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Abstract

The stability of optimal solutions is a central issue in control theory. In this thesis we study sufficient condi-
tions for various notions of stability in the context of optimal control. Under some structural assumptions,
an optimal control problem can be associated with a set-valued mapping, the so-called optimality map-
ping, which represents the first-order necessary conditions of the problem. The concept of metric regularity
abstracts the different notions of stability into properties of the optimality mapping. This thesis studies
enhanced versions of the known metric regularity properties and their interaction with optimal control prob-
lems; we also illustrate the role of stability with some applications in numerical analysis. This work is
cumulative; it consists of an introduction and four published or accepted journal articles. The introduction
is intended as a complement to the papers, providing adequate preliminaries as well as a summary of the
results obtained in the papers.

The first paper studies a stronger version of the so-called strong metric regularity property in optimal
control of ordinary differential equations. This notion allows to study stronger notions of stability than the
previous ones in the literature, and is suitable for a class of problems (affine with respect to the control
variable) for which the standard assumptions do not hold. An example is presented as well as an application
to numerical analysis, namely the so-called uniform Euler discretization method. The second paper goes
further in the error analysis of numerical methods for nonlinear optimal control problems and studies the
accuracy, by means of the metric subregularity property, of the so-called Model Predictive Control (MPC)
algorithm, a well-established and widely approach for generating feedback control strategy. Finally, the third
paper and the fourth one are both dedicated to the stability analysis of optimal control problems constrained
by elliptic partial differential equations. The third one studies in a general framework the subregularity
property, focusing on sufficient conditions and applications to the stability of optimal solutions. In the
fourth one, new assumptions are introduced in the literature in form of second order sufficient conditions
for optimality; moreover, it is proved that this assumptions are enough for stability of the optimal states.
Though the subregularity property is not explicitly mentioned in the last paper, all of the methods used
there come from the understanding of it and its corresponding translation to the stability analysis of the
optimal states.
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Kurzfassung

Die Stabilität von optimalen Lösungen ist ein zentrales Thema in der Kontrolltheorie. In dieser Thesis unter-
suchen wir hinreichende Bedingungen für verschiedene Stabilitätsbegriffe im Kontext optimaler Kontrollethe-
orie. Unter einigen strukturellen Annahmen kann ein Optimalsteuerungsproblem mit einer mengenwertigen
Abbildung, der sogenannten Optimalitätsabbildung, assoziiert werden, die die notwendigen Bedingungen
erster Ordnung des Problems darstellt. Das Konzept der metrischen Regularität abstrahiert die verschiede-
nen Stabilitätsbegriffe in Eigenschaften der Optimalitätsabbildung. Diese Dissertation untersucht erweiterte
Versionen der bekannten metrischen Regularitätseigenschaften und deren Wechselwirkung mit Optimals-
teuerungsproblemen; Wir veranschaulichen auch die Rolle der Stabilität mit einigen Anwendungen in der
numerischen Analyse. Diese Arbeit ist kumulativ; Es besteht aus einer Einleitung und vier Artikeln. Die
Einführung ist als Ergänzung zu den Artikeln gedacht, indem sie sowohl eine angemessene Einleitung als
auch eine Zusammenfassung der in den Artikeln erzielten Ergebnisse liefert.

Die erste Arbeit [14] untersucht eine stärkere Version der sogenannten strong metric regularity bei der
optimalen Kontrolle von gewöhnlichen Differentialgleichungen. Dieser Begriff ermöglicht es, stärkere Sta-
bilitätsbegriffe als die vorherigen in der Literatur zu untersuchen, und eignet sich für eine Klasse von
Problemen (affine), für die die Standardannahmen nicht gelten. Ein Beispiel wird vorgestellt sowie eine
Anwendung auf die numerische Analysis, das sogenannte uniform Euler discretization scheme. Die zweite
Arbeit [1] geht weiter in die Fehleranalyse numerischer Verfahren für nichtlineare Optimalsteuerungsprobleme
und untersucht die Genauigkeit mittels der metrischen Subregularitätseigenschaft (eine erweiterte Version)
der sogenannten Model Predictive Control (MPC )-Algorithmus, eine gut etablierte und weit verbreitete
Feedback-Control-Strategie. Die dritte [13] und die vierte Arbeit [12] schließlich widmen sich beide der
Stabilitätsanalyse von Optimalsteuerungsproblemen, die durch elliptische partielle Differentialgleichungen
eingeschränkt sind. Die dritte untersucht in einem allgemeinen Rahmen die Subregularitätseigenschaft,
wobei der Schwerpunkt auf ihren hinreichenden Bedingungen und ihren Anwendungen auf die Stabilität
von Kontrolllösungen liegt. In der vierten werden neue Annahmen in Form von hinreichenden Bedingungen
zweiter Ordnung für Optimalität in die Literatur eingeführt; außerdem ist bewiesen, dass diese Annahmen
für die Stabilität optimaler Zustände hinreichend sind. Obwohl die Subregularitätseigenschaft im letzten
Artikel nicht explizit erwähnt wird, stammen alle dort verwendeten Methoden aus ihrem Verständnis und
ihrer entsprechenden Übersetzung in die Stabilitätsanalyse der optimalen Zustände.
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Chapter 1

Introduction

One of the central issues in optimization is the error analysis of methods, algorithms and techniques applied
to the calculation of optimal solutions. To get a quick picture of what this work is about, suppose that we
want to solve a given problem, but it is hard to do so. We might resort to solve “approximate” problems,
simplified version perhaps. If the approximations to the problem are consistent with the structure of the
original problem, one can expect that solutions of the approximate problems “converge” (in some sense) to
the solution of the original problem. Of course, difficulties may arise, such as that the solutions may not
be unique, or they may not even exist, etc. It is here when the notion of stability comes to mind, it is
then clear that this should be translated into a mathematical framework. The notion of continuity can, in
many cases, deal with the qualitative aspects of problems re-cast in terms of functions. However, in many
applications, a quantitative analysis is needed to understand the convergence relation of the approximate
problems and the required computational efforts. This quantitative analysis of stability can be abstracted
into properties of (set-valued) functions; the so-called metric regularity properties. Under some assumptions,
an optimal control problem can be associated with a set-valued mapping, the so-called optimality mapping,
which represents the first-order necessary conditions of the problem. Instead of investigating regularity
properties of an optimal control problem, we do this for the optimality mapping, which takes the form of a
(generalized) equation.

Metric regularity theory lies in the very heart of variational analysis, it can be consider a relatively new
discipline since it started in the 80’s. It arose largely out of the needs of modern optimization theory, in
which phenomena such as non-differentiability and set-valued mappings naturally appear. As we will see
along the introduction, the concept of metric regularity connects all the four papers in this thesis.

The chronological order of the papers is the following.

❼ Domı́nguez Corella, Alberto and Quincampoix, Marc and Veliov, Vladimir M.: Strong bi-metric regu-
larity in affine optimal control problems. Pure Appl. Funct. Anal., 6(6):1119-1137,2021

❼ Angelov, Georgi and Domı́nguez Corella, Alberto and Veliov, Vladimir M.: On the accuracy of the
model predictive control method. SIAM Journal on Control and Optimization, 60(4):2469-2487, 2022.

❼ Domı́nguez Corella, Alberto and Jork, Nicolai and Veliov, Vladimir M. Stability in affine optimal
control problems constrained by semilinear elliptic partial differential equations. To appear in ESAIM.
Control, Optimisation and Calculus of Variations.

❼ Casas, Eduardo and Domı́nguez Corella, Alberto and Jork, Nicolai. New assumptions for stability
analysis in elliptic optimal control problems. To appear in SIAM Journal of Control and Optimization.

The first paper [14] studies a stronger version of the so-called strong metric regularity property in optimal
control of ordinary differential equations. This notion allows to study stronger notions of stability than the
previous ones in the literature, and is suitable for a class of problems (affine ones) for which the standard
assumptions do not hold. An example is presented as well as an application to numerical analysis, the
so-called uniform Euler discretization method. The second paper [1] goes further in the error analysis of
numerical methods for nonlinear optimal control problems and studies the accuracy, by means of the metric
subregularity property (an enhanced version), of the so-called Model Predictive Control (MPC) algorithm,
a well-established and widely used feedback control strategy. Finally, the third paper [13] and the fourth
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14 CHAPTER 1. INTRODUCTION

one [12] are both dedicated to the stability analysis of optimal control problems constrained by elliptic
partial differential equations. The third one studies in a general framework the subregularity property,
focusing in its sufficient conditions and its applications to the stability of control solutions. In the fourth
one, new assumptions are introduced in the literature in form of second order sufficient conditions for
optimality; moreover, it is proved that this assumptions are enough for stability of optimal states. Though
the subregularity property is not explicitly mentioned in the paper, all of the methods used there come
from the understanding of it and its corresponding translation to the stability analysis of the optimal states.
Another important feature of the problem studied in [12] is that we consider a nonmonote non-coercive
elliptic equation of the type studied in [4, 5].

This introduction intends to be complementary to the main text (the papers) as well a brief summary
of the main results. We start motivating and reviewing some of the metric regularity properties in the
literature. After that, we will introduce the so-called Lagrange problem in nonlinear optimal control of
ordinary differential equations. With the adequate optimal control preliminaries at hand, we will proceed
to introduce the Model Predictive Control (MPC) method (an algorithm to compute feedback solutions of
optimal control problems). One of the main achievements of this doctoral work was showing that convergence
of the MPC method can be proved by means of themetric subregularity property (to be introduced in the next
section). Finally, we will comment on optimal control problems constrained by elliptic partial differential
equations, and the pertaining results in this thesis. The contributions of the author to each paper are
described at the beginning of each chapter.

1.1 Metric regularity properties

Metric regularity has become one of the central concepts of variational analysis in the last 2-3 decades. The
roots of this concept go back to a set of fundamental notions of regularity in classical analysis, which are
reflected in results such as the Implicit Function Theorem, Banach’s Open Mapping Theorem, the theorems
of Lyusternik and Graves, and Sard’s Theorem; see [22] for a broader discussion.

1.1.1 Motivation

In order to motivate the subsequent definitions, let as begin talking about optimization. A general optimiza-
tion problem can be described as a search problematic; one looks for an element of a set C that minimizes
(or maximizes1) a real-valued function f : C → R. More precisely, an element x∗ ∈ C minimizes f over C if

f(x∗) ≤ f(x) for every x ∈ C.
This problem is usually written as

min
x∈C

f(x). (1.1)

The function f is sometimes called the objective, the cost or the performance index, depending on the
circumstance and the nature of the problem. Let us get now into more technical details. In the presence
of a topology on C, one can talk about local minima. An element x∗ ∈ C si a local minimum of f over C if
there exists a neighborhood O of x∗ such that

f(x∗) ≤ f(x) for every x ∈ O ⊂ C.
Suppose now that C is a convex subset of a normed linear space X, and that C is endowed with the relative
topology induced by the norm on X. If the directional derivatives of f exist, then the first order necessary
condition for a local minimizer x̄ ∈ C is

⟨∇f(x̄), x− x̄⟩ ≥ 0 ∀x ∈ C. (1.2)

This can be readily seen from the definition of directional derivative. Let X∗ denote the topological dual of
X. Defining

NC(x) := {z ∈ X∗ : ⟨z, y − x⟩ ≤ 0 ∀y ∈ C},
1We restrict ourselves to talk only about minimization problems. It is well known that such problems can be stated in an

equivalent way as minimization ones, see, e.g., [16, p. 11]
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we can rewrite the first order necessary condition as the inclusion (generalized equation)

0 ∈ ∇f(x̄) +NC(x̄). (1.3)

Up to this point, it might seem that going from (1.2) to (1.3) is a mere phenomenon of semantics; but as
we will soon see, it leads to some interpretations and results that can be later applied to problem (1.1). For
example, consider the family of perturbed problems {Pξ}ξ∈X∗ given by

min
x∈C

f(x)− ξx. (1.4)

Given ξ ∈ X∗, the first order necessary condition for a minimizer x ∈ C of Pξ is

ξ ∈ ∇f(x) +NC(x). (1.5)

Thus, the behavior of the solutions of each problem Pξ can be analyzed by means of the perturbed inclusions
(1.5). In the next subsection, we will review some of the basic definitions in metric regularity theory, this
will enable us to give better a better description of dependence of solutions of (1.5) on the perturbations.

One of the most important cases of generalized equations are the ones induced by differential variational
inequalities, see [2, 9]. These variational inequalities pop up naturally in optimal control. A broad discussion
of the importance of these variational inequalities as models of optimization problems can be found in [28].
These are objects of the type  0 = Dy − g(x, y)

0 ∈ h(x, y) +NC(y),

where D means differentiation in a space of functions Y. Such a differential variational inequality, accompa-
nied with side conditions for Y, typically arises from the optimality conditions in optimal control theory.

1.1.2 Some definitions of metric regularity

In this subsection, we review some of the basic definitions that will be used in subsequent sections. Let
(M1, dM1

) and (M2, dM2
) be metric spaces, and Φ : M1 ↠ M2 be a set-valued mapping.

Consider the generalized equation

0 ∈ Φ(p). (1.6)

A solution of (1.6) is an element p̄ ∈ M1 such that 0 ∈ Φ(p̄). Given a metric space (M,dM ), the closed ball
centered at p ∈ M of radius α > 0 is denoted by BM (p, α).

Definition 1.1.1. Let p̄ ∈ M1 with 0 ∈ Φ(p̄). The mapping Φ is said to be strongly (metrically) regular
at p̄ if there exist positive numbers α, β and κ such that for each q ∈ BM2

(0, β) there exists a unique
p(q) ∈ BM1

(p̄, α) satisfying q ∈ Φ
�
p(q)

�
, and

dM1

�
p(q1), p(q2)

� ≤ κdM2
(q1, q2)

for all q1, q2 ∈ BM2
(0, β).

One of the simplest cases of strong regularity is that of a linear operator from a euclidean space onto
itself; it is strongly regular if, and only if, its associated matrix is invertible. The notion in Definition 1.1.1
was introduced in [37] by Robinson in the 80’s, see also [18, Section 3G].

The strong regularity property has many useful applications. One of the most popular is the analysis
of convergence of the Newton method for generalized equations; see [18, Section 6C]. This analysis relies
on an adequate contraction mapping principle for set-valued mappings, see [18, 5E.3], which in turn relies
on the fact that the strong regularity property is stable with respect to adequate perturbations (Lipschitz
functions); this is the so-called Lyusternik-Graves Theorem, see e.g., [18, Theorem 2B.1] or [15, Theorem 1].

Nevertheless, the metric regularity property is not enough to cope with some of the applications, hence
the following definition was introduced in [36, Introduction], where a detailed explanation of the reasons
for appropriateness of this concept is given. Let E2 be a subset of M2 and dE2

a metric in E2 such that
(E2, dE2) is continuously embedded in (M2, dM2) and dM2 ≤ cdE2 for some c > 0.
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Definition 1.1.2. Let p̄ ∈ M1 with 0 ∈ Φ(p̄). The mapping Φ is said to be strongly bi-metrically regular
at p̄ if there exist positive numbers α, β and κ such that for each q ∈ BE2

(0, β) there exists a unique
p(q) ∈ BM1

(p̄, α) satisfying q ∈ Φ
�
p(q)

�
, and

dM1

�
p(q1), p(q2)

� ≤ κdM2
(q1, q2)

for all q1, q2 ∈ BE2
(0, β).

A Lyusternik-Graves type theorem for the bi-metric regularity property was proved in [32], where also
a study of the Newton method with this property was carried out, involving at each step linear quadratic
optimal control problems.

One can weaken the concept of regularity to include more features, such as two metrics in the domain
or Hölder estimates instead of Lipschitz ones, etc. We present now an extension of the definition of metric
subregularity, see [1, 10].

Let E1 be a subset of M1 and dE1
a metric in E1 such that (E1, dE1

) is continuously embedded in
(M1, dM1

) and dE1
≤ cdM1

for some c > 0.

Definition 1.1.3. Let p̄ ∈ E1 with 0 ∈ Φ(p̄). The mapping Φ is said to be strongly (metrically) ι-subregular
at p̄ if there exist positive numbers α and κ such that

dE1
(p, p̄) ≤ κdM2

(q, 0)ι (1.7)

for all q ∈ M2 and p ∈ E1 ∩ BM1(p, α) satisfying q ∈ Φ(p). If ι = 1, we simply say that Φ is strongly
subregular at p̄.

Results in the spirit of Lyusternik-Graves Theorem and analysis of numerical methods, such as the
Newton one, have also been studied in the context of the subregularity property; see [10].

1.2 Optimal control problems for ODE’s

In this subsection, we introduce an optimal control problem in Lagrange form. This is not a restrictions since
the general Bolza problem can be transformed into a Lagrange one. We talk briefly on the notation before
introducing the control problem. The elements of Rn are seen as column vectors. The inner products and
the norms in the euclidean spaces are denoted by ⟨·, ·⟩ and | · |, respectively. Given a function ψ : Rs → Rr

of variable z, we denote by ψz(z) its derivative at a point z ∈ Rs, represented by an r × s-matrix. For a
function ψ : Rs+q → R of the variables z and v, ψzv(z, v) denotes its mixed second derivative at a point (z, v),
represented by a (s × q)-matrix. The space Lk ([a, b];Rr), k ∈ {1,∞}, of functions ψ : [a, b] → Rr has the
usual meaning. As usual, W 1,k([a, b];Rr) denotes the space of absolutely continuous functions ψ : [a, b] → Rr

for which the first derivative belongs to Lk([a, b];Rr). We abbreviate sometimes W 1,1 := W 1,1([0, T ];Rn),
L1 := L1 ([0, T ];Rm).

1.2.1 The control model

Let T > 0 and y0 ∈ Rn. The space Y :=
�
y ∈ W 1,∞�

0, T ;Rn
�
: y(0) = y0

�
is interpreted as the state space,

and U ⊂ L1
�
0, T ;Rm

�
as the control set. Suppose that for each u ∈ U there exists a unique function yu ∈ Y

such that

ẏu = f(·, yu, u), (1.8)

where f : R× Rn × Rm → Rn is a given function. Equation (1.8) represents the evolution of the system in
time. The optimal control problem is the following:

min
u∈U

�� T

0

g(t, yu(t), u(t)) dt
	
, (1.9)

where g : R × Rn × Rm → R is a given real-valued function. We make the following assumption for the
optimal control problem (1.8)-(1.9).

Assumption 1.2.1. The following statements hold.
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(a) The functions f and g are twice differentiable, and these functions, their first derivatives and their
second derivatives are Lipschitz.

(b) There exists a closed convex set U ⊂ Rm such that

U =
�
u ∈ L∞�

0, T ;Rm
�
: u(t) ∈ U for a.e. t ∈ [0, T ]

�
.

Assumption 1.2.1 ensures that the subsequent mathematical objects are well defined. We define the
objective functional J : U → R by

J (u) :=

� T

0

g(t, yu(t), u(t)) dt.

Definition 1.2.2. We say that ū ∈ U is a weak local minimizer of the optimal control problem (1.8)-(1.9)
if there exists ε0 > 0 such that J (ū) ≤ J (u) for all u ∈ U ∩ BL1(ū, ε0).

We define the costate space by

Λ :=
�
λ ∈ W 1,∞�

0, T ;Rn
�
: λ(T ) = 0

�
,

and the Hamiltonian H : R× Rn × Rn × Rm → R by

H(t, y, λ, u) := g(t, y, u) + ⟨λ, f(t, y, u)⟩.

The first order necessary conditions can be summarized in the next theorem.

Theorem 1.2.3. Let Assumption 1.2.1 hold. If ū ∈ U is a local minimizer of problem (1.8)-(1.9), then
there exists a unique λū ∈ Λ such that

0 = −ẏū + f(·, yū, ū),

0 = λ̇ū +Hy(·, yū, λū, ū)
⊤

0 ∈ Hu(·, yū, λū, ū)
⊤ +NU (ū),

(1.10)

where the (restricted) normal cone at u to the set U is given by

NU (u) =

�
σ ∈ L∞�

0, T ;Rm
�
:

� T

0

⟨σ(t), w(t)− u(t)⟩ dt ≤ 0 ∀w ∈ U


.

We now proceed to re-state the system of first order necessary conditions (1.10) as generalized equation.
Consider the sets Mr := Y × Λ× U , and

Zr := Lr
�
0, T ;Rn

�× Lr
�
0, T ;Rn

�× L∞�
0, T ;Rm

�
, r ∈ {1, 2}. (1.11)

Let dMr
and dZr

be the shift-invariant metrics in Mr and Zr, respectively, given by

dMr (y, p, u) := |y|W 1,r + |λ|W 1,r + |u|Lr ,

dZr (ξ, η, ρ) := |ξ|Lr + |η|Lr + |ρ|Ls ,

where 1/r + 1/s = 1. The optimality mapping is defined as the set-valued mapping Φ : Mr ↠ Zr given by

Φ(y, λ, u) =

 −ẏ + f(·, y, u)
λ̇+Hy(·, y, λ, u)⊤

Hu(·, y, λ, u)⊤ +NU (u)

 . (1.12)

Then the optimality system (1.10) can be recast as the inclusion

0 ∈ Φ(y, λ, u). (1.13)
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We can now employ the notions of regularity introduced in Section 1.1 to study the stability of system (1.10)
in terms of inclusion (1.13).

The metric regularity of the optimality mapping has been studied under the classic (integral) coercivity
condition.

Coercivity condition. There is a constant c0 > 0 such for any v ∈ U − U the inequality� T

0

[⟨Hyy(·, yū, pū, ū)zv, zv⟩+ 2⟨Huy(·, yū, pū)zv, v⟩+ ⟨Huu(·, yū, pū, ū)v, v⟩] dt ≥ c0∥v∥2L2

is fulfilled, where zv is the unique solution of the equation żv = fy(·, yū, ū)zv + fu(·, yū, ū)v with zv(0) = 0.

This assumption is standard in optimal control; it goes back to the work of Hager [20], where it was used to
show convergence of the multiplier method in optimal control. It was also used in [17] to prove results about
convergence of discrete approximations in optimal control. One can interpret coercivity as a strong second
order sufficient condition.

Theorem 1.2.4. [16, Theorem 17.2] Suppose that the coercivity condition holds. Then the optimality map-
ping is strongly regular at (yū, λū, ū) as mapping from M2 to Z2.

There many useful applications of Theorem 1.2.4, see e.g., [17, Section 7] where some convergence results
of the Euler method are obtained.

1.2.2 Results on affine optimal control problems

We say that problem (1.8)-(1.9) is affine if the functions f and g have the following form

f(t, x, u) = a(x) +B(x)u and g(t, x, u) = w(x) + s(x)u. (1.14)

The case of affine problems is especially challenging due to the typical discontinuity of the optimal control
functions. In fact, assumptions like the coercivity condition cannot hold for this type of problems.

This impossibility is because the coercivity condition implies the Legendre-Clebsch condition (a.e. point-
wise coercivity condition), see [18].

Legendre-Clebsch condition. There is a constant c0 > 0 such for any v ∈ U − U and for almost every
t ∈ [0, T ] the inequality

⟨Huu(t, yū(t), pū(t), ū(t))v(t), v(t)⟩ ≥ c0∥v(t)∥2

is fulfilled.
From the latter condition we see that if Huu(t, yū(t), pū(t) = 0 a.e in [0, T ] then the coercivity condition

cannot hold (unless U is a singleton).
Before stating our contributions, let us comment on some of the results in the literature. A general

sufficient condition for strong sub-regularity of the mapping Φ in the single metric dM1 in M1 is given in
[27, Theorem 3.1]. It involves the following assumption at a local minimizer ū ∈ U .

Assumption. There is a constant c0 > 0 such for any v ∈ U − ū the inequality� T

0

⟨Hu(·, yū, pū), v⟩ dt+
� T

0

[⟨Hyy(·, yū, pū, ū)zv, zv⟩+ 2⟨Huy(·, yū, pū)zv, v⟩] dt ≥ c0∥v∥2L1

is fulfilled, where zv is the unique solution of the equation żv = fy(·, yū, ū)zv + fu(·, yū, ū)v with zv(0) = 0.
Consider the metric space given by

Z∗ := L1
�
0, T ;Rn

�× L1
�
0, T ;Rn

�×W 1,∞�
0, T ;Rm

�
,

endowed with the shift invariant metric

dZ∗(ξ, η, ρ) := |ξ|L1 + |η|L1 + |ρ|W 1,∞ .
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However, for affine problems, the strong bi-metric regularity property is more suitable, see [36, 35]. In
[36, Corollary 3.5], sufficient conditions for strong bimetric regularity (with respect to the metric spaces
M1,Z1 and Z∗) for a Mayer problem were given. These conditions involve the non-negativity of the second
variation of the objective functional and a growth condition at the optimal control.

Our results on affine optimal control problems are as follows. In [14, Theorem 2.1], we obtained more
general sufficient conditions for the optimality mapping to be strongly bi-metrically regular (with respect to
the metric spaces M1,Z1 and Z∗) at an optimal control ū ∈ U . One of the main features of these conditions
is that they do not involve the second derivative of the associated Hamiltonian with respect to the control.
Moreover, they do not require non-negativity of the second variation of the objective functional. We showed
in [14, Section 4] an example where the assumptions are satisfied for a non-convex problem; this is a new
finding in the optimal control context, in general. The assumptions in [14, Theorem 2.1] for an optimal
control ū ∈ U can be read as follows, see [14, Assumption A2].

Assumption 1.2.5. The matrix

Huy(t, yū(t), pū(t))fu(t, yū(t)) is symmetric for a.e. t ∈ [0, T ] .

Assumption 1.2.6. There exist positive numbers α0, γ0 and c0 such for any v ∈ U−U , and σ ∈ BW 1,∞(σ̄,γ0)∩
(−NU (u)), the inequality� T

0

⟨σ, v⟩ dt+
� T

0

[⟨Hyy(·, yū, pū, ū)zv, zv⟩+ 2⟨Huy(·, yū, pū)zv, v⟩] dt ≥ c0∥v∥2L1

is fulfilled. Here zv is the unique solution of the equation żv = fy(·, yū, ū)zv + fu(·, yū, ū)v with zv(0) = 0,
and σ̄ = Hu(·, yū, λū).

Theorem 1.2.7. [14, Theorem 2.1] Suppose that Assumptions 1.2.5 and 1.2.6 hold. Then the optimality
mapping Φ in (1.12) is strongly bi-metrically regular at (yū, λū, ū) with respect to the metric spaces M1,Z1

and Z∗.

As an application, in [14, Section 5] we prove that the obtained sufficient conditions imply uniform first
order convergence of the Euler discretization scheme when applied to affine problems that are close enough
to a reference one.

1.3 Model predictive control method

The Model Predictive Control (MPC) is a method for on-line feedback approximation, the idea behind it
can be described as follows. Observe/measure the current state of a system, and from that compute very
rapidly an open-loop control solution to the problem at hand. The first portion of this function is then used
during a short time interval, after that a new measurement of the state is made. Repeating this over a time
interval will yield a feedback controller synthesis from knowledge of open-loop controls obtained, see [24, 38].

The main advantages of the MPC paradigm are that the feedback nature of the method provides addi-
tional robustness to disturbances, modeling inaccuracies, and implementation errors, in contrast to classical
optimal control theory. The MPC is a powerful method, but the rigorous mathematical theory investi-
gating the scope of validity and the efficiency of the MPC method under appropriate suppositions is still
underdeveloped.

This section contains a brief summary of the results in [1] including a short subsection with some of the
technical details of the problem as well as a description of the MPC algorithm.

1.3.1 The model

Consider now the following optimal control problem, further denoted by Pπ(0, y0):

min
u∈U

�
Jπ(u) :=

� T

0

g(π(t), y(t), u(t)) dt
	
, (1.15)

subject to

ẏ(t) = f(π, y, u) y(0) = y0. (1.16)
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Here the state vector y(t) belongs to Rn for each t ∈ [0, T ], and the control function u(·) belongs to the
set U of all Lebesgue measurable functions u : [0, T ] → U , where U ⊂ Rm. The function π represents an
uncertain time-dependent parameter which is known to belong to a set Π of bounded Lebesgue measurable
functions π : [0, T ] → Rl. Correspondingly, f and g are defined on Rl × Rn × Rm with values in Rn and R,
respectively. The initial state y0 ∈ Rn and the final time T > 0 are fixed.

Problem Pπ(0, y0) will be considered under the following assumptions.

Assumption 1.3.1. The set U is convex and compact. The functions f and g are two times differentiable
with respect to (y, u), these functions and their first and second derivatives in (y, u) are Lipschitz continuous
with respect to (π, y, u).

For any π ∈ Π, along with problem Pπ(0, y0) we consider the family, denoted by Pπ(τ, yτ ), consisting of
problems which have the same form as (1.15)–(1.16) but with the initial time 0 replaced with any τ ∈ [0, T )
and y0 replaced with any yτ ∈ Rn. Of course, then only the restriction of the parameter ξ to [τ, T ] matters.

Assumption 1.3.2. For every u ∈ U , y0 ∈ Rn, and π ∈ Π equation (1.16) has a solution y on [0, T ] (which
is then unique due to Assumption 1.3.1). For every τ ∈ [0, T ), yτ ∈ Rn and π ∈ Π problem Pπ(τ, yτ ) has
an optimal solution.

Optimality in the last assumption means local optimality of the objective functional with respect to the
L1-norm of the controls. We now reformulate the optimality system in functional spaces. The space Lq(τ, T ),
q = 1, 2, . . . ,∞, of vector functions on [τ, T ] (with any fixed dimension) has the usual meaning, with the norm
denoted by | · |Lq . The space of all absolutely continuous vector functions on [τ, T ] is denoted by W 1,1(τ, T ),
with the norm |y|W 1,1 = |y|L1 + |ẏ|L1 . Moreover, W 1,1

T (τ, T ) is the space of functions λ ∈ W 1,1(τ, T ) for
which λ(T ) = 0. The notations of norms do not include the time horizon, but it will be clear from the
context. For the same reason we often skip the time horizon from the notations of spaces.

Denote

Mτ := W 1,1(τ, T )×W 1,1
T (τ, T )× Uτ , Zτ := L1(τ, T )× Rn × L1(τ, T )× L∞(τ, T ),

where Uτ = {u ∈ L1(τ, T ) : u(t) ∈ U for a.e. t ∈ [τ, T ]} is the set of admissible control functions on [τ, T ],
thus U0 = U . We also set M := M0 and Z := Z0. The metrics in Mτ and Zτ are given in terms of norms
as follows: for p = (y, λ, u) ∈ Mτ and q = (ξ, ν, η, ρ) ∈ Zτ

dMτ (p, 0) := |p|Mτ := |y|W 1,1 + |λ|W 1,1 + |u|L1 , dZτ (q, 0) := |q|Zτ := |ξ|L1 + |ν|Rn + |η|L1 + |ρ|L∞ .

In addition, we define in M∗
τ as follows. Let Γ ⊂ [0, T ] be a fixed finite set. For u1, u2 ∈ Uτ denote

d∗(u1, u2) := inf{ε > 0 : |u1(t)− u2(t)| ≤ ε for a.e. t ∈ [0, T ] \ (Γ + [−ε, ε])}. (1.17)

Abusing the notation, we define M∗
τ := Mτ with the shift-invariant metric

dM∗
τ
(p, 0) := |y|W 1,1 + |λ|W 1,1 + d∗(u, 0).

For any π ∈ Π, τ ∈ [0, T ), and yτ ∈ Rn define on Mτ the optimality map by

Φ(π,τ,yτ )(y) =


−ẏ + f(p, y, u)

y(τ)− yτ
λ̇+Hy(π, y, λ, u)

⊤

Hu(π, y, λ, u)
⊤ +NUτ

(u)

 ,

where now NUτ
(u) is the normal cone to Uτ at u in the space L1(τ, T ), that is,

NUτ
(u) = {σ ∈ L∞(τ, T ) :

� T

τ

⟨σ,w − u⟩ for all w ∈ U}.

With these notations one can recast the optimality system for problem Pπ(τ, yτ ) as

0 ∈ Φ(π,τ,yτ )(y, λ, u).

Obviously, due to the compactness of the set U , Φ(π,τ,yτ ) is a set-valued mapping from Mτ to Zτ .
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1.3.2 The algorithm and the results

Let us fix a reference parameter π̄ ∈ Π and denote by (ȳ, ū) a solution of problem Pπ̄(0, y0) (see Remark ??).
Let λ̄ be the corresponding adjoint function, so that the 0 ∈ Φ(ȳ, λ̄, ū). The following assumption plays a
key role in the error analysis of the MPC method presented in the next section.

Assumption 1.3.3. The map Φ(p̄,0,x0) : M ↠ Z is strongly sub-regular at (ȳ, 0) (in the metrics dM and
dM∗).

The finite set Γ that appears in the definition of the metric d∗ is arbitrary, but it is appropriately specified
in [1, Section 4] for several classes of problems, together with sufficient conditions for Assumption 1.3.3.

It is assumed that for some parameter π̄ ∈ Π equation (1.16) with π = π̄ reproduces a “real” system,
the states of which can be measured (with a measurement errors). Recall that (ȳ, ū) is a reference optimal
solution of Pπ̄(0, y0). We describe now the MPC algorithm.

Given a natural number N , we denote by {tk}Nk=0 the grid with step-size h = T/N , that is, tk = kh,
k = 0, . . . , N . To describe the k-th stage of the MPC algorithm we assume that an admissible control function
uN is already determined on [0, tk] and applied to the “real” system. Denote by yN the corresponding
trajectory, that is the solution of (1.16) with π = π̄ and u = uN . Then the state of the “real” system
is measured with a measurement error ek, that is, the vector y0k = yN (tk) + ek becomes available at time
tk. In addition, a prediction πk ∈ Π for the time horizon [tk, T ] is made. Then an approximate solution
(ỹk, ũk) ∈ W 1,1 × Utk of the problem Pπk

(tk, y
0
k) is found, and uN is extended to [0, tk+1] as u

N (t) = ũk(t)
for t ∈ (tk, tk+1].

The process continues in the same way as long as k < N . The control uN is called MPC-generated
control and the corresponding trajectory xN of the “real” system (1.16) with u = uN and π = π̄ is called
MPC-generated trajectory.

The quality of a prediction πk ∈ Π on [tk, T ] will be measured by the norm eπk := ∥πk − π̄[tk,T ]∥L∞ , and
the pair (ỹk, ũk) is an approximate solution of problem Pπk

(tk, y
0
k) in the sense that for some absolutely

continuous λ̃k the triplet p̃k := (ỹk, λ̃k, ũk) satisfies the inclusion (approximate optimality conditions)

q̃k ∈ Φ(πk,tk,y0
k)
(p̃k) (1.18)

with some q̃k ∈ Ztk . Most of the numerical methods for optimal control give approximations with a small
residual q̃k. The norm euk := |q̃k|Ztk

of the residual will be used as a measure of the accuracy of the

approximate solution (ỹk, ũk) of problem Pπk
(tk, y

0
k).

The main result in [1] gives an estimate of the difference between the MPC-generated control and the
optimal open-loop control for the reference problem (the latter corresponding to the “ideal” scenario where
the prediction, the measurement, and the solution of the auxiliary problems are all exact). A remarkable
feature of the estimation is that the overall error of the MPC-generate control depends on the average of
the errors appearing at the steps of the algorithm, thus occasional relatively large errors in the prediction or
measurement do not substantially damage the MPC-generated control. Another interesting feature of the
overall error is that for some classes of problems it depends linearly on the averaged errors appearing at the
steps of the method, while for other classes, the estimate of the overall error depends on the square root of
the averaged errors (and this estimate is sharp, see [1, Example 3.5]).

Theorem 1.3.4. [1, Theorem 3.1] Let Assumptions (A1)–(A3) be fulfilled. Then there exists numbers N0,
δ > 0, C1, C2, and C3 such that for any natural number N ≥ N0, for any sequence of measurement errors
{ek}, for any sequence of predictions πk ∈ Π and approximation errors {euk} satisfying the conditions

|ek|+ epk + euk ≤ δ, ∥ũk − ū∥L1 ≤ δ, k = 0, . . . , N − 1,

any MPC-generated trajectory-control pair (yN , uN ) satisfies the estimate

∥uN − ū∥1 + ∥yN − ȳ∥1,1 ≤
�

C1E if Γ = ∅,
C2

√E + C3h if Γ ̸= ̸ ∅,
where

E :=
1

N

N−1&
k=0

(|ek|+ eπk + euk)

is the averaged error appearing at the MPC steps.
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1.4 Elliptic optimal control problems

The optimal control of ordinary differential equations cannot cover all interesting and practical applications,
for instance, heat conduction, electromagnetic waves, fluid flows, freezing processes, etc. In this section we
introduce an optimal control problem governed by elliptic partial differential equations. Later in the section,
we comment the results obtained in the papers [12, 13]. The motivations for studying stability of solutions
comes from the error analysis of numerical methods, see e.g., [29, 30].

1.4.1 The control model

Consider the following optimal control problem

min
u∈U

��
Ω

L(x, y) dx

�
, (1.19)

subject to

Ly + d(·, y) = u (1.20)

Here, L : D(L) → L2(Ω) is an elliptic operator representing the action of − div(A∇) and D(L) is a set
encapsulating2 the boundary conditions of a partial differential equation. More explicitly, (1.20) represents
either the Robin boundary value problem − div

�
A(x)∇y

�
+ d(x, y) = u in Ω

A(x)∇y · ν + y = 0 on ∂Ω.
(1.21)

or the Dirichlet value problem − div
�
A(x)∇y

�
+ d(x, y) = u in Ω

y = 0 on ∂Ω.
(1.22)

The set Ω ⊂ Rn is a bounded domain with Lipschitz boundary, where n ∈ {2, 3}. The unit outward normal
vector field on the boundary ∂Ω, which is single valued a.e. in ∂Ω, is denoted by ν. The control set is given
by

U := {u : Ω → R measurable : b1 ≤ u(x) ≤ b2 for a.e. x ∈ Ω} ,
where b1 and b2 are positive numbers satisfying b1 ≤ b2. The functions L, d : Ω×R → R are real-valued and
measurable, and A : Ω → Rn×n is a measurable matrix-valued function.

