
574

N
N

T
:2

0X
X

IP
PA

X
X

X
X

Numerical analysis and methods for
mean-field-type optimization problems
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Professeur, Université Claude Bernard - Lyon 1 Rapporteur

Hasnaa Zidani
Professeure, INSA Rouen Normandie Examinatrice



Contents

1 Introduction 6

1.1 Elements of convex analysis and mean-field-game models . . . . . . . . . . . . . . . . 8

1.1.1 Convex optimization and the FW algorithm . . . . . . . . . . . . . . . . . . . 8

1.1.2 Second-order MFGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.3 Discrete MFGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.4 MFO problems and Lagrangian MFGs . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.1 Large-scale nonconvex optimization: randomization, gap estimation, and nu-

merical resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.2 Mean field optimization problems: stability results and Lagrangian discretiza-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2.3 Error estimates of a theta-scheme for second-order mean field games . . . . . 32

1.2.4 A mesh-independent method for second-order potential mean field games . . 37

2 Large-scale nonconvex optimization: randomization, gap estimation, and nu-

merical resolution 42

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2 Relaxation by randomization and gap estimation . . . . . . . . . . . . . . . . . . . . 46

2.2.1 Assumptions and constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.2 The randomized problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.3 Selection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 Stochastic Frank-Wolfe algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.2 Basic Frank-Wolfe algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.3 Stochastic Frank-Wolfe algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3.4 Proof of Theorem 2.3.7 and comments . . . . . . . . . . . . . . . . . . . . . . 57

2.3.5 A speed-up of the SFW algorithm . . . . . . . . . . . . . . . . . . . . . . . . 58

2.3.6 Stopping time strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3.7 Distributed algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4 Refined gap estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.4.1 Nonconvexity measure and gap estimate . . . . . . . . . . . . . . . . . . . . . 62

2



2.4.2 Duality and price of decentralization . . . . . . . . . . . . . . . . . . . . . . . 64

2.5 Comments on numerical aspects and examples . . . . . . . . . . . . . . . . . . . . . 66

2.5.1 Literature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.5.2 Social welfare example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.5.3 Discussion on the case of finite feasible sets . . . . . . . . . . . . . . . . . . . 67

2.5.4 Aggregative optimal control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.5.5 Supervised learning problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.6 Numerical test for MIQP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.7 Numerical test for discrete aggregative optimal control problems . . . . . . . . . . . 72

2.7.1 Reformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.7.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.7.3 Resolution of the sub-problems . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.7.4 Numerical simulations on a battery charging problem . . . . . . . . . . . . . 76

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.9.1 Concentration inequalities and other technical lemmas . . . . . . . . . . . . . 78

3 Mean field optimization problems: stability results and Lagrangian discretiza-

tion 81

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2.1 Results in measure theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2.2 Results about set-valued functions . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2.3 Data setting and technical lemmas . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3 Primal mean field optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3.1 Assumptions and constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3.2 First-order-optimality condition . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.3 Existence of a solution under tightness assumptions . . . . . . . . . . . . . . 91

3.3.4 Stability of primal problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4 Dual problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.4.1 Strong duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.4.2 Stability of the dual problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.4.3 Directional derivative of the value function . . . . . . . . . . . . . . . . . . . 103

3.5 Algorithms for the discretized MFO problem . . . . . . . . . . . . . . . . . . . . . . 104

3.5.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.5.2 Frank-Wolfe algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.5.3 Stochastic Frank-Wolfe algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.6 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.6.1 Potential problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.6.2 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3



3.7.1 Proof and Lemma 3.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4 Error estimates of a theta-scheme for second-order mean field games 116

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2 The theta-scheme and the convergence result . . . . . . . . . . . . . . . . . . . . . . 120

4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.2.2 Notations for the finite-difference scheme . . . . . . . . . . . . . . . . . . . . 121

4.2.3 The theta-scheme and the main result . . . . . . . . . . . . . . . . . . . . . . 122

4.3 General properties of discrete mean field games . . . . . . . . . . . . . . . . . . . . . 125

4.3.1 Notations and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.3.2 The discrete MFG model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.3.3 A fundamental inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.3.4 Two proofs of the fundamental inequality . . . . . . . . . . . . . . . . . . . . 130

4.4 Stability analysis for the theta-scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.4.1 Reformulation of the theta-scheme as a discrete MFG . . . . . . . . . . . . . 133

4.4.2 Energy estimate for the discrete FP equation . . . . . . . . . . . . . . . . . . 137

4.5 Consistency analysis of the theta-scheme . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.5.1 Consistency error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.5.2 Proof of Theorem 4.2.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.6.1 Technical lemmas and proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.6.2 On the regularity of the continuous MFG system . . . . . . . . . . . . . . . . 150

4.6.3 Construction of a numerical Hamiltonian . . . . . . . . . . . . . . . . . . . . 153

5 A mesh-independent method for second-order potential mean field games 156

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.1.1 Context and main contributions . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.2 Potential discrete mean field games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.2.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.2.2 Potential formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.3 Generalized Frank-Wolfe algorithm: the discrete case . . . . . . . . . . . . . . . . . . 165

5.3.1 Algorithm and convergence results . . . . . . . . . . . . . . . . . . . . . . . . 165

5.3.2 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.4 Mesh-independent convergence of the GFW algorithm for second-order MFGs . . . . 169

5.4.1 The theta-scheme and error estimates . . . . . . . . . . . . . . . . . . . . . . 169

5.4.2 GFW algorithm for the theta-scheme and main results . . . . . . . . . . . . . 172

5.4.3 Proof of the sublinear rate of convergence . . . . . . . . . . . . . . . . . . . . 175

5.4.4 Proof of the linear rate of convergence . . . . . . . . . . . . . . . . . . . . . . 178

5.4.5 Discussion on convergence constants . . . . . . . . . . . . . . . . . . . . . . . 184

5.5 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.5.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

4



5.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5



Chapter 1

Introduction

In today’s increasingly interconnected industry and data-driven world, large-scale optimization

problems have gained widespread prominence in modeling problems from various domains, such as

in the field of energy management [SAB+23], in the optimization of the social welfare [Wan17], in the

training of neural networks [MMN18, MMM19]. A key characteristic of these optimization problems

is the inclusion of an aggregate term in their objective function, which captures the interactions

among individuals, supposed to be in great numbers. In general, resolving these optimization

problems poses significant challenges due to their high dimensionality and non-convex nature.

Mean-field-type optimization problems constitute a powerful framework for addressing such

problems. They offer an asymptotic perspective as the number of individuals tends to infinity.

By solving mean-field-type optimization problems, we gain valuable insights into the solutions of

the underlying aggregative problems with finitely many agents.

In the context of differential games, this asymptotic modeling approach yields equilibrium prob-

lems which are commonly referred to as mean field games (MFGs). They were introduced in 2006

independently by J.-M. Lasry and P.-L. Lions in [LL07] and M. Huang, R.P. Malhamé, and P.E.

Caines in [HMC06]. MFGs have found significant applications in diverse areas, like crowd motion

[LST10], sociology, biology, macroeconomics [ABL+14], trade crowding [CL18a], and finance.

This thesis is dedicated to the numerical analysis and to methods for mean-field-type optimiza-

tion problems. This introductory chapter is divided into two parts: In Section 1.1, we provide an

overview of the general frameworks for constraint convex optimization and MFGs; in Section 1.2,

we highlight the main results of the four chapters of the thesis.

• Chapter 2 and Section 1.2.1: Large-scale nonconvex optimization: randomization,

gap estimation, and numerical resolution1. We address a large-scale and nonconvex

optimization problem, involving an aggregative term. This term can be interpreted as the

sum of the contributions of N agents to some common good, with N large. We investigate a

relaxation of this problem, obtained by randomization. This relaxation lies in the framework

of the MFO problem presented in Section 1.2.2. The relaxation gap is proved to have an order

1Chapter 2 corresponds to the article [BLO+22] accepted for publication in SIAM Journal on Optimization and to the
article [LOP22] accepted in SIAM CT23. The article [BLO+22] is a joint work with J.F. Bonnans, N. Oudjane, L. Pfeiffer, and
C. Wan. The article [LOP22] is a joint work with N. Oudjane and L. Pfeiffer.
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O(1/N). We consider the Frank-Wolfe algorithm for the resolution of the randomized problem.

Each iteration of the algorithm requires to solve a subproblem which can be decomposed

into N independent optimization problems. A sublinear convergence rate is obtained for the

FW algorithm. In order to handle the memory overflow problem possibly caused by the

Frank-Wolfe algorithm, we propose a stochastic Frank-Wolfe algorithm, which ensures the

convergence in both expectation and probability senses.

• Chapter 3 and Section 1.2.2: Mean field optimization problems: stability results and

Lagrangian discretization2. We formulate and investigate a mean field optimization (MFO)

problem involving probability distributions µ with a prescribed marginal m. The cost function

depends on an aggregate term, which is the expectation of µ with respect to a contribution

function. This problem is of particular interest in the context of Lagrangian MFGs and

their discretization. We study the first-order optimality condition, prove strong duality, and

investigate stability properties of the MFO problem from both primal and dual perspectives.

In our stability analysis, we propose a feasible approach for recovering an approximate solution

to an MFO problem with the help of an approximate solution to an MFO with a different

marginal m, typically an empirical distribution. We combine this recovery method with

the stochastic Frank-Wolfe algorithm stated in Section 1.2.1 to derive a complete resolution

method.

• Chapter 4 and Section 1.2.3: Error estimates of a theta-scheme for second-order mean

field games3. We introduce and analyze a new finite-difference scheme, relying on the theta-

method, for solving monotone second-order MFGs. These games consist of a coupled system

of the Fokker-Planck and the Hamilton-Jacobi-Bellman equation. The theta-method is used

for discretizing the diffusion terms: we approximate them with a convex combination of an

implicit and an explicit term. On contrast, we use an explicit centered scheme for the first-

order terms. Assuming that the running cost is strongly convex and regular, we first prove the

monotonicity and the stability of our theta-scheme, under a CFL condition. Taking advantage

of the regularity of the solution of the continuous problem, we estimate the consistency error

of the theta-scheme. Our main result is a convergence rate of order O(hr) for the theta-

scheme, where h is the step length of the space variable and r ∈ (0, 1) is related to the Hölder

continuity of the solution of the continuous problem and some of its derivatives.

• Chapter 5 and Section 1.2.4: A mesh-independent method for second-order potential

mean field games4. This part investigates the convergence of the generalized Frank-Wolfe

algorithm for the resolution of potential and convex second-order MFGs. More specifically, the

impact of the discretization of the MFG system on the effectiveness of the generalized Frank-

Wolfe algorithm is analyzed. The article focuses on the theta-scheme introduced in Section

1.2.3. A sublinear and a linear rate of convergence are obtained, for two different choices of

step sizes. These rates have the mesh-independence property: the underlying convergence

constants are independent of the discretization parameters.
2Chapter 3 is a joint work with L. Pfeiffer.
3Chapter 4 corresponds to article [BLP22] accepted in ESAIM: M2AN, this is a joint work with J.F. Bonnans and L. Pfeiffer.
4Chapter 5 is a joint work with L. Pfeiffer.
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1.1 Elements of convex analysis and mean-field-game models

Section 1.1.1 contains a recap of the duality theory for convex optimization problems and a pre-

sentation of the Frank-Wolfe (FW) algorithm, its generalization, and convergence results. We next

present the different potential MFG models that we have investigated. For each of them, we explain

how the FW algorithm can be applied and we highlight the interest of this method. Section 1.1.2

is dedicated to second-order MFGs. We present in Section 1.1.3 a general framework for discrete

MFGs, which contains the finite difference scheme for second-order MFGs investigated in this the-

sis. In Section 1.1.4, we describe two potential problems associated with Lagrangian MFGs. They

fit into a general class of optimization problems that we refer to as Mean Field Optimization (MFO)

problems. We give a precise formulation of MFO problems and describe the associated optimality

condition.

1.1.1 Convex optimization and the FW algorithm

We first introduce a general class of convex optimization problems and explore their relation with

their dual problem. This provides us with a theoretical background for the application of various

primal algorithms and primal-dual algorithms. Next, we focus on the Frank-Wolfe algorithm and

its variants and present convergence results.

Constraint convex optimization and duality. Let H be a real Hilbert space and let f : H → R
be a convex and lower semi-continuous (l.s.c.) function. Consider the following general optimization

problem:

inf
x∈K

f(x), (1.1.1)

where K is a non-empty, bounded, closed, and convex subset of H. The existence of a solution to

problem (1.1.1) derives from [Bré11, Cor. 3.23]. It is convenient to consider the following equivalent

formulation of (1.1.1):

inf
x∈H

f(x) + χK(x), (1.1.2)

where χK denotes the indicator function of K, which is 0 for x ∈ K and +∞ for x /∈ K. The dual

problem of (1.1.2) reads [BC11, Def. 15.19]:

sup
λ∈H

(
− f∗(λ) + inf

x∈K
⟨λ, x⟩

)
, (1.1.3)

where f∗ is the Fenchel conjugate of f . Since f and χK are convex and l.s.c., the domain of f is H,

and K is non-empty, we deduce from the Fenchel-Rockafellar theorem [Roc97][BC11, Thm. 15.23]

that the dual problem (1.1.3) has a solution and that the strong duality holds for problem (1.1.1),

i.e.,

val(1.1.1) = val(1.1.3).

Let us define the Lagrangian associated with (1.1.1),

L : K ×H → R, (x, λ) 7→ −f∗(λ) + ⟨λ, x⟩.

We have obtained the existence of solutions for both the primal problem (1.1.1) and the dual

problem (1.1.3). Additionally, given (x∗, λ∗) ∈ K ×H, the following two assertions are equivalent:

8



1. The point x∗ is a solution of (1.1.1) and the point λ∗ is a solution of (1.1.3).

2. The point (x∗, λ∗) is a saddle point of the Lagrangian L, i.e.,

inf
x∈K

L(x, λ∗) = L(x∗, λ∗) = sup
λ∈H

L(x∗, λ). (1.1.4)

This equivalence provides us with two general perspectives for solving (1.1.1): (1) We can focus on

the primal problem and compute a sequence of feasible candidates, letting the cost function decrease

and converge to the optimum value; (2) We can find a saddle point (x∗, λ∗) of the Lagrangian L,
alternating between minimization and maximization phases for the primal and dual variables.

In the realm of numerical optimization, numerous algorithms have been developed to tackle

problem (1.1.1). Among these, first-order algorithms have gained popularity thanks to their con-

vergence guarantees and ease of implementation.

From the primal perspective, problem (1.1.1) can be solved using the FW algorithm [FW56]

(also known as the conditional gradient algorithm [DH78]). Some algorithms having a forward-

backward splitting structure can also be employed, such as the projected gradient descent [CW05]

and its accelerated variant known as “FISTA” [BT09], the mirror descent [BT03] and its accelerated

version of the entropic descent algorithm [KBB15].

From the primal-dual perspective (or “Arrow-Hurwicz” type), we can utilize the (inexact) Uzawa

algorithm [EG94] to address the saddle point system (1.1.4). Recently, the Chambolle-Pock algo-

rithm and its accelerated variant were investigated in [CP11, CP16] for resolving (1.1.4).

The successful application of the aforementioned first-order algorithms relies on the availability

of certain “oracles”. For instance, in the case of the FW algorithm, it is assumed that some

linearized version of (1.1.1) (defined in (1.1.5)) is computationally tractable. Concerning primal-

dual algorithms, knowledge of the prox operator of f and the ability to perform projections onto

K are required.

The Frank-Wolfe algorithm. The FW algorithm was initially introduced in [FW56] for solving

quadratic programming problems. Subsequent research in [DH78] demonstrated that the algorithm

converges in a more general setting. Some variants of the FW algorithm can be found in [Jag13,

LJJ15]. The FW algorithm, applied to problem (1.1.1), is described in Algorithm 1.1. It requires

the following assumption:

• The function f is continuously differentiable and its gradient ∇f is Lipschitz continuous.

Let us mention that the subproblem (1.1.5) in Algorithm 1.1 is equivalent to minimize the first-order

Taylor expansion of f at point xk, i.e.,

inf
x∈K

f(xk) + ⟨∇f(xk), x− xk⟩.

Let us also mention that the resolution of the subproblem is equivalent to the evaluation of the dual

criterion (in (1.1.3)), for λ = ∇f(xk). The evaluation of f∗(λ) is direct, since by the Fenchel-Young

inequality, we have f∗(λ) = ⟨λ, xk⟩ − f(xk).
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Algorithm 1.1: Frank-Wolfe Algorithm

Initialization: x0 ∈ K;
for k = 0, 1, 2, . . . do

Find a solution x̄k to the subproblem

inf
x∈K

⟨∇f(xk), x⟩; (1.1.5)

Choose ωk ∈ [0, 1];

Set xk+1 = (1− ωk)x
k + ωkx̄

k;

end

A commonly used choice for the learning rate ωk in Algorithm 1.1 is 2/(k + 2), as suggested in

[DH78, Jag13]. Another approach for determining ωk, known as the line-search method, consists

in solving the following one-dimensional optimization problem:

ωk ∈ argmin
ω∈[0,1]

f(xk + ω(x̄k − xk)),

where x̄k is the solution of the subproblem (1.1.5). Alternatively, if we know the Lipschitz constant

L of ∇f , we can use the following one-dimensional quadratic programming approach to determine

ωk, in which the cost function is a quadratic majorization of f(xk + ω(x̄k − xk)):

ωk ∈ argmin
ω∈[0,1]

f(xk) + ⟨∇f(xk), x̄k − xk⟩ω +
L∥x̄k − xk∥2

2
ω2. (1.1.6)

It has been proven (see [DH78, Jag13]) that for all the choices of ωk mentioned above, Algorithm

1.1 exhibits a sub-linear convergence rate. This means that there exists a constant C, independent

of k, such that for any k ≥ 1,

f(xk)− val(1.1.1) ≤ C

k
. (1.1.7)

Remark 1.1.1. The interest of the FW algorithm relies on the (fast) resolution of the subproblem

(1.1.5) at each iteration. Let us consider the case where K is a convex polyhedron in Rd. Then the

subproblem (1.1.5) corresponds to a linear programming problem, which can be efficiently solved

using the simplex algorithm [Dan63]. It is worth noting that the simplex algorithm returns a

vertex of K as a solution [Dan63]. This provides us with the intuition that when applying the FW

algorithm to a problem involving probability measures, the solutions of the subproblems are Dirac

measures (which can be seen as extreme points of sets of probability measures).

Generalized FW algorithm. In some cases, the function f is decomposed into the sum of two

convex functions, where one is differentiable and the other may be non-smooth, as for example

in “Lasso” regression [Tib96]. More precisely, we replace our original assumption on f by the

following:

• The function f is expressed as f = f1 + f2, where f1 is convex and l.s.c., f2 is convex,

continuously differentiable, and its gradient ∇f2 is Lipschitz continuous.
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If f1 is not differentiable, then the subproblem (1.1.5) is not well-defined. To overcome this limita-

tion, Bredies et al. [BLM09] proposed the generalized Frank-Wolfe (GFW) algorithm, described in

Algorithm 1.2. It is also referred to as the generalized conditional gradient algorithm. In their work,

they established a connection between the GFW algorithm and the “ISTA” algorithm [DDDM04],

which is widely utilized for solving inverse problems. Compared to Algorithm 1.1, Algorithm 1.2

introduces a modification: (1.1.5) is replaced by a new subproblem, which results from a partial

linearization of f , denoted by flin,y and defined as follows: For any y ∈ K,

flin,y : K → R, x 7→ f1(x) + ⟨∇f2(y), x⟩. (1.1.8)

Algorithm 1.2: Generalized Frank-Wolfe Algorithm

. . . as Algorithm 1.1, except replacing (1.1.5) by

inf
x∈K

flin,xk(x); (1.1.9)

As in the original FW algorithm, if we choose the learning rate ωk = 2/(k+2), then Algorithm

1.2 exhibits a sub-linear convergence rate, as shown in (1.1.7). In a recent study [KW22], several

convergence results have been established for the GFW algortihm, under various assumptions. In

particular, an improved convergence rate can be achieved when f1 is assumed to be strongly convex.

In this case, the learning rate ωk is determined by solving a similar quadratic programming problem

to (1.1.6),

ωk ∈ argmin
ω∈[0,1]

−βkω +
L′∥x̄k − xk∥2

2
ω2, (1.1.10)

where x̄k is a solution of (1.1.9), L′ is the Lipschitz constant of ∇f2, and

βk = flin,xk(xk)− flin,xk(x̄k), (1.1.11)

which is positive by the definition of x̄k. Following the terminology in [LJ16], we call βk the “Frank-

Wolfe” gap at the point xk. One can deduce from the convexity of f that xk is a solution to the

primal problem if and only if βk = 0. Under the rule (1.1.10), Algorithm 1.2 exhibits a linear

convergence rate. In other words, there exist positive constants C and δ ∈ (0, 1) such that for any

k ≥ 1,

f(xk)− val(1.1.1) ≤ Cδk. (1.1.12)

1.1.2 Second-order MFGs

As mentioned at the beginning of this chapter, second-order MFGs describe the asymptotic behavior

of Nash equilibria in N -player stochastic differential games, as the number of players N tends to

infinity. In this section, we begin by considering a specific N -player differential game. From there,

we introduce the MFG associated with this N -player game, which takes the form of a forward-

backward partial differential equation (PDE) system. Next, we discuss the case of potential MFGs,
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for which the aforementioned PDE system can be interpreted as the first-order optimality condition

associated with an optimal control problem of the Fokker-Planck equation.

An N-player differential game. We introduce an N -player differential game with a fixed time

horizon T > 0. The notation Td represents the d-dimensional torus, P(Td) denotes the set of

probability distributions on Td, and P(T,Td) denotes the set of flows of distributions on Td, i.e.,

{m | mt ∈ P(Td), 0 ≤ t ≤ T}. Let Q denote [0, T ]× Td. The dynamic of each player i is governed

by the following stochastic differential equation (SDE):

dxit = vitdt+
√
2σdW i

t , for 0 ≤ t ≤ T, xi0 ∼ mc
0. (1.1.13)

Here, σ > 0, mc
0 ∈ P(Td) represents a fixed initial distribution, and (W i)Ni=1 are independent Brow-

nian motions. The variable (vit)t∈[0,T ] is a stochastic process, adapted to the filtration generated by

all Brownian motions and initial conditions of the agents.

Each player i has a cost function f i defined as follows:

f i(vi,m−i) := E
[∫ T

t=0
ℓc(t, xit, v

i
t) + f c(t, xit,m

−i
t )dt+ gc(xiT )

]
, (1.1.14)

Here, ℓc : Q × Rd → R represents the running cost, gc : Td → R denotes the terminal cost, and

f c : Q × P(Td) → R is a coupling function. Additionally, m−i ∈ P(T,Td) is the flow of empirical

distributions m−i
t = 1

N−1

∑
j ̸=i δxj

t
.

In general, addressing the N -player game system (1.1.13)-(1.1.14) becomes challenging as the

number of players N increases. However, we can make the following two observations on the system

(1.1.13)-(1.1.14):

• As N grows, the contribution from each individual player becomes negligible compared to the

overall distribution m−i.

• If we fix the second variable of f i, i.e., the empirical distribution m−i, then all players have a

common best response strategy, which is the solution of (1.1.16) as stated later.

These observations lead to the MFG stated in the following paragraph, which captures the behavior

of the entire population rather than focusing on each individual player.

Second-order MFGs. In the MFG associated with the N -player game (1.1.13)-(1.1.14), we fix

the second variable of f i for each i by a common flow in P(T,Td). The Nash equilibrium of this

MFG is a pair (v∗,m∗) satisfying the following fixed-point system:{
v∗ ∈ BRc(m∗),

m∗ = Law(xv
∗
).

(1.1.15)

Here, BRc is the best response mapping which returns the solution of the following individual

optimal control problem, in which m∗ is seen as a parameter:infv E
[∫ T

t=0 ℓ
c(t, xt, vt) + f c(t, xt,m

∗
t )dt+ gc(xT )

]
,

s.t. dxt = vtdt+
√
2σdWt, for 0 ≤ t ≤ T, x0 ∼ mc

0.
(1.1.16)
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Simultaneously, Law(xv
∗
) represents the flow of probability measures Law(xv

∗

t )t∈[0,T ], where xv
∗

satisfies the following SDE:

dxv
∗

t = v∗t dt+
√
2σdWt, for 0 ≤ t ≤ T, xv

∗

0 ∼ mc
0. (1.1.17)

Hamilton-Jacobi-Bellman equation. A widely used technique for addressing the stochastic

optimal control problem (1.1.16) relies on the Hamilton-Jacobi-Bellman (HJB) equation [FR75,

BCD97]. To analyze (1.1.16), we introduce the value function u∗ : Q → R, defined as follows:

u∗(t, x) =

infv E
[∫ T

τ=t ℓ
c(t, xt, vt) + f c(t, xt,m

∗
t )dt+ gc(xT )

]
,

s.t. dxτ = vτdτ +
√
2σdWτ , for t ≤ τ ≤ T, xt = x.

