 ‖L2(Ω) ≤ ‖θn0‖L2(Ω). Noting

that without any loss of generality we can assume that τm ≤ 1, the result follows by

a discrete version of Gronwall’s inequality [Rou13, Eq. (1.69)].

Observe that Lemma 5.1.3, combined with the Korn and Poincaré inequalities

(2.2), implies that we also have the uniform estimate

τm

T/τm∑
j=1

‖uk,n,m,lj ‖2
W 1,2(Ω) ≤ c. (5.19)

The following lemma now guarantees the existence of discrete solutions.

Lemma 5.1.4. Suppose that the same assumptions as in Lemma 5.1.3 hold. Then,

for any j ∈ {1, . . . , T/τm}, given (uk,n,m,lj−1 , θk,n,m,lj−1 ) ∈ V n
div × Un, there exists a tuple

(SSSk,n,m,lj ,uk,n,m,lj , pk,n,m,lj , θk,n,m,lj ) ∈ Σn×V n×Mn
0 ×Un that solves Formulation Ãk,n,m,l.

Proof. The proof will make use of a fixed point argument. Let the initial guess be

(u0, θ0) := (uk,n,m,lj−1 , θk,n,m,lj−1 ), and then define iteratively (SSSi,ui, pi) ∈ Σn × V n ×Mn
0 ,

for i ∈ N, as the solution of∫
Ω

(Dk(SSSi, θi−1)−DDD(ui)) : τ = 0 ∀ τ ∈ Σn,

1

τm

∫
Ω

(ui − ui−1) · v + α

∫
∂Ω

ui · v+

∫
Ω

SSSi :DDD(v) + Bk(ui,ui,v)

−
∫

Ω

pi divv = 〈fj,v〉 ∀v ∈ V n,

−
∫

Ω

divuiq =
1

l

∫
Ω

∇pi · ∇q ∀ q ∈Mn,

and then let θi ∈ Um be the solution of

1

τm

∫
Ω

(θi−θi−1)ψ+

∫
Ω

κ(θi)∇θi ·∇ψ+Ck(θi,ui, ψ) =

∫
Ω

SSSi :Dk(SSSi, θi−1)ψ ∀ψ ∈ Um.

A combination of analogous estimates to the ones described in Lemma 5.1.3 and

a corollary of Brouwer’s fixed point theorem [GR86, Ch. 4 Cor. 1.1] guarantee the
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existence of solutions for every i ∈ N. These same estimates and a compactness

argument conclude the proof of the lemma. In this case the passage to the limit in

i is straightforward since the spaces are finite-dimensional and the convergences are

therefore strong.

In terms of the time-interpolants, the discrete formulation can be written in the

form ∫
Ω

(Dk(SSS
k,n,m,l

, θ
k,n,m,l

)−DDD(uk,n,m,l)) : τ = 0 ∀ τ ∈ Σn,∫
Ω

∂tũ
k,n,m,l · v + α

∫
∂Ω

uk,n,m,l · v −
∫

Ω

pk,n,m,l div v

+

∫
Ω

SSS
k,n,m,l

:DDD(v) + Bk(uk,n,m,l,uk,n,m,l,v) = 〈f ,v〉 ∀v ∈ V n,

−
∫

Ω

q divuk,n,m,l =
1

l

∫
Ω

∇pk,n,m,l · ∇q ∀ q ∈Mn,∫
Ω

∂tθ̃
k,n,m,lψ +

∫
Ω

κ(θ
k,n,m,l

)∇θk,n,m,l · ∇ψ + Ck(θ
k,n,m,l

,uk,n,m,l, ψ)

=

∫
Ω

SSS
k,n,m,l

:Dk(SSS
k,n,m,l

, θ
k,n,m,l

)ψ ∀ψ ∈ Um,

where each equation holds everywhere in (0, T ). Moreover, from the discussion above

we see that the following estimates hold:

‖uk,n,m,l‖2
L∞(0,T ;L2(Ω)) + τm‖∂tũk,n,m,l‖2

L2(Q) + ‖uk,n,m,l‖2
L2(0,T ;W 1,2(Ω)) (5.20a)

+ ‖SSSk,n,m,l‖2
L2(Q) + ‖Dk(SSS

k,n,m,l
, θ
k,n,m,l

)‖2
L2(Q) +

1

l
‖pk,n,m,l‖2

L2(0,T ;W 1,2(Ω)) ≤ c,

‖θk,n,m,l‖2
L∞(0,T ;L2(Ω)) + τm‖∂tθ̃k,n,m,l‖2

L2(Q) + ‖∇θk,n,m,l‖2
L2(Q) ≤ cn, (5.20b)

where cn blows up as n → ∞. Hence, for a (not relabelled) subsequence we have as

m→∞ that

uk,n,m,l
∗
⇀ uk,n,l weakly* in L∞(0, T ;L2(Ω)d),

uk,n,m,l ⇀ uk,n,l weakly in L2(0, T ;W 1,2(Ω)d),

SSS
k,n,m,l

⇀ SSSk,n,l weakly in L2(Q)d×d,

pk,n,m,l ⇀ pk,n,l weakly in L2(0, T ;W 1,2(Ω)), (5.21)

Dk(SSS
k,n,m,l

, θ
k,n,m,l

) ⇀DDDk,n,l weakly in L2(Q)d×d,

θ
k,n,m,l ∗

⇀ θk,n,l weakly* in L∞(0, T ;L2(Ω)),

θ
k,n,m,l

⇀ θk,n,l weakly in L2(0, T ;W 1,2(Ω)),
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In order to obtain strong convergence for the sequence of approximate temper-

atures, Simon’s lemma will be employed. Noticing that the integrand is piecewise

constant and only nonzero on (tj − ε, tj], for j ∈ {1, . . . , T/τm}, we have

∫ T−ε

0

‖θk,n,m,l(s+ε, ·)−θk,n,m,l(s, ·)‖2
L2(Ω) = ε

T/τm∑
j=2

‖θk,n,m,lj −θk,n,m,lj−1 ‖2
L2(Ω) ≤ εcn −−→

ε→0
0,

where cn is the constant appearing in Lemma 5.1.3. Since θ
k,n,m,l

is bounded uniformly

both in L∞(0, T ;L2(Ω)) and L2(0, T ;W 1,2(Ω)) then Simon’s lemma implies that, as

m→∞,

θ
k,n,m,l → θk,n,l strongly in L2(Q), (5.22a)

and since (θ̃k,n,m,l − θk,n,m,l) both converge to zero in L2(Q) as m → ∞ (as a conse-

quence of (5.20)), we also obtain

θ̃k,n,m,l → θk,n,l strongly in L2(Q). (5.22b)

An identical argument can be applied to the sequence of approximate velocities,

and therefore, as m→∞,

ũk,n,m,l → uk,n,l strongly in L2(Q)d,

uk,n,m,l → uk,n,l strongly in L2(0, T ;W 1,2(Ω)d), (5.23)

uk,n,m,l → uk,n,l strongly in L2(0, T ;L2(∂Ω)d);

here we used the equivalence of norms in finite-dimensional spaces, and the fact that

from the estimate (5.20) we also get that (ũk,n,m − uk,n,m) converges to the zero in

L2(Q)d.

The convergence properties (5.21), (5.22), and (5.23) then allow passage to the

limit and one obtains that the limiting functions satisfy∫ T

0

∫
Ω

(DDDk,n,l −DDD(uk,n,l)) : τφ = 0 ∀ τ ∈ Σn, φ ∈ C∞0 (0, T ),

−
∫ T

0

∫
Ω

uk,n,l · v∂tφ−
∫

Ω

P n
Vu0 · vφ(0) + α

∫ T

0

∫
∂Ω

uk,n,l · vφ

+

∫ T

0

Bk(uk,n,l,uk,n,l,v)φ−
∫ T

0

∫
Ω

pk,n,l div vφ

+

∫ T

0

∫
Ω

SSSk,n,l :DDD(v)φ =

∫ T

0

〈f ,v〉φ ∀v ∈ V n, φ ∈ C∞0 [0, T ),

−
∫ T

0

∫
Ω

q divuk,n,lφ =
1

l

∫ T

0

∫
Ω

∇pk,n,l · ∇q ∀ q ∈Mn, φ ∈ C∞0 (0, T ),
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−
∫ T

0

∫
Ω

θk,n,lψ∂tφ−
∫

Ω

θn0ψφ+

∫ T

0

Ck(θk,n,l,uk,n,l, ψ)φ

+

∫ T

0

∫
Ω

κ(θk,n,l)∇θk,n,l · ∇ψφ =

∫ T

0

∫
Ω

SSSk,n,l :DDDk,n,lψφ ∀ψ ∈ C∞(Ω), φ ∈ C∞0 [0, T ).

Since n ∈ N is fixed, the initial conditions can be identified in the usual way, i.e.

we have that θk,n,l(0, ·) = θn0 (·) and uk,n,l(0, ·) = P n
Vu0(·). In addition, since we have

strong convergence of the velocity gradients and the temperature in L2(Q), and thus

almost everywhere convergence up to a subsequence, the constitutive relation can

also be identified in a straightforward manner using Vitali’s theorem (recall that Dk

is continuous) and so

DDDk,n,l = Dk(SSSk,n,l, θk,n,l) a.e. in Q. (5.24)

The next step is to take the limit n → ∞, and so uniform estimates in n are

needed. The weak lower semicontinuity of the norms and the estimate (5.20a) and

(2.9) yield

‖uk,n,l‖L∞(0,T ;L2(Ω)) + ‖uk,n,l‖L2(0,T ;W 1,2(Ω)) + ‖uk,n,l‖
L

2(d+2)
d (Q)

+ ‖SSSk,n,l‖2
L2(Q) + ‖Dk(SSSk,n,l, θk,n,l)‖L2(Q) +

1

l
‖pk,n,l‖L2(0,T ;W 1,2(Ω)) ≤ c.

(5.25)

Simon’s lemma will now be applied to obtain strong convergence for the sequence

of approximate velocities. To that end, observe that for any v ∈ V n one has∫
Ω

(uk,n,l(s+ ε, ·)− uk,n,l(s, ·)) · v(x) dx =

∫ s+ε

s

∫
Ω

〈∂tuk,n,l(t, ·),v(·)〉 dt

≤
∫ s+ε

s

[
α‖uk,n,l(t, ·)‖L2(∂Ω)‖v‖L2(∂Ω) + ‖pk,n,l(t, ·)‖L2(Ω)‖ div v‖L2(Ω)

‖SSSk,n,l(t, ·)‖L2(Ω)‖DDD(v)‖L2(Ω) + ck‖uk,n,l(t, ·)‖2

L
2(d+2)
d (Ω)

‖∇v‖L2(Ω)

+ ‖f(t, ·)‖W−1,2
n (Ω)‖v‖W 1,2(Ω)

]
dt ≤ ck(ε

1
2 + ε

2
d+2 )‖v‖W 1,2(Ω).

Letting v = uk,n,l(s+ ε, ·)− uk,n,l(s, ·) and integrating with respect to s we then see

that ∫ T−ε

0

‖uk,n,l(s+ ε, ·)− uk,n,l(s, ·)‖2
L2(Ω) ds

(5.25)

≤ ck(ε
1
2 + ε

2
d+2 ) −−−→

ε→0
0, (5.26)

uniformly in n ∈ N. Hence, up to subsequences, the following convergences hold:

uk,n,l
∗
⇀ uk,l weakly* in L∞(0, T ;L2(Ω)d),

uk,n,l ⇀ uk,l weakly in L2(0, T ;W 1,2(Ω)d),
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uk,n,l ⇀ uk,l weakly in L2(0, T ;L2(∂Ω)d),

uk,n,l → uk,l strongly in Lq(Q)d, for q ∈ [1, 2(d+2)
d

), (5.27)

SSSk,n,l ⇀ SSSk,l weakly in L2(Q)d×d,

pk,n,l ⇀ pk,l weakly in L2(0, T ;W 1,2(Ω)),

Dk(SSSk,n,l, θk,n,l) ⇀DDDk,l weakly in L2(Q)d×d.

The convergence of the velocity traces can actually be improved to strong conver-

gence. To see this, observe that by function space interpolation with respect to the

degree of smoothness [MNRR96, Lemma 2.18], we have that

‖v‖W 1−ε,2(Ω) ≤ c‖v‖1−ε
W 1,2(Ω)‖u‖εL2(Ω) ∀v ∈ W 1,2(Ω)d ∩ L2(Ω)

d
, ε ∈ [0, 1].

Integrating in time and using Hölder inequality then gives∫ T

0

‖v‖2
W 1−ε,2(Ω) dt ≤ c

(∫ T

0

‖v‖2
W 1,2(Ω)

)1−ε(∫ T

0

‖u‖2
L2(Ω) dt

)ε
,

for any v ∈ L2(0, T ;W 1,2(Ω)d) ∩ L2(Q)d, which implies that uk,n,l → uk,l strongly in

L2(0, T ;W 1−ε,2(Ω)d), for any ε ∈ (0, 1]. Choosing ε small enough so that 2(1− ε) >
1, which ensures that the trace operator is well defined and bounded, we see that

W 1−ε,2(Ω)d ↪→ W 1−ε− 1
2
,2(∂Ω)d ↪→ L2(∂Ω)d, which yields

uk,n,l → uk,l strongly in L2(0, T ;L2(∂Ω)d). (5.28)

Now, testing the energy equation with the function

ψk,n,l(t, x) = 1(0,τ)(t) min{0, θk,n,l(t, x)− c} ≤ 0,

where τ ∈ (0, T ) and recalling that θn0 ≥ c we conclude that θk,n,l ≥ c > 0 a.e. in Q.

In addition, testing with ψ ≡ 1 we obtain the uniform estimate

‖θk,n,l‖L∞(0,T ;L1(Ω)) ≤ c. (5.29)

On the other hand, setting ψ = (θk,n,l)λ, for −1 < λ < 0, we get∫
Q

SSSk,n,l :DDDk,n,l(θk,n,l)λ −
∫
Q

κ(θk,n,l)∇θk,n,l · ∇(θk,n,l)λ

=

∫ T

0

Ck(θk,n,l,uk,n,l, (θk,n,l)λ) + 〈∂tθk,n,l, (θk,n,l)λ〉

=
‖(θk,n,l(T, ·))λ+1‖L1(Ω) − ‖(θn0 )λ+1‖L1(Ω)

λ+ 1
≤ c,
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where we used (5.29); this implies that∫
Q

|∇(θk,n,l)
λ+1

2 |2 ≤ c, (5.30)

which means that (θk,n,l)
λ+1

2 ∈ L2(0, T ;W 1,2(Ω)) ↪→ L2(0, T ;L6(Ω)). By function

space interpolation this yields that

‖θk,n,l‖Ls(Q) ≤ c for every s ∈
[
1, 5

3

)
, (5.31a)

which in turn implies that

‖θk,n,l‖Ls(0,T ;W 1,s(Ω)) ≤ c for every s ∈
[
1, 5

4

)
. (5.31b)

From (5.31) and the equation satisfied by θk,n,l one readily sees that

‖∂tθk,n,l‖L1(0,T ;(W 1,q(Ω))∗) ≤ ck for q ∈ (5,∞],

‖∂tθk,n,l‖L1(0,T ;(W 1,q(Ω))∗) ≤ c for q ∈ (10,∞],
(5.32)

where ck blows up as k → ∞. Thus, using the Aubin–Lions lemma and the above

estimates we obtain the convergences

θk,n,l ⇀ θk,l weakly in Ls(0, T ;W 1,s(Ω)), for s ∈ [1, 5
4
),

θk,n,l → θk,l strongly in Ls(Q), for s ∈ [1, 5
3
).

(5.33)

The above suffices to pass to the limit and obtain∫
Ω

(DDDk,l −DDD(uk,l)) : τ = 0 ∀ τ ∈ L2
sym(Ω)d×d,∫

Ω

∂tu
k,l · v + α

∫
∂Ω

uk,l · v−
∫

Ω

pk,l div v

+

∫
Ω

SSSk,l :DDD(v)+Bk(uk,l,uk,l,v) = 〈f ,v〉 ∀v ∈ W 1,2
n (Ω)d,∫

Ω

q divuk,l =
1

l

∫
Ω

∇pk,l · ∇q ∀ q ∈ W 1,2(Ω).