Assumption 1.4.1. The following statements are assumed to hold.

(i) The set Ω ⊂ Rn is a bounded Lipschitz domain. The matrix A(x) is symmetric for a.e. x in Ω, and
there exists α > 0 such that ξ ·A(x)ξ ≥ α|ξ|2 for a.e. x in Ω and all ξ ∈ Rn.

(ii) The functions L and d are Carathéodory, twice differentiable with respect to the second variable, and
their second derivatives are locally Lipschitz uniformly in the first variable.

(iii) The functions A,L(·, 0), Ly(·, 0), d(·, 0) and dy(·, 0) are measurable and bounded.

(iv) The function dy(·, y) is nonnegative a.e. in Ω for all y ∈ R.

The necessary optimality conditions (Pontryagin principle) for problem (1.19)-(1.20) is given by the
system  0 = Ly + d(y)− u,

0 = Lλ+ dy(·, y)λ− Ly(·, y),
0 ∈ λ+NU (u),

(1.23)

2See [13, Section 2.1] for a precise description.
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If u ∈ U is a local solution of problem (1.19)–(1.20), then the triple (yu, λu, u) is a solution of (1.23). Let us
recast system (1.23) in a functional frame. We introduce the metric spaces

M := D(L)×D(L)× U and Z := L2(Ω)× L2(Ω)× L∞(Ω),

endowed with the following metrics. For ψi = (yi, λi, ui) ∈ M and ζi = (ξi, ηi, ρi) ∈ Z, i ∈ {1, 2},

dM(ψ1, ψ2) := |y1 − y2|L2(Ω) + |λ1 − λ2|L2(Ω) + |u1 − u2|L1(Ω),

dZ(ζ1, ζ2) := |ξ1 − ξ2|L2(Ω) + |η1 − η2|L2(Ω) + |ρ1 − ρ2|L∞(Ω).

Both metrics are shift-invariant. Then the optimality mapping is defined as the set-valued mapping Φ :
M ↠ Z given by

Φ(y, λ, u) =

 Ly + d(y)− u
Lλ+ dy(·, y)λ− Ly(·, y)

λ+NU (u)

 . (1.24)

Then, as in previous sections, the optimality system (1.23) can be recast as the inclusion

0 ∈ Φ(y, λ, u). (1.25)

Our purpose is to study the stability of system (1.23), or equivalently of inclusion (1.25), with respect to
perturbations in the right-hand side. We will consider the concept of subregularity, see Definition 1.1.3.
From now on, we write ψ̄ := (ȳ, λ̄, ū) = (yū, λū, ū) , where ū is a fixed local solution of problem (1.19)–(1.20).

The inequality (1.7) in the definition of ι-subregularity, can be written explicit for this problem as

|y − yū|L2(Ω) + |λ− λū|L2(Ω) + |u− ū|L1(Ω) ≤ κ
�
|ξ|L2(Ω) + |η|L2(Ω) + |ρ|L∞(Ω)

�ι

. (1.26)

Hence, if the optimality mapping is ι-subregular, all solutions of the system ξ = Ly + d(y)− u,
η = Lλ+ dy(·, y)λ− Ly(·, y),
ρ ∈ λ+NU (u).

(1.27)

that are near (yū, λū, ū) satisfy the Hölder estimate (1.26) with respect to the perturbations ζ = (ξ, η, ρ),
provided they are small enough.

1.4.2 The results on elliptic optimal control problems

Results for optimization problems constrained by partial differential equations have been gaining relevance
in recent years, see [3, 6, 7, 8, 11, 33]. Most of the stability results for elliptic control problems are obtained
under a second order growth condition (analogous to the classical Legendre-Clebsch condition). For literature
concerning this type of problems, the reader is referred to [19, 21, 23, 25, 26, 34] and the references therein.
However, its stability has been only investigated in a handful of papers, see e.g., [11, 31, 33].

Stability of controls

We begin reviewing one of relevant results in the literature. In [33], the authors consider linear perturbations
in the state and adjoint equations. They use the so-called structural assumption (a growth assumption
satisfied near the jumps of the control) on the adjoint variable. This assumption has been widely used in
the literature on bang-bang control of ordinary differential equations in a somewhat different form.

In [13], we introduce in the literature the following assumption at a local minimizer ū ∈ U .
Assumption 1.4.2. There exist positive numbers α0, γ0 and k∗ ∈ [1, 4/n) such that�

Ω

λūv dx+

�
Ω

[Lyy(x, yū)− λūdyy(x, yū)] z
2
v dt ≥ γ0|v|k

∗+1
L1(Ω), (1.28)

for all v ∈ U − ū with |v|L1(Ω) ≤ α0. Here zv is the unique solution of the equation Lzv + dy(·, yū)zv = v.
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In [13, Section 6], we prove that the last assumption is equivalent to

Assumption 1.4.3. There exist positive numbers α0, γ0 and k∗ ∈ [1, 4/n) such that�
Ω

λūv dx+

�
Ω

[Lyy(x, yū)− λūdyy(x, yū)] z
2
v dt ≥ γ0|v|k

∗+1
L1(Ω),

for all v ∈ U−ū with v ∈ Cτ
ū∩BL1(Ω)(ū;α0), where zv is the unique solution of the equation Lzv+dy(yū)zv =

v.

For a fixed τ > 0, the extended cone is given by

Cτ
ū =

v ∈ L2(Ω) : v(x)

 = 0 if |λū(x)| > τ or ū(x) ∈ (b1(x), b2(x))
≥ 0 if |λū(x)| ≤ τ and ū(x) = b1(x)
≤ 0 if |λū(x)| ≤ τ and ū(x) = b2(x)

 .

The equivalence between the assumptions shows that for k∗ ∈ [1, 4/n), Assumption 1.4.2 is weaker than the
assumptions in [33], see [13, Section 6] for more details. Our main result in [13] is

Theorem 1.4.4. Let Assumption 1.4.2 hold. Then the optimality mapping Φ is ι-subregular at ψ̄ with
ι = 1/k∗ as a mapping from M to Z.

This result generalizes the one in [33, Theorem 4.5]. One of the main novelties of our work is that using
Theorem 1.4.4, we proved stability of problem (1.19)-(1.20) with respect to nonlinear perturbations, see [13,
Section 5] for precise details.

Stability of states

Results in state-stability were also proved in [12]; they involve weaker assumptions than in [13], but also
yield less stronger theorems. There are some minor differences between the model in [12] and the one in
[13], the main one is that in [12], we considered an elliptic PDE with Dirichlet boundary condition and
with a convection term which makes the linear differential operator L not monotone nor coercive. Before
summarizing our main result, we introduce new metric spaces

M∗ :=
�
(y, λ) ∈ D(L)×D(L) : 0 ∈ λ+NU

�Ly + d(·, y)�� and Z∗ := L2(Ω)× L2(Ω),

endowed with the following metrics. For ψi = (yi, λi) ∈ M∗ and ζi = (ξi, ηi) ∈ Z∗, i ∈ {1, 2},
dM∗(ψ1, ψ2) := |y1 − y2|L2(Ω) + |λ1 − λ2|L2(Ω),

dZ∗(ζ1, ζ2) := |ξ1 − ξ2|L2(Ω) + |η1 − η2|L2(Ω).

Consider also the optimality mapping Φ∗ : M∗ → Z∗ re-defined as the set-valued mapping given by

Φ∗(y, λ) =
� Ly + d(y)− u

Lλ− Ly(·, y) + λdy(·, y)
 
. (1.29)

Under a new assumption we proved Lipschitz stability of the associated states to the optimal controls with
respect to perturbations in the equation and the objective functional, which can be translated as subregularity
of the optimality mapping (1.29). To the best of our knowledge this is the first time this assumption is used
in the literature, and is worth pointing out that this assumption pops up naturally studying the subregularity
of the optimality mapping. The new assumption introduced to literature reads as follows.

Assumption 1.4.5. There exist positive numbers α0, γ0 such that�
Ω

λūv dx+

�
Ω

[Lyy(x, yū)− λūdyy(x, yū)] z
2
v dt ≥ γ0|zv|2L2(Ω), (1.30)

for all v ∈ U − ū with |zv|L2(Ω) ≤ α0. Here zv is the unique solution of the equation Lzv + dy(·, yū)zv = v.

We mention that the assumption is not only new in the context of optimal control of PDE’s, but in
general in optimal control. We are now ready to give the main result of [12] (stated in a equivalent different
form in terms of the optimality mapping Φ∗).

Theorem 1.4.6. [12, Theorem 4.4] Let ū be a local minimizer of (1.19)-(1.20) satisfying Assumption 1.4.5.
Then the optimality mapping Φ∗ is strongly metrically subregular at (yū, λū) in the metrics M∗ and Z∗.

Some other complementary results were also proved in [12, Section 4], but those were more of a routine
task. Theorem 1.4.6 truly represents a novelty in the optimal control context. It is also worth-mentioning
that the elliptic equation studied in [12] was non-monotone and non-coercive, see [4, 5].
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Chapter 2

Strong bi-Metric Regularity in Affine
Optimal Control Problems

This chapter consists of the paper:

❼ Domı́nguez Corella, Alberto and Quincampoix, Marc and Veliov, Vladimir M.: Strong bi-metric regu-
larity in affine optimal control problems.

It was published in Pure Applied Functional Analysis (ISSN 2189-3756): Volume 6, pages 1119-1137, year
2021. The author of this thesis contributed with the proof of the so-called uniform Euler discretization
method in terms of sufficient second-order assumptions; he wrote the last section of the paper, and helped
with the technical details of all other sections.
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Strong bi-metric regularity in affine optimal control problems∗

Alberto D. Corella† Marc Quincampoix‡ Vladimir Veliov§

Abstract

The paper presents new sufficient conditions for the property of strong bi-metric regularity
of the optimality map associated with an optimal control problem which is affine with respect
to the control variable (affine problem). The optimality map represents the system of first order
optimality conditions (Pontryagin principle), and its regularity is of key importance for the
qualitative and numerical analysis of optimal control problems. The case of affine problems
is especially challenging due to the typical discontinuity of the optimal control functions. A
remarkable feature of the obtained sufficient conditions is that they do not require convexity of
the objective functional. As an application, the result is used for proving uniform convergence
of the Euler discretization method for a family of affine optimal control problems.

Keywords: optimal control, metric regularity, affine problems, Euler discretization
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1 Introduction

Regularity properties of the system of first order necessary optimality conditions for optimization
problems play a key role in qualitative analysis and reliable numerical treatment of such problems
(see e.g. the books [1, 8, 4, 7]). For optimal control problems, the investigation of regularity
properties of the map associated with the Pontryagin maximum principle (called further optimality
map) was first initiated in [3], which deals with problems that satisfy the so-called coercivity
condition. The latter, however is never fulfilled for problems in which both dynamics and cost
are affine with respect to the control (further called affine problems). Results about strong metric
sub-regularity of the optimality map for affine problems were obtained in the recent papers [10, 9].
The property of strong metric regularity (see e.g. [4, Chapter 3]) of the optimality map proved to
be important for convergence and error estimates of numerical methods (discretizations, gradient
projection, Newton method, etc.). However, more suitable for affine problems is a specific extension
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the strong metric regularity introduced in [12] under the name Strong bi-Metric Regularity (Sbi-
MR). The present paper investigates this property for Lagrange-type affine optimal control problems
of the form

min
�
J(u) :=

� T

0
[w(t, x(t)) + ⟨s(t, x(t)), u(t)⟩] dt

	
, (1)

subject to
ẋ(t) = a(t, x(t)) +B(t, x(t))u(t), x(0) = x0, (2)

u(t) ∈ U, t ∈ [0, T ]. (3)

Here the state vector x(t) belongs to Rn, the control function u has values u(t) that belong to a
given set U in Rm for almost every (a.e.) t ∈ [0, T ]. Correspondingly, w is a scalar function on
[0, T ] × Rn, s is an m-dimensional vector function (⟨·, ·⟩ denotes the scalar product), a and B are
vector-/matrix-valued functions with appropriate dimensions. The initial state x0 and the final
time T > 0 are fixed. The set of feasible control functions u, denoted in the sequel by U , consists of
all Lebesgue measurable and bounded functions u : [0, T ] → U . Accordingly, the state trajectories
x, that are solutions of (2) for feasible controls, are Lipschitz continuous functions on [0, T ].

It is well known that the Pontryagin (local) maximum principle can be written in the form of
a generalized equation

0 ∈ F (y), (4)

where y = (x(·), u(·), p(·)) encapsulates the state function x(·), the control function u(·) ∈ U , and
the adjoint (co-state) function p(·), and the inclusion 0 ∈ F (y) represents the state equation, the
co-state equation, and the maximization condition in the maximum principle (the last being the
inclusion of the derivative of the associated Hamiltonian with respect to the control in the normal
cone to U at u(·)). The detailed definition of the mapping F in (4), called further optimality map
is given in the next section.

In the next paragraphs we remind the definition of Sbi-MR in the form used in [10] and [11]. Let
(Y, dY ), (Z, dZ), (Z̃, dZ̃) be metric spaces, with Z̃ ⊂ Z and dZ ≤ dZ̃ on Z̃.1 Denote by IBY (ŷ; a),

IBZ(ẑ; b) and IBZ̃(ẑ; b) the closed balls in the metric spaces (Y, dY ), (Z, dZ) and (Z̃, dZ̃) with radius
a > 0 or b > 0 centered at ŷ and ẑ, respectively.

Given a set-valued map Φ : Y ⇒ Z, graphΦ := {(y, z) ∈ Y ×Z : z ∈ Φ(y)} denotes the graph of
Φ. The inverse map, Φ−1 : Z ⇒ Y , is the set-valued map defined as Φ−1(z) := {y ∈ Y : z ∈ Φ(y)}.
Definition 1.1. The set-valued map Φ : Y ⇒ Z is strongly bi-metrically regular (Sbi-MR) (with
disturbance space Z̃) at ŷ ∈ Y for ẑ ∈ Z̃ with constants κ ≥ 0, a > 0 and b > 0, if (ŷ, ẑ) ∈ graph(Φ)
and the following properties are fulfilled:

(i) the map IBZ̃(ẑ; b) ∋ z '→ Φ−1(z) ∩ IBY (ŷ; a) is single-valued;
(ii) for all z, z� ∈ IBZ̃(ẑ; b)

dY (Φ
−1(z) ∩ IBY (ŷ; a),Φ

−1(z�) ∩ IBY (ŷ; a)) ≤ κdZ(z, z
�). (5)

We stress that the difference between this notion and the standard notion of strong metric regularity
(see e.g. [4, Chapter 3]) is that the “disturbances” z have to belong to the smaller space, Z̃ (with
the bigger norm), but the Lipschitz property in (ii) holds with respect to the smaller distance,

1 This inequality can be understood as dZ(z) ≤ c dZ̃(z) for every z ∈ Z̃, where c is a constant.
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dZ , in the right-side of (5). A detailed explanation of the reasons for the appropriateness of this
definition is given in [11, Introduction].

Sufficient conditions for more specific problems and some applications of the Sbi-MR property
are presented in [10] and [11]. The main aim of the present paper is to obtain new, more general,
sufficient conditions for Strong bi-Metric Regularity (Sbi-MR) of the optimality map F in an
appropriate space setting. A new feature of these conditions is that they involve not only the second
derivative of the associated Hamiltonian with respect to the control, but also its first derivative.
Thanks to that, they may be also fulfilled for problems with a non-convex objective functional,
which is a new founding in the optimal control context, in general.

We present the sufficient conditions for Sbi-MR in Section 2 and give a detailed proof in Sec-
tion 3. In Section 4 we specialize these conditions to the case of affine problems with bang-bang
solutions and give an example where they apply to a non-convex problem. As an application, in
Section 5 we prove that the obtained sufficient conditions imply uniform first order convergence of
the Euler discretization scheme when applied to affine problems that are close enough to a reference
one. This result is of importance, for example, for the justification of Model Predictive Control
methods applied to affine problems.

2 Sufficient conditions for strong bi-metric regularity

We will use the following standard notations. The euclidean norm and the scalar product in Rn

(the elements of which are regarded as column-vectors) are denoted by | · | and ⟨·, ·⟩, respectively.
The transpose of a matrix (or vector) E is denoted by E�. For a function ψ : Rp → Rr of
the variable z we denote by ψz(z) its derivative (Jacobian), represented by an (r × p)-matrix. If
r = 1, ∇zψ(z) = ψz(z)

� denotes its gradient (a vector-column of dimension p). Also for r = 1,
ψzz(z) denotes the second derivative (Hessian), represented by a (p × p)-matrix. For a function
ψ : Rp+q → R of the variables (z, v), ψzv(z, v) denotes its mixed second derivative, represented
by a (p × q)-matrix. The space Lk([0, T ],Rr), with k = 1, 2 or k = ∞, consists of all (classes
of equivalent) Lebesgue measurable r-dimensional vector-functions defined on the interval [0, T ],
for which the standard norm ∥ · ∥k is finite. Often the specification ([0, T ],Rr) will be omitted
in the notations. As usual, W 1,k = W 1,k([0, T ],Rr) denotes the space of absolutely continuous
functions x : [0, T ] → Rr for which the first derivative belongs to Lk. The norm in W 1,k is defined
as ∥x∥1,k := ∥x∥k + ∥ẋ∥k. Moreover, IBX(x; r) will denote the ball of radius r centered at x in a
metric space X.

Allover the paper we use the abbreviation

f(t, x, u) = a(t, x) +B(t, x)u, g(t, x, u) = w(t, x) + ⟨s(t, x), u⟩. (6)

For problem (1)–(3) we make the following assumption.

Assumption (A1). The set U is convex and compact; the functions f : R × Rn × Rm → Rn and
g : R × Rn × Rm → R have the form as in (6) and are two times differentiable in (t, x), and the
second derivatives are Lipschitz continuous.

Define the Hamiltonian associated with problem (1)–(3) as usual:

H(t, x, p, u) := g(t, x, u) + ⟨p, f(t, x, u)⟩, p ∈ Rn.
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The local form of the Pontryagin maximum (here minimum) principle for problem (1)-(3) can
be represented by the following optimality system for (x, u) and an absolutely continuous (here
Lipschitz) function p : [0, T ] → Rn: for a.e. t ∈ [0, T ]

0 = −ẋ(t) + f(t, x(t), u(t)), x(0)− x0 = 0, (7)

0 = ṗ(t) +∇xH(t, x(t), p(t), u(t)), p(T ) = 0, (8)

0 ∈ ∇uH(t, x(t), p(t), u(t)) +NU (u(t)), (9)

where the normal cone NU (u) to the set U at u ∈ Rm is defined in the usual way,

NU (u) =

� {y ∈ Rn | ⟨y, v − u⟩ ≤ 0 for all v ∈ U} if u ∈ U,
∅ otherwise.

Assumption (A1) implies that there exists a number M > 0 such that for any u ∈ U the
corresponding solution x of (7) and also the solution p of (8) exist on [0, T ] and

max{|x(t)|, |ẋ(t)|, |p(t)|, |ṗ(t)|} ≤ M for a.e. t ∈ [0, T ]. (10)

In what follows, M̄ will be any number larger that M .
Let us introduce the metric spaces

Y := {y = (x, p, u) ∈ W 1,1×W 1,1×L1 : u ∈ U , x(0) = x0, p(T ) = 0, and x, p, ẋ, ṗ ∈ IBL∞(0; M̄)}.

and
Z := L∞ × L∞ × L∞ and Z̃ := L∞ × L∞ ×W 1,∞ ⊂ Z.

The distances in these spaces are induced by norms, therefore we keep the norm-notations: for
y = (x, p, u) ∈ Y

∥y∥ := ∥x∥1,1 + ∥p∥1,1 + ∥u∥1
and for z = (ξ, π, ρ) in Z or in Z̃, respectively,

∥z∥Z := ∥ξ∥1 + ∥π∥1 + ∥ρ∥∞, ∥z∥∼ := ∥ξ∥∞ + ∥π∥∞ + ∥ρ∥1,∞.

Notice that Y is a complete metric space, thanks to the compactness of the set U .
Now, we define the set-valued mapping F : Y ⇒ Z as

F (y) :=

 −ẋ+ f(·, x, u)
ṗ+∇xH(·, y)
∇uH(·, y)

+

 0
0

NU (u)

 , (11)

where NU (u) is the normal cone to the set U of admissible controls at u, considered as a subset of
L∞:

NU (u) :=

�
∅ if u /∈ U
{v ∈ L∞ : v(t) ∈ NU (u(t)) for a.e. t ∈ [0, T ]} if u ∈ U .

Notice that F (Y ) ⊂ Z, and ∇uH(·, y) ∈ Z̃ thanks to the affine structure of the problem, namely,
the independence of ∇uH(·, y) of u.
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With these definitions, the necessary optimality conditions (7)–(9) take the form

F (y) ∋ 0, (12)

therefore F is called optimality map associated with problem (1)–(3). The main result in this paper
is a sufficient condition for Sbi-MR of the optimality mapping F : Y ⇒ Z with perturbation space
Z̃. To do this we fix a reference solution ŷ = (x̂, p̂, û). We mention that such always exists since
on assumption (A1) problem (1)–(3) has a solution. To shorten the notations we skip arguments
with “hat” in functions, shifting the “hat” on the top of the notation of the function, so that
f̂(t) := f(t, x̂(t), û(t)), ŝ(t) = s(t, x̂(t)), Ĥ(t) := H(t, x̂(t), û(t), p̂(t)), Ĥ(t, u) := H(t, x̂(t), u, p̂(t)),
etc. Moreover, denote

Â(t) := fx(t, x̂(t), û(t)), B̂(t) := fu(t, x̂(t), û(t)) = B(t, x̂(t)), σ̂(t) := ∇uĤ(t) = B̂(t)�p̂(t)+ŝ(t).

Let us introduce the following functional of L1 ∋ δu '→ Γ(δu) ∈ R:

Γ(δu) :=

� T

0

�
⟨Ĥxx(t)δx(t), δx(t)⟩+ 2⟨Ĥux(t)δx(t), δu(t)⟩

�
dt, (13)

where δx is the solution of the equation ˙δx = Âδx+ B̂δu with initial condition δx(0) = 0.

Assumption (A2). There exist numbers c0, α0 > 0 and γ0 > 0 such that� T

0
⟨σ(t), δu(t)⟩ dt+ Γ(δu) ≥ c0∥δu∥21,

for every δu = u� − u with u�, u ∈ U ∩ BL1(û;α0), and for every function σ ∈ IBW 1,∞(σ̂; γ0) ∩
(−NU (u)).

Assumption (A2) will be analyzed and discussed in details in Section 4. Now we formulate the
main theorem.

Theorem 2.1. Let Assumption (A1) be fulfilled for problem (1)–(3) and let ŷ = (x̂, p̂, û) be a
solution of the optimality system (12) (with F defined in (11)) for which Assumption (A2) is
fulfilled. Let, in addition, the matrix Ĥux(t)B̂(t) be symmetric for a.e. t ∈ [0, T ]. Then the
optimality map F : Y ⇒ Z is strongly bi-metrically regular at ŷ for zero with disturbance space
Z̃ ⊂ Z.

3 Proof of the main result

The proof of Theorem 2.1 consists of several steps.
Step 1. The following result (adapted to the present problem formulation, assumptions, and

notations) was proved in [11, Theorem 3.1].2

2 A Mayer problem is considered in [11], but the result also applies to Lagrange problems after a standard
transformation. Moreover, the assumptions in [11] are somewhat weaker than (A1).
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Theorem 3.1. Let the assumptions in Theorem 2.1 be satisfied. Then strong bi-metric regularity
of the set-valued map y '→ F (y) at ŷ for 0 (in the spaces as in Theorem 2.1) is equivalent to the
strong bi-metric regularity of the map y '→ L(y), at ŷ for 0, where

L(y) =

 −ẋ+ f̂ + Â(x− x̂) + B̂(u− û)

ṗ+∇xĤ + Ĥxy(y − ŷ)

∇uĤ + Ĥuy(y − ŷ) +NU (u)

 .

The map L represents the partial linearization of F around ŷ = (x̂, p̂, û). Thanks to the identity
Ĥuu = 0, L maps Y to Z, and moreover, ŷ solves the inclusion L(ŷ) ∋ 0.

To shorten the notations, we set for this section (skipping the dependence on t)

W := Ĥxx, S := Ĥux, A := Â = f̂x, B = B̂ = B(x̂).

We remind the already introduced notation σ̂ = ∇uĤ. Then, also having in mind the identity
Ĥuu = 0, we can recast the definition of L(y) as

L(y) =

 −ẋ+ ˙̂x+A(x− x̂) +B(u− û)

ṗ− ˙̂p+W (x− x̂) + S�(u− û) +A�(p− p̂)
σ̂ + S(x− x̂) +B�(p− p̂) +NU (u)

 .

Due to Assumption (A1), we have that ˙̂x, A, ˙̂p, W, σ̂ ∈ L∞, and B, S ∈ W 1,∞. We remind that
according to (12) and (11), û satisfies the inclusion σ̂ +NU (û) ∋ 0.

Step 2. Define the map Λ : L1 × Z̃ → L∞ in the following way: for u ∈ L1 and z = (ξ, π, ρ) ∈ Z̃,

Λ(u, z) := σ̂ + S(x[u, z]− x̂) +B�(p[u, z]− p̂)− ρ, (14)

where (x[u, z], p[u, z]) is the solution of the system

ẋ = ˙̂x+A(x− x̂) +B(u− û)− ξ, x(0) = x0, (15)

−ṗ = − ˙̂p+W (x− x̂) + S�(u− û) +A�(p− p̂)− π, p(T ) = 0. (16)

Further we skip the argument z if z = 0, so that x[u] = x[u, 0], p[u] = p[u, 0], Λ(u) := Λ(u, 0).

Lemma 3.2. Strong bi-metric regularity of the set-valued map L at ŷ for 0 (in the spaces as in
Theorem 2.1) is equivalent to strong bi-metric regularity of the map Λ(·, 0) +NU (·) : U ⇒ L∞ at û
for zero, with disturbance space W 1,∞ ⊂ L∞.

Proof. We shall prove that the bi-metric regularity of the map Λ + NU implies that of L, which
will actually be used later. The proof of the converse is similar and simpler.

For any z = (ξ, π, ρ) ∈ Z̃ and u ∈ L∞ we have from (15) that

x[u, z]− x[u, 0] = lx(ξ), ∥lx(ξ)∥1,∞ ≤ c1∥ξ∥∞, ∥lx(ξ)∥1,1 ≤ c�1∥z∥Z , (17)

where lx is a linear map from L∞ to W 1,∞ and c1 and c�1 are independent of u and z. Using this
and (16), we obtain (also in a standard way) that

p[u, z]− p[u, 0] = lp(ξ, π), ∥lp(ξ, π)∥1,∞ ≤ c2(∥ξ∥∞ + ∥π∥∞), ∥lp(ξ, π)∥1,1 ≤ c�2∥z∥Z , (18)
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where lp is a linear map from L∞ × L∞ to W 1,∞, and c2 and c�2 are constants such as c1. Notice
that the second inequalities in (17) and (18) imply that

max{|x[u, z](t)|, |ẋ[u, z](t)|, |p[u, z](t)|, |ṗ[u, z](t)|} ≤ M + c��(∥ξ∥∞ + ∥π∥∞) for a.e. t ∈ [0, T ],

where c�� is a constant. This will be used later to ensure that the appearing triples (u, x[u, z], p[u, z])
belong to the space Y .

We may represent
Λ(u, z) = Λ(u) +Q(z),

where
Q(z) = Slx(ξ) +B�lp(ξ, π)− ρ, ∥Q(z)∥1,∞ ≤ c3∥z∥∼

is a linear map and c3 is a constant.
The inclusion L(y) ∋ z can be equivalently reformulated as

x = x[u, z], p = p[u, z], Λ(u, z) +NU (u) ∋ 0. (19)

In view of the obtained representations, the last relations are equivalent to

x = x[u] + lx(ξ), p = p[u] + lp(ξ, η), Λ(u) +Q(z) +NU (u) ∋ 0.

Having in mind the estimations for ∥lx(ξ)∥1,∞, ∥lp(ξ, π)∥1,∞ and ∥Q(z)∥1,∞, obtaining Sbi-MR of L
from that of Λ+NU becomes a routine task. We will sketch the rest of the proof for completeness.

First we observe that there is a constant c4 such that ∥Q(z)∥∞ ≤ c4∥z∥Z . Let κ, α and β be
the constants in the definition of the Sbi-MR of the map Λ +NU . Fix

ᾱ = (c�1 + c�2)β̄ + α, β̄ = min
� β

c3
,
M̄ −M

c��
	
, κ̄ = c�1 + c�2 + c4κ.

For any z ∈ Z̃ with ∥z∥∼ ≤ β̄ we have ∥Q(z)∥1,∞ ≤ β. Then there exists a unique solution
u(z) ∈ IBL1(û;α) of the inclusion Λ(u, z)+NU (u) ∋ 0. Moreover, for z1, z2 ∈ Z̃ with ∥zi∥∼ ≤ β̄ we
have

∥u(z1)− u(z2)∥1 ≤ κ∥Q(z1 − z2)∥∞ ≤ c4κ∥z1 − z2∥Z .
From the first two relations in (19) we have for x(zi) = x[u(zi), zi] and p(zi) = p[u(zi), zi]

∥x(z1)− x(z2)∥1,1 + ∥p(z1)− p(z2)∥1,1 ≤ c�1∥z1 − z2∥Z + c�2∥z1 − z2∥Z .
Thus L is Sbi-MR at ŷ for zero with constants κ̄, ᾱ, β̄. □

Step 3. According to Lemma 3.2, it is enough to prove Sbi-MR of Λ +NU in the spaces specified
in the formulation of the lemma. It is convenient to use the notation

⟨v, u⟩1 :=
� T

0
⟨v(t), u(t)⟩ dt

for the duality pairing of L1 and L∞, where v ∈ L∞ and u ∈ L1. The map Λ : L1 → L∞ is linear
and continuous, and we shall show that its derivative, Λ�, satisfies the equality

⟨Λ�δu, δu⟩1 = Γ(δu), ∀ δu ∈ L1, (20)
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where the mapping Γ : L1 → R is defined in (13).3 In the notations introduced in this section the
definition of Γ reads as

Γ(δu) = ⟨Wδx, δx⟩1 + 2⟨Sδx, δu⟩1, (21)

where δx is the solution of ˙δx = Aδx+Bδu with δx(0) = 0. Let δp be the solution of the equation

−δ̇p = A�δp+Wδx+ S�δu, δp(T ) = 0.

Since u '→ Λ(u) := σ̂ + S(x[u]− x̂) +B�(p[u]− p̂) is linear, we deduce

Λ�(u)δu = Sδx+B�δp. (22)

Integrating by parts the expression ⟨δp, ˙δx⟩1 we obtain the equality

⟨δp,Aδx+Bδu⟩1 = ⟨δp, ˙δx⟩1 = −⟨δx, δ̇p⟩1 = ⟨δx,A�δp+Wδx+ S�δu⟩1.

Hence,
⟨δp,Bδu⟩1 = ⟨δx,Wδx+ S�δu⟩1,

⟨B�δp, δu⟩1 = ⟨Wδx, δx⟩1 + ⟨Sδx, δu⟩1,
⟨Sδx, δu⟩1 + ⟨B�δp, δu⟩1 = ⟨Wδx, δx⟩1 + 2⟨Sδx, δu⟩1 = Γ(δu),

which implies (20) in view of (22).
Equality (20) allows to reformulate the inequality in Assumption (A2) as� T

0
⟨σ(t), δu(t)⟩ dt+ ⟨Λ�δu, δu⟩1 ≥ c0∥δu∥21 (23)

with σ and δu as in (A2).

Step 4. Next, we will prove that for every α ∈ (0, α0) (see Assumption (A2)) and for every
Δ ∈ W 1,∞ with ∥Δ∥1,∞ < c0α the inclusion

Λ(u) +NU (u) ∋ Δ (24)

has a solution ũ ∈ L1 satisfying ∥ũ− û∥1 < α. For this, we consider the inclusion

Λ(u) +NU∩IBL1 (û;α)(u) ∋ Δ. (25)

This inclusion represents the standard necessary optimality condition for the problem

min

�
J0(u) :=

� T

0

�1
2
⟨W (t)x[u](t), x[u](t)⟩+ ⟨S(t)x[u](t), u(t)⟩+ ⟨Δ(t), u(t)⟩� dt� ,

where x[u] is defined around (15), with the control constraints u ∈ U and u ∈ IBL1(û;α). This is
due to the well-known fact that Λ(u) is the derivative of J0 at u in L1 (the proof of this fact uses a
similar argument as the proof of the relation (20)). Due to the weak compactness of U ∩ IBL1(û;α)
in L1, this problem has a solution ũ, which then is a solution of (25).

3 Similar representations are known, see e.g. in [6], but in the space L2. Here the space setting is different and
the specificity of the affine problem is essential.
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Now we use the relation

NU∩IBL1 (û;α)(u) = NU (u) +NIBL1 (û;α)(u). (26)

It follows from [2, Theorem 3.1], which, formulated for the particular space setting and sets, U ⊂ L1

and V := IBL1(û;α) ⊂ L1, reads as follows: the equality (26) holds, provided that Epi sU + Epi sV
is weak∗ closed, where Epi sW is the epigraph of sW and sW : L∞ → R is the support function to
the set W ⊂ L1, that is, sW(l) := supw∈W⟨l, w⟩1. Thus we need the following lemma.

Lemma 3.3. For the sets U and V defined in the last paragraph, the set Epi sU +Epi sV ⊂ L∞×R
is weak∗ closed.

Proof of the lemma. Let (ξk, λk) ∈ Epi sU and (ηk, µk) ∈ Epi sV be arbitrary sequences such that
ξk + ηk → ψ in the weak∗ topology and λk + µk → ν. We will prove that (ψ, ν) ∈ Epi sU + Epi sV .

We successively obtain the inequalities

⟨ηk, v⟩1 ≤ µk, for every v ∈ V,
α⟨ηk, v⟩1 ≤ −⟨ηk, û⟩1 + µk for every v ∈ IBL1(0; 1),

α∥ηk∥∞ ≤ λk + µk − ⟨ξk + ηk, û⟩1 − λk + ⟨ξk, û⟩
≤ λk + µk − ⟨ξk + ηk, û⟩,

where in the last inequality we use that û ∈ U , thus ⟨ξk, û⟩ ≤ λk. Passing to the limit we obtain
that α∥ηk∥∞ ≤ ν−⟨ψ, û⟩+1 for every sufficiently large k. Since the balls in L∞ are weak∗ compact,
we obtain that (a subsequence of) {ηk} is weak∗ convergent to some η ∈ L∞. Then {ξk} is also
weak∗ convergent to some ξ.

Since 0 ∈ V, we have µk ≥ sV(ηk) ≥ ⟨ηk, 0⟩1 = 0. From û ∈ U , we get λk ≥ ⟨ξk, û⟩1 ≥ ⟨ξ, û⟩1−1
for k large enough. Because the sequence λk + µk is convergent, and hence bounded, we deduce
that sequences λk and µk are bounded. So they converge respectively (up to a subsequence) to
some real numbers λ and µ.

Passing to the limit in the inequality ⟨ξk, u⟩ ≤ λk, which holds for every u ∈ U , we obtain that
(ξ, λ) ∈ Epi sU . Similarly, (η, µ) ∈ Epi sV , which completes the proof of the lemma. □

Due to (26) and (25), there exists ν ∈ NIBL1 (û;α)(ũ) such that

ν + Λ(ũ)−Δ ∈ −NU (ũ),

hence,
⟨ν, û− ũ⟩1 + ⟨Λ(ũ)−Δ, û− ũ⟩1 ≥ 0.

We have ⟨ν, û− ũ⟩1 ≤ 0 since û ∈ IBL1(û;α). Thus

⟨Λ(ũ), û− ũ⟩1 − ⟨Δ, û− ũ⟩1 ≥ 0.

Since Λ is linear and satisfies (20), and since Λ(û) = σ̂ in view of (14), we obtain that

0 ≥ ⟨Λ(û), ũ− û⟩1 + ⟨Λ(ũ)− Λ(û), ũ− û⟩1 + ⟨Δ, û− ũ⟩1
= ⟨Λ(û), ũ− û⟩1 + ⟨Λ�(ũ− û), ũ− û⟩1 + ⟨Δ, û− ũ⟩1
= ⟨σ̂, ũ− û⟩1 + Γ(ũ− û) + ⟨Δ, û− ũ⟩1.
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Moreover, we have σ̂ ∈ −NU (û). Then Assumption (A2) in the form of (23) applied for δu = ũ− û
and σ = σ̂ implies that

0 ≥ c0∥ũ− û∥21 + ⟨Δ, û− ũ⟩1.
Hence,

∥ũ− û∥1 ≤ ∥Δ∥∞
c0

< α.

Since ũ belongs to the interior of IBL1(û;α), thus NIBL1 (û;α)(ũ) = {0}, we obtain that ν = 0,
therefore ũ is a solution of the inclusion (24).