Under suitable assumptions, u∗ is the viscosity solution [FR75] of the following HJB equation:{
−∂tu− σ∆u+Hc (t, x,∇u(t, x)) = f c(t, x,m∗

t ), ∀(t, x) ∈ Q,

u∗(T, x) = gc(x), ∀x ∈ Td.
(1.1.18)

where the Hamiltonian Hc is related to the Fenchel conjugate of ℓc:

Hc(t, x, p) = sup
v∈Rd

⟨−p, v⟩ − ℓc(t, x, v).

Optimal control. In the case where Hc is differentiable with respect to its third variable, we can

derive the following closed formula for the optimal control of (1.1.16):

v∗(t, x) = −Hc
p(t, x,∇u∗(t, x)), ∀(t, x) ∈ Q. (1.1.19)

Note that here the optimal control is expressed in feedback form, that is to say, as a function of

time and state (and not as a stochastic process). When the optimal feedback is utilized, the state

is the solution to the closed-loop equation:

dxv
∗

t = v∗t (t, x
v∗

t )dt+
√
2σdWt, for 0 ≤ t ≤ T, xv

∗

0 ∼ mc
0. (1.1.20)

From now on, we only consider optimal controls described in a feedback form.

Fokker-Planck equation. Suppose that v∗ is Lipschitz continuous. It is proved in [Car10] that

m∗ (the flow of the distribution of the solution of (1.1.20)) is a weak solution of the following

Fokker-Planck (FP) equation:{
∂tm− σ∆m+ div(v∗m) = 0 ∀(t, x) ∈ Q,

m(0, x) = mc
0(x), ∀x ∈ Td.

(1.1.21)

MFG equations. Let us combine equations (1.1.18)-(1.1.21). The fixed point problem (1.1.15) is

equivalent to the following coupled PDE system, including a backward HJB equation and a forward
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FP equation:
(i) −∂tu− σ∆u+Hc (t, x,∇u(t, x)) = f c(t, x,m(t)) (t, x) ∈ Q,

(ii) v(t, x) = −Hc
p (t, x,∇u(t, x)) (t, x) ∈ Q,

(iii) ∂tm− σ∆m+ div(vm) = 0 (t, x) ∈ Q,

(iv) m(0, x) = mc
0(x), u(T, x) = gc(x) x ∈ Td.

(MFG)

The existence of classical solutions of (MFG) can be established under appropriate regularity

assumptions, relying on Hölder estimates for parabolic equations and on fixed point arguments,

see [LL07, Car10, BHP21, Kob22] for example. The existence of a weak solution for a variant of

(MFG) with possibly degenerate coefficients and local coupling is proved in [CGPT15] by a duality

method.

To ensure uniqueness of the solution to (MFG), a widely adopted assumption is the Lasry-

Lions monotonicity assumption [LL07] for the coupling cost f c: For any t ∈ [0, T ], for any m1 and

m2 ∈ P(Td), ∫
Td

(
f c(t, x,m1)− f c(t, x,m2)

)(
m1(x)−m2(x)

)
dx ≥ 0. (1.1.22)

Potential MFGs. As introduced in [LL07] and studied in [CGPT15, BCS17, BHP21], the system

(MFG) is said to be potential (or variational) if there exists a function F c : [0, T ]×P(T,Td) → Rd

such that for any t ∈ [0, 1] and m1,m2 ∈ P(Td),

F c(t,m1)− F c(t,m2) =

∫ 1

0

∫
x∈Td

f c(t, x,m1 + s(m2 −m1))(m2(x)−m1(x))dxds. (1.1.23)

In the presence of such F c, system (MFG) can be interpreted as the first-order optimality condition

of an optimal control problem driven by the FP equation,
inf
(m,v)

∫
Q
ℓc(t, x, v)m(t, x)dtdx+

∫ T

0
F c(t,m(t))dt+

∫
Td

gc(x)m(T, x)dx,

such that

{
∂tm− σ∆m+ div(vm) = 0, ∀(t, x) ∈ Q,

m(0, x) = mc
0(x), ∀x ∈ Td.

(1.1.24)

Under the monotonicity condition (1.1.22), F c is convex with respect to its second variable. How-

ever, problem (1.1.24) itself remains non-convex due to the lack of convexity of the term ℓc(v)m and

the non-convexity of the admissible set. Fortunately, by employing the classical Benamou-Brenier

transform, which maps (m, v) to (m,w) = (m,mv) (see [BCS17] for more details), problem (1.1.24)

can be transformed into an equivalent convex problem, given by:
inf

(m,w)

∫
Q
ℓ̃c[m,w](t, x)dtdx+

∫ T

0
F c(t,m(t))dt+

∫
Td

gc(x)m(T, x)dx,

such that

{
∂tm− σ∆m+ div(w) = 0, ∀(t, x) ∈ Q,

m(0, x) = mc
0(x), ∀x ∈ Td,

(1.1.25)
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where the function ℓ̃c[m,w] : Q → R̄ is the perspective function of ℓc and is defined by

ℓ̃c[m,w](t, x) =


ℓc
(
t, x, w(t,x)

m(t,x)

)
m(t, x), if m(t, x) ̸= 0,

0, if m(t, x) = w(t, x) = 0,

+∞, otherwise.

(1.1.26)

If the MFG system (MFG) has a classical solution, then we can restrict the problem (1.1.25) to the

Hilbert space L2(Q) × L2(Q,Rd). In this scenario, problem (1.1.25) fits into a similar framework

to the abstract optimization problem (1.1.1). We refer to [LL07, CGPT15, BCS17] for the dual

problem of (1.1.25), which is an optimal control problem driven by the HJB equation.

Numerical methods exploiting the convexity of (1.1.25) can be applied to find a solution of

(1.1.25), such as the fictitious play [CH17, HS19] and the GFW algorithm [LP22] from the primal

perspective, the ADMM (Alternating direction method of multipliers) algorithm [BC15, And17]

and the Chambolle-Pock algorithm [AL20] from the primal-dual perspective.

1.1.3 Discrete MFGs

We describe in this section a class of fully discrete MFGs (discrete in time and space), with a

potential structure. This class is inspired from [BLP23] and the early reference [GMS10] about

discrete MFG models. The main motivation behind our discrete MFG is to provide an abstract

framework for the analysis and the resolution of the finite-difference method developed in Chapter

4.

Data of discrete MFG. Given a finite set A, we denote by R(A) (resp. Rd(A)) the set of functions

from A to R (resp. Rd). Fixing T ∈ N+ and a finite subset S of Rd, let us define:

T = {0, 1, . . . , T−1}, T̃ = {0, 1, . . . , T}, P(T̃ , S) =
{
m ∈ R(T̃ × S) | ∀t ∈ T̃ , m(t, ·) ∈ P(S)

}
.

As in the continuous case, for the description of our discrete MFG model, we need a running cost

ℓ, a coupling cost f , an initial condition m0, and a terminal cost g, where

ℓ : T × S × Rd → R ∪ {∞}, f : T × S × R(S) → R, m0 ∈ P(S), g ∈ R(S).

For a given m ∈ P(T̃ , S), we denote by ℓ̄m the map defined by

ℓ̄m : (t, x, ω) ∈ T × S 7→ ℓ(t, x, ω) + f(t, x,m(t)),

where m(t) = (m(t, x))x∈S . To formulate the discrete MFG system, we also need a control bound

D̄ > 0. The admissible control space, denoted by Rd
D̄
(T × S), is the set of all elements v in

Rd(T × S) such that ∥v(t, x)∥ ≤ D̄ for any (t, x). The probability of the motion from one state

x ∈ S to another state y ∈ S at a time t ∈ T under some control v ∈ Rd
D̄
(T × S) is given by

π[v](t, x, y) := π(t, x, y, v(t, x)),

where π is a function from T × S × S ×Rd to R. We will assume that π is an affine function with

respect to the last variable (the control variable).
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Compared to the fixed-point problem (1.1.15) for continuous MFGs, the Nash equilibrium of

our discrete MFG is a pair (v̄, m̄) satisfying the following:{
v̄ ∈ BRd(m̄),

m̄ =
(
Law(X v̄

t )
)
t∈T̃ .

(1.1.27)

Here BRd is the best response mapping corresponding to a stochastic optimal control problem. For

the sake of concision, we directly consider controls in feedback form, i.e. as deterministic functions

of time and space. So BRd(m̄) is the solution to

inf
v∈Rd

D̄
(T ×S)

E

[
T−1∑
t=0

ℓ̄m̄(t,Xv
t , v(t,X

v
t ))∆t+ g(Xv

T )

]
, (1.1.28)

where (Xv
t )t∈T̃ denotes a Markov chain satisfying

P
[
Xv

t+1 = y | Xv
t = x

]
= π[v](t, x, y), for t ∈ T , Xv

0 ∼ m0.

Formulation of discrete MFG. Similarly to the continuous case, the discrete fixed-point problem

(1.1.27) is equivalent to a coupled system, involving the variables u ∈ R(T̃ × S), v ∈ Rd(T × S),

and m ∈ P(T̃ , S): 
(i) u = HJB(m),

(ii) v = V(u),

(iii) m = FP(v),

(DMFG)

where the Hamilton-Jacobi-Bellman mapping HJB, the optimal control mapping V, and the

Fokker-Planck mapping FP are defined as follows:

• Given m ∈ P(T̃ , S), u = HJB(m) ∈ R(T̃ × S) is the solution to
u(t, x) = inf

∥ω∥≤D̄
ℓ̄m(t, x, ω)∆t+

∑
y∈S π(t, x, y, ω)u(t+ 1, y), ∀(t, x) ∈ T × S,

u(T, x) = g(x), ∀x ∈ S.

(1.1.29)

• Given u ∈ R(T × S), v = V(u) ∈ Rd(T × S) is defined by

v(t, x) = argmin
∥ω∥≤D̄

ℓ(t, x, ω)∆t+
∑
y∈S

π(t, x, y, ω)u(t+ 1, y), ∀(t, x) ∈ T × S. (1.1.30)

• Given v ∈ Rd(T × S), m = FP(v) ∈ R(T̃ × S) is defined as the solution to
m(t+ 1, y) =

∑
x∈S π(t, x, y, v(t, x))m(t, x), ∀(t, y) ∈ T × S,

m(0, x) = m0(x), ∀x ∈ S.

(1.1.31)
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The existence of solutions of (DMFG) can be proved by applying the Brouwer fixed-point

theorem to the mapping FP ◦ V ◦ HJB. The uniqueness of the solution of (DMFG) relies on a

discrete version of the Lasry-Lions monotonicity condition (1.1.22): For any m1 and m2 ∈ P(S),∑
x∈S

(
f(t, x,m1)− f(t, x,m2)

)(
m1(x)−m2(x)

)
≥ 0. (1.1.32)

Potential discrete MFG. Similarly to the potential system in the continuous case (1.1.23), we

call (DMFG) a potential game if there exists F : T × S → R such that for any t ∈ T and for any

m1 and m2 in P(S), it holds

F (t,m1)− F (t,m2) =

∫ 1

0

∑
x∈S

f(t, x,m1 + s(m2 −m1))(m2(x)−m1(x))ds. (1.1.33)

This formulation allows us to consider a discrete time and finite state optimal control problem

associated with (DMFG), similar to (1.1.24) in the continuous context. By applying the Benamou-

Brenier transform to the aforementioned optimal control problem, we obtain the following equiva-

lent convex problem (similar to (1.1.25) in the continuous context):

inf
m∈P(T̃ ,S)
w∈Rd(T ×S)

J̃(m,w), subject to: (m,w) ∈ Ã. (1.1.34)

where the cost function J̃ and the set Ã are defined by

J̃(m,w) = ∆t
∑
t∈T

∑
x∈S

ℓ̃[m,w](t, x) + ∆t
∑
t∈T

F (t,m(t)) +
∑
x∈S

g(x)m(T, x);

Ã =
{
(m,w) ∈ P(T̃ , S)× Rd(T × S)

∣∣ ∃ v ∈ Rd
D(T × S) such that m = FP(v), w = mv

}
.

Here, ℓ̃ is the perspective function of ℓ, as the definition in (1.1.26). The equivalence between

(DMFG) and (1.1.34) is discussed in the next paragraph.

A partially linearized problem. Noting that the coupling cost f corresponds to the directional

derivative of F , one can easily express the linearization of the term
∑

t∈T F (t,m(t)) in the objective

function J̃ . Exploiting the convexity of problem (1.1.34) along with this linearization, we are

motivated to utilize the GFW algorithm 1.2 to solve (1.1.34). In this context, we consider the

following partial linearization of J̃ at any point m′ ∈ P(T̃ , S) (which is similar to (1.1.8)): For any

(m,w) ∈ P(T̃ , S)× Rd(T × S), let

J̃m′(m,w) = ∆t
∑
t∈T

∑
x∈S

ℓ̃[m,w](t, x) + f(t, x,m′(t))m(t, x) +
∑
x∈S

g(x)m(T, x).

The associated optimal control problem writes:

inf
(m,w)∈Ã

J̃m′(m,w). (1.1.35)
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Problem (1.1.35) plays the role of the partially linearized problem (1.1.9) of Algorithm 1.2 and

will be solved at each iteration. Note that in (1.1.35), the third variable in f is fixed to m′. A

major observation is that Problem (1.1.35) is equivalent to the stochastic optimal control problem

(1.1.28). Therefore, (1.1.35) can be addressed by the dynamic programming principle. More

precisely, the solution of (1.1.35) is given by the mapping BR : P(T̃ , S) → Ã defined as follows:

Given m′ ∈ P(T̃ , S), we obtain (m̃, w̃) = BR(m′) by successively computing

ṽ = V ◦HJB(m′), m̃ = FP(ṽ), and w̃ = m̃ṽ. (1.1.36)

We refer to BR as the best-response mapping: Given a predictionm′ of the equilibrium distribution

of the agents, ṽ (as defined above) is the optimal feedback for the underlying optimal control

problem and m̃ the resulting distribution.

If we assume furthermore that the running cost ℓ is α-convex with respect to its third variable,

then for any (m,w) ∈ Ã and for any v such that w = mv, it holds that

J̃m′(m,w)− J̃m′(m̃, w̃) ≥ α

2
∆t
∑
t∈T

∑
x∈S

∥(v − ṽ)(t, x)∥2m(t, x), (1.1.37)

for m′, m̃, ṽ, and w̃ defined as above. Compared to (1.1.11), the term J̃m′(m,w)− J̃m′(m̃, w̃) plays

the role of the “Frank-Wolfe” gap at point m′ in the GFW algorithm applied to (1.1.34).

We mention that inequality (1.1.37) holds true not only in the potential case, but also in the

non-potential case (when F is absent but the monotonicity assumption of f still holds). A similar

inequality with the same nature for the continuous case has been investigated in [LP22, Lem.

29]. By combining (1.1.37) with the discrete monotonicity condition (1.1.32), we can establish

the uniqueness of the solutions for both (DMFG) and (1.1.34), as well as their equivalence, as a

consequence of 5.2.9:

1. System (DMFG) has a unique solution (ū, v̄, m̄).

2. The point (m̄, w̄) is the unique solution to (1.1.34), where w̄ = m̄v̄.

Inequality (1.1.37) also plays a crucial role in the proof of the fundamental inequality stated

below, which is an essential part of the stability analysis of the finite-difference scheme presented

in Section 1.2.3. Additionally, (1.1.37) serves as a key step in the convergence analysis of the GFW

algorithm discussed in Section 1.2.4.

The fundamental inequality. The fundamental inequality, which is established for (DMFG),

allows us to quantify the variation of the control variable v when the system (DMFG) is subject

to perturbations. Let us consider a perturbed version of (DMFG) with additional terms (η, δ) ∈
R2(T × S) in the right-hand side: 

(i) u = HJB(m; η),

(ii) v = V(u),

(iii) m = FP(v; δ),

(PDMFG)
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where HJB(m; η) is defined by adding η(t, x) to the right-hand-side of the first line in (1.1.29) for

each (t, x) ∈ T × S. Similarly, FP(v; δ) is defined by incorporating δ into (1.1.31) following the

same approach.

Let (u, v,m) and (ū, v̄, m̄) be solutions of (PDMFG) and (DMFG), respectively. Assume that

m ≥ 0 and ℓ is α-convex with respect to its third variable. We can now state our fundamental

inequality (see Proposition 4.3.7 for a rigorous statement):

∆tα

2

∑
t∈T

∑
x∈S

∥(v − v̄)∥2(m+ m̄)(t, x) ≤
∑
t∈T

∑
x∈S

(u− ū)(t+ 1, x)δ(t, x) + (m̄−m)η(t, x). (1.1.38)

This inequality will be of key importance for the stability analysis of the theta-scheme.

1.1.4 MFO problems and Lagrangian MFGs

In this section, we introduce a class of convex optimization problems involving probability measures,

which we call Mean-Field Optimization (MFO) problems. We first define MFO problems and

provide a first-order optimality condition, which turns out to be equivalent to the Nash equilibrium

conditions for a quite general class of games with non-atomic agents. Next we give two examples

of potential Lagrangian MFGs which fit into this class.

MFO problems. Optimization problems involving probability measures have shown great promise

in understanding and analyzing various aspects of neural networks (NN). One notable contribution

in this regard is made in [MMN18], where the authors employ a mean-field approximation to

investigate the asymptotic behavior of one-hidden layer NN as the number of neurons tends to

infinity. In contrast, the article [CB18] focuses on the search for global minima of a convex function

of a measure, through its many-particle limit. The authors explore the behavior of a non-convex

particle gradient descent algorithm and establish its convergence properties.

Motivated by the previously mentioned articles, we introduce a general class of optimization

problem that we refer to as Mean-Field Optimization problems. We consider two Polish spaces,

denoted by X and Y (which are complete and separable metric spaces), and a closed subset Z of

X × Y . Let m be a probability measure on X and let g be a Borel measurable function mapping

from Z to H. Our objective is to solve the following problem parameterized by m:

inf
µ∈Pm(Z)

f

(∫
Z
gdµ

)
, (Pm)

where the integral
∫
Z gdµ should be interpreted in the Bochner integration sense [Coh13, Appendix

E]. The admissible set Pm(Z) is the set of all probability measures on Z whose marginal distribution

on X is m. We assume that f is convex and differentiable, ∇f is L-Lipschitz, and g is bounded

and continuous on Z. We call problem (Pm) an MFO problem, consistently with the terminology

introduced in [CCRW23]. Problem (Pm) can be viewed as a social welfare optimization problem

with considering nonatomic agents (the case with atomic agents is explored in [Wan17, BLO+22]).

In problem (Pm), the agents’ positions are distributed according to a measure m, and the set Z

represents the collection of feasible pairs of agent positions and strategies. The function g(x, y)
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captures the contribution made by an agent located at position x and following strategy y to some

common goods. The objective function f in (Pm) serves a similar purpose as in (P), representing

a social cost evaluated at the aggregate term
∫
Z gdµ.

Remark 1.1.2. Problem (Pm) can be reformulated as a convex optimization problem of the form

(1.1.1) by setting K = Gm := {
∫
Z gdµ, |, µ ∈ Pm(Z)} in (1.1.1).

We next introduce a linearized version of (Pm) around a given measure µ̂, which appears in the

application of the FW algorithm. It is given by

inf
µ∈Pm(Z)

∫
Z
⟨λ, g(x, y)⟩dµ(x, y) (1.1.39)

where λ = ∇f
(∫

Z gdµ̂
)
. The solutions of this problem can be characterized through the best-

response mapping BRλ, a set-valued mapping defined from X to subsets of Y as follows:

BRλ(x) = argmin
y∈Zx

⟨λ , g(x, y)⟩,

where Zx is the set of y ∈ Y such that (x, y) ∈ Z. Then, any µ ∈ Pm(Z) is a solution to (1.1.39) if

and only if

supp(µx) ⊆ BRλ(x), for m-a.e. x ∈ X. (1.1.40)

Here (µx)x∈X denotes the disintegration of µ̄ (see Theorem 3.2.7) and supp(µx) denotes the support

of µx. This equivalence motivates the use of the FW algorithm: the linearized problem, originally

posed on Pm(Z) can be solved through the evaluation of BRλ, that is to say, through the resolution

of simpler problems, posed on Z.

We next discuss the first-order optimality condition associated with the problem (Pm). Given

µ̄ ∈ Pm(Z), we have that µ̄ is a solution to (Pm) if and only µ̄ is the solution to the linearized

problem around µ̄ itself. A similar first-order optimality condition for the Lagrangian MFG can

be found in [CH17, Eq. 3.13]. As a result, the MFO problem (Pm) is equivalent to the following

equilibrium problem consisting in finding a pair (µ, λ) satisfying the following:{
supp(µx) ⊆ BRλ(x), m-a.e.

λ = ∇f
(∫

Z gdµ
)
.

(1.1.41)

This coupled system can be interpreted as the Nash conditions for a game with non-atomic agents:

an agent at position x must minimize ⟨λ, g(x, ·)⟩ and λ is a coupling variable, common to all

agents, which results from their collective behavior µ. Several games fit into this framework, in

particular, aggregative congestion games [LOW22] and nonatomic potential games [CL18b]. In the

next paragraph, we give two examples of potential problems associated with Lagrangian MFGs.

Lagrangian MFGs. The concept of the Lagrangian MFGs follows from [BCS17, SS21, CC18,

Sar22, MS19, CMS16]. In the context of the MFGs described with a coupled system of PDEs, we

adopt an Eulerian point of view, which considers the evolution of the distribution of players over

time. In contrast, the Lagrangian framework focuses on the distribution of the players’ trajectories

(which are not subject to Brownian perturbations).
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Let us give a first example of a Lagrangian MFG, adapted from [Sar22]. Fix a domain Ω ⊆ Rd.

Let AC([0, T ],Rd) be the set of all absolutely continuous functions from [0, T ] to Rd. For any x ∈ Ω,

we denote,

Γ := {γ ∈ AC([0, T ],Rd) | γ(t) ∈ Ω, ∀t ∈ [0, T ]}, Γx := {γ ∈ Γ | γ(0) = x}.

Let Z = {(x, γ) | x ∈ Ω, γ ∈ Γx}. Let m ∈ P(Ω) be the distribution of initial states of players.

Define the admissible set of distribution of trajectories:

Pm(Z) := {µ ∈ P(Z) | π1#µ = m} ,

where π1 : Z → Ω, (x, γ) 7→ x. Define et : Γ → Ω, γ 7→ γ(t) and π2 : Z → Γ, (x, γ) 7→ γ. Consider

the following optimization problem:

inf
µ∈Pm(Z)

∫ T

0

∫
Z
ℓc(t, γ(t), γ̇(t))dtdµ(z) +

∫ T

t=0
F c(t, et#π2#µ)dt+

∫
Z
gc(γ(T ))dµ(z), (1.1.42)

where ℓc and gc follow the same definitions in Section 1.1.2 and F c satisfies (1.1.23). The mono-

tonicity condition on f c implies that the function F c is convex, as in the second-order case. It

is easy to reformulate (1.1.42) as a particular case of an MFO problem. Moreover, utilizing the

optimality condition (1.1.41), we can obtain an equivalent formulation of (1.1.42) as a Lagrangian

MFG. This example is discussed more in detail in Chapter 3, Section 3.1.

We next present the potential formulation of another class of Lagrangian MFGs, involving a

price variable, and taken from [GHS22]. For these MFGs, we take

Z =
{
z = (x, γ) ∈ Ω×W 1,∞(0, T ;Rd)

∣∣x ∈ Ω, γ(0) = x, γ(t) ∈ Ω, ∥γ̇(t)∥ ≤ C, for a.e. t ∈ (0, T )
}
,

where Ω ⊆ Rd and C > 0 are fixed. We next introduce a function Φ: [0, T ]×Rd → R and consider

the problem

inf
µ∈Pm(Z)

∫ T

0

∫
Z
ℓc(t, γ(t), γ̇(t))dtdµ(z) +

∫ T

t=0
Φ

(
t,

∫
Z
γ̇(t)dµ(z)

)
dt+

∫
Z
gc(γ(T ))dµ(z), (1.1.43)

where ℓc and gc play the same as in second-order models. Again, this problem can be put in the

form of an MFO problem and the associated optimality condition provides us with an interpretation

of the problem as a Lagrangian MFG. More precisely, the variable λ (appearing in (1.1.41) plays

the role of a price variable. We give more details about this class of problems in Section 3.6.

1.2 Contributions of the thesis

In this section, we provide a detailed description of the contributions of this thesis. Section 1.2.1

addresses a large-scale aggregative nonconvex optimization problem from both theoretical and

algorithmic perspectives. Section 1.2.2 is dedicated to the study of the MFO problem (Pm), which

generalizes the relaxed problem of Section 1.2.1. In Section 1.2.3, we explore a novel finite-difference

discretization method (referred to as (Theta-mfg)) for the second-order system (MFG) and we

analyze its convergence properties. Lastly, in Section 1.2.4, we focus on the “mesh-independent”
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convergence of the Generalized Frank-Wolfe algorithm for the problem (1.1.24), discretized with

(Theta-mfg).

We mention that all constants C used in the rest of this chapter are independent from each

other, unless explicitly indicated.