The initial condition for the velocity can be identified in the standard way. We now

claim that the nonlinear limit in the constitutive relation can be identified as

DDDk,l = Dk(SSSk,l, θk,l) a.e. in Q. (5.34)

Indeed, since k is fixed the velocity uk,l is an admissible test function in the weak

formulation and therefore we have an energy identity available; this makes it straight-

forward to prove that

lim sup
n→∞

∫
Q

SSSk,n,l :DDDk,n,l ≤
∫
Q

SSSk,l :DDDk,l. (5.35)
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Moreover, from the definition of Dk we see that, for any σ ∈ L2(Ω)d×d and t ∈ R,

|Dk(σ, t)|
(5.10)

≤
(
k +

1

2µ(t)

)
|σ| ≤ ck|σ|,

and so by the dominated convergence theorem we infer that

Dk(σ, θk,n,l)→ Dk(σ, θk,l) strongly in L2(Ω)d×d, (5.36)

as n → ∞. Combining the monotonicity of Dk with (5.35) and (5.36) yields, for an

arbitrary σ ∈ L2(Ω)d×d:

0 ≤ lim sup
n→∞

∫
Q

(Dk(SSSk,n,l, θk,n,l −Dk(σ, θk,n,l))) : (SSSk,n,l − σ)

≤
∫
Q

(DDDk,l −Dk(σ, θk,l)) : (SSSk,l − σ).

Choosing σ = SSSk,l±ετ , with an arbitrary τ ∈ C∞0 (Q)d×d, and letting ε→ 0 concludes

the proof of the claim (5.34).

In order to pass to the limit in the energy equation it is necessary to investigate

the convergence properties of SSSk,n,l :DDDk,n,l in L1(Ω). First, from the monotonicity of

Dk we can get ∫
Q

SSSk,l :DDDk,l ≤ lim inf
n→∞

∫
Q

Dk(SSSk,n,l, θk,n,l) :SSSk,n,l,

and so by (5.35) the equality actually holds:∫
Q

DDDk,l :SSSk,l = lim
n→∞

∫
Q

Dk(SSSk,n,l, θk,n,l) :SSSk,n,l,

which in turn implies that (note that this function is non-negative)

(Dk(SSSk,n,l, θk,n,l)−Dk(SSSk,l, θk,l)) : (SSSk,n,l − SSSk,l)→ 0 strongly in L1(Ω). (5.37)

Writing the product as

Dk(SSSk,n,l, θk,n,l) :SSSk,n,l = Dk(SSSk,n,l, θk,n,l) :SSSk,l + Dk(SSSk,l, θk,l) : (SSSk,n,l − SSSk,l)

+ (Dk(SSSk,n,l, θk,n,l)−Dk(SSSk,l, θk,l)) : (SSSk,n,l − SSSk,l),

and using (5.27) immediately yields that SSSk,n,l :DDDk,n,l ⇀ SSSk,l :DDDk,l weakly in L1(Q) as

n→∞, which allows one to pass to the limit in the energy equation:∫
Ω

∂tθ
k,lψ +

∫
Ω

κ(θk,l)∇θk,l · ∇ψ + Ck(θk,l,uk,l, ψ) =

∫
Ω

SSSk,l :DDDk,lψ ∀ψ ∈ W 1,∞(Ω).
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Let us now turn to the quasi-compressibility limit l → ∞. First, notice that

Fatou’s lemma and the weak lower-semicontinuity of the norms result in the a priori

estimates

‖uk,l‖L∞(0,T ;L2(Ω)) + ‖uk,l‖L2(0,T ;W 1,2(Ω)) + ‖uk,l‖
L

2(d+2)
d (Q)

+ ‖SSSk,l‖L2(Q) + ‖DDDk,l‖L2(Q)

+
1

l
‖pk,l‖L2(0,T ;W 1,2(Ω)) + ‖θk,l‖Ls(Q) + ‖θk,l‖Lq(0,T ;W 1,q(Ω)) + ‖θk,l‖L∞(0,T ;L1(Ω)) ≤ c,

(5.38)

for s ∈ [1, 5
3
), q ∈ [1, 5

4
). Before we can proceed further, uniform estimates for the

pressure are also required. Consider the following auxiliary problem defined for almost

every t ∈ (0, T ) and some β ∈ (1, 2]:

∆hk,l = |pk,l|β−2pk,l − 1

|Ω|

∫
Ω

|pk,l|β−2pk,l in Ω,

∇hk,l · n = 0 on ∂Ω,

∫
Ω

hk,l = 0.

(5.39)

Suppose for now that the Neumann problem (5.39) is W 2,β′-regular for any β ∈
(1, 2] (in the end we will just pick two particular values for β); this means that we

have the estimate

‖hk,l‖β′
W 2,β′ (Ω)

≤ c‖pk,n‖β
Lβ(Ω)

, (5.40)

where c is independent of k, l, and so testing the momentum equation with ∇hk,l
yields∫ T

0

‖pk,l(t, ·)‖β
Lβ(Ω)

dt =

∫
Q

SSSk,l :DDD(∇hk,l)−
∫ T

0

〈f ,∇hk,l〉+ α

∫ T

0

∫
∂Ω

uk,l · ∇hk,l

+

∫ T

0

Bk(uk,l,uk,l,∇hk,l) +

∫
Q

∂tu
k,l · ∇hk,l

=: I1 + · · ·+ I5.

Now let η > 0 be arbitrary. The first three terms can be dealt with easily using the

estimate (5.38) and Young’s inequality:

I1+ I2+ I3 ≤ c(η)(‖SSSk,l‖2
L2(Q)+‖f‖2

L2(0,T ;W−1,2
n (Ω))

+‖uk,l‖2
L2(0,T ;L2(∂Ω)))+ η

∫ T

0

‖pk,l‖β
Lβ(Ω)

≤ c(η) + η

∫ T

0

‖pk,l‖β
Lβ(Ω)

for any β ∈ (1, 2].

In order to estimate I4 we have two options:

I4 ≤ c(η)‖((φkuk,l) ∗ ω1/k)div‖2
Ld+2(Q)‖uk,l‖2

L
2(d+2)
d (Q)

+ η

∫ T

0

‖pk,l‖β
Lβ(Ω)
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≤ ck(η) + η

∫ T

0

‖pk,l‖β
Lβ(Ω)

for any β ∈ (1, 2],

I4 ≤ c(η)‖uk,l‖
2(d+2)
d

L
2(d+2)
d (Q)

+ η

∫ T

0

‖pk,l‖β
Lβ(Ω)

≤ c(η) + η

∫ T

0

‖pk,l‖β
Lβ(Ω)

for any β ∈ (1, 2̌].

We claim now that I5 ≤ 0. To see this, let {uk,li }i∈N be a sequence of smooth functions

such that uk,li → uk,l strongly in L2(0, T ;W 1,2(Ω)) and ∂tu
k,l
i → ∂tu

k,l
i strongly in

L2(0, T ;W−1,2
n (Ω)). Define pk,li and hk,li as the solutions of the problems

1

l
∆pk,li = divuk,li in Ω,

∇pk,li · n = 0 on ∂Ω,∫
Ω

pk,li = 0.


∆hk,li = |pk,li |β−2pk,li −

1

|Ω|

∫
Ω

|pk,li |β−2pk,li in Ω,

∇hk,li = 0 on ∂Ω,∫
Ω

hk,li = 0,

where β ∈ (1, 2] is arbitrary. Hence, we can write

I5 = lim
i→∞

I i5 := lim
i→∞

∫ T

0

〈∂tuk,li ,∇hk,li 〉.

Decomposing into uk,li = wk,l
i,div + ∇φk,li , where wk,l

i,div is divergence-free, and noting

that the uniqueness of the Helmholtz decomposition implies that 1
l
φk,li = pk,li , we

obtain

I i5 =

∫ T

0

〈∂t∇φk,li ,∇hk,li 〉 = −
∫
Q

∂tφ
k,l
i ∆hk,li = −1

l

∫
Q

|pk,li |β−2pk,li ∂tp
k,l
i

= − 1

lβ

∫ T

0

d

dt
‖pk,li (t, ·)‖β

Lβ(Ω)
= − 1

lβ
‖pk,li (T, ·)‖β

Lβ(Ω)
+

1

lβ
‖pk,li (0, ·)‖β

Lβ(Ω)
,

and recalling that uk,l(0, ·) = u0 ∈ L2
div(Ω)d, we conclude that I5 ≤ 0. Consequently,

using β = 2 and β = 2̌ we obtain the following estimates for the pressure

‖pk,l‖L2(Q) ≤ ck,

‖pk,l‖L2̌(Q) ≤ c.
(5.41)

Observing that 2, 2̌′ ∈ [2, 3], then the required regularity estimate to obtain (5.41)

is guaranteed for d = 3 by Lemma 2.1.1 if Ω is taken as a convex polyhedron such

that the angles at the edges {ωi}Me
i=1 satisfy

π

ωi
> 2− 2

2̌′
for all i ∈ {1, . . . ,Me}. (5.42)
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The estimates (5.41) and the momentum equation then imply that

‖∂tuk,l‖L2(0,T ;W−1,2
n (Ω)d) ≤ ck. (5.43)

Hence, by the Aubin–Lions lemma we have (up to subsequences), as l→∞:

uk,l
∗
⇀ uk weakly* in L∞(0, T ;L2(Ω)d),

uk,l ⇀ uk weakly in L2(0, T ;W 1,2(Ω)d),

uk,l → uk strongly in L2(0, T ;L2(∂Ω)d),

uk,l → uk strongly in Lq(Q)d, for q ∈ [1, 2(d+2)
d

),

pk,l ⇀ pk weakly in L2(Q), (5.44)

SSSk,l ⇀ SSSk weakly in L2(Q)d×d,

DDDk,l ⇀ DDDk weakly in L2(Q)d×d,

θk,l ⇀ θk weakly in Lq(0, T ;W 1,q(Ω)), for q ∈ [1, 5
4
),

θk,l → θk strongly in Ls(Q), for s ∈ [1, 5
3
).

Using the estimate (5.38) we can prove that the limiting function uk is actually

divergence-free. To do so, let q ∈ L2(0, T ;W 1,2(Ω)) be arbitrary, then∣∣∣∣∫
Q

q divuk
∣∣∣∣ = lim

l→∞

∣∣∣∣∫
Q

q divuk,l
∣∣∣∣ = lim

l→∞

∣∣∣∣1l
∫
Q

∇q · ∇pk,l
∣∣∣∣

≤ c lim
l→∞

1

l1/2
‖q‖L2(0,T ;W 1,2(Ω)) = 0.

Thus, the limiting functions satisfy the system∫
Ω

(DDDk −DDD(uk)) : τ = 0 ∀ τ ∈ L2
sym(Ω)d×d,∫

Ω

∂tu
k · v + α

∫
∂Ω

uk · v −
∫

Ω

pk div v +

∫
Ω

SSSk :DDD(v)

+Bk(uk,uk,v) = 〈f ,v〉 ∀v ∈ W 1,2
n (Ω)d,∫

Ω

q divuk = 0 ∀ q ∈ L2(Ω).

At this level the velocity uk is still an admissible test function in the momentum

equation, and so there is still an energy identity available. This means that the same

argument used to obtain (5.34) is applicable here and hence

DDDk = Dk(SSSk, θk) a.e. in Q, (5.45)

and

SSSk,l :DDDk,l ⇀ SSSk :DDDk weakly in L1(Q). (5.46)
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This allows passage to the limit in the energy equation:∫
Ω

∂tθ
kψ +

∫
Ω

κ(θk)∇θk · ∇ψ −
∫

Ω

θkuk · ∇ψ =

∫
Ω

SSSk,l :DDDk,lψ ∀ψ ∈ W 1,∞(Ω).

Now, the weak lower semicontinuity of norms, Fatou’s lemma and function space

interpolation result in the following uniform estimate

‖uk‖L∞(0,T ;L2(Ω)) + ‖uk‖L2(0,T ;W 1,2(Ω)) + ‖uk‖
L

2(d+2)
d (Q)

+ ‖SSSk‖2
L2(Q) + ‖DDDk‖L2(Q)

+ ‖pk‖L2̌(Q) + ‖θk‖Ls(Q) + ‖θk‖Lq(0,T ;W 1,q(Ω)) + ‖θk‖L∞(0,T ;L1(Ω)) ≤ c,

(5.47)

for any s ∈ [1, 5
3
) and q ∈ [1, 5

4
). In addition, using the weak formulation we can also

estimate the time derivatives

‖∂tθk‖L1(0,T ;(W 1,m(Ω))∗) + ‖∂tuk‖L2̌(0,T ;W−1,2̌
n (Ω)d)

≤ c, (5.48)

for m ∈ (10,∞). Hence, up to subsequences, the following convergences hold as

k →∞:

uk
∗
⇀ u weakly* in L∞(0, T ;L2(Ω)d),

uk ⇀ u weakly in L2(0, T ;W 1,2(Ω)d),

uk → u strongly in L2(0, T ;L2(∂Ω)d),

∂tu
k ⇀ ∂tu weakly in L2̌(0, T ;W−1,2̌(Ω)d),

uk → u strongly in Lq(Q)d, for q ∈ [1, 2(d+2)
d

),

pk ⇀ p weakly in L2̌(Q), (5.49)

SSSk ⇀ SSS weakly in L2(Q)d×d,

DDDk ⇀ DDD weakly in L2(Q)d×d,

θk ⇀ θ weakly in Lq(0, T ;W 1,q(Ω)), for q ∈ [1, 5
4
),

θk → θ strongly in Ls(Q), for s ∈ [1, 5
3
),

∂tθ
k ∗
⇀ ∂tθ weakly* in M(0, T ; (W 1,m(Ω))∗), for q ∈ (10,∞).

Consequently, we obtain that the stress SSS, velocity u and pressure p satisfy the

following system almost everywhere in (0, T ):∫
Ω

(DDD−DDD(u)) : τ = 0 ∀ τ ∈ L2
sym(Ω)d×d,∫

Ω

∂tu · v + α

∫
∂Ω

u · v −
∫

Ω

p div v +

∫
Ω

SSS :DDD(v)

−
∫

Ω

(u⊗ u) :DDD(v) = 〈f ,v〉 ∀v ∈ W 1,2̌′

n (Ω)d,∫
Ω

q divu = 0 ∀ q ∈ L2(Ω).
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If d = 2 then 2̌ = 2, which means that an energy identity is still available for u

and thus the same argument used to obtain (5.34) can be applied here to identify the

constitutive relation and pass to the limit in the temperature equation. On the other

hand, in the three-dimensional case 2̌ < 2 and so admissibility of the velocity in the

weak formulation is lost and it is not possible to pass to the limit in the temperature

equation in its current form; an equation for the total energy must be used instead.

Define the sequence of functions

Ek :=
|uk|2

2
+ θk.

Testing the equation for uk with v = ukψ, where ψ ∈ C∞0 ([0, T );W 1,∞(Ω)) is arbi-

trary, adding the result to the equation for the temperature θk and using integration

by parts yields:

−
∫
Q

Ek∂tψ −
∫

Ω

( |u0|2
2

+ θ0

)
ψ +

∫
Q

(
SSSkuk − pkuk − Ek((φku

k) ∗ ω1/k)
)
· ∇ψ

+

∫
Q

κ(θk)∇θk · ∇ψ + α

∫ T

0

∫
∂Ω

|uk|2ψ =

∫ T

0

〈f ,ukψ〉 ∀ψ ∈ C∞0 ([0, T );W 1,∞(Ω)).

The advantage of using this formulation is that now all the terms allow passage to

the limit, and we find therefore that the total energy satisfies

〈∂tE,ψ〉+

∫
Ω

(SSSu− (E + p)u+ κ(θ)∇θ) · ∇ψ + α

∫
∂Ω

|u|2ψ =

∫ T

0

〈f ,uψ〉,

almost everywhere in (0, T ) and for every ψ ∈ W 1,∞(Ω). From the equation then one

reads that

‖∂tE‖L1(0,T ;(W 1,q′ (Ω))∗) ≤ c for q ∈ [1, 10
9

). (5.50)

The next step is to identify the nonlinear limit in the constitutive relation, i.e.

prove that

(DDD,SSS, θ) ∈ A a.e. in Q. (5.51)

To do so we will employ Lemma 5.1.2, which requires obtaining an inequality like

(5.35). Since we do not have an energy identity at our disposal, we will show instead

that

lim sup
k→∞

∫
Ej

SSSk :DDDk ≤
∫
Ej

SSS :DDD, (5.52)

where Ej ⊂ Q is a sequence of measurable sets such that |Q\Ej| → 0 as j →∞. In the

proof of Theorem 3.1.5 this problem was tackled using a Lipschitz truncation of the

velocity error uk−u; such a truncation was necessary because of the potentially very
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low integrability of the term u⊗u. In contrast, for the problem under consideration

in this chapter we actually have that the convective term div(u ⊗ u) = u · ∇u is

integrable (since 2 > 2d+1
d+2

) and so an L∞-truncation will suffice in this case.

At the moment we only know that the pressure belongs to L2̌(Ω) which means that

we cannot yet test with an L∞-truncation of the velocity error. As a preliminary step

we need to perform a decomposition of the pressure into an L2-integrable component

and a component in a Bochner–Sobolev space. First define the function pk1 as the

solution of the problem∫
Ω

pk1(t, ·)∆φ =

∫
Ω

SSSk(t, ·) · ∇2φ+ α

∫
∂Ω

uk(t, ·) · ∇φ ∀φ ∈ W 2,2(Ω),∇φ ∈ W 1,2
n (Ω)d.