Step 5. First, we shall estimate ∥Λ(u1) − Λ(u2)∥1,∞ for two functions u1, u2 ∈ L1. Denote
δu = u1 − u2, δx = x[u1]− x[u2], δp = p[u1]− p[u2]. Then there is a constant c1 independent of u1
and u2 such that

∥δx∥∞ ≤ c1∥δu∥1, ∥δp∥∞ ≤ c1∥δu∥1.
Using the definition of Λ and Assumption (A1) we can estimate

∥Λ(u1)− Λ(u2)∥∞ ≤ c2∥δu∥1
with some constant c2. Then'' d

dt
(Λ(u1)− Λ(u2))

''
∞ ≤ ∥Ṡδx+ Ḃ�δp∥∞ + ∥S(Aδx+Bδu)−B�(Wδx+ S�δu+A�δp)∥∞

≤ c3∥δu∥1,
where c3 is another constant and in the last estimate we use the assumed symmetry of SB = ĤuxB̂.
Thus

∥Λ(u1)− Λ(u2)∥1,∞ ≤ (c2 + c3)∥u1 − u2∥1 =: c4∥u1 − u2∥1. (27)

Now we choose the number α in such a way that

0 < α ≤ α0, c0α ≤ α0, (c0 + c4)α ≤ γ0.

Consider two disturbances Δ1, Δ2 ∈ W 1,∞ with ∥Δi∥1,∞ < c0α, and two solutions u1, u2 ∈
IBL1(û;α) of (24) corresponding to Δ1 and Δ2, respectively. Similarly as in Step 4 we obtain
the following chain of inequalities:

0 ≥ ⟨Λ(u1)−Δ1, u1 − u2⟩1
= ⟨Λ(u2)−Δ2, u1 − u2⟩1 + ⟨Λ(u1)− Λ(u2), u1 − u2⟩1 + ⟨Δ2 −Δ1, u1 − u2⟩1
= ⟨σ, u1 − u2⟩1 + ⟨Λ�(u1 − u2), u1 − u2⟩1 + ⟨Δ2 −Δ1, u1 − u2⟩1 (28)

= ⟨σ, u1 − u2⟩1 + Γ(u1 − u2) + ⟨Δ2 −Δ1, u1 − u2⟩1, (29)

where σ := Λ(u2)−Δ2. Using (27) we obtain

∥σ − σ̂∥1,∞ ≤ ∥Λ(u2)− Λ(û)∥1,∞ + ∥Δ2∥1,∞ ≤ c4∥u2 − û∥1 + c0α < c4α+ c0α ≤ γ0. (30)

Moreover, we have σ = Λ(u2) − Δ2 ∈ −NU (u2) because u2 solves the variational inequality (24)
with Δ = Δ2. Having in mind also that ∥u2 − û∥1 < α ≤ α0, we can apply Assumption (A2) (in
the form as in (23)) to the last line of (29). We obtain

0 ≥ c0∥u1 − u2∥21 + ⟨Δ2 −Δ1, u1 − u2⟩1,
which implies that ∥u1 − u2∥1 ≤ 1

c0
∥Δ1 −Δ2∥∞. This proves the Sbi-MR property of Λ+NU with

constants κ = (c0)
−1, α, and β = c0α. The proof of Theorem 2.1 is complete.
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4 Some special cases

We begin with few comments. Assumption (A2) with the particular choice σ = σ̂, reads as� T

0
⟨σ̂(t), δu(t)⟩ dt+ Γ(δu) ≥ c0∥δu∥21. (31)

This inequality, required for all δu ∈ U − û, is shown in [9] to be sufficient for the property of strong
metric sub-regularity, which is substantially weaker than Sbi-MR. Moreover, the condition4� T

0
⟨σ̂(t), δu(t)⟩ dt+ 1

2
Γ(δu, δx) ≥ c0∥δu∥21, ∀ δu ∈ U − û, ∥δu∥1 – sufficiently small,

is sufficient for strict local optimality of û in an L1-neighborhood. This last condition is weaker
than (31), as shown in [9].

Assumption (A2) is fulfillled on the following (more compact) one.

Assumption (A2’). There exist numbers c0, α0 > 0 and γ0 > 0 such that� T

0
|⟨σ(t), δu(t)⟩| dt+ Γ(δu) ≥ c0∥δu∥21, (32)

for every function σ ∈ IBW 1,∞(σ̂; γ0) and for every δu ∈ U − U with ∥δu∥1 ≤ α0.

The implication (A2’) =⇒ (A2) is obvious.

Now we focus on the first-order term in (32) under an additional condition introduced in [5] in a
somewhat stronger form and for box-like sets U .

Assumption (B). The set U is a convex and compact polyhedron. Moreover, there exist numbers
κ > 0 and τ > 0 such that for every unit vector e parallel to some edge of U and for every s ∈ [0, T ]
for which ⟨σ̂(s), e⟩ = 0 it holds that

|⟨σ̂(t), e⟩| ≥ κ|t− s| t ∈ [s− τ, s+ τ ] ∩ [0, T ].

The next lemma claims that Assumption (B) remains valid for all functions σ close enough to
σ̂ in W 1,∞.

Lemma 4.1. Let assumptions (A1) and (B) be fulfilled. Then there exist numbers κ� > 0, τ � > 0
and γ� > 0 such that for every function σ ∈ IBW 1,∞(σ̂; γ�), for every unit vector e parallel to some
edge of U and for every s ∈ [0, T ] for which ⟨σ(s), e⟩ = 0, it holds that

|⟨σ(t), e⟩| ≥ κ|t− s| t ∈ [s− τ, s+ τ ] ∩ [0, T ].

4 The left-hand side in the next inequality is just the second order Taylor expansion of the objective functional
J(u) in (1).
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Proof. The proof combines arguments from the proof of Proposition 3.4 in [11] and the proof
of Proposition 3.1 in [9], therefore we only sketch it focusing on the differences with the proofs
mentioned above.

First of all, Assumption (B) implies that the reference control û is piece-wise constant. This
follows from the fact that ⟨σ̂(t), e⟩ has not more than T/τ + 1 zeros in [0, T ] and U has a finite
number of edges. More details are given in the proof of Proposition 3.1 in [9].

From the definition of σ̂, (A1) and the fact that û is a piece-wise constant function we obtain
that σ̂ has a piece-wise continuous derivative. Let us fix e as in Assumption (B), and denote
σ̂e := ⟨σ̂(t), e⟩. Let ŝ1, . . . , ŝk be the zeros of σ̂e in [0, T ]. For δ > 0 define

Ω(δ) := ∪k
i=1[ŝi − δ, ŝi + δ].

Choose δ > 0 so small that δ < τ and there are no other points of discontinuity of ˙̂σ in Ω(δ) except
possibly ŝ1, . . . , ŝk. Denote

˙̂σ−
e (ŝi) := lim

t→ŝi−0

˙̂σ(t), ˙̂σ+
e (ŝi) := lim

t→ŝi+0

˙̂σ(t), i = 1, . . . , k.

By choosing δ > 0 smaller, if needed, we may ensure that

| ˙̂σ(t)− ˙̂σ−
e (ŝi)| ≤

κ

4
for t ∈ [ŝi − δ, ŝi], | ˙̂σ(t)− ˙̂σ+

e (ŝi)| ≤
κ

4
for t ∈ [ŝi, ŝi + δ].

Then for every i and t ∈ [ŝi − δ, ŝi] we have from Assumption (B) that

κ|t− ŝi| ≤ |σ̂e(t)− σ̂e(ŝi)| =
((( � t

ŝi

˙̂σe(θ) dθ
((( ≤ � t

ŝi

| ˙̂σ−
e (ŝi)| dθ +

� t

ŝi

| ˙̂σ−
e (ŝi)− ˙̂σe(θ)| dθ

≤ |t− ŝi| | ˙̂σ−
e (ŝi)|+

κ

4
|t− ŝi|

Hence,

| ˙̂σ−
e (ŝi)| ≥

3κ

4
.

Analogously we obtain the same estimate for | ˙̂σ+
e (ŝi)|.

Obviously there exists η > 0 such that |σ̂e(t)| ≥ η for every t ∈ [0, T ] \ Ω(δ/2). By choosing
the number γ ∈ (0, κ/4] sufficiently small we have that for every σ ∈ IBW 1,∞(σ̂; γ) the function
σe = ⟨σ, e⟩ has no zeros in [0, T ] \ Ω(δ/2). Now let us take an arbitrary σ as in the last sentence.
Let s be an arbitrary zero of σe in [0, T ]. Then there exists ŝi such that |s − ŝi| ≤ δ/2. For
t ∈ [s− δ/2, s+ δ/2] we can estimate

|σe(t)| =
((( � t

s
σ̇e(θ) dθ

((( ≥ ((( � t

s

˙̂σe(θ) dθ
(((− � t

s
|σ̇e(θ)− ˙̂σe(θ)| dθ

((( ≥ ((( � t

s

˙̂σe(θ) dθ
(((− γ|t− s|.

For the last integral we have((( � t

s

˙̂σe(θ) dθ
((( ≥ ((( � t

s
ζ(θ) dθ

(((− � t

s
| ˙̂σe(θ)− ζ(θ)| dθ,

where ζ(θ) is either ˙̂σ−
e (ŝi) or

˙̂σ+
e (ŝi) depending on whether θ < ŝi or θ > ŝi. Thus we can estimate

|σe(t)| ≥ 3κ

4
|t− s| − κ

4
|t− s| − γ|t− s| ≥ κ

4
|t− s|.

Thus we obtain the claim of the lemma with κ� = κ/4, τ � = δ/2 and γ� = γ. □

12



Proposition 4.2. Let assumptions (A1) and (B) be fulfilled. Then there exist numbers c0, α0 > 0
and γ0 > 0 such that � T

0
|⟨σ(t), δu(t)⟩| dt ≥ c0∥δu∥21, (33)

for every function σ ∈ IBW 1,∞(σ̂; γ0) and for every δu ∈ U − U with ∥δu∥1 ≤ α0.

Having at hand Lemma 4.1, the proof repeats that of Proposition 3.1 in [9].

Remark 4.3. A more slightly precise modification of the proof of Lemma 4.1 shows that the
number κ� can be taken as any number smaller than κ (from Assumption (B)). Moreover, the
constant c0 in Proposition 4.2 is directly related with number κ� (thus with κ). In the simplest
case of scalar control and U = [u1, u2] is straightforward. As obtained in the proof of Lemma 4.1,
Assumption (B) implies in this case that σ̂ has finite number of zeros, ŝ1, . . . , ŝk, and ˙̂σ is piece-wise
continuous. If the number Q satisfies

liminf
t→ŝi

| ˙̂σ(t)| ≥ Q 1 = 1, . . . , k,

(the liminf is taken over all t at which the derivative exists) then a simple calculation shows that
the claim of Proposition 4.2 holds with any number c0 ≤ Q/(8k(u2 − u1)).

Example 1. This example shows that Sbi-MR of the optimality mapping may hold even for
problems that are non-convex, namely, the objective functional J in (1) is even directionally non-
convex at the optimal control û. Consider the problem

min
�
J(u) :=

� 1

0

�
− α

2
(x(t))2 − βx(t) + u(t)

�
dt
	
,

subject to
ẋ = u, x(0) = 0, u(t) ∈ [0, 1].

Here α and β are positive parameters satisfying β > 1, 2α ≤ β.
The solution of the adjoint equation ṗ = αx + β, p(1) = 0 is strictly monotone increasing and

the switching function, σ(t) = p(t) + 1, is positive at t = 1. This implies that only optimal control
has the structure

û(t) =

�
1 for t ∈ [0, τ ],
0 for t ∈ (τ, 1].

The corresponding solutions of the primal and the adjoint equations are

x̂(t) =

�
t for t ∈ [0, τ ],
τ for t ∈ (τ, 1],

and p̂(t) =

�
α
2 (τ

2 + t2) + βt− ατ − β for t ∈ [0, τ ],
t(ατ + β)− ατ − β for t ∈ (τ, 1].

A simple calculation shows that for β > 1 the optimal control û has

τ =
−(β − α) +

%
(β − α)2 + 4α(β − 1)

2α
∈ (0, 1).
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For the corresponding switching function σ̂ = p̂+1 we have ˙̂σ(τ) = ατ + β > β. Then Assumption
(B) is fulfilled with κ < β. According to Remark 4.3, we have� 1

0
|σ̂(t)δu(t)| dt ≥ β

2
∥δu∥21 ∀ δu ∈ U − U with a sufficiently small ∥δu∥1.

Moreover,

Γ(δu) = −
� 1

0
α(δx(t))2 dt = −α

� 1

0

�� t

0
δu(s) ds

�2
dt ≥ −α∥δu∥21.

Thus for 2α < β Assumption (A2’) is fulfilled and the optimality mapping for the considered
problem is Sbi-MR at (x̂, û, p̂) for zero. On the other hand, considering again the expression for the
second variation Γ, we see that Γ(δu) < 0, except some specially constructed control variations δu.
Thus the objective functional J(u) in this example is not convex even directionally at the solution
point û.

5 An application: uniform convergence of the Euler discretization

In this section we prove that the sufficient conditions for Sbi-MR (this is essentially Assumption
(A2)) imply a property that can be called uniform strong sub-regularity concerning a family of
optimal control problems “neighboring” a given reference problem. This property is shown to
imply a uniform error estimate for the accuracy of the Euler discretization scheme, applied to any
of the problems of the family.

We consider again the reference problem (1)-(3) together with the fixed solution (x̂, p̂, û) of its
optimality system (7)–(9). Assumptions (A1) and (A2) will hold, with the additional supposition
in (A1) that f and g are time-invariant.

Together with the reference problem, we consider a family of problems of the same kind, each
defined by a pair of time-invariant functions π := (f̃ , g̃) satisfying Assumption (A1) (with f and g
replaced with f̃ and g̃). Any such pair will be called admissible, and (Pπ) will denote the problem
corresponding to the pair π, that is, the problem

min
u∈U

�� T

0
g̃(x(t), u(t)) dt

�
(34)

subject to
ẋ(t) = f̃(x(t), u(t)), x(0) = x0. (35)

Due to relation (10), we restrict our consideration to admissible pairs π defined on the set D :=
IBRn(0, M̄) × U . Given a positive number ρ, we denote by Hρ the set of all admissible pairs
π = (f̃ , g̃) such that

∥f̃ − f∥1,∞ + ∥g̃ − g∥1,∞ ≤ ρ, (36)

where the W 1,∞-norms are taken for functions defined on the set D.
For a given π = (f̃ , g̃) ∈ Hρ, we consider the mapping Φπ : Y → Z defined by

Φπ(x, p, u) =

 ẋ− f̃(x, u)

ṗ+∇xH̃(x, p, u)

∇uH̃(x, p, u) +NU (u)

 (37)

where H̃ is the Hamiltonian corresponding to the pair π, and where as before NU (u) ⊂ L∞ is the
normal cone to the set U of admissible controls at u. The following lemma is technical.
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Lemma 5.1. Let π = (f̃ , g̃) belong to Hρ and φπ : Y → Z be defined as

φπ(x, p, u) =

 φ1
π(x, p, u)

φ2
π(x, p, u)

φ3
π(x, p, u)

 :=

 f(x, u)− f̃(x, u)

∇xH̃(x, p, u)−∇xH(x, p, u)

∇uH̃(x, p, u)−∇uH(x, p, u)

 . (38)

There exists a positive constant c such that

dZ(φπ(y), 0) ≤ cρ ∀y ∈ Y. (39)

Proof. Let y = (x, p, u) ∈ Y . We estimate each one of the components of φπ(y). First,

∥φ1
π(y)∥1 = ∥f(x, u)− f̃(x, u)∥1 ≤ Tρ.

In a similar way,

∥φ2
π(y)∥1 = ∥∇xH̃(x, p, u)−∇xH(x, p, u)∥1 ≤ ∥f̃x − fx∥1∥p∥∞ + ∥g̃x − gx∥1 ≤ (M̄ + 1)Tρ.

Analogously,
∥φ3

π(y)∥∞ ≤ (M̄ + 1)ρ.

The result follows. □

We remind the notion of Strong Metric sub-Regularity (SMsR) for a set-valued mapping Φ :
Y → Z. We make use of this notion in the following results.

Definition 5.2. A set valued mapping Φ : Y → Z is Strong Metric sub-Regular (SMsR) at y∗ for
zero if 0 ∈ Φ(y∗) and there exist a, b > 0 and κ > 0 such that for any z ∈ BZ(0, b) and any solution
y ∈ BY (y

∗, a) of the inclusion z ∈ Φ(y) it holds that dY (y, y
∗) ≤ κdZ(z, 0). We call a, b and κ the

parameters of SMsR.

According to Theorem 3.1 in [9], Assumption (A2) implies that the optimality map F in (11)
is SMsR at ŷ for zero (see Section 4). We fix its parameters a, b > 0 and κ > 0 of SMsR.

Proposition 5.3. Let π belong to Hρ and y∗ ∈ BY (ŷ, a) be a solution of problem (Pπ). There
exists a positive constant κ� such that

dY (ŷ, y
∗) ≤ κ�ρ, (40)

for all sufficiently small ρ.

Proof. We can write Φπ = φπ+F , where φπ is the map (38) in Lemma 5.1 and F is the optimality
mapping (11). Let c > 0 be the constant in that lemma, so that dZ(φπ(y), 0) ≤ cρ for all y ∈ Y .
We can choose ρ small enough to ensure φπ(y) ∈ BZ(0, b) for all y ∈ Y . Since y∗ is a solution
of problem (Pπ), the inclusion 0 ∈ φπ(y

∗) + F (y∗) is satisfied. By SMsR, we have the desired
inequality with κ� := cκ. □

Analogously as we defined the functional Γ; given a π ∈ H and a reference solution y∗ of problem
(Pπ), we consider the functional Γπ : L1 → R defined in terms of π and y∗ as in (13). Explicitly,
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Γπ(δu) =

� T

0

�
⟨H̃xx(y

∗(t))δx(t), δx(t)⟩+ 2⟨ H̃ux(y
∗(t))δx(t), δu(t)⟩

�
dt,

where δx is the solution of the equation ˙δx(t) = f̃x(x
∗(t), u∗(t))δx(t) + f̃u(x

∗(t), u∗(t))δu(t) with
initial condition δx(0) = 0.

The following lemma establishes an estimation involving the functionals Γπ and Γ.

Lemma 5.4. Let π belong to Hρ and y∗ ∈ BY (ŷ, a) be a solution of problem (Pπ). There exists a
constant η > 0 such that

|Γ(v − u∗)− Γπ(v − u∗)| ≤ η ρ∥v − u∗∥21 ∀v ∈ U ,

for all sufficiently small ρ.

Proof. Using Proposition 5.3 and the Lipschitz continuity of the functions involved, we can find
positive constants cw and cs such that

∥Ĥxx − H̃∗
xx∥1 ≤ cwρ, (41)

and
∥Ĥux − H̃∗

ux∥∞ ≤ csρ. (42)

Let v ∈ U and v� = v − u∗, we denote by δx̂ and δx∗ the solutions of

ẋ = Âx+ B̂v�, x(0) = 0, ẋ = Ã∗x+ B̃∗v�, x(0) = 0, (43)

respectively. There exist positive constants d1 and d2 such that

max {∥δx̂∥∞, ∥δx∗∥∞} ≤ d1∥v�∥1, (44)

and
∥δx̂− δx∗∥∞ ≤ d2ρ∥v�∥1. (45)

Now,

|Γ(v�)− Γπ(v
�)| ≤

((((� T

0

�
⟨ Ĥxxδx̂, δx̂⟩ − ⟨ H̃∗

xxδx
∗, δx∗⟩

�((((+ 2

((((� T

0

�
⟨ Ĥuxδx̂− H̃∗

uxδx
∗, v�⟩

�((((
≤

� T

0
|⟨ Ĥxxδx̂, δx̂− δx∗⟩|+

� T

0
|⟨ Ĥxxδx̂− H̃∗

xxδx
∗, δx∗⟩|+ 2

� T

0
|⟨ Ĥuxδx̂− H̃∗

uxδx
∗, v�⟩|

≤ ∥Ĥxxδx̂∥1∥δx̂− δx∗∥∞ +
�∥Ĥxx(δx̂− δx∗)∥1 + ∥(Ĥxx − H̃∗

xx)δx
∗∥1

�∥δx∗∥∞+

2
�∥Ĥux(δx̂− δx∗)∥∞ + ∥(Ĥux − H̃∗

ux)δx
∗∥∞

�∥v�∥1.
Taking (41)-(45) into account, the result follows. □

Theorem 5.5. There exist ζ, ã, b̃ > 0 and κ̃ > 0 such that if π ∈ Hζ and y∗ ∈ BY (ŷ, a) is a
solution for problem (Pπ), then the map Φπ is SMsR at y∗ for zero with parameters ã, b̃, κ̃.
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Proof. Let c0, α0 > 0 and γ0 > 0 be the numbers in Assumption (A2). If y∗ is a solution for
problem (Pπ), we have 0 ∈ Φπ(y

∗). By Proposition 5.3, there exists ζ > 0 such that for any
π ∈ Hζ , dY (ŷ, y

∗) < κ�ζ for some constant κ� > 0. We consider ζ small enough to guarantee
∥σ̂ − σ̃∗∥1,∞ ≤ γ0 and ∥û− u∗∥1 < α0. Let α̃0 := α0 − ∥û− u∗∥1, so BL1(u∗; α̃0) ⊂ BL1(û;α0).

By Assumption (A2),� T

0
⟨ σ̃∗, v − u∗⟩+ Γ(v − u∗) ≥ c0∥v − u∗∥21 ∀v ∈ U ∩BL1(u∗; α̃0), (46)

or� T

0
⟨ σ̃∗, v − u∗⟩+ Γπ(v − u∗) ≥ c0∥v − u∗∥21 +

�
Γπ(v − u∗)− Γ(v − u∗)

�
∀v ∈ U ∩BL1(u∗; α̃0).

Taking Lemma 5.4 into account, we can choose ζ smaller if needed to ensure

Γπ(v − u∗)− Γ(v − u∗) ≥ −c0
2
∥v − u∗∥21 ∀v ∈ U ∩BL1(u∗; α̃0).

Thus, � T

0
⟨σ∗, v − u∗⟩+ Γπ(v − u∗) ≥ c0

2
∥v − u∗∥21 ∀v ∈ U ∩BL1(u∗; α̃0). (47)

Let L be a bound for the Lipschitz constants of f, g and H their first derivatives in x, and Hxu, Hup.
It is easy to see that L̃ := L+2(1+ M̄)ζ is a bound for the Lipschitz constants of f̃ , g̃ and H̃, their
first derivatives in x, and H̃xu, H̃up for all π ∈ Hζ . Analogously, we can find a bound M̃ , depending
on ζ and M̄ , for the functions f̃ , H̃ and their derivatives (see Remark 2.1 in [9]). Finally, (47)
implies that the hypotheses of Theorem 3.1 in [9] are fulfilled. We conclude that Φπ is SMsR at y∗

for zero. According to that theorem, the parameters of SMsR can be chosen as depending only on
M̃, T, c0 and L̃. This completes the proof. □

From now on, we only consider elements π ∈ Hζ , since the latter theorem ensures that each
map Φπ is SMsR at a solution y∗ ∈ BY (ŷ, a) for zero. This automatically ensures that y∗ is the
unique local solution in BY (ŷ, a) of the inclusion 0 ∈ Φπ(y).

Let {tn}Nn=0 be a grid on [0, T ] with equally spaced nodes and a step size h, that is, tk = kT/N for
i = 0, . . . , N . Given a π ∈ Hζ , the discrete time problem (Ph

π ) obtained by the Euler discretization
is

min
u∈UN

�
h

N−1&
i=0

g̃(xi, ui)

�
(48)

subject to
xi+1 = xi + hf̃(xi, ui), x0 = x0. (49)

The local form of the discrete time minimum principle implies that for any locally optimal solution
(x, u) of problem (Ph

π ) there exists a vector p = (p0, . . . , pN ) such that

xi+1 = xi + hf̃(xi, ui), x0 = x0, (50)

λi = λi+1 + h∇xH̃(xi, ui, pi+1), pN = 0, (51)

0 ∈ ∇uH̃(xi, ui, pi+1) +NU (ui), (52)
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where i runs between 0 and N − 1. Let (xh, uh) be a solution of problem (Ph
π ) and ph the cor-

responding co-state vector, so that yh = (xh, ph, uh) satisfies (50)-(52). In order to compare this
solution to the reference solution of y∗ = (x∗, p∗, u∗) of the continuous-time problem (Pπ), we em-
bed the sequence (xh, ph, uh) into the space W 1,1 ×W 1,1 ×L1 considering yh = (xh, ph, uh) defined
by

xh(t) := xhi +
t− ti
h

(xhi+1 − xhi ), uh(t) := uhi , ph(t) := phi +
t− ti
h

(phi+1 − phi ), (53)

for t ∈ [ti, ti+1), i = 0, . . . , N − 1.

We need the following technical assumption to apply results in [9]. It is a crucial assumption, at
least because it may happen that yh is close to some other local solution of the continuous-time
problem, and we have to eliminate this possibility.

Assumption (C1). Let π ∈ Hζ . We assume that problem (Pπ) has a solution y∗ in BY (ŷ, a).
Moreover, the embedded solution yh in (53) of problem (Ph

π ) belongs to BY (y
∗, ã) for all sufficiently

small h.

The following theorem is a direct consequence of Theorem 5.5 and Theorem 5.1 in [9].

Theorem 5.6. There exists a positive constant C such that for all π ∈ Hζ for which Assumption
(C1) holds, the estimate

∥xh − x∗∥1,1 + ∥ph − p∗∥1,1 + ∥uh − u∗∥1 ≤ Ch (54)

holds for all sufficiently small h.

Proof. By Theorem 5.5, the parameters ã, b̃, κ̃ of SMsR of Φπ at y∗ for zero are the same for all
π ∈ Hζ satisfying Assumption (C1).

Let π ∈ Hζ . In order to make use of the SMsR property of the map Φπ, we have to estimate
the residuals

Δ1 := ẋh − f̃(xh, uh),

Δ2 := ṗh +∇xH̃(xh, ph, uh),

Δ3 := ∇uH̃(xhi , p
h
i , u

h
i )−∇uH̃(xh, ph, uh), t ∈ [ti, ti+1), i = 0, . . . , N − 1.

Repeating the calculations in the proof of Theorem [9, Theorem 5.1], we obtain

max {∥Δ1∥1, ∥Δ2∥1, ∥Δ3∥∞} ≤ max {1, T} L̃(1 + 2M̃)h, (55)

where L̃, M̃ are the numbers in Theorem 5.5. We can choose h0 > 0 depending on L̃, M̃ , T and b
so that ∥Δ1∥1 + ∥Δ2∥1 + ∥Δ3∥∞ ≤ b for all h ≤ h0. The claim follows from the SMsR property
of Φπ with C := 3κ(1 + 2M̃)L̃max {1, T}. The proof is complete since this holds for any arbitrary
π ∈ Hζ satisfying Assumption (C1). □
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Chapter 3

On the Accuracy of the Model
Predictive Control

This chapter consists of the paper:

❼ Angelov, Georgi and Domı́nguez Corella, Alberto and Veliov, Vladimir M.: On the accuracy of the
model predictive control method.

It was published in SIAM Journal on Control and Optimization : Volume 4, pages 2469-2487, year 2022.
The paper was written between the second and the third author in several stages, and in deep collaboration.
The thesis author (second) was very involved in all sections of the paper as well as with the main result.
The author wrote parts of each section, and helped the first author to write the section concerned with the
numerical analysis, although he was not involved in the computations (creating and running the program).
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On the accuracy of the model predictive control method∗

Georgi Angelov† Alberto Domı́nguez Corella‡ Vladimir M. Veliov§

Abstract

The paper investigates the accuracy of the Model Predictive Control (MPC) method for finding on-
line approximate optimal feedback control for Bolza type problems on a fixed finite horizon. The pre-
dictions for the dynamics, the state measurements, and the solution of the auxiliary open-loop control
problems that appear at every step of the MPC method may be inaccurate. The main result provides an er-
ror estimate of the MPC-generated solution compared with the optimal open-loop solution of the “ideal”
problem, where all predictions and measurements are exact. The technique of proving the estimate in-
volves an extension of the notion of strong metric sub-regularity of set-valued maps and utilization of a
specific new metric in the control space, which makes the proof non-standard. The result is specialized
for two problem classes: coercive problems, and affine problems.

Keywords: optimal control, Lagrange problem, model predictive control, metric sub-regularity

MSC Classification: 93B45, 49M99, 49J40, 47J20

1 Introduction

Model Predictive Control (MPC) is a powerful method for approximate on-line feedback control, widely
used in industrial applications and recently in digital engine control and microelectronics, see, e.g., [21,
26, 29]. On the other hand, the rigorous mathematical theory investigating the scope of validity and the
efficiency of the MPC method under appropriate assumptions is still underdeveloped (see Remark 1.1 below
for some related comments). The present paper contributes to this theory by investigating the accuracy of
a version of the MPC method applied to a finite horizon optimal control problem (the so-called economic
MPC with shrinking horizon).

To set the stage, we consider the following optimal control problem, further denoted by Pp(0,x0):

min
u∈U

�
Jp(u) := gT (x(T ))+

� T

0
g(p(t),x(t),u(t)) dt

	
, (1)

subject to
ẋ(t) = f (p(t),x(t),u(t)) x(0) = x0. (2)

∗This research is supported by the Austrian Science Foundation (FWF) under grant No I4571.
†Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology, Austria,

georgi.angelov@tuwien.ac.at
‡Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology, Austria,

alberto.corella@tuwien.ac.at
§Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology, Austria,

vladimir.veliov@tuwien.ac.at
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Here the state vector x(t) belongs to Rn and the control function u(·) belongs to the set U of all Lebesgue
measurable functions u : [0,T ]→U , where U ⊂Rm. The function p represents an uncertain time-dependent
parameter which is known to belong to a set Π of bounded Lebesgue measurable functions p : [0,T ]→ Rl .
Correspondingly, f , g, and gT are defined on Rl ×Rn×Rm with values in Rn and R, respectively. The initial
state x0 ∈ Rn and the final time T > 0 are fixed.

A version of the MPC method (called further MPC algorithm) applied to the above problem is described
in detail in Subsection 3.1. Here, we briefly present the main result given in Theorem 3.1, Subsection 3.2.
It is assumed that for some particular parameter function, p̂, equation (2) represents a real system, therefore
problem (1)–(2) with p = p̂ (that is, problem Pp̂(0,x0)) is called reference problem. However, p̂ and the
initial state x0 are not assumed to be exactly known. The MPC algorithm generates a control function by
solving a sequence of auxiliary open-loop optimal control problems. Given a mesh 0= t0 < t1 < .. .< tN = T ,
the auxiliary problem at the k-th step is of the same kind as (1)–(2), but on the shorter time-interval [tk,T ]. A
prediction p for the parameter function on [tk,T ] is given, and the initial state at tk is obtained by measuring
the real systems state at time tk. Both the prediction and the measurement may be inaccurate. In addition,
the auxiliary problem at the k-th step is only approximately solved, which is another source of error. The
approximate optimal control in the k-th auxiliary problem is only applied to the ‘’real” system on the interval
[tk, tk+1], then the procedure is further repeated on the next interval, resulting at the end in what is called the
MPC- generated control.

The main result in the paper gives an estimate of the difference between the MPC-generated control and
the optimal open-loop control for the reference problem (the latter corresponding to the “ideal” scenario
where the prediction, the measurement, and the solution of the auxiliary problems are all exact). A remark-
able feature of the estimation is that the overall error of the MPC-generate control depends on the average
of the errors appearing at the steps of the algorithm, thus occasional relatively large errors in the prediction
or measurement do not substantially damage the MPC-generated control. Another interesting feature of the
overall error is that for some classes of problems it depends linearly on the averaged errors appearing at the
steps of the method, while for other classes, the estimate of the overall error depends on the square root
of the averaged errors (and this estimate is sharp). We mention that an estimate of the difference between
the MPC-generated control and the realization of the optimal feedback control in the reference problem is
obtained [12]. In [11], this result is extended to a comparison with the optimal open-loop control in the
reference problem, as in the present paper. However, in both quoted papers the results are obtained within a
much more restrictive framework: a single prediction is used which does not change from step to step, the
results only apply to the Euler discretization of the auxiliary problems, and most importantly, the reference
optimal control problem is assumed coercive (see Subsection 4.1 for the notion). In fact, the main goal of
the present paper is to extend the results about the accuracy of the MPC method beyond the coercive case,
especially for affine control problems.

Remark 1.1. There is an amount of literature related to robustness of the MPC method, see e.g., [23, 19]
and several chapters in [26]. Stabilization or target problems for discrete dynamics are usually considered
for particular classes of problems, and various notions of robustness and approaches are investigated – see
e.g. the overview paper [3, Chapter by Raković]. The result in the present paper, as explained above, is
more related to the paper [20]. In that paper the accuracy of the MPC method is investigated (for a general
class of discrete-time problems) in terms of the objective value, only. Of course, this is the primal accuracy
criterion, however, it is of interest to know how close are the MPC-generated control and trajectory to the
one optimal open-loop ones for the case of exact and complete information. The present paper contributes to
this issue and, most importantly, employs and further develops the approach based on the general property
of strong sub-regularity of a map associated with the problem into consideration.

2



The main result (the error estimate in Theorem 3.1) is obtained under general assumptions; the most
demanding one is the requirement that the map associated with the first order optimality conditions (called
optimality map) for the reference problem is strongly metrically sub-regular in an appropriate space setting.
In Subsection 2.1, we extend the abstract notion of strong metric sub-regularity of a set-valued map by
involving two metrics in the domain of the map. In Subsection 2.2, we define the optimality map and the
space setting. In the control space (which is a projection of the domain of the optimality map) we introduce
a specific new metric, which is of key importance for the analysis of the MPC method and may be useful in
other contexts.

The proof of Theorem 3.1 (given in Appendix) is non-trivial and substantially differs from all proofs of
error estimates in optimal control that the authors know.

Section 4 presents or recalls sufficient conditions for the extended strong metric sub-regularity of the
optimality map for two non-intersecting classes of problems: for coercive problems and for affine problems.
The paper concludes with an example where the MPC algorithm is applied to a spacecraft stabilization
problem. The numerical results confirm the theoretical error estimate and its sharpness.

2 Preliminaries

2.1 Strong sub-regularity

Here we introduce a notion which extends the property of Strong (metric) sub-Regularity (Ss-R) (see, e.g.,
[16, Chapter 3.9 ] and the recent paper [5]). Namely, we consider a general metric space Y in which two
metrics are defined: d and d∗, and another metric space Z with a metric dZ . We denote by IB(y;α) the
closed ball with radius α ≥ 0 in (Y ,d) centered at y, by IB∗(y;α) the ball with radius α ≥ 0 in (Y ,d∗), and
similarly, IBZ (z;α) is the respective ball in Z .

Definition 2.1. A set-valued map Φ : Y ⇒ Z is called Ss-R at (ŷ, ẑ) ∈ Y ×Z (with respect to the metrics
d and d∗) if ẑ ∈ Φ(ŷ) and there are positive constants α,β and κ (called further parameters of Ss-R) such
that

d∗(y, ŷ) ≤ κdZ (z, ẑ) for all y ∈ IB(ŷ;α), z ∈ Φ(y)∩ IBZ (ẑ;β ).

The Ss-R property plays a fundamental role in the error analysis of numerical methods. It was introduced
under this name in [15], but has also been used under several other names (see also [22, Chapter 1] for the
related but stronger property of strong upper regularity). A more detailed historical account can be found in
[5, Section 1]. The extension with two metrics in Y , presented above, is essential for the applications in the
present paper.

The following simple claim is a modification of [5, Theorem 2.1] for the case of two metrics in Y .

Proposition 2.2. Assume that Z is a linear space and dZ is a shift-invariant metric in Z . Assume, in
addition, there exists a number γ > 0 such that d(y1,y2)≤ γd∗(y1,y2) for every y1,y2 ∈Y . Let Φ : Y ⇒Z
be Ss-R at (ŷ, ẑ) with parameters α ′,β ′ and κ ′. Let the positive numbers ε,µ,κ,α,β satisfy the relations

α ≤ α ′, β +µα + ε ≤ β ′, µγκ ′ < 1, κ =
κ ′

1−µγκ ′ . (3)

Then for every function ϕ : Y → Z that satisfies the conditions

dZ (ϕ(ŷ),0)≤ ε, dZ (ϕ(y),ϕ(ŷ))≤ µ d(y, ŷ) ∀y ∈ IB(ŷ;α),

the map ϕ +Φ is strongly sub-regular at (ŷ, ẑ+ϕ(ŷ)) with parameters α,β and κ .
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Proof. Obviously, (ŷ, ẑ+ ϕ(ŷ)) ∈ graph (ϕ +Φ). Let us fix arbitrarily z ∈ IBZ (ẑ;β ) and y ∈ IB(ŷ;α) ⊂
IB(ŷ;α ′) such that z ∈ ϕ(y)+Φ(y). Then z−ϕ(y) ∈ Φ(y), and

dZ (z−ϕ(y), ẑ)≤ dZ (z, ẑ)+dZ (ϕ(y),ϕ(ŷ))+dZ (ϕ(ŷ),0)
≤ β +µα + ε ≤ β ′.