1.2.1 Large-scale nonconvex optimization: randomization, gap estimation, and
numerical resolution

Framework and motivation. This section, associated with Chapter 2, is devoted to the theoret-

ical analysis and the numerical resolution of the following large-scale, aggregative, and nonconvex

optimization problem:

inf
x∈X

J(x) := f(G(x)), where:


G(x) =

1

N

N∑
i=1

gi(xi)

X =
∏N

i=1Xi.

(P)

Here, N can be seen as the number of agents and is assumed to be large. The key feature of

this problem is the aggregative form of the function G, which is the average of N contribution

mappings gi. Each contribution mapping is defined on a set Xi and maps to a Hilbert space H.

The aggregate G(x) represents the collective contribution of all agents. While very few structural

assumptions are made on the sets Xi and the mappings gi, we will assume that f is convex, with

a Lipschitz-continuous gradientand that the image sets gi(Xi) are all bounded. The central idea in

Chapter 2 is that when N is large, the problem (P) can be well approximated by a convex problem.

Problem (P) finds applications in various domains including social welfare optimization [Wan17],

power system management [SAB+23], and resource allocation problems [BBG+20]. It finds applica-

tions in supervised learning, such as training neural networks with one hidden layer [MMN18, CB18],

sparse reconstruction problems [Mal09, MBP14], and the dual problem of linear support vector ma-

chines (SVM) [SST09, FR16].

Organization. We first propose a novel relaxation technique based on randomization to convexify

problem (P). Then, we provide an upper bound of the relaxation gap, which is of order O(1/N).

Next, we show that this gap estimate can be improved by studying a geometric relaxation of (P).

From the algorithmic perspective, we introduce a method called the selection method, to reconstruct

an approximate solution to the primal problem (P) out of an approximate solution to the relaxed

problem. We derive from this method a general method, that we call Stochastic Frank-Wolfe (SFW)

algorithm, for the resolution of (P). It combines the FW algorithm with the selection method. We

provide a convergence result for the SFW algorithm. Finally, we apply the SFW algorithm to solve

a mixed-integer quadratic programming problem and a high dimensional optimal control problem.

Randomized relaxation and a first gap. For any i = 1, . . . , N , given a probability measure µi

on Xi, we denote by Eµi
[gi] the integral of gi against the distribution µi, i.e.,

∫
Xi

gidµi. The relaxed

version of (P) is obtained by replacing the variables xi by probability measures µi and by replacing
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the contribution mappings gi(xi) by Egi [µi]. The resulting randomized problem writes:

inf
µ∈P

J (µ) := f(Eµ[G]), where:


Eµ[G] =

1

N

N∑
i=1

Eµi
[gi]

P =
∏N

i=1 P(Xi).

(PR)

Problem (PGR) is indeed a relaxation since for a tuple of Dirac measures µ = (δx1
, . . . , δxN

), we

have J (µ) = J(x1, . . . , xN ). One can see that the admissible set P is convex and that Eµ[G] is

linear with respect to µ. Therefore, the relaxed problem (PR) is a convex optimization problem.

We call relaxation gap the quantity

val(PG)− val(PGR).

It is easy to see that the relaxation gap is nonnegative.

Theorem 1.2.1 (Proposition 2.2.6 and Theorem 2.2.9). Let µ = (µi)i=1,...,N , where µi ∈ P(Xi) for

any i. Let (Xi)i=1,...,N be N independent random variables such that Xi ∼ µi. Then there exists a

constant C > 0 independent of N such that for any ϵ > 0,

E[J(X)]− J (µ) ≤ C

N
; (1.2.1)

P
(
J(X)− J (µ) ≤ C

N
+ ϵ

)
≥ 1− exp

(
−Nϵ2

C

)
. (1.2.2)

A consequence of the following result is that the relaxation gap is of order O(1/N). Here, we

present a brief proof of (1.2.1). Let us consider Y = 1
N

∑N
i=1 gi(Xi). Then, we have E[J(X)] =

E[f(Y )] and J (µ) = f(E[Y ]). By exploiting the independence of Xi, we can deduce that the

variance of Y has an order of O(1/N). Using the Lipschitz continuity of ∇f , we obtain the

inequality:

f(Y ) ≤ f
(
E[Y ]

)
+
〈
∇f(E[Y ]), Y − E[Y ]

〉
+

L

2

∥∥Y − E
[
Y
]∥∥2,

where L is the Lipschitz constant of ∇f . By taking the expectation on both sides of the inequality,

we obtain (1.2.1), as the first-order term is zero and the quadratic term corresponds to the variance

of Y . The proof of (1.2.2) relies on McDiarmid’s inequality [McD89], a concentration inequality.

Geometric relaxation and a refined gap. It is convenient to write the primal problem (P) in

an equivalent form:

inf
y∈H

f(y), subject to: y ∈ Y =
1

N

N∑
i=1

Yi, (PG)

where Yi = gi(Xi) for any i = 1, . . . , N . Indeed, by definition of Y, any y ∈ H lies in Y if and

only if there exists x ∈ X such that y = 1
N

∑N
i=1 gi(xi). For such an x, we have f(y) = J(x). It is

natural to consider the following relaxation:

inf
y∈H

f(y), subject to: y ∈ conv(Y). (PGR)
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It is not difficult to observe that val(P) = val(PG) and val(PR) = val(PGR). Thus, the random-

ization gap is equal to val(PG)−val(PGR). Let q be the dimension of the aggregate space H. We

have the following refined gap estimate (in comparison to (1.2.1)).

Theorem 1.2.2 (Proposition 2.4.9). There exists a constant C, independent of N , such that

val(PG)− val(PGR) ≤ Cmin{q,N}
N2

. (1.2.3)

The proof of this sharper relaxation gap relies on a notion of measure of nonconvexity for sets,

introduced in [Cas75]. Given a subset K of H, we call nonconvexity measure of K the number ρ(K)

defined by

ρ(K) =

(
sup

y∈conv(K)
inf

E[Y ]=y
Var(Y )

)1/2

,

where Y is a finitely supported random variable in K and Var(Y ) is the variance of Y in the sense of

[Vil03, Rem. 7.5], i.e. Var(Y ) = E
[
∥Y −E[Y ]∥2

]
. With the help of ρ, we can establish the following

inequality, with a similar proof to the one of Theorem 1.2.1:

val(PG)− val(PGR) ≤ L

2
ρ(Y)2 ≤ L

2N2
ρ

(
N∑
i=1

Yi

)2

.

Next, we apply [Cas75, Thm. 2], which is derived from the Shapley-Folkman lemma, to obtain the

following bound:

ρ

(
N∑
i=1

Yi

)2

≤ max
Q⊆{1,...,N}

|Q|=min{q,N}

∑
i∈Q

ρ(Yi)
2.

Combining the preceding two inequalities, we obtain (1.2.3).

Stochastic Frank-Wolfe algorithm. From Theorem 1.2.1, we can conclude the following selec-

tion method to retrieve an approximate solution of (P) from an approximate solution of (PR):

• Selection method. Given µi a probability measure on Xi for any i = 1, . . . , N , we take N

independent random variables Xi such that Xi ∼ µi.

Inequalities (1.2.1) and (1.2.2) indicate that the error resulting from the selection method decreases

to 0 as N goes to infinity in both expectation and probability senses. The remaining question is

to solve the randomized problem (PR). Let us consider the following linearization of the objective

function J of (PR) at some point µ̄ ∈ P:

⟨∇f(Eµ̄[G]) , Eµ[G]⟩ = 1

N

N∑
i=1

〈
∇f(Eµ̄[G]) ,

∫
Xi

gidµi

〉
.

As a consequence, if we want to minimize the above function on µ over P, then it is equivalent to

solve the following N subproblems: for i = 1, . . . , N ,

inf
µi∈P(Xi)

〈
∇f(Eµ̄[G]) ,

∫
Xi

gidµi

〉
. (1.2.4)
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The decomposition of the primal problem (P) into N smaller subproblems offers several advantages.

Firstly, it allows for easier handling and enables parallel computation. Secondly, the subproblems

(1.2.4) have solutions which are Dirac measures: if xi minimizes ⟨f(Eµ̄[G]), gi(·)⟨ over Xi, then δxi

is a solution to (1.2.4). These properties motivate us to apply the FW algorithm (Algorithm 1.1)

to solve problem (PR), in which the linearized problem (1.1.5) is equivalent to the N subproblems

(1.2.4). We have a sublinear convergence rate for the FW algorithm 1.1 for problem (PR) by taking

ωk = 2/(k + 2) as shown in (1.1.7).

A memory overflow problem can arise when applying the FW algorithm to problem (PR): The

FW algorithm possibly requires storingN new points in the support of the solution at each iteration.

This means that KN storage spaces are needed to store the result after K iterations, which can

become prohibitive when the number of iterations K is large. This difficulty is mentioned in the

related work [BSR17, CB18]. To overcome this problem, we propose a variant of the FW algorithm,

in which the selection method is utilized nk times each iteration k of the FW algorithm. We call

this variant the Stochastic Frank-Wolfe (SFW) algorithm. It is presented in Algorithm 1.3.

Algorithm 1.3: Stochastic Frank-Wolfe Algorithm

Initialization: x0 ∈ X ;
for k = 0, 1, 2, . . . ,K do

Step 1: Resolution of the subproblems.
Compute yk = 1

N

∑N
i=1 gi(x

k
i );

for i = 1, 2, . . . , N do
Find x̄k

i ∈ argminxi∈Xi
⟨∇f(yk), gi(xi)⟩;

end

Step 2: Update.
Choose nk ∈ N∗. Set ωk = 2/(k + 2).;
for j = 1, 2, . . . , nk do

for i = 1, 2, . . . , N do

Simulate λk,j
i ∼ Bern(ωk), independently of all previously defined random variables;

Set x̂k,j
i = (1− λk,j

i )xk
i + λk,j

i x̄k
i ;

end

Set x̂k,j = (x̂k,j
i )i=1,...,N ;

end

Find xk+1 ∈ argmin{J(x)
∣∣x ∈ Xk}, where Xk = {x̂k,j , j = 1, 2, . . . , nk} ∪ {xk};

end

Starting from an initialization x0 ∈ X , Algorithm 1.3 generates a sequence (xk)k∈N in X . For the

analysis of the algorithm and for its description, it is convenient to introduce µk = (δxk
1
, . . . , δxk

N
).

With this notation at hand, we first observe that yk, as defined in Step 1 of Algorithm 1.3, satisfies

yk = 1
N

∑N
i=1Eµk

i
[gi]. Thus the Step 1 of Algorithm 1.3 plays the same role as (1.2.4) in the FW

algorithm for (PR), which is decentralized and can be computed parallelly. Let us focus next on

Step 2 of Algorithm 1.3 and let us define µ̄k = (δx̄1
i
, . . . , δx̄k

N
) and µ̂k = (1−ωk)µ

k+ωkµ̄
k. In contrast

with the learning procedure in the FW Algorithm, we do not directly use µ̂k at the next iteration
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but instead employ our selection method nk times to generate nk random variables (x̂k,j)j=1,...,nk
.

Finally, Step 2 selects a random variable x̂k,j which minimizes J .

The following result concerns the convergence of Algorithm 1.3. As the outputs of Algorithm

1.3 are random variables, we provide convergence results in expectation and probability senses for

the optimality gap

γk := J(xk)− val(PGR).

Theorem 1.2.3 (Theorem 2.3.7 and Corollary 2.3.8). There exists a constant C > 0 such that

E[γK ] ≤ C

K
, for K = 1, 2, . . . , 2N. (1.2.5)

Moreover, there exists C ′ > 0 such that for any A > 0, if we take nk > max(Ak2

N , 1) for any k, then

P
[
γK <

C + C ′

K

]
≥ 1− exp

(
− A

12

)
, for K = 1, 2, . . . , 2N. (1.2.6)

The proof of the theorem relies on a similar approach to the classical analysis of the FW

algorithm. In a first step, we prove the following inequality:

γK ≤ C

K
+ SK ,

where SK is a random variable that accumulates the errors arising from the selection method at each

iteration. Then (1.2.5) follows from the fact that E[SK ] = 0. The proof of (1.2.6) is considerably

more intricate, it requires the computation of an upper bound of P
[
SK ≥ ϵ

]
, obtained with an

extension of McDiarmid’s concentration inequality provided in [Del15, Thm. 7].

A more precise convergence result has been obtained in Theorem 2.3.7. In particular, we have

a more precise formula for the probability in (1.2.6), which outlines the benefit of increasing the

number of simulations nk.

Numerical simulations. In Sections 2.6 and 2.7, we show the effectiveness of the SFW algo-

rithm by applying it to two different problems: a mixed integer quadratic program (MIQP) and

an aggregative battery charging problem discussed in [LOP22], which involves a high-dimensional

optimal control setting. For the MIQP problem, our numerical results indicate that the SFW algo-

rithm exhibits a superior convergence rate compared to the sublinear rate predicted by the theory.

Moreover, in terms of computation time, the SFW algorithm outperforms popular solvers such as

SCIP and GUROBI, for sufficiently large values of N . In the case of the battery charging prob-

lem, the SFW algorithm avoids the curse of dimensionality, which often plagues high-dimensional

optimal control problems. By using the SFW algorithm, we can compute an approximate optimal

control in a tractable manner.

Literature comparison and perspectives. If we assume that (P) is convex, then classical

Lagrangian relaxation (Chapter XII of [HUL93]) methods can be applied. Thanks to the aggregative

form of G, the dual problem of (P) has a separable structure, as explained in [SAB+23, Pac18]

in related contexts. As a result, the primal-dual algorithms mentioned in Section 1.1.1 can be
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employed to address (P). Furthermore, if we make additional assumptions regarding the regularity

of gi and Xi, the block coordinate descent (BCD) algorithm (and its extensions, see [BT13, FR16])

could be utilized to tackle (P). Despite the nonconvexity of problem (P), numerical approaches

leveraging the separability of the cost of the dual problem are particularly appealing, since they

allow for a decomposed resolution of the problem. Yet they raise two difficulties: the potential

large duality gap and the reconstruction of a primal solution from the dual optimal solution.

These two difficulties were already addressed by Wang in [Wan17]. She proposed a convex

relaxation of the problem, based on the same geometrical approach of (PGR), that allows to

obtain an estimate of the duality gap decreasing with N . Her main tool was the Shapley-Folkman

lemma [Sta69], which allows to show that the image of G is close to a convex set.

In comparison to the theoretical results in [Wan17], we provide a sharper estimate of the relax-

ation gap. According to Theorem 1.2.2, the refined gap is of the order O(min(q,N)/N2), where q

represents the dimension of H. This estimate is tighter to the one obtained by applying [Wan17,

Thm. 3.5], which yields a gap of the order O(q2/N2).

Let us compare our algorithmic approaches with the one in [Wan17]. Both approaches leverage

the decomposability of the problem into N problems and require that the subproblems can be

easily solved. The method in [Wan17, Algorithm 2] requires to compute the full set of ξ-optimal

solutions, which is more demanding. Contrary to [Wan17], Algorithm 1.3 does not require to

perform Shapley-Folkman decompositions. This is a major advantage when the dimension of the

aggregate q is very large. As a counterpart, we are only able to find O(1/N)-optimal solutions,

while the algorithm of [Wan17] can find O(q2/N2)-optimal solutions.

The design of a method for the computation of O(min{q,N}/N2)-solutions will be the topic

of future research. We also aim at working on more complex problems, involving for example

convex constraints on the aggregate, as for example the resource allocation problems investigated

in [BBG+20]. Such constraints could be handled with extensions of the Frank-Wolfe algorithm for

non-smooth costs as those proposed in [SFMF20, YFC19]. Finally, we intend to apply our method to

large-scale optimal control problems, which have more complex structure than the battery example

presented in this work, such as nonconvex variants of the problem investigated in [SAB+23].

1.2.2 Mean field optimization problems: stability results and Lagrangian dis-
cretization

Framework and motivation. In Chapter 3 of this thesis, our focus is on the MFO problem

(Pm), which is motivated by the price model of Lagrangian MFG (1.1.43). Recall the formulation

of (Pm):

inf
µ∈Pm(Z)

f

(∫
Z
gdµ

)
. (Pm)

We refer to Section 1.1.4 for a description of the applications of this class of problems and their

connection with some potential Lagrangian MFG models. Let us emphasize that the relaxed prob-

lem associated with the aggregative problems of the previous section, problem (PR), fits into the

general framework of MFO problems.
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Organization. We start with the derivation of the first-order optimality condition of problem

(Pm). Then, we study the stability of the primal problem (Pm) with respect to its parameter

m. Additionally, we formulate the dual problem of (Pm), demonstrate the strong duality, and

investigate the stability of the dual solution. At a numerical level, we propose to discretize the

marginal m and to solve the resulting problem with the SFW algorithm (Algorithm 1.3). We study

the convergence of this method. Finally, we perform some numerical simulations for a Lagrangian

MFG model taken from [GHS22].

First-order optimality condition. Recall the definition of the individual best-response mapping

BRλ from X to subsets of Y :

BRλ(x) = argmin
y∈Zx

⟨λ , g(x, y)⟩.

Theorem 1.2.4 (Corollary 3.3.5). Any µ̄ ∈ Pm(Z) is a solution to (Pm) if and only if the following

equilibrium conditions are satisfied: λ̄ = ∇f
(∫

Z gdµ̄
)
,

supp(µ̄x) ⊆ BRλ̄(x), m-a.e.
(1.2.7)

The proof follows the main steps described previously in Section 1.1.4. We first prove that µ̄

is a solution to (Pm) if and only µ̄ is the solution to a linearized problem around µ̄. Then, in a

second step, we provide a characterization of the set of solutions of the linearized problems: at

a technical level, the main difficulty of this step is related to the application of the measurable

selection theorem.

Additionally, we provide an existence result for the solution under a “tightness” assumption on

the minimizing sequence of (Pm).

Stability analysis. Let m0 and m1 be two probability measures in P(X). We consider two

instances of problem (Pm) with m = m0 and m = m1, denoted as (Pm0
) and (Pm1

) respectively.

We are first concerned with the variation of the optimal cost, in relation with the Kantorovich-

Rubinstein distance d1 between m0 and m1.

We perform the stability analysis under the following additional assumption: There exists Lg > 0

such that for any x1 and x2 in X, for any y1 ∈ Zx1
, there exists y2 ∈ Zx2

such that

∥g(x1, y1)− g(x2, y2)∥ ≤ LgdX(x1, x2). (1.2.8)

Theorem 1.2.5 (Theorem 3.3.16). There exists a constant C > 0, independent of m0 and m1,

such that ∣∣val(Pm0
)− val(Pm1

)
∣∣ ≤ Cd1(m0,m1).

The proof of Theorem 1.2.5 relies on a recovery method, described in Algorithm 3.1, which

bridges approximate solutions for problems (Pm0
) and (Pm1

). More precisely, given an approximate

solution µ̄0 for (Pm0
), the recovery method provides a way to derive an approximate solution

µ1 for (Pm1
). To provide an intuitive understanding of our recovery method, we consider the
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following particular case where m0 =
1
N

∑N
i=1 δxi

, m1 =
1
N

∑N
i=1 δx̃i

, and µ̄0 =
1
N

∑N
i=1 δ(xi,yi). Here

(xi)
N
i=1, (x̃i)

N
i=1 ∈ XN and (yi)

N
i=1 ∈

∏N
i=1 Zxi

. From [PC19, Prop. 2.1], there exists a permutation of

{x̃1, . . . , x̃N}, denoted by {x′1, . . . , x′N}, such that ρ∗ = 1
N

∑N
i=1 δ(xi,x′

i)
is a solution of the following

optimal transport problem:

inf
ρ∈Π(m0,m1)

∫
X×X

dX(x, x′)dρ(x, x′), (OT)

where Π(m0,m1) is the set of all transference plans between m0 to m1. As a consequence,

d1(m0,m1) =

∫
X×X

dX(x, x′)dρ∗(x, x′) =
1

N

N∑
i=1

dX(xi, x
′
i).

By (1.2.8), for any i, there exists y′i ∈ Zx′
i
such that ∥g(x′i, y′i) − g(xi, yi)∥ ≤ LgdX(xi, x

′
i). In our

recovery method, each xi is transported to x′i while simultaneously yi is transported to the point

y′i ∈ Zx′
i
for i = 1, . . . , N . This can be expressed as follows:

µ̄0 =
1

N

N∑
i=1

δ(xi,yi) −→ µ1 =
1

N

N∑
i=1

δ(x′
i,y

′
i)
. (1.2.9)

The distribution µ1 belongs to Pm1
(Z), moreover,∥∥∥∥∫

Z
gdµ̄0 −

∫
Z
gdµ1

∥∥∥∥ =

∥∥∥∥∥ 1

N

N∑
i=1

(
g(xi, yi)− g(x′i, y

′
i)
)∥∥∥∥∥ ≤ Lg

N

N∑
i=1

dX(xi, x
′
i) = Lgd1(m0,m1).

(1.2.10)

Therefore, by utilizing the special recovery method (1.2.9) for this particular example, we can

obtain a feasible solution for (Pm1
) while effectively controlling the distance between the aggregate

terms by the distance d1(m0,m1).

In the general case, where an optimal-assignment-type solution is not available for the optimal

transport problem (OT), the Gluing lemma [Vil09, p. 11] is employed in the recovery method. This

allows us to construct a probability measure ν ∈ P(X ×Y ×X) such that its marginal distribution

with respect to the first two variables is equal to µ̄0 and such that the marginal distribution of the

first and third variables is ρ∗, where ρ∗ is a solution of (OT). Then, we introduce the set-valued

function S : Z ×X ⇝ Z,

S(x, y, x′) =
{
(x′, y′) ∈ Z | ∥g(x′, y′)− g(x, y)∥ ≤ LgdX(x, x′)

}
.

We prove that S admits a measurable selection s under suitable assumptions. In our general

recovery method, the resulting approximate solution of problem (Pm1
) is given by µ1 = s#ρ∗. We

prove similar results as in (1.2.10) in this general case, from which Theorem 1.2.5 follows.

Dual problem. As mentioned in Remark 1.1.2, we can reformulate problem (Pm) as a convex

optimization problem of the form (1.1.1) by setting K = Gm := {
∫
Z gdµ, |, µ ∈ Pm(Z)} in (1.1.1).

Similarly to (1.1.3), the resulting dual problem writes:

sup
λ∈H

−f∗(λ)− χ∗
Gm

(−λ).
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The previous dual problem is equivalent to

− inf
λ∈dom(f∗)

Dm(λ) := f∗(λ)−
∫
X

inf
y∈Zx

⟨λ, g(x, y)⟩ dm(x). (Dm)

We first show the existence and the uniqueness of the solution to the dual problem (Dm). This can

be established based on two observations: (1) the function f∗ is strongly convex, (2) the second

term in Dm(λ) is convex with respect to λ. Next, assuming that Gm is a closed set, we establish

the strong duality relation between problems (Pm) and (Dm) with the Fenchel-Rockafellar theorem.

Let λ∗(m) be the solution of the dual problem (Dm). Define the following function:

v : P(X)×X → R, (m,x) 7→ inf
y∈Zx

⟨λ∗(m), g(x, y)⟩.

Thanks to the strong duality, we can prove the stability of the dual problem and characterize the

directional derivative of the optimal cost of (Pm) with respect to m.

Theorem 1.2.6 (Lemma 3.4.4 and Proposition 3.4.5). There exists a constant C > 0 independent

of m0 and m1 such that

max
{
|Dm0

(λ∗(m0))−Dm1
(λ∗(m1))| , ∥λ∗(m0)− λ∗(m1)∥2

}
≤ Cd1(m0,m1).

The function v is the directional derivative of the value function of (Pm), i.e.,

val(Pm1
)− val(Pm0

) =

∫ 1

t=0

∫
X
v(m0 + t(m1 −m0), x)d(m1 −m0)(x)dt.

Discretization. We present an original resolution method for the MFO problem (Pm). Our

approach relies first on a discretization of the marginal m, as proposed in [Sar22] for Lagrangian

MFGs. We approximate the common marginal distribution m in (Pm) by an empirical distribution

mN = 1
N

∑N
i=1 δxi

, where xi ∈ X for i = 1, . . . , N and N is a sufficiently large integer. This allows

us to write the associated discretized problem for (Pm) as

inf
µ∈PmN

(Z)
f

(∫
Z
gdµ

)
. (PmN

)

We can establish a connection between problem (PmN
) and the relaxed problem (PR) introduced

in Section 1.2.1. First, we observe that a probability distribution µ belongs to PmN
(Z) if and only

if there exist µi ∈ P(Zxi
) for each i = 1, . . . , N such that µ = 1

N

∑N
i=1 δxi

⊗ µi. This leads to the

following equivalent formulation of the discretized problem:

inf
µi∈P(Zxi

)
f

(
1

N

N∑
i=1

∫
Zxi

g(xi, yi)dµi(yi)

)
. (1.2.11)

We can observe that (1.2.11) is a special case of (PR) by choosing Xi = Zxi
and gi(·) = g(xi, ·).