(5.53)

The problem above is well defined due to the W 2,2-regularity of the Neumann problem

for the Laplacian. Defining now pk2 := pk − pk1, we see from the momentum equation

that pk2 satisfies

−
∫

Ω

∇pk2(t, ·)·∇φ =

∫
Ω

div(((φku
k)∗ω1/k)⊗uk)·∇φ ∀φ ∈ W 2,2(Ω),∇φ ∈ W 1,2

n (Ω)d.

(5.54)

From elliptic regularity estimates (c.f. [Maz09, Dau92], and see e.g. the derivation of

estimates (5.41)) we obtain that

‖pk1‖L2(Q) + ‖pk2‖
L

2(d+2)
2d+2 (0,T ;W

1,
2(d+2)
2d+2 (Ω))

≤ c. (5.55)

Let us now set up the L∞-truncation; we will follow the approach presented in

[MZ18]. First, define the sequence of functions

Ik := |pk1|2 + |∇uk|2 + |∇u|2 + |SSS|2 + |SSSk|2,

and for an arbitrary N ∈ N define the sets

Qk
i := {N i < |uk − u| < N i+1} for i ∈ {1, . . . , N}.

Note that Qk
i ∩Qk

j = ∅ and so

N∑
i=1

∫
Qki

Ik =

∫
Q

Ik ≤ c,

which means that for every k ∈ N there is an ik ∈ {1, . . . , N} such that∫
Qkik

Ik ≤ c

N
. (5.56)
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Set λk := N ik and define the sequence of truncations as

ek := (uk − u) min

{
1,

λk

|uk − u|

}
. (5.57)

This sequence satisfies∫
Q

|ek|2 =

∫
|uk−u|≤λk

|uk − u|2 +

∫
|uk−u|>λk

|λk|2 ≤
∫
Q

|uk − u|2 −−−−→
k→∞

0,

and noting that ‖ek‖L∞(Q) ≤ λk we obtain

ek → 0 strongly in Lq(Ω), for any q ∈ [1,∞). (5.58)

In addition, since the derivative is given by

∇ek = ∇(uk − u)1{|uk−u|≤λk}

+
1

|uk − u|

(
I − (uk − u)⊗ (uk − u)

|uk − u|

)
∇(uk − u)1{|uk−u|>λk},

(5.59)

we have that |∇ek| ≤ 2|∇(uk − u)|, which implies that

ek ⇀ 0 weakly in L2(0, T ;W 1,2(Ω)d). (5.60)

Another important property is that, by using Chebyshev’s inequality, the size of the

“bad set” can be estimated:

|{|uk − u| > λk}| ≤ |{|uk − u| > N}| ≤ c

N2
. (5.61)

On the other hand, by approximating with smooth functions it is possible to see that

lim inf
k→∞

∫ T

0

〈∂tuk, ek〉 ≥ 0. (5.62)

Testing the momentum equation for uk with v = ek then yields

lim sup
k→∞

∫
Q

(SSSk :DDD(ek)− pk1 div ek) ≤ 0. (5.63)

Define now the function

Hk := (DDD(uk)−DDD) : (SSSk − SSS) ∈ L1(Q), (5.64)

where DDD is such that (DDD,SSS, θ) ∈ A, with DDD defined to be equal to 0 on the set {SSS = 0}
(this is the set where DDD is not defined uniquely). Let ε > 0 be arbitrary. In the
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estimate below we will use the fact that, thanks to (5.61), there is an N0 ∈ N such

that for N ≥ N0: ∫
{|uk−u|>λk}

|DDD(u)−DDD|2 ≤ ε2. (5.65)

Then, taking N ≥ N0 and using Young’s inequality, we can estimate as follows:

lim sup
k→∞

∫
{|uk−u|≤λk}

Hk ≤ lim sup
k→∞

∫
{|uk−u|>λk}

(DDD(u)−DDD) : (SSSk − SSS)

+ lim
k→∞

∣∣∣∣∫
Q

(DDD(u)−DDD) : (SSSk − SSS)

∣∣∣∣︸ ︷︷ ︸
= 0

+ lim sup
k→∞

∫
Q

(SSSk − SSS) :DDD(ek)

+ lim sup
k→∞

∫
{|uk−u|>λk}

(SSSk − SSS) :DDD(ek)

(5.63)

≤
(5.59)

c lim
k→∞

(∫
{|uk−u|>λk}

|DDD(u)−DDD|2
)1/2

︸ ︷︷ ︸
≤ε

+ lim sup
k→∞

∫
Q

pk1 div ek

+ c lim sup
k→∞

∫
{|uk−u|>λk}

1

|uk − u| |SSS
k − SSS||∇uk −∇u|

(5.59)

≤ c

(
ε+ lim sup

k→∞

∫
{|uk−u|>λk}

λk

|uk − u|I
k

)
= c

(
ε+ lim sup

k→∞

(∫
{N ik+1≥|uk−u|>N ik}

N ik

|uk − u|I
k

+

∫
{|uk−u|>N ik+1}

N ik

|uk − u|I
k

))
≤ c

(
ε+

∫
Qkik

Ik +
1

N ik

∫
Q

Ik

)
(5.47)

≤
(5.56)

c(ε+
1

N
),

and since ε is arbitrary, this implies that

lim sup
k→∞

∫
|uk−u|≤λk

Hk ≤ c

N
. (5.66)

On the other hand, by the monotonicity of Dk we can write

Hk = (DDD(uk)−Dk(SSS, θk)) : (SSSk − SSS) + (Dk(SSS, θk)−DDD) : (SSSk − SSS)

≥ (Dk(SSS, θk)−DDD) : (SSSk − SSS),

and since Dk(SSS, θk) converges pointwise almost everywhere to DDD, with the help of the

dominated convergence theorem (compare with (5.36)) we see that the right hand
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side in the above inequality converges to zero strongly in L1(Q), or in other words we

have that

(Hk)− → 0 strongly in L1(Q), (5.67)

which together with (5.66) implies that

lim sup
k→∞

∫
{|uk−u|≤λk}

|Hk| ≤ c

N
. (5.68)

Now, for an arbitrary η ∈ (0, 1) Hölder’s and Chebyshev’s inequalities yield∫
Q

|Hk|η ≤ |Q|1−η
(∫
{|uk−u|≤λk}

|Hk|
)η

+ |{|uk − u| > N}|1−η
(∫

Q

|Hk|
)η

(5.47)

≤ |Q|1−η
(∫
{|uk−u|≤λk}

|Hk|
)η

+ c

(
1

N2

)1−η

.

Taking lim sup and using (5.68) we conclude that, possibly up to a subsequence,

Hk → 0 almost everywhere. Since Hk is bounded uniformly in L1(Q) thanks to

(5.38), Chacon’s biting lemma and Vitali’s theorem then guarantee the existence of

a nonincreasing sequence of sets Ej ⊂ Q such that |Ej| → 0 as j →∞ and

Hk → 0 strongly in L1(Q \ Ej), for any j ∈ N.

Recalling the convergence properties of SSSk this can be reformulated as

lim sup
k→∞

∫
Q\Ej

SSSk :DDDk =

∫
Q\Ej

SSS :DDD, for any j ∈ N. (5.69)

Lemma 5.1.2 then implies that (DDD,SSS, θ) ∈ A almost everywhere in Q \ Ej and that

SSSk :DDDk → SSS :DDD weakly in L1(Q \Ej), for any j ∈ N. Since the measure of the sets Ej

tends to zero, the constitutive relation can be identified almost everywhere:

(DDD,SSS, θ) ∈ A a.e. in Q. (5.70)

As for the entropy inequality, first note that for a given non-negative function

ψ ∈ C([0, T ];W 1,∞(Ω)) and ε > 0 there is a δ > 0 such that for any measurable set

E ⊂ Q with |E| ≤ δ: ∫
E

SSS :DDDψ ≤ ε.

Then, choosing j ∈ N large enough so that |Ej| ≤ δ, we have

lim inf
k→∞

∫
Q

SSSk :DDDkψ ≥ lim inf
k→∞

∫
Q\Ej

SSSk :DDDkψ =

∫
Q\Ej

SSS :DDDψ ≥
∫
Q

SSS :DDDψ − ε. (5.71)
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Taking into account the convergences (5.49) we can therefore conclude that

〈∂tθ, ψ〉+

∫
Ω

(−θu+ κ(θ)∇θ) · ∇u ≥
∫

Ω

SSS :DDD(u)ψ ∀ψ ∈ W 1,∞(Ω), ψ ≥ 0,

in the sense of measures.

The attainment of the initial conditions can be proved in exactly the same way

as in [MZ18]. The argument for the temperature is based on the inequality∫
Ω

√
θk(t, ·)ψ −

∫
Ω

√
θ0ψ +

∫ t

0

∫
Ω

(
−
√
θkuk +

κ(θk)∇θk
2
√
θk

)
· ∇ψ ≥ 0,

which holds for any positive ψ ∈ W 1,∞(Ω). This inequality can be obtained at a level

of sufficiently regular approximations (say, for θk,n,l) and is stable under passage to

the limit. In summary, we have proved the following result.

Theorem 5.1.5. Suppose Ω ⊂ Rd is a convex polyhedron satisfying the angle con-

dition (5.42) if d = 3 or any convex polygon if d = 2, and let {Σn, V n,Mn, Un}n∈N
be a family of finite element spaces satisfying Assumptions 2.5.1–2.5.5. Then, for

k, n,m, l ∈ N, there exists a sequence of solutions {SSSk,n,m,lj ,uk,n,m,lj , pk,n,m,lj , θk,n,m,lj }T/τmj=1

of Formulation Ãk,n,m,l, and there exist functions

SSS ∈ L2
sym,tr(Q)d×d,

u ∈ L2(0, T ;W 1,2
n,div(Ω)d) ∩ L∞(0, T ;L2

div(Ω)d),

p ∈ L2̌(Q),

θ ∈ Ln(0, T ;W 1,n(Ω)) ∩ L∞(0, T ;L1(Ω)) for n ∈ [1, 5
4
),

such that the corresponding time interpolants SSS
k,n,m,l

, uk,n,m,l, ũk,n,m,l, pk,n,m,l, θ
k,n,m,l

satisfy (up to subsequences):

SSS
k,n,m,l

⇀ SSS weakly in L2(Q)d×d,

uk,n,m,l ⇀ u weakly in L2(0, T ;W 1,2
n (Ω)d),

ũk,n,m,l,uk,n,m,l
∗
⇀ u weakly* in L∞(0, T ;L2(Ω)d),

pk,n,m,l ⇀ p weakly in L2̌(Q),

θ
k,n,m,l

⇀ θ weakly in Ln(0, T ;W 1,n(Ω)), for n ∈ [1, 5
4
),

and (SSS,u, p, θ) solves Formulation Ã, with the limits taken in the order m → ∞,

n→∞, l→∞, and k →∞.
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From the proof of Theorem 5.1.5 we see that the only bottleneck that prevents us

from obtaining a convergence result for more general r-graphs is that we are missing

the corresponding localised Minty lemma (Lemma 5.1.2 is tailored to a specific 2-

graph). Suppose for instance that the constitutive relation is defined by an explicit

continuous function D : Rd×d
sym × R→ Rd×d

sym satisfying for some r > 3d
d+2

:

(E1) D(0, s) = 0 for any s ∈ R;

(E2) For every σ1,σ2 ∈ Rd×d
sym,

(D(σ1, s)−D(σ2, s)) : (σ1 − σ2) ≥ 0 for fixed s ∈ R;

(E3) There is a non-negative function m ∈ L1(Q) and a constant c > 0 such that

D(σ, s) : σ ≥ −m+ c(|D(σ, s)|r + |σ|r′) for all σ ∈ Rd×d
sym, s ∈ R;

(E4) There is a constant c̃ > 0 such that for any σ ∈ Rd×d
sym and s ∈ R:

|D(σ, s)| ≤ c̃(|σ|r′−1 + 1);

(E5) For fixed s ∈ R we have that tr(D(σ, s)) = 0 if and only if tr(σ) = 0, for any

σ ∈ Rd×d
sym;

Then a convergence result analogous to Theorem 5.1.5 will hold, with the solution

belonging to

SSS ∈ Lr′sym,tr(Q)d×d,

u ∈ Lr(0, T ;W 1,r
n,div(Ω)d) ∩ L∞(0, T ;L2

div(Ω)d),

p ∈ Lř(Q),

θ ∈ Ln(0, T ;W 1,n(Ω)) ∩ L∞(0, T ;L1(Ω)) for n ∈ [1, 5
4
).

Observe that the condition r > 3d
d+2

ensures that all the terms in the equation for the

total energy E are precompact and so passage to the limit is possible. In addition,

the condition r > 2d+1
d+2

is less restrictive than r > 3d
d+2

which means that the same

L∞-truncation argument can be applied in this case.

An example of a constitutive relation satisfying (E1)–(E4) is given by

D(SSS, θ) =
1

2µ(θ)

(|SSS| − τ(θ))+

|SSS|

( |SSS|
2µ(θ)

)r′−2

SSS, (5.72)
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where µ, τ : R→ R are continuous functions that satisfy

c1 ≤ µ(s), τ(s) ≤ c2 for any s ∈ R, (5.73)

for two positive constants c1, c2, assuming r ≤ 2; this condition is used to prove (E4),

using that |SSS|r′−2 ≤ |SSS|r′−1 + 1 if r′ ≥ 2; if τ ≡ 0 then (E4) is true for any r > 1. The

relation (5.72) describes a Herschel–Bulkley type fluid with a temperature dependent

viscosity and yield stress.

Remark 5.1.6. The form of the convective term Bk employed in Formulation Ãk,n,m,l

is not entirely satisfactory because it involves performing a mollification and comput-

ing a Helmholtz decomposition, which could prove challenging in practice. However,

we expect that the convergence result holds for the formulation employing the usual

skew-symmetric form of the convective term, assuming that the Fortin operator Πn
V

is quasi-local, which would allow one to perform the L∞-truncation argument at the

discrete level.

Remark 5.1.7. The quasi-compressibility approximation is a technical tool that does

not seem to be necessary in practice; i.e. when performing simulations it is possible

to work with the usual divergence-free constraint, assuming the velocity and pressure

pair is inf-sup stable. This approximation step could be avoided in the proof if the time

and space discretisation limits are taken simultaneously. In that case, if one denotes

by hk,n,lj the solution of the analogue of the Neumann problem (5.39) corresponding

to pk,n,lj , for j ∈ {1, . . . , T/τn}, one could test the discrete momentum equation with

Πn
V∇hk,n,lj and obtain the uniform estimate for the pressure:

T/τm∑
j=1

τm‖pk,n,lj ‖2̌
L2̌(Ω)

≤ c. (5.74)

The bound on the term involving the time derivative is the only one worth mentioning,

as the others can be handled similarly. Suppose for the sake of simplicity that V n
div ⊂

W 1,2
n,div(Ω)d. Then, assuming that the Fortin projector has optimal approximation

properties, the regularity estimate (5.40) and the Hölder and Young inequalities imply

that∣∣∣∣ 1

τn

∫
Ω

(uk,n,lj − uk,n,lj−1 ) · Πn∇hk,n,lj

∣∣∣∣ =

∣∣∣∣ 1

τn

∫
Ω

(uk,n,lj − uk,n,lj−1 ) · (Πn∇hk,n,lj −∇hk,n,lj )

∣∣∣∣
≤ c(η)

h2
n

τ 2
n

‖uk,n,lj − uk,n,lj−1 ‖2
L2(Ω) + η‖pk,n,lj ‖2̌

L2̌(Ω)
.
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Multiplying by τn and summing over j ∈ {1, . . . , T/τn} yields (5.74), if one assumes

that h2
n = O(τn). This argument could be applied, for instance, to the isothermal

system with Navier’s slip boundary conditions (compare with Theorem 3.1.5, where the

pressure was not included in the analysis). In addition, we expect that this argument

could be applied to the anisothermal system, if one assumes the mesh is such that the

discrete maximum principle is satisfied; this would ensure the positivity of the discrete

temperatures, and in turn that the analogue of estimate (5.30) holds, allowing one to

take the limits corresponding to n and m simultaneously.

5.2 Steady buoyancy-driven flow

In this section we will analyse a system describing the steady state of a buoyancy-

driven heat-conducting fluid; while remaining of great importance in applications, this

setting will allow us to avoid many of the technical complications that arose in the

previous section. Namely, unlike Formulation Ãk,n,m,l, the finite element formulation

considered in this section will employ neither a form of the convective constructed

via mollification and the Helmholtz decomposition, nor the quasi-compressibility ap-

proximation. Moreover, the convergence argument will only involve taking a single

limit n → ∞. In addition, we will introduce a preconditioner for this system that

follows the ideas presented in Chapter 4.