Due to the Ss-R property of Φ we estimate

d∗(y, ŷ) ≤ κ ′dZ (z−ϕ(y), ẑ)≤ κ ′dZ (z, ẑ+ϕ(ŷ))+κ ′dZ (ϕ(y),ϕ(ŷ))
≤ κ ′dZ (z, ẑ+ϕ(ŷ))+κ ′µ d(y, ŷ)≤ κ ′dZ (z, ẑ+ϕ(ŷ))+κ ′µγ d∗(y, ŷ),

which implies the claim of the theorem due to the definition of κ in (3). □

2.2 The optimality map

Problem Pp(0,x0) given by (1)–(2) will be considered under the following assumptions.

Assumption (A1). The set U is convex and compact. The functions f , g, and gT are two times differentiable
with respect to (x,u), these functions and their first and second derivatives in (x,u) are Lipschitz continuous
(with respect to (p,x,u)) with a Lipschitz constant L.

For any p ∈ Π, along with problem Pp(0,x0) we consider the family, denoted by Pp(τ,xτ), consisting of
problems which have the same form as (1)–(2) but with the initial time 0 replaced with any τ ∈ [0,T ) and
x0 replaced with any xτ ∈ Rn. Of course, then only the restriction of the parameter p to [τ,T ] matters.

Assumption (A2). For every u ∈ U , x0 ∈ Rn, and p ∈ Π equation (2) has a solution x on [0,T ] (which is
then unique due to Assumption (A1)). For every τ ∈ [0,T ), xτ ∈ Rn and p ∈ Π problem Pp(τ,xτ) has an
optimal solution.

Since the analysis in this paper is local, only local Lipschitz continuity of the functions mentioned in As-
sumption (A1) is needed; we assume global Lipschitz continuity to avoid routine technicalities. Assumption
(A2) is also stronger than necessary, again for the sake of transparency. Local existence around a reference
parameter and trajectory (to be introduced later) suffices.

Remark 2.3. Optimality in the last assumption means local optimality of the objective functional with
respect to the L1-norm of the controls. In fact, it is only needed that any solution (x,u) of Pp(τ,xτ) satisfies,
together with an absolutely continuous (adjoint) function λ : [τ,T ]→Rn, the optimality (Pontryagin) system

0 = −ẋ(t)+ f (p(t),x(t),u(t)), x(τ)− xτ = 0, (4)

0 = λ̇ (t)+∇xH(p(t),x(t),λ (t),u(t)), λ (T ) = ∇gT (x(T )), (5)

0 ∈ ∇uH(p(t),x(t),λ (t),u(t))+NU(u(t)), (6)

where

NU(u) :=
� {q ∈ Rn | ⟨q,v−u⟩ ≤ 0 for all v ∈U} if u ∈U,

/0 if u /∈U
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is the normal cone to U at u, and the Hamiltonian H is defined as usual:

H(p,x,λ ,u) := g(p,x,u)+ ⟨λ , f (p,x,u)⟩.

Next, we reformulate the optimality system in functional spaces. The space Lq(τ,T ), q = 1,2, . . . ,∞,
of vector functions on [τ,T ] (with any fixed dimension) has the usual meaning, with the norm denoted by
∥ · ∥q. The space of all absolutely continuous vector functions on [τ,T ] is denoted by W 1,1(τ,T ), with the
norm ∥x∥1,1 = ∥x∥1+∥ẋ∥1. The notations of norms do not include the time horizon, but it will be clear from
the context. For the same reason we often skip the time horizon from the notations of spaces.

Denote

Yτ :=W 1,1(τ,T )×W 1,1(τ,T )×Uτ , Zτ := L1(τ,T )×Rn ×L1(τ,T )×Rn ×L∞(τ,T ),

where Uτ = {u ∈ L∞(τ,T ) : u(t) ∈U for a.e. t ∈ [τ,T ]} is the set of admissible control functions on [τ,T ],
thus U0 = U . We also set Y := Y0 and Z := Z0. The metrics in Yτ and Zτ are given in terms of norms as
follows: for y = (x,λ ,u) ∈ Yτ and z = (ξ ,ν ,η ,π,ρ) ∈ Zτ

d(y,0) := ∥y∥ := ∥x∥1,1 +∥λ∥1,1 +∥u∥1, dZ(z,0) := ∥z∥ := ∥ξ∥1 + |ν |+∥η∥1 + |π|+∥ρ∥∞.

In addition, we define in Y a second metric, d∗, as follows. Let Γ⊂ [0,T ] be a fixed finite set. For u1,u2 ∈Uτ ,
denote

d∗(u1,u2) := inf{ε > 0 : |u1(t)−u2(t)| ≤ ε for a.e. t ∈ [0,T ]\ (Γ+[−ε,ε])}. (7)

Somewhat overloading the notation, we define in Y the shift-invariant metric

d∗(y,0) := ∥x∥1,1 +∥λ∥1,1 +d∗(u,0).

Lemma 2.4. For every u1,u2 ∈ U it holds that

∥u1 −u2∥1 ≤ γ d∗(u1,u2),

where γ := max{1,T +2M diam(U)} and M is the number of points in Γ .

The proof is straightforward. Since γ ≥ 1, we also have ∥y∥ ≤ γ d∗
τ (y,0) for any y ∈ Yτ .

Below we use the same notation for the Nemytskii operator and for its generating function: f (p,x,u)(t)=
f (p(t),x(t),u(t), ∇xH(p,x,λ ,u)(t) = ∇xH(p(t),x(t),λ (t),u(t)), etc. For any p ∈ Π , τ ∈ [0,T ), and xτ ∈Rn

define on Yτ the set-valued map

Φ(p,τ,xτ )(y) = F(p,τ,xτ )(y)+


0
0
0
0

NUτ (u)

 , F(p,τ,xτ )(y) =


−ẋ+ f (p,x,u)

x(τ)− xτ
λ̇ +∇xH(p,x,λ ,u)
λ (T )−∇g(x(T ))

∇uH(p,x,λ ,u)

 ,

where now NUτ (u) is the normal cone to Uτ at u in the space L1(τ,T ), that is,

NUτ (u) :=
� {l ∈ L∞(τ,T ) :

� T
τ ⟨l(t),v(t)−u(t)⟩ dt ≤ 0 for all v ∈ Uτ} if u ∈ Uτ ,

/0 if u /∈ Uτ

= {l ∈ L∞(τ,T ) : l(t) ∈ NU(u(t)) for a.e. t ∈ [τ,T ]}.
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With these notations one can recast the optimality system for problem Pp(τ,xτ) as

0 ∈ Φ(p,τ,xτ )(x,λ ,u),

therefore the map Φ(p,τ,xτ ) is called optimality map. Obviously, due to the compactness of the set U , Φ(p,τ,xτ )

is a set-valued map from Yτ to Zτ .

Let us fix a reference parameter p̂ ∈ Π and denote by (x̂, û) a solution of problem Pp̂(0,x0) (see Re-
mark 2.3). Let λ̂ be the corresponding adjoint function, so that the triplet ŷ := (x̂, λ̂ , û) satisfies the opti-
mality system (4)–(6) with τ = 0 and xτ = x0, or equivalently, the inclusion 0 ∈ Φ(p̂,0,x0)(ŷ). The following
assumption plays a key role in the error analysis of the MPC method presented in the next section.

Assumption (A3). The map Φ(p̂,0,x0) : Y ⇒ Z is strongly sub-regular at (ŷ,0) (in the metrics ∥ · ∥ and d∗ in
Y ) with parameters α̂, β̂ and κ̂ .

The finite set Γ that appears in the definition of the metric d∗ is arbitrary, but will be appropriately specified
in Section 4 for several classes of problems, together with sufficient conditions for (A3).

3 The accuracy of the model predictive control method

This section presents the main result: the estimate of the accuracy of the model predictive control method,
beginning with the description of the method in the context of finite horizon optimal control.

3.1 The model predictive control method

The MPC, applied to optimal control problems containing uncertain parameters, is a method for approxima-
tion of an optimal feedback control in real time by successively solving open-loop optimal control problems.
Each of these open-loop problems involve measurements of the current system state and predictions for the
uncertain parameters. In the next three paragraphs we present a version of the MPC method.

The optimal control problem into question is problem Pp(0,x0), considered under Assumptions (A1)–
(A3), where the parameter function p∈Π is uncertain. It is assumed that for some parameter p̂∈Π equation
(2) with p = p̂ reproduces a “real” system, the states of which can be measured (with a measurement errors).
As in the previous subsections we denote by (x̂, û) a reference optimal solution of Pp̂(0,x0).

Given a natural number N, we denote by {tk}N
k=0 the grid with step-size h = T/N, that is, tk = kh,

k = 0, . . . ,N. The MPC algorithm generates in real time an admissible control function, denoted further by
uN . It is applied to the “real” system, that is, (2) with p = p̂, resulting in a “real” trajectory xN .

At time tk, k = 0, . . . ,N −1, the algorithm does the following.

1. Measure the state xN(tk) with error ek, that is, the vector x0
k = xN(tk)+ ek becomes available.

2. Make a prediction pk ∈ Π for the time horizon [tk,T ].

3. Find an approximate solution (x̃k, ũk) ∈W 1,1 ×Utk of the problem Ppk(tk,x
0
k).

4. Define the control uN as uN(t) = ũk(t) on (tk, tk+1] and apply to the ”real” system on this interval.
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The process continues in the same way as long as k < N. The control uN is called MPC-generated control
and the corresponding trajectory xN of the “real” system (2) with u = uN and p = p̂ is called MPC-generated
trajectory.

Two points are to be clarified. First, the quality of a prediction pk ∈ Π on [tk,T ] will be measured by the
norm ep

k := ∥pk− p̂[tk,T ]∥∞. Second, the pair (x̃k, ũk) is an approximate solution of problem Ppk(tk,x
0
k) in the

sense that for some absolutely continuous λ̃k the triplet ỹk := (x̃k, λ̃k, ũk) satisfies the inclusion (approximate
optimality conditions)

z̃k ∈ Φ(pk,tk,x0
k)
(ỹk) (8)

with some z̃k ∈ Zτ . We mention that most of the numerical methods for optimal control give approximations
with a small residual z̃k. The norm eu

k := ∥z̃k∥ of the residual will be used as a measure of the accuracy of
the approximate solution (x̃k, ũk) of problem Ppk(tk,x

0
k).

3.2 The main theorem

The formulation of the main theorem uses the notations ek, ep
k , eu

k , ũk, uN and xN introduced in the descrip-
tion of the MPC algorithm. In particular, (xN ,uN) is the MPC-generated trajectory-control pair, which is
compared in the next theorem with the reference optimal open-loop solution (x̂, û) of the “real” problem
Pp̂(0,x0).

Theorem 3.1. Let Assumptions (A1)–(A3) be fulfilled. Then there exists numbers N0, δ > 0, C1, C2, and C3
such that for any natural number N ≥ N0, for any sequence of measurement errors {ek}, for any sequence
of predictions pk ∈ Π and approximation errors {eu

k} satisfying the conditions

|ek|+ ep
k + eu

k ≤ δ , ∥ũk − û∥1 ≤ δ , k = 0, . . . ,N −1,

any MPC-generated trajectory-control pair (xN ,uN) satisfies the estimate

∥uN − û∥1 +∥xN − x̂∥1,1 ≤
�

C1E if Γ = /0,
C2

√
E +C3h if Γ ̸= ̸ /0,

where

E :=
1
N

N−1

∑
k=0

(|ek|+ ep
k + eu

k)

is the averaged error appearing at the MPC steps.

The proof of the theorem is postponed to Section 5. Below in this subsection we discuss the obtained result
and the assumptions.

Remark 3.2. About Assumption (A3). Assumptions (A1) and (A2) are standard and non-restrictive, although
somewhat stronger than necessary, as noted after their formulation. Assumption (A3) has to be explained.

First of all, what is the finite set Γ in the definition of the metric d∗ which is involved in (A3) through
the definition of strong sub-regularity? This set may depend on the reference optimal control û of the
unperturbed problem Pp̂(0,x0). Presumably, it consists of points of discontinuity of û, but may be larger in
order to include points at which the optimal control of a slightly disturbed problem may be discontinuous.
Example 3.5 below illustrates this situation. The meaning of the metric d∗ is that the distance between two
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control functions is small in this metric when their values are close to each other, possibly excepting points
that are close to the set Γ. This property of the metric with which the Ss-R assumption (A3) is fulfilled is of
key importance for that convergence and error analysis of the MPC method.

In the next section we shall provide sufficient conditions under which Assumption (A3) is fulfilled in
particular classes of problems with empty or non-empty set Γ.

Remark 3.3. Discussion on the theorem. Theorem 3.1 estimates the error of the MPC-generated solution,
compared with the optimal solution of the reference (unperturbed) problem, caused by prediction errors
{ep

k}k, measurement errors {ek}k, approximation errors {eu
k}k, and the sampling size h. An important point

is that the error estimate in the theorem depends on the average error, E , which means that relatively large
errors may occasionally appear at some MPC steps without a substantial influence on E .

A similar result as in Theorem 3.1 is obtained in [11] in the case Γ = /0 (see Subsection 4.1 of the present
paper). Here we mention that in [11] a prediction made at the beginning is only used, that is, pk = p0 for
all k. Moreover, the result in [11] only applies to the Euler method for approximately solving the auxiliary
problems involved in the MPC algorithm.

Remark 3.4. About the approximate solution of the auxiliary problems Pp(τ,xτ). Finding an approximate
solution of the auxiliary problems is a separate issue that we do not address in detail in this paper. Nu-
merical solutions usually involve time-discretization. Discretization methods with first and second order
accuracy are known for coercive problems (see Subsection 4.1 for the last term), [8, 10], as well as for affine
problems with purely bang-bang optimal controls, [1, 25]. The error in solving the resulting mathematical
programming problems comes in addition. The above mentioned results are proved under assumptions that
imply strong sub-regularity (for appropriate sets Γ) of the optimality maps associated with the considered
problems.

Example 3.5. Sharpness of the estimate. Consider the problem

min{x1(1)− x2(1)},

ẋ1(t) = p(t)x2(t), x1(0) = 0,

ẋ2(t) = u(t), x2(0) = 0, u(t)) ∈ [−1,1].

The reference parameter is p̂ ≡ 1. The measurements are assumed exact, as well as the solutions of the
auxiliary problems at the MPC steps. Thus, in the notations in Theorem 3.1, E = h∑N−1

k=0 ∥pk − p̂∥∞.
The solution of each problem Pp(tk, x̂(tk)) is straightforward: here

λ̃ 2
k (t) =−1+

� 1

t
pk(s) ds, ũk(t) =−sign λ̃ 2(t).

For p̂ we have λ̂ 2(t)< 0 for all t ∈ (0,1], hence û(t)≡ 1. For t = 1 the control function û is not determined
by the Pontryagin necessary optimality condition, because λ̂ 2(0) = 0. This does not matter from the control
perspective, but suggests to define Γ = {0} (see Remark 3.2). As it will become obvious in the next section,
Assumption (A3) is fulfilled for this problem with this Γ.

Let us fix an arbitrary δ > 0 and consider h = 1/N with N > 2 and such that 2h ≤ δ . Define p0 = 1+2h
and take all other predictions exact: pk = 1, k = 1, . . . ,N−1. Then ∥p0− p̂∥∞ ≤ 2h≤ δ . Moreover, E = 2h2.

On the other hand, we have

λ̃ 2
0 (t1) =−1+(1−h)(1+2h) = h(1−2h)> 0.
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Since λ̃ 2
0 is linear and λ̃ 2

0 (1) =−1, we obtain that λ̃ 2
0 (t)> 0 on [0, t1]. Hence, uN(t) = ũ0(t) =−1 on [0, t1].

Then
∥uN − û∥1 ≥ 2h.

Consequently,
∥uN − û∥1√

E
≥ 2h√

2h
≥
√

2.

Since E can be arbitrarily small (for small h), the estimation in the theorem is sharp.

4 Sufficient conditions for strong sub-regularity of the optimality map

In this section we present some classes of problems for which Assumption (A3) has a more particular form
with a specified set Γ, thus Theorem 3.1 is applicable. In addition, we further discuss the approximation
issue mentioned in Remark 3.4.

4.1 The case of coercive problems

Following [9], in this subsection we consider the reference problem Pp̂(0,x0) under the so-called coercivity
condition. To formulate it we use the following notational convention: we skip arguments of functions
with “hat”, shifting the “hat” over the notation of the function, e.g. f̂x(t) := fx( p̂(t), x̂(t), û(t)), Ĥxx(t) :=
Hxx(p̂(t), x̂(t), λ̂ (t), û(t)), etc. Here fx and Hxx are the derivative of f and the Hessian of H, respectively.

Assumption (B1). There is a constant c0 > 0 such for any v ∈ U −U the inequality

⟨g′′
T (x̂(T ))x(T ),x(T )⟩+

� T

0

�⟨Ĥxx(t)x(t),x(t)⟩+2⟨Ĥux(t)x(t),v(t)⟩+ ⟨Ĥuu(t)v(t),v(t)⟩
�

dt ≥ c0∥v∥2
2

is fulfilled, where x is the (unique) solution of the equation ẋ(t) = f̂x(t)x(t)+ f̂u(t)v(t) with x(0) = 0.

It was proved in [9] that Assumption (B1), together with (A1) and (A2), implies (A3) with Γ = /0, thus in this
case the metric in U is d∗ = ∥·∥∞, thus the metric in Y can be taken to be d∗(y,0)= ∥x∥1,∞+∥λ∥1,∞+∥u∥∞.1

Even more, Assumptions (A1), (A2), (B1) imply the stronger property of Strong metric Regularity (SR),
[14, Sect. 3.7] with respect to the norm ∥x∥1,∞+∥λ∥1,∞+∥u∥∞ in the space Y . An important fact is, that the
property SR is stable with respect to functional perturbations with a sufficiently small Lipschitz constant see,
e.g., [14, Proposition 3G.2]). Then it is easy to see that for sufficiently small inaccuracies |ek|, ep

k and eu
k all

the maps Φ(p,tk,x0
k)

that appear in the MPC algorithm are SR, hence Ss-R, with constants that can be chosen
uniformly with respect to k. In connection with Remark 3.4, we mention that thanks to the strong regularity
of the optimality map (or the uniform strong sub-regularity) one can claim O(h) uniform estimation of eu

k if
the Euler discretization with step size h is used in solving the problems Pp(tk,x0

k) (see [17]), and uniform
convergence of the Newton method (see [2]). However, this issue is not at the focus of the present paper and
we do not give precise formulations and details.

1 The terminology of metric regularity was not used in [9] and the control system considered was stationary, but the result was
easily extended to the non-stationary case in many subsequent contributions, see e.g. [13].
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4.2 The case of affine problems with bang-bang optimal controls

In this subsection, we consider problem Pp̂(0,x0) to be affine, i.e., the objective integrand, g, and the
right-hand side, f , in (2) are both affine with respect to u. The set U is assumed to be a convex compact
polyhedron. Using geometric terminology, we denote by V the set of vertices of U , and by E the set of all
unit vectors e ∈Rm that are parallel to some edge of U . As usual, we define the so-called switching function
σ̂ : [0,T ] → Rm by σ̂(t) := Ĥu(t). Here and further we use the notational convention from the previous
subsection: arguments of functions with “hat” are skipped and the “hat” is shifted over the notation of the
functions.

Versions of the following assumption are standard in the literature on affine optimal control problems,
see, e.g., [1, 6, 18, 24].

Assumption (C1). There exist numbers η0 > 0 and µ0 > 0 such that if s ∈ [0,T ] is a zero of ⟨σ̂ ,e⟩ for some
e ∈ E, then

|⟨σ̂(t),e⟩| ≥ µ0|t − s|,

for all t ∈ [s−η0,s+η0]∩ [0,T ].

Assumption (C1) implies that û is bang bang and that, in particular, the set

Γ := {s ∈ [0,T ] : ⟨σ̂(s),e⟩= 0 for some e ∈ E}

is finite. In what follows in this subsection, the metric d∗ in Y is defined through this set Γ, see (7). As it
will be seen in the proof of Theorem 3.1, the advantage of using this metric instead of the L1-norm is that
d∗(u, û) being small not only implies that ∥u− û∥1 is small, but also that |u(t)− û(t)| is small except on a
small set around the zeros of the switching functions ⟨σ̂(t),e⟩, e ∈ E. In this sense, u is structurally similar
to û.

Given ε ≥ 0, we denote
Σ(ε) := [0,T ]\ (Γ+[−ε,ε]).

We recall the following lemma proved in the recent paper [7].

Lemma 4.1. [7, Lemma 2] Let Assumption (C2) be fulfilled. Then there exist positive numbers κ and ε such
that for every functions σ ∈ L∞ with ∥σ − σ̂∥∞ ≤ ε and for every u ∈ U satisfying σ(t)+NU(u(t)) ∋ 0 for
a.e. t ∈ [0,T ] it holds that

u(t) = û(t) for a.e. t ∈ Σ
�
κ∥σ − σ̂∥∞

�
.

With this lemma at hand, we are now ready to establish the following sufficient condition for the fulfill-
ment of Assumption (A3).

Theorem 4.2. Let problem Pp̂(0,x0) be affine and let Assumptions (A1), (A2), and (C1) be fulfilled. Then
the following statements are equivalent:

(i) The map Φ(p̂,0,x0) : Y ⇒ Z is strongly sub-regular at (ŷ,0) in the single metric d in Y ;
(ii) The map Φ(p̂,0,x0) : Y ⇒ Z is strongly sub-regular at (ŷ,0) in the metrics d and d∗ in Y .

Proof. The implication (ii) ⇒ (i) is obvious. Let us prove the converse implication.
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Let α̃, β̃ and κ̃ be the parameters of Ss-R of Φ(p̂,0,x0) (in the single metric d in Y ). Then

∥x− x̂∥1,1 +∥λ − λ̂∥1,1 +∥u− û∥1 ≤ κ̃dZ(z,0) (9)

for all y = (x,λ ,u) ∈ B(ŷ; α̃) and z = (ξ ,ν ,η ,ρ) ∈ BZ(0, β̃ ) satisfying z ∈ Φ(p̂,0,x0)(y). Let us fix arbitrarily
such a pair (y,z). Define σ : [0,T ]→ Rm by σ(t) := ∇uH( p̂,y(t))−ρ . Clearly σ(t)+NU(u(t)) ∋ 0 for a.e.
t ∈ [0,T ]. Moreover, due to the affine structure of the problem, ∇uH(p,y) is independent of u, thus we can
estimate

∥σ − σ̂∥∞ ≤ ∥∇uH( p̂,y)−∇uH(p̂, ŷ)∥∞ +∥ρ∥∞ ≤ L1(∥x− x̂∥∞ +∥λ − λ̂∥∞)+∥ρ∥∞

≤ L1κ̃dZ(z,0)+dZ(z,0) =: c̃dZ(z,0),

where L1 is the Lipschitz constant of ∇uH(p̂, ·).
Define

α̂ = α̃, β̂ = min
�

β̃ ,ε/c̃
	
, κ̂ = κ̃ + c̃κ,

where ε and κ are the numbers in Lemma 4.1. For the pair (y,z) we additionally assume that z ∈ BZ(0, β̂ ).
Then by Lemma 4.1,

u(t) = û(t) for a.e. t ∈ Σ
�
κ c̃dZ(z,0)

�
,

which directly implies d∗(u, û)≤ κ c̃dZ(z,0). Together with (9), we obtain that

d∗(y, ŷ)≤ c̃κdZ(z,0)+ κ̃dZ(z,0) = κ̂dZ(z,0),

which proves (ii) with Ss-R constants α̂ , β̂ , κ̂ . □

A general sufficient condition for strong sub-regularity of the map Φ(p̂,0,x0) : Y ⇒ Z in the single metric
d in Y is given in [24, Theorem 3.1]. It involves the following assumption.

Assumption (C2). There is a constant c0 > 0 such for any v ∈ U − û the inequality� T

0
⟨Ĥu(t),v(t)⟩ dt + ⟨g′′

T (x̂(T ))x(T ),x(T )⟩+
� T

0

�⟨Ĥxx(t)x(t),x(t)⟩+2⟨Ĥux(t)x(t),v(t)⟩
�

dt ≥ c0∥v∥2
1

(10)
is fulfilled, where x is the (unique) solution of the equation ẋ(t) = f̂x(t)x(t)+ f̂u(t)v(t) with x(0) = 0.

In [24, Theorem 3.1] it is proved that Assumption (C2), together with (A1), (A2), and the affine structure of
the problem, implies metric sub-regularity of the optimality map in the single metric d in Y . In contrast to
the L2 coercivity condition in the previous subsection, Assumption (C2) requires “coercivity” with respect
to the L1-norm. It is well known that Assumption (B1) does not hold for affine problems, see [13, Lemma
3]. Another difference between (B1) and (C2) is that the inequality in (C2) involves not only a quadratic,
but also a linear form of v. It is remarkable that alone this linear term can ensure fulfillment of Assumption
(C1). Indeed, in [24, Proposition 4.1] it is proved that Assumption (C1) implies the inequality� T

0
⟨Ĥu(t),v(t)⟩ dt ≥ c1∥v∥2

1

for a constant c1 > 0 and all v ∈ U − û. In particular, if the quadratic form in (10) is nonnegative for
v ∈ U − û, then (A1), (A2), (C1) imply (C2), hence also Assumption (A3).
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4.3 A numerical example

In this section we illustrate the result obtained in Theorem 3.1 by considering a problem of axisymmetric
spacecraft spin stabilization from [28, p. 353]. The transversal angular velocity components ω1 and ω2 of
the spacecraft satisfy

ω̇1 = λω2 +
Md

Jt
,

ω̇2 =−λ sinω1 +
Mc

Jt
,

where λ = Jt−J3
Jt

n, Jt is the spacecraft transversal moment of inertia, J3 is the spacecraft moment of inertia
about the spin axis, n is the spin rate, Md is the disturbance torque, which can be caused by thruster mis-
alignment, and Mc is the control moment. Rescaling the time (t → λ t), denoting x1 = ω1, x2 = ω2, p = Md

Jt
,

adding initial conditions, and considering u := Mc
Jt

as a control variable, we reformulate the model as
ẋ1 = x2 + p, x1(0) = 1,
ẋ2 =−sinx1 +u, x2(0) = 1,
−a ≤ u ≤ a,

(11)

where p(·) is a time-dependent parameter and a is a positive constant. The MPC algorithm is applied in [12]
to the following optimal control problem with the dynamic (11):

min
�
|x(T )|2 +α

� T

0
(u(t))2 dt

	
,

where α is a positive weighting parameter. This problem is coercive in the sense of Assumption (B1), which
makes the analysis in [12] possible. Here we consider the alternative objective functional

min
�
|x(T )|2 +α

� T

0
|u(t)| dt

	
, (12)

which may be more realistic in case of direct transformation of fuel into force, as in jet engines. The optimal
control problem (11)-(12) is not coercive, nor does it fit in the framework of affine problems. However,
following [27, Remark 3.3], we transform it to an affine problem by substituting

u = u1 −u2, |u|= u1 +u2, where u1,u2 ∈ [0,a].

Thus, the affine optimal control problem we will consider is

min
�
|x(T )|2 +α

� T

0
[u1(t)+u2(t)] dt

	
,

subject to 
ẋ1 = x2 + p, x1(0) = 1,
ẋ2 =−sinx1 +u1 −u2, x2(0) = 1,
u1,u2 ∈ [0,a].

We consider the last problem with the specifications T = 4π , α = 0.25, a = 0.2, and reference parameter
p̂(t)≡ 0. In the MPC simulation, the measurement error ek is sampled randomly from a uniform distribution,
with |ek| ≤ 0.1. The parameter p(·) is piecewise constant on the uniform mesh of 3200 points in [0,T ]; its

12



values in every subinterval are chosen randomly in the interval [−0.05,0.05] with uniform distribution. For
solving the auxiliary problems Pp(tk,x0

k) we use the Euler discretization scheme, which provides an error
eu

k of order O(h) see, e.g., [1, 24]); recall that eu
k := ∥z̃k∥ and that z̃k is the residual in (8).

We run the MPC algorithm with different mesh sizes N. Using the notations in Theorem 3.1, we consider
the quantity

RE =
||uN − û||1 + ||xN − x̂||1,1$

1
N ∑N−1

k=0 (|ek|+ ep
k +h)+h

, (13)

which represents the relative error in the MPC-generated solution (xN ,uN). According to the error estimate
in Theorem 3.1, the quantity RE should be bounded. The numerical experiment confirms this, as can be seen
in Table 1. Moreover, the result suggest that the value RE stays away from zero when N increases, which
indicates that the estimate in Theorem 3.1 is sharp for this example.

We also observe in Table 1 that the objective values for the MPC-generated solutions decrease when N
increases, which is to be expected because of the more frequent measurements.

In Figure 1, we compare the obtained MPC-generated controls and the corresponding trajectories with
the open-loop solution û = û1 − û2. The auxiliary controls û1 and û2 are of bang-bang type, while the
resulting optimal control u in problem (11)-(12) also takes value zero. The MPC-generated control uN

differs from the optimal open-loop one in small intervals around the switching points of the latter, which is
consistent with the choice of the metric in d∗ in case of affine problems.

N 160 320 480 640 800 960

Obj. val. 1.3221 0.7907 0.7204 0.6490 0.6274 0.6183
RE 0.6039 0.3205 0.2177 0.1245 0.1445 0.1346

Table 1: Objective values and relative errors RE of the MPC-generated solutions with different mesh sizes.

(a) Controls (b) Trajectories

Figure 1: Optimal open-loop control and trajectory, and the MPC generated solutions with N=160 and
N=960.
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5 Proof of the main theorem

In this section we use the notations introduced in Sections 2 and 3. In addition, y ∈ Yτ we define

d∗
τ (y, ŷ) := d∗(ỹ, ŷ), where ỹ(t) =

�
ŷ(t) for t ∈ [0,τ),
y(t) for t ∈ [τ,T ].

Proposition 5.1. Let assumptions (A1)–(A3) be fulfilled. Then there exist numbers δ0 > 0, α0 > 0, β0 > 0,
and c0 such that for every τ ∈ [0,T ), xτ ∈ Rn and p ∈ Π satisfying

|xτ − x̂(τ)| ≤ δ0, ∥p− p̂∥∞ ≤ δ0, (14)

and for every y = (x,λ ,u) ∈ Yτ with ∥u− û∥1 ≤ α0 and zτ ∈ Φ(p,τ,xτ )(y)∩ IBZτ (0;β0) it holds that

d∗
τ (y, ŷ)≤ c0 (∥zτ∥+∥p− p̂∥∞ + |xτ − x̂(τ)|) .

Proof. We shall fix the numbers δ0 > 0, α0 > 0, β0 > 0 and c0 below, in a way that they depend only on α̂ ,
β̂ , κ̂ , L and T and may be viewed as constants. The numbers c1, c2, ..., that will appear later will also be
appropriate constants in the same sense.

Let us fix arbitrarily τ ∈ [0,T ), xτ ∈ Rn, and p ∈ Π satisfying (14), along with yτ = (x(·),λ (·),u(·)) ∈
IB(ŷ;α0) and zτ = (ξ ,ν ,η ,π,ρ) ∈ IBZτ (0;β0) such that zτ ∈ Φ(p,τ,xτ )(yτ). We define

p̃(t) =
�

p̂(t) for t ∈ [0,τ),
p(t) for t ∈ [τ,T ], ũ(t) =

�
û(t) for t ∈ [0,τ),
u(t) for t ∈ [τ,T ].

Obviously ∥ p̃− p̂∥∞ = ∥p− p̂∥∞, ∥ũ− û∥1 = ∥u− û∥1, and d∗
0(ũ, û) = d∗

τ (u, û). Similarly, we extend ξ ,
η and ρ as zero on [0,τ), denoting the resulting elements of Z0 by ξ̃ , η̃ , ρ̃ . Moreover, we define x̃ as the
(unique) solution on [0,T ] of the equations

˙̃x = f (p̃, x̃, ũ)− ξ̃ , x̃(τ) = xτ +ν ,

and the function λ̃ as the solution of

− ˙̃λ = ∇xH( p̃, x̃, λ̃ , ũ)−η , λ̃ (T ) = ∇g̃T (x̃(T ))+π.

Notice that x̃(t) = x(t) and λ̃ (t) = λ (t) for t ∈ [τ,T ].
Let us estimate ∥ỹ− ŷ∥. Using Assumption (A1) and the Grönwall inequality we obtain that

∥x̃− x̂∥∞ ≤ c1

�
∥p̃− p̂∥∞ +∥ξ̃∥1 + |xτ − x̂(τ)|+ |ν |

�
≤ c2 (δ0 +∥ξ∥1 +δ0 + |ν |)≤ c3(δ0 +∥zτ∥).

From here one can also estimate ∥ ˙̃x− ˙̂x∥1, which gives

∥x̃− x̂∥1,1 ≤ c4(δ0 +∥zτ∥).

Similarly we estimate
∥λ̃ − λ̂∥1,1 ≤ c5(δ0 +∥zτ∥).

Moreover,
∥ũ− û∥1 = ∥u− û∥1 ≤ α0.
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The last three estimates imply that

∥ỹ− ŷ∥ ≤ c6(δ0 +α0 +β0)≤ α̂,

provided that the positive numbers δ0, α0 and β0 are chosen sufficiently small.
Now we estimate the residual r := (rξ ,rν ,rη ,rπ ,rρ) ∈ Z0 which ỹ := (x̃, λ̃ , ũ) gives in Φ(p̂,0,x0). We have

∥rξ∥1 =
'' f ( p̂, x̃, ũ)− f ( p̃, x̃, ũ)+ ξ̃

''
1 ≤ T L∥p− p̂∥∞ +∥ξ∥1,

|rν | = |x̃(0)− x0| ≤ c1(∥p− p̂∥∞ + |xτ − x̂(τ)|+ |ν |),
∥rη∥1 =

''∇xH( p̂, ỹ)−∇xH( p̃, ỹ)+ η̃
''

1 ≤ T L∥p− p̂∥∞ +∥η∥1,

|rπ | = π|,
∥rρ∥∞ = ∥∇uH( p̂, ỹ)−∇uH( p̃, ỹ)+ ρ̃∥∞ ≤ L∥p− p̂∥∞ +∥ρ∥∞.

Summarizing, we obtain that

∥r∥ ≤ c7 (∥zτ∥+∥p− p̂∥∞ + |xτ − x̂(τ)|) .

We can choose δ0 and β0 smaller if needed so that ∥r∥ ≤ β̂ . Due to Assumption (A3) we have that

d∗
0(ỹ, ŷ)≤ κ̂c7 (∥zτ∥+∥p− p̂∥∞ + |xτ − x̂(τ)|) .

Since d∗
τ (ỹ, ŷ)≤ d∗

0(ỹ, ŷ) and ỹ = y on [τ,T ], we obtain the desired result with c0 = κ̂c7. □

An alternative way to prove the last proposition is first to show that Assumption (A3) holds for all maps
Φ(p̂,τ,x̂(τ)) with τ ∈ [0,T ), and then to apply Proposition 2.2.

Now we continue with the proof of Theorem 3.1.
Let δ0, α0, β0 and c0 be the constants from Proposition 5.1. Define the following constants: M is number

of elements of Γ (equals zero if Γ = /0) and

D := diam(U), C̄1 := c0LTeLT , C̄2 := 2DLeT L√c0T M, C̄3 := 6MDLeLT . (15)

Let the numbers N0 and δ > 0 be defined in such a way that

δ̂ +δ ≤ δ0, δ ≤ α0, δ ≤ β0,

where δ̂ := C̄1δ +C̄2
√

δ +C̄3h, which is obviously possible. Moreover, denote

Ei := |ei|+ ep
i + eu

i , i = 0, . . . ,N −1.

Since for any i ∈ {0, . . . ,N − 1} the triplet y = ỹi satisfies (8), we shall apply Proposition 5.1 with y = ỹi,
τ = ti xτ = x0

i = xN(ti)+ ei, p = pi, zτ = z̃i. We have

∥pi − p̂∥∞ ≤ ep
i ≤ δ ≤ δ0,

∥ũi − û∥1 ≤ δ ≤ α0,

∥z̃i∥= eu
i ≤ δ ≤ β0.
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Proposition 5.1 gives
d∗

ti (ũi, û)≤ c0(|ei|+ ep
i + eu

i ) = c0Ei, (16)

provided that
|xN(ti)+ ei − x̂(ti)| ≤ δ0. (17)

Let us fix an arbitrary k ∈ {1, . . . ,N −1} and denote

di := ∥ũi − û∥L∞(ti,ti+1), Δ(t) := |xN(t)− x̂(t)|, Δi = Δ(ti), i = 0, . . . ,k.

Assume inductively that
Δk ≤ δ̂ and d∗

ti (ũi, û)≤ c0Ei, i = 0, . . . ,k. (18)

For k = 0 we have Δ0 = |xN(0)− x̂(0)| = 0. Thus (17) is fulfilled because |e0| ≤ δ ≤ δ0. The second
inequality in (18) is fulfilled due to (16), thus the inductive assumption is fulfilled for k = 0.

Due to Assumption (A1) and the construction of uN in the MPC method, we have for t ∈ [tk, tk+1]

Δ(t)≤ Δk +
� t

tk
| f ( p̂(s),xN(s), ũk(s))− f (p̂(s), x̂(s), û(s))| ds ≤ Δk +

� t

tk
(LΔ(s)+L|ũk(s)− û(s)|) ds.

Using the Grönwall inequality we obtain that

Δ(t)≤ eLh(Δk +hLdk).