This equivalence allows us to apply the SFW algorithm (Algorithm 1.3 of Section 1.2.1) to (1.2.11).
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In this context, if y ∈
∏N

i=1 Zxi
is the result after some iterations of Algorithm 1.3, then the

subproblems for the next iteration are

ȳi ∈ BRλ(xi), where λ =
1

N

N∑
i=1

g(xi, yi). (1.2.12)

Finally, the combination of Algorithm 1.3 with the recovery method (Algorithm 3.1) allows to

obtain an approximate solution of (Pm) whose quality improves as the discretization parameter N

increases. Here, we describe this combination:

1. Let yK ∈
∏N

i=1 Zxi
be the output of Algorithm 1.3 applied to (1.2.11), for 1 ≤ K ≤ 2N and

for arbitrary numbers nk ≥ 1 of simulations. Let µK
N = 1

N

∑N
i=1 δ(xi,yK

i ).

2. Move on to the recovery method (Algorithm 3.1) with the following inputs: m0 = mN ,

m1 = m, and µ̄0 = µK
N . The output is denoted as µ̃K , which is an element of the set Pm(Z).

Combining the convergence result of the SFW algorithm (Theorem 1.2.3) with the stability of the

primal problem (Theorem 1.2.5), we have the following convergence result.

Theorem 1.2.7 (Theorem 3.5.8). There exists a constant C > 0, independent of mN and m, such

that

E
[
f

(∫
Z
gdµ̃K

)]
− val(Pm) ≤ C

(
1

K
+ d1(mN ,m)

)
.

Remark 1.2.8. According to Theorem 1.2.7, in order to achieve better convergence, it is desirable

to find an empirical distribution mN = 1
N

∑N
i=1 δxi

that is as close as possible to m in terms of

the d1-distance. This problem is commonly referred to as the optimal quantization problem. A

precise estimate on d2(mN ,m) is given in [MM16, Prop. 12], and we slightly modify this estimate

for d1(mN ,m) in Lemma 3.5.1. For more detailed information concerning optimal quantization, we

refer to [GG12].

Numerical simulations. We apply in Section 3.6 our discretization method and the SFW al-

gorithm to a Lagrangian MFG taken from [GHS22], in which the agents exploit their own stock

of an exhaustible resource. In this model, the agents have different initial stock which follows a

distribution m. The agents make decisions regarding their selling speed. The price of this resource

at a time t is a decreasing function of the aggreagate selling speed at t. Following [GHS22], the

main purpose of this model is to find the Nash equilibrium as defined in (3.6.2).

Literature comparison and perspectives. Our first-order necessary and sufficient optimal-

ity condition (1.2.7) is similar to the Nash equilibrium conditions studied in [CL18b, Sec. 3] for

nonatomic potential games and in [CC18, Def. 3.1, Eq. 3.32] and [SS21, Def. 2.2] for Lagrangian

MFGs. The authors of [CC18] also establish the existence of solutions to the associated Nash

equilibrium problem using Kakutani’s fixed point argument.

The article [CH17, Sec. 3] proposes a resolution of the potential Lagrangian MFGs with the

fictitious play algorithm, which can be seen as a specific case of the FW algorithm with the learn-

ing rate ωk = 1/(k + 1). The possible memory overflow problem and the need to discretize the

distribution of the initial conditions of the agents are not discussed.
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The article [Sar22] investigates the discretization of a Lagrangian MFG with local congestion

terms. The author proposes a regularization technique for the congestion term, a discretization in

time of the trajectories, and a discretization of the initial distribution of the agents, leading to a

nonlinear program which is solved with the quasi-Newton method. Convergence properties for the

discrete solutions have been obtained.

Let us discuss on some possible extensions of this work. An easy way to construct mN , in com-

parison with an optimal quantization approach, consists in drawing N samples of the distribution

m and to construct the corresponding empirical distribution. One could modify the convergence

analysis done for Theorem 1.2.6 to take into account the randomness of mN , utilizing concentration

inequalities such as [FG15, Thm. 1, Thm. 2]. They indeed allow to estimate dp(mN ,m) in both

expectation and probability senses, where dp is the Wasserstein distance of order p.

Another perspective deals with the study of a fully discretized version of the MFO problem

(Pm). A crucial step in the SFW algorithm is the resolution of the subproblems (1.2.12) (involved

in the definition of the best response mapping). These subproblems could be posed over an infinite

dimensional space, as for example, in the price model (1.1.43). In general, one has to discretize

those problems (as is done in [Sar22, Sec. 5]). One could extend the convergence analysis and look

for a quantitave result that takes into account the effect of the discretization of the subproblems.

1.2.3 Error estimates of a theta-scheme for second-order mean field games

Framework and motivation. This section is associated with Chapter 4. It is dedicated to a novel

finite-difference scheme for the second order MFGs system (MFG), relying on the theta-method.

Let us denote by ∇h, divh and ∆h the discrete gradient, divergence and Laplace operators of the

centered finite-difference scheme. Let θ ∈ [0, 1]. Let us first describe the discretization of the FP

equation. At any time t, the theta-scheme of the FP equation consists of two steps:

1. An explicit scheme for an intermediate FP equation, with a weight (1− θ) for the Laplacian

term:
m(t+ 1/2)−m(t)

∆t
− (1− θ)σ∆hm(t) + divh(mv(t)) = 0. (S1)

2. An implicit scheme for an intermediate heat equation (without divergence term):

m(t+ 1)−m(t+ 1/2)

∆t
− θσ∆h(m(t+ 1)) = 0. (S2)

Notice that when there is no divergence term (v = 0), the above scheme (S1)-(S2) coincides with

the classical theta-scheme for the heat equation [All07]. For the HJB equation, we propose an

adjoint scheme; at each time t, two steps are performed: (1) an implicit scheme for an intermediate

heat equation (without the Hamiltonian term) and (2) an explicit scheme for an intermediate HJB

equation.

Let us describe the main properties of the theta-scheme, which justify our interest for it. If

θ = 0, our scheme is an explicit scheme which has a natural interpretation as a discrete mean

field game. However, it is not clear whether the explicit scheme for the FP equation, when θ = 0,

enjoys stability properties for some ℓ2-norm. To ensure stability, a natural idea consists in taking
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an implicit scheme for the second-order term, i.e. θ = 1. This yields a mixed scheme (implicit for

the Laplacian term and explicit for the divergence term). We emphasize that the divergence term

should remain explicit, in order to guarantee that the discrete system has a structure of (DMFG).

When θ = 1, we see that (S1) is an explicit scheme of a continuity equation (without diffusion term).

To ensure the monotonicity of (S1), an upwind discretization for the divergence term should be

employed, instead of centered scheme. In comparison with a centered discretization, the upwind

discretization has the following disadvantages: (1) the consistency error is of a lower order, (2) we

need then to construct a numerical Hamiltonian (see [ACD10, ACCD13]) to preserve the adjoint

structure. Finally, we propose to take θ ∈ (1/2, 1) in (S1)-(S2) and to keep the centered scheme

for the first-order term. The ℓ2-stability and the monotonicity property hold in this case by some

discrete energy estimate and a CFL condition detailed later. We end up with a discrete system

which has a structure of (DMFG), has a higher order for the consistency error, and which does not

require the construction of a numerical Hamiltonian.

Organization. We first introduce the theta-scheme associated with (MFG) and state our main re-

sult on the error estimate of this theta-scheme. This theta-scheme lies in the framework of (DMFG).

The existence and uniqueness of the solution of the theta-scheme is deduced from condition (CFL)

and (1.1.38). Subsequently, we present several stability properties of the theta-scheme. Next, we

discuss the consistency error of the theta-scheme. Finally, we give the sketch of the proof of the

main result, which is based on the stability and the consistency analysis.

Formulation and the main result. The main assumptions on the data of (MFG), which hold

true in the subsequent sections, are as follows:

• The functions ℓc(·, ·, v), ℓcv(·, x, v), gc(·), f c(·, ·, ·) and mc
0(·) are Lc-Lipschitz continuous, where

the Lipschitz continuity of f c with respect to m is for the ∥ · ∥L2-norm;

• The running cost ℓc is αc-strongly convex with respect to the control variable;

• The monotonicity condition (1.1.22) holds;

• The continuous system (MFG) has a unique solution (u∗, v∗,m∗), with u∗,m∗ ∈ C1+r/2,2+r(Q)

and v∗ ∈ Cr(Q) ∩ L∞([0, 1]; C1+r(Td)), where r ∈ (0, 1).

The terminal time in (MFG) is fixed to 1 in this section. We discretize the time horizon [0, 1]

into T equal steps, resulting in a time step size of ∆t = 1/T . Similarly, we discretize the state space

Td into a grid with N points in each dimension, leading to a spatial step size of h = 1/N . The

discretized time horizon is denoted by T (or T̃ if the terminal time is included) and the discretized

state space is denoted by S. For any x ∈ S, we denote Bh(x) =
∏d

i=1[x− hei/2, x+ hei/2), where

(ei)i=1,...,d is the canonical basis of Rd. For any function φ ∈ Rn(T̃ × S) and any (p, q) ∈ [1,∞]2,

we define the norm ∥φ∥p,q = ∥
(
∥φ(t, ·)∥ℓq(S)

)
t∈T̃ ∥ℓp(T̃ ).

Let ℓ, H, f , m0, and g be the discretization of ℓc, Hc, f c, mc
0, and gc, respectively, as defined

in (4.2.9)-(4.2.10). We note that the discretization of Hc in this context does not require the

construction of a numerical Hamiltonian, in contrast to [ACCD13]. Taking any θ ∈ (1/2, 1), we
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can now introduce the theta-scheme of (MFG): Find (u, v,m) ∈ R(T̄ ×S)×Rd(T ×S)×R(T̄ ×S)

such that ∀(t, x) ∈ T × S, 
(i) u = HJBθ(m),

(ii) v = Vθ(u),

(iii) m = FPθ(v),

(Theta-mfg)

where the Hamilton-Jacobi-Bellman mapping HJBθ : P(T̃ , S) → R(T̃ × S), m 7→ u, is defined by
−u(t+1,x)−u(t+1/2,x)

∆t − θσ∆hu(t+ 1/2, x) = 0,

−u(t+1/2,x)−u(t,x)
∆t − (1− θ)σ∆hu(t+ 1/2, x) +H[∇hu(·+ 1/2, ·)](t, x) = f(t, x,m(t)),

u(T, x) = g(x),

the optimal control mapping Vθ : R(T̃ × S) → Rd(T × S), u 7→ v, is defined by −u(t+1,x)−u(t+1/2,x)
∆t − θσ∆hu(t+ 1/2, x) = 0,

v(t, x) = −Hp(t, x,∇hu(t+ 1/2, x)),

and the Fokker-Planck mapping FPθ : Rd(T × S) → R(T̃ × S), v 7→ m, is defined by
m(t+1/2,x)−m(t,x)

∆t − (1− θ)∆hm(t, x) + divh(vm)(t, x) = 0,

m(t+1,x)−m(t+1/2,x)
∆t − θσ∆hm(t+ 1, x) = 0,

m(0, x) = m0(x).

From the definitions of HJBθ and FPθ, we see that the adjoint structure of the coupled system

(MFG) is preserved in the resulting discretized system, which is an important property for the

stability analysis in this section and for the potential case discussed in Section 1.2.4. We fix now a

constant M , defined as follows:

M =
1

αc

(
2 max
(t,x)∈Q

∥ℓcv(t, x, 0)∥+
√
d(Lc

ℓ + Lc
f + Lc

g)
)
. (1.2.13)

We prove in Theorem 4.4.4 that the constant M is an upper bound of ∥v∥∞,∞. We consider the

following condition on (∆t, h):

∆t ≤ h2

2d(1− θ)σ
, h ≤ 2(1− θ)σ

M
. (CFL)

The main result of this section is the following error estimate on (Theta-mfg).

Theorem 1.2.9 (Theorem 4.2.10). Let θ ∈ (1/2, 1) and let (∆t, h) satisfy the condition (CFL).

Then (Theta-mfg) has a unique solution (uh, vh,mh). Moreover, there exists a constant C > 0,

independent of ∆t and h, such that

∥uh − u∗h∥∞,∞ + ∥mh −m∗
h∥∞,1 ≤ Chr,

where u∗h,m
∗
h ∈ R(T̃ × S) are defined by u∗h(t, x) = u∗(t∆t, x) and m∗

h(t, x) =
∫
Bh(x)

m∗(t∆t, y)dy.
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Existence and uniqueness. Recall our general framework for discrete MFGs, introduced in

Section 1.1.3. We prove in Lemma 4.4.1 that (Theta-mfg) is equivalent to the system (DMFG).

We provide an explicit formula for the mapping π describing the probability transitions under a

given control. A key point is that π(t, x, ·, ω) must be a probability distribution over S, which

can be established under the CFL condition. The uniqueness of the solution of (Theta-mfg) is a

consequence of the fundamental inequality (1.1.38).

Stability of the theta-scheme. Following the general perturbation system (PDMFG), we intro-

duce the perturbed version of (Theta-mfg) with additional terms (η, δ) ∈ R2(T̃ × S):
(i) u = HJBθ(m; η),

(ii) v = Vθ(u),

(iii) m = FPθ(v; δ).

(1.2.14)

Let (u, v,m) and (uh, vh,mh) be solutions of (1.2.14) and (Theta-mfg) respectively. Suppose that

m ≥ 0. Our stability analysis consists of the following three properties, related to each of the

mappings HJBθ, Vθ, and FPθ:

1. Stability of the HJB equation. From the dynamical programming principle and the regularity

of f c, we can derive the following inequality:

∥u− uh∥∞,∞ ≤ Lc

hd/2
∥m−mh∥∞,2 + ∥η∥1,∞, (1.2.15)

where Lc denotes the Lipschitz continuity modulus of f c.

2. Stability of the optimal control. We deduce from the fundamental inequality (1.1.38) that

∆tαc

2

∥∥∥v − vh∥2(m+mh)
∥∥
1,1

≤
∑
t∈T

∑
x∈S

(u− uh)(t+ 1, x)δ(t, x) + (mh −m)(t, x)η(t, x).

(1.2.16)

3. Stability of the FP equation. To analyze the stability of the FP equation, we consider the

energy estimate for the discrete parabolic equation given by:{
µ(t+1)−µ(t)

∆t − θ∆hµ(t+ 1)− (1− θ)∆hµ(t) + divhµv(t) = divhδ1(t) + δ2(t),

µ(0) = µ0,

where δ1, δ2 ∈ R(T × S) represent perturbations in the form of discrete divergence and other

forms, respectively. Assume that ∥v∥∞,∞ ≤ M . Then, there exists a constant C independent

of h and ∆t such that

max
t∈T̃

∥∥µ(t)∥∥2
2
≤ C

(∥∥µ0

∥∥2
2
+
∥∥∇+

h µ0

∥∥2
2
+
∑
τ∈T

∆t
(∥∥δ1(τ)∥∥22 + ∥∥δ2(τ)∥∥22)

)
. (1.2.17)

The notation ∇+
h denotes the forward finite-difference operator. The proof of the energy

estimate (1.2.17) is similar to the one for parabolic PDEs, see [Lio71, LSU88], and the one for

the implicit scheme, see [ACCD13]. Let us emphasize the fact that for establishing (1.2.17),

we need to take θ > 1/2.
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Consistency error. Recall the definition of (u∗h,m
∗
h) in Theorem 1.2.9. For (t, x) ∈ T × S, let

v∗h(t, x) = −Hp(t, x,∇hu
∗
h(t+ 1/2, x)),

where u∗h(t+ 1/2) and u∗h(t+ 1) satisfy the first line of HJBθ for any t ∈ T . Define the invertible

matrix B1 = Id− θσ∆t∆h. Using the regularity of the continuous solution, we have the following

consistency result.

Theorem 1.2.10 (Lemma 4.5.5). The triplet (u∗h, v
∗
h,m

∗
h) satisfies the perturbed system (1.2.14)

with perturbation terms η and δ such that

η = O(∆thr), B1δ = ∆tdivh(δ1) +O(∆thr+d), where δ1 = O(h2r+d).

Sketch of the proof of Theorem 1.2.9. Let us define ϵ = ∆t
∥∥|v∗h − vh|2m∗

h

∥∥
1,1

.

• By combining the stability property for the HJB equation (1.2.15), the fundamental inequality

(1.2.16), and the consistency error from Theorem 1.2.10, we can derive an upper bound of ϵ

as a function of ∥m∗
h −mh∥∞,2 and h.

• Using the stability of the FP equation (1.2.17) and considering the consistency error from

Theorem 1.2.10, we can derive an upper bound of ∥m∗
h −mh∥∞,2 depending on ϵ and h.

Combining the previous two estimates, we can deduce that ∥m∗
h − mh∥∞,2 ≤ Chr+d/2 for some

constant C independent of ∆t and h. The conclusion of Theorem 1.2.9 follows from Hölder’s

inequality for discrete norms (see Lemma 4.2.2).

Literature comparison and perspectives. In 2010, a first result concerning the convergence

of a finite-difference scheme for stationary MFGs was obtained in [ACD10]. In this article, the

authors also proposed an implicit scheme for time-dependent MFGs and proved the existence and

uniqueness of the solution of this scheme. In 2013, a convergence result was obtained for the same

implicit scheme in [ACCD13] when the Hamiltonian has a monomial form. The two cited works

assume the existence of a classical solution of (MFG). In 2016, in the absence of this existence

assumption, [AP16] proved that the solution of the implicit scheme converges to a weak solution

of (MFG) when the grid steps tend to zero.

We mention the articles [CS14, CS15, HS19] investigating semi-Lagrangian discretizations of

MFG systems. We also mention the article [BC22] which contains an explicit rate of convergence

for a semi-discretization in space, obtained with finite differences. To the best of our knowledge, the

work presented in this section is the first one, in the context of MFGs, to give a precise convergence

order for a fully discrete numerical scheme.

We will discuss in the next section the resolution of (Theta-mfg) with the Generalized Frank

Wolfe algorithm. As will be explained, the application of this algorithm is made possible by the fact

that the potential structure of continuous MFGs is preserved at the discrete level by (Theta-mfg).

The GFW algorithm essentially relies on successive resolutions of the discrete HJB and the Fokker-

Planck equations, which do not require to solve nonlinear equations (as would be the case with
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the fully implicit scheme of [ACCD13]). Future work could focus on the numerical analysis for an

extension of the theta-scheme relying on splitting methods [Tho95, Sec. 4.4], applied to the discrete

Laplacian involved in the implicit linear equations. This would allow to facilitate the resolution

of the discrete HJB and Fokker-Planck and thus to reduce the numerical complexity of the GFW

algorithm.

Another perspective concerns the extension of (Theta-mfg) to more complex MFG models, such

as the MFG models with a coupling through a price variable [BHP21]. They fall into the class

of MFGs of controls (abbreviated MFGCs), since the price depends on the distribution and the

control of the agents. Note that the price appears in the Hamiltonian of the HJB equation of the

coupled system. One would have to propose a suitable discretization of the additional coupling

relation (involving the price variable) and to establish a fundamental inequality for the obtained

discrete setting. This would allow to conduct a stability analysis. Let us mention that the article

[LP22] already contains stability results for such MFGCs, in the continuous framework. Concerning

consistency, the analysis would exploit the regularity properties of the continuous solution obtained

in [BHP21], in particular, the Hölder continuity of the price variable.

1.2.4 A mesh-independent method for second-order potential mean field games

Framework and motivation. In this section, we investigate the resolution of a second-order

potential MFG, which is equivalent to the optimal control problem (1.1.25). As already mentioned

in Section 1.2.3, the potential structure is preserved by (Theta-mfg). As a result, the discrete MFG

can be addressed with the GFW algorithm, described in Section 1.1.3.

The general objective is to show that the performance of the GFW algorithm is not impacted by

a refinement of the discretization grid. The main results of this section are two mesh-independence

properties for the resolution of (MFG) with (Theta-mfg) and the GFW algorithm, as stated in Theo-

rems 1.2.12 and 1.2.13. The terminology mesh-independence was coined in the article [ABPR86]. It

is said that an algorithm satisfies a mesh-independence property when approximately the same num-

ber of iterations is required to satisfy a stopping criterion, when comparing an infinite-dimensional

problem and its discrete counterpart.

Organization. We begin by presenting the GFW algorithm for the resolution of general potential

and discrete MFGs. We provide two results concerning the rate of convergence of the potential

cost. One rate is sublinear and the other is linear, depending on the choice of the learning rate

(1.2.18)-(1.2.19). Next, we prove that the GFW algorithm exhibits mesh-independent sublinear and

linear convergence rates when applied to (Theta-mfg) . These convergence results rely on the study

of the semi-concavity of HJBθ, the ℓ2-stability of FPθ, and the ℓ∞-stability of FPθ ◦Vθ ◦HJBθ.

GFW algorithm for potential discrete MFG. Recall the data of (DMFG): The time space

T , the state space S, the running cost ℓ, the coupling cost f , the initial condition m0, and the

terminal cost g, where

ℓ : T × S × Rd → R ∪ {∞}, f : T × S × R(S) → R, m0 ∈ P(S), g ∈ R(S).
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We assume that ℓ is α-convex with respect to its third variable, f is Lf -Lipschitz with respect to

its third variable, and the discrete potential condition (1.1.33) is satisfied.

We present the GFW algorithm for solving the potential discrete MFG in Algorithm 1.4. As

discussed in Section 1.1.3, at each iteration of the GFW algorithm, we are required to solve the

partially linearized problem (1.1.35). The solution to this problem is obtained through the best-

response mapping BR : P(T̃ , S) → Ã, which is defined in (1.1.36). For the learning rate λk in

Algorithm 1.4, we propose the following two rules:

1. an open update rule as in Algorithm 1.1:

λk =
2

k + 2
; (1.2.18)

2. a closed update rule similar to the line search (1.1.10) used in Algorithm 1.2:

λk = min

{
J̃mk(mk, wk)− J̃mk(m̄k, w̄k)

Lf |S|1/2∥mk − m̄k∥2∞,2

, 1

}
. (1.2.19)

Algorithm 1.4: GFW for potential discrete MFG

Initialization: (m0, w0) ∈ Ã;
First iteration: (m1, w1) = (m̄0, w̄0) = BR(m0) ;
Choose an update rule from (1.2.18) and (1.2.19) ;
for k = 1, 2, . . . do

Step 1: Resolution of the partial linearized problem.
Set (m̄k, w̄k) = BR(mk);

Step 2: Update.
Set λk ∈ [0, 1] by the chosen update rule;

Set (mk+1, wk+1) = (1− λk)(m
k, wk) + λk(m̄

k, w̄k);

end

To state the convergence results of Algorithm 1.4, we need to introduce three key constants.

The first two are defined by

C1 = sup
v∈Rd

D̄
(T ×S)

∥FP(v)∥2∞,2 and C2 = sup
m∈P(T̃ ,S)

∥FP ◦V ◦HJB(m)∥∞,∞.

The third constant C3 is such that for any v1, v2 ∈ Rd
D̄
(T × S), we have:

∥FP(v1)− FP(v2)∥2∞,2 ≤ C3∆t
∑
t∈T

∑
x∈S

∥(v1 − v2)(t, x)FP(v1)(t, x)∥2.

We will see later that for the theta-scheme (which is a particular case of (DMFG)), estimates of the

constants C1 and C3 derive from an energy estimate (1.2.17) and an estimate of the constant C3

can be deduced from a semi-concavity property of the discrete HJB mapping and the ℓ∞-stability

of FP ◦V ◦HJB.

Recall that J̃ is the objective function in the convex optimal control problem (1.1.34) associated

with the potential (DMFG). Let (m̄, w̄) be the solution of (1.1.34).
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Theorem 1.2.11 (Proposition 5.3.1). We consider the sequence (mk, wk)k≥1 generated by Algo-

rithm (1.4). Let D = C1Lf |S|1/2 and c = max
{
1− α

4C2C3Lf |S|1/2 ,
1
2

}
∈ (0, 1).

1. Sublinear rate. If the chosen update rule is (1.2.18), then,

J̃(mk, wk)− J̃(m̄, w̄) ≤ 8D

k
, ∀k ≥ 1. (1.2.20)

2. Linear rate. If the chosen update rule is (1.2.19), then,

J̃(mk, wk)− J̃(m̄, w̄) ≤ 4Dck, ∀k ≥ 1. (1.2.21)

The proof of Theorem 1.2.11 is similar to the convergence analysis of the GFW algorithm in

Hilbert space [KW22] and the one for continuous potential MFGs [LP22].

We can see from Theorem 1.2.11 that the convergence constants D and c rely on various factors,

including the strong convexity constant α, the product Lf |S|1/2, and the three key constants C1,

C2, and C3 defined earlier. In order to investigate the mesh-independent property of Algorithm

(1.4) when applied to some numerical discretization of the potential (MFG), the crucial point is to

establish the independence of these factors with respect to the discretization parameters ∆t and h.

Now let us apply Algorithm 1.4 to the theta-scheme associated with the potential (MFG). We

make the same assumptions for this continuous system as in Section 1.2.3. From Lemma 5.4.4, the

associated theta-scheme (Theta-mfg) preserves the potential structure in the sense of (1.1.33).

A mesh-independent sublinear convergence result. In this paragraph, we will see that the

constantD is independent of ∆t and h. Combining with (1.2.20), a first mesh-independent sublinear

convergence result is obtained in Theorem 1.2.12. We have the following two a priori estimates:

• Lemma 5.4.2 shows that α = αc, Lf = Lch−d/2, and |S| = 1/hd, where αc is the strong

convexity constant of ℓc and Lc is the Lipschitz constant of f c;

• The energy estimate (1.2.17) implies that C1 and C3 are mesh-independent, since the constant

C in (1.2.17) is independent of ∆t and h.