The steady form of the Oberbeck–Boussinesq [Obe79, Bou03] approximation used

in the modelling of natural convection reads (c.f. (1.24)):

− divSSS + ρ∗ div(u⊗ u) +∇p = −ρ∗βg(θ − θC)ed in Ω, (5.75a)

divu = 0 in Ω, (5.75b)

− div(κ(θ)∇θ) + ρ∗cp div(uθ) + βρ∗gθu · ed = SSS :DDD(u) in Ω, (5.75c)

where ρ∗ and θC are reference values for the density and temperature, g is the accel-

eration due to gravity, β is the volumetric coefficient of thermal expansion, cp is the

specific heat capacity at constant pressure, and ed is the unit vector pointing against

gravity. The system is supplemented with the boundary conditions

u|∂Ω = 0, θ|ΓD = θb, κ(θ)∇θ · n|∂Ω\ΓD = 0, (5.76)

where ΓD is a relatively open subset of ∂Ω with |ΓD| 6= 0, n is the unit outward-

pointing normal vector to the boundary, and θb ∈ H
1/2
00 (ΓD) := W

1/2,2
00 (ΓD) is a

given temperature distribution on ΓD. The system will be closed with the implicit

constitutive relation (5.5).
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In many applications the effects of viscous dissipation are ignored, i.e. only the

first two terms in the temperature equation (5.75c) are kept. However, it has been

observed that in some cases the effects of the viscous dissipation term SSS :DDD(u) are

non-negligible and should be taken into account [HMW75, THTS74, VPC76, Ost58].

Furthermore, as noted in [BLP92, THTS74], the viscous dissipation must be balanced

with the adiabatic heating term βρ∗gθu ·ed; for a mathematically rigorous derivation

of the system (5.75) see [KRT00]. The existence of distributional solutions of (5.75)

with non-Newtonian rheology of power-law type was shown in [Rou01, NR01].

We will introduce a finite element approximation of the system (5.75) and prove

convergence of the sequence of finite element approximations to a weak solution.

For the sake of simplicity, we will neglect the viscous dissipation in the convergence

analysis. However, this can be included in the numerical algorithm without any

difficulties. As seen in the previous section, the main challenge associated with this

term in the analysis stems from the fact that SSS :DDD(u) belongs a priori to L1(Ω)

only, and hence a suitable notion of renormalised solution must be employed for

the temperature equation. We would expect that by imposing certain restrictions

on the mesh, and for P1 elements, a similar convergence result would hold for an

appropriately defined renormalised solution (c.f. [CDCRG+07]). When restricted to

constant rheological parameters and the isothermal problem, the convergence result

here improves on the result for r-graphs from [DKS13] by extending it to cover the

whole admissible range r > 2d
d+2

, even without pointwise divergence-free elements.

This is possible by making use of reconstruction operators, which in recent years

were introduced to restore the pressure-robustness in finite element formulations (see

e.g. [JLM+17]).

Let B be defined as the usual skew-symmetric form of the convective term:

B(u,v,w) :=


−
∫

Ω

u⊗ v :∇w, if V n
div ⊂ W 1,1

0,div(Ω)d,

1

2

∫
Ω

u⊗w :∇v − u⊗ v :∇w, otherwise.

As seen in Chapter 3, this trilinear form satisfies B(v,v,v) = 0 for any v ∈ W 1,∞
0 (Ω)d,

regardless of whether v is divergence-free or not, and it reduces to the original trilinear

form −
∫

Ω
(u⊗ v) :∇w if div v = 0.

Let us now define

r̃ := min{r′, r∗/2}, where r∗ :=

{
dr
d−r if r < d,

∞, otherwise.
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Observe that the condition r̃ > 1 is equivalent to r > 2d
d+2

, which is the natural

condition required to have a well-defined weak form of the convective term, because

it ensures that W 1,r(Ω)d ↪→ L2(Ω)d. In this case, for exactly divergence-free functions

u,v,w ∈ V n
div one has that

|B(u,v,w)| ≤
∫

Ω

|u⊗ v :∇w| ≤ c‖u‖W 1,r(Ω)‖v‖W 1,r(Ω)‖w‖W 1,r̃′ (Ω) . (5.77)

Otherwise one needs the stronger assumption r > 2d
d+1

; this ensures that there is an

s ∈ (1,∞) such that 1
r

+ 1
2r̃

+ 1
s

= 1 and so (c.f. [DKS13])∫
Ω

|u⊗w :∇v| ≤ ‖u‖L2r̃(Ω)‖v‖W 1,r(Ω)‖w‖Ls(Ω)

≤ c‖u‖W 1,r(Ω)‖v‖W 1,r(Ω)‖w‖W 1,r̃′ (Ω) ,

(5.78)

for any u,v ∈ W 1,r(Ω)d,w ∈ W 1,r̃′(Ω)d. Thus we deduce that the trilinear form

B(·, ·, ·) is bounded on W 1,r(Ω)d×W 1,r(Ω)d×W 1,r̃′(Ω)d if r > 2d
d+2

when using exactly

divergence-free elements and if r > 2d
d+1

otherwise. This does not pose a problem when

working with the constitutive relation (5.5) (for which r = 2), but for relations with

more general r-growth the more demanding requirement that r > 2d
d+1

would impose

a restriction on the convergence result that can be obtained (see [DKS13, Thm. 18]).

In order to circumvent this issue we shall make use of a reconstruction operator.

Assumption 5.2.1 (Reconstruction operator πn). Let Xn be an auxiliary H(div; Ω)-

conforming finite element space. There exists a map πn : W 1,1(Ω)d → V n +Xn (usu-

ally called a reconstruction operator) that satisfies:

• (Preservation of Divergence). If v ∈ V n
div then div(πnv) = 0 pointwise.

• (Consistency). For every v ∈ V n and K ∈ Tn it holds that

‖v − πnv‖Ls(K) ≤ chmK |v|Wm,s(K), for s ∈ [1,∞), m ∈ {0, 1, 2}.

Operators with the properties described above have been constructed in [Lin14,

LM16, LMT16, LMW17, JLM+17] for elements with discontinuous pressures; the con-

struction is based on the interpolation operators associated with the Raviart–Thomas

and Brezzi–Douglas–Marini elements. A slightly more complicated construction for

elements with continuous pressures was introduced in [LLM17]; however, this con-

struction is computationally expensive and so might not be advantageous in practice.

These reconstruction operators have been employed to obtain pressure-robust dis-

cretisations by “repairing” the L2-orthogonality between discretely divergence-free
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functions and gradient fields; see [JLM+17] for more details. In order to exploit the

advantages of this framework one has to replace the L2 inner products in the discrete

formulation in the following way:∫
Ω

w · v 7→
∫

Ω

w · πnv, (5.79)

where v ∈ V n is a test function. As for the convective term, let us define

B̃n(u,v,w) :=


−
∫

Ω

u⊗ v :∇w, if V n
div ⊂ W 1,1

0,div(Ω)d,

−
∫

Ω
u⊗ πnv :∇w, otherwise.

(5.80)

From the properties of πn stated in Assumption 5.2.1 one readily sees that the trilinear

form B̃n is bounded on W 1,r(Ω)d ×W 1,r(Ω)d ×W 1,r̃′(Ω)d, and that B̃n(v,v,v) = 0

for any v ∈ V n
div.

For the advective term for the temperature one can analogously define the trilinear

form

C(u, θ, η) :=


−
∫

Ω

uθ · ∇η, if V n
div ⊂ W 1,1

0,div(Ω)d,

1

2

∫
Ω

uη · ∇θ − uθ · ∇η, otherwise,

which is well defined and bounded on W 1,r(Ω)d × H1(Ω) ×W 1,∞(Ω) assuming that

r > 2d
d+2

. In addition, this form satisfies C(u, η, η) = 0 for any η ∈ W 1,∞(Ω), regard-

less of whether u is divergence-free or not. The form C does not impose additional

restrictions like B does for small r, but a trilinear form using a reconstruction operator

C̃n could be used instead (and defined analogously).

5.2.1 Finite Element Approximation

Let us now set the physical constants to unity for ease of readability (appropriate non-

dimensional forms of the system will be employed in Section 5.3). Let θ̂b ∈ H1(Ω)

be such that θ̂b|ΓD = θb (such a function exists because θb ∈ H1/2
00 (ΓD)). We can now

define the weak formulation of the system (without viscous heating).

Formulation A0. Find (SSS, θ,u, p) ∈ L2
sym,tr(Ω)d×d×(θ̂b+H1

ΓD
(Ω))×H1

0 (Ω)d×L2
0(Ω)

such that:∫
Ω

SSS : DDD(v)−
∫

Ω

u⊗ u : DDD(v)−
∫

Ω

p div v =

∫
Ω

θv · ed ∀v ∈ C∞0 (Ω)d, (5.81a)

−
∫

Ω

q divu = 0 ∀ q ∈ C∞0 (Ω), (5.81b)∫
Ω

κ(θ)∇θ · ∇η − uθ · ∇η = 0 ∀ η ∈ C∞ΓD(Ω), (5.81c)

(DDD(u),SSS, θ) ∈ A a.e. in Ω. (5.81d)
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Let θ̂nb be the standard Scott–Zhang interpolant of θ̂b into Ûn, where Ûn is the

same finite element space as Un, but without strongly imposed boundary conditions.

The discrete formulations will employ the continuous explicit approximations of the

graph Sn and Dn, defined in (5.10). We have everything in place to state the finite

element approximation of the problem.

Formulation An
0. Find (θn,un, pn) ∈ (θ̂nb + Un)× V n ×Mn

0 such that:∫
Ω

Sn(DDD(un), θn) :DDD(v) + B(un,un,v)−
∫

Ω

pn div v =

∫
Ω

θnv · ed ∀v ∈ V n,

−
∫

Ω

q divun = 0 ∀ q ∈Mn,∫
Ω

κ(θn)∇(θn) · ∇η + C(un, θn, η) = 0 ∀ η ∈ Un.

In case one wishes to compute the shear stress directly, a 4-field formulation may be

employed instead. We refer to this formulation as Formulation Bn
0 . We will prove

that the solutions to the discrete formulations An
0 and Bn

0 converge to a weak solution

of Formulation A0.

Formulation Bn
0. Find (SSSn, θn,un, pn) ∈ Σn × (θ̂nb + Un)× V n ×Mn

0 such that:∫
Ω

(Dn(SSSn, θn)−DDD(un)) : τ = 0 ∀ τ ∈ Σn, (5.82a)∫
Ω

SSSn :DDD(v) + B(un,un,v)−
∫

Ω

pn div v =

∫
Ω

θnv · ed ∀v ∈ V n, (5.82b)

−
∫

Ω

q divun = 0 ∀ q ∈Mn, (5.82c)∫
Ω

κ(θn)∇θn · ∇η + C(un, θn) = 0 ∀ η ∈ Un. (5.82d)

We define Formulations Ã
n

0 and B̃
n

0 as the analogues of the formulations An
0 and Bn

0 ,

respectively, in which we replace B and C by B̃n and C̃n. The following lemma asserts

that all of these formulations have a solution.

Lemma 5.2.2. Suppose the material parameters satisfy condition (5.6) and suppose

that {Un, V n,Mn}n∈N (respectively {Σn, Un, V n,Mn}n∈N) is a family of finite element

spaces satisfying Assumptions 2.5.1 and 2.5.3–2.5.5 (resp. 2.5.1–2.5.5). In the case of

formulations Ãn
0 and B̃n

0 suppose further that Assumption 5.2.1 holds. Then, for every

n ∈ N, Formulations An
0 and Ãn

0 (resp. Bn
0 and B̃n

0 ) admit a solution (θn,un, pn) ∈
(θ̂nb +Un)×V n×Mn

0 (resp. (SSSn, θn,un, pn) ∈ Σn× (θ̂nb +Un)×V n×Mn
0 ). Moreover,

the following a priori estimate holds:

‖un‖H1(Ω) + ‖θn‖H1(Ω) + ‖pn‖L2(Ω) + ‖SSSn‖L2(Ω) ≤ c, (5.83a)
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where the constant c is independent of n; we denote SSSn := Sn(DDD(un), θn) in the case

of Formulations An
0 and Ãn

0 . In addition, for Formulations Bn
0 and B̃n

0 we have

‖Dn(SSSn, θn)‖L2(Ω) ≤ c. (5.83b)

Proof. We will carry out the proof for Formulation Bn
0 ; the proof for the other for-

mulations is analogous with some simplifications. The existence proof will make use

of a fixed point argument. Let θn0 be an arbitrary nonzero element of θ̂nb + Un and

define, for j ∈ N, the function θnj ∈ θ̂nb + Un as follows: given θnj−1 we first find

(SSSnj ,u
n
j , p

n
j ) ∈ Σn × V n ×Mn

0 by solving∫
Ω

(Dn(SSSnj , θ
n
j−1)−DDD(unj )) : τ = 0 ∀ τ ∈ Σn,∫

Ω

(
1

j
DDD(unj ) + SSSnj

)
:DDD(v) + B(unj ,u

n
j ,v)−

∫
Ω

pnj div v =

∫
Ω

θnj−1v · ed ∀v ∈ V n,

−
∫

Ω

q divunj = 0 ∀ q ∈Mn,

(5.84)

and then θnj is defined as θ̂nb + θ̃nj , where θ̃nj ∈ Un is the solution of the nonlinear

problem∫
Ω

κ(θ̃nj + θ̂nb )∇(θ̃nj + θ̂nb ) · ∇η + C(unj , θ̃nj + θ̂nb , η) = 0 ∀ η ∈ Un. (5.85)

In order to show that the problem (5.84) is well-posed, let us define a mapping

F n
j : Σn × V n

div → (Σn × V n
div)∗ by

〈F n
j (σ,v); (τ ,w)〉 :=

∫
Ω

(Dn(σ, θnj−1) : τ −DDD(v) : τ +
1

j
DDD(v) :DDD(w)

+ σ :DDD(w) + B(v,v,w)− θnj v · ed).

By using the coercivity of Dn and the fact that B(v,v,v) = 0, one obtains using the

inequalities of Young, Korn and Poincaré that there exists a δ(j) > 0 such that

〈F n
j (σ,v), (σ,v)〉 > 0 if ‖(σ,v)‖ = δ(j).

A corollary of Brouwer’s fixed point theorem [GR86, Ch. 4, Cor. 1.1] guarantees

the existence of functions (SSSnj ,u
n
j ) ∈ Σn × V n

div satisfying F n
j (SSSnj ,u

n
j ) = 0 (which is

equivalent to (5.84) with divergence-free test functions) and such that ‖(SSSnj ,unj )‖ ≤
δ(j). The existence of pnj ∈ Mn

0 then follows from the inf-sup condition (2.22). A

similar argument can be used to prove the well-posedness of the problem (5.85).
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Now, the inf-sup condition (2.23) and the discrete form of the constitutive relation

(5.82a) allow us to control, uniformly in j and n, the norm of the velocity in terms

of the stress:

γ2‖unj ‖H1(Ω) ≤ ‖SSSnj ‖L2(Ω) . (5.86)

Therefore, testing (5.84) with (SSSnj ,u
n
k , p

n
j ) yields the estimate

‖Dn(SSSnj , θ
n
j−1)‖2

L2(Ω) + ‖SSSnj ‖2
L2(Ω) + ‖unj ‖2

H1(Ω) ≤ c‖θnj−1‖2
L2(Ω) , (5.87)

where c > 0 is independent of j and n. The inf-sup condition (2.22) and the discrete

momentum equation in turn imply an estimate for the pressure:

‖pnj ‖2
L2(Ω) ≤ c‖θnj−1‖2

L2(Ω) . (5.88)

Furthermore, testing (5.85) with θnj − θ̂nb results in

‖θnj ‖2
H1(Ω) ≤ c‖unj ‖2

H1(Ω) . (5.89)

Hence, up to a subsequence, we have as j →∞ that

Dn(SSSnj , θ
n
j−1) ⇀ DDD

n
weakly in L2

sym(Ω)d×d,

SSSnj → SSSn strongly in L2
sym(Ω)d×d,

unj → un strongly in H1(Ω)d, (5.90)

pnj → pn strongly in L2(Ω),

θnj → θn strongly in H1(Ω),

where we used the fact that weak and strong convergence are equivalent in finite-

dimensional spaces. Since Dn is continuous and the convergences are strong, one

can straightforwardly identify DDD
n

= Dn(SSSn, θn) and pass to the limit to show that

(SSSn, θn,un, pn) solve Formulation Bn
0 . Now, testing Formulation Bn

0 with (SSSn, θn −
θ̂nb ,u

n, pn) allows one to obtain the estimate (5.83). Note that the inf-sup conditions

were essential to obtain estimates that are uniform in n.

Having shown that the discrete problems are well-posed, we now consider the

question of convergence.