Applied to Δk+1 = Δ(tk+1), this recursive inequality implies in a standard way that

Δk+1 ≤ hL
�

e(k+1)hLd0 + ekhLd1 + . . .+ ehLdk

�
≤ eT LLh

k

∑
i=0

di. (19)

The key part of the proof is to estimate ∑k
i=0 di. Let us denote

K̄ := {i ∈ {0, . . . ,k} : |ũi(t)− û(t)| ≤ d∗
ti (ũi, û) for a.e. t ∈ [ti, ti+1]},

K := {0, . . . ,k}\ K̄.

Then

di ≤
�

D for i ∈ K,
d∗

ti (ũi, û) for i ∈ K̄.
(20)

Denoting by s the number of elements of K, we have due to the inductive assumption (18), that

k

∑
i=0

di = ∑
i∈K

di + ∑
i∈K̄

di ≤ sD+ ∑
i∈K̄

d∗
ti (ũi, û)≤ sD+ ∑

i∈K̄

c0Ek ≤ sD+
c0T

h
E . (21)

Let us assume that Γ ̸= /0, that is, M > 0. The definition of the metric d∗ in (7) implies that for each i ∈ K
there exists t ∈ (ti, ti+1) such that

dist(t,Γ)≤ d∗
ti (ũi, û). (22)

Let m(i) be the minimal natural number (also including 0) such that

((ti, ti+1)+h[−m(i),m(i)])∩Γ ̸= /0.
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Then in the case m(i)> 0 we have that

((ti, ti+1)+h[−m(i)+1,m(i)−1])∩Γ = /0,

hence
(t +h[−m(i)+1,m(i)−1])∩Γ = /0.

Due to (22) we obtain that
d∗

ti (ũi, û)≥ h(m(i)−1), i ∈ K. (23)

Denote by l j, j = 0,1, . . . ,N the number of those indexes i ∈ K for which m(i) = j. The following relations
are apparently satisfied:

0 ≤ l0 ≤ M,

0 ≤ l j ≤ 2M, j = 1, . . . ,N, (24)
N

∑
j=0

l j = s.

Then, having in mind (23),

∑
i∈K

d∗
ti (ũi, û) ≥ h ∑

i∈K
max{0,m(i)−1)} ≥ h

�
0.l0 +0.l1 +

N

∑
j=2

( j−1)l j

�
. (25)

The minimum of the sum in the right-hand side with respect to {l j} subject to the relations around (24)
is attained at

l0 = M, l j = 2M, j = 1, . . . ,r, lr+1 = s− (M+2Mr),

where r =
� s−M

2M

�
and [a] means the integer part of a. Substituting l j in (25) we obtain that

∑
i∈K

d∗
ti (ũi, û) ≥ 2hM

r

∑
j=2

( j−1) = hMr(r−1)≥ hM
�� s

2M

�
−2

�2
.

From here and the second inequality in (18) we obtain that�
[

s
2M

]−2
�2

≤ c0

Mh

k

∑
i=0

Ei =
c0T
Mh2 E ,

hence
s ≤ 6M+

2
h

%
c0T ME .

From (21) we obtain that

h
k

∑
i=0

di ≤ D
�

6Mh+2
√

c0T M
√

E
�
+ c0TE , (26)

which combined with (19) and (15) gives

Δk+1 ≤ C̄1E +C̄2
√

E +C̄3h. (27)

This inequality was obtained in the case M > 0. However, in the case M = 0 the first term in the final
inequality in (21) is missing and the analysis simplifies, resulting in the same estimation for Δk+1 but with
M = 0, which implies C̄2 = C̄3 = 0.
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Now, in order to verify the inductive assumption (18) we observe that E ≤ δ , hence from (27)

Δk+1 ≤ C̄1δ +C̄2
√

δ +C̄3h = δ̂ ,

thus the first inequality in (18) is satisfied for k+ 1. The second inequality in (18) for k+ 1 follows from
(16), which is fulfilled for i = k+1 because (17) holds:

|xN(tk+1)+ ek+1 − x̂(tk+1)| ≤ Δk+1 + |ek+1| ≤ δ̂ +δ ≤ δ0.

This completes the induction step. As a result we have obtained that for any t ∈ [0,T ] if t ∈ [tk, tk+1] then

Δ(t)≤ Δk+1 ≤ C̄1E +C̄2
√

E +C̄3h. (28)

Now we estimate

∥uN − û∥1 =
N−1

∑
i=0

� ti+1

ti
|uN(t)− û(t)| dt ≤

N−1

∑
i=0

h∥uN − û∥L∞(ti,ti+1) =
N−1

∑
i=0

h∥ũi − û∥L∞(ti,ti+1) = h
N−1

∑
i=0

di

≤ D
�

6Mh+2
√

c0T M
√

E
�
+ c0TE , (29)

where in the last inequality we use (26) for k = N −1. Finally, we have

∥ẋN − ˙̂x∥1 ≤
� T

0
| f (p̂(t),xN(t),uN(t))− f ( p̂(t), x̂(t), û(t))| dt ≤ LT∥Δ∥C +L∥uN − û∥1.

Combining this inequality with (28) and (29), and considering separately the case M = 0, we obtain existence
of constants C1, C2 and C3 for which the claim of the theorem holds.
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Chapter 4

Stability in Affine Optimal Control
Problems Constrained by Elliptic
Partial Differential Equation

This chapter consists of the paper:

❼ Domı́nguez Corella, Alberto and Jork, Nicolai and Veliov, Vladimir M. Stability in affine optimal
control problems constrained by semilinear elliptic partial differential equations.

It is conditionally accepted (after a minor revision) in ESAIM: Control, Optimisation and Calculus of Vari-
ations. The thesis author gave most of the ideas and proofs in the paper, and wrote the majority of the
paper; he was only helped with technical details and proof-reading.
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Stability in affine optimal control problems constrained by

semilinear elliptic partial differential equations∗

Alberto Domı́nguez Corella† Nicolai Jork ‡ Vladimir Veliov§

August 14, 2022

Abstract

This paper investigates stability properties of affine optimal control problems constrained by semilin-
ear elliptic partial differential equations. This is done by studying the so called metric subregularity of
the set-valued mapping associated with the system of first order necessary optimality conditions. Pre-
liminary results concerning the differentiability of the functions involved are established, especially the
so-called switching function. Using this ansatz, more general nonlinear perturbations are encompassed,
and under weaker assumptions, than the ones previously considered in the literature on control con-
strained elliptic problems. Finally, the applicability of the results is illustrated with some error estimates
for the Tikhonov regularization.

1 Introduction

We consider the following optimal control problem

min
u∈U

��
Ω

�
w(x, y) + s(x, y)u

�
dx

�
, (1)

subject to  − div
�
A(x)∇y

�
+ d(x, y) = β(x)u in Ω

A(x)∇y · ν + b(x)y = 0 on ∂Ω.
(2)

The set Ω ⊂ Rn is a bounded domain with Lipschitz boundary, where n ∈ {2, 3}. The unit outward normal
vector field on the boundary ∂Ω, which is single valued a.e. in ∂Ω, is denoted by ν. The control set is given
by

U := {u : Ω → R measurable : b1(x) ≤ u(x) ≤ b2(x) for a.e. x ∈ Ω} ,

where b1 and b2 are bounded measurable functions satisfying b1(x) ≤ b2(x) for a.e. x ∈ Ω. The functions
w : Ω× R → R, s : Ω× R → R, d : Ω× R → R, β : Ω → R and b : ∂Ω → R are real-valued and measurable,
and A : Ω → Rn×n is a measurable matrix-valued function.

There are many motivations for studying stability of solutions, in particular for error analysis of numerical
methods, see e.g., [30, 31]. Most of the stability results for elliptic control problems are obtained under
a second order growth condition (analogous to the classical Legendre-Clebsch condition). For literature
concerning this type of problems, the reader is referred to [18, 21, 22, 24, 25, 35] and the references therein.
In optimal control problems like (1)–(2), where the control appears linearly (hence, called affine problems)

∗This research was supported by the Austrian Science Foundation (FWF) under grant I 4571-N.
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this growth condition does not hold. The so-called bang-bang solutions are ubiquitous in this case, see
[4, 9, 10]. To give an account of the state of art in stability of bang-bang problems, we mention the works
[1, 28, 29, 33, 37] on optimal control of ordinary differential equations. Results for optimization problems
constrained by partial differential equations have been gaining relevance in recent years, see [5, 8, 9, 10, 12, 34].
However, its stability has been only investigated in a handful of papers, see e.g., [12, 32, 34]. From these
works, we mention here particularly [34], where the authors consider linear perturbations in the state and
adjoint equations for a similar problem with Dirichlet boundary condition. They use the so-called structural
assumption (a growth assumption satisfied near the jumps of the control) on the adjoint variable. This
assumption has been widely used in the literature on bang-bang control of ordinary differential equations in
a somewhat different form.

The investigations of stability properties of optimization problems, in general, are usually based on
the study of similar properties of the corresponding system of necessary optimality conditions. The first
order necessary optimality conditions for problem (1)–(2) can be recast as a system of two elliptic equations
(primal and adjoint) and one variational inequality (representing the minimization condition of the associated
Hamiltonian), forming together a generalized equation, that is, an inclusion involving a set-valued mapping
called optimality mapping. The concept of strong metric subregularity, see [11, 16], of set-valued mappings
has shown to be efficient in many applications especially ones related to error analysis, see [2]. This also
applies to optimal control problems of ordinary differentials equations, see e.g., [15, 28].

In the present paper we investigate the strong metric subregularity property of the optimality mapping
associated with problem (1)–(2). We present sufficient conditions for strong subregularity of this mapping
on weaker assumptions than the ones used in literature, see Section 6 for precise details. The structural
assumption in [34] is weakened and more general perturbations are considered. Namely, perturbations in
the variational inequality, appearing as a part of the first order necessary optimality conditions, are consid-
ered; which are important in the numerical analysis of ODE and PDE constrained optimization problems.
Moreover, nonlinear perturbations are investigated, which provides a framework for applications, as illus-
trated with an estimate related to the Tikhonov regularization. The concept of linearization is employed in
a functional frame in order to deal with nonlinearities. The needed differentiability of the control-to-adjoint
mapping and the switching function (see Section 3) is proved, and the derivatives are used to obtain ad-
equate estimates needed in the stability results. Finally, we consider nonlinear perturbations in a general
framework. We propose the use of the compact-open topology to have a notion of “closeness to zero” of
the perturbations. In our particular case this topology can me metrized, providing a more “quantitative”
notion. Estimates in this metric are obtained in Section 5.

2 Preliminaries

The euclidean space Rs is considered with its usual norm, denoted by | · |. As usual, for p ∈ [1,∞), we denote
by Lp(Ω) the space of all measurable p-integrable functions ψ : Ω → Rs with the norm

|ψ|Lp(Ω) :=
� s&

i=1

�
Ω

|ψi(x)|p dx
� 1

p

.

The space L∞(Ω) consists of all measurable essentially bounded functions ψ : Ω → Rs with the norm

|ψ|L∞(Ω) := ess sup
x∈Ω

|ψ(x)|.

We denote by C(Ω̄) the space of continuous functions on Ω that can be extended continuously to Ω̄ equipped
with the L∞-norm. We denote by H1(Ω) the space of functions ψ ∈ L2(Ω) with weak derivatives in L2(Ω)
endowed with its usual norm. The space H1(Ω) ∩ C(Ω̄) is endowed with the norm

|ψ|H1(Ω)∩C(Ω̄) := |ψ|H1(Ω) + |ψ|C(Ω̄).

A function ψ : Ω× R → R is said to be Carathéodory if ψ(·, y) is measurable for every y ∈ R, and ψ(x, ·) is
continuous for a.e. x ∈ Ω. A function ψ : Ω × R → R is said to be locally Lipschitz uniformly in the first
variable if for each M > 0 there exists L > 0 such that

|ψ(x, y2)− ψ(x, y1)| ≤ L|y2 − y1|

2



for a.e. x ∈ Ω and all y1, y2 ∈ [−M,M ]. In order to abbreviate notation, we define f, g : Ω×R×R → R by

f(x, y, u) := β(x)u− d(x, y) and g(x, y, u) := w(x, y) + s(x, y)u.

The following assumption is supposed to hold throughout the remainder of the paper. It ensures that the
mathematical objects related to problem (1)–(2) that we consider are well defined. Assumption 1 is quite
standard in the literature, see the book [39].

Assumption 1. The following statements are assumed to hold.

(i) The set Ω ⊂ Rn is a bounded Lipschitz domain. The matrix A(x) is symmetric for a.e. x in Ω, and
there exists α > 0 such that ξ ·A(x)ξ ≥ α|ξ|2 for a.e. x in Ω and all ξ ∈ Rn.

(ii) The functions w, s and d are Carathéodory, twice differentiable with respect to the second variable, and
their second derivatives are locally Lipschitz uniformly in the first variable.

(iii) The functions A, β, b, d(·, 0), dy(·, 0), wy(·, 0) and sy(·, 0) are measurable and bounded.

(iv) The function dy(·, y) is nonnegative a.e. in Ω for all y ∈ R. The function b is nonnegative a.e. in ∂Ω
and |b|L∞(∂Ω) > 0.

Items (i) and (iv) of Assumption 1 ensure that the partial differential equations appearing in this paper
have unique solutions in the space H1(Ω) ∩ L∞(Ω).

2.1 The elliptic operator

We consider the set D(L) of all functions y ∈ H1(Ω) ∩ L∞(Ω) for which there exists h ∈ L2(Ω) such that�
Ω

A(x)∇y · ∇φdx+

�
∂Ω

b(x)yφ ds(x) =

�
Ω

hφdx ∀φ ∈ H1(Ω). (3)

As usual, ds denotes the Lebesgue surface measure. It is easy to see that for each y ∈ D(L) there exists a
unique element h ∈ L2(Ω) such that (3) holds. We define the operator L : D(L) → L2(Ω) by assigning each
y ∈ D(L) to the function h ∈ L2(Ω) satisfying (3). By definition, a function y ∈ H1(Ω) ∩ L∞(Ω) belongs to
D(L) if, and only if, it is the weak solution of the linear elliptic partial differential equation − div

�
A(x)∇y

�
= h in Ω,

A(x)∇y · ν + b(x)y = 0 on ∂Ω

for some h ∈ L2(Ω). The following lemma is of trivial nature.

Lemma 2.1. The set D(L) is a linear subspace of H1(Ω)∩L∞(Ω). Moreover, the operator L : D(L) → L2(Ω)
is a well defined linear mapping.

If D(L) is endowed with the norm of L2(Ω), then L is an unbounded operator from D(L) to L2(Ω). Since
A(x) is symmetric for a.e. x ∈ Ω, by (3) we have�

Ω

Lyφ dx =

�
Ω

yLφdx (4)

for all y, φ ∈ D(L), the so-called integration by parts formula.

Remark 2.2. If ∂Ω is of class C1,1, A is Lipschitz in Ω̄, and b is Lipschitz and positive in ∂Ω, then

D(L) = {y ∈ H2(Ω) : A(·)∇y · ν + b(·)y = 0},

and Ly = − div
�
A(·)∇y

�
for all y ∈ D(L), see [19, Theorem 2.4.2.6].

The following lemma shows the inclusion D(L) ⊂ C(Ω̄). Its proof can be found in [39, Theorem 4.7] and
follows the arguments in [4, 38].
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Lemma 2.3. Let α ∈ L∞(Ω) be nonnegative and h ∈ L2(Ω). There exists a unique function y ∈ D(L) such
that

Ly + α(·)y = h (5)

and this function belongs to C(Ω̄). Moreover, for each r > n/2 there exists a positive number c such that

|y|H1(Ω)∩C(Ω̄) ≤ c|h|Lr(Ω)

for all α ∈ L∞(Ω) nonnegative, y ∈ D(L), and h ∈ L2(Ω) ∩ Lr(Ω) satisfying (5).

The following technical lemma can be deduced from Lemma 2.3, see the proof of [10, Lemma 3.4]. Its
use in optimal control of elliptic partial differential equations dates from the paper [9, Lemma 2.6]. It has
shown to be useful for diverse estimates, see [9, 34].

Lemma 2.4. There exists a positive number c such that

|y|L2(Ω) ≤ c|h|L1(Ω)

for all α ∈ L∞(Ω) nonnegative, y ∈ D(L) and h ∈ L2(Ω) satisfying (5).

The proof of the next result can be found in [7, Theorem 2.11] in the case of a Dirichlet problem, see
also [20, Lemma 6.8]. Here we adapt the argument below Theorem 2.1 in [6, p. 618].

Lemma 2.5. Let α ∈ L∞(Ω) be nonnegative, {hm}∞m=1 be a sequence in L2(Ω) and h ∈ L2(Ω). For each
m ∈ N, let ym ∈ C(Ω̄) be the unique function satisfying Lym +α(·)ym = hm, and let y ∈ C(Ω̄) be the unique
function satisfying of Ly + α(·)y = h. If hm ⇀ h weakly in L2(Ω), then ym → y in C(Ω̄).

Proof. Let p ∈ (2n/(n+2), n/(n−1)). Then W 1,p(Ω) is compactly embedded in L2(Ω) and consequently, by
Schauder’s Theorem, L2(Ω) is compactly embedded in W 1,p(Ω)∗. By the latter compact embedding, every
weakly convergent sequence in L2(Ω) converges also inW 1,p(Ω)∗ to the same limit. Define K : L2(Ω) → C(Ω̄)
by Kh := y, where y ∈ C(Ω̄) is the unique function satisfying Ly + α(·) = h. The result follows from [27,
Theorem 3.14], since that theorem asserts that the linear operator K is continuous from L2(Ω) endowed with
the norm of W 1,p(Ω)∗ to C(Ω̄).

Remark 2.6. Using the definitions of the set D(L) and the operator L, we can write in a shorter way the
partial differential equations involved in this paper. For example, given u ∈ U , to say that y belongs to D(L)
and satisfies Ly+d(·, y) = β(·)u is equivalent to say that y belongs to H1(Ω)∩L∞(Ω) and satisfies the weak
formulation of (2), that is�

Ω

A(x)∇y · ∇φdx+

�
Ω

d(x, y)φdx+

�
∂Ω

b(x)yφ ds(x) =

�
Ω

β(x)uφdx

for all φ ∈ H1(Ω). This weak formulation makes sense since, by (ii) and (iii) of Assumption 1, for any
y ∈ L∞(Ω), the function d(·, y) belongs to L∞(Ω).

2.2 The control model

Having in mind Remark 2.6, given a function u ∈ U we say that yu ∈ D(L) is the associated state to u ∈ U
if

Lyu = f(·, yu, u). (6)

The following proposition shows that the mapping u → yu from U to D(L) is well defined. Its proof can
be found in the standard literature; it follows from [39, Theorem 4.8], see also [39, p. 212].

Proposition 2.7. For each u ∈ U there exists a unique state yu ∈ D(L) associated with u ∈ U . Moreover,
{yu : u ∈ U} is a bounded subset of H1(Ω) ∩ C(Ω̄) and for each r > n/2 there exists c > 0 such that

|yu2
− yu1

|H1(Ω)∩C(Ω̄) ≤ c|u2 − u1|Lr(Ω)

for all u1, u2 ∈ U .
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We call the function G : U → H1(Ω) ∩ C(Ω̄) given by G(u) := yu the control-to-state mapping. The
functional J : U → R given by

J (u) :=

�
Ω

g(x, yu, u) dx

is called the objective functional of problem (1)–(2).

Definition 2.8. Let ū belong to U .
(i) We say that ū is a global solution of problem (1)–(2) if J (ū) ≤ J (u) for all u ∈ U .
(ii) We say that ū is a local solution of problem (1)–(2) if there exists ε0 > 0 such that J (ū) ≤ J (u) for

all u ∈ U with |u− ū|L1(Ω) ≤ ε0.

(iii) We say that ū is a strict local solution of problem (1)–(2) if there exists ε0 > 0 such that J (ū) < J (u)
for all u ∈ U with u ̸= ū and |u− ū|L1(Ω) ≤ ε0.

Under Assumption 1, problem (1)–(2) has at least one global solution. The proof is routine and can be
obtained by standard arguments; namely, taking a minimizing sequence and using the weak compactness of
U in L2(Ω).

Lemma 2.9. Problem (1)–(2) has at least one global solution.

In order to make notation simpler, from now on we fix a local solution ū ∈ U of problem (1)–(2). We call
the function H : Ω× R× R× R → R, given by

H(x, y, p, u) := g(x, y, u) + pf(x, y, u),

the Hamiltonian of problem (1)–(2). Given u ∈ U , we say that pu ∈ D(L) is the costate associated with
u ∈ U if

Lpu = Hy(·, yu, pu, u).
The following proposition shows that the mapping u → pu from U to D(L) is well defined. We give the proof
of this elementary result because it seems not to be explicitly stated in the literature.

Proposition 2.10. For each u ∈ U there exists a unique costate pu ∈ D(L) associated with u ∈ U . Moreover,
{pu : u ∈ U} is a bounded subset of H1(Ω) ∩ C(Ω̄) and for each r > n/2 there exist c > 0 such that

|pu2 − pu1 |H1(Ω)∩C(Ω̄) ≤ c|u2 − u1|Lr(Ω)

for all u1, u2 ∈ U .
Proof. The existence and uniqueness follows from Lemma 2.3. Given u ∈ U , the function pu satisfies

Lpu + dy(·, yu)pu = gy(·, yu, u).

By (ii), (iii) and (iv) of Assumption 1, for each u ∈ U , the function dy(·, yu) is nonnegative and belongs
to L∞(Ω). By (ii) and (iii) of Assumption 1, for each u ∈ U the function gy(·, yu, u) belongs to L∞(Ω).
Furthermore, since by Proposition 2.7 the set {yu : u ∈ U} is bounded in C(Ω̄), there exists M1 > 0 such
that

|gy(·, yu, u)|L∞(Ω) ≤ M1

for all u ∈ U . By Lemma 2.3, there exists a positive number c1 such that for all u ∈ U

|pu|H1(Ω)∩C(Ω̄) ≤ c1|gy(·, yu, u)|L∞(Ω).

Thus, M2 := c1M1 is a bound for the set {pu : u ∈ U} in H1(Ω) ∩ C(Ω̄). Let u1, u2 ∈ U and r > n/2. We
have then

L(pu2
− pu1

) + dy(·, yu2
)(pu2

− pu1
) = Hy(·, yu2

, pu1
, u2)−Hy(·, yu1

, pu1
, u1).
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By Lemma 2.3, there exists a positive number c2 (independent of u1 and u2) such that

|pu2
− pu1

|H1(Ω)∩C(Ω̄) ≤ c2|Hy(·, yu2
, pu1

, u2)−Hy(·, yu1
, pu1

, u1)|Lr(Ω).

By (ii) of Assumption 1 and the boundedness of the set {pu : u ∈ U} in C(Ω̄), there exists L > 0 such
that

|Hy(·, yu2
, pu1

, u2)−Hy(·, yu1
, pu1

, u1)| ≤ L
�
|yu2

− yu1
|+ |u2 − u1|

�
a.e. in Ω.

Consequently,

|pu2
− pu1

|H1(Ω)∩C(Ω̄) ≤ c2L
�|yu1

− yu2
|Lr(Ω) + |u1 − u2|Lr(Ω)

�
≤ c2L

�
(measΩ)

1
r |yu2 − yu1 |L∞(Ω) + |u2 − u1|Lr(Ω)

�
.

By Proposition 2.7, there exists a constant c3 > 0 (independent of u1 and u2) such that

|yu2
− yu1

|C(Ω̄) ≤ c3|u2 − u1|Lr(Ω).

Thus,

|pu2 − pu1 |H1(Ω)∩C(Ω̄) ≤ c2L
�
1 + c3(measΩ)

1
r

�|u2 − u1|Lr(Ω).

The estimate follows defining c := c2L
�
1 + c3(measΩ)

1
r

�
.

We call the function S : U → H1(Ω) ∩ C(Ω̄) given by S(u) := pu the control-to-adjoint mapping. The
following proposition gives us another useful estimate; it can be easily proved employing Lemma 2.4 and the
argument in the proof of [39, Theorem 4.16].

Proposition 2.11. There exists c > 0 such that

|yu2
− yu1

|L2(Ω) + |pu2
− pu1

|L2(Ω) ≤ c|u2 − u1|L1(Ω)

for all u1, u2 ∈ U .
We close this subsection with the following result.

Proposition 2.12. Let {um}∞m=1 be a sequence in U and u ∈ U . If um ⇀ u weakly in L2(Ω), then yum
→ yu

and pum
→ pu in C(Ω̄).

Proof. We prove only the convergence pum → pu in C(Ω̄), the convergence yum → yu in C(Ω̄) is analogous.
Let {pumk

}∞k=1 be an arbitrary subsequence of {pum}∞m=1. By the compact embedding H1(Ω) �→ L2(Ω),

there exists a subsequence of {pumk
}∞k=1, denoted in the same way, and p ∈ L2(Ω) such that pumk

→ p in

L2(Ω). Since yumk
→ yu in C(Ω̄), one can deduce that

Hy(·, yumk
, pumk

, umk
) ⇀ Hy(·, yu, p, u) weakly in L2(Ω).

By Lemma 2.5, we have pumk
→ pu in C(Ω̄). The result follows, since every subsequence of {pum}∞m=1 has

a further subsequence that converges to pu in C(Ω̄).

3 Differentiability of the mappings involved

In this section, we prove some preliminary results concerning the differentiability of the control-to-state
mapping, the control-to-adjoint mapping and the switching mapping (to be defined later). Some of these
properties are well known for the control-to-state mapping; see, e.g., [5, 9, 10, 34, 39]. Nevertheless, we require
more specific estimates than the ones in the literature. The differentiability of the control-to-adjoint mapping
and the switching mapping has not been studied before in the literature on elliptic control-constrained
problems, therefore we devote this section to obtain appropriate estimates needed in the study of stability in
the next section. In the sequel, we treat differentiability by means of Gâteaux differentials, as they provide
a very natural setting that adjusts in a very versatile way to our purposes.
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3.1 The state and adjoint mappings

We begin this subsection recalling the definition of Gâteaux differential, see [17, pp.2-4] or [23, p.171]. Let
Y be a Banach space and F : U → Y a mapping. Given u ∈ U and v ∈ U − u, if the limit

dF(u; v) := lim
ε→0+

F(u+ εv)−F(u)

ε

exists in Y , we say that F(u; v) is the Gâteaux differential of F at u in the direction v. Note that by
convexity of U , u+ εv belongs to U for every u ∈ U , v ∈ U − u and ε ∈ [0, 1].

Recall that ū ∈ U is a fixed solution of problem (1)–(2). As it is well-known, the Gâteaux differential of
the control-to-state mapping at ū is related to the linearization of the system equation around ū. Bearing
this in mind, given v ∈ L2(Ω), we denote by zv the unique1 solution of the equation

Lzv = fy(·, yū, ū)zv + fu(·, yū, ū)v. (7)

The proof of the following estimate can be found in the standard literature, see the proof of [39, Theorem
4.17] for the case of a Neumann boundary problem (the proof is the same for Robin or Dirichlet boundary).
It can also be deduced by the same arguments given in the proof of Proposition 3.2.

Proposition 3.1. For each r > n/2 there exists c > 0 such that

|yu − yū − zu−ū|H1(Ω)∩C(Ω̄) ≤ c|u− ū|2Lr(Ω) ∀u ∈ U .
One of the first things that can be deduced from Proposition 3.1 is the differentiability of the control-

to-state mapping G. Given v ∈ L2(Ω) satisfying ū + v ∈ U , the Gâteaux differential of the control-to-
state mapping G at ū in the direction v exists and is given by dG(ū; v) = zv. Moreover, one can prove
that G is of class C2. This is a standard application of the Implicit Function Theorem to the function
F : D(L) × Lr(Ω) → Lr(Ω) given by F(y, u) := Ly + d(·, y) − β(·)u, where r > n/2; see [7, Theorem 2.12]
for details in the Dirichlet boundary case.

In order to study the Gâteaux differential of the control-to-adjoint mapping we introduce the following
notations. Given v ∈ L2(Ω), we denote by qv the unique2 solution of the equation

Lqv = Hyy(·, yū, pū, ū)zv +Hyp(·, yū, pū, ū)qv +Hyu(·, yū, pū, ū)v. (8)

The following estimate is concerned with the differentiability of the control-to-adjoint mapping. To the
best of our knowledge, this result does not appear in the literature; therefore we present its proof, although
it is standard.

Proposition 3.2. For each r > n/2 there exists c > 0 such that

|pu − pū − qu−ū|H1(Ω)∩C(Ω̄) ≤ c|u− ū|2Lr(Ω) ∀u ∈ U .

Proof. Given u ∈ U , we define ψu : Ω → R4 by ψu(x) := (x, yu(x), pu(x), u(x)). For each u ∈ U , we denote
by q̃u−ū the unique solution of the equation

Lq̃u−ū = Hyy(ψū)(yu − yū) +Hyp(ψū)q̃u−ū +Hyu(ψū)(u− ū).

Let u ∈ U and r > n/2 be arbitrary. Using the Taylor Theorem and (ii)-(iii) of Assumption 1, one can find
α1, α2, α3 ∈ L∞(Ω) such that

Hy(ψu) =Hy(ψū) +Hyy(ψū)(yu − yū) +Hyp(ψū)(pu − pū) +Hyu(ψū)v

+ α1(·)(yu − yū)
2 + α2(·)(yu − yū)(pu − pū) + α3(·)(yu − yū)v,

1The uniqueness follows from Lemma 2.3, and the fact that equation (7) can be rewritten as

Lzv + dy(·, yū)zv = β(·)v.

2The uniqueness follows from Lemma 2.3, and the fact that equation (8) can be rewritten as

Lqv + dy(·, yū)qv = Hyy(·, yū, pū, ū)zv +Hyu(·, yū, pū, ū)v.

7



where v = u− ū. Hence

L(pu − pū − q̃v) = Hyp(ψū)(pu − pū − q̃v) +
�
α1(·)(yu − yū) + α2(·)(pu − pū) + α3(·)v

�
(yu − yū).

By Lemma 2.3, Proposition 2.7 and Proposition 2.10, there exists c1 > 0 such that

|pu − pū − q̃v|H1(Ω)∩C(Ω̄) ≤ c1|v|2Lr(Ω).

Now,

L(q̃v − qv) = Hyy(ψū)(yu − yū − zv) +Hyp(ψū)(q̃v − qv).

By Lemma 2.3 and Proposition 3.1, there exists c2 > 0 such that

|q̃v − qv|H1(Ω)∩C(Ω̄) ≤ c2|v|2Lr(Ω).

Finally, by the triangle inequality

|pu − pū − qv|H1(Ω)∩C(Ω̄) ≤ |pu − pū − q̃v|H1(Ω)∩C(Ω̄) + |q̃v − qv|H1(Ω)∩C(Ω̄).

The result follows taking c := c1 + c2.

Given v ∈ L∞(Ω) satisfying ū+ v ∈ U , the Gâteaux differential of the control-to-adjoint mapping S at ū
in the direction v exists and is given by dS(ū; v) = qv. It is worth mentioning that the map S is of class C2,
this can be seen applying the Implicit Function Theorem to the function H : D(L)× Lr(Ω) → Lr(Ω) given
by H(p, u) := Lp−Hy(·, yu, p, u), where r > n/2.

We now state further properties concerning the mappings v → zv and v → qv.

Proposition 3.3. The following statements hold.

(i) For each r > n/2 there exists a positive number c such that

|zv|H1(Ω)∩C(Ω̄) + |qv|H1(Ω)∩C(Ω̄) ≤ c|v|Lr(Ω) ∀v ∈ L2(Ω) ∩ Lr(Ω).

(ii) There exists a positive number c such that

|zv|L2Ω + |qv|L2Ω ≤ c|v|L1(Ω) ∀v ∈ L2(Ω).

(iii) Let {vk}∞k=1 be a sequence in L2(Ω) and v ∈ L2(Ω). If vk ⇀ v weakly in L2(Ω), then zvk → zv and
qvk → qv in C(Ω̄).

Proof. Items (i) and (ii) follow from Lemma 2.3 and 2.4, respectively. Item (iii) follows from Lemma 2.5.

3.2 The switching mapping

Let us begin this subsection recalling the first order necessary condition (Pontryagin principle in integral
form) for problem (1)–(2). If u ∈ U is a local solution of problem (1)–(2), then�

Ω

�
s(x, yu) + β(x)pu

�
(w − u) dx ≥ 0 ∀w ∈ U . (9)

The variational inequality (9) motivates the following definition. For each u ∈ U , define
σu := s(·, yu) + β(·)pu.

The mapping Q : U → L∞(Ω) given by Q(u) := σu is called the switching mapping. Given v ∈ L2(Ω), we
define the linearization

πv := Huy(·, yū, pū)zv +Hup(·, yū, pū)qv.
This definition is justified by the following estimate.
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Proposition 3.4. For each r > n/2 there exists c > 0 such that

|σu − σū − πu−ū|L∞(Ω) ≤ c|u− ū|2Lr(Ω) ∀u ∈ U .

Proof. Given u ∈ U , we define ψu : Ω → R3 by ψu(x) := (x, yu(x), pu(x)). For each u ∈ U , we denote

π̃u−ū := Huy(ψū)(yu − yū) +Hup(ψū)(pu − pū).

Let u ∈ U and r > n/2 be arbitrary, and abbreviate v = u− ū. Using the Taylor Theorem and (ii)-(iii) of
Assumption 1, one can find α1, α2 ∈ L∞(Ω) such that

Hu(ψu) =Hu(ψū) +Huy(ψū)(yu − yū) +Hup(ψū)(pu − pū)

+ α1(·)(yu − yū)
2 + α2(·)(yu − yū)(pu − pū).

Therefore, by Proposition 2.7 and 2.10, there exists c1 > 0 such that

|σu − σū − π̃v|L∞(Ω) ≤ c1|v|2Lr(Ω).

Now,

|π̃v − πv|L∞(Ω) ≤ |Huy(·, yū, pū)(yu − yū − zv) +Hup(·, yū, pū)(qu − qū − qv)|L∞(Ω).

Hence, by Proposition 3.1 and 3.2, there exists c2 > 0 such that

|π̃v − πv|L∞(Ω) ≤ c2|v|2Lr(Ω).

Finally, by the triangle inequality,

|σu − σū − πv|L∞(Ω) ≤ |σu − σū − π̃v|L∞(Ω) + |π̃v − πv|L∞(Ω).

The result follows defining c := c1 + c2.

Proposition 3.4 yields immediately that the Gâteaux differential of the switching mapping Q at ū in any
direction v ∈ U − ū exists and is given by dQ(ū; v) = zv.

One of the important features of the mapping v → πv is the following.

Proposition 3.5. For all v ∈ L2(Ω), we have�
Ω

πvv dx =

�
Ω

�
Hyy(x, yū, pū, ū)z

2
v + 2Huy(x, yū, pū, ū)zvv

�
dx.

Proof. In order to simplify notation, we write ψū(x) := (x, yū(x), pū(x), ū(x)) for each x ∈ Ω. Let v ∈ L2(Ω)
be arbitrary. By the integration by parts formula (4), we get�

Ω

Hup(ψū)qvv dx =

�
Ω

�Lzv + dy(x, yū)zv
�
qv dx =

�
Ω

�Lqv + dy(x, yū)qv
�
zv dx

=

�
Ω

�
Hyy(ψū)zv +Huy(ψū)v

�
zv =

�
Ω

�
Hyy(ψū)z

2
v +Huy(ψū)zvv

�
dx.

The result follows since �
Ω

πvv dx =

�
Ω

Huy(ψū)zvv dx+

�
Ω

Hup(ψū)qvv dx.

We give further properties of the mapping v → πv in the next proposition, its proof follows trivially from
Proposition 3.3.

Proposition 3.6. The following statements hold.
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(i) For each r > n/2 there exists a positive number c such that

|πv|L∞(Ω) ≤ c|v|Lr(Ω) ∀v ∈ L2(Ω) ∩ Lr(Ω).

(ii) There exists a positive number c such that

|πv|L2(Ω) ≤ c|v|L1(Ω) ∀v ∈ L2(Ω).

(iii) Let {vk}∞k=1 be a sequence in L2(Ω) and v ∈ L2(Ω). If vk ⇀ v weakly in L2(Ω), then πvk → πv in
L∞(Ω).

Proposition 3.5 motivates the following definition. For each v ∈ L2(Ω), define

Λ(v) :=

�
Ω

�
Hyy(x, yū, pū, ū)z

2
v + 2Huy(x, yū, pū, ū)zvv

�
dx. (10)

Remark 3.7. We mention that the quadratic form Λ : L2(Ω) → R is the second variation of the objective
functional J : U → R at ū. By Proposition 3.5, we also have the following representation

Λ(v) =

�
Ω

πvv dx ∀v ∈ L2(Ω).

We close this section with a result concerning the quadratic form (10).

Proposition 3.8. Let {vk}∞k=1 ⊂ L2(Ω) and v ∈ L2(Ω). If vk ⇀ v weakly in L2(Ω), then Λ(vk) → Λ(v).

Proof. By Proposition 3.6, πvk → πv in L∞(Ω), therefore

Λ(vk) =

�
Ω

(πvk
− πv)vk dx+

�
Ω

πvvk dx →
�
Ω

πvv dx.

4 Stability

In this section, we study the stability of the optimal solution of problem (1)–(2) with respect to perturbations.
As usual in optimization, the stability of the solution is derived from stability of the system of necessary
optimality conditions. The investigated stability property of the latter is the so-called strong metric Hölder
subregularity (SMHSr), see e.g., [16, Section 3I] or [11, Section 4]. After introducing the assumptions we
study the SMHSr property of the variational inequality (9). Then the result is used to obtain this property
for the whole system of necessary optimality conditions

4.1 The main assumption

We begin the section recalling that ū ∈ U is a local minimizer of problem (1)–(2), and the definition of the
quadratic form Λ : L2(Ω) → R in (10).