From the definition of the constant D and the above two points, we derive the mesh-independence

of D. Let (uh, vh,mh) be the solution of (Theta-mfg). Let us set γk = J̃(mk, wk) − J̃(m̄, w̄). We

have the following convergence result.

Theorem 1.2.12 (Sublinear rate, Theorem 5.4.5). In Algorithm 1.4, apply the update rule (1.2.18).

Then there exists a constant Cθ, independent of ∆t and h, such that for any k ≥ 1,

γk ≤ Cθ

k
.

A mesh-independent linear convergence result. To explore the mesh-independent linear

convergence rate of Algorithm 1.4 for (Theta-mfg), it is necessary to establish the independence of

the constant C2 with respect to the discretization parameters ∆t and h. To accomplish this, we

need to study the ℓ∞-stability of FPθ ◦Vθ ◦HJBθ. Two additional assumptions are required:
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• The functions ℓc(t, x, v), f c(t, x,m) and gc(x) are L-semi-concave with respect to x, for any

t ∈ [0, 1], v ∈ Rd, and m ∈ P(Td);

• The function ℓc has a separable form with respect to v, i.e. ℓc(t, x, v) =
∑d

i=1 ℓ
c
i (t, x, vi), where

vi is the i-th coordinate of v.

We refer to [CS04, Def. 1.1.1] for the definition of the semi-concavity. Under the previous two

additional assumptions, we have a second convergence result.

Theorem 1.2.13 (Linear rate, Theorem 5.4.9). In Algorithm 1.4, apply the update rule (1.2.19).

Then there exist two constants cθ ∈ (0, 1) and Cθ > 0, both independent of ∆t and h, such that for

any k ≥ 1,

γk ≤ Cθc
k
θ .

The proof of Theorem 1.2.13 relies on the ℓ∞-stability of FPθ ◦Vθ ◦HJBθ. The proof of the

ℓ∞-stability of FPθ ◦ Vθ ◦ HJBθ is inspired from the continuous case (see for example [CL18a,

Lem. 5.3]). Let us outline the proof in the continuous case:

1. The semi-concavity of the solution u of the HJB equation implies that D2u ≤ L · Id;

2. Combining with the convexity of Hc, we deduce that there exists some constant C > 0 such

that −div v = Tr(Hc
pp[∇u] D2u) ≤ C uniformly;

3. Since div v is the coefficient preceding m in the FP equation, the maximum principle of

parabolic equations implies that ∥m∥L∞ ≤ exp(C)∥mc
0∥L∞ (the terminal time is 1).

In our discrete context, we first prove that for any m ∈ P(T̃ , S), the function u = HJBθ(m)

is 3L-semi-concave with respect to x. Let v = Vθ(u) and m̃ = FPθ(v). Thanks to the semi-

concavity of u, there exists a constant C independent of ∆t and h such that −divhv(t, x) ≤ C. As

a consequence, we can deduce that ∥m̃(t+ 1, ·)∥∞ ≤ (1 +C∆t)∥m̃(t, ·)∥∞ for any t ∈ T . It follows

that ∥m̃∥∞,∞ ≤ exp(C)∥m0∥∞. Since the right-hand-side of the previous inequality is independent

of the inputm, it gives an upper bound of C2, which is mesh-independent. Combining with (1.2.21),

Theorem 1.2.13 follows.

Literature comparison and perspectives. Various methods have been proposed in the liter-

ature for the resolution of potential MFGs, besides the GFW algorithm that was analyzed in the

continuous setting in [LP22]. Note that the sublinear and linear convergence rates have obtained

for the continuous model in this reference. Note also that the GFW algorithm can be seen as a

generalization of the fictitious play method introduced in [CH17, HS19]. In the convex potential

case, the ADMM algorithm was utilized in [BC15, And17] and the Chambolle-Pock algorithm was

utilized in [AL20]. Some articles propose to discretize the optimal control problem (1.1.25), see for

example [LST10, And17]. In this context, it is very desirable that the potential structure of the

continuous MFG is preserved at the level of the discretized coupled system, so that one can apply

in a direct fashion suitable optimization methods to the discrete system. This is in particular the

case for the implicit scheme proposed in [ACCD13].
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To the best of our knowledge, in the context of mean field games, the mesh-independence

property has never been established so far for any other method. Though it seems a natural

property, it may not hold in general. In particular, it might not hold for primal-dual methods,

whose application relies on a saddle-point formulation of the convex problem (1.1.25) of the form,

in which the FP equation is “dualized”. This saddle-point formulation involves a linear operator,

encoding the (discrete) FP equation (see for example [AL20, Sec. 3.2]). As the discretization

parameters decrease, the operator norm of these operators (for the Euclidean norm) increases, which

has an impact on the convergence properties of methods such as the Chambolle-Pock algorithm.

In contrast, the discrete Fokker-Planck equation remains satisfied at each iteration of the GFW

equation.

Let us discuss some possible extensions of this work. We can study the convergence of the

GFW applied to the non-monotone discrete MFG, where the monotonicity condition (1.1.32) is not

satisfied. This results in the non-convexity of the associated potential function F . Consequently, the

convergence of the GFW algorithm to a global minimum of the objective function is not guaranteed

in general. However, we can show that a point (m̄, v̄) is a Nash-equilibrium of the potential MFG

in the sense of (1.1.15) if the “Frank-Wolfe” gap (the left-hand-side of (1.1.37)) at the point m̄ is

0. Fortunately, similarly to the approach used in [LJ16], we can prove that the GFW algorithm

converges to a stationary point of (1.1.34) such that the “Frank-Wolfe” gap at this point vanishes.

This implies that the GFW algorithm can still converge to a Nash equilibrium despite the presence

of non-monotonicity. Consequently, we can further study the mesh-independent property of the

theta-scheme in this scenario.

Another perspective deals with the discretization and the application of the GFW algorithm to

the planning problem of [ACCD12], referred to as MFGP. In MFGP, instead of having a terminal

condition gc for the HJB equation, we consider a fixed terminal condition for the FP equation,

denoted as mc
T ∈ P(Td). This problem can be seen as a generalized optimal transport problem.

The article [ACCD12] also considers an approximation, called MFGPP, obtained by regularization

of the final-time constraint on the distribution. This opens the path to a numerical resolution of the

planning problem through an application of the GFW algorithm to MFGPP. Yet the application

of the GFW algorithm may be difficult because the Lipschitz constant of the coupling term in

MFGPP would increase with the penalty parameter.
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Chapter 2

Large-scale nonconvex optimization:
randomization, gap estimation, and
numerical resolution

2.1 Introduction

Problem formulation This article is devoted to the theoretical analysis and the numerical reso-

lution of the following large-scale, aggregative, and nonconvex optimization problem:

inf
x∈X

J(x) := f(G(x)), where:


G(x) =

1

N

N∑
i=1

gi(xi)

X =
∏N

i=1Xi.

(P)

Here, N can be seen as the number of agents and is assumed to be large. The mappings gi : Xi → E
are given and referred to as the contribution mappings. The space E is a real Hilbert space. The

main feature of this problem is the aggregative form of the function G : X → E , which is defined

as the average of the N mappings gi. We will call G(x) the aggregate. Let us emphasize that the

dimension q of the aggregate space E can be arbitrarily large and possibly infinite. While very

few structural assumptions are made on the sets Xi and the mappings gi, we will assume that f

is convex, with a Lipschitz-continuous gradient and that the image sets gi(Xi) are all bounded. A

central idea in this work is that the problem can be well approximated by a convex problem when

N is large.

In various examples of interest, the function f has a separable structure as defined below. It

turns out that taking into account the separability of f , when possible, allows us to refine our

theoretical results (more precisely, to reduce some of the constants of interest, see Remark 2.2.7).

From now on, we suppose that E is the Cartesian product of M separable Hilbert spaces denoted

Ej , for j = 1, . . . ,M . We assume that f is additively separable, that is to say, we assume that

f(y) =

M∑
j=1

fj(yj), ∀(y1, . . . , yM ) ∈
M∏
i=1

Ej ,
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where fj : Ej → R. Note that when f is not separable, one can take M = 1 and E1 = E . We assume

that the contribution mappings are of the form

gi(xi) =
(
gij(xi)

)
j=1,...,M

, where gij : Xi → Ej .

Hence the criterion J of problem (P) writes

J(x) = f(G(x)) =

M∑
j=1

fj

( 1

N

N∑
i=1

gij(xi)
)
. (2.1.1)

We present and discuss some motivating examples in Section 2.5, arising from social welfare prob-

lems, optimal control problems and supervised learning.

Related works and methods Let us return to the general problem (P). Classical Lagrangian

relaxation (Chapter XII of [HUL93]) methods can be relevant here because the dual problem is

separable in the sense below, thanks to the aggregative form of G. To see this, let us reformulate

(P) as: inf(x,v)∈X×E f(v), subject to the constraint that v = G(x). Its dual problem is:

sup
λ∈E

(
− f∗(λ) + Φ(λ)

)
, (2.1.2)

where f∗ is the Fenchel conjugate function of f , and Φ(λ) is defined by

Φ(λ) := inf
x∈X

⟨λ,G(x)⟩ = 1

N

N∑
i=1

inf
xi∈Xi

⟨λ, gi(xi)⟩. (2.1.3)

One sees that Φ(λ) can be evaluated by solving N independent sub-problems, one for each i in

{1, . . . , N}. Solving these sub-problems can be much easier than addressing frontally the original

problem with N coupled variables. This approach has been extensively employed in convex settings

[SAB+23, Pac18]. However, the nonconvexity of the problem raises two major difficulties: the

potentially large duality gap and the reconstruction of a primal solution from the dual optimal

solution.

These two difficulties are addressed by Wang in [Wan17]. She proposed a convex relaxation of

the problem, based on a geometrical approach, that allows to obtain an estimate of the duality gap

of order O(q2/N2). Her main tool was the Shapley-Folkman lemma [Sta69], which allows to show

that the image of G is close to a convex set. This idea was already present in the seminal work of

Aubin and Ekeland in [AE76], dealing with a different setting involving a coupling constraint. We

refer the reader to [KCD22] for the most recent improvements dealing with this class of problems.

We also refer to [Wan17] for a more exhaustive of mathematical works dedicated to the estimation

of the duality gap, where a kind of convexification occurs. After having solved the dual problem by

a cutting plane method and then found an approximate solution to the relaxed primal problem via

a projection problem, Wang’s method recovers an approximate solution to the original nonconvex

problem, by computing a Shapley-Folkman decomposition of the aggregate with a standard linear

programming approach.
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There exist another important class of methods for large-scale optimization problems which

are the block coordinate descent algorithm and its variants [BT13, FR16]. These methods may

not be applicable without additional assumptions on the sets Xi and the maps gi (in the current

framework, the sets Xi could be discrete). Even if we make additional regularity assumptions, they

may be inefficient, in particular because the cost function J is not convex in general.

Contributions and organization of the paper We first introduce in Section 2.2 a convex relaxation

of the original problem (P). The relaxed problem is obtained by randomization, that is to say, we

replace the variables xi by probability measures µi on Xi. The contribution mappings gi(xi) are

replaced by
∫
Xi

gi(xi)dµi(xi); these terms are linear with respect to µi. The resulting randomized

cost function, denoted J , is convex, and so is the randomized problem. We give a first upper bound

of the relaxation gap of order O(1/N). The randomized problem has a stochastic interpretation: it

amounts to replace the variables xi by independent random variables Xi of probability distribution

µi, and to replace gi(xi) by the expectation of gi(Xi). To derive a good candidate (for (P)), given an

approximate solution to the randomized problem µ = (µ1, ..., µN ), we propose to simulate random

variables Xi with probability distribution µi. We will call this technique the selection method.

We give a sharp estimate of the probability of error for the selection method. More precisely, we

estimate the probability that J(X1, . . . , XN ) ≥ J (µ) +
(
C
N + ϵ

)
, given ϵ > 0. The proof relies on

McDiarmid’s inequality, a concentration inequality [McD89].

From a numerical point of view, our main contribution is a method which is parallelizable,

which benefits from the convexity of the randomized problem, but avoids the difficulty of the

manipulation of probability measures (arising in the formulation of the randomized problem). This

could be achieved by combining the Frank-Wolfe (FW) algorithm [DH78, Jag13], applied to the

randomized problem, and the selection method described previously. The resulting algorithm, called

stochastic Frank-Wolfe (SFW) algorithm, is described and analyzed in Section 2.3. Each iteration

of the algorithm requires to solve a subproblem of the form (2.1.3), which is decomposable into

N subproblems. Resorting to the selection method, we avoid to manipulate explicitely probability

measures on the sets Xi, which may otherwise cause memory issues. The SFW method is able to

find an O(1/N)-solution to problem P. In addition, we estimate the probability that the iterate xk
is
(
C
k + ϵ

)
-optimal, for k ≤ 2N , where k is the iteration counter. This result relies on concentration

inequalities for martingales [Del15] which generalize McDiarmid’s inequality.

Let us note that many articles in the literature are dedicated to stochastic variants of the Frank-

Wolfe algorithm. These variants are concerned with the situation where the cost function is in the

form of the expectation of a random cost and where its gradient is evaluated by sampling. See for

example [DU18, HKMS20, HL16, MHK20, YSC19], see also [FMSF21, LYFC19] and the references

therein. Let us emphasize that the stochasticity of our algorithm has another origin, namely the

selection method. In all these articles, convergence is established in expectation; to our knowledge,

only the article [TBL22] quantifies the probability of success of some stochastic method based on

the Frank-Wolfe algorithm.

Our last theoretical contribution is a sharp estimate of the relaxation gap, of order O(q∧N/N2),

where q is the (potentially infinite) dimension of the aggregate space E . It is proved in Section 2.4.
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It relies on a geometrical relaxation of problem (P), shown to be equivalent to the relaxation by

randomization. The relaxation gap is estimated with the help of a measure of nonconvexity for sets

(introduced in [Cas75]) and with the help of the Shapley-Folkman lemma [Sta69]. We also give an

estimate of the price of decentralization (as defined by Wang in [Wan17]). We conclude the section

with a detailed comparison of our approach and the one of [Wan17].

Section 2.5 is dedicated to examples and discussions on numerical aspects. We provide in

sections 2.6 and 2.7 numerical results for a mixed-integer linear-quadratic program and a discrete

aggregative optimal control problem.

2.1.1 Notations

On sets For two sets A and B in a normed vector space X , we denote by d(A) : = supx,y∈A ∥x−
y∥X the diameter of A, by A + B = {x+ y | x ∈ A, y ∈ B} the Minkowski sum of A and B, by

λA = {λx | x ∈ A} the scalar multiplication of A with λ ∈ R and by conv(A) the convex hull of

A. Note that conv(A+ B) = conv(A) + conv(B).
For all i ∈ {1, . . . , N}, we denote X−i =

(∏i−1
i′=1Xi′

)
×
(∏N

i′=i+1Xi′
)
. Given x ∈ X , we denote

x−i = (x1, . . . , xi−1, xi+1, . . . , xN ) ∈ X−i. From time to time, we represent x by the pair (xi, x−i).

On functions Let H be a real Hilbert space. Let ⟨·, ·⟩H and ∥ ·∥H denote the corresponding scalar

product and norm. Let F : H → R ∪ {+∞}. The domain of F , denoted by dom(F ), is defined

by dom(F ) = {x | F (x) ̸= +∞}. When F is differentiable, we denote its gradient by ∇F . The

gradient is defined as a function from H to itself. We say that ∇F is L-Lipschitz on a subset A of

H if for any x, y ∈ A, we have

∥∇F (x)−∇F (y)∥H ≤ L∥x− y∥H. (2.1.4)

The subgradient of F at some point x ∈ dom(F ) is denoted by ∂F (x) and defined by

∂F (x) = {p ∈ H | F (y) ≥ F (x) + ⟨p, y − x⟩, ∀ y ∈ H}.

The Fenchel conjugate of F is denoted by F ∗ : H → R and defined by F ∗(p) = supx∈H ⟨p, x⟩−F (x).

On measures Given a set Ω, we denote by δx the Dirac distribution at some point x ∈ Ω. We

denote by Pδ(Ω) the set of finitely supported probability distributions, defined by

Pδ(Ω) :=

{
K∑
k=1

λkδxk

∣∣∣K ∈ N, (λk)
K
k=1 ∈ (R+)

K , (xk)
K
k=1 ∈ ΩK ,

K∑
k=1

λk = 1

}
.

Let µ =
∑K

k=1 λkδxk
∈ Pδ(Ω). Given a Hilbert space H and a mapping F : Ω → H, we denote

Eµ

[
F
]
=

K∑
k=1

λkF (xk), σ2
µ

[
F
]
=

K∑
k=1

λk

∥∥F (xk)− Eµ

[
F
]∥∥2

H.

In other words, Eµ

[
F
]
is the integral of F with respect to the measure µ and σ2

µ

[
F
]
is the variance

of the probability measure
∑J

j=1 λjδF (xj), in the sense of [Vil03, Remark 7.5]. Finally, the Bernoulli

distribution with parameter ω ∈ [0, 1] is denoted by Bern(ω).
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On numbers and real-valued random variables We denote by m∧n the minimum of the numbers

m and n in R ∪ {+∞}. Let X be a real-valued random variable. The expectation of X is denoted

by E[X], the variance of X is denoted by Var(X) and the conditional expectation of X w.r.t. some

σ−algebra F is denoted by E[X | F ]. Given µ ∈ Pδ(Ω) and a random variable X in Ω, the notation

X ∼ µ indicates that µ is the probability distribution of X.

2.2 Relaxation by randomization and gap estimation

In this section we first make a structural assumption on the general problem of interest, problem

(P). Next we introduce a relaxation of the problem, obtained by randomization. We give an upper

bound of the randomization gap in Proposition 2.2.6. Finally we propose a method to recover

an approximate solution to (P), given an approximate solution to the randomized problem. Its

performance is investigated in Theorem 2.2.9.

2.2.1 Assumptions and constants

We recall that E is the Cartesian product of M separable real Hilbert spaces Ej . We denote by

⟨·, ·⟩Ej
the associated scalar products and by ∥ ·∥Ej

the corresponding norms. Let us emphasize that

we will not consider any other norm in the spaces Ej . We equip E with the scalar product ⟨·, ·⟩,
defined by ⟨(y1, . . . , yM ), (y′1, . . . , y

′
M )⟩ =

∑M
j=1⟨yi, y′i⟩Ej

and we denote by ∥ · ∥ the corresponding

norm.

For any i = 1, . . . , N and for any j = 1, . . . ,M , we denote

Sij :=
{
gij(xi) | xi ∈ Xi

}
and Sj :=

1

N

N∑
i=1

Sij .

The following regularity assumption will be in force all along the article.

Assumption A. For i = 1, 2, . . . , N and j = 1, 2 . . . ,M :

1. The range set Sij in Ej has finite diameter dij := d(Sij).

2. The function fj is Lj-Lipschitz on conv (Sj).

3. The function fj is continuously differentiable on a neighborhood of conv (Sj), and ∇fj is

L̃j−Lipschitz on conv (Sj), in the sense of (2.1.4).

We next define two constants C0 > 0 and C1 > 0 by

C0 =

M∑
j=1

(
Lj max

1≤i≤N
{dij}

)
, and C1 =

1

N

M∑
j=1

(
L̃j

N∑
i=1

d2ij

)
.

Remark 2.2.1. We will regularly employ notations of the form O(h(N, q, k)), where h is an ex-

plicit function of N , q (the dimension of E), and k (some iteration counter). We use it to express

the fact that some variable is bounded by C h(N, q, k), where the constant C only depends on
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(
max1≤i≤N dij

)
j=1,...,M

and the Lipschitz moduli (Lj)j=1,...,M and (L̃j)j=1,...,M . With this conven-

tion in mind, we have

C0 = O(1) and C1 = O(1).

Remark 2.2.2. Our results can be applied to aggregative problems of the form

inf
x∈X

M∑
j=1

fj

( N∑
i=1

ĝij(xi)
)
,

i.e. of the same form as in (P), but without the coefficient 1
N . Indeed, it suffices to define gij = Nĝij

to come down to the formulation (P) and to use the fact that d(gij(Xi)) = Nd(ĝij(Xi)). The

introduction of the coefficient 1
N induces a natural scaling of the problem as N increases. It also

enables to us to highlight the convexification of the problem as N becomes large, assuming that

the coefficients dij are uniformly bounded.

We state in the following lemma a straightforward inequality, exhibiting the role of the constant

C0. Note that the role of the constant C1 will be revealed in Lemma 2.2.6.

Lemma 2.2.3. Let Assumption A be satisfied. For all i ∈ {1, . . . , N}, for all x−i ∈ X−i, xi and x′i
in Xi, it holds:

|J(x′i, x−i)− J(xi, x−i)| ≤
C0

N
.

2.2.2 The randomized problem

The randomized problem is obtained by replacing each optimization variable xi by a probability

measure µi ∈ Pδ(Xi). The contribution mappings gi(xi) are replaced by their integral with respect

to µi, Eµi

[
gi
]
. Denoting Pδ =

∏N
i=1 Pδ(Xi), we obtain

inf
µ∈Pδ

J (µ) := f
( 1

N

N∑
i=1

Eµi

[
gi
])

=

M∑
j=1

fj

( 1

N

N∑
i=1

Eµi

[
gij
])

. (PR)

The following equality justifies the denomination of the relaxed problem: given µ ∈ Pδ and given

N random variables Xi in Xi such that Xi ∼ µi, we have

J (µ) = f
( 1

N

N∑
i=1

E
[
gi(Xi)

])
. (2.2.1)

Remark 2.2.4. Working with probability measures with finite support, we do not need to equip the

sets Xi with a topology and to consider regularity assumptions on the mappings gi. Note that the

original problem and the randomized one do not necessarily have a solution under the standing

assumptions of the article.

Let J∗ and J ∗ denote the values of the primal problem (P) and the randomized problem (PR)

respectively. One is interested in comparing J∗ and J ∗. The next lemma gives a direct result for

one direction of this comparison.

Lemma 2.2.5. Let Assumption A hold true. Then −∞ < J ∗ ≤ J∗.

47



Proof. By the definitions of Eµi
[gij ] and Sj , we have that 1

N

∑N
i=1Eµi

[gij ] ∈ conv(Sj). Since fj is

Lipschitz-continuous over the bounded set conv(Sj), we deduce that J ∗ > −∞. Let x ∈ X . Define

µ = (δx1
, . . . , δxN

) ∈ Pδ. Then J (µ) = J(x). As a consequence, inequality J ∗ ≤ J∗ follows.

The randomization gap is then defined as

randomization gap = J∗ − J ∗ ≥ 0.

Next we prove a first upper bound of the randomization gap, of order O( 1
N ).

Proposition 2.2.6. Let Assumption A hold true. Let µ ∈ Pδ and let (Xi)i=1,...,N denote N

independent random variables such that Xi ∼ µi. Then,

E[J(X)]− J (µ) ≤ 1

2N2

M∑
j=1

(
L̃j

N∑
i=1

σ2
µi

[
gij
])

≤ C1

2N
, (2.2.2)

where X = (X1, . . . , XN ). As a consequence, J∗ − J ∗ ≤ C1

2N .

Proof. Let us define Yj = 1
N

(∑N
i=1 gij(Xi)

)
, for j = 1, . . . ,M . Let us set Y = (Yj)j=1,...,M . We

have

E
[
J(X)

]
= E

[
f(Y )

]
and J (µ) = f

(
E[Y ]

)
.

Since the variables Xi are independent, the random variables gij(Xi) are also independent (for fixed

j). It follows that

E
[∥∥Yj − E

[
Yj
]∥∥2

Ej

]
=

1

N2

N∑
i=1

E
[∥∥gij(Xi)− E[gij(Xi)]

∥∥2
Ej

]
=

1

N2

N∑
i=1

σ2
µi

[
gij
]
.

By Assumption A, we have

f(Y ) ≤ f
(
E[Y ]

)
+
〈
∇f(E[Y ]), Y − E[Y ]

〉
Ej

+
1

2

M∑
j=1

(
L̃j

∥∥Yj − E
[
Yj
]∥∥2

Ej

)
.

Taking the expectation of the above inequality and recalling the definition of C1, we deduce (2.2.2).

Remark 2.2.7. As we explained in the introduction, our analysis covers the case of a non-separable

cost f (when M = 1), however, when f is separable, it is useful to take this property into account.

The aim of this rem is to justify this fact. Let us assume (in this remark only) that f is indeed

separable, i.e. M > 1. Let us treat f as a non-separable function. It is easy to verify that the

mapping ∇f is Lipschitz continuous with modulus
(
maxj=1,...,M L̃j

)
; this estimate is tight. If we

do not take into account the additive structure of f in the proof of Proposition 2.2.6, we end up

with the following estimate:

E
[
J(X)

]
≤ J (µ) +

1

2N2

(
max

j=1,...,M
L̃j

) N∑
i=1

M∑
j=1

σ2
µi

[
gij
]
,

which is less precise than inequality (2.2.2). The same kind of comment could be made for the

constants appearing afterwards in the convergence results of our numerical method.
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We finish this subsection with an equivalent relaxed problem in the situation when the sets Xi

(resp. the contribution functions gi) are identical. We refer to this situation as the symmetric case.