Theorem 5.2.3. Suppose the same assumptions as in Lemma 5.2.2 hold and suppose

that {(θn,un, pn)}n∈N (respectively ({SSSn, θn,un, pn}N)) is a sequence of solutions of

Formulation An
0 or Ãn

0 (resp. Formulation Bn
0 or B̃n

0 ). Then there exists a solution
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(SSS, θ,u, p) ∈ L2
sym,tr(Ω)d×d× (θ̂b +H1

ΓD
(Ω))×H1

0 (Ω)d×L2
0(Ω) of Formulation A0 such

that, up to a subsequence, as n→∞:

SSSn ⇀ SSS weakly in L2
sym(Ω)d×d,

un ⇀ u weakly in H1(Ω)d,

pn ⇀ p weakly in L2(Ω),

θn ⇀ θ weakly in H1(Ω),

(5.91)

where in the case of Formulations An
0 and Ãn

0 we denote SSSn := Sn(DDD(un), θn).

Proof. We will once again focus on Formulation Bn
0 , since the other cases are com-

pletely analogous. From the a priori estimate (5.83) and the fact that θ̂nb → θ̂b in

H1(Ω), we immediately obtain the convergences (5.91) (for a not relabelled subse-

quence) for some (SSS, θ,u, p) ∈ L2
sym(Ω)d×d × (θ̂b + H1

ΓD
(Ω)) × H1

0 (Ω)d × L2
0(Ω), and

that

Dn(SSSn, θn) ⇀ DDD weakly in L2
sym(Ω)d×d. (5.92)

All that is left to prove is that the limiting functions are a solution of Formulation

A0. Let τ ∈ L2
sym(Ω)d×d be arbitrary. Then (5.91) and (2.21) result in

0 =

∫
Ω

(Dn(SSSn, θn)−DDD(un)) : Πn
Στ −−−−→

n→∞

∫
Ω

(DDD−DDD(u)) : τ , (5.93)

and therefore DDD = DDD(u) almost everywhere. Similarly, for an arbitrary q ∈ L2
0(Ω) one

obtains that

0 =

∫
Ω

divun Πn
Mq −−−−→

n→∞

∫
Ω

divu q, (5.94)

and so u is pointwise divergence-free. One can pass to the limit in (5.82b) and (5.82d)

in a similar manner, but perhaps the convective terms are worth looking at in more

detail. To that end, first note that the Sobolev embedding theorem ensures that (up

to a subsequence) we have, for any p ∈ [1, 2∗),

un → u strongly in Lp(Ω)d,

θn → θ strongly in Lp(Ω), (5.95)

θn → θ a.e. in Ω.

The strong convergence of un suffices to prove that, for an arbitrary v ∈ H1
0 (Ω)d:

B(un,un,Πn
V v) −−−−→

n→∞

1

2

∫
Ω

u⊗ v :∇u− u⊗ u :∇v = −
∫

Ω

u⊗ u :DDDv, (5.96)
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where the last equality is a consequence of the fact that divu = 0. Now, from testing

the discrete momentum equation with un and taking (5.95) into account we observe

that

lim sup
n→∞

∫
Ω

SSSn :DDD(un) = lim
n→∞

∫
Ω

θnun · ed =

∫
Ω

θu · ed =

∫
Ω

SSS :DDD(u), (5.97)

and hence by Lemma 5.1.2 we conclude that (DDD(u),SSS, θ) ∈ A. Finally, by taking

traces on both sides of the constitutive relation we also obtain that trSSS = 0 and so

SSS ∈ L2
sym,tr(Ω)d×d, which concludes the proof.

Just as with Theorem 5.1.5, in the proof of Theorem 5.2.3 it becomes clear that

the only bottleneck that prevents one from considering constitutive laws with more

general r-coercivity (e.g. a power-law with temperature dependent consistency), is the

fact that Lemma 5.1.2 is tied to the particular constitutive relation defined in (5.5).

Using Minty’s trick it is possible to show that if an explicit constitutive relation is

available, an analogous convergence result will hold.

Assumption 5.2.4. Let S : Ω×Rd×d
sym×R→ Rd×d

sym be a continuous function satisfying,

for some r > 2d
d+2

:

• (Monotonicity). For every τ1, τ2 ∈ Rd×d
sym:

(S(τ1, s)− S(τ2, s)) : (τ1 − τ2) ≥ 0 for fixed s ∈ R;

• (Coercivity). There is a non-negative function m ∈ L1(Ω) and a constant c > 0

such that

S(τ , s) : τ ≥ −m+ c(|S(τ , s)|r′ + |τ |r) for all τ ∈ Rd×d
sym, s ∈ R;

• (Growth). There is a function n ∈ Lr′(Ω) and a constant c > 0 such that

|S(τ , s)| ≤ c(|τ |r′−1 + n);

• (Compatibility). For a fixed s ∈ R we have that tr(S(τ , s)) = 0 if and only if

tr(τ ) = 0, for any τ ∈ Rd×d
sym.

When r < 3d
d+2

the velocity u is not an admissible test function anymore and so

obtaining an identity such as (5.97) is not straightforward. This difficulty can be

overcome by testing instead with a discrete Lipschitz truncation of the error en :=

u−un. The discrete Lipschitz truncation was introduced in [DKS13], and the idea is
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that it turns en into a Lipschitz function belonging to V n in such a way that the size

of the set where the truncation does not equal the original function can be controlled.

We note that the construction of this discrete Lipschitz truncation requires a refined

version of Assumption 2.5.3.

Assumption 5.2.5 (Fortin Projector Πn
V ). For each n ∈ N there is a linear projector

Πn
V : W 1,1

0 (Ω)d → V n such that it preserves the divergence in the same sense as in

Assumption 2.5.3, but the stability condition is replaced by:

• (Local W 1,1-stability). For every s ∈ (1,∞) there is a constant c > 0, independent

of n, such that

1

|K|

∫
K

|∇Πn
V v| ≤ c

1

|Ωn
K |

∫
ΩnK

|∇v| ∀v ∈ W 1,s
0 (Ω)d, K ∈ Tn,

where Ωn
K denotes the patch of elements in Tn whose intersection with K is

nonempty.

It can be shown that the local W 1,1-stability from Assumption 5.2.5 implies the

global W 1,s-stability of Assumption 2.5.3 [BBDR12, DKS13]. Some examples of fi-

nite elements satisfying Assumption 5.2.5 include the conforming Crouzeix–Raviart

element, the MINI element, the Bernardi–Raugel element, the P2–P0 and the Taylor–

Hood pair Pk–Pk−1 for k ≥ d [BBDR12]; the lowest order Taylor–Hood pair in 3D also

satisfies the assumption if the mesh has a certain macroelement structure [GNS15].

As for exactly divergence-free elements, this assumption can also be verified for low

order Guzmán–Neilan elements and the Scott–Vogelius pair, under certain restrictions

on the mesh [DKS13, Tsc18].

Corollary 5.2.6. Let r > 2d
d+2

and let S : Rd×d
sym × R → Rd×d

sym be a function satisfy-

ing Assumption 5.2.4 and suppose that {Un, V n,Mn}n∈N is a family of finite element

subspaces satisfying Assumptions 2.5.1, 2.5.4, 2.5.5, 5.2.1, and 5.2.5. Then, for any

n ∈ N, the finite element formulation obtained by replacing Sn by S in Formula-

tion Ãn
0 admits a solution (θn,un, pn) ∈ (θ̂nb + Un) × V n ×Mn

0 and we have, up to

subsequences, that

un ⇀ u weakly in W 1,r(Ω)d,

pn ⇀ p weakly in Lr̃(Ω),

θn ⇀ θ weakly in H1(Ω),

S(DDD(un), θn) ⇀ SSS weakly in Lr
′

sym(Ω)d×d,

where (SSS, θ,u, p) ∈ Lr′sym,tr(Ω)d×d× (θ̂b +H1
ΓD

(Ω))×W 1,r
0 (Ω)d×Lr̃0(Ω) is a solution of

Formulation A0.
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Proof. The proof is entirely analogous to the proofs of Lemma 5.2.2 and Theorem

5.2.3, with a few small differences. Firstly, the a priori estimate (5.83) changes to

‖un‖W 1,r(Ω)d + ‖θn‖H1(Ω) + ‖pn‖Lr̃(Ω) + ‖SSSn‖Lr′ (Ω) ≤ c, (5.98)

which implies the desired weak convergences. On the other hand, since r > 2d
d+2

, for

a small enough ε > 0 we have that r > (2+ε)d
d+(2+ε)

, which implies that un → u strongly

in L2+ε(Ω)
d

as n→∞. Furthermore, from the consistency condition in Assumption

5.2.1 we see that

‖πnun − u‖L2+ε(K) ≤ ‖un − u‖L2+ε(K) + ch
1+d( 1

2+ε
− 1
r

)

K ‖un‖W 1,r(K),

where we have used a standard local inverse inequality; the exponent of hK is positive

by the choice of ε, which implies that πnun → u strongly in L2+ε(Ω)
d

as n → ∞.

This is enough to pass to the limit in the convective term:

B̃n(un,un,Πnv) −−−−→
n→∞

−
∫

Ω

u⊗ u :DDD(v), (5.99)

for any v ∈ W
1,( 2+ε

2
)′

0 (Ω)d. As for the identification of the constitutive relation, by

testing the discrete momentum equation with the discrete Lipschitz truncation of the

error en := u− un it is possible to prove that (see [Tsc18] for a similar argument)

lim sup
n→∞

∫
Ω

S(DDD(un), θn) :DDD(un) ≤
∫

Ω

SSS :DDD(u). (5.100)

Furthermore, from the growth condition of S and the dominated convergence theorem

(note that, up to a subsequence, we have that θn → θ almost everywhere, c.f. (5.95))

we see, that for any τ ∈ Lrsym(Ω)d×d,

S(τ , θn)→ S(τ , θ) strongly in Lr
′
(Ω)

d×d
, (5.101)

as n→∞. Combining the monotonicity of S with (5.100) and (5.101) yields for an

arbitrary τ ∈ Lrsym(Ω)d×d:

0 ≤ lim sup
n→∞

∫
Ω

(S(DDD(un), θn)− S(τ , θn)) : (DDD(un)− τ )

≤
∫

Ω

(SSS− S(τ , θ)) : (DDD(un)− τ ).

Choosing τ = DDD(u)±εσ with an arbitrary σ ∈ C∞0 (Ω)d×d and letting ε→ 0 concludes

the proof.
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Remark 5.2.7. The use of the discrete Lipschitz truncation is only necessary when

the velocity u is not an admissible test function in the momentum equation, which

occurs when r < 3d
d+2

. If r ≥ 3d
d+2

then one can substitute Assumption 5.2.5 with

Assumption 2.5.3. It is also important to note that if the trilinear form B is used

instead, the stronger assumption r > 2d
d+1

is required (see (5.78)).

Remark 5.2.8. If the constitutive relation can be written in the form DDD(u) = D(SSS, θ),

where D satisfies analogous conditions to the ones stated in Assumption 5.2.4, then

the corresponding 4-field formulation will also satisfy an analogous convergence result.

An example of a constitutive relation captured by these assumptions is the Ostwald–de

Waele power-law model with r > 2d
d+2

:

S(DDD, θ) := K(θ)|DDD|r−2DDD,

D(SSS, θ) :=
1

K(θ)

∣∣∣∣ SSS

K(θ)

∣∣∣∣r′−2

SSS,

where K : R → R is a continuous function satisfying c1 ≤ K(s) ≤ c2 for any s ∈ R,

where c1, c2 are two positive constants. If r ≤ 2 the Herschel–Bulkley relation (5.72)

is included as well.

If the rheological parameters are not temperature-dependent, the convergence

result can cover more general constitutive relations defined by maximal monotone

r-graphs. For this problem let us define Formulation C0 in exactly the same way as

Formulation A0, but where now the graph A in (5.81d) is any maximal monotone

r-graph satisfying (A1)–(A6). Formulation C̃n
0 is then defined in the same way as

Formulation B̃n
0 , but with Dn(SSSn, θn) replaced by the generalised Yosida approxima-

tion (2.19). However, it is worth pointing out that in the numerical computations

one can simply work with the implicit function directly by writing∫
Ω

GGG(·,SSSn,DDD(un)) : τ = 0 ∀ τ ∈ Σn, (5.102)

instead of (5.82a).

Corollary 5.2.9. Let r > 2d
d+2

and let A(·) ⊂ Rd×d
sym × Rd×d

sym be a graph satisfying

(A1)–(A6). Suppose that {Σn, Un, V n,Mn}n∈N is a family of finite element subspaces

satisfying Assumptions 2.5.1, 2.5.2, 2.5.4, 2.5.5, 5.2.1, and 5.2.5. Then, for any

n ∈ N, Formulation C̃n
0 admits a solution (SSSn, θn,un, pn) ∈ Σn×(θ̂nb +Un)×V n×Mn,
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and we have, up to subsequences, that

un ⇀ u weakly in W 1,r(Ω)d,

pn ⇀ p weakly in Lr̃(Ω),

θn ⇀ θ weakly in H1(Ω),

SSSn ⇀ SSS weakly in Lr
′

sym(Ω)d×d,

where (SSS, θ,u, p) ∈ Lr′sym,tr(Ω)d×d× (θ̂b +H1
ΓD

(Ω))×W 1,r
0 (Ω)d×Lr̃0(Ω) is a solution of

Formulation C0.

Remark 5.2.10. When restricted to the isothermal case, the convergence result from

Corollary 5.2.9 improves the one presented in [DKS13] in two respects: the graph is

not required to be strictly monotone here, which allows models with a yield stress, for

instance, and the result holds for the whole admissible range r > 2d
d+2

even without the

use of pointwise divergence-free elements, thanks to the modified convective term B̃n.

In addition, the argument used here in the identification of the constitutive relation

avoids the use of Young measures, simplifying the proof.

5.2.2 Augmented Lagrangian Preconditioner

Henceforth we employ the Scott–Vogelius pair for the velocity and pressure, and

discontinuous and continuous elements for the stress and temperature, respectively,

with k ≥ d:

Σh = {σ ∈ L∞sym,tr(Ω)d×d : σ|K ∈ Pk−1(K)d×d for all K ∈ Tn},
Uh = {η ∈ W 1,∞

ΓD
(Ω) : η|K ∈ Pk−1(K) for all K ∈ Tn},

V h = {w ∈ W 1,∞
0 (Ω)d : w|K ∈ Pk(K)d for all K ∈ Tn},

Mh = {q ∈ L∞0 (Ω) : q|K ∈ Pk−1(K) for all K ∈ Tn}.

(5.103)

In order to ensure the inf-sup stability of the velocity-pressure pair, each level Tn of

the mesh hierarchy is barycentrically refined, with the hierarchy itself constructed

by uniform refinement, to prevent the appearance of degenerate elements (see Figure

4.2). As seen in Chapter 4, a drawback of this approach is that the resulting mesh

hierarchy is non-nested, which introduces some difficulties when dealing with the

transfer operators in the multigrid algorithm.

This choice of finite element space for the stress satisfies the inf-sup condition

(2.23). In addition, recall that this also allows one to work with traceless stresses

and hence fewer degrees of freedom will be required (see Remark 2.5.8). This ex-

act enforcement of the divergence constraint was one of the motivations behind our
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choice of elements; it is known that a failure to enforce the divergence-free constraint

appropriately can lead to unphysical behaviour in the solution of buoyancy-driven

flow [JLM+17].

At this point the viscous dissipation and the adiabatic heating terms can be in-

corporated into the formulation. For instance, when working with the setting de-

scribed by Corollary 5.2.6, in the finite element formulation we seek (θn,un, pn) ∈
(θ̂b + Un)× V n ×Mn

0 such that∫
Ω

S(DDD(un), θn) :DDD(v)−
∫

Ω

(un ⊗ un) :DDD(v)−
∫

Ω

pn div v =

∫
Ω

θnv · ed ∀v ∈ V n,

−
∫

Ω

q divun = 0 ∀ q ∈Mn,

(5.104a)∫
Ω

(κ(θn)∇θn − unθn) · ∇η +

∫
Ω

θnun · edη =

∫
Ω

S(DDD(un), θn) :DDD(un)η ∀ η ∈ Un,

with analogous modifications for the other formulations. Note that the form of the

convective term could be simplified since the elements are exactly divergence-free.