Assumption 2. There exist positive numbers α0, γ0 and k∗ ∈ [1, 4/n) such that�
Ω

σū(u− ū) dx+ Λ(u− ū) ≥ γ0|u− ū|k∗+1
L1(Ω), (11)

for all u ∈ U with |u− ū|L1(Ω) ≤ α0.

Assumption 2 resembles the well-known L2-coercivity condition in optimal control, with two substantial
differences: (i) the left-hand side of (11) involves a linear term (not only the quadratic form in the L2-
coercivity condition); (ii) the L1-norm appears in the right-hand side of (11). Assumption 2 in the particular
case k∗ = 1 has been used before in the literature on optimal control problems constrained by ordinary
differential equations, see [28, Assumption A2’] or [29, Assumption A2]. A similar assumption was used in
[14, Assumption 2]. We first point out that if ū satisfies Assumption 2, then it must be bang-bang. A control
u ∈ U is bang-bang if u(x) ∈ {b1(x), b2(x)} for a.e. x in Ω. The proof of this result follows the arguments
given in the proof of [10, Theorem 2.1].
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Proposition 4.1. If ū ∈ U satisfies Assumption 2, then ū is bang-bang.

Proof. Let α0 and γ0 be the positive numbers in Assumption 2. Suppose that there exists ε > 0 and a
measurable set E ⊂ Ω of positive measure such that

ū(x) ∈ [b1(x) + ε, b2(x)− ε] for a.e. x ∈ E.

Define ε∗ := min{α0(measE)−1, ε}. Let {vm}∞m=1 ⊂ L2(Ω) be a sequence converging to zero weakly in
L2(Ω) such that for each m ∈ N, vm(x) ∈ {−ε∗, ε∗} for a.e. x ∈ Ω. For each m ∈ N, define

um(x) :=

 ū(x) if x /∈ E

ū(x) + vm(x) if x ∈ E.

Clearly, for each m ∈ N, um belongs to U and

|um − ū|L1(Ω) = ε∗measE.

Hence, by Assumption 2 �
Ω

σū(um − ū) dx+ Λ(um − ū) ≥ γ0

�
ε∗measE

�k∗+1

(12)

for all m ∈ N. Since um ⇀ ū weakly in L2(Ω), we have by Proposition 3.8 that the left hand side of (12)
converges to 0; a contradiction.

Proposition 4.1 makes the following lemma relevant.

Lemma 4.2. Let u ∈ U be bang-bang, and {uk}∞k=1 ⊂ U be a sequence. If uk ⇀ u weakly in L1(Ω), then
uk → u in L1(Ω).

Proof. Let Ωi := {x ∈ Ω : u(x) = bi(x)}, i = 1, 2. Let χΩi : Ω → {0, 1} denote the characteristic function of
the set Ωi, i = 1, 2. Now, by definition of weak convergence�

Ω

|uk − u| dx =

�
Ω

χΩ1
(un − ū) dx−

�
Ω

χΩ2
(un − ū) dx → 0.

The next proposition shows that the switching mapping satisfies a growth condition. The proof consists
of two steps. The first one is to show that Assumption 2 implies this growth condition for the linearization
of the switching mapping. The second step is to adequately use the linearization as an approximation of the
switching mapping.

Proposition 4.3. Let Assumption 2 be fulfilled. Then there exist positive numbers α and γ such that�
Ω

σu(u− ū) dx ≥ γ|u− ū|k∗+1
L1(Ω)

for all u ∈ U with |u− ū|L1(Ω) ≤ α.

Proof. Let α0, γ0 and k∗ be the positive numbers in Assumption 2. Fix r ∈ (n/2, 2/k∗). Using Proposition
3.4, a constant c > 0 can be found such that

|σu − σū − πu−ū|L∞(Ω) ≤ c|u− ū|2/rL1(Ω) ∀u ∈ U . (13)

From Proposition 3.5 and Assumption 2, we have�
Ω

�
σū + πu−ū

�
(u− ū) dx =

�
Ω

σū(u− ū) dx+ Λ(u− ū) ≥ γ0|u− ū|k∗+1
L1(Ω) (14)
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for all u ∈ U with |u− ū|L1(Ω) ≤ α0. Define γ := γ0/2 and

α := min
�
α0, γ

r
2−k∗r c−

r
2−k∗r

	
.

Then, by (13)

|σu − σū − πu−ū|L∞(Ω) ≤ c|u− ū| 2rL1(Ω) = c|u− ū| 2r−k∗

L1(Ω)|u− ū|k∗
L1(Ω) ≤ γ|u− ū|k∗

L1(Ω) (15)

for all u ∈ U with |u− ū|L1(Ω) ≤ α. We have for all u ∈ U�
Ω

σu(u− ū) dx =

�
Ω

�
σū + πu−ū

�
(u− ū) dx+

�
Ω

�
σu − σū − πu−ū

�
(u− ū) dx.

Consequently, by (14) and (15),�
Ω

σu(u− ū) dx ≥ γ0|u− ū|k∗+1
L1(Ω) − |σu − σū − πu−ū|L∞(Ω)|u− ū|L1(Ω)

= (γ0 − γ)|u− ū|k∗+1
L1(Ω) = γ|u− ū|k∗+1

L1(Ω)

for all u ∈ U with |u− ū|L1(Ω) ≤ α.

4.2 Some existence and stability results

We now pass to some preparatory lemmas concerning the existence of solutions of inclusions (also called
generalized equations, see [36]) related to the first order necessary condition of problem (1)–(2). Given
r ∈ [1,∞], we denote by BLr (c;α) the closed ball in Lr(Ω) with center c ∈ Lr(Ω) and radius α > 0.

The variational inequality (9) can be written as the inclusion

0 ∈ σu +NU (u),

where the normal cone at u to the set U is given by

NU (u) =
�
σ ∈ L∞(Ω) :

�
Ω

σ(w − u) dx ≤ 0 ∀w ∈ U
�

Lemma 4.4. For all ρ ∈ L∞(Ω) and ε > 0 there exists u ∈ U ∩ BL1(ū; ε) satisfying

ρ ∈ σu +NU∩BL1 (ū;ε)(u).

Proof. Let ρ ∈ L∞(Ω) and ε > 0. Consider the functional Jρ : U → R

Jρ(u) :=

�
Ω

�
g(yu, u)− ρu

�
dx = J (u)−

�
Ω

ρu dx.

The functional Jρ has at least one global minimizer uρ ∈ U since U ∩ BL1(ū; ε) is a weakly sequentially
compact subset of L2(Ω) and Jρ is weakly sequentially continuous. By the Pontryagin principle,�

Ω

�
σuρ − ρ

�
(u− uρ) dx ≥ 0 ∀u ∈ U .

We have then that uρ satisfies ρ ∈ σuρ +NU∩BL1 (ū;ε)(uρ).

Lemma 4.5. Let V1 and V2 be closed and convex subsets of L1(Ω) such that V1 ∩ int V2 ̸= ∅. Then

NV1∩V2(u) = NV1(u) +NV2(u) (16)

for all u ∈ V1 ∩ V2.
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Proof. Given a set W ⊂ L1(Ω), let sW : L∞(Ω) → R ∪ {∞} denote the support function to W, that is

sW(h) := sup
w∈W

�
Ω

hw dx.

By [3, Proposition 3.1], the set Epi sV1 + Epi sV2 is weak∗ closed in L∞(Ω). Then the representation (16)
holds according to [3, Theorem 3.1].

We can now prove existence of solutions of the inclusion ρ ∈ σu +NU (u) that are close (in the L1-norm)
to ū whenever ρ is close to zero (in the norm L∞-norm). The proof follows the arguments in [13, p. 1127].

Lemma 4.6. Let Assumption 2 hold. For each ε > 0 there exists δ > 0 such that for each ρ ∈ BL∞(0; δ)
there exists u ∈ U ∩ BL1(ū; ε) satisfying ρ ∈ σu +NU (u).

Proof. Let α and γ be the numbers in Proposition 4.3. Define ε0 := min{ε, α} and δ := εk
∗

0 γ/2. Let
ρ ∈ L∞(Ω) with |ρ|L∞(Ω) ≤ δ. By Lemma 4.4, there exists u ∈ U ∩ BL1(ū; ε0) such that

ρ ∈ σu +NU∩BL1 (ū;ε0)(u).

Since trivially ū ∈ U ∩ intBL1(ū, ε0), by Lemma 4.5 we have

NU∩BL1 (ū;ε0)(u) = NU (u) +NBL1 (ū;ε0)(u). (17)

Thus there exists ν ∈ NBL1 (ū;ε0)(u) such that

ρ− σu − ν ∈ NU (u).

By definition of the normal cone,

0 ≥
�
Ω

�
ρ− σu

�
(ū− u) dx−

�
Ω

ν(ū− u) dx. (18)

As ū ∈ BL1(ū; ε0) and ν ∈ NBL1 (ū;ε0)(u), we have�
Ω

ν(ū− u) dx ≤ 0.

Consequently, by (18) and Proposition 4.3

0 ≥
�
Ω

�
ρ− σu

�
(ū− u) dx ≥ −|ρ|L∞(Ω)|u− ū|L1(Ω) + γ|u− ū|k∗+1

L1(Ω),

which implies

|u− ū|L1(Ω) ≤ γ− 1
k∗ |ρ|

1
k∗
L∞(Ω) ≤ 2−

1
k∗ ε0 < ε0.

As u ∈ int BL1(ū; ε0), we have NBL1 (ū;ε0)(u) = {0}. Thus by (17),

ρ ∈ σu +NU∩BL1 (ū;ε0)(u) = σu +NU (u). (19)

The following lemma shows how Proposition 4.3 (and consequently Assumption 2) is related to Hölder-
stability.

Lemma 4.7. Let Assumption 2 hold. There exist positive numbers α and c such that

|u− ū|L1(Ω) ≤ c|ρ|
1
k∗
L∞(Ω) (20)

for all ρ ∈ L∞(Ω) and u ∈ BL1(ū;α) satisfying ρ ∈ σu +NU (u).
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Proof. Let α and γ be the positive numbers in Proposition 4.3. Since ρ− σu ∈ NU (u), we have�
Ω

(ρ− σu)(ū− u) dx ≤ 0.

By Proposition 4.3,

0 ≥
�
Ω

(ρ− σu)(ū− u) dx =

�
Ω

σu(u− ū) dx+

�
Ω

ρ(ū− u) dx

≥ γ

��
Ω

|u− ū| dx
 k∗+1

− |ρ|L∞(Ω)

�
Ω

|u− ū| dx.

Hence �
Ω

|u− ū| dx ≤
� 1

γ
|ρ|L∞(Ω)

�1/k∗

= γ− 1
k∗ |ρ|

1
k∗
L∞(Ω).

The result follows defining c = γ− 1
k∗ .

Lemma 4.7 requires that the controls are close (in the L1-norm) a priori for the inequality (20) to hold.
This assumption can be removed if the solution of the inclusion 0 ∈ σu +NU (u) is unique.

Lemma 4.8. Let Assumption 2 hold, and suppose additionally that ū ∈ U is the unique solution of 0 ∈
σu +NU (u). There exist positive numbers δ and c such that

|u− ū|L1(Ω) ≤ c|ρ|
1
k∗
L∞(Ω).

for all ρ ∈ BL∞(0; δ) and u ∈ U satisfying ρ ∈ σu +NU (u).

Proof. Let α and c be the positive numbers in Lemma 4.7. First we prove that there exists δ > 0 such
that if u ∈ U and ρ ∈ L∞(Ω) satisfy ρ ∈ σu + NU (u) and |ρ|L∞(Ω) ≤ δ, then u ∈ BL1(ū;α). Suppose
not, then there exist sequences {ρk}∞k=1 ⊂ L∞(Ω) and {uk}∞k=1 ⊂ U such that ρk ∈ σuk

+ NU (uk) and
|uk − ū|L1(Ω) > α. Since U is weakly sequentially compact in L2(Ω), there exists a subsequence of {uk}∞k=1,
denoted in the same way, and u∗ ∈ U such that uk ⇀ u∗ weakly in L2(Ω). Using Proposition 2.12, one
can see that ρk − σuk

→ σu∗ in L∞(Ω). Consequently, as ρk ∈ σuk
+ NU (uk) for all n ∈ N, we obtain

0 ∈ σu∗ +NU (u∗). Then, by assumption, u∗ = ū, so u∗ is bang-bang. By Lemma 4.2, we have uk → u∗ in
L1(Ω); a contradiction. The result follows from Lemma 4.7.

4.3 Strong metric subregularity

Let us begin considering the following system representing the necessary optimality conditions (Pontryagin
principle) for problem (1)–(2):  0 = Ly − f(·, y, u),

0 = Lp−Hy(·, y, p, u),
0 ∈ Hu(·, y, p) +NU (u),

(21)

If u ∈ U is a local solution of problem (1)–(2), then the triple (yu, pu, u) is a solution of (21). Therefore, the
mapping that defines the right-hand side is referred to as the optimality mapping. In order to give a strict
definition and recast system (21) in a functional frame, we introduce the metric spaces

Y := D(L)×D(L)× U and Z := L2(Ω)× L2(Ω)× L∞(Ω),

endowed with the following metrics. For ψi = (yi, pi, ui) ∈ Y and ζi = (ξi, ηi, ρi) ∈ Z, i ∈ {1, 2},

dY(ψ1, ψ2) := |y1 − y2|L2(Ω) + |p1 − p2|L2(Ω) + |u1 − u2|L1(Ω),

dZ(ζ1, ζ2) := |ξ1 − ξ2|L2(Ω) + |η1 − η2|L2(Ω) + |ρ1 − ρ2|L∞(Ω).
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Both metrics are shift-invariant. We denote by BY(ψ;α) the closed ball in Y, centered at ψ and with radius
α. The notation for the ball BZ(ζ;α) is identical. Then the optimality mapping is defined as the set-valued
mapping Φ : Y ↠ Z given by

Φ(y, p, u) =

 Ly − f(·, y, u)
Lp−Hy(·, y, p, u)

Hu(·, y, p, u) +NU (u)

 . (22)

Then the optimality system (21) can be recast as the inclusion

0 ∈ Φ(y, p, u). (23)

Our purpose is to study the stability of system (21), or equivalently of inclusion (23), with respect to
perturbations in the right-hand side. From now on, we denote ψ̄ := (ȳ, p̄, ū) = (yū, pū, ū) , where ū is the
fixed local solution of problem (1)–(2).

Definition 4.9. The optimality mapping Φ : Y ↠ Z is called strongly Hölder subregular with exponent
λ > 0 at (ψ̄, 0) if there exist positive numbers α1, α2 and κ such that

dY(ψ, ψ̄) ≤ κdZ(ζ, 0)λ (24)

for all ψ ∈ BY(ψ̄;α1) and ζ ∈ BZ(0;α2) satisfying ζ ∈ Φ(ψ).

More explicitly, the inequality (24) reads as

|y − yū|L2(Ω) + |p− pū|L2(Ω) + |u− ū|L1(Ω) ≤ κ
�
|ξ|L2(Ω) + |η|L2(Ω) + |ρ|L∞(Ω)

�λ

. (25)

Hence, if the optimality mapping is strongly Hölder subregular, all solutions of the system ξ = Ly − f(·, y, u),
η = Lp−Hy(·, y, p, u),
ρ ∈ Hu(·, y, p) +NU (u).

(26)

that are near (yū, pū, ū) satisfy the Hölder estimate (25) with respect to the perturbations ζ = (ξ, η, ρ),
provided they are small enough.

Remark 4.10. If Φ is strongly Hölder subregular at (ψ̄, 0), then from (24) applied with ζ = 0 we obtain
that ψ̄ is the unique solution of (23) in BY(ψ̄;α1), hence ū is the unique local solution of problem (1)–(2) in
this ball. In particular, ū is a strict local minimizer.

We are now ready to state our main result.

Theorem 4.11. Let Assumption 2 hold. Then the optimality mapping Φ is strongly Hölder subregular at
(ψ̄, 0) with exponent λ = 1/k∗.

Proof. Let α and c be the positive numbers in Lemma 4.7. Let ζ = (ξ, η, ρ) ∈ BZ(0; 1) and ψ = (y, p, u) ∈
BY(ψ̄;α) such that ζ ∈ Φ(ψ). By a standard argument, there exists c1 > 0 (independent of ψ and ζ) such
that

|y − yu|L∞(Ω) + |p− pu|L∞(Ω) ≤ c1

�
|ξ|L2(Ω) + |η|L2(Ω)

�
. (27)

Since Hu is locally Lipschitz uniformly in the first variable, and the sets {yu : u ∈ U}, {pu : u ∈ U} are
bounded in C(Ω̄), there exists c2 > 0 (independent of ψ) such that

|Hu(·, y, p)−Hu(·, yu, pu)|L∞(Ω) ≤ c2

�
|y − yu|L∞(Ω) + |p− pu|L∞(Ω)

�
(28)

Define ν := ρ + Hu(·, yu, pu) − Hu(·, y, p). By (27) and (28), there exists c3 > 0 (independent of ψ and ζ)
such that

|ν|L∞(Ω) ≤ c3

�
|ξ|L2(Ω) + |η|L2(Ω) + |ρ|L∞(Ω)

�
= c3|ζ|Z .
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As ρ ∈ Hu(·, y, p) +NU (u), we have ν ∈ Hu(·, yu, pu) +NU (u). Then by Lemma 4.7,

|u− ū|L1(Ω) ≤ c|ν|
1
k∗
L∞(Ω) ≤ cc

1
k∗
3 |ζ|

1
k∗
Z := c4|ζ|

1
k∗
Z . (29)

Now, by Proposition 2.11, there exists c5 > 0 (independent of ψ) such that |yu − yū|L2(Ω) ≤ c5|u− ū|L1(Ω).
Consequently, by (29)

|y − yū|L2(Ω) ≤ |y − yu|L2(Ω) + |yu − yū|L2(Ω)

≤ c1meas Ω
1
2

�
|ξ|L2(Ω) + |η|L2(Ω)

�
+ c5|u− ū|L1(Ω)

≤ (c1meas Ω
1
2 + c5c4)|ζ|

1
k∗
Z =: c6|ζ|

1
k∗
Z .

Analogously, there exists c7 > 0 (independent of ψ and ζ) such that

|p− pu|L2(Ω) ≤ c7|ζ|
1
k∗
Z .

Putting all together,

|y − yū|L2(Ω) + |p− pu|L2(Ω) + |u− ū|L1(Ω) ≤ (c4 + c6 + c7)|ζ|
1
k∗
Z .

Finally, let α1 := α, α2 := 1 and κ := c4 + c6 + c7. Since the constants c4, c6 and c7 are independent of ψ
and ζ, so is κ. Thus we have (24) for all ψ ∈ BY(ψ̄;α1) and ζ ∈ BZ(0;α2) satisfying ζ ∈ Φ(ψ).

The strong subregularity property defined above does not require existence of solutions of the perturbed
inclusion (26) in a neighborhood of the reference solution ψ̄. The next theorem answers the existence
question.

Theorem 4.12. Let Assumption 2 hold. For each ε > 0 there exists δ > 0 such that for every ζ ∈ BZ(0; δ)
there exists ψ ∈ BY(ψ̄; ε) satisfying the inclusion ζ ∈ Φ(ψ).

Proof. For each u ∈ U and ζ = (ξ, η, ρ) ∈ Z, define νu,ζ := ρ + Hu(·, yu, pu) − Hu(·, yu,ζ , pu,ζ), where yu,ζ
and pu,ζ are the unique solutions of � Ly = f(·, y, u) + ξ,

Lp = Hy(·, y, p, u) + η.
(30)

By a standard argument, one can find positive numbers c1 and c2 such that

|yu,ζ − yu|L2(Ω) + |pu,ζ − pu|L2(Ω) ≤ c1

�
|ξ|L2(Ω) + |η|L2(Ω)

�
, (31)

and |νu,ζ |L∞(Ω) ≤ c2|ζ|Z for all u ∈ U and ζ ∈ Z. Let ε > 0 be arbitrary. By Lemma 4.6, the exists δ0 > 0
such that for each ν ∈ BL∞(0; δ0) there exists u ∈ U ∩ BL1(ū; ε/2) satisfying ν ∈ σu + NU (u). Define δ :=
min{c−1

2 δ0, (2c1)
−1ε} and let ζ∗ ∈ BZ(0; δ) be arbitrary; we will prove that there exists u∗ ∈ U ∩BL1(ū; ε/2)

such that νu∗,ζ∗ ∈ σu∗ +NU (u∗). First, observe that

|νu,ζ∗ |L∞(Ω) ≤ c2|ζ∗|Z ≤ δ0 ∀u ∈ U .

Therefore, by Lemma 4.6, we can inductively define a sequence {uk}∞k=1 ⊂ U such that νuk,ζ∗ ∈ σuk+1
+

NU (uk+1) and |uk − ū|L1(Ω) ≤ ε/2 for all k ∈ N. Since U is weakly compact in L2(Ω), we may assume that
uk ⇀ u∗ weakly in L2(Ω) for some u∗ ∈ U . Weak convergence in L2(Ω) implies weak convergence in L1(Ω)
and BL1(ū; ε/2) is weakly sequentially closed in L1(Ω), therefore u∗ ∈ BL1(ū; ε/2). Using Proposition 2.12,
one can see that νuk,ζ∗ − σuk+1

→ νu∗,ζ∗ − σu∗ in L∞(Ω), and consequently that νu∗,ζ∗ ∈ σu∗ +NU (u∗). We
conclude then that ζ∗ ∈ Φ(ψ∗), where ψ∗ := (yu∗,ζ∗ , pu∗,ζ∗ , u∗). Finally, by definition of δ and (31)

|ψ∗ − ψ̄|Y ≤ c1|ζ|Z + ε/2 ≤ ε.

Thus, ζ∗ ∈ Φ(ψ∗) and ψ∗ ∈ BY(ψ̄; ε), which completes the proof.
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The next theorem claims that all solutions of the perturbed optimality system (26) are arbitrarily close
to the solution of the unperturbed optimality system, provided that the solution of the latter is globally
unique, Assumption 2 holds, and the perturbation is sufficiently small.

Theorem 4.13. Let Assumption 2 hold and suppose additionally that ψ̄ is the unique element of Y that
satisfies 0 ∈ Φ(ψ̄). For each ε > 0 there exists δ > 0 such that if ζ ∈ BZ(0; δ) and ψ ∈ Y satisfy ζ ∈ Φ(ψ),
then ψ ∈ BY(ψ̄; ε).

Proof. Let δ0 and c0 be the positive numbers in Lemma 4.8. Let ζ = (ξ, η, ρ) ∈ Z and ψ = (y, p, u) ∈ Y be
such that ζ ∈ Φ(ψ). Define ν := ρ+Hu(·, yu, pu)−Hu(·, y, p). Arguing as in the proof of Theorem 4.11, we
can find positive numbers c1 and c2 (independent of ψ and ζ) such that |ν|L∞(Ω) ≤ c1|ζ|Z and

|y − yū|L2(Ω) + |p− pū|L2(Ω) ≤ c2

�
|ζ|Z + |u− ū|L1(Ω)

�
.

Let δ := min{c−1
1 δ0, (2c0c2)

−k∗
c−1
1 εk

∗
, (2c2)

−1ε} and suppose that ζ ∈ BZ(0; δ). As ρ ∈ Hu(·, y, p) +NU (u),
we have ν ∈ Hu(·, yu, pu) +NU (u). By Lemma 4.8,

|u− ū|L1(Ω) ≤ c0|ν|
1
k∗
L∞(Ω) ≤ c0c

1
k∗
1 |ζ|

1
k∗
Z ≤ c−1

2 ε/2.

Thus,

|y − yū|L2(Ω) + |p− pū|L2(Ω) + |u− ū|L1(Ω) ≤ c2

�
δ + c−1

2 ε/2
�
≤ ε.

5 Nonlinear Perturbations

In this section we apply the subregularity results in Section 4 for studying the effect of certain nonlinear
perturbations on the optimal solution. We consider the following family of problems

min
u∈U

��
Ω

�
g(x, y, u) + η(x, y, u)

�
dx

�
, (32)

subject to  − div
�
A(x)∇y

�
+ d(x, y) + ξ(x, y) = β(x)u in Ω

A(x)∇y · ν + b(x)y = 0 on ∂Ω.
(33)

In order to specify the perturbations under consideration and their topology, we begin the section recalling
some elementary notions of functional analysis.

As usual, C(Rs) denotes the space of all continuous functions ω : Rs → R. For each m ∈ N, let Km

denote the closed ball in Rs centered at zero with radius m. Consider the metric on C(Rs) given by

dC(ω1, ω2) :=
∞&

m=1

1

2m
|ω1 − ω2|L∞(Km)

1 + |ω1 − ω2|L∞(Km)
.

This metric induces the compact-convergence topology on C(Rs). In this topology, a sequence {ωm}∞m=1 ⊂
C(Rs) converges to ω ∈ C(Rs) if and only if |ω − ωm|L∞(K) → 0 for every compact set K ⊂ Rs. This
topology is also known as the compact-open topology, see [26, Chapter 7].

Lemma 5.1. For each compact set K ⊂ Rs there exists m ∈ N such that

|ω1 − ω2|L∞(K) ≤ 2mdC(ω1, ω2)

for all ω1, ω2 ∈ C(Rs) such that dC(ω1, ω2) ≤ 2−m.
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5.1 The perturbations

We begin describing the space of perturbations appearing in equation (33). Let Υs be the set of all continu-
ously differentiable functions ξ : Rn ×R → R such that dy(x, y) + ξy(x, y) ≥ 0 for all x ∈ Ω and y ∈ R. The
set Υs does not constitute a linear space, but it allows to have well-defined states for each perturbation.

Proposition 5.2. For each u ∈ U and ξ ∈ Υs there exists a unique function yξu ∈ D(L) satisfying
Lyξu + d(·, yξu) + ξ(·, yξu) = β(·)u.

Moreover, there exist positive numbers M and δ such that |yξu|L∞(Ω) ≤ M for all u ∈ U and ξ ∈ Υs with
dC(ξ, 0) ≤ δ.

Proof. The existence follows from [39, Theorem 4.8]. Moreover, also from this theorem, there exists c > 0
such that

|yξu|L∞(Ω) ≤ c
((β(·)u− d(·, 0)− ξ(·, 0)((

L∞(Ω)

for all u ∈ U and ξ ∈ Υs. Let K := Ω̄× {0}, then by Lemma 5.1 there exists m ∈ N such that

|yξu|L∞(Ω) ≤ c
�
|β|L∞(Ω)|u|L∞(Ω) + |d(·, 0)|L∞(Ω) + |ξ|L∞(K)

�
≤ c

�
|β|L∞(Ω) sup

u∈U
|u|L∞(Ω) + |d(·, 0)|L∞(Ω) + 2mdC(ξ, 0)

�
≤ c

�
|β|L∞(Ω) sup

u∈U
|u|L∞(Ω) + |d(·, 0)|L∞(Ω) + 1

�
for all u ∈ U and ξ ∈ Υs with dC(ξ, 0) ≤ 2−m. The result follows defining δ := 2−m and

M := c
�
|β|L∞(Ω) sup

u∈U
|u|L∞(Ω) + |d(·, 0)|L∞(Ω) + 1

�
.

We now proceed to describe the perturbations appearing in the cost functional (32). Consider the set
Υc of all continuously differentiable functions η : Rn ×R×R → R such that η(x, y, ·) is convex for all x ∈ Ω
and y ∈ R. We have the following result concerning the adjoint variable of the perturbed problem. Its proof
is similar to the one of Proposition 5.2.

Proposition 5.3. For each u ∈ U , ξ ∈ Υs and η ∈ Υc there exists a unique function pξ,ηu ∈ D(L) satisfying
Lpξ,ηu +

�
dy(·, yξu) + ξy(·, yξu)

�
pξ,ηu = gy(·, yξu, u) + ηy(·, yξu, u).

Moreover, there exist positive numbers M and δ such that |pξ,ηu |L∞(Ω) ≤ M for all u ∈ U , ξ ∈ Υs and η ∈ Υc

with dC(ξ, 0) + dC(ξy, 0) + dC(ηy, 0) ≤ δ.

We denote Υ := Υs × Υc, and write ζ := (ξ, η) for a generic element of Υ. We endow Υ with the
pseudometric dΥ : Υ×Υ → [0,∞) given by

dΥ(ζ, ζ
′) := dC(ξ, ξ

′) + dC(ξy, ξ
′
y) + dC(ηy, η

′
y) + dC(ηu, η

′
u).

5.2 The stability result

We are now ready to state problem (32)-(33) in a precise way. Given ζ ∈ Υ, problem Pζ is given by

min
u∈U

�
Jζ(u) :=

�
Ω

�
g(x, yξu, u) + η(x, yξu, u)

�
dx

�
. (34)

Due to the convexity of the cost in the control variable, each problem Pζ has at least one local solution.
For each ζ ∈ Υ, we fix a local minimizer ûζ ∈ U of problem Pζ . By the Pontryagin principle, for each

ζ = (ξ, η) ∈ Υ, the triple (ŷζ , p̂ζ , ûζ) := (yξûζ
, pξ,ηûζ

, ûζ) satisfies the system 0 = Ly − f(·, y, u)− ξ(·, y),
0 = Lp−Hy(·, y, p, u) + ηy(·, y, u)− ξy(·, y)p,
0 ∈ Hu(·, y, p) + ηu(·, y, u) +NU (u).

(35)

As a consequence of Theorem 4.11, we have the following result.
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Theorem 5.4. Let Assumption 2 hold. There exist positive numbers α, α′ and c such that

|ŷζ − yū|L2(Ω) + |p̂ζ − pū|L2(Ω) + |ûζ − ū|L1(Ω) ≤ cdΥ(ζ, 0)
1/k∗

for all ζ ∈ Υ such that |ûζ − ū|L1(Ω) ≤ α and dΥ(ζ, 0) ≤ α′.

Proof. By Theorem 4.11, the mapping Φ is strongly Hölder subregular at (ψ̄, 0) with exponent 1/k∗. Let
α1, α2 and κ be the positive numbers in the definition of strong subregularity. By Proposition 5.2 and 5.3
there exist positive numbers M and δ0 such that

|yξu|L∞(Ω) + |pξ,ηu |L∞(Ω) ≤ M

for all u ∈ U and ζ ∈ Υ with dΥ(ζ, 0) ≤ δ0. Let K := Ω̄× [−M,M ]. By Lemma 5.1, there exists m ∈ N such
that

|ξ(·, yξu)|L2(Ω) ≤ measΩ
1
2 |ξ|L∞(K) ≤ 2mmeasΩ

1
2 dC(ξ, 0) ≤ 2mmeasΩ

1
2 dΥ(ζ, 0)

for all u ∈ U and ζ ∈ Υ with dΥ(ζ, 0) ≤ min{2−m, δ0}. Repeating this argument, we can find positive
numbers δ and c0 such that

|ξ(·, yξu)|L2(Ω) + |ξy(·, yξu)pξ,ηu |L2(Ω) + |ηy(·, yξu, u)|L2Ω + |ηu(·, yξu, u)|L∞ ≤ c0dΥ(ζ, 0) (36)

for all u ∈ U and ζ ∈ Υ with dΥ(ζ, 0) ≤ δ. Using Proposition 2.11 and Lemma 5.1, one can find positive
numbers α and δ′ such that

|ŷζ − yū|L2(Ω) + |p̂ζ − pū|L2(Ω) + |ûζ − ū|L1(Ω) ≤ α1

for all ζ ∈ Υ with |ûζ − ū|L1(Ω) ≤ α and dΥ(ζ, 0) ≤ δ′. Observe that by (35), we have ξ(·, ŷζ)
−ηy(·, ŷζ , ûζ) + ξy(·, ŷζ)p̂ζ

−ηu(·, ŷζ , ûζ)

 ∈ Φ(ŷζ , p̂ζ , ûζ)

for all ζ ∈ Υ. Let α′ := min{c−1
0 α2, δ, δ

′}. Then by Hölder subregularity of Φ and (36),

|ŷζ − yū|L2(Ω) + |p̂ζ − pū|L2(Ω) + |uζ − ū|L1(Ω) ≤ κc
1
k∗
0 dΥ(ζ, 0)

1
k∗

for all ζ ∈ Υ such that |ûζ − ū|L1(Ω) ≤ α and dΥ(ζ, 0) ≤ α′. The result follows defining c := κc
1
k∗
0 .

5.3 An application: Tikhonov regularization

In what follows we present an application of the theory derived in the previous chapters, namely the so-
called Tikhonov regularization. For a more detailed description and an account of the state of art, the reader
is referred to [32, 41, 40]. We derive estimates on the convergence rate of the solution of the regularized
problem when the regularization parameter tends to zero. The results that appear in the literature require
the so-called structural assumption and positive-definiteness (in some sense) of the second derivative of the
objective functional. Using Theorem 4.11, we can obtain this results under weaker assumptions than used
in the literature so far. One can compare this results with [32, Theorem 4.4] (where a tracking problem with
semilinear elliptic equation is considered) when it comes to stability of the controls. In Section 6, we give
more details on how the assumptions in the literature interplay with Assumption 2.

We consider the following family of problems {Pε}ε≥0.

min
u∈U

��
Ω

g(x, y, u) dx+
ε

2

�
Ω

u2 dx

�
, (37)

subject to  − div
�
A(x)∇y

�
+ d(x, y) = β(x)u in Ω

A(x)∇y · ν + b(x)y = 0 on ∂Ω.
(38)

For each ε > 0 we fix a local solution ûε ∈ U of problem Pε.
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Theorem 5.5. Let Assumption 2 be fulfilled. Then there exist positive constants α and κ such that

|ûε − ū|L1(Ω) ≤ κε1/k
∗

(39)

for every ε > 0 such that |ûε − ū|L1(Ω) ≤ α. If in addition, each ûε is a global solution of problem (37)–(38)
then the last claim holds with α = +∞, i.e., for every ε > 0.

Proof. Let α, α′and c be the positive numbers in Theorem 5.4. Define ηε : R → R by ηε(u) := εu2/2 and
ζε := (0, ηε) ∈ Υ for each ε > 0. Note that

dC(ηε, 0) :=
∞&

m=1

1

2m
εm2/2

1 + εm2/2
= ε

∞&
m=1

1

2m
m2

2 + εm2
≤ ε

∞&
m=1

m2

2m+1
= 3ε

for all ε > 0. Analogously,

dC(
∂ηε
∂u

, 0) :=

∞&
m=1

1

2m
εm

1 + εm
≤ ε

∞&
m=1

m

2m
= 2ε

for all ε > 0. We conclude that dΥ(ζε, 0) ≤ 5ε ≤ α′ for all ε ∈ (0, ε0), where ε0 := α′/5. By Theorem 5.4,

|ûε − ū|L1(Ω) ≤ 5
1
k∗ cε

1
k∗

for all ε ∈ (0, ε0) such that |ûε − ū| ≤ α. Let M > 0 be a bound for U in L∞(Ω). We also have we have

|ûε − ū|L1(Ω) ≤ 2M ≤ 2Mε−
1
k∗ ε

1
k∗ ≤ 2Mε

− 1
k∗

0 ε
1
k∗

for all ε ≥ ε0. Hence, defining

κ := max
�
5

1
k∗ c, 2Mε

−1/k∗

0

	
,

we obtain the first claim.
Let us prove the second claim of the theorem. First we prove that there exists ε∗ > 0 such that

|ûε − ū|L1(Ω) ≤ α for all ε ∈ (0, ε∗). Suppose the opposite. Then there exists a sequence {εk}∞k=1 converging
to zero such that |ûεk − ū|L1(Ω) > α for all k ∈ N. Since U is weakly compact in L2(Ω), we may assume
without loss of generality that uεk → u∗ for some u∗ ∈ U . Since yuεk

→ yu∗ in C(Ω̄), we obtain that

J(u∗) ≤ liminf
k→∞

�
J(uεk) +

εk
2
|uεk |L2(Ω)

�
≤ liminf

k→∞

�
J(ū) +

εk
2
|ū|L2(Ω)

�
= J(ū).

By Remark 4.10, ū is a strict local solution, therefore u∗ = ū. By Proposition 4.1, u∗ = ū is bang-bang.
Weak convergence in L2(Ω) implies that in L1(Ω); consequently, by Lemma 4.2, uεn → u∗ in L1(Ω), which is
a contradiction. Then the first claim of the theorem implies (39) for all ε ∈ (0, ε∗). For ε ≥ ε∗, (39) remains
true if we increase the constant c (if needed) so that c ≥ 2M(ε∗)−1/k∗

.

6 Assumptions related to subregularity

In this section, we gather some results concerning Assumption 2, in order to provide sufficient conditions un-
der which it is fulfilled. Furthermore, we analyze related assumptions and their relation between themselves.
Recall that ū ∈ U is a local solution of problem (1)–(2). Since ū ∈ U satisfies the variational inequality (9),
we have

ū(x) =

 b1(x) if σū(x) > 0

b2(x) if σū(x) < 0.

We introduce the following extended cone suggested in [5]. For a fixed τ > 0 define

Cτ
ū =

v ∈ L2(Ω) : v(x)

 = 0 if |σū(x)| > τ or ū(x) ∈ (b1(x), b2(x))
≥ 0 if |σū(x)| ≤ τ and ū(x) = b1(x)
≤ 0 if |σū(x)| ≤ τ and ū(x) = b2(x)

 .
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We introduce the following modification of Assumption 2.