Lemma 2.2.8. Suppose that there exists a set X and a function g : X → E such that Xi = X and

gi = g, for all i. Then,

J ∗ = inf
ν∈Pδ(X )

f
(
Eν [g]

)
. (2.2.3)

Proof. Let ν ∈ Pδ(X ). Take µ = (ν, . . . , ν) ∈ Pδ. It follows that f (Eν [g]) = J (µ). As a

consequence, infν∈Pδ(X ) f (Eν [g]) ≤ infµ∈Pδ
J (µ). On the other hand, let µ̄ = (µ̄1, . . . , µ̄N ) ∈ Pδ.

Take ν̄ =
∑N

i=1 µ̄i/N ∈ Pδ(X ). Then, we deduce that J (µ̄) = f (Eν̄ [g]). The conclusion follows.

The relaxed problem in (2.2.3) has a natural interpretation as a mean field relaxation: instead

of considering an optimization problem with N symmetric agents, we consider an arbitrarily large

number of agents and optimize their distribution ν.

2.2.3 Selection method

Suppose that a minimizer or an approximate minimizer µ of the randomized problem (PR) has

been obtained. We address in this subsection the issue of recovering an approximate minimizer of

the original problem (P) from µ.

A naive approach would consist in averaging the measures µi, assuming that the sets Xi are

convex. In such a case, one can define the point xi = Eµi
[Id]. Another approach, motivated

by Proposition 2.2.6, consists in sampling µ, that is, in simulating N independent random vari-

ables (X1, . . . , XN ), with distributions Xi ∼ µi. This can be done without additional structural

assumption on the sets Xi, moreover, Proposition 2.2.6 ensures that for any ε > 0,

P
[
J(X1, . . . , XN ) < J (µ) +

C1

2N
+ ε
]
> 0. (2.2.4)

Of course, one can realize several samplings of µ to increase the probability of finding a good

candidate for the original problem. We will refer to this approach as the selection method.

Example. Consider the following instance of the problem (P), where N is a large even number: minimize

{
J(x1, x2, . . . , xN ) = − 1

N

∑N
i=1 x

2
i +

(
1
N

∑N
i=1 xi

)2}
;

subject to xi ∈ [−1, 1], i = 1, . . . , N.
(2.2.5)

It is easy to see that x∗ is a minimizer of (2.2.5) if and only if x∗ has N/2 coordinates equal to 1

and the others equal to −1. In this example, the original and the relaxed problem have the same

value, J∗ = J ∗ = −1. The relaxed problem does not have a unique solution. One of them is

µ̃i =
1
2

(
δ−1 + δ1

)
. Averaging µ̃ as suggested above yields x̃ = (0, . . . , 0) and J(x̃) = 0. Thus in this

example, the averaging method yields a poor candidate, whatever the value of N .

On the other hand, the selection method yields good candidates when N is large. Indeed, assume

that P[Xi = −1] = P[Xi = 1] = 1/2. When N is large, by the law of large numbers [Tsy09], nearly

half of the random variables Xi are equal to 1 while the others are equal to −1, with probability

close to 1. Then in such a case X is almost a minimizer of (2.2.5).
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The next theorem provides a sharp estimate of the probability in (2.2.4) and confirms the interest

of the selection method for large values of N . It relies on a concentration inequality, McDiarmid’s

inequality [McD89], and its variant [Del15] (cf. Corollary 2.9.2) of “variance type”. It is quite

intuitive that if the probability measures µi have a small variance (in a sense to be specified), then

the selection method will be more efficient. The interest of taking into account the variances of the

probability distributions will be revealed in the analysis of the stochastic Frank-Wolfe algorithm in

Subsection 2.3.3.

Theorem 2.2.9. Let Assumption A be satisfied. Let µ ∈ Pδ and let X1, . . . , XN be N independent

random variables such that Xi ∼ µi. Let X = (X1, . . . , XN ). Then, for all ϵ > 0,

P
[
J(X) < J (µ) +

C1

2N
+ ϵ

]
≥ 1− exp

(
−2Nϵ2

C2
0

)
. (2.2.6)

Assume further that for all i = 1, . . . , N , there exists a constant vi such that

σ2
µi

[
J(·, x−i)

]
≤ v2i , (2.2.7)

for all x−i ∈ X−i. Then (2.2.6) can be strengthened as:

P

J(X) < J (µ) +

M∑
j=1

N∑
i=1

L̃j

2N2
σ2
µi

[
gij
]
+ ϵ

 ≥ 1− exp

− Nϵ2

2
(∑N

i=1Nv2i +
C0ϵ
3

)
 . (2.2.8)

Proof. Combining Lemma 2.2.3 and McDiarmid’s inequality [McD89], we obtain

P
[
J(X) < E

[
J(X)

]
+ ϵ
]
≥ 1− exp

(
−2Nϵ2

C2
0

)
.

Combining this estimate with the second inequality of Proposition 2.2.6, we obtain (2.2.6).

Estimate (2.2.8) is proved similarly, combining McDiarmid’s inequality of “variance type” proved

in Corollary 2.9.2 and the first inequality of Proposition 2.2.6.

We provide in the next lemma an explicit candidate for (2.2.7).

Lemma 2.2.10. Inequality (2.2.7) is satisfied with v2i = 1
N2

(∑M
j=1 L

2
j

)
σ2
µi
(gi).

Proof. We first state a general following property: given a probability measure µ and two maps h1
and h2 suitably defined, we have the inequality

σ2
µ

[
h1 ◦ h2

]
≤ L2σ2

µ

[
h2
]
, (2.2.9)

assuming that h1 is L-Lipschitz continuous. Let us prove this property. For any x, we have∥∥h1 ◦ h2(x)− Eµ[h1 ◦ h2]
∥∥2 = ∥∥h1 ◦ h2(x)− h1(Eµ[h2])

∥∥2
+ 2
〈
h1 ◦ h2(x)− h1(Eµ[h2]), h1(Eµ[h2])− Eµ[h1 ◦ h2]

〉
+
∥∥h1(Eµ[h2])− Eµ[h1 ◦ h2]

∥∥2.
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Taking the expectation, we obtain that

σ2
µ[h1 ◦ h2] = Eµ

[∥∥h1 ◦ h2 − h1(Eµ[h2])
∥∥2]− ∥∥h1(Eµ[h2])− Eµ[h1 ◦ h2]

∥∥2.
Since h1 is L-Lipschitz continuous, we have Eµ

[
∥h1 ◦ h2 − h1(Eµ[h2])∥2] ≤ L2σµ[h2]

2. Inequality

(2.2.9) follows immediately. Next, it is easy to verify that the function f is L-Lipschitz continuous,

with L =
(∑M

j=1 L
2
j

)1/2
. Using (2.2.9), we conclude that

σ2
µi

[
J(·, x−i)

]
≤ L2σ2

µi

[ 1
N

gi(·) + C
]
=

L2

N2
σ2
µi

[
gi
]
,

where C = 1
N

∑
i′ ̸=i gi′(xi′) is regarded as a constant. The estimate follows.

2.3 Stochastic Frank-Wolfe algorithm

2.3.1 Assumptions

We introduce two new assumptions, which will be in force until the end of the article.

Assumption B. For all j = 1, . . . ,M , the function fj : Ej → R is convex over conv(Sj).

Let µ1 and µ2 lie in Pδ. Take ω ∈ [0, 1]. Let µ = (µ1, . . . , µN ) be defined, for any i = 1, . . . , N ,

by µi = (1− ω)µ1
i + ωµ2

i . Here, the addition and the multiplication by a scalar are understood as

usual in the set of signed measures. In the sequel, we simply denote µ = (1−ω)µ1+ωµ2. We have

µ ∈ Pδ; moreover, Eµi
[gi] = (1 − ω)Eµ1

i
[gi] + ωEµ2

i
[gi], for any i = 1, . . . , N . Then, Assumption B

implies that J (µ) ≤ (1− ω)J (µ1) + ωJ (µ2). In words, the randomized problem (PR) is convex.

In this section, we address the numerical resolution of the randomized problem (and the original

problem) under Assumption B. Let us mention that this convexity assumption is natural for the ap-

plication problems described in the introduction. It allows the application of the Frank-Wolfe algo-

rithm (also called conditional gradient algorithm) [DH78], for which convergence can be established.

The Frank-Wolfe algorithm requires to solve at each iteration a subproblem. Here, the subproblems

can be decomposed in N optimization problems, which can be solved in parallel. This property is

particularly interesting, since we aim at solving instances of (P) with large values of N . We do not

detail here the practical resolution of the subproblems, which can only be investigated case by case.

Instead, we make the following assumption. Let us set A := {∇f(y) | y ∈ conv(G(X ))} ⊂ E .

Assumption C. For all i = 1, . . . , N , for all λ ∈ A, the problem

inf
xi∈Xi

⟨λ, gi(xi)⟩ (2.3.1)

has at least a solution. For all i = 1, . . . , N , we fix a map Si : A 7→ Xi such that for any λ ∈ A,

Si(λ) is a solution to (2.3.1).

The map Si can be understood as a best-response function corresponding to agent i. The

involved cost function is a linear combination of the contribution mappings gij , with j = 1, . . . ,M .

In problem (2.3.1), λ can be interpreted as a price variable associated with gi(xi).
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Remark 2.3.1. It is easy to find assumptions which ensure the existence of the map Si. For example,

one can assume that Xi is a compact set in a topological vector space and that gi is continuous.

Let us emphasize that Assumption C is essentially an assumption of numerical nature: Si should
be understood as the output of an (efficient) numerical procedure for the resolution of (2.3.1). The

algorithms described afterwards largely rely on evaluations of Si.

2.3.2 Basic Frank-Wolfe algorithm

We first describe a rather direct application of the Frank-Wolfe algorithm, which is referred to as

the basic Frank-Wolfe algorithm. The starting point of our numerical approach is the following

lemma, the proof of which is straightforward.

Lemma 2.3.2. Let λ ∈ A and let µ̄ = (µ̄1, . . . , µ̄N ) ∈ Pδ. Then, µ̄ is a solution to

inf
µ∈Pδ

〈
λ,

1

N

N∑
i=1

Eµi
(gi)
〉
. (2.3.2)

if and only if for all i = 1, . . . , N , µ̄i is supported in argminxi∈Xi
⟨λ, gi(xi)⟩.

The cost function in (2.3.2) should be regarded as a linearization of J , as needed in the abstract

formulation of the Frank-Wolfe algorithm in [DH78]. An immediate consequence of Lemma 2.3.2

is that (δS1(λ), . . . , δSN (λ)) is a solution to (2.3.2). The resolution of problem (2.3.2) is a key step

in the numerical procedures developed afterwards; let us emphasize that the maps Si(y) can be

evaluated independently from each other, i.e. the resolution of (2.3.2) can be parallelized.

Algorithm 2.1: Frank-Wolfe Algorithm

Initialization: µ0 ∈ Pδ ;

for k = 0, 1, . . . ,K do

Step 1: Resolution of the subproblems.

Set yk = 1
N

∑N
i=1Eµk

i

[
gi
]
and set λk = ∇f(yk);

for i = 1, . . . , N do

Compute x̄ki = Si(λk);

end

Step 2: Update.

Set µ̄k = (δx̄k
1
, . . . , δx̄k

N
);

Set µk+1 = (1− ωk)µ
k + ωkµ̄

k.

end

The convergence analysis performed afterwards relies on standard arguments (compare our proof

with [Jag13]). We introduce the primal gap γk and the primal-dual gap βk, defined by

γk = J (µk)− J ∗, βk = ⟨∇f(yk), yk − ȳk⟩, where: ȳk =
1

N

N∑
i=1

gi(x̄
k
i ). (2.3.3)

Note that βk can be evaluated numerically. The following lemma shows that βk is an upper bound

of the primal gap γk.
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Lemma 2.3.3. For all k ∈ N, γk ≤ βk.

Proof. Let k ∈ N. Let µ ∈ Pδ and let y = 1
N

∑N
i=1Eµi

[gi]. By Lemma 2.3.2, we have ⟨∇f(yk), ȳk⟩ ≤
⟨∇f(yk), y⟩. Thus, using the convexity of f , we obtain

βk = ⟨∇f(yk), yk − ȳk⟩ ≥ ⟨∇f(yk), yk − y⟩ ≥ f(yk)− f(y) = J (µk)− J (µ). (2.3.4)

Since µ is arbitrary, we deduce that βk ≥ J (µk)− J ∗ = γk.

We have the following convergence result.

Proposition 2.3.4. Let Assumptions A, B, and C hold. Then, in Algorithm 2.1, for any K ∈ N∗,

γK ≤ 2C1

K
.

Proof. As we will see, the result is a consequence of Lemma 2.9.3, with C = C1

2 and uk = 0. By

Assumption A,

f(yk+1) ≤ f(yk) + ⟨∇f(yk), yk+1 − yk⟩+
M∑
j=1

L̃j

2
∥yk+1

j − ykj ∥2.

We have yk+1 − yk = ωk(ȳ
k − yk). Therefore, by definition of βk,

f(yk+1) ≤ f(yk)− ωkβk + ω2
k

M∑
j=1

L̃j

2
∥ȳkj − ykj ∥2. (2.3.5)

By definition, ∥ȳkj − ykj ∥2 = 1
N2

∥∥∑N
i=1Eµk

i

[
gij(x̄

k
i )− gij(·)

]∥∥2, thus by Cauchy-Schwarz inequality,

∥ȳkj − ykj ∥2 ≤
1

N

N∑
i=1

∥∥Eµk
i

[
gij(x̄

k
i )− gij(·)

]∥∥2 ≤ 1

N

N∑
i=1

d2ij .

Combining the above estimate with (2.3.5) and using the inequality γk ≤ βk proved in Lemma

2.3.3, we obtain that γk+1 ≤ (1 − ωk)γk +
C1

2 ω2
k. Thus Lemma 2.9.3 applies, which concludes the

proof.

In the following remark, we give an alternative value of ωk in Step 2 of Algorithm 2.1, while

preserving the convergence rate from the previous proposition.

Remark 2.3.5. For any k ∈ N, denote hk(ω) = −ωβk +
Ck

2 ω2, where the constant Ck is defined by

Ck =
∑M

j=1 L̃j∥ȳkj − ykj ∥2. In view of inequality (2.3.5), the result of Proposition 2.3.4 remains true

if the sequence (ωk)k∈N is chosen such that for any k ∈ N, h(ωk) ≤ h(ω̄k). The result remains in

particular true for

ωk = argmin
ω∈[0,1]

h(ω) = min
( βk
Ck

, 1
)
. (2.3.6)
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The above proposition shows the convergence of the Frank-Wolfe algorithm. Yet the algorithm

only provides a relaxed solution. In order to get a solution to the original problem, one can use

the selection method introduced in Subsection 2.2.3. A first direct application of Proposition 2.2.6

yields the following. Let (X1, . . . , XN ) be N independent random variables such that Xi ∼ µk
i , for

all i. Then,

E
[
J(X)

]
≤ J∗ +

2C1

k
+

C1

2N
.

Therefore, from a theoretical point of view, there is no guaranty of improvements when k ≫ N

since, then, the error term 2C1

k becomes negligible in comparison with C1

2N . The following lemma

provides a convergence result (in probability) for the combination of the Frank-Wolfe algorithm

and the selection method, for a number of iterations k ≤ N .

Lemma 2.3.6. Let (µk)k∈N be the output of Algorithm 2.1. Let k ≤ N . Let ζ ∈ (0, 1). Let

n ∈ N∗ and let (Xj
i )

j=1,...,n
i=1,...,N be Nn independent random variables such that Xj

i ∼ µk
i . Let Xj =

(Xj
1 , . . . , X

j
N ). Then,

P
[

min
j=1,...,n

J(Xj) < J ∗ +
3C1

k

]
≥ 1− ζ, if n ≥ 2C2

0

C2
1

k2

N
ln
(1
ζ

)
. (2.3.7)

Proof. Since k ≤ N , we have C1

2N ≤ C1

2k . Therefore, by Theorem 2.2.9,

P
[

min
j=1,...,n

J(Xj) < J ∗ +
2C1

k
+

C1

2k
+ ϵ

]
≥ 1− exp

(
− 2Nϵ2n

C2
0

)
,

for any ϵ > 0. Take ϵ = C1

2k . If n satisfies (2.3.7), then exp
(
− 2Nϵ2n

C2
0

)
≤ ζ.

2.3.3 Stochastic Frank-Wolfe algorithm

At each iteration of Algorithm 2.1, a new point x̄ki is added to the support of each distribution

µk
i . Therefore, if at iteration K, the points (x̄ki )k=0,...,K−1 are distinct from each other (for each i),

then KN places are needed to store the iterate µK , which can be prohibitive as K becomes large.

We propose in this subsection a variant of Algorithm 2.1 which significantly mitigates the risk of

memory overflow. We call it the Stochastic Frank-Wolfe (SFW) algorithm, it is given in Algorithm

2.2 below.

Starting from an initialization x0 ∈ X , Algorithm 2.2 generates a sequence (xk)k∈N in X . Let

us emphasize that there is no probability distribution involved in the practical implementation of

Algorithm 2.2. However, for the analysis of the algorithm and for its description, it is convenient

to introduce µk = (δxk
1
, . . . , δxk

N
). With this notation at hand, we first observe that yk, as defined

in Step 1 of Algorithm 2.2, satisfies yk = 1
N

∑N
i=1Eµk

i
[gi]. Thus the Steps 1 of Algorithms 2.1 and

2.2 play exactly the same role. Let us focus next on Step 2 of Algorithm 2.2 and let us define

µ̄k = (δx̄1
i
, . . . , δx̄k

N
) and µ̂k = (1 − ωk)µ

k + ωkµ̄
k. In contrast with Algorithm 2.1, we do not

directly use µ̂k at the next iteration but instead employ our selection method so that µ̂k is reduced

to an N -uplet of Dirac measures. The application of the selection method is here simple since

µ̂k
i = (1− ωk)δxk

i
+ ωkδx̄k

i
. Thus, to simulate a random variable with distribution µ̂k

i , it suffices to
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Algorithm 2.2: Stochastic Frank-Wolfe Algorithm

Initialization: x0 ∈ X ;
for k = 0, 1, 2, . . . ,K do

Step 1: Resolution of the subproblems.
Compute yk = 1

N

∑N
i=1 gi(x

k
i );

for i = 1, 2, . . . , N do
Find x̄k

i ∈ argminxi∈Xi
⟨∇f(yk), gi(xi)⟩;

end

Step 2: Update.
Choose nk ∈ N∗. Set ωk = 2/(k + 2).;
for j = 1, 2, . . . , nk do

for i = 1, 2, . . . , N do

Simulate P k,j
i ∼ Bern(ωk), independently of all previously defined random variables;

Set x̂k,j
i = (1− P k,j

i )xk
i + P k,j

i x̄k
i ;

end

Set x̂k,j = (x̂k,j
i )i=1,...,N ;

end

Find xk+1 ∈ argmin{J(x)
∣∣x ∈ Xk}, where Xk = {x̂k,j , j = 1, 2, . . . , nk};

end

simulate a random variable P with Bernoulli distribution Bern(ωk) and to consider (1−P )xki +Px̄ki .

Using this method, Step 2 consists in simulating nk random variables (x̂k,j)j=1,...,nk
such that their

probability distribution is equal to µ̂k (to be rigorous, their probability distribution conditionally

to xk). Finally, Step 2 selects a random variable x̂k,j which minimizes J .

It is important to keep in mind that all variables involved in the algorithm (xk, x̄k, x̂k,j) and

all variables defined above (µk, µ̄k, µ̂k) are themselves random variables, since they depend on

the Bernoulli random variables P k,j
i . For the analysis of the algorithm, we need to consider the

filtration generated by the Bernoulli random variables. We introduce the set of indices I defined

by

I =
{
(k, j, i) | k ∈ N, j ∈ {1, . . . nk}, i ∈ {1, . . . , N}

}
∪
{
(0, 0, 0)

}
.

We equip the set I with the lexicographic order: given (k1, j1, i1) and (k2, j2, i2) in I, we write

(k1, j1, i1) < (k2, j2, i2) if and only if

[k1 < k2] or [k1 = k2 and j1 < j2] or [(k1, j1) = (k2, j2) and i1 < i2].

We further write (k1, j1, i1) ≤ (k2, j2, i2) if and only if (k1, j1, i1) < (k2, j2, i2) or (k1, j1, i1) =

(k2, j2, i2). Note that this order coincides with the simulation order of the random variables P k,j
i in

the algorithm. The relation ≤ defines a total order with minimal element (0, 0, 0). For any (k, j, i) ̸=
(0, 0, 0), we denote by (k, j, i)−1 the maximal element of the set {(k′, j′, i′) ∈ I | (k′, j′, i′) < (k, j, i)}.
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Finally, we consider the filtration (G)(k,j,i)∈I defined by

G(k,j,i) =

{
trivial σ−algebra, if (k, j, i) = (0, 0, 0),

σ
(
G(k,j,i)−1, P

k,j
i

)
, otherwise,

where σ
(
G(k,j,i)−1, P

k,j
i

)
denotes the σ-algebra generated by G(k,j,i)−1 and P k,j

i . Note that x̂k,ji is

G(k,j,i)-adapted and that xk and x̄k are G(k,1,1)−1-adapted.

Theorem 2.3.7. Let Assumptions A, B, and C hold true. Then, for all K = 1, . . . , 2N ,

E[γK ] ≤ 4C1

K
, where γK = J(xK)− J ∗.

Moreover, for all ϵ > 0,

P
[
γK <

4C1

K
+ ϵ
]
≥ 1− exp

(
−ϵ2N

2(vK + ϵmK/3)

)
, (2.3.8)

where vK = 2C2
0

K2(K+1)2

(
K−1∑
k=1

k(k+1)2

nk

)
and mK = C0

K(K+1)

(
max

k=1,...,K−1

(k+1)(k+2)
nk

)
. Finally, the fol-

lowing estimates quantify the variability of γK :

Var
[
γK
]
≤ 16C2

1

K2
+

vK
N

and E
[(

max
(
γK − 4C1

K
, 0
))2 ]

≤ vK
N

. (2.3.9)

The proof is postponed to Section 2.3.4. Let us note that the constants mK and vK involved in

the theorem depend on the sequence (nk)k=0,1,... but do not depend on N .

Corollary 2.3.8. Let A > 0. Assume that nk ≥ max
(
Ak2

N , 1
)
, for any k. Then, for all K =

1, . . . , 2N ,

P
[
γK <

4C1 + C0

K

]
≥ 1− exp

(
− A

12

)
.

Proof. Using k + 1 ≤ 2k, we obtain

vK ≤ 2C2
0

K2(K + 1)2

(
K−1∑
k=1

Nk(k + 1)2

Ak2

)
≤ 8NC2

0

AK2(K + 1)2

(
K−1∑
k=1

k

)

=
4NC2

0 (K − 1)K

AK2(K + 1)2
≤ 4NC2

0

AK2

and mK ≤ C0

K(K+1)

(
max

k=1,...,K−1

N(k+1)(k+2)
Ak2

)
≤ 6NC0

AK2 . Applying Theorem 2.3.7 with ϵ = C0

K , we

obtain that P
[
γK < 4C1+C0

K

]
≥ 1− p, with

p ≤ exp

 −(C0/K)2N

2
(
4NC2

0

AK2 + 6NC2
0

3AK3

)
 ≤ exp

(
−A

12

)
,

as was to be proved.

Remark 2.3.9. A variant of Algorithm 2.2 consists in setting xk+1 = xk if J(x̂k,j) ≥ J(xk) for all

j = 1, . . . , nk. Theorem 2.3.7 is still satisfied under this modification.
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2.3.4 Proof of Theorem 2.3.7 and comments

Step 1: proof of the convergence in expectation We make use of the notations µk, µ̄k, and

µ̂k, introduced right after Algorithm 2.2. We also introduce βk = ⟨∇f(yk), yk − ȳk⟩, where ȳk =
1
N

∑N
i=1 gi(x̄

k
i ). By construction, we have

J(xk+1) = min
j=1,...,nk

J(x̂k,j) ≤ 1

nk

nk∑
j=1

J(x̂k,j).

Recalling that J (µk) = J(xk), we deduce that γk+1 ≤ γk + ak + bk + ck, where

ak =
1

nk

nk∑
j=1

(
J(x̂k,j)− E

[
J(x̂k,j) | G(k,1,1)−1

])
,

bk =
1

nk

nk∑
j=1

(
E
[
J(x̂k,j) | G(k,1,1)−1

]
− J (µ̂k)

)
,

ck = J (µ̂k)− J (µk) = J (µ̂k)− J(xk).

The term ak does not play a significant role at the moment since its expectation is null. The term

bk must be understood as a relaxation cost, induced by the use of the selection method. The term

ck is estimated exactly as in Proposition 2.3.4: as was seen in its proof, we have ck ≤ −ωkβk+ω2
k
C1

2 .

A direct adaptation of Proposition 2.2.6 shows that

bk ≤ 1

2N2

M∑
j=1

N∑
i=1

L̃jσ
2
µ̂k

i
[gij ] ≤

1

2N2

M∑
j=1

N∑
i=1

L̃jωk(1− ωk)d
2
ij = ωk(1− ωk)

C1

2N
.