The nonlinear finite element formulations are linearised using Newton’s method; for

instance, if the current guess for the solution of (5.104) is (θ̃, ũ, p̃), then the method

is defined by the correction step (θ̃, ũ, p̃) 7→ (θ̃, ũ, p̃) + (θ,u, p) where (θ,u, p) is the

solution of a linear system whose matrix has the block structureA1 C 0

E A2 B̃>

0 B̃ 0

θu
p

 . (5.105)

The blocks in (5.105) are defined through the linear operators:

〈A1θ, η〉 :=

∫
Ω

θκ′(θ̃)∇θ̃ · ∇η +

∫
Ω

κ(θ̃)∇θ · ∇η −
∫

Ω

ũθ · ∇η

+

∫
Ω

ũθ · edη−
∫

Ω

Sθ(DDD(ũ), θ̃) :DDD(ũ)θη ∀ θ, η ∈ Un,

〈Cu, η〉 :=

∫
Ω

θ̃u · (edη −∇η)−
∫

Ω

SDDD(DDD(ũ), θ̃)DDD(u) :DDD(v)η

−
∫

Ω

S(DDD(ũ),θ̃) :DDD(u)η ∀u ∈ V n, η ∈ Un,

〈Eθ,v〉 :=

∫
Ω

Sθ(DDD(ũ), θ̃)θ :DDD(v)−
∫

Ω

θv · ed ∀ θ ∈ Un,v ∈ V n,

〈A2u,v〉 :=

∫
Ω

(
SDDD(DDD(ũ), θ̃) DDD(u)− ũ⊗ u− u⊗ ũ) :DDD(v) ∀u,v ∈ V n,

〈B̃v, q〉 := −
∫

Ω

q div v ∀v ∈ V n, q ∈Mn.
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We use the notation SDDD,Sθ to denote the partial derivatives of S; for instance, for

the Navier–Stokes model one would have SDDD(DDD(ũ), θ̃) = 2µ̂(θ̃)I and Sθ(DDD(ũ), θ̃) =

2µ̂′(θ̃)DDD(ũ), where I is the fourth-order identity tensor.

Keeping (5.105) as an illustrative example, we see that after augmentation the

top block can be written in the form

A+ γB>M−1
p B =

[
A1 C
E A2

]
+ γ

[
0

B̃>

]
M−1

p

[
0 B̃

]
, (5.107)

where A is invertible and γB>M−1
p B is symmetric and semi-definite. Let us define

Zn := Un×V n whenever the 3-field formulation is employed and Zn := Σn×Un×V n

otherwise. Following the approach presented in Chapter 4, we consider the subspace

decomposition based on macrostar patches:

Zn =
∑
i

{z ∈ Zn : supp(z) ⊂ macrostar(qi)}, (5.108)

which ensures that the kernel of the semi-definite term is captured:

N n =
∑
i

Zn
i ∩N n. (5.109)

Here N n consists of the elements of the form (θ,v)> and (σ, θ,v)> for the 3-field and

4-field formulations, respectively, where v ∈ V n
div, and σ ∈ Σn, θ ∈ Un are arbitrary.

Regarding transfer operators, for the temperature we employ a standard prolon-

gation based on interpolation, and for the velocity the prolongation operator defined

by (4.33). For the formulations including the stress, we make use of the supermesh

projection (4.36). An overview of the algorithm is shown in Figure 5.1.

5.3 Numerical experiments

Let us suppose that the parameters in the constitutive relation (5.5) can be written

as
µ(θ)

µ0

= µ̂(θ),
κ(θ)

κ0

= κ̂(θ),
τ(θ)

τ0

= τ̂(θ),
σ(θ)

σ0

= σ̂(θ), (5.110)

where µ0, κ0 > 0 are reference values for the viscosity and heat conductivity, τ, σ ≥
0 are reference values for the activation parameters, and µ̂, κ̂, τ̂ , σ̂ are then non-

dimensional functions. In practice the system can be non-dimensionalised in distinct

ways to give more importance to different physical regimes. For example, suppose that
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Continuation in rheological parameters

Newton solver with a line search

Krylov solver (FGMRES)

Full block inverse preconditioner

M−1p for approximate Schur complement inverse

F-cycle on stress-temperature-velocity block

Coarse grid correction

LU factorisation

Prolongation operator

Velocity: local solves on macro cells

Stress: supermesh projection

Temperature: standard interpolation

Relaxation

GMRES

Additive macrostar iteration

Figure 5.1: Overview of the algorithm for the steady buoyancy-driven flow.

the time scale is chosen based on the diffusion of heat, and that the non-dimensional

variables are introduced in the following way:

t̃ :=
α̃

L2
t, x̃ :=

x

L
, ũ :=

L

α̃
u, p̃ :=

L2

ρ∗α̃2
p, θ̃ :=

θ − θC
θH − θC

, S̃SS :=
L2

µ0α̃
SSS,

(5.111)

where L is a characteristic length scale, θH is a reference temperature (e.g. the tem-

perature of the hot plate in a Bénard problem), and α̃ = κ0

ρ∗cp
is the thermal diffusion

rate. Then, the non-dimensional form of the system reads (dropping the tildes):

−Pr divSSS + div(u⊗ u) +∇p = Ra Pr θed in Ω, (5.112a)

divu = 0 in Ω, (5.112b)

− div(κ̂(θ)∇θ) + div(uθ) + Di(θ + Θ)u · ed =
Di

Ra
SSS :DDD(u) in Ω, (5.112c)

where the Rayleigh, Prandtl, Dissipation and Theta numbers are defined respectively

as

Ra =
βg(θH − θC)L3

να̃
, Pr =

ν0

α̃
, Di =

βgL

cp
, Θ =

θC
θH − θC

, (5.113)

where ν0 := µ0

ρ∗
is the reference kinematic viscosity (more non-dimensional numbers

could arise with a non-Newtonian constitutive relation). Alternatively, if one assumes

that the gravitational potential energy is completely transformed into kinetic energy

[HMW75, Ost58], the characteristic velocity is chosen as U = (gLβ(θH − θC))1/2 and

the resulting non-dimensional system becomes

− 1√
Gr

divSSS + div(u⊗ u) +∇p = θed in Ω,

(5.114a)
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divu = 0 in Ω,
(5.114b)

− 1

Pr
√

Gr
div(κ̂(θ)∇θ) + div(uθ) + Di(θ + Θ)u · ed =

Di√
Gr

SSS :DDD(u) in Ω,

(5.114c)

where the Grashof number is defined as

Gr =
gL3β(θH − θC)

ν2
0

. (5.115)

In the following section we will test the solver using the different forms (5.112) and

(5.114) with a heated cavity problem. The computational examples were imple-

mented in Firedrake [RHM+16], and PCPATCH [FKMW19] (a recently developed

tool for subspace decomposition in multigrid in PETSc [BAA+17]) was employed for

the macrostar patch solves in the multigrid algorithm. The augmented Lagrangian

parameter was set to γ = 104, and unless specified otherwise, the Newton solver

was deemed to have converged when the Euclidean norm of the residual fell below

1×10−8 and the corresponding tolerance for the linear solver in 2D was set to 1×10−10

(1× 10−8 in 3D). In the implementation the uniqueness of the pressure was enforced

by orthogonalizing against the nullspace of constants in the Krylov solver, instead of

enforcing a zero mean condition.

5.3.1 Heated cavity

The problem is solved on the unit square/cube Ω = (0, 1)d with boundary data

u = 0 on ∂Ω, ∇θ · n = 0 on ∂Ω \ (ΓH ∪ ΓC), θ =

{
1, on ΓH ,
0, on ΓC ,

where ΓH := {x1 = 0} and ΓC := {x1 = 1}. For the problems with temperature-

dependent viscosity and conductivity we choose the following functional dependences:

µ̂(θ) := e−
θ
10 , (5.116a)

κ̂(θ) :=
1

2
+
θ

2
+ θ2. (5.116b)

The viscosity defined by (5.116a) decreases with temperature, as is the case with most

liquids [FG02]; heat conductivities of the form (5.116b) are a good fit for most liquid

metals and gases [EL99]. Let us denote the problem solved with µ̂(θ) ≡ 1 ≡ κ̂(θ) by

(P1), the one using (5.116a) and κ̂(θ) ≡ 1 by (P2), and by (P3) the one using both

forms in (5.116).
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A simple continuation algorithm was used to reach the different values of the pa-

rameters; for instance, the solution corresponding to a Rayleigh number Ra was used

as an initial guess in Newton’s method for the problem with Ra+Rastep, where Rastep

is some predetermined step. In some cases (most notably shear-thinning fluids) the

use of advective stabilisation was essential; here we added to the formulation the ad-

vective stabilisation term (4.43), with the same parameters described in Section 4.2.2.

The choice of stabilisation was preferred over the more common SUPG stabilisation

because the latter introduces additional couplings between the velocity and the pres-

sure in the momentum equation, and between the velocity, stress and temperature in

the energy equation, which can spoil the convergence of the nonlinear solver (this was

already observed in the isothermal case in [FMSW20a]). The disadvantage is that

(4.43) introduces an additional kernel consisting of C1 functions, that might not be

captured by the relaxation. This means that unless k ≥ 3 in 2D or k ≥ 5 in 3D, a

slight loss of robustness might be expected [FMSW20a].

Tables 5.1–5.3 show the average number of Krylov iterations for the problem with

non-dimensional form (5.114) and increasingly large Grashof number, comparing with

different values of the Dissipation number; Tables 5.4–5.6 show the same for the three-

dimensional problem. It can be observed that the iteration counts remain under

control, and the previously mentioned loss of robustness occurs when k = 2. Figure

5.2 shows the streamlines and temperature contours for the problem (P2); it can

be observed that the presence of the viscous dissipation term has a stabilising effect

on the flow. Table 5.7 shows the number of iterations for the problem using the

temperature-dependent power-law relation

SSS = S(DDD(u), θ) := e−
θ
10 |DDD(u)|r−2DDD(u), (5.117)

using r = 1.6 and the streamlines are shown in Figure 5.4 alongside the ones of the

Newtonian problem (r = 2). In this case the tolerances for the linear and nonlinear

iterations were set to 1× 10−10, and 7 multigrid cycles with 7 relaxation sweeps per

level were employed. Admittedly, this is a computationally expensive solver whose

applicability in a practical setting depends on the range of parameters one wishes to

simulate.
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Di k # refs # dofs
Gr

1× 106 5× 106 1× 107 1.5× 107

0
2

1 1.8× 104 5 7.66 10 22
2 7.2× 104 4.25 7 8 8.5

3
1 4.1× 104 2 3.5 4 4.5
2 1.6× 105 1.66 2 2.5 3

0.6
2

1 1.8× 104 4.75 8 13.3 18.7
2 7.2× 104 4 7 7.5 7

3
1 4.1× 104 2 3.5 4.5 5.5
2 1.6× 105 1.67 2 3.5 4

1.3
2

1 1.8× 104 5.67 8 12.67 18.67
2 7.2× 104 4 6.5 6.5 7

3
1 4.1× 104 2 2.5 4 4
2 1.6× 105 1.67 2 2.5 2.5

2.0
2

1 1.8× 104 5.67 9.33 12.67 18.67
2 7.2× 104 4 6.5 6.5 8

3
1 4.1× 104 2 2.5 3 3
2 1.6× 105 1.67 2 2 2

Table 5.1: Average number of Krylov iterations per Newton step as Gr increases for
the 2D problem (P1) with Pr = 1, obtained using 2 multigrid cycles with 4

relaxation sweeps.
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Di k # refs # dofs
Gr

1× 106 5× 106 1× 107 1.25× 107

0
2

1 1.8× 104 5.25 8.33 18 23.25
2 7.2× 104 4.25 7.5 9 9.5

3
1 4.1× 104 2 3.5 4.5 5
2 1.6× 105 1.67 2 2.5 2.5

0.6
2

1 1.8× 104 4.75 8.67 15 15.5
2 7.2× 104 4.33 7 7.5 7.5

3
1 4.1× 104 2.33 3.5 5.5 5.5
2 1.6× 105 1.67 2 3.5 4.5

1.3
2

1 1.8× 104 4.75 9.33 15.67 20.67
2 7.2× 104 4 7 6.5 6.5

3
1 4.1× 104 2 3.5 4 4.5
2 1.6× 105 1.67 2 3 3.5

2.0
2

1 1.8× 104 5.67 10.67 16.33 19
2 7.2× 104 4 7 6.5 7.5

3
1 4.1× 104 2 2.5 3 3
2 1.6× 105 1.67 2 2.5 2.5

Table 5.2: Average number of Krylov iterations per Newton step as Gr increases for
the 2D problem (P2) with Pr = 1, obtained using 2 multigrid cycles with 4

relaxation sweeps.
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Di k # refs # dofs
Gr

1× 106 5× 106 1× 107 1.25× 107

0
2

1 1.8× 104 5.75 9 17.75 23
2 7.2× 104 4.25 6.33 10 11

3
1 4.1× 104 2 3 5 6
2 1.6× 105 1.67 2 1.5 1.5

0.6
2

1 1.8× 104 5.5 9 17.33 24.4
2 7.2× 104 4.67 8 9 9.5

3
1 4.1× 104 2.33 3.5 5 6
2 1.6× 105 1.67 2.5 3.5 4

1.3
2

1 1.8× 104 4.75 9.67 18 23.67
2 7.2× 104 4 8 9.5 9

3
1 4.1× 104 2.33 2.5 4 4
2 1.6× 105 1.67 2 2.5 2.5

2.0
2

1 1.8× 104 5.66 10.33 18.33 24.33
2 7.2× 104 4.33 10 10 8.5

3
1 4.1× 104 2.33 2.5 2.5 3
2 1.6× 105 1.67 2 1.5 1.5

Table 5.3: Average number of Krylov iterations per Newton step as Gr increases for
the 2D problem (P3) with Pr = 1, obtained using 2 multigrid cycles with 4

relaxation sweeps.

Di # refs # dofs
Gr

2.52× 105 6.30× 105 9.45× 105 1.26× 106

0
1 3.2× 105 3.33 4 4.5 9
2 2.6× 106 6 4.5 3.5 3.5

0.6
1 3.2× 105 3.33 4 4 10.5
2 2.6× 106 4.33 5 4.5 4.5

1.3
1 3.2× 105 3.33 4 4 10.5
2 2.6× 106 6 4.5 4.5 4

2
1 3.2× 105 3 4 4.5 12
2 2.6× 106 6 4.5 3.5 3.5

Table 5.4: Average number of Krylov iterations per Newton step as Gr increases for
the 3D problem (P1) with Pr = 1 and k = 3, obtained using 2 multigrid cycles with

4 relaxation sweeps.
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(a) Streamlines for Di = 2. (b) Streamlines for Di = 0.

(c) Temperature contour for Di = 2. (d) Temperature contour for Di = 0.

Figure 5.2: Streamlines and temperature contours for the heated cavity with
temperature dependent viscosity and Gr = 1.25× 107.
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Di # refs # dofs
Gr

2.52× 105 6.30× 105 9.45× 105 1.26× 106

0
1 3.2× 105 3.67 4 5 13.5
2 2.6× 106 5 5.5 5.5 5.5

0.6
1 3.2× 105 3.33 4 4.5 14
2 2.6× 106 4.33 5.5 4.5 5

1.3
1 3.2× 105 3.33 4 5 16.5
2 2.6× 106 6 4.5 4.5 4.5

2
1 3.2× 105 3.67 4 5 13.5
2 2.6× 106 6 4.5 3.5 4

Table 5.5: Average number of Krylov iterations per Newton step as Gr increases for
the 3D problem (P2) with Pr = 1 and k = 3, obtained using 2 multigrid cycles with

4 relaxation sweeps.

Di # refs # dofs
Gr

2.52× 105 6.30× 105 9.45× 105 1.26× 106

0
1 3.2× 105 3.67 5 7.5 19
2 2.6× 106 5 6 6 9.5

0.6
1 3.2× 105 3.33 4 4 10.5
2 2.6× 106 4.33 5.5 4.5 7

1.3
1 3.2× 105 3.33 4 10 28.5
2 2.6× 106 6 4.5 4.5 4

2
1 3.2× 105 3 4 11.5 41.5
2 2.6× 106 6 4.5 3.5 3.5

Table 5.6: Average number of Krylov iterations per Newton step as Gr increases for
the 3D problem (P3) with Pr = 1 and k = 3, obtained using 2 multigrid cycles with

4 relaxation sweeps.
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(a) Problem (P1). (b) Problem (P3).

Figure 5.3: Temperature contours for the 3D heated cavity with Gr = 1.26× 106.

k # refs # dofs
Ra

5000 10000 15000 20000

2
1 1.8× 104 3.64 5.25 6.42 6.38
2 7.2× 104 3.78 5.78 7 9.75
3 2.9× 105 3.22 4.8 6.3 8.3

3
1 7.3× 104 2.57 3.11 3.5 4.25
2 1.6× 105 2.5 2.8 3.33 4.75
3 6.5× 105 1.9 2.22 2.44 4

Table 5.7: Average number of Krylov iterations per Newton step as Ra increases
for the constitutive relation - with r = 1.6 and Di = 0, obtained using 7 multigrid

cycles with 7 relaxation sweeps.
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(a) Streamlines for r = 2. (b) Streamlines for r = 1.6.

(c) Temperature contour for r = 2. (d) Temperature contour for r = 1.6.