Assumption 2′. There exist positive numbers α0 and γ0 such that�
Ω

σū(u− ū) dx+ Λ(u− ū) ≥ γ0|u− ū|k∗+1
L1(Ω),

for all u ∈ U with u− ū ∈ Cτ
ū ∩ BL1(Ω)(ū;α0).

This assumption is seemingly weaker than Assumption 2. However, we will prove that the two assumptions
are equivalent. Before that, for technical purposes, we introduce the bilinear form Γ : L2(Ω) × L2(Ω) → R
given by

Γ(v1, v2) :=
1

2

�
Ω

�
πv1v2 + πv2v1

�
dx. (40)

The bilinear form is particularly useful because of the following property.

Λ(v1 + v2) = Γ(v1, v1) + 2Γ(v1, v2) + Γ(v2, v2) ∀v1, v2 ∈ L2(Ω). (41)

We will require the following technical lemma.

Lemma 6.1. For every positive number M , there exits a positive number c such that

|Γ(v1, v2)| ≤ c|v1|1/2L1(Ω)|v2|L1(Ω)

for all v1, v2 ∈ BL∞(0;M).

Proof. By Proposition 3.6, there exist c1, c2 > 0 such that |πv|L∞(Ω) ≤ c1|v|L2(Ω) and |πv|L2(Ω) ≤ c2|v|L1(Ω)

for all v ∈ L2(Ω). Let M > 0 be arbitrary. Observe that((( �
Ω

πv1v2 dx
((( ≤ |πv1 |L∞(Ω)|v2|L1(Ω) ≤ c1M

1
2 |v1|

1
2

L1(Ω)|v2|L1(Ω),

and that ((( �
Ω

πv2v1 dx
((( ≤ |πv2 |L2(Ω)|v1|L2(Ω) ≤ c2M

1
2 |v1|

1
2

L1(Ω)|v2|L1(Ω)

for all v1, v2 ∈ BL∞(0;M). There result follows defining c := 2−1(c1 + c2)M
1
2 .

Proposition 6.2. Assumptions 2 and 2 ′ are equivalent.

Proof. Let α0 and γ0 be the numbers in Assumption 2 ′. Let u ∈ U and define

v1(x) :=

 u(x)− ū(x) if |σū(x)| ≤ τ

0 if |σū(x)| > τ,

and

v2(x) :=

 0 if |σū(x)| ≤ τ

u(x)− ū(x) if |σū(x)| > τ.

Clearly v1 ∈ Cτ
ū and v1 + v2 = u− ū. Let M be a bound for U in L∞(Ω), and let c be the positive number

in Lemma 6.1 corresponding to 2M . By Assumption 2 ′,�
Ω

σū(u− ū) dx =

�
Ω

σūv1 dx+

�
|σū|>τ

σūv2 dx

=

�
Ω

σūv1 dx+ Λ(v1)− Λ(v1) +

�
|σū|>τ

σūv2 dx

≥ γ0|v1|k+1 + τ |v2|L1(Ω) − Λ(v1),
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and

Λ(u− ū) = Λ(v1) + 2Γ(v1, v2) + Λ(v2)

≥ Λ(v1)− 2c|v1|1/2L1(Ω)|v2|L1(Ω) − c|v2|1/2L1(Ω)|v2|L1(Ω)

≥ Λ(v1)− 3c|v2|L1(Ω)|u− ū|1/2L1(Ω)

for u ∈ U with |u− ū|L1(Ω) ≤ α0. Thus�
Ω

σū(u− ū) dx+ Λ(u− ū) ≥ γ0|v1|k+1 + τ |v2|L1(Ω) − 3c|v2|L1(Ω)|u− ū|1/2L1(Ω)

= γ0|v1|k+1 + |v2|L1(Ω)

�
τ − 3c|u− ū|1/2L1(Ω)

�
for u ∈ U with |u− ū|L1(Ω) ≤ α0. Now, by the reverse triangle inequality and Bernoulli’s inequality (consider
without loss of generality u ̸= ū)

|v1|k+1
L1(Ω) = |(u− ū)− v2|k+1

L1(Ω) ≥
�
|u− ū|L1(Ω) − |v2|L1(Ω)

�k+1

= |u− ū|k+1
L1(Ω)

�
1− |v2|L1(Ω)

|u− ū|L1(Ω)

�k+1

≥ |u− ū|k+1
L1(Ω)

�
1− (k + 1)

|v2|L1(Ω)

|u− ū|L1(Ω)

�
= |u− ū|k+1

L1(Ω) − (k + 1)|u− ū|kL1(Ω)|v2|L1(Ω).

Consequently,

�
Ω

σū(u− ū) dx+ Λ(u− ū) ≥ γ0|v1|k+1 + |v2|L1(Ω)

�
τ − 3c|u− ū|1/2L1(Ω)

�
≥ γ0|u− ū|k+1

L1(Ω) − γ0(k + 1)|u− ū|kL1(Ω)|v2|L1(Ω) + |v2|L1(Ω)

�
τ − 3c|u− ū|1/2L1(Ω)

�
≥ γ0|u− ū|k+1

L1(Ω) + |v2|L1(Ω)

�
τ − γ0(k + 1)|u− ū|kL1(Ω) − 3c|u− ū|1/2L1(Ω)

�
.

Choosing α small enough, one can ensure�
Ω

σū(u− ū) dx+ Λ(u− ū) ≥ γ0|u− ū|k+1
L1(Ω) + |v2|L1(Ω)

�
τ − γ0(k + 1)|u− ū|kL1(Ω) − 3c|u− ū|1/2L1(Ω)

�
≥ γ0|u− ū|k+1

L1(Ω) +
τ

2
|v2|L1(Ω) ≥ γ0|u− ū|k+1

L1(Ω)

for all u ∈ U with |u− ū|L1(Ω) ≤ α.

Proposition 6.2 allows to split Assumption 2 in two parts, as it follows in the next theorem.

Theorem 6.3. Let there exist numbers µ1, µ2 ∈ R and α > 0 such that�
Ω

σūv dx ≥ µ1|v|k
∗+1

L1(Ω) (42)

and

Λ(v) ≥ µ2|v|k
∗+1

L1(Ω) (43)

for every v ∈ (U − ū)∩Cτ
ū ∩BL1(Ω)(ū;α). If µ1+µ2 > 0, then Assumption 2 is fulfilled, hence the optimality

mapping Φ (see (22)) of problem (1)–(2) is strongly Hölder subregular with exponent λ = 1/k∗ at the reference
point (ȳ, p̄, ū).

The proof consists of summation of (42) and (43) and utilization of Proposition 6.2 and Theorem 4.11.

The splitting of Assumption 2 has the advantage that the inequalities in (42) and (43) can be analyzed
separately. The next proposition is related to (42).

The following assumption has become standard in the literature on PDE optimal control problems with
bang-bang controls, see, e.g., [9, 12, 34, 42].
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Assumption 3. There exists a positive number µ0 such that

meas {x ∈ Ω : |σū(x)| ≤ ε} ≤ µ0ε
1
k∗ ∀ε > 0.

Proposition 6.4. The following statements hold.

(i) If Assumption 3 is fulfilled then there exists µ1 > 0 such that (42) holds for every v ∈ U − ū.

(ii) Suppose there exists ν > 0 such that b2(x)− b1(x) ≥ ν for a.e. x ∈ Ω. If (42) holds for every v ∈ U − ū
then Assumption 3 is fulfilled.

Proof. The proof of the first claim follows [34, Proposition 3.1], see also [9, Proposition 2.7]. It has been
also proved several times in the literature on ordinary differential equations in a somewhat stronger form;
see, e.g., [1, 28, 33, 37].

Let us prove the second claim. For each ε > 0, define

uε(x) :=



ū(x) if |σū(x)| > ε

b1(x) if |σū(x)| ≤ ε and ū(x) ∈
�b1(x) + b2(x)

2
, b2(x)

�
b2(x) if |σū(x)| ≤ ε and ū(x) ∈

�
b1(x),

b1(x) + b2(x)

2

�
.

Clearly each uε belongs to U , and

|uε(x)− ū(x)| ≥ 1

2
|b2(x)− b1(x)| (44)

for a.e x ∈ {s ∈ Ω : |σū(s)| ≤ ϵ}. From (42) we have

µ1

��
|σū|≤ε

|uε − ū| dx
�k+1

≤
�
|σū|≤ε

σū(uε − ū) dx ≤ ε

�
|σū|≤ε

|uε − ū| dx.

This implies �
|σū|≤ε

|uε − ū| dx ≤ µ
− 1

k
1 ε

1
k . (45)

Using (44) and (45) we obtain that

meas {x ∈ Ω : |σū(x)| ≤ ε} =
1

ν

�
|σū|≤ε

ν dx ≤ 1

ν

�
|σū|≤ε

|b2 − b1| dx ≤ 2

ν

�
|σū|≤ε

|uε − ū| dx

≤ 2(µ1)
− 1

k ν−1 ε
1
k .

Thus Assumption 3 is fulfilled with µ0 := 2(µ1)
− 1

k ν−1.
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Chapter 5

New Assumptions for Stability
Analysis in Elliptic Optimal Control
Problems

This chapter consists of the paper:

❼ Casas, Eduardo and Domı́nguez Corella, Alberto and Jork, Nicolai. New assumptions for stability
analysis in elliptic optimal control problems.

It is conditionally accepted (after a minor revision) in SIAM Journal on Control and Optimization. The
author of this thesis proposed the idea for the paper, and gave an outline of the main result’s proof; he wrote
a first version of the paper (including a sketch of sections 1-4) that was later corrected and enriched by the
other authors.
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NEW ASSUMPTIONS FOR STABILITY ANALYSIS IN ELLIPTIC
OPTIMAL CONTROL PROBLEMS∗

EDUARDO CASAS† , ALBERTO DOMÍNGUEZ CORELLA‡ , AND NICOLAI JORK§

Abstract. This paper is dedicated to the stability analysis of the optimal solutions of a control
problem associated with a semilinear elliptic equation. The linear differential operator of the equation
is neither monotone nor coercive due to the presence of a convection term. The control appears
only linearly, or even it can not appear in a explicit form in the objective functional. Under new
assumptions, we prove Lipschitz stability of the optimal controls and associated states with respect
to perturbations in the equation and the objective functional as well as with respect to the Tikhonov
regularization parameter.

AMS subject classifications. 35J61, 49J20, 49K20, 49K40

Key words. Semilinear elliptic equations, optimality conditions, stability analysis, Tikhonov
regularization

1. Introduction. In this paper, we study the following optimal control problem

(P) min
u∈Uad

J(u) :=

�
Ω

L(x, yu(x), u(x)) dx,

where Uad = {u ∈ L2(Ω) : ua ≤ u(x) ≤ ub for a.a. x ∈ Ω}, −∞ < ua < ub < +∞.
Here, yu denotes the solution of the semilinear elliptic equation:� −div

�
A(x)∇y

�
+ b(x) · ∇y + f(x, y) = u in Ω,

y = 0 on Γ.
(1.1)

Assumptions on the data of the control problem (P) will be given below. The
aim of this paper is to prove stability results for the local minimizers of (P) with
respect to perturbations in the data of the control problem. There are quite a few
previous papers devoted to this issue [14], [15], [16], [17], just to mention some of
them. In all these cases, the second derivative of L with respect to u is bounded from
below by a positive constant. This is the case where the Tikhonov term is involved in
the objective functional. Under this condition and assuming sufficient second order
optimality conditions (SSOC), the Lipschitz stability of the optimal controls is proved.
Here, we assume that u appears linearly in L(x, y, u) or even it does not appear at
all. Therefore, the previous results do not apply. In this case, under (SSOC) for
optimality, Lipschitz stability of the optimal states can be proved; see [7]. In Section
4, we obtain analogous estimates for the optimal states replacing (SSOC) by a weaker
condition; see (3.13). It is weaker because (SSOC) implies our assumption, but they
are not equivalent. In addition, our assumption implies strict local optimality of the
control; see Theorem 3.5.

∗The first author was supported by MCIN/ AEI/10.13039/501100011033/ under research project
PID2020-114837GB-I00. The second and third authors were supported by the Austrian Science
Foundation (FWF) under grant No I4571.

†Departamento de Matemática Aplicada y Ciencias de la Computación, E.T.S.I. Industriales y
de Telecomunicación, Universidad de Cantabria, Santander, España, eduardo.casas@unican.es

‡Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology,
Austria, alberto.corella@tuwien.ac.at

§Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology,
Austria, nicolai.jork@tuwien.ac.at
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2 E. CASAS, A. DOMÍNGUEZ CORELLA, AND N. JORK

In order to prove stability of the optimal controls when they are not explicitly
involved in the objective functional, besides (SSOC) an additional structural hypoth-
esis is usually assumed. This situation was studied in [21], where the authors proved
Lipschitz stability of the control with respect to linear perturbations simultaneously
appearing in the state equation and the objective functional. The drawback is that
the additional hypothesis is satisfied only by bang-bang controls. Here, we obtain
analogous estimates changing the mentioned assumption by a weaker one, see (5.2).
Though this second assumption (5.2) is stronger than (3.13), it can be satisfied by op-
timal controls independently if they are bang-bang or not. Moreover our assumption
(5.2) is satisfied if the (SSOC) and the additional hypothesis are assumed.

Finally, under the assumption (5.2), Lipschitz stability is established for the op-
timal states with respect to simultaneous perturbations in the equations and in the
objective functional with respect to the state and the control, and with respect to
the Tikhonov regularization parameter. The stability with respect the Tikhonov reg-
ularization has been studied in [7] and [20]. In [7], Hölder stability of the states is
proved. In [20], stability of the control is proved under (SSOC) and the structural
assumption. The reader is also referred to [23], [24], [25] for the case of linear partial
differential equations.

In this paper, besides providing some new sufficient conditions for Lipschitz sta-
bility for the optimal control and associated states, we deal with a semilinear elliptic
state equation that is neither monotone nor coercive. Though some crucial results for
this state equation are taken from [6], some estimates have been proved that are not
available in the literature.

The plan of this paper is as follows. In Section 2, we analyze the state equation.
First, we establish some properties of the linear differential operator of the state
equation, and the full semilinear equation is analyzed in the second part of the section.
The control problem (P) is studied in Section 3. We prove that our assumption (3.13)
is a sufficient condition for strong local optimality. Session 4 is dedicated to the proof
of Lipschitz stability of the optimal states. In Section 5 we introduce the stronger
condition (5.2) replacing (3.13) that allows us to establish the Lipschitz stability of
the optimal controls. Finally, in Section 6, the Tikhonov regularization is considered.

2. Analysis of the partial differential equation. In this section we analyze
the equation (1.1). We split the section in two parts. In the first part, we establish
the results concerning the linear operator of the elliptic equation. In the second
subsection, the nonlinear equation will be studied.

2.1. Analysis of the linear differential operator. We define the differential
operator A : H1

0 (Ω) −→ H−1(Ω) by

Ay = −div
�
A(x)∇y

�
+ b(x) · ∇y.

The following assumptions are supposed to hold throughout the paper. They ensure
that the mathematical objects under consideration are well defined.

Assumption 2.1. The following statements are fulfilled.
(i) The set Ω ⊂ Rn, n = 2, 3, is a bounded domain with a Lipschitz boundary

Γ. The mapping A : Ω −→ Rn×n is measurable and bounded in Ω, and there
exists ΛA > 0 such that ξ⊤A(x)ξ ≥ ΛA|ξ|2 for a.e. x ∈ Ω and all ξ ∈ Rn.

(ii) We assume that b ∈ Lp(Rn) with p ≥ 3 if n = 3 and p > 2 arbitrary if n = 2.

Under theses assumptions it is known that A : H1
0 (Ω) → H−1(Ω) is an isomor-

phism despite the fact that the operator is neither coercive nor monotone; see [6], [13,
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Theorem 8.3], [22]. The following identity is satisfied

⟨Ay, z⟩ =
�
Ω

A∇y · ∇z dx+

�
Ω

b · ∇yz dx ∀y, z ∈ H1
0 (Ω),

where ⟨·, ·⟩ denotes the duality pairing between H−1(Ω) and H1
0 (Ω).

Along this paper we will set

∥y∥H1
0 (Ω) =

��
Ω

|∇y(x)|2 dx
 1

2

.

The next lemma states some properties of A that will be used later.

Lemma 2.2. The following statements are fulfilled:
(i) There exists a constant CΛA,b such that G̊arding’s inequality holds

(2.1) ⟨Ay, y⟩ ≥ ΛA

4
∥y∥2H1

0 (Ω) − CΛA,b∥y∥2L2(Ω) ∀y ∈ H1
0 (Ω).

(ii) Let a ∈ L∞(Ω) be a nonnegative function and h ∈ H−1(Ω). If y ∈ H1
0 (Ω) sat-

isfies Ay+ay = h and h is a nonnegative linear form, then y is a nonnegative
function as well.

(iii) Let a be as above and h ∈ Lr(Ω) with r > n
2 . Then, the solution y of the

above equation belongs to H1
0 (Ω) ∩ C(Ω̄). Moreover, there exists a constant

Cr independent of a and h such that

(2.2) ∥y∥H1
0 (Ω) + ∥y∥C(Ω̄) ≤ Cr∥h∥Lr(Ω).

Proof. The proof of (2.1) can be found in [6]; see also [13, Lemma 8.4]. For the
proof of (ii) the reader is referred again to [6] and [13, Theorem 8.1]. TheH1

0 (Ω)∩C(Ω̄)
regularity of y for functions h ∈ Lr(Ω) is well known; see [13, Lemma 8.31]. It remains
to prove the estimates (2.2) for a constant Cr independent of h and a. Let us denote
by ya,h ∈ H1

0 (Ω)∩C(Ω̄) the solution of Ay+ay = h. With y0,h we denote the solution
corresponding to a ≡ 0. Then, the estimate ∥y0,h∥C(Ω̄) ≤ C∥h∥Lr(Ω) is well known for

a constant C depending on r, but independent of h. Let us write h = h+ −h−. From
(ii) we know that ya,h+ ≥ 0 and ya,h− ≥ 0. Now, since A(ya,h+ − y0,h+) + a(ya,h+ −
y0,h+) = −ay0,h+ , again by item (ii), we obtain 0 ≤ ya,h+ ≤ y0,h+ and consequently
∥ya,h+∥C(Ω̄) ≤ ∥y0,h+∥C(Ω̄). Analogously, by the same argument 0 ≤ ya,h− ≤ y0,h−

and consequently ∥ya,h−∥C(Ω̄) ≤ ∥y0,h−∥C(Ω̄). Therefore,

∥ya,h∥C(Ω̄) ≤ ∥ya,h+∥C(Ω̄) + ∥ya,h−∥C(Ω̄) ≤ ∥y0,h+∥C(Ω̄) + ∥y0,h−∥C(Ω̄)

≤ C
�
∥h+∥Lr(Ω) + ∥h−∥Lr(Ω)

�
≤ 2C∥h∥Lr(Ω),

where C is independent of a and h. To prove the corresponding estimate in H1
0 (Ω)

we use G̊arding’s inequality (2.1) and the above estimate:

ΛA

4
∥ya,h∥2H1

0 (Ω) ≤ ⟨Aya,h, ya,h⟩+ CΛA,b∥ya,h∥2L2(Ω)

≤ ⟨Aya,h, ya,h⟩+
�
Ω

ay2a,h dx+ CΛA,b∥ya,h∥2L2(Ω)

=

�
Ω

hya,h dx+ CΛA,b∥ya,h∥2L2(Ω) ≤ |Ω| r−1
r ∥h∥Lr(Ω)∥ya,h∥C(Ω̄) + CΛA,b|Ω|∥ya,h∥2C(Ω̄)

≤ 2C
�
|Ω| r−1

r + 2CCΛA,b|Ω|
�
∥h∥2Lr(Ω),
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where |Ω| denotes the Lebesgue measure of Ω. Since the above constants are inde-
pendent of a and h, the inequality completes the proof of (2.2).

Now, we consider the adjoint operator A∗ : H1
0 (Ω) → H−1(Ω) of A. Since A

is an isomorphism, A∗ is also an isomorphism as well. It is obvious that A∗φ =
−div

�
A⊤∇φ

�−div
�
φb

�
. The operator A∗ satisfies the same properties established in

Lemma 2.2. Indeed, the G̊arding’s inequality is consequence of (2.1) and the identity
⟨A∗φ,φ⟩ = ⟨Aφ,φ⟩. The proof of the estimate (2.2) is the same for the operator
A∗. We only prove the statement (ii). Let h ∈ H−1(Ω) be a nonnegative linear
form. This means that ⟨h, y⟩ ≥ 0 for every nonnegative function y ∈ H1

0 (Ω). Let
φ ∈ H1

0 (Ω) satisfy A∗φ + aφ = h. Now, given a nonnegative function w ∈ L2(Ω)
we take y ∈ H1

0 (Ω) satisfying Ay + ay = w. By Lemma 2.2-(ii) we have that y ≥ 0.
Then, we obtain

�
Ω

wφdx = ⟨Ay + ay, φ⟩ = ⟨A∗φ+ aφ, y⟩ = ⟨h, y⟩ ≥ 0.

Since w is an arbitrary nonnegative function of L2(Ω), this inequality yields φ ≥ 0.
We finish this subsection by proving an Ls(Ω) estimate.

Lemma 2.3. Assume that s ∈ [1, n
n−2 ), s

′ is its conjugate, and let a ∈ L∞(Ω) be
a nonnegative function. Then, there exists a constant Cs′ independent of a such that

(2.3)

� ∥yh∥Ls(Ω) ≤ Cs′∥h∥L1(Ω),
∥φh∥Ls(Ω) ≤ Cs′∥h∥L1(Ω),

∀h ∈ H−1(Ω) ∩ L1(Ω),

where yh and φh satisfy the equations Ayh+ayh = h and A∗φh+aφh = h, respectively,
and Cs′ is given by (2.2) with r = s′.

Proof. We prove the estimate (2.3) for φh, the proof being identical for yh. First

we observe that H1
0 (Ω) ⊂ L

2n
n−2 (Ω) ⊂ L

n
n−2 (Ω), hence φh ∈ Ls(Ω). As a consequence

we obtain that |φh|s−1sign(φh) ∈ Ls′(Ω). Moreover, s < n
n−2 implies that s′ > n

2 .

According to Lemma 2.2-(iii), the solution of Ay + ay = |φh|s−1sign(φh) belongs to
H1

0 (Ω) ∩ C(Ω̄) and satisfies ∥y∥C(Ω̄) ≤ Cs′∥|φh|s−1sign(φh)∥Ls′ (Ω) = Cs′∥φh∥s−1
Ls(Ω),

where Cs′ is independent of a and h. Using these facts we infer

∥φh∥sLs(Ω) =

�
Ω

|φh|s dx = ⟨Ay + ay, φh⟩ = ⟨A∗φh + aφh, y⟩

=

�
Ω

hy dx ≤ ∥h∥L1(Ω)∥y∥C(Ω̄) ≤ Cs′∥h∥L1(Ω)∥φh∥s−1
Ls(Ω).

This proves (2.3) for φh.

2.2. Analysis of the semilinear equation. In this subsection, we formulate
some results concerning the semilinear equation (1.1). For this purpose we make the
following assumptions on the nonlinear term of the equation.

Assumption 2.4. We assume that f : Ω × R −→ R is a Carathéodory function
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of class C2 with respect to the second variable satisfying:

f(·, 0) ∈ Lr(Ω) with r >
n

2
and

∂f

∂y
(x, y) ≥ 0 ∀y ∈ R,(2.4)

∀M > 0 ∃Cf,M > 0 such that

((((∂f∂y (x, y)
((((+ ((((∂2f

∂y2
(x, y)

(((( ≤ Cf,M ∀|y| ≤ M,(2.5) 
∀M > 0 and ∀ε > 0 ∃δ > 0 such that((((∂2f

∂y2
(x, y2)− ∂2f

∂y2
(x, y1)

(((( < ε if |y1|, |y2| ≤ M and |y2 − y1| ≤ δ,
(2.6)

for almost every x ∈ Ω.

Theorem 2.5. Let Assumptions 2.1 and 2.4 hold. If u belongs to Lr(Ω) for some
r > n/2, then there exists a unique solution yu ∈ H1

0 (Ω) ∩ C(Ω̄) of (1.1). Moreover,
there exists a constant Kf,r independent of u such that

(2.7) ∥yu∥H1
0 (Ω) + ∥yu∥C(Ω̄) ≤ Kf,r

�∥u∥Lr(Ω) + ∥f(·, 0)∥Lr(Ω) + 1
�
.

Further, if {uk}∞k=1 is a sequence converging weakly to u in Lr(Ω), then yuk
→ yu

strongly in H1
0 (Ω) ∩ C(Ω̄).

The reader is referred to [6] for the proof of this result. As a consequence of (2.7)
we get

(2.8) ∃KU > 0 such that ∥yu∥H1
0 (Ω) + ∥yu∥C(Ω̄) ≤ KU ∀u ∈ Uad.

For each r > n/2, we define the map Gr : Lr(Ω) → H1
0 (Ω)∩C(Ω̄) by Gr(u) = yu.

Theorem 2.6. Let Assumptions 2.1 and 2.4 hold. For every r > n
2 the map Gr

is of class C2, and the first and second derivatives at u ∈ Lr(Ω) in the directions
v, v1, v2 ∈ Lr(Ω), denoted by zu,v = G′

r(u)v and zu,v1,v2 = G′′
r (u)(v1, v2), are the

solutions of the equations

Az +
∂f

∂y
(x, yu)z = v,(2.9)

Az +
∂f

∂y
(x, yu)z = −∂2f

∂y2
(x, yu)zu,v1

zu,v2
,(2.10)

respectively.

The proof of this theorem is an easy application of the implicit function theorem;
see [6].

Lemma 2.7. The following statements are fulfilled.
(i) Suppose that r > n

2 and s ∈ [1, n
n−2 ). Then, there exist constants Kr depend-

ing on r and Ms depending on s such that for every u, ū ∈ Uad

∥yu − yū − zū,u−ū∥C(Ω̄) ≤ Kr∥yu − yū∥2L2r(Ω),(2.11)

∥yu − yū − zū,u−ū∥Ls(Ω) ≤ Ms∥yu − yū∥2L2(Ω).(2.12)

(ii) Taking CX = K2

%|Ω| if X = C(Ω̄) and CX = M2 if X = L2(Ω), the
following inequality holds

(2.13) ∥zu,v−zū,v∥X ≤ CX∥yu−yū∥X∥zū,v∥X ∀u, ū ∈ Uad and ∀v ∈ L2(Ω).
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(iii) There exists ε > 0 such that for all ū, u ∈ Uad with ∥yu − yū∥C(Ω̄) ≤ ε the
following inequalities are satisfied

1

2
∥yu − yū∥X ≤ ∥zū,u−ū∥X ≤ 3

2
∥yu − yū∥X ,(2.14)

1

2
∥zū,v∥X ≤ ∥zu,v∥X ≤ 3

2
∥zū,v∥X ∀v ∈ L2(Ω).(2.15)

Proof. Let us set ϕ = yu − yū − zū,u−ū ∈ H1
0 (Ω) ∩ C(Ω̄). From the equations

satisfied by the three functions and using the mean value theorem we get

Aϕ+
∂f

∂y
(x, yū)ϕ =

�∂f
∂y

(x, yū)− ∂f

∂y
(x, yθ)

�
(yu − yū),

where yθ(x) = yū(x) + θ(x)(yu(x) − yū(x)) with θ : Ω −→ [0, 1] measurable. Using
again the mean value theorem we deduce

Aϕ+
∂f

∂y
(x, yū)ϕ = −θ

∂2f

∂y2
(x, yϑ)(yu − yū)

2

with yϑ(x) = yū(x) + ϑ(x)(yθ(x) − yū(x)) and ϑ : Ω −→ [0, 1] measurable. By
Lemma 2.2-(iii) and taking into account (2.5) and (2.8) we infer the existence of Cr

independent of u, ū ∈ Uad such that

∥ϕ∥C(Ω̄) ≤ CrCf,KU
∥(yu − yū)

2∥Lr(Ω) = CrCf,KU
∥yu − yū∥2L2r(Ω),

which proves (2.11) with Kr = CrCf,KU
. To prove (2.12) we use Lemma 2.3 to obtain

∥ϕ∥Ls(Ω) ≤ Cs′Cf,KU
∥(yu − yū)

2∥L1(Ω) = Cs′Cf,KU
∥yu − yū∥2L2(Ω).

Taking Ms = Cs′Cf,KU
, (2.12) follows.

Now we prove (2.13) for X = C(Ω̄). Setting ψ = zu,v − zū,v and subtracting the
corresponding equations we infer with the mean value theorem

Aψ +
∂f

∂y
(x, yu)ψ =

�∂f
∂y

(x, yū)− ∂f

∂y
(x, yu)

�
zū,v =

∂2f

∂y2
(x, yθ)(yū − yu)zū,v.

Taking r = 2 in (2.2) and using (2.5) and (2.8) it follows from the above equation

∥ψ∥C(Ω̄) ≤ C2Cf,KU
∥(yū − yu)zū,v∥L2(Ω) ≤ K2

%
|Ω|∥yu − yū∥C(Ω̄)∥zū,v∥C(Ω̄),

which proves (2.13) for X = C(Ω̄). The proof for X = L2(Ω) is analogous, we use the
estimate (2.3) for s = 2 instead of (2.2).

To prove (2.14) for X = C(Ω̄) we use (2.11) with r = 2 to get

∥yu − yū∥C(Ω̄) ≤ ∥ϕ∥C(Ω̄) + ∥zū,u−ū∥C(Ω̄) ≤ K2∥yu − yū∥2L4(Ω) + ∥zū,u−ū∥C(Ω̄)

≤ K2

%
|Ω|∥yu − yū∥2C(Ω̄) + ∥zū,u−ū∥C(Ω̄).

Choosing ε1 = [2K2

%|Ω|]−1 the first inequality of (2.14) follows if ∥yu−yū∥C(Ω̄) < ε1.

To deal with the case X = L2(Ω) we use (2.12) with s = 2 and obtain

∥yu − yū∥L2(Ω) ≤ ∥ϕ∥L2(Ω) + ∥zū,u−ū∥L2(Ω) ≤ M2∥yu − yū∥2L2(Ω) + ∥zū,u−ū∥L2(Ω)

≤ M2

%
|Ω|∥yu − yū∥C(Ω̄)∥yu − yū∥L2(Ω) + ∥zū,u−ū∥L2(Ω).
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Hence, taking ε2 = [2M2

%|Ω|]−1 we obtain the first inequality of (2.14) with X =
L2(Ω) if ∥yu − yū∥C(Ω̄) < ε2.

To prove the second inequality of (2.14) for X = C(Ω̄), we proceed as follows

∥zū,u−ū∥C(Ω̄) ≤ ∥ϕ∥C(Ω̄) + ∥yu − yū∥C(Ω̄) ≤ K2

%
|Ω|∥yu − yū∥2C(Ω̄) + ∥yu − yū∥C(Ω̄)

≤ 3

2
∥yu − yū∥C(Ω̄) if ∥yu − yū∥C(Ω̄) < ε1.

Similarly the second inequality of (2.14) follows if X = L2(Ω) with ε2 replacing ε1.
Finally, we prove (2.15). Using (2.13) we obtain

∥zu,v∥X ≤ ∥zu,v − zū,v∥X + ∥zū,v∥ ≤ CX∥yu − yū∥X∥zū,v∥X + ∥zū,v∥X ,

∥zū,v∥X ≤ ∥zu,v − zū,v∥X + ∥zu,v∥ ≤ CX∥yu − yū∥X∥zū,v∥X + ∥zu,v∥X .

Therefore, selecting ε = 1
2CX

, then (2.15) follows if ∥yu − yū∥C(Ω̄) ≤ ε.

3. The Control Problem. In this section, we make assumptions on the objec-
tive functional J so that (P) has at least one solution and the first and second order
conditions for local optimality can be established. Since the problem is not convex,
we will consider not only global minimizers, but also local minimizers. Throughout
this paper, we will say that ū is local minimizer of (P) if ū ∈ Uad and there exists a
ball Bρ(ū) ⊂ L2(Ω) such that J(ū) ≤ J(u) for every u ∈ Uad∩Bρ(ū). We will also say
that ū is a strong local minimizer of (P) if ū ∈ Uad and there exists ε > 0 such that
J(ū) ≤ J(u) for every u ∈ Uad with ∥yu − yū∥C(Ω̄) < ε. If the previous inequalities
are strict whenever u ̸= ū, then we say that ū is a strict (strong) local minimizer. As
far as we know, the notion of strong local minimizers in the framework of control of
partial differential equations was introduced for the first time in [1]; see also [2].

We make the following assumptions on L.

Assumption 3.1. The function L : Ω × R2 −→ R is Carathéodory and of class
C2 with respect to the second variable. In addition, we assume that

L(x, y, u) = L0(x, y) + g(x)u with L0(·, 0) ∈ L1(Ω) and g ∈ L∞(Ω),(3.1) 
∀M > 0 ∃ψM ∈ L2(Ω) and CL,M > 0 such that(((∂L
∂y

(x, y, u)
((( ≤ ψM (x) and

(((∂2L

∂y2
(x, y, u)

((( ≤ CL,M ∀|y| ≤ M,
(3.2)


∀M > 0 and ∀ε > 0 ∃δ > 0 such that((((∂2L

∂y2
(x, y2, u)− ∂2L

∂y2
(x, y1, u)

(((( < ε if |y1|, |y2| ≤ M, |y2 − y1| ≤ δ,
(3.3)

for almost every x ∈ Ω.

Using Theorem 2.5, the assumptions on L, and the boundedness of Uad in L∞(Ω),
the existence of at least one solution of (P) follows. Indeed, if we take a minimizing

sequence {uk}∞k=1, we can assume that uk
∗
⇀ ū in L∞(Ω). Then Theorem 2.5 implies

that yuk
→ yū strongly in H1

0 (Ω)∩C(Ω̄). Further, using (2.8) and (3.2) with M = KU

we infer with the mean value theorem

|L0(x, yuk
(x))| ≤ |L0(x, 0)|+ ψKU

(x)KU .

Then we can apply Lebesgue’s dominated convergence theorem to pass to the limit
in the objective functional and to obtain J(uk) → J(ū).
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In order to derive the first order optimality conditions satisfied by a local mini-
mizer we address the issue of the differentiability of the objective functional J .

Theorem 3.2. Suppose that r > n
2 . Then, the functional J : Lr(Ω) −→ R is of

class C2. Moreover, given u, v, v1, v2 ∈ Lr(Ω) we have

J ′(u)v =

�
Ω

(φu + g)v dx,(3.4)

J ′′(u)(v1, v2) =
�
Ω

�∂2L

∂y2
(x, yu, u)− φu

∂2f

∂y2
(x, yu)

�
zu,v1

zu,v2 dx,(3.5)

where φu ∈ H1
0 (Ω) ∩ C(Ω̄) is the unique solution of the adjoint equation

(3.6)

 A∗φ+
∂f

∂y
(x, yu)φ =

∂L

∂y
(x, yu, u) in Ω,

φ = 0 on Γ.

This is a straightforward consequence of Theorem 2.6, Assumption 3.1, and the chain
rule. The only critical issue is the existence, uniqueness, and regularity of φu. But
this an immediate consequence of Lemma 2.2-(iii) that, as already mentioned, applies
to the operator A∗ as well. From this theorem, the optimality conditions follows in
the classical way.

Theorem 3.3. Let ū be a (strong or not) local minimizer of (P), then there exist
two unique elements ȳ, φ̄ ∈ H1

0 (Ω) ∩ C(Ω̄) such that� Aȳ + f(x, ȳ) = ū in Ω,
ȳ = 0 on Γ,

(3.7)  A∗φ̄+
∂f

∂y
(x, ȳ)φ̄ =

∂L

∂y
(x, ȳ, ū) in Ω,

φ̄ = 0 on Γ,
(3.8)

�
Ω

(φ̄+ g)(u− ū) dx ≥ 0 ∀u ∈ Uad.(3.9)

The derivation of sufficient second order conditions for local optimality is more
delicate. First we introduce the cone of critical directions on which we formulate the
necessary second order conditions for optimality: if ū ∈ Uad is a local minimizer of
(P) we define

Cū = {v ∈ L2(Ω) : J ′(ū)v = 0 and v satisfies the sign conditions (3.10)},

(3.10) v(x)

� ≥ 0 if ū(x) = ua,
≤ 0 if ū(x) = ub.

As usual, from (3.9) we deduce that (φ̄ + g)(x)v(x) ≥ 0 for almost all x ∈ Ω if
v ∈ L2(Ω) satisfies (3.10). Therefore, the condition J ′(ū)v = 0 for v satisfying (3.10)
is only possible if v(x) = 0 for almost every x ∈ Ω such that (φ̄+g)(x) ̸= 0. Therefore,
Cū can be written

Cū = {v ∈ L2(Ω) : satisfying (3.10) and v(x) = 0 if |(φ̄+ g)(x)| > 0}.



STABILITY ANALYSIS IN ELLIPTIC OPTIMAL CONTROL PROBLEMS 9

It is well known that every local minimizer ū satisfies the second order necessary
optimality condition: J ′′(ū)v2 ≥ 0 for all v ∈ Cū; see, for instance, [8]. However, based
on Cū it is not possible to get sufficient second order conditions for local optimality.
The reader is referred to [12] for a counterexample. A procedure suggested by several
authors consists in extending the cone of critical directions Cū; see [10, 11, 18, 19].
Two possible extensions of Cū seem natural after the above comments: for τ > 0 we
define the extended cones

Dτ
ū = {v ∈ L2(Ω) : satisfying (3.10) and v(x) = 0 if |(φ̄+ g)(x)| > τ},

Gτ
ū = {v ∈ L2(Ω) : satisfying (3.10) and J ′(ū)v ≤ τ∥zv∥L1(Ω)}.