Combining the above estimates, we obtain

γk+1 ≤ γk + ak +
(
− ωkβk + ω2

k

C1

2

)
+ ωk(1− ωk)

C1

2N
. (2.3.10)

For the choice ωk = ω̄k, we have (1− ωk)/N = k/(N(k + 2)) ≤ ωk, since k ≤ 2N . It follows that

ωk(1− ωk)
C1

2N
≤ ω2

k

C1

2

and finally, since γk ≤ βk, we have γk+1 ≤ (1− ωk)γk + ω2
kC1 + ak. Next by Lemma 2.9.3,

γK ≤ 4C1

K
+ SK , where: SK =

K−1∑
k=0

(k + 1)(k + 2)

K(K + 1)
ak. (2.3.11)

We have E[ak] = 0, thus E[SK ] = 0 and finally E
[
γK
]
≤ 4C1

K .

Step 2: proof of the probability and variance estimates We next need to find an estimate of

P[SK ≥ ϵ]. For this purpose, we need to further decompose the term ak as a sum of random vari-

ables. A first observation is the following equality: E
[
J(x̂k,j) | G(k,1,1)−1

]
= E

[
J(x̂k,j) | G(k,j,1)−1

]
,

which easily follows from Lemma 2.9.5. As a consequence,

J(x̂k,j)− E
[
J(x̂k,j) | G(k,1,1)−1

]
=

N∑
i=1

U(k,j,i),
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where

U(k,j,i) = E
[
J(x̂k,j) | G(k,j,i)

]
− E

[
J(x̂k,j) | G(k,j,i)−1

]
.

We obtain the following decomposition of SK :

SK =

K−1∑
k=1

nk∑
j=1

N∑
i=1

(k + 1)(k + 2)

nkK(K + 1)
U(k,j,i).

Note that the index k starts at 1. Indeed, ω0 = 1, thus x̂0,j = x̄0 and then a0 = 0. Let us apply

Proposition 2.9.1 to SK . We have E
[
U(k,j,i) | G(k,j,i)−1

]
= 0. Viewing the term J(x̂k,j) as a function

F of the random variables A := (P k′,j′

i′ )(k′,j′,i′)<(k,j,i), B := P k,j
i , and C := (P k′,j′

i′ )(k,j,i)<(k′,j′,i′), we

can apply Lemma 2.9.4 to U(k,j,i), with δ = C0/N (by Lemma 2.2.3). This yields

U(k,j,i) ≤
C0

N
and E

[
U2
(k,j,i) | G(k,j,i)−1

]
≤ ωk(1− ωk)C

2
0

N2
.

Therefore, Proposition 2.9.1 applies to P[SK ≥ ϵ], where the constants m and v are given by

m = max
k=1,...,K−1

(k + 1)(k + 2)

nkK(K + 1)

C0

N
=

mK

N
,

v =

K−1∑
k=1

nk∑
j=1

N∑
i=1

((k + 1)(k + 2)

nkK(K + 1)

)2 2kC2
0

(k + 2)2N2
=

vK
N

.

This proves estimate (2.3.8). Recalling that γK ≤ 4C1

K + SK a.s., we obtain

Var
[
γK
]
≤ E

[
γ2K
]
≤ E

[(4C1

K
+ SK

)2 ]
=

16C2
1

K2
+ E

[
S2
K

]
.

Next by Proposition 2.9.1, E
[
S2
K

]
≤ vK/N . The first inequality in (2.3.9) follows. The second

inequality follows from the inequality: max
(
γK − 4C1

K , 0)2 ≤ S2
K .

Remark 2.3.10. Let us set hk(ω) = −ωβk + ω2C1

2 + ω(1 − ω) C1

2N . If for all k ∈ N, we have

hk(ωk) ≤ hk(2/(k + 2)), then the convergence in expectation of Theorem 2.3.7 still holds, i.e.

E
[
γK
]
≤ 4C1/K, in view of inequality (2.3.10). In particular, one can take

ωk = argmin
ω∈[0,1]

hk(ω) = max

(
min

(
βk − C1/2N

C1(1− 1/N)
, 1

)
, 0

)
. (2.3.12)

2.3.5 A speed-up of the SFW algorithm

Step 1 of Algorithm 2.2 requires to solve N independent subproblems. It turns out that only a

subset of those subproblems need to be solved for the implementation of Step 2. At iteration k

consider the following set:

Ik =
⋃

j=1,2,...,nk

{
i ∈ {1, . . . , N} |P k,j

i = 1
}
.
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If i /∈ Ik, then x̂k,ji = xki , in other words, for such an index i, it is not necessary to evaluate

Si(λk). A speed-up of the SFW algorithm can therefore be obtained by simulating the Bernoulli

random variables before Step 1, next by evaluating Si(λk) only for the indices i in Ik, and finally

by computing x̂k,j and xk+1 as before. The expectation of the number of subproblems to be solved

at iteration k is given by

E
[
|Ik|
]
=

N∑
i=1

P
[
i ∈ Ik

]
= N

(
1− P

[
1 /∈ Ik

])
= N

(
1− P

[
P k,j
1 = 0, ∀j = 1, . . . , nk

])
= N

(
1−

( k

k + 2

)nk
)
.

Note that this speed-up technique cannot be applied if ωk is chosen according to formula (2.3.12).

Indeed, this formula requires to evaluate βk, which implies that the N subproblems must all be

solved.

2.3.6 Stopping time strategy

In Algorithm 2.2, the number of samplings nk is chosen at the beginning of Step 2. We consider

here a variant: we generate a sequence of random variables x̂k,j with probability distribution equal

to µ̂k (conditionally to G(k,1,1)−1); the variables are constructed via Bernoulli variables independent

from each other. We define nk as the first index j such that

J(x̂k,j) ≤ J (µ̂k) +
(C1

2
+ C0

)
ω2
k, (2.3.13)

or, equivalently,

f(ŷk,j) ≤ f
(
(1− ωk)y

k + ωkȳ
k
)
+
(C1

2
+ C0

)
ω2
k, (2.3.14)

where ȳk = 1
N

∑N
i=1 gi(x̄

k
i ) and ŷk,j = 1

N

∑N
i=1 gi(x̂

k,j
i ). The next iterate is defined by xk+1 = x̂k,nk .

Lemma 2.3.11. Let (xk)k∈N denote the sequence obtained with the stopping rule (2.3.13). Then

J(xK+1)− J ∗ ≤ 4(C1 + C0)

K
, ∀K = 1, . . . 2N, a.s.

Moreover,

E
[
nk

]
≤
(
1− exp

(
− 4N

(k + 2)3

))−2
, ∀k = 1, . . . ,K.

Proof. Let x̂ be a random variable with probability distribution equal to µ̂k, conditionally to

G(k,1,1)−1. Then, for all ϵ > 0, estimate (2.2.8) of Theorem 2.2.9 yields:

P
[
J(x̂) ≥ J (µ̂k) +

C1

2N
ωk(1− ωk) + ϵ

∣∣∣G(k,1,1)−1

]
≤ pϵ (2.3.15)

where pϵ = exp
(

−Nϵ2

2(ωk(1−ωk)C2
0+

C0
3
ϵ)

)
. For ϵ = C0ω

2
k, we have

pϵ = exp

(
−NC2

0ω
4
k

2
(
ωkC

2
0 − 2

3ω
2
kC

2
0

)) ≤ p := exp

(
−Nω3

k

2

)
= exp

(
−4N

(k + 2)3

)
.
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Recalling that C1

2N ωk(1− ωk) ≤ C1

2 ω2
k, we deduce that

P
[
J(x̂) ≥ J (µ̂k) +

(C1

2
+ C0

)
ω2
k

∣∣∣G(k,1,1)−1

]
≤ p.

Now, let us consider a sequence of independent random variables (x̂k,j)j=1,... (conditionally to

G(k,1,1)−1), with conditional probability distribution µ̂k. By estimate (2.3.15),

P
[
nk = j

]
≤ P

[
J(x̂k,j

′
) ≥ J (µ̂k) +

(C1

2
+ C0

)
ω2
k, ∀j′

∣∣∣G(k,1,1)−1

]
≤ pj−1.

We finally deduce that E
[
nk

]
≤
∑∞

n=1 jp
j−1 = 1

(1−p)2 , which proves the second part of the lemma.

For the first part of the lemma, it suffices to observe that

J(xk+1) ≤ J (µ̂k) +
(C1

2
+ C0

)
ω2
k ≤ J(xk)− βkωk + (C1 + C0)ω

2
k,

and to conclude with Lemma 2.9.3.

2.3.7 Distributed algorithm

In this subsection we present a privacy-preserving implementation of Algorithm 2.2. The Algorithm

2.3 is equivalent to Algorithm 2.2; the instructions are distributed over an operator, N agents,

a simulator, and an aggregator, who communicate with each other. Roughly speaking, the

operator sets up prices that are sent to the agents, which compute independently from each other

their best-response. The aggregator computes in a confidential fashion the aggregate associated

with a given value of (xi)i=1,...,N . The simulator implements the random variables P j,k
i of the

Stochastic Frank-Wolfe algorithm.

More precisely, at the beginning of iterattion k of Algorithm 2.3, the operator sends a price λk

to the agents, who calculate their best-response. The aggregator sends the corresponding aggregate

ȳk to the operator, who can compute the primal-dual gap βk and can fix the value of the stepsize

ωk. Next the simulator realizes stochastic simulations, communicated to the agents. Only the

aggregate associated with each simulation, ŷk,j , is communicated to the operator. The operator

decides when to stop the simulation phase through the logical variable test. For example, test can

be set to true as long as j < nk, for predefined values of nk. The variable test can also be designed

so as to implement the stopping rule (2.3.14) of Subsection 2.3.6. Finally, the operator identifies

the number j∗ of the simulation that has yielded the best aggregate and communicates it to the

agents.

The key point in this algorithm is that the operator never receives information that is specific to

a given agent: it only collects aggregates (the variables ȳk, ŷk,j , and yk). Similarly, the agents have

only access to the prices λk and to j∗. We do not detail here algorithms used by the aggregator to

compute the aggregate and refers the reader to [BBG+20], which investigates a similar approach for

preserving privacy, with an operator that only has access to aggregates (note that the underlying

mathematical method is different from ours). It is proposed in that reference to use a cryptographic

protocol called secure multiparty computation for the non-intrusive computation of aggregates,

taken from [SMZ+16] and [ABL+04].
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Algorithm 2.3: Distributed SFW Algorithm

[Agents] Initialization: x0 ∈ X .

[Aggregator] Compute and send y0 = 1
N

∑N
i=1 gi(x

0
i ) to Operator.

for k = 0, 1, 2, . . . ,K do
[Operator] Compute and send λk = ∇f(yk) to the Agents.
for i = 1, 2, . . . , N do

[Agent i] Compute x̄k
i ∈ Si(λk).

end for
[Aggregator] Compute and send ȳk = 1

N

∑N
i=1 gi(x̄

k
i ) to Operator.

[Operator] Compute βk = ⟨λk, yk − ȳk⟩.
[Operator] Compute, send ωk with (2.3.12) or with ωk = 2

k+2 to Simulator.
[Operator] Set j = 0 and send test = true to Simulator.
while test do

[Operator] Increment j.
for i = 1, 2, . . . , N do

[Simulator] Simulate and send P k,j
i ∼ Bern(ωk) to Agent i.

[Agent i] Set x̂k,j
i = (1− P k,j

i )xk
i + P k,j

i x̄k
i .

end for
[Aggregator] Compute, send ŷk,j = 1

N

∑N
i=1 gi(x̂

k,j
i ) to Operator.

[Operator] Update and send test to Simulator.
end while
[Operator] Find j∗ ∈ argmin

j′=1,...,j
f(ŷk,j

′
). Set yk+1 = ŷk,j

∗
.

[Operator] Send j∗ to the Agents.
for i = 1, 2, . . . , N do

[Agent i] Set xk+1
i = x̂k,j∗

i .
end for

end for
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2.4 Refined gap estimates

2.4.1 Nonconvexity measure and gap estimate

We give in this subsection a refinement of the randomization gap obtained in Proposition 2.2.6.

Our analysis relies on the concept of nonconvexity measure, introduced in [Cas75].

Definition 2.4.1. Given a subset K of E , we call nonconvexity measure of K the number ρ(K)

defined by

ρ(K) =

(
sup

y∈conv(K)
inf

µ∈Pδ,
Eµ[Id]=y

σµ
[
Id
]2)1/2

,

where Id: E → E denotes the identity mapping.

The ”nonconvexity measure” terminology is motivated by the following: if K is convex, then

obviously ρ(K) = 0 and conversely, if ρ(K) = 0, then K is dense into conv(K). We have the

following two properties, easily verified. The map ρ is homogeneous in the following sense: given

a ∈ R, we have ρ(aK) = |a|ρ(K). Moreover ρ(K) ≤ d(K), where d(K) is the diameter of K. Another

particularly interesting property for our aggregative problem is the sub-additivity of ρ(·)2: given

two subsets K1 and K2, we have ρ(K1 +K2)
2 ≤ ρ(K1)

2 + ρ(K2)
2, see [Cas75, Theorem 1]. We will

use an improvement of this inequality in the proof of Theorem 2.4.4, based on the Shapley-Folkman

theorem.

The next lemma provides a general relaxation estimate based on the nonconvexity measure of

the feasible set. Let us emphasize that the central idea behind this result is the same as the one

in the proof of Proposition 2.2.6. The only difference is the point of view, which is here geometric

while it was previously probabilistic.

Lemma 2.4.2. Let K be a subset of E. Let F be a differentiable real-valued function defined on

some neighborhood of conv(K). Assume that ∇F is L̃-Lipschitz continuous over conv(K). Then,

inf
y∈K

F (y) ≤
(

inf
y∈conv(K)

F (y)
)
+

L̃

2
ρ(K)2.

Proof. Let y ∈ conv(K). Let µ ∈ Pδ(K) be such that Eµ[Id] = y. Then, since ∇F is L̃-Lipschitz

continuous, we have

inf
y′∈K

F (y′) ≤ Eµ[F ] ≤ F (y) +
L̃

2
σ2
µ

[
Id
]
.

Minimizing the right-hand side with respect to µ, we obtain that

inf
y′∈K

F (y′) ≤ F (y) +
L̃

2
ρ(K)2.

Minimizing the result with respect to y yields the announced estimate.

62



Some notations are needed for the application of Lemma 2.4.2 to (P). We set

g̃ij(xi) =
√

L̃j gij(xi), g̃i(xi) =
(
g̃ij(xi)

)
j=1,...,M

f̃j(yj) = fj

(
yj√
L̃j

)
, f̃(y) =

M∑
j=1

f̃j(yj).

Obviously, J(x) = f̃
(
1
N

∑N
i=1 g̃i(xi)

)
=
∑M

j=1 f̃j
(
1
N

∑N
i=1 g̃ij(xi)

)
. Finally we denote

Yi = g̃i(Xi) and Y =
1

N

N∑
i=1

Yi.

We give next two new formulations of problems (P) and (PR), revealing the geometric nature

of the relaxation technique employed so far.

Lemma 2.4.3. We have

J∗ = inf
y∈Y

f̃(y), (PG)

J ∗ = inf
y∈conv(Y)

f̃(y). (PGR)

Proof. The first equality is straightforward. For the second one, it suffices to observe that conv(Y) =
1
N

∑N
i=1 conv(Yi) and that conv(Yi) =

{
Eµi

[g̃i] | µi ∈ Pδ(Xi)
}
.

We introduce the following constants:

Di =

M∑
j=1

L̃jd
2
ij , D[k] = max

K⊆{1,...,N}
|K|=k

∑
i∈K

Di. (2.4.1)

Theorem 2.4.4. Let Assumption A hold true. It holds:

J∗ − J ∗ ≤ 1

2N2

(
max

Q⊆{1,...,N}
|Q|=q∧N

∑
i∈Q

ρ(Yi)
2

)
≤ D[q ∧N ]

2N2
. (2.4.2)

Note thatD[N ] = NC1, thus the new gap estimate is the same as the one obtained in Proposition

2.2.6 when q ≥ N and it is strictly better when q < N .

Proof of Theorem 2.4.4. We let the reader verify that ∇f̃ is 1-Lipschitz. Then Lemma 2.4.3 and

the homogeneity of ρ yield

J∗ − J ∗ ≤ 1

2
ρ(Y)2 ≤ 1

2N2
ρ

(
N∑
i=1

Yi

)2

.

Applying [Cas75, Theorem 2], we obtain that

ρ

(
N∑
i=1

Yi

)2

≤ max
Q⊆{1,...,N}
|Q|=q∧N

∑
i∈Q

ρ(Yi)
2,
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which proves the first inequality. Observing that

ρ(Yi)
2 ≤ d(Yi)

2 ≤
M∑
j=1

d
(
g̃ij(Xi)

)2
=

M∑
j=1

L̃jd
(
gij(Xi)

)2
= Di,

we obtain the second inequality.

2.4.2 Duality and price of decentralization

In this subsection we introduce a dual problem (we work again under Assumption B) and investigate

its connection with the geometric relaxed problem (PGR). This allows us to obtain a last refinement

of the randomization gap. For all i = 1, . . . , N and for all λ ∈ E , we introduce

Φi(λ) = inf
xi∈Xi

⟨λ, g̃i(xi)⟩, Yi(λ) = argmin
yi∈Yi

⟨λ, yi⟩, Xi(λ) = argmin
xi∈Xi

⟨λ, g̃i(xi)⟩.

We refer to the following problem as the dual problem:

sup
λ∈E

(
− f̃∗(λ) +

1

N

N∑
i=1

Φi(λ)
)
. (D)

Let D∗ denote the value of Problem (D).

Assumption D. The function f : E → R is lower semi-continuous and convex, and the set conv(Y)

is closed.

Remark 2.4.5. Assume that E is finite-dimensional. If the sets Xi are compact and the maps g̃i
continuous, then the sets Yi = g̃i(Xi) are also compact. It is then easy to verify with Carathéodory’s

theorem that conv(Yi) is also compact, thus closed, which finally implies Assumption D.

Lemma 2.4.6. The problem (PGR) has a solution.

Proof. This is a direct application of [BC11, Theorem 11.9].

The next lemma provides a duality result and a characterization of optimal solutions for problem

(PGR).

Lemma 2.4.7. Let Assumptions A, B, C, and D hold true. Then, J ∗ = D∗ and the dual problem

(D) has at least one solution. Fix a solution λ to Problem (D). Let y ∈ E. Then, y is a solution to

(PGR) if and only if y ∈ ∂f̃∗(λ) and y ∈ 1
N

∑N
i=1 conv

(
Yi(λ)

)
.

Proof. Let h denote the indicatrix function of conv(Y). By Assumption A, the domain of f̃ contains

a neighborhood of conv(Y). By Assumption D, h is lower semi-continuous. Therefore, the Fenchel-

Rockafellar theorem [Roc97] applies and yields

J ∗ = inf
y∈E

(
f(y) + h(y)

)
= sup

λ∈E

(
− f̃∗(λ)− h∗(−λ)

)
.

64



Moreover, the supremum in the right-hand side is a maximum. We have

−h∗(−λ) = inf
y∈conv(Y)

⟨λ, y⟩ = inf
y∈Y

⟨λ, y⟩ = 1

N

N∑
i=1

Φi(λ).

As a consequence, J ∗ = D∗ and problem (D) has at least one solution.

Now let us fix a solution λ to the dual problem (D). Let y ∈ E . Then y is a solution if and

only if (i) f̃(y) + f̃∗(λ) = ⟨λ, y⟩ and (ii) h(y) + h∗(−λ) = −⟨λ, y⟩. The condition (i) is equivalent

to y ∈ ∂f̃(λ). The condition (ii) is equivalent to

y ∈ conv(Y) and ⟨λ, y⟩ = −h∗(−λ) = inf
y′∈Y

⟨λ, y′⟩.

Thus (ii) ⇐⇒ y ∈ Y , where Y = argmin
y′∈conv(Y)

⟨λ, y′⟩. We further have

Y = conv

(
argmin
y′∈Y

⟨λ, y′⟩

)
= conv

( 1

N

N∑
i=1

Yi(λ)
)
=

1

N

N∑
i=1

conv
(
Yi(λ)

)
,

which concludes the proof.

Remark 2.4.8. If f̃ is differentiable on E , with a Lipschitz-continous gradient, then f̃∗ is strongly

convex (see [BC11, Theorem 18.15]), which implies that (D) has a unique solution.

Let us fix a solution λ to the dual problem until the end of the subsection. Let us consider

Jdec = inf
x∈X

J(x), subject to: xi ∈ Xi(λ), ∀i = 1, . . . , N.

In words, we restrict Xi to the best-responses corresponding to the dual variable λ. Following the

terminology of [Wan17], we call price of decentralization the real number p = Jdec − J∗.

Proposition 2.4.9. Let Assumptions A, B, C, and D hold true. It holds:

p ≤ Jdec − J ∗ ≤ 1

2N2

(
max

Q⊆{1,...,N}
|Q|=q∧N

∑
i∈Q

ρ
(
Yi(λ)

)2)
.

Proof. The definition of Jdec and Lemma 2.4.7 respectively yield:

Jdec = inf
y∈ 1

N

∑N
i=1 Yi(λ)

f̃(y) and J ∗ = inf
y∈ 1

N

∑N
i=1 conv(Yi(λ))

f̃(y).

The announced estimate follows then from Lemma 2.4.2 and [Cas75, Theorem 2], as in the proof

of Theorem 2.4.4.

Remark 2.4.10. The randomization gap is bounded from above by Jdec − J ∗. Moreover, one can

show that ρ(Yi(λ)) ≤ ρ(Yi). Thus Proposition 2.4.9 provides a last refinement of the gap estimate

(2.4.2).
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2.5 Comments on numerical aspects and examples

2.5.1 Literature comparison

Let us compare our results and our method with the work of Wang [Wan17]. Our gap estimate,

as well as our estimate of the price of decentralization, are of order O(min(q,N)/N2), while the

estimates obtained by applying [Wan17, Theorem 3.5] are of order O(q2/N2). We emphasize that

our first gap estimate, of order O(1/N), already improves [Wan17] when q ≫
√
N . Note that the

geometric relaxation employed in Section 2.4.1 is the same as the one used in [Wan17].

Let us compare our algorithmic approaches. At a general level, one can observe that we have

a primal approach, while Wang solves the dual problem to the relaxed problem. Our approach is

restricted to the case where f is differentiable, while the dual approach allows to tackle the case of

hard constraints (for example when f is the indicator function of some convex set). Both approaches

leverage the decomposability of the problem into N problems and require that the subproblems

can be easily solved. Let us emphasize however that we only need to be able to compute a single

solution for those problems, while [Wan17, Algorithm 2] requires to compute the full set of ξ-optimal

solutions, which may be much more difficult. Our algorithm does not require to perform Shapley-

Folkman decompositions, contrary to [Wan17]. This is a major advantage when the dimension of

the aggregate q is very large. Also, we do not need to evaluate f∗. As a counterpart, we are only

able to find O(1/N)-optimal solutions, while the algorithm of [Wan17] can find O(q2/N2)-optimal

solutions. The design of a method for the computation of O(q ∧N/N2)-solutions will be the topic

of future research.

2.5.2 Social welfare example

A particularly interesting instance of (P) is the social welfare optimization problem investigated in

a closely related paper by Mengdi Wang [Wan17]. The cost function is the following:

inf
xi∈Xi

f0

(
1

N

N∑
i=1

hi(xi)

)
+

1

N

N∑
i=1

li(xi). (2.5.1)

Following her terminology, the function hi is the contribution of agent i to some common goods, f0
is a social cost function of the common goods, and li describes the individual preference of agent i.

There are various applications fitting into the framework of (2.5.1), see [Wan17]. In particular, some

power system management problems can be modeled as (2.5.1). Such a problem is investigated in

[SAB+23]: xi represents the production profile of the generator i, li(xi) is its individual production

cost, f0 denotes the demand elasticity or, equivalently, a penalty function that depends on the

difference between the average production and some inflexible demand D (e.g. f0 := ∥ · −D∥2) so
as to penalize the deviation of the overall production from the inflexible demand.

Let us also mention the resource allocation problems, investigated in [BBG+20], for example.

These problems are of the form (2.5.1), where f0 is the indicator function (as defined in [BC11,

Example 1.25]) of a given point y ∈ E , modelling the resource to be allocated over the agents.

These problems find applications in energy management (see for example [GPA21] and [JBGO18]).
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They do not fit to the current framework, since the indicator function is not differentiable, but can

be reasonably well approximated, replacing the indicator by a penalty function.

2.5.3 Discussion on the case of finite feasible sets

The stochastic Frank-Wolfe algorithm investigated in the previous sections was motivated by the

difficulty of manipulating probability measures, from a numerical point of view. However, when

the sets Xi are finite, with relatively low cardinality, it is possible to store probability measures

with possibly full support and some other numerical methods can be used to solve the randomized

problem. Let us assume (in this subsection only) that the sets Xi are of cardinality ni ∈ N and

that Xi = {x1
i , . . . ,x

ni

i }. Then the randomized problem reads:

min
ν=(ν1,...,νN )

f
( 1

N

N∑
i=1

ni∑
ℓ=1

νℓi gi(x
ℓ
i)
)
, subject to: νi ∈ ∆(ni), (2.5.2)

where ∆(ni) denotes the (ni − 1)-simplex, i.e.