Figure 5.4: Streamlines and temperature contours for the heated cavity with the
power-law constitutive relation (5.117) and Ra = 2× 104.
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5.3.2 Bingham flow in a cooling channel

Let Ω := (0, 40) × (−1, 1), and consider the following boundary conditions for the

temperature:

∇θ · n = 0 on ∂Ω \ (ΓH ∪ ΓC), θ =

{
θH , on ΓH ,
0, on ΓC ,

where θH > 0, and ΓH := {(x1, x2)> ∈ ∂Ω : x1 ≤ 10} and ΓC := {(x1, x2)> ∈ ∂Ω :

x2 ∈ {−1, 1}, 10 < x1}. We employ in this section the Bingham constitutive relation

that is obtained by setting σ ≡ 0 in (5.5). In this example we will consider a forced

convection regime, in which the buoyancy effects are not taken into account, i.e. the

steady counterpart of the system (5.1). The non-dimensional form of the system then

reads:

− divSSS + Re div(u⊗ u) +∇p = 0 in Ω, (5.118a)

divu = 0 in Ω, (5.118b)

− 1

Pe
div(∇θ) + div(uθ) =

Br

Pe
SSS :DDD(u) in Ω, (5.118c)√

ε2 + |DDD(u)|2SSS = (Bn τ̂(θ) + 2µ̂(θ)|DDD(u)|)DDD(u), in Ω, (5.118d)

where ε > 0 is the regularisation parameter (c.f. (4.7a)), and the Reynolds, Péclet,

Bingham and Brinkman numbers are defined as

Re =
ρ∗UR

ν0

, Pe =
ρ∗cpUR

κ0

, Bn =
τ0R

ν0U
, Br =

ν0U
2

κ0θH
, (5.119)

where R is the radius of the channel, U is the average velocity at the inlet and τ0

is the value of the yield stress at the inlet. Two choices for the (non-dimensional)

viscosity and yield stress are considered here:

Problem (Q1): µ̂(θ) := a1θ + a2 τ̂(θ) := 1.

Problem (Q2): µ̂(θ) := 1 τ̂(θ) := b1θ + b2.

The values of a1 and a2 are chosen so that the viscosity is unity at the inlet and

increases by a factor of 20 at the outlet (which means that the effective Bingham

number decreases by the same factor). The constants b1 and b2 are such that the

Bingham number is 1.5 at the inlet, and 9 at the outlet when a temperature drop of

15 is applied. As for the velocity, we impose the following boundary conditions:

(SSS− pI)(1, 0)> · (1, 0)> = 0, u · (0, 1)> = 0 on Γout, u = uB on Γin,

u = 0 on ∂Ω \ (Γin ∪ Γout),
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γ # refs # dofs
ε

1× 10−3 1× 10−4 2× 10−5 1× 10−5

103

1 2.7× 104 12.8 22 51 48
2 1.0× 105 14.8 33.5 55 49
3 4.3× 105 13.5 17 25 17
4 1.7× 106 11.71 8.8 13 12

105

1 2.7× 104 2.6 2 2 1.33
2 1.0× 105 2.6 2.25 1.4 1.15
3 4.3× 105 2 1.33 1.14 1
4 1.7× 106 1.75 1.33 1.15 1.07

Table 5.8: Average number of Krylov iterations per Newton step as ε decreases for
Problem (Q1) with k = 2, Pe = 10, θH = 10, Br = 0.1.

where Γin := {x1 = 0}, Γout := {x1 = 40}, and uB is the fully developed Poiseuille

flow for the isothermal problem with Bn = 1.5, for which the exact solution is avail-

able (see (4.41)). In order to obtain better initial guesses for Newton’s method,

secant continuation was employed: given two previously computed solutions z1, z2

corresponding to the parameters ε1, ε2, respectively, the initial guess for Newton’s

method at ε is chosen as
ε− ε2

ε2 − ε1

(z2 − z1) + z2.

For this (arguably more complex) problem, the multigrid algorithm for the top

block ceased to be effective. Tables 5.8–5.9 show the average number of Krylov

iterations per Newton step obtained when using a sparse direct solver for the top

block. It can be observed that for large values of the augmented Lagrangian parameter

γ it is still possible to have an excellent control of the Schur complement. This suggests

that it might be worthwhile to follow the same strategy of using a block preconditioner

that singles out the pressure, while attempting a different strategy for constructing a

scalable solver for the top block.

Figures 5.5–5.6 show the temperature field and the yielded/unyielded regions of

the fluid. The results are qualitatively similar to those found in [VWA05], where

an algorithm based on the augmented Lagrangian method was applied to a similar

problem (neglecting the convective term and viscous dissipation). While it is known

that a method based on regularisation, such as the one applied here, is not the most

appropriate if one wishes to locate the exact position of the yield surfaces, it can still

be useful to obtain the general features of the flow. For example, the solutions found
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γ # refs # dofs
ε

1× 10−3 1× 10−4 5× 10−5 2× 10−5

103

1 2.7× 104 12 17.5 26.6 *
2 1.0× 105 11.3 16.25 17 23
3 4.3× 105 12.88 13.67 14.5 13
4 1.7× 106 6.48 * * *

105

1 2.7× 104 1.78 2.16 1.75 1.2
2 1.0× 105 1.6 1.3 1.16 1.07
3 4.3× 105 1.78 1.17 1.05 1
4 1.7× 106 1.31 1.13 1.03 1

Table 5.9: Average number of Krylov iterations per Newton step as ε decreases for
Problem (Q2) with k = 2, Pe = 10, θH = 10, Br = 0. The symbol * means that the

maximum permitted number of nonlinear iterations was reached.

here show no unyielded regions in the transition zone where the temperature field

varies with the mean flow direction, which is the expected behaviour [VWA05].
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(a) Temperature.

(b) Magnitude of the symmetric velocity gradient.

Figure 5.5: Temperature field and yielded regions for the Bingham flow on a cooling
channel (Problem (Q1)), with Pe = 10, θH = 10, Br = 0.1.

(a) Temperature.

(b) Magnitude of the symmetric velocity gradient.

Figure 5.6: Temperature field and yielded regions for Bingham flow on a cooling
channel (Problem (Q2)), with Pe = 10, θH = 10, Br = 0.
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Chapter 6

Conclusions and Future Work

In this thesis we analysed several numerical schemes for the approximation of im-

plicitly constituted incompressible flows, with a particular emphasis on formulations

including the shear stress SSS as one of the variables.

The first part of the thesis focused on systems where the effects of the temperature

were neglected. After introducing the notation and some technical tools in Chapter

2, we presented a finite element formulation for the unsteady system where the con-

stitutive relation is given by a maximal monotone r-graph A. Subsequently, inspired

by the works [DKS13, ST19], (weak) convergence of the sequence of numerical ap-

proximations to a weak solution of the system was established. The numerical scheme

involved three different levels of approximation: k → ∞, (n,m) → ∞, and l → ∞,

corresponding to a regularisation of the monotone graph, the time and space discreti-

sation, and a penalty term, respectively. Crucial in the analysis were a proper choice

of finite element spaces (e.g. the stress and velocity spaces must satisfy an appropriate

inf-sup condition), and the application of a Lipschitz truncation argument, in order

to identify the constitutive relation in the optimal range r > 2d
d+2

. Very importantly,

numerical experiments showed that the formulation we studied exhibits the optimal

rates of convergence in the particular cases where these are known (Section 3.2.1). In

addition, numerical experiments also show that the penalty term seemingly provides

no benefit in practice (Section 3.2.2).

A possibility for future research would be to extend the discrete Lipschitz trun-

cation introduced in [DKS13] to the transient setting; this would allow one to carry

out the approximation using a single limit, and to avoid the use of a penalty term.

We also observed that in the simulations it is possible to use directly the constitu-

tive relation in the form GGG(SSS,DDD) = 0. It might be worth investigating in the future

whether a different characterisation of the monotone graph A could allow one to go

through the analysis without demanding the use of a selection.
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Knowing that our discretisation was convergent, we set out in Chapter 4 to find an

efficient way to perform the simulations. Following the work of Benzi and Olshanskii

[BO06], and Farrell, Mitchell and Wechsung [FMW19, FMSW20a], we introduced an

augmented Lagrangian preconditioner for the steady system, based on a formulation

employing the Scott–Vogelius element for the velocity and pressure. Since the ad-

dition of the augmented Lagrangian term allows one to have an excellent control of

the Schur complement, the main effort was devoted to the development of a mono-

lithic multigrid solver for the stress-velocity block. Thanks to results by Schöberl

[Sch99a, Sch99b], it is known that (for symmetric and positive definite systems) in

order to obtain a robust multigrid operator, a robust relaxation scheme and robust

transfer operators are essential. In this work this was achieved by performing a patch-

wise relaxation that captures the kernel of the divergence and by making sure that

the transfer operators map divergence-free velocities to almost divergence-free veloc-

ities; the transfer operators for the stress were based on a supermesh projection. The

resulting preconditioner showed remarkable robustness properties with respect with

the rheological parameters. Despite this, there is still much to be understood; for

instance, the current theory for robust subspace decompositions applies only to sym-

metric and positive systems, and it would be a worthwhile and challenging pursuit to

extend it to the non-symmetric and indefinite case.

In Chapter 5 we extended the results from previous chapters to the anisothermal

setting, where the constitutive relation is defined by the 2-graph parametrised by

the temperature introduced in [MZ18]. For the unsteady system we considered an

approximation scheme consisting of four different levels: m → ∞, n → ∞, l → ∞,

and k →∞, corresponding to the time discretisation and Galerkin limit for the tem-

perature, the space discretisation for the rest of the variables, the quasi-compressible

approximation, and a regularisation of the convective term and constitutive relation,

respectively. The proof of this convergence result owes its technical nature to the fact

that the viscous dissipation term SSS :DDD(u) is included in the energy equation. We then

considered a setting in which the convergence proof could be significantly simplified:

the steady Oberbeck–Boussinesq approximation neglecting viscous dissipation; in that

case the approximation scheme only requires the use of a single limiting procedure.

The augmented Lagrangian preconditioner of Chapter 4 was then extended to this

system, and performed well on the Navier–Stokes and power-law models, including

the viscous heating, and temperature-dependent viscosity and heat conductivity. The

convergence result is based on a localised Minty lemma that is tailored to a specific
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2-graph, and it might be worth looking in the future for an extension to more general

r-graphs.

The preconditioners presented in this thesis are computationally expensive, espe-

cially in 3D, and it will be the subject of future research to try to find ways to reduce

the cost. A feasible alternative could be the use of discretisations based on H(div)–

L2-type elements for the velocity and pressure, since in that case the relaxation can

employ smaller patches. The development of a preconditioner based on these ideas for

discretisations of the transient problem involving high order time-stepping techniques

could also have potentially a big impact in applications. We will now mention a few

other possible extensions of the work contained in this thesis that will form the basis

of future research.

Non-monotone constitutive relations

All the constitutive relations considered in this thesis were required to satisfy a mono-

tonicity condition, because in this setting there are more tools available for the iden-

tification of nonlinear limits (e.g. Minty’s lemma). However, in some applications

it is possible to find material responses that follow an S-shape curve in the |DDD|-|SSS|
plane, and are thus non-monotone (see e.g. [BHMP97, DF04, FOG+12]). If one fol-

lows the traditional approach of trying to employ a constitutive relation of the kind

SSS = S(DDD), then the resulting function is necessarily multi-valued, which could lead

to many technical complications. In contrast, the framework of implicitly constituted

fluids can very naturally capture this behaviour.

An example of a constitutive relation that can model this type of response was

introduced by Le Roux and Rajagopal in [LRR13], and is given by the expression

DDD = D(SSS) :=
[
a(1 + b|SSS|2)

q−2
2 + c

]
SSS, (6.1)

where a, b, c are positive constants and q is a real number; when q < 1 the relation (6.1)

is in general non-monotone (see [LRR13] for details). An advantage of the relation

(6.1) is that it can be shown to be thermodynamically consistent [JP18]. Although

there could be multiple states of the shear stress SSS corresponding to just one value

of the symmetric velocity gradient DDD, potentially leading to some ambiguity, it seems

that when solved as a transient problem no ambiguity arises and the evolution of the

system is well defined, and can be observed to avoid the non-monotone sections of

the constitutive relation.

Even though the existence of weak solutions to the isothermal system supple-

mented with the constitutive relation (6.1) is still an open problem, a numerical
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scheme yielding solutions with the expected behaviour was proposed in [JMPT19].

This numerical scheme is based on a fixed point iteration of 3-field approximation

where the unknowns are the velocity u, the pressure p, and the apparent viscosity

µa, which is defined as:

µa(t,x) :=
1

2

|SSS(t,x)|
|DDD(t,x)| . (6.2)

In the future we wish to investigate whether an SSS-u-p formulation, like the one

analysed in Chapter 3, could provide better approximation properties; it seems espe-

cially well-suited for relations of the form (6.1), since the relation is already written in

terms of the shear stress SSS. Some preliminary computations using such a formulation

seem promising: Figure 6.1 shows the apparent viscosity of a fluid in a channel with

a narrowing, satisfying the relation (6.1), for two different values of the magnitude

of the velocity at the inlet, after one time-step. In the problem with a larger in-

let velocity, an interface is observed to appear, across which the apparent viscosity

increases by five orders of magnitude. This is precisely the expected behaviour of

non-monotone constitutive relations [JMPT19].

(a) Large inlet velocity.

(b) Small inlet velocity.

Figure 6.1: Apparent viscosity of a fluid on a channel with a narrowing, satisfying
the Le Roux–Rajagopal constitutive relation, with a = 1, b = 0.1, c = 10−6 and

q = 0.5.
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Convergence results via weak-strong uniqueness

The concept of weak solution used in the mathematical theory of fluid dynamics

makes it possible to employ many tools of functional analysis to tackle the problem

of existence of solutions, but makes the matter of uniqueness more challenging. For

instance, the uniqueness of the Leray solutions of a Newtonian fluid is a notoriously

difficult open problem (that of an implicitly constituted fluid even more so). In spite

of that, one can obtain useful information from the so-called weak-strong uniqueness

results, that guarantee that a weak and a strong solution, emanating from the same

initial condition, will coincide as long as the latter exists. Weak-strong uniqueness

results are useful in the analysis of singular limits and stability of stationary states

[SR09, BFN18], for instance, and have been obtained in different contexts (see e.g.

[FN12, DST12, LT13, AFN19a]). An example of such a result for the incompressible

Navier–Stokes system was established by Prodi and Serrin [Pro59, Ser62].

As for incompressible implicitly constituted fluids, the only weak-strong unique-

ness result available has been obtained by Abbatiello and Feireisl [AF20]. This

result is striking in that weak-strong uniqueness is shown to hold even when us-

ing a rather weakened notion of solution: the solution is only required to be such

that u ∈ Cw([0, T ];L2
div(Ω)d), DDD(u) ∈ M(Q;Rd×d

sym) ∩ L∞(0, T ;W−1,2(Ω)d×d), and

SSS ∈ L1
sym(Q)d×d satisfy in the sense of distributions the following system, for any

τ ∈ (0, T ):

∂tu+ div(u⊗ u) +∇p = divSSS− divRu,
divu = 0,

1

2

∫
Ω

|u(τ, ·)|2 +

∫
Ω

d
1

2
tr[Ru](τ) +

∫ τ

0

∫
Ω

[F (DDD(u)) + F ∗(SSS)] ≤ 1

2

∫
Ω

|u0|2,

where u0 ∈ L2
div(Ω)d is the initial velocity,Ru ∈ L∞(0, T ;M(Ω;Rd×d

sym)) is the Reynolds

stress capturing possible concentrations of the convective term, and F : Rd×d
sym → R is

a convex function defining the constitutive relation via SSS :DDD(u) = F (DDD(u)) + F ∗(SSS).

This is called a dissipative weak solution; note that this concept of solution does not

require the constitutive relation to be satisfied in any pointwise sense.

If a sequence of numerical approximations can be shown to generate a dissipative

weak solution (in particular the energy inequality must hold), then it will converge

strongly to the (uniquely defined) strong solution, as long as it exists. The generality

of the framework of implicitly constituted fluids gives a very small hope of obtaining
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convergence results through error estimates, and thus makes this approach more at-

tractive. We note that this strategy has been applied to prove convergence of finite

volume schemes to solutions of the compressible Navier–Stokes system [FLMMS19].

An important application of this approach would be a convergence result related to

the transient anisothermal system studied in Chapter 5. The proof of Theorem 5.1.5

involves the use of a quasi-compressibility approximation and explicitly avoids the

use of no-slip boundary conditions for the velocity, both of which involve restrictions

that do not seem to be necessary when performing simulations. To our knowledge,

there are no convergence results available anywhere in the literature that take into

account the viscous dissipation term SSS :DDD(u) and allow no-slip boundary conditions,

and we wish to investigate whether the approach based on weak-strong uniqueness

can fill this gap.