On any of these cones we can formulate sufficient second order conditions for local
optimality. Obviously, both are extensions of Cū. In [3], the authors introduced the
cone Cτ

ū = Dτ
ū ∩ Gτ

ū, which is also an extension of Cū. They proved that the first
order optimality conditions (3.7)–(3.9) along with the condition

(3.11) ∃δ > 0 such that J ′′(ū)v2 ≥ δ∥zv∥2L2(Ω) ∀v ∈ Cτ
ū

imply the existence of κ > 0 and ε > 0 such that

(3.12) J(ū) +
κ

2
∥yu − ȳ∥2L2(Ω) ≤ J(u) ∀u ∈ Uad such that ∥yu − ȳ∥C(Ω̄) < ε.

Actually, the proof of [3] was carried out for a parabolic control problem with g = 0.
However, the same proof works for the elliptic case and g ̸= 0. Here, we formulate a
new assumption leading to the same result (3.12) as (3.11) does.

Assumption 3.4. There exist numbers α > 0 and γ > 0 such that

(3.13) J ′(ū)(u−ū)+J ′′(ū)(u−ū)2 ≥ γ∥zū,u−ū∥2L2(Ω) ∀u ∈ Uad with ∥yu−ȳ∥C(Ω̄) < α.

It was proved in [4] that (3.11) implies (3.13). Therefore, (3.13) appears as a weaker
assumption. However, the next theorem proves that it is sufficient to imply (3.12).

Theorem 3.5. Let ū ∈ Uad satisfy the optimality conditions (3.7)–(3.9) and As-
sumption 3.4. Then, there exists ε > 0 and κ > 0 such that (3.12) holds.

Before proving this theorem we establish some lemmas.

Lemma 3.6. Let ū ∈ Uad be fixed with associated state ȳ. Then, the following
inequality holds for all θ ∈ [0, 1] and u ∈ Uad

∥yū+θ(u−ū) − ȳ∥C(Ω̄) ≤ (C2Cf,KU

%
|Ω|∥yu − ȳ∥C(Ω̄) + 1)∥yu − ȳ∥C(Ω̄),(3.14)

where C2 is the constant of (2.2) with r = 2 and Cf,KU
is the one deduced from (2.5)

and (2.8).

Proof. The proof of this lemma is based on the analogous result for parabolic
control problems established in [5]. We take θ ∈ [0, 1] and u ∈ Uad. We set ϕ =
yū+θ(u−ū) − [ȳ + θ(yu − ȳ)]. Then, we have

Aϕ+ f(x, yū+θ(u−ū))− [f(x, ȳ) + θ(f(x, yu)− f(x, ȳ))] = 0.
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Applying the mean value theorem, we obtain measurable functions θi : Ω −→ [0, 1],
i = 1, 2, such that

f(x, yū+θ(u−ū))− f(x, ȳ) =
∂f

∂y
(x, y1)(yū+θ(u−ū) − ȳ) and y1 = ȳ + θ1(yū+θ(u−ū) − ȳ),

f(x, yu)− f(x, ȳ) =
∂f

∂y
(x, y2)(yu − ȳ) with y2 = ȳ + θ2(yu − ȳ).

Inserting these identities in the above partial differential equation we infer

Aϕ+
∂f

∂y
(x, y1)(yū+θ(u−ū) − ȳ)− θ

∂f

∂y
(x, y2)(yu − ȳ) = 0.

Noting that yū+θ(u−ū) − ȳ = ϕ+ θ(yu − ȳ), the above equality and a new application
of the mean value theorem lead to

Aϕ+
∂f

∂y
(x, y1)ϕ = θ

�∂f
∂y

(x, y2)− ∂f

∂y
(x, y1)

�
(yu − ȳ) = θ

∂2f

∂y2
(x, y3)(yu − ȳ)2,

where y3 = y1 + θ3(y2 − y1). Using (2.2) with r = 2, (2.5), and (2.8) we infer

∥ϕ∥C(Ω̄) ≤ C2Cf,KU
∥(yu − ȳ)2∥L2(Ω) ≤ C2Cf,KU

%
|Ω|∥yu − ȳ∥2C(Ω̄).

This implies

∥yū+θ(u−ū) − ȳ∥C(Ω̄) = ∥ϕ+ θ(yu − ȳ)∥C(Ω̄)

≤ (C2Cf,KU

%
|Ω|∥yu − ȳ∥C(Ω̄) + 1)∥yu − ȳ∥C(Ω̄).

Lemma 3.7. There exists a constant MU > 0 such that

(3.15) ∥φu∥C(Ω̄) ≤ MU ∀u ∈ Uad.

Moreover, given ū ∈ Uad with associated state ȳ and adjoint state φ̄, we have

(3.16) ∥φū+θ(u−ū) − φ̄∥C(Ω̄) ≤ C∥yu − ȳ∥C(Ω̄) ∀θ ∈ [0, 1] and ∀u ∈ Uad,

where C depends only on f , L, Uad, and Ω.

Proof. For the proof of (3.15) we use (2.2) with r = 2, (2.8), and (3.2) as follows

∥φu∥C(Ω̄) ≤ C2

'''∂L
∂y

(x, yu, u)
'''
L2(Ω)

≤ MU = C2∥ψKU
∥L2(Ω).

Let us prove (3.16). Given u ∈ U and θ ∈ [0, 1] let us denote uθ = ū + θ(u − ū),
yθ = yuθ

, and φθ = φuθ
. Subtracting the equations satisfied by φθ and φ̄ we get with

the mean value theorem

A∗(φθ − φ̄) +
∂f

∂y
(x, ȳ)(φθ − φ̄) =

∂L

∂y
(x, yθ, uθ)− ∂L

∂y
(x, ȳ, ū)

+
�∂f
∂y

(x, ȳ)− ∂f

∂y
(x, yθ)

�
φθ =

�∂2L

∂y2
(x, yϑ, uϑ)− φθ

∂2f

∂y2
(x, yϑ)

�
(yθ − ȳ),

where yϑ = ȳ + ϑ(yθ − ȳ) for some measurable function ϑ : Ω −→ [0, 1]. Now, we
apply (2.2) with r = 2, (2.8), (3.15), (2.5), and (3.2) to get from the above equation

∥φθ − φ̄∥C(Ω̄) ≤ C2(CL,KU
+MUCf,KU

)
%
|Ω|∥yθ − ȳ∥C(Ω̄).

Then, (3.16) follows from Lemma 3.6.
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Lemma 3.8. For every ρ > 0 there exists ε > 0 such that if u ∈ Uad and ∥yu −
ȳ∥C(Ω̄) < ε then

(3.17) |[J ′′(ū+ θ(u− ū))− J ′′(ū)]v2| < ρ∥zū,v∥2L2(Ω) ∀v ∈ L2(Ω) and ∀θ ∈ [0, 1].

Proof. First, let us denote uθ, yθ, and φθ as in the proof of Lemma 3.7. From
(3.5) we get

|[J ′′(ū+ θ(u− ū))− J ′′(ū)]v2| ≤
�
Ω

(((�∂2L

∂y2
(x, yθ, uθ)− ∂2L

∂y2
(x, ȳ, ū)

�
z2uθ,v

((( dx
+

�
Ω

((((φθ − φ̄)
∂2f

∂y2
(x, yθ)z

2
uθ,v

((( dx+

�
Ω

(((φ̄�∂2f

∂y2
(x, yθ)− ∂2f

∂y2
(x, ȳ)

�
z2uθ,v

((( dx
+

�
Ω

(((�∂2L

∂y2
(x, ȳ, ū)− φ̄

∂2f

∂y2
(x, ȳ)

�
(z2uθ,v

− z2ū,v)
((( dx

= I1 + I2 + I3 + I4.

Let us estimate the terms Ii. For I1 we deduce from (3.3), (2.15), and (3.14) that
for every ρ > 0 there exists ε > 0 such that I1 ≤ ρ∥zū,v∥2L2(Ω) if ∥yu − ȳ∥C(Ω̄) < ε.

The same estimate can be deduced for I2 using (2.5), (2.8), (2.15), and (3.16). The
estimate for I3 follows from (2.6), (2.8), (2.15), (3.14), and (3.15). Finally, we estimate
I4 by using (2.5), (2.8), (2.13), (2.15), (3.2), (3.14), and (3.15) to infer that

I4 ≤ (CL,KU
+MUCf,KU

)∥zuθ,v + zū,v∥L2(Ω)∥zuθ,v − zū,v∥L2(Ω)

≤ (CL,KU
+MUCf,KU

)
5

2
∥zū,v∥L2(Ω)CL2(Ω)∥yθ − ȳ∥C(Ω̄)∥zū,v∥L2(Ω)

≤ ρ∥zū,v∥2L2(Ω) if ∥yu − ȳ∥C(Ω̄) < ε.

Hence, (3.17) is a straightforward consequence of the above estimates.

Proof of Theorem 3.5. Let us take u ∈ Uad with ∥yu− ȳ∥C(Ω̄) < α. By performing
a Taylor expansion and using that J ′(ū)(u− ū) ≥ 0 we obtain

J(u) = J(ū) + J ′(ū)(u− ū) +
1

2
J ′′(uθ)(u− ū)2

≥ J(ū) +
1

2
[J ′(ū)(u− ū) + J ′′(ū)(u− ū)2] +

1

2
[J ′′(uθ)− J ′′(ū)](u− ū)2

≥ J(ū) +
δ

2
∥zū,u−ū∥2L2(Ω) −

1

2
|[J ′′(uθ)− J ′′(ū)](u− ū)2|.

Lemma 3.8 implies the existence of ε ∈ (0, α] such that |[J ′′(uθ)− J ′′(ū)](u− ū)2| <
δ
2∥zū,u−ū∥2L2(Ω) for every u ∈ Uad with ∥yu − ȳ∥C(Ω̄) < ε. Inserting this estimate in

the above expression and taking ε still smaller if necessary, we can apply (2.14) to
deduce

J(u) ≥ J(ū) +
δ

4
∥zū,u−ū∥2L2(Ω) ≥ J(ū) +

δ

16
∥yu − ȳ∥2L2(Ω). None

This inequality yields (3.12) with κ = δ
8 .
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4. Stability of the states. In this section, we consider the following perturba-
tions of the control problem (P)

(P) min
u∈Uad

Jε(u) :=

�
Ω

[L(x, yεu(x), u(x)) + ηε(x)y
ε
u(x)] dx,

where yεu is the solution of the equation� −div
�
A(x)∇y

�
+ b(x) · ∇y + f(x, y) = u+ ξε in Ω,

y = 0 on Γ.
(4.1)

Here we assume that {ξε}ε>0 and {ηε}ε>0 are bounded families in L2(Ω) satisfying
that (ξε, ηε) → (0, 0) in L2(Ω)2 as ε → 0. As a consequence of Theorem 2.5 we get
the existence and uniqueness of a solution yεu ∈ H1

0 (Ω) ∩ C(Ω̄) of (4.1). Moreover,
using (2.7) with r = 2 and the boundedness of {ξε}ε>0 in L2(Ω) we infer that the
set {yεu : u ∈ Uad and ε > 0} is bounded in H1

0 (Ω) ∩ C(Ω̄). Therefore, increasing the
value of KU , if necessary, we can assume that (2.8) and the inequality

(4.2) ∥yεu∥H1
0 (Ω) + ∥yεu∥C(Ω̄) ≤ KU ∀u ∈ Uad and ∀ε > 0

hold. We will prove that the solutions of problems (Pε) converge to the solutions
of (P) in some sense to be precised below. Conversely, we will also prove that any
strict strong local minimizer of (P) can be approximated by strong local minimizers
of problems (Pε). Finally, the Lipschitz stability of the optimal states with respect
to the perturbations is established. We start analyzing the difference between the
solutions of (1.1) and (4.1).

Theorem 4.1. The following inequalities hold for every ε > 0

∥yεu − yu∥H1
0 (Ω) + ∥yεu − yu∥C(Ω̄) ≤ C2∥ξε∥L2(Ω) ∀u ∈ L2(Q),(4.3)

∥zεu,v − zu,v∥L2(Ω) ≤ C2
2Cf,KU

∥ξε∥L2(Ω)∥zu,v∥L2(Ω) ∀(u, v) ∈ Uad × L2(Ω),(4.4)

where C2 is the constant given in (2.2) for r = 2, Cf,KU
is the constant Cf,M of (2.5)

with M = KU given in (2.8) or (4.2), and zεu,v denotes the solution of (2.9) with yεu
replacing yu.

Proof. Subtracting the equations (4.1) and (1.1) and using the mean value theo-
rem we obtain

A(yεu − yu) +
∂f

∂y
(x, yθ)(y

ε
u − yu) = ξε.

Then, (2.2) implies (4.3). To prove (4.4) we subtract the equations satisfied by zεu,v
and zu,v to obtain

A(zεu,v − zu,v) +
∂f

∂y
(x, yεu)(z

ε
u,v − zu,v) =

�∂f
∂y

(x, yu)− ∂f

∂y
(x, yεu)

�
zu,v.

Now, using (2.3) with s = 2, (2.5), (2.8), and (4.3) we obtain from the previous
equation with the mean value theorem

∥zεu,v − zu,v∥L2(Ω) ≤ C2

'''�∂f
∂y

(x, yu)− ∂f

∂y
(x, yεu)

�
zu,v

'''
L1(Ω)

≤ C2Cf,KU
∥(yεu − yu)zu,v∥L1(Ω)

≤ C2Cf,KU
∥yεu − yu∥L2(Ω)∥zu,v∥L2(Ω) ≤ C2

2Cf,KU
∥ξε∥L2(Ω)∥zu,v∥L2(Ω).
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Now we analyze the convergence of problems (Pε) to (P).

Theorem 4.2. Let {uε}ε>0 be a family of solutions of problems (Pε). Any control
ū that is a weak∗ limit in L∞(Ω) of a sequence {uεk}∞k=1 with εk → 0 as k → ∞ is a
solution of (P). Moreover, the strong convergence yεkuεk

→ yū in H1
0 (Ω) ∩C(Ω̄) holds.

Proof. The existence of the sequences {uεk}∞k=1 converging to ū weakly∗ in L∞(Ω)
is a consequence of the boundedness of Uad in L∞(Ω). From Theorem 2.5 and (4.3)
we infer

∥yεkuεk
− yū∥H1

0 (Ω) + ∥yεkuεk
− yū∥C(Ω̄)

≤ ∥yεkuεk
− yuεk

∥H1
0 (Ω) + ∥yεkuεk

− yuεk
∥C(Ω̄) + ∥yuεk

− yū∥H1
0 (Ω) + ∥yuεk

− yū∥C(Ω̄)

≤ C2∥ξε∥L2(Ω) + ∥yuεk
− yū∥H1

0 (Ω) + ∥yuεk
− yū∥C(Ω̄) → 0 as k → ∞.

Using this fact, the convergence ηε → 0 as ε → 0, (3.2), the optimality of uεk for
(Pεk), and again (4.3), we get

J(ū) = lim
k→∞

Jεk(uεk) ≤ lim
k→∞

Jεk(u) = J(u) ∀u ∈ Uad,

which proves that ū is a solution of (P).

Now, we establish a kind of converse result.

Theorem 4.3. Let ū be a strict strong local minimizer of (P). Then, there exist
ε0 > 0 and a family of strong local minimizers {uε}ε<ε0 of problems (Pε) such that

uε
∗
⇀ ū in L∞(Ω) and yεuε

→ yū strongly in H1
0 (Ω) ∩ C(Ω̄) as ε → 0.

Proof. Since ū is a strict strong local minimizer of (P), there exists ρ > 0 such
that ū is the unique solution of the problem

(Pρ) min
u∈Uρ

J(u),

where Uρ = {u ∈ Uad : ∥yu − yū∥C(Ω̄) ≤ ρ}. Now, for every ε > 0 we define the
problems

(Pρ,ε) min
u∈Uρ

Jε(u).

Using Theorem 2.5 we deduce that Uρ is weakly∗ closed in L∞(Ω), hence the existence
of a solution uε of (Pρ,ε) can be proved as we indicated for (P). Moreover, arguing as in
the proof of Theorem 4.2, we deduce the existence of sequences {uεk}∞k=1 converging
weakly∗ to a solution u of (Pρ) in L∞(Ω) and such that yεkuεk

→ yu strongly in

H1
0 (Ω) ∩ C(Ω̄). Since ū is the unique solution of (Pρ), we conclude the convergence

uε
∗
⇀ ū in L∞(Ω) and yεuε

→ yū in H1
0 (Ω) ∩ C(Ω̄) as ε → 0. Therefore, there exists

ε0 > 0 such that ∥yεuε
− yū∥C(Ω̄) < ρ for every ε < ε0. This implies that uε is a strong

local minimizer of (Pε) for every ε < ε0, which completes the proof.

Now we establish our main theorem of this section.

Theorem 4.4. Let ū be a local minimizer of (P) satisfying Assumption 3.4 and

{uε}ε<ε0 a family of local solutions of problems (Pε) such that uε
∗
⇀ ū in L∞(Ω) as

ε → 0. Then, there exist ε̂ ∈ (0, ε0) and a constant C > 0 such that

(4.5) ∥yεuε
− ȳ∥L2(Ω) ≤ C

�
∥ξε∥L2(Ω) + ∥ηε∥L2(Ω)

�
∀ε < ε̂,

where ȳ = yū.
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Let us observe that Assumption 3.4 implies that ū satisfies (3.12). Hence, ū is
a strict strong local minimizer of (P) and, consequently, Theorem 4.3 ensures the
existence of a family {uε}ε<ε0 of strong local minimizers of problems (Pε) satisfying
the conditions of the above theorem. Before proving this theorem we establish the
following lemma.

Lemma 4.5. Let ū satisfy the assumptions of Theorem 4.4. Then, there exists
ε > 0 such that

(4.6) J ′(u)(u− ū) ≥ γ

2
∥zu,u−ū∥2L2(Ω) ∀u ∈ Uad with ∥yu − ȳ∥C(Ω̄) < ε,

where γ is given in Assumption 3.4.

Proof. We denote by H : Ω × R3 −→ R the Hamiltonian associated with the
control problem (P):

H(x, y, φ, u) = L(x, y, u) + φ[u− f(x, y)].

For every u ∈ Uad and v ∈ L2(Ω), we define ψu,v ∈ H1
0 (Ω) ∩ C(Ω̄) as the function

satisfying

A∗ψu,v +
∂f

∂y
(x, yu)ψu,v =

∂2H

∂y2
(x, yu, φu, u)zu,v.

We split the proof into two steps.
Step I.- Here we prove that for every ρ > 0 there exists ε > 0 such that for every

u ∈ Uad with ∥yu − ȳ∥C(Ω̄) < ε we have

(4.7)
((( �

Ω

(φu − φ̄− ψū,u−ū)(u− ū) dx
((( ≤ ρ∥zū,u−ū∥2L2(Ω).

Setting π = φu− φ̄−ψū,u−ū and subtracting their respective equations it follows with
the mean value theorem

A∗π +
∂f

∂y
(x, ȳ)π =

∂H

∂y
(x, yu, φu, u)− ∂H

∂y
(x, ȳ, φ̄, ū)

− ∂2H

∂y2
(x, ȳ, φ̄, ū)zū,u−ū − ∂2H

∂y∂φ
(x, ȳ, φ̄, ū)(φu − φ̄)

=
∂2H

∂y2
(x, yθ, φθ, uθ)(yu − ȳ)− ∂2H

∂y2
(x, ȳ, φ̄, ū)zū,u−ū

+
� ∂2H

∂y∂φ
(x, yθ, φθ, uθ)− ∂2H

∂y∂φ
(x, ȳ, φ̄, ū)

�
(φu − φ̄)

=
∂2H

∂y2
(x, yθ, φθ, uθ)(yu − ȳ − zū,u−ū)

+
�∂2H

∂y2
(x, yθ, φθ, uθ)− ∂2H

∂y2
(x, ȳ, φ̄, ū)

�
zū,u−ū

+
� ∂2H

∂y∂φ
(x, yθ, φθ, uθ)− ∂2H

∂y∂φ
(x, ȳ, φ̄, ū)

�
(φu − φ̄).
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This implies�
Ω

π(u− ū) dx =

�
Ω

π
�
Azū,u−ū +

∂f

∂y
(x, ȳ)zū,u−ū

�
dx

=

�
Ω

�
A∗π +

∂f

∂y
(x, ȳ)π

�
zū,u−ū dx

=

�
Ω

∂2H

∂y2
(x, yθ, φθ, uθ)(yu − ȳ − zū,u−ū)zū,u−ū dx

+

�
Ω

�∂2H

∂y2
(x, yθ, φθ, uθ)− ∂2H

∂y2
(x, ȳ, φ̄, ū)

�
z2ū,u−ū dx

+
� ∂2H

∂y∂φ
(x, yθ, φθ, uθ)− ∂2H

∂y∂φ
(x, ȳ, φ̄, ū)

�
(φu − φ̄)zū,u−ū dx = I1 + I2 + I3.

We estimate every term Ii. For the first term we use (2.5), (2.8), (2.12) with s = 2,
(2.14) with X = L2(Ω), (3.2), and (3.15) as follows

|I1| ≤ (CL,KU
+MUCf,KU

)∥yu − ȳ − zū,u−ū∥L2(Ω)∥zū,u−ū∥L2(Ω)

≤ (CL,KU
+MUCf,KU

)M2∥yu − ȳ∥2L2(Ω)∥zū,u−ū∥L2(Ω)

≤ 2(CL,KU
+MUCf,KU

)M2

%
|Ω|ε∥zū,u−ū∥2L2(Ω).

The second term is estimated with (2.6), (2.8), (3.3), (3.14), (3.15), (3.16), leading
to |I2| ≤ ρ∥zū,u−ū∥2L2(Ω) for ρ arbitrarily small if ε is taken according to ρ. Finally,

for the last term we use the same inequalities as for I2 and additionally (2.15) with
X = L2(Ω) to get

|I3| ≤ ρ∥φu − φ̄∥L2(Ω)∥zū,u−ū∥L2(Ω)

≤ ρC2(CL,KU
+MUCf,KU

)
%

|Ω|∥yu − ȳ∥C(Ω̄)∥zū,u−ū∥L2(Ω)

≤ 2C2(CL,KU
+MUCf,KU

)
%
|Ω|ρ∥zū,u−ū∥2L2(Ω),

where again ρ is arbitrarily small if ε is chosen according to it. Thus, (4.7) follows
from the proved estimates.

Step II- Now, we prove (4.6). First, we observe that for every v ∈ L2(Ω)�
Ω

ψū,vv dx =

�
Ω

ψū,v

�
Azū,v +

∂f

∂y
(x, ȳ)zū,v

�
dx

=

�
Ω

�
A∗ψū,v +

∂f

∂y
(x, ȳ)ψū,v

�
zū,v dx =

�
Ω

∂2H

∂y2
(x, ȳ, φ̄, ū)z2ū,v dx = J ′′(ū)v2,

where the last inequality follows from (3.5) and the definition of the Hamiltonian. Let
ε > 0 be such that (4.7) holds with ρ = γ

2 . Then, using Assumption 3.4 and (4.7) we
get for u ∈ Uad with ∥yu − ȳ∥C(Ω̄) < ε

J ′(u)(u− ū) =

�
Ω

(φu + g)(u− ū) dx

=

�
Ω

(φu − φ̄− ψū,u−ū)(u− ū) dx+

�
Ω

(φ̄+ g + ψū,u−ū)(u− ū) dx

≥ −γ

2
∥zū,u−ū∥2L2(Ω) + [J ′(ū)(u− ū) + J ′′(ū)(u− ū)2] ≥ γ

2
∥zū,u−ū∥2L2(Ω).
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Remark 4.6. Let us notice that if ū is a local minimizer of (P) satisfying As-
sumption 3.4, then there exists ε > 0 such that there is no stationary point û of (P)
different from ū such that ∥yû − ȳ∥C(Ω̄) < ε. We say that û is a stationary point of
(P) if it satisfies the first order optimality condition. In particular, if û is a stationary
point then J ′(û)(ū− û) ≥ 0. This contradicts (4.6) if ∥yû − ȳ∥C(Ω̄) < ε.

Proof of Theorem 4.4. Using the local optimality of uε we get

0 ≥ J ′
ε(uε)(uε − ū)

= J ′(uε)(uε − ū) +

�
Ω

�∂L
∂y

(x, yεuε
, uε)− ∂L

∂y
(x, yuε

, uε)
�
zuε,uε−ū dx

+

�
Ω

∂L

∂y
(x, yεuε

, uε)(z
ε
uε,uε−ū − zuε,uε−ū) dx+

�
Ω

ηεz
ε
uε,uε−ū dx.(4.8)

We estimate each one of these four terms. First, we observe that the convergence
uε ⇀ ū in L2(Ω) implies that ∥yuε

− ȳ∥C(Ω̄) → 0; see Theorem 2.5. Hence, from
Lemma 4.5 we deduce the existence of ε1 > 0 such that

(4.9) J ′(uε)(uε − ū) ≥ γ

2
∥zuε,uε−ū∥2L2(Ω) ∀ε < ε1,

For the second term we use Schwarz’s inequality, the mean value theorem, (2.8) and
(4.2), (3.2), and (4.3)�

Ω

(((∂L
∂y

(x, yεuε
, uε)− ∂L

∂y
(x, yuε , uε)

(((|zuε,uε−ū| dx
≤ CL,KU

∥yεuε
− yuε∥L2(Ω)∥zuε,uε−ū∥L2(Ω)

≤ CL,KU

%
|Ω|C2∥ξε∥L2(Ω)∥zuε,uε−ū∥L2(Ω).(4.10)

Now we estimate the third term with (3.2) and (4.2), Schwarz’s inequality, and (4.4)�
Ω

(((∂L
∂y

(x, yεuε
, uε)

(((|zεuε,uε−ū − zuε,uε−ū| dx ≤
�
Ω

ψKU
|zεuε,uε−ū − zuε,uε−ū| dx

∥ψKU
∥L2(Ω)C

2
2Cf,KU

∥ξε∥L2(Ω)∥zuε,uε−ū∥L2(Ω).(4.11)

For the last term we use again (4.4) and the fact that {ξε}ε>0 is bounded in L2(Ω)�
Ω

|ηεzεuε,uε−ū| dx ≤ ∥ηε∥L2(Ω)

�
∥zεuε,uε−ū − zuε,uε−ū∥L2(Ω) + ∥zuε,uε−ū∥L2(Ω)

�

≤
�
C2

2∥ξε∥L2(Ω) + 1
�
∥ηε∥L2(Ω)∥zuε,uε−ū∥L2(Ω) ≤ C∥ηε∥L2(Ω)∥zuε,uε−ū∥L2(Ω).

(4.12)

Inserting the estimates (4.9)–(4.12) in (4.8) we obtain for some constant C ′ > 0 and
every ε < ε1

∥zuε,uε−ū∥L2(Ω) ≤ C ′
�
∥ξε∥L2(Ω) + ∥ηε∥L2(Ω)

�
.

Finally, using (2.14) and (4.3) we deduce the the existence of ε2 ∈ (0, ε1] such that
for every ε < ε2 we have

∥yεuε
− ȳ∥L2(Ω) ≤ ∥yεuε

− yuε
∥L2(Ω) + ∥yuε

− ȳ∥L2(Ω)

≤ C2

%
|Ω|∥ξε∥L2(Ω) + 2∥zuε,uε−ū∥L2(Ω)

≤ C2

%
|Ω|∥ξε∥L2(Ω) + 2C ′

�
∥ξε∥L2(Ω) + ∥ηε∥L2(Ω)

�
,

which proves (4.5). None
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5. Stability of the controls. In the previous section, we established Lipschitz
stability for the optimal states with respect to state perturbations in the objective
functional and to the force in the state equation. In order to obtain stability on the
optimal controls an additional assumption is usually required. The reader is referred
to [21] for the following assumption

(5.1) ∃C > 0 such that |{x ∈ Ω : |(φ+ g)(x)| ≤ ε}| ≤ Cε ∀ε > 0.

Using this assumption and sufficient second order optimality conditions they proved
Lipschitz stability of the controls in the L1(Ω) norm. However, the assumption (5.1)
implies that ū is bang-bang. As far as we know, there is no proof for stability of
the optimal controls when they are not bang-bang. Assumption 3.4 that we have
considered in the previous sections is applicable for the case of optimal controls that
are not bang-bang. Nevertheless, it leads only to Lipschitz stability of the optimal
states. Here, we modify Assumption 3.4 as follows

Assumption 5.1. There exist numbers α > 0 and γ > 0 such that for all u ∈ Uad

with ∥yu − ȳ∥C(Ω̄) < α the following inequality is fulfilled

(5.2) J ′(ū)(u− ū) + J ′′(ū)(u− ū)2 ≥ γ∥zū,u−ū∥L2(Ω)∥u− ū∥L1(Ω).

Under this assumption we will prove Lipschitz stability of the optimal controls. We
remark that (5.2) does not imply that ū is bang-bang. Moreover, it has been proved
in [9] that the sufficient second order conditions plus the structural assumption (5.1)
imply the existence of positive numbers γ and α such that

(5.3) J ′(ū)(u− ū)+J ′′(ū)(u− ū)2 ≥ γ∥u− ū∥2L1(Ω) ∀u ∈ Uad with ∥u− ū∥L1(Ω) < α.

But we have the next equivalence:

Proposition 5.2. The statement (5.3) is equivalent to the existence of positive
numbers γ′ and α′ such that

(5.4) J ′(ū)(u−ū)+J ′′(ū)(u−ū)2 ≥ γ′∥u−ū∥2L1(Ω) ∀u ∈ Uad with ∥yu− ȳ∥C(Ω̄) < α′.

Proof. Let us assume that (5.3) holds, but (5.4) is false. Then, for every integer
k ≥ 1 there exists an element uk ∈ Uad such that

(5.5) J ′(ū)(uk − ū) + J ′′(ū)(uk − ū)2 <
1

k
∥uk − ū∥2L1(Ω) and ∥yuk

− ȳ∥C(Ω̄) <
1

k
.

Since {uk}∞k=1 ⊂ Uad is bounded in L∞(Ω), we can extract a subsequence, denoted in

the same way, such that uk
∗
⇀ u in L∞(Ω). On one side, (5.5) implies that yuk

→ ȳ
in C(Ω̄). On the other side, from Theorem 2.5 the convergence yuk

→ yu in C(Ω̄)
follows. Then, yu = ȳ and, consequently, u = ū holds. But (5.3) implies that ū is

bang-bang and, hence, the weak convergence uk
∗
⇀ ū yields the strong convergence

uk → ū in L1(Ω); see [9, Proposition 12 and Lemma 6]. Then, (5.5) contradicts (5.3).
Let us prove the converse implication. First we observe that given u ∈ Uad we

get with the mean value theorem

A(yu − ȳ) +
∂f

∂y
(x, ȳ + θ(yu − ȳ))(yu − ȳ) = u− ū.



18 E. CASAS, A. DOMÍNGUEZ CORELLA, AND N. JORK

Now, using (2.2) with r = 2 we get

∥yu − ȳ∥C(Ω̄) ≤ C2∥u− ū∥L2(Ω) ≤ C2

√
ub − ua∥u− ū∥ 1

2

L1(Ω).

Then, taking α = α′2
C2

2 (ub−ua)
, we obtain that (5.4) implies (5.3) with γ = γ′.

From (2.3) we infer that (5.4) implies (5.2). Hence, the combination of sufficient
second order conditions plus (5.1) is a stronger assumption than (5.2).

Theorem 5.3. Let ū be a local minimizer of (P) satisfying Assumption 5.1 and

{uε}ε<ε0 a family of local solutions of problems (Pε) such that uε
∗
⇀ ū in L∞(Ω) as

ε → 0. Then, there exist ε̂ ∈ (0, ε0) and a constant C > 0 such that

(5.6) ∥uε − ū∥L1(Ω) ≤ C
�
∥ξε∥L2(Ω) + ∥ηε∥L2(Ω)

�
∀ε < ε̂,

where ȳ = yū.

The proof of this theorem follows the steps of the one of Theorem 4.4 with Lemma
4.5 replaced by the following:

Lemma 5.4. Let ū satisfy the assumptions of Theorem 5.3. Then, there exists
ε > 0 such that

(5.7) J ′(u)(u− ū) ≥ γ

2
∥zu,u−ū∥L2(Ω)∥u− ū∥L1(Ω) ∀u ∈ Uad with ∥yu − ȳ∥C(Ω̄) < ε,

where γ is given in Assumption 5.1.

Proof. We use (4.7) with ρ = γ
2C2

, Assumption 5.1, and (2.3) to deduce for ε > 0
small enough

J ′(u)(u− ū) =

�
Ω

(φu + g)(u− ū) dx

=

�
Ω

(φu − φ̄− ψū,u−ū)(u− ū) dx+

�
Ω

(φ̄+ g + ψū,u−ū)(u− ū) dx

≥ − γ

2C2
∥zū,u−ū∥2L2(Ω) + [J ′(ū)(u− ū) + J ′′(ū)(u− ū)2]

≥ −γ

2
∥zū,u−ū∥L2(Ω)∥u− ū∥L1(Ω) + γ∥zū,u−ū∥L2(Ω)∥u− ū∥L1(Ω),

which proves (5.7).

Proof of Theorem 5.3. We follow the proof of Theorem 4.4 replacing the estimate
(4.9) by (5.7) to deduce with (4.8) and (4.10)–(4.12) the inequality

0 ≥ J ′
ε(uε)(uε − ū) ≥ γ

2
∥zuε,uε−ū∥L2(Ω)∥uε − ū∥L1(Ω)

− C1∥zuε,uε−ū∥L2(Ω)

�
∥ξε∥L2(Ω) + ∥ηε∥L2(Ω)

�
.

Then, dividing this inequality by ∥zuε,uε−ū∥L2(Ω) we get

∥uε − ū∥L1(Ω) ≤ 2C1

γ

�
∥ξε∥L2(Ω) + ∥ηε∥L2(Ω)

�
,

None

which proves (5.6) with C = 2C1

γ .
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6. Some final state stability results. In this section we see how Assumption
5.1 allows us to prove Lipschitz stability for the optimal states for more general
perturbations of (P). Here, we consider simultaneous perturbations on the control
and state variables of (P):

(Pε) min
u∈Uad

Jϵ(u) :=

�
Ω

Lε(x, y
ε
u(x), u(x)) dx,

where yεu is the solution of (4.1) and for every ϵ > 0

Lε(x, y, u) = L0(x, y) + ηεy + gεu+
ε

2
u2.

As in Section 4, we assume that {ξε}ε>0 and {ηε}ε>0 are bounded families in
L2(Ω) satisfying that (ξε, ηε) → (0, 0) in L2(Ω)2 as ε → 0. Moreover, we suppose that
∥gε − g∥L∞(Ω) → 0 as ε → 0. Under these assumptions, it is immediate to check that
(Pε) is an approximation of (P) in the sense of Theorems 4.2 and 4.3. Moreover, we
have the following Lipschitz stability property for the optimal states:

Theorem 6.1. Let ū be a local minimizer of (P) satisfying Assumption 5.1 and

{uε}ε<ε0 a family of local solutions of problems (Pε) such that uε
∗
⇀ ū in L∞(Ω) as

ε → 0. Then, there exist ε̂ ∈ (0, ε0) and a constant C > 0 such that

(6.1) ∥yεuε
− ȳ∥L2(Ω) ≤ C

�
∥ξε∥L2(Ω) + ∥ηε∥L2(Ω) + ∥gε − g∥L∞(Ω) + ε

�
∀ε < ε̂,

where ȳ = yū.

Proof. Similarly to (4.8) we have

0 ≥ J ′
ε(uε)(uε − ū) = J ′(uε)(uε − ū) +

�
Ω

(εuε + gε − g)(uε − ū) dx

+

�
Ω

�∂L
∂y

(x, yεuε
, uε)− ∂L

∂y
(x, yuε

, uε)
�
zuε,uε−ū dx

+

�
Ω

∂L

∂y
(x, yεuε

, uε)(z
ε
uε,uε−ū − zuε,uε−ū) dx+

�
Ω

ηεz
ε
uε,uε−ū dx.

Then, using (5.7) and (4.10)–(4.12) we obtain with (2.3)

0 ≥ γ

2
∥zuε,uε−ū∥L2(Ω)∥uε − ū∥L1(Ω) −

�
ε∥uε∥L∞(Ω) + ∥gε − g∥L∞(Ω)

�
∥uε − ū∥L1(Ω)

− C1∥zuε,uε−ū∥L2(Ω)

�
∥ξε∥L2(Ω) + ∥ηε∥L2(Ω)

�
≥ γ

2
∥zuε,uε−ū∥L2(Ω)∥uε − ū∥L1(Ω)

− C ′
�
ε+ ∥gε − g∥L∞(Ω) + ∥ξε∥L2(Ω) + ∥ηε∥L2(Ω)

�
∥uε − ū∥L1(Ω).

where C ′ = max{1, |ua|, |ub|, C1C2}. Dividing the above expression by ∥uε − ū∥L1(Ω)

and using (2.14) we infer

∥yuε
− ȳ∥L2(Ω) ≤ 4C ′

γ

�
ε+ ∥gε − g∥L∞(Ω) + ∥ξε∥L2(Ω) + ∥ηε∥L2(Ω)

�
.

Now, the rest follows as in the proof of Theorem 4.4
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