Flows with activation parameters

In the mathematical description of fluid mechanics it is very common to assume that

fluids stick to solid walls. For internal flows (i.e. for which u · n = 0), this amounts

to saying that the tangential component of the velocity uτ vanishes at the boundary,

leading to the no-slip condition u|∂Ω = 0. However, in practice there are many

indications that this is an approximation that only works well in certain regimes,

and that in general some slip at the boundary takes place (see [HL03, Den01, Den04]

and the references therein). The transition between these two types of responses

can be conveniently described by means of the so-called threshold-slip (or stick-slip)

boundary condition: −s = σ1
uτ
|uτ | + γuτ , if |s| > σ1,

uτ = 0, if |s| ≤ σ1,
on ∂Ω, (6.3)

where s := (SSSn)τ and σ1, γ ≥ 0. The relation (6.3) describes a fluid that sticks to

the wall before activation, and slips after activation (if σ1 = 0 it reduces to Navier’s

slip condition). The expression (6.3) can be naturally restated in terms of an implicit

function

h(s,uτ ) = 0 on ∂Ω, (6.4)

and is amenable to analysis with the techniques used to study implicitly constituted

fluids. The first large data existence result for a system satisfying (6.4) was obtained

in [BM17, BM16] (see also [BMR20]). Extensions that incorporate additional physical
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responses can be found in [BM19, MZ18]; in particular, the work [MZ18] allowed some

temperature dependence by working with the boundary condition

h(s,uτ , θ) := γ(θ)
(|uτ | − σ2(θ))+

|uτ |
uτ −

(|s| − σ1(θ))+

|s| s = 0 on ∂Ω, (6.5)

where γ, σ1, σ2 are continuous functions of the temperature θ, satisfying certain com-

patibility conditions.

Besides representing physical behaviour more accurately, activated boundary con-

ditions of the kind (6.3) have the advantage that they allow one to obtain an integrable

pressure, which can be crucial in the analysis (c.f. Theorem 5.1.5). The numerical

analysis of systems subject to boundary conditions of the form (6.4) or (6.5) is still

very underdeveloped and there are no convergence results to date; this is something

that we would like to address in future work. In addition, on the computational

side, it is not obvious what is the best way to implement such boundary conditions

accurately and efficiently; e.g. it might be worth investigating whether an approach

based on Nitsche’s method can be advantageous.

In this thesis we encountered some examples of fluids with activation parame-

ters, for which some kind of regularisation was applied in order to be able to use

Newton’s method (e.g. a Bercovier–Engelman-like regularisation for Bingham fluids

in Section 5.3.2, and a Papanastasiou-like regularisation for activated Euler fluids in

Section 3.2.3). While useful to obtain general qualitative features of the flow, and

easier to implement, the regularisation approach is not very satisfactory when locat-

ing the exact position of the yield surfaces [PFM09, SW17]. A popular alternative

to regularisation methods that deals better with this issue is the so-called augmented

Lagrangian method [GW10, Sar10]. For a Bingham fluid (neglecting the convective

term), the idea behind the method is to reformulate as a minimisation problem of the

following non-smooth functional, defined for all divergence-free v ∈ H1
0 (Ω)d:

I(v) :=

∫
Ω

ν|DDD(v)|2 + τ

∫
Ω

|DDD(v)| −
∫

Ω

f · v, (6.6)

where ν > 0 is the viscosity, τ ≥ 0 is the yield stress, f ∈ L2(Ω)d is the body force.

Introducing a new variable τ := DDD(v), and treating this definition as a constraint,

then (after handling the divergence-free constraint with a Lagrange multiplier as well)

one sees the minimisation problem has a saddle point formulation that can be written

in terms of the Lagrangian

L((v, τ ), (p,σ)) :=

∫
Ω

ν|τ |2 +

∫
Ω

τ |τ | −
∫

Ω

f · v −
∫

Ω

p div v

+
1

2

∫
Ω

σ : (DDD(v)− τ ) +
α

2

∫
Ω

|DDD(v)− τ |2,
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where p and σ take the roles of the Lagrange multipliers, and α ≥ 0 is an aug-

mentation parameter. The saddle point problem is then handled with an Uzawa-like

iteration. In the future we would like to develop a similar algorithm for the numerical

approximation of flow with activated Euler rheology and explore applications to the

simulation of boundary layers.

One of the drawbacks of the augmented Lagrangian method is that convergence

can be very slow; the search for ways to accelerate the algorithm is still a very ac-

tive area of research, see e.g. [DMGT18, TMGP16]. At the same time, there have

been other efforts to keep the potentially faster convergence of Newton’s method

when approximating the non-regularised problem, by slightly reformulating the sys-

tem and applying a solver related to the regularised problem as a preconditioner

[AHOV11, Sar16]. It might be worth investigating in the future whether ideas from

the theory of augmented Lagrangian preconditioners and robust multigrid can be ap-

plied to make the aforementioned algorithms more efficient and scalable, e.g. by either

applying them to the Newtonian solves occurring in every iteration of the algorithm

described in [DMGT18], or by improving the preconditioner based on regularisation

from [AHOV11, Sar16].

Additional physical responses

While the constitutive laws of the form GGG(SSS,DDD) = 0 considered in this work capture

a wide range of models, there are many kinds of physical responses that fall outside

of this framework. We mention just a couple of examples.

All the constitutive relations studied in this thesis were algebraic, i.e. no derivatives

of SSS or DDD were included. This excludes the hugely important family of constitutive

relations that describe viscoelastic fluids, which as the name suggests, are fluids that

can store energy in the form of strain energy (elastic behaviour), and at the same

time dissipate energy (viscous behaviour); see.g. [BAH87] for an overview of several

models that describe viscoelastic fluids. One of the most popular models used in the

literature is the Oldroyd-B model, for which the constitutive relation can be written

as:

SSS +
µ1

G

O

SSS = 2(µ1 + µ2)DDD + 2
µ1µ2

G

O

DDD, (6.7)

where G > 0, µ1, µ2 ≥ 0, and the symbol
O
τ denotes the upper convected Oldroyd

derivative of τ :
O
τ :=

∂τ

∂t
+ u · ∇τ − (∇u) τ − τ (∇u)> .
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Note that when µ1 = 0, the constitutive relation (6.7) reduces to the Newtonian

model.

The analysis of models such as (6.7) is very challenging because of the hyperbolic

character of the constitutive relation, and the mathematical and numerical analysis of

such systems is still a very active area of research. In recent years, it has become more

clear that the addition of a stress diffusion term ∆SSS is physically justified and can

make the analysis more tractable, see e.g. [BBM20, MPSS18, BB11, EKL89]. A very

interesting research direction for the future would be the analysis of numerical schemes

and the development of preconditioners for systems that take these new developments

into account, while possibly incorporating the non-Newtonian phenomena captured

by the implicit constitutive relations studied in this thesis (e.g. elastoviscoplastic

incorporate in addition a yield-stress [Sar07, CSD+11]).

Another example of fluids with many industrial applications are the so-called elec-

trorheological fluids, which are suspensions whose material properties change dras-

tically when exposed to electric fields [Růž04, HL10]. The constitutive relations in

models describing such fluids therefore have to depend on the electric field E. A

popular form for the constitutive relation describing electrorheological fluids is given

by [RR01]

SSS = S(DDD, E) := µ(E)(κ+ |DDD|2)
p(E)−2

2 DDD, (6.8)

where κ > 0, and µ, p are functions of the electric field; in some cases an E-dependent

yield stress is also included [RPYO03]. As for the numerical analysis of electrorheo-

logical fluids, we are only aware of the works [BBD16, CHP10, Die02]. The fact that

the power-law exponent p is not constant anymore is one of the main difficulties that

arises in the analysis of such systems. A similar difficulty appears in the study of

chemically reacting non-Newtonian fluids, in which the power-law exponent depends

on the concentration c of a chemical, which is a function solving some reaction-

diffusion equation [BP14, KS18, KPS18]. These topics present ample opportunity for

contributions, especially from the point of view of the development of preconditioning

and fast solvers.

These examples are by no means exhaustive, there are many other types of mod-

els for which we think an extension of our work on numerical analysis and precon-

ditioning techniques would be interesting and valuable, such as implicitly consti-

tuted compressible fluids [AFN19b, FKN20], fluids with pressure-dependent viscosity

and/or yield-stress [BMR09, HLS12, JFP06], models taking thixotropy into account

[GW10, WVF09], and some models of turbulence [Lew94, CFC97, BM19], just to

name a few.

143



Bibliography

[ABD84] D. N. Arnold, F. Brezzi, and J. Douglas. PEERS: A new mixed finite

element for plane elasticity. Japan J. Appl. Math., 1(2):347–367, 1984.

[ABG09] A. Attaoui, D. Blanchard, and O. Guibé. Weak-renormalized solution for
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of compressible viscous fluids. ArXiv Preprint: 1912.12896, 2019.

[AG20] J. A. Almonacid and G. N. Gatica. A fully-mixed finite element method for

the n-dimensional Boussinesq problem with temperature-dependent param-

eters. Comput. Methods Appl. Math, 20:187–213, 2020.

144

http://dx.doi.org/10.1007/s10231-019-00917-x


[AHMM03] I. M. Afonso, L. Hes, J. M. Maia, and L. F. Melo. Heat transfer and

rheology of stirred yoghurt during cooling in plate heat exchangers. J. Food

Engineering, 57(2):179–187, 2003.

[AHMS18] R. Aldbaissy, F. Hecht, G. Mansour, and T. Sayah. A full discretisation of

the time-dependent Boussinesq (buoyancy) model with nonlinear viscosity.

Calcolo, 55(4):1–49, 2018.

[AHOV11] A. Aposporidis, E. Haber, M. A. Olshanskii, and A. Veneziani. A mixed

formulation of the Bingham fluid flow problem: Analysis and numerical so-

lution. Comput. Methods Appl. Mech. Eng., 200:2434–2446, 2011.

[Ama94] H. Amann. Stability of the rest state of a viscous incompressible fluid. Arch.

Ration. Mech. Anal., 126(3):231–242, 1994.

[Ama95] H. Amann. Heat-conducting incompressible viscous fluids, pages 231–243.

Navier–Stokes Equations and Related Nonlinear Problems. Plenum Press,

New York, 1995.

[AOS20] A. Allendes, E. Otarola, and A. J. Salgado. The stationary Boussinesq

problem under singular forcing. ArXiv Preprint: 2005:07548, 2020.

[AW02] D. N. Arnold and R. Winther. Mixed finite elements for elasticity. Numer.

Math., 92(3):401–419, 2002.

[BAA+17] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman,

L. Dalcin, V. Eijhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.

McInnes, K. Rupp, S. Smith, B. F. Zampini, H. Zhang, and H. Zhang. PETSc

users manual. Tech. Report ANL–95/11–Revision 3.8, Argonne National

Laboratory, 2017. http://www.mcs.anl.gov/petsc.

[Bac06] C. Bacuta. A unified approach for Uzawa algorithms. SIAM J. Numer.

Anal., 44(6):2633–2649, 2006.

[BAH87] R. B. Bird, R. C. Armstrong, and O. Hassager. Dynamics of Polymeric

Liquids, volume 1: Fluid Mechanics. Wiley-Interscience, 1987.

[Bao02] W. Bao. An economical finite element approximation of generalized Newto-

nian flows. Comput. Methods Appl. Mech. Eng., 191(33):3637–3648, 2002.

145



[BB98] W. Bao and J. W. Barrett. A priori and a posteriori error bounds for a

nonconforming linear finite element approximation of a non-Newtonian flow.

ESAIM: M2AN, 32(7):843–858, 1998.

[BB11] J. Barrett and S. Boyaval. Existence and approximation of a (regularized)

Oldroyd-B model. Math. Models Methods Appl. Sci., 21(9):1783–1837, 2011.

[BBD16] L. C. Berselli, D. Breit, and L. Diening. Convergence analysis for a finite el-

ement approximation of a steady model for electrorheological fluids. Numer.

Math., 132(4):657–689, 2016.

[BBDR12] L. Belenki, L. Berselli, L. Diening, and M. Růžička. On the finite element
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unsteady flows of implicitly constituted incompressible fluids. SIAM J. Math.

Anal., 44(4):2756–2801, 2012. doi:10.1137/110830289.

[BHMP97] P. Boltenhagen, Y. Hu, E. F. Matthys, and D. J. Pine. Observation of

bulk phase separation and coexistence in a sheared micellar solution. Phys.

Rev. Lett., 79:2359–2362, 1997.

[BHW89] H. A. Barnes, J. F. Hutton, and K. Walters. An Introduction to Rheology,

volume 3. Elsevier, 1989.

[Bin22] C. E. Bingham. Fluidity and Plasticity. McGraw–Hill, New York, 1922.

[BKR11] H. Beirão da Veiga, P. Kaplický, and M. Růžička. Boundary regularity of
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[BM19] M. Buĺıček and J. Málek. Large data analysis for Kolmogorov’s two-equation

model of turbulence. Nonlinear Anal. Real World Appl., 50:104–143, 2019.
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[CM97] T. Clopeau and A. Mikelić. Nonstationary flows with viscous heating effects.
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sipative solutions to models of non-Newtonian compressible fluids. ArXiv

Preprint: 2001.03313, 2020.

[FLMMS19] E. Feireisl, M. Lukáčová-Medvid’ová, H. Mizerová, and B. She. Conver-
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[FMS97] J. Frehse, J. Málek, and M. Steinhauer. An existence result for fluids

with shear dependent viscositysteady flows. Nonlinear Anal. Theory Methods

Appl., 30(5):3041–3049, 1997.
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[Hop50] E. Hopf. Über die Anfangswertaufgabe für die hydrodynamischen

Grundgleichungen. Mathematische Nachrichten, 4(1-6):213–231, 1950.

doi:10.1002/mana.3210040121.

[How09] J. S. Howell. Dual-mixed finite element approximation of Stokes and non-

linear Stokes problems using trace-free velocity gradients. J. Comput. Appl.

Math, 231(2):780–792, 2009.

[HR82] J. G. Heywood and R. Rannacher. Finite element approximation of the non-

stationary Navier–Stokes problem I. Regularity of solutions and second-order

error estimates for spatial discretization. SIAM J. Numer. Anal., 19(2):275–

311, 1982.

[HR86] J. G. Heywood and R. Rannacher. Finite element approximation of the

nonstationary Navier–Stokes problem, Part II: Stability of solutions and error

estimates uniform in time. SIAM J. Numer. Anal., 23(4):750–777, 1986.

[HR88] J. G. Heywood and R. Rannacher. Finite element approximation of the non-

stationary Navier–Stokes problem III. Smoothing property and higher order

160

http://dx.doi.org/10.1002/mana.3210040121


error estimates for spatial discretization. SIAM J. Numer. Anal., 25(3):489–

512, 1988.

[HR90] J. G. Heywood and R. Rannacher. Finite-element approximation of the

nonstationary Navier–Stokes problem. Part IV: Error analysis for second-

order time discretization. SIAM J. Numer. Anal., 27(2):353–384, 1990.

[HW13] J. S. Howell and N. J. Walkington. Dual-mixed finite element methods for

the Navier-Stokes equations. ESAIM: M2AN, 47(3):789–805, 2013.

[HY92] T. Hishida and Y. Yamada. Global solutions for the heat convection equa-

tions in an exterior domain. Tokyo J. Math., 15:135–151, 1992.

[JFP06] P. Jop, Y. Forterre, and O. Pouliquen. A constitutive law for dense granular

flows. Nature, 441:727–730, 2006.

[JLM+17] V. John, A. Linke, C. Merdon, M. Neilan, and L. G. Rebholz. On the

Divergence Constraint in Mixed Finite Element Methods for Incompressible

Flows. SIAM Rev., 59(3):492–544, 2017. doi:10.1137/15M1047696.
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[KR16] Y. Kagei and M. Růžička. The Oberbeck–Boussinesq approximation as a

constitutive limit. Continuum Mech. Thermodyn., 28(5):1411–1419, 2016.
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[Lew94] R. Lewandowski. Les équations de Stokes et de Navier–Stokes couplées

avec l’equation de l’energie cinétique turbulente. C. R. Acad. Sci. Paris,

318(12):1097–1102, 1994.

[LF09] L. H. Luu and Y. Forterre. Drop impact of yield-stress fluids. J. Fluid Mech.,

632:301–327, 2009.

[Lin14] A. Linke. On the role of the Helmholtz decomposition in mixed methods for

incompressible flows and a new variational crime. Comput. Methods Appl.

Mech. Engrg., 268:782–800, 2014.
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[PP15] T. Perlácová and V. Pr̊uša. Tensorial implicit constitutive relations in me-

chanics of incompressible non-Newtonian fluids. J. Non-Newt. Fluid Mech.,

216:13–21, 2015.
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