∆(ni) =
{
ν ∈ Rni

∣∣∣ ni∑
ℓ=1

νℓ = 1 and νℓ ≥ 0, ∀ℓ = 1, . . . , ni

}
.

The problem is a convex program on a Cartesian product ofN simplices. Let us first note that in this

framework, Assumption C is trivially verified, since problem (2.3.1) is just a minimization problem

over Xi which can be solved by enumeration. Moreover any variant of the Frank-Wolfe algorithm

can be implemented, in order to solve the randomized problem in a faster way. We refer the reader

to [Jag13, LJJ15]. Some other methods could also be implemented. The problem could be solved

with the projected gradient descent algorithm, but the projection on the simplices is expensive

(see [Con16]). Instead, the problem can be naturally addressed with the mirror descent algorithm

[BT03] (see in particular the entropic descent algorithm in Section 5), and with accelerated versions

of the entropic descent algorithm [KBB15].

Let us observe that if we require ν to have integer entries in the problem (2.5.2), then we are back

to the original problem. Indeed, the elements of the simplex with integer entries are its vertices,

that is, the vectors of the form (0, . . . , 0, 1, 0, . . . , 0). Therefore the original problem can be viewed

as a mixed-integer convex program (MICP) and can be addressed numerically with combinatorial

techniques, see [BKL12, CLV20] and the references therein.

2.5.4 Aggregative optimal control

We describe here a large-scale optimal control problem of the form of problem (P), with an infinite-

dimensional aggregate space. We verify Assumptions A, B, and C and we discuss the applicability

of the Stochastic Frank-Wolfe algorithm.

Let us first fix the data of the problem. For any i = 1, . . . , N , we consider: an initial condition

z0i ∈ Rn, a control set Ui ⊆ Rm, a dynamics Fi : (zi, ui) ∈ Rn × Ui 7→ Fi(zi, ui) ∈ Rn, and a

contribution function ϕi : Rn × Ui → Rk. We also consider a social cost ℓ : Rk → R. We make the

following assumptions:
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1. Regularity and boundedness. For any i = 1, . . . , N ,

• Ui is non-empty and compact

• Fi is continuous, Lipschitz continuous with respect to zi, uniformly with respect to ui;

moreover, there exists a constantKi such that ∥Fi(zi, ui)∥ ≤ Ki(1+∥zi∥), for any (zi, ui) ∈
Rn × Ui

• ϕi is continuous; moreover, there exists a function Ri : R+ → R+ such that ∥ϕi(zi, ui)∥ ≤
Ri

(
∥zi∥+ ∥ui∥

)
, for any (zi, ui) ∈ Rn × Ui.

2. Regularity of the social cost. The function ℓ is continuously differentiable, moreover, ℓ and ∇ℓ

are Lipschitz continuous with moduli Lℓ and L∇ℓ, respectively.

3. Convexity assumption. For any i = 1, . . . , N , for any y ∈ Rk, for any zi ∈ Rn, we define

Zi(y, zi) the set of all elements (z̄1, z̄2) in Rn+1, where there exists ui ∈ Ui, such that z̄1 =

Fi(zi, ui) and z̄2 ≥ ⟨∇ℓ(y), ϕi(zi, ui)⟩. The set Zi(y, zi) is convex.

Let us mention a particular case in which the above convexity assumption is true: for any

i = 1, . . . , N , for any y ∈ Rk, for any zi ∈ Rn,

• For any zi, the map ui 7→ Fi(zi, ui) is affine.

• The set Ui is convex and the function ui ∈ Ui 7→ ⟨∇ℓ(y), ϕi(zi, ui)⟩ is convex.

For any i = 1, . . . , N , consider the set Xi of pairs (zi, ui) ∈ W 1,∞(0, T ;Rn) × L∞(0, T ;Rm)

satisfying

żi(t) = Fi(zi(t), ui(t)), zi(0) = z0i , ui(t) ∈ Ui, for a.e. t ∈ (0, T ).

A direct application of Gronwall’s lemma shows that for any (zi, ui) ∈ Xi, we have ∥zi∥L∞(0,T ;Rn) ≤
K̃i, where K̃i = (1 + ∥yi0∥) exp(KiT )− 1.

The aggregative optimal control problem of interest is defined as follows:

inf
(zi,ui)Ni=1∈

∏N
i=1 Xi

∫ T

0
ℓ
( 1

N

N∑
i=1

ϕi

(
zi(t), ui(t)

))
dt. (2.5.3)

It is a special case of problem (P) with m = 1, E1 = E = L2(0, T ;Rk), and

gi : (zi, ui) ∈ Xi 7→
(
t ∈ (0, T ) 7→ ϕi(zi(t), ui(t))

)
∈ L2(0, T ;Rk)

f : y ∈ L2(0, T ;Rk) 7→
∫ T
0 ℓ(y(t)) dt.

Problem (2.5.3) can be seen as a nonconvex optimal control problem with state variable (zi)
N
i=1.

It finds application in energy management, in the situations mentioned in the introduction and in

particular those involving storage devices, for which the dynamics of the state-of-charge must be

taken into account. Once again we refer the reader to [SAB+23], which considers a convex stochastic

aggregative optimal control problem. In general, only dynamic-programming-based methods can

provide global solutions to nonlinear optimal control problems. They are not applicable here

because of the high dimension of the state variable, equal to Nn.
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It is easy to verify that ∇f is continuously differentiable and that f and ∇f are Lipschitz-

continuous with moduli
√
TLℓ and L∇ℓ, respectively. Let K̂i be an upper bound of supui∈Ui

∥ui∥, for
all i ∈ 1, . . . , N . Then gi(Xi) is bounded in L2(0, T ;Rk), with diameter bounded by 2

√
TRi(K̃i+K̂i).

Therefore, Assumption A is satisfied. If ℓ is convex, then f is also convex and then Assumption B

holds true. Let us verify Assumption C. Given y ∈ G(X ), the problem (2.3.1) to be solved at each

iteration of the SFW algorithm reads

inf
(zi,ui)∈Xi

∫ T

0

〈
∇ℓ(y(t)), ϕi(zi(t), ui(t))

〉
dt. (2.5.4)

This is an optimal control with state variable zi, which falls into the class of problems introduced

in [FR75, Chapter III, Theorem 4.1] and therefore possesses a solution. It the dimension of the

state variable, n, is small, then it can be solved by dynamic programming. We refer the reader to

[FF13].

2.5.5 Supervised learning problems

We describe and discuss here two applications of problem (P) in the context of supervised learning.

Neural networks with one hidden layer We refer the reader to [CB18, MMN18, MMM19].

Consider a neural network of the form 1
N

∑N
i=1 σ∗(a, xi), where a ∈ Rd is the feature vector,

x = (xi)
N
i=1 ∈ (RD)N are the network parameters (to be optimized), and σ∗ : Rd×RD → R an acti-

vation function. We consider a loss function φ : R → R+. Given a data set (aj , bj)
M
j=1 ∈ (Rd×R)M ,

the learning problem of interest writes

inf
(xi)Ni=1∈(RD)N

1

M

M∑
j=1

φ
(
bj −

1

N

N∑
i=1

σ∗(aj , xi)
)
. (2.5.5)

It is of the form (P), with E = RM , Ej = R, fj(yj) = φ(bj − yj)/M , gij(xi) = σ∗(aj , xi). Assume

that the set {σ∗(aj , x) |x ∈ RD, j ∈ {1, . . . ,M}} has a bounded diameter d̄. Assume moreover

that φ is continuously differentiable and that ∇φ is L∇φ-Lipschitz continuous. Then Assumption

A is satisfied and we have Di = L∇φd̄
2, for the coefficients Di introduced in (2.4.1). Therefore, by

Theorem 2.4.4, the optimality gap is bounded by

(M ∧N)L∇φd̄
2

2N2
.

Moreover, if φ is convex, then Assumption B holds true. The resolution of the subproblems (2.3.1)

is not easy in general, we refer the reader to [dP20] where the linearized problems are shown to be

solvable by second-order cone programming in the case of ReLu activation functions.

Note that we are here in the symmetric case, as defined at the end of Section 2.2.2. The

mean-field relaxation proposed in Lemma 2.2.8 was also utilized in [MMM19, MMN18] for learning

problems of the form (2.5.5). A gap estimate of order O(1/N) is demonstrated, in the case of a

quadratic loss function φ, see [MMN18, Prop. 1]. Our gap estimate is more general since ∇φ is only

supposed to be Lipschitz; moreover, it is more precise in the case of an overparametrized network

(i.e. when M < N), since then it is of order O(M/N2).
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Sparse reconstruction Another important learning example is the sparse reconstruction with

the ℓ0-penalty, see [Mal09, MBP14]. Let D be a M by N dictionary matrix. The objective is

to approximate the observed vector x ∈ RM by a sparse linear combination of the columns of

D. Following [MBP14, Eq. 5.6], we are interested in the following least square problem with the

ℓ0-penalty:

inf
α∈RN

1

2

∥∥x−Dα
∥∥2 + β∥α∥ℓ0 = inf

α∈RN

1

2

M∑
j=1

(
xj −

N∑
i=1

Djiαi

)2
+ β

N∑
i=1

1R\{0}(αi),

where β is a constant and ∥α∥ℓ0 counts the number of non-zero entries in a vector α. Adding

constraints of the form αi ∈ [ui, vi] to the problem, it is easy to see that Assumptions A and B are

satisfied. The subproblems (2.3.1) are here of the form

inf
αi∈[ui,vi]

zαi + 1R\{0}(αi)

for some real number z. One can show that there is a solution that necessarily lies in {ui, vi, 0},
thus it is easy to compute.

Finally, let us mention other applications of the problem (P) in a convex framework, for instance,

the “sharing problem” in [BPC11], Lasso regression in [FR16] and the dual problem of a linear

support vector machine (SVM) in [SST09, FR16].

2.6 Numerical test for MIQP

In this section we provide numerical results for a mixed-integer linear quadratic problem of the

form (P). Let A be a real M ×N matrix and let ȳ ∈ RM . Consider the following problem:

min
x∈{0,1}N

J(x) :=
1

N2
∥Ax− ȳ∥2RM =

M∑
j=1

(
1

N

N∑
i=1

Ajixi −
ȳj
N

)2

. (MIQP)

Problem (MIQP) has the form (P), with fj(yj) =
(
yj − ȳj

N

)2
for 1 ≤ j ≤ M , and gij(xi) = Ajixi

for 1 ≤ i ≤ N , 1 ≤ j ≤ M . Moreover, Assumption A is satisfied with L̃j = 2 and dij = |Aji|.
Thus C1 =

2
N

∑N
i=1

∑M
j=1 |Aji|. Due to the linearity of gij , the randomized problem coincides with

the minimization problem of J on [0, 1]N , which is a convex linear-quadratic program that can be

solved with independent methods; thus it is easy here to obtain a precise estimate of J ∗.

In the numerical simulation, we draw the parameters Aji according to the uniform distribution

on the interval [0, 1] while yj is drawn according to the uniform distribution on [0, N/2]. Thus,

C1 ≈ M and the gap estimate is given by C1

2N ≈ 0.5. We perform our numerical experiments on a

laptop with one Intel Core i5-8250U processor (4 cores) at 1.60 GHz and 8 GB RAM.

The first experiment is a comparison of Algorithm 2.2 with an open source solver, SCIP,

[BBC+21] and a commercial solver, GUROBI, [GO18]. As mentioned before, the dual (random-

ized) problem is a convex linear-quadratic program. We can compute J ∗ easily by solver GUROBI.

Table 2.1 shows the value J ∗ and results of (MIQP) obtained from SCIP, GUROBI and Algorithm

2.2, for different values of M,N ranging from 100 to 3200. In Table 2.1, “Nan” indicates that
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the solver has failed to return a result or that computation time has exceeded one hour. Denote

by vs the result of Algorithm 2.2. The indicated gap is a relative gap, in percent, defined by

(vs − J ∗)/J ∗. We can observe that the relative gap decreases as N increases, which is consistent

with the randomized gap (2.2.2). The last three columns of Table 2.1 show that Algorithm 2.2 is

competitive in terms of execution time, in comparison with SCIP and GUROBI. Finally, observe

that for N = M = 3200, none of the two solvers could solve the problems while Algorithm 2.2 has

provided a solutions in approximately 6 minutes.

N = M J ∗ SCIP GUR. SFW SCIP GUR. SFW

value value value
gap
in %

time in seconds

100 2.077 2.077 2.077 2.136 2.870 0.88 0.20 0.03
200 4.120 4.120 4.120 4.159 0.956 5.99 0.69 0.09
400 7.871 7.871 7.871 7.904 0.430 87.78 7.90 0.91
800 15.953 Nan 15.954 15.966 0.079 Nan 10.63 6.18
1600 32.045 Nan 32.048 32.0585 0.042 Nan 81.41 42.51
3200 64.717 Nan Nan 64.724 0.012 Nan Nan 330.95

Table 2.1: Comparison of the approximate values and execution times obtained with SCIP, GUROBI and
Algorithm 2.2 for problem (MIQP) with M = N = 100, 200, 400, 800, 1600 and 3200. In Algorithm 2.2, we
take nk = 1 and K = 2N iterations.

The second experiment is on the basic Frank-Wolfe algorithm 2.1 and its stochastic version

2.2. In this experiment, we fix M = N = 1000. Figure 2.1 shows the outcome of the basic

Frank-Wolfe algorithm 2.1 with 200 iterations. The left sub-figure shows the evolution of γk for

ωk = 2/(k+2) (green curve) and for ωk determined by line search (2.3.6) (red curve). A sub-linear

rate of convergence is observed (note that logarithmic scales are employed for both axes). The right

sub-figure represents the evolution of J(Xk)−J ∗, where Xk is a random variable with distribution

µk. For both choices of ωk, approximate solutions to the problems are simulated, with a gap smaller

than 10−3, significantly smaller than the gap estimate C1

2N . The line search approach is quicker than

the approach with ωk = 2
k+2 .

Figure 2.2 shows the outcome of Algorithm 2.2 (with the modification suggested in Remark

2.3.9), for different (constant) choices of nk with 200 iterations, for two different stepsize rules

(ωk = 2/(k + 2) on the left, line search on the right). Since the algorithm is stochastic, we have

tested it 50 times to evaluate its efficiency; the curves represent the average value of γk. The

standard deviation (for these 8 instances of the SFW method) is displayed on Figure 2.3. In all

cases, an average value of the gap significantly smaller than C1

2N can be reached; the standard

deviation is also significantly smaller than C1

2N at the last iterations. There is a benefit (both in

expectation and standard deviation) in increasing the number of simulations nk (note that the

choice nk = 1000 is much smaller the rule suggested by Corollary 2.3.8). Yet the convergence is

slower in comparison with the basic Franck-Wolfe algorithm, which can be explained by the use of

the selection method at each iteration.
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Figure 2.1: MIQP by Algorithm 2.1, 2000 iterations, with ωk = 2/(k + 2) and line search (2.3.6).

2.7 Numerical test for discrete aggregative optimal control prob-
lems

This section is dedicated to a class of aggregative optimal control problems in discrete time and

discrete state space (the continuous version is presented in section 2.5.4). These problems involve

a large number N of agents, indexed by i = 1, . . . , N , and time steps ranging over t = 0, 1, . . . , T .

For any agent i, we fix a finite state set Si and a finite control set Ui. The evolution of agent i

is described by transition functions πt
i : Si × Ui → Si, where t = 0, . . . , T . We also fix mappings

U t
i : Si → 2Ui describing the feasible controls of the agents: at time t, if the agent i is in state sti, he

can make use of all controls in U t
i (s

t
i). The initial state of each agent i is constrained to be in S0

i ,

a subset of Si. The problem also involves some functions ft : R → R which we call social cost (at

time t) and some functions hti : S
t
i × Ui → R, which we call contribution functions. We also make

use of functions ℓti : S
t
i × Ui → R, which we call individual costs. The optimal control problem of

interest reads: 

inf
(s,u)

J(s, u) :=
∑T

t=0 ft

(
1
N

∑N
i=1 h

t
i(s

t
i, u

t
i)
)

+ 1
N

∑N
i=1

∑T
t=0 ℓ

t
i(s

t
i, u

t
i),

s.t. st+1
i = πt

i(s
t
i, u

t
i), u

t
i ∈ U t

i (s
t
i), s

0
i ∈ S0

i ,

∀t = 0, 1, . . . , T − 1, i = 1, 2, . . . , N,

(2.7.1)

where (s, u) = (sti, u
t
i)
t=0,...,T
i=1,...,N .

A standard approach to deal with problem (2.7.1) relies on the dynamic programming principle

(see [Ber12]), in which a key step is to compute the value function V : {0, 1, . . . , T}×S → R, where
the state space S is defined by

∏N
i=1 Si. For our problem, Bellman’s equation reads as follows: for
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Figure 2.2: MIQP by Algorithm 2.2 with 2000 iterations, expectation of the gap.
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Figure 2.3: MIQP by Algorithm 2.2 with 2000 iterations, standard deviation of the gap.

any t ∈ {0, . . . T}, for any s ∈ S,

V t(s) = min
u∈U t(s)

ft

( 1

N

N∑
i=1

hti(si, ui)
)
+

1

N

N∑
i=1

ℓt(si, ui)

+ V t+1(πt(s, u)),

where U t(s) =
∏N

i=1 U
t
i (si) and where πt(s, u) = (πt

i(si, ui))
N
i=1. We observe that the complexity

of Bellman’s equation increases exponentially with N ; this phenomenon is the well-known curse of

dimensionality. As a consequence, the dynamic programming approach is not tractable for problem

(2.7.1) when the number of agents N is large.

Let us reformulate optimal control problem (2.7.1) as a problem of the form (P). Next, we

address its resolution with the SFW algorithm.
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2.7.1 Reformulation

Let us consider an agent i and let us describe its state-control feasible set Xi. Recall that a state

Si, a control set Ui, mappings U t
i : Si → 2Ui , and transition mapping πt

i : Si × Ui → Si are given.

We call feasible state-control trajectory an element xi = (si, ui), where si = (s0i , . . . , s
T
i ) ∈ (Si)

T+1

and ui = (u0i , . . . , u
T
i ) ∈ (Ui)

T+1, such that

s0i ∈ S0
i , uti ∈ U t

i (s
t
i), sθ+1

i = πθ
i (s

θ
i , u

θ
i ),

for any t = 0, . . . , T and any θ = 0, . . . , T − 1. We denote by Xi the set of feasible state-control

trajectories. We set X =
∏N

i=1Xi. The non-emptyness of Xi is a straightforward consequence of

the following assumption.

Assumption 2.1. The set S0
i is non-empty. For all t = 0, . . . , T , for all sti ∈ Si, the set U t

i (s
t
i) is

non-empty.

With each agent i are associated (T + 1) contribution functions hti, t = 0, . . . , T and (T + 1)

individual costs ℓti, t = 0, . . . , T . We set E0 = . . . ET+1 = R and we define T+2 functions git : Xi → Et
by

git(xi) =

{
hti(s

t
i, u

t
i) if t ≤ T∑T

t′=0 ℓ
t′
i (s

t′
i , u

t′
i ) if t = T + 1.

The social costs f0, . . . , fT are the same as in the original problem (2.7.1). The social cost

fT+1 : ET+1 → R is the identity function. With these definitions, problem (2.7.1) is equivalent

to

inf
(xi)Ni=1∈

∏N
i=1 Xi

T+1∑
t=0

ft

( 1

N

N∑
i=1

git(xi)
)
. (2.7.2)

2.7.2 Assumptions

As before, we denote gi(xi) = (git(xi))t=0,...,T+1, E =
∏T+1

t=0 Et = RT+2 and for y ∈ E , f(y) =∑T+1
t=0 ft(yt). For any i = 1, . . . , N and for any t = 0, . . . , T + 2, we denote

Yit =
{
git(xi) | xi ∈ Xi

}
and Yt =

1

N

N∑
i=1

Yit.

Assumption 2.2. For i = 1, 2, . . . , N and for t = 0, 1, . . . , T ,

• ft is Lt-Lipschitz on conv(Yt),

• ft is continuously differentiable on a neighborhood of conv(Yt), ∇ft is L̃t-Lipschitz on conv(Yt)

• ft is convex on conv(Yt).

Assumptions 2.1 and 2.2 imply Assumptions A and B for problem (2.7.2). Assumption C is

trivially satisfied since Xi is a finite set.
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2.7.3 Resolution of the sub-problems

We explain now how to solve the sub-problems (2.3.1) associated with the aggregative optimal

control problem (2.7.2). Let y ∈ E . Let µ ∈ E be defined by µt = ∇ft(y
t). By definition of fT+1,

µT+1 = 1. The sub-problem (2.3.1) reads:

inf
xi∈Xi

T∑
t=0

(
ℓti(s

t
i, u

t
i) + ⟨µt, hti(s

t
i, u

t
i)⟩
)
. (2.7.3)

The sub-problem (2.7.3) can be solved by dynamic programming. Algorithm 2.4 yields a solution

to (2.7.3). For convenience, we denote

ℓti[µ
t](sti, u

t
i) = ℓti(s

t
i, u

t
i) + ⟨µt, hti(s

t
i, u

t
i)⟩

in the algorithm. The algorithm consists of two steps: first in a backward pass, a sequence of value

functions (V t
i )t=0,...,T+1 is computed, where V t

i : Si → R. A globally optimal solution is obtained in

a forward pass. Note that the value of the optimization problem of Step 1 is finite as a consequence

of Assumption 2.1.

Algorithm 2.4: Dynamic programming algorithm

Step 1: Backward pass.
Set V T+1

i (sT+1
i ) = 0, for any sT+1

i ∈ Si.
for t = T, T − 1, . . . , 0 do

for sti ∈ Si do
Define V t

i (s
t
i) as

min
ut
i∈Ut

i (s
t
i)
ℓti[µ

t](sti, ·) + V t+1
i

(
πt
i(s

t
i, ·)
)
.

end

end

Step 2: Forward pass.
Find s̄0i ∈ argmin

s0i∈S0
i

V 0
i (s

0
i );

for t = 0, . . . , T do
Find a solution ūt

i to the problem

min
Ut

i (s̄
t
i,u

t
i)
ℓti[µ

t](s̄ti, ·) + V t+1
i

(
πt
i(s̄

t
i, ·)
)
.

If t < T , set s̄t+1
i = πt

i(s̄
t
i, ū

t
i).

end

Remark 2.7.1. As mentioned in the introduction, problem (2.7.2) could be addressed by dynamic

programming. This would allow the computation of an exact solution. However, this would require

to compute a value function of the form V t(st), where st = (st1, . . . , s
t
N ) ∈

∏N
i=1 Si. The resulting

complexity, of order T
∏N

i=1 |Si|, is prohibitive even for moderate values of N . In contrast, the

complexity of each iteration of the SFW algorithm is linear with respect to N , while the accuracy

of the algorithm improves as N increases.
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2.7.4 Numerical simulations on a battery charging problem

Let us now turn to the problem of the charging of a fleet of batteries. We propose a very simple

model which is essentially illustrative, rather than realistic. However, it is emphasised that the

proposed approach can easily incorporate more realistic constraints on battery operation (e.g.

taking into account limits on cycles numbers). Indeed, these refinements remain localized at the

sub-problem level (impacting only the dynamic programming Algorithm 2.4). They consist either

in adding a state variable or in modifying the local costs in order to penalise undesired behaviour.

Suppose that there are N batteries to be charged. Let sti be the state of charge (SoC) for the

battery i at the time t.

Dynamics. The dynamics of each battery is characterized by three parameters: an initial state

of charge sini ∈ N, a maximal state of charge smax
i ∈ N, a maximal load speed umax

i ∈ N. We define:

Si = {sini , . . . , smax
i }, S0

i = {sini }, Ui = {0, . . . , umax
i },

U t
i (s

t
i) = {0, . . . ,min(umax

i , smax
i − sti)},

πt
i(s

t
i, u

t
i) = sti + uti.

In words: the initial condition sini is given, the charging of the battery is additive, the charging

speed is bounded by umax
i and is such that sti can never exceed smax

i .

Cost functions. Some positive coefficients (βi)i=1,...,N , (αt)t=0,...,T−1, and (ct)t=0,...,T−1 are given.

The individual costs are

ℓti(s
t
i, u

t
i) = 0, ∀t = 0, . . . , T − 1,

ℓTi (s
T
i , u

T
i ) = βi(s

max
i − sTi )

2.

The contributions are defined by hTi (s
T
i , u

T
i ) = 0 and

hti(s
t
i, u

t
i) = uti, ∀t = 0, . . . , T − 1.

The social costs ft are defined by fT (yT ) = 0 and

f t(yt) = αt(yt − ct)
2, ∀t = 0, . . . , T − 1.

Therefore, the cost function J reads

T−1∑
t=0

αt

(( 1

N

N∑
i=1

uti

)
− ct

)2

+
1

N

N∑
i=1

βi
(
sTi − smax

i

)2
.

The cost function has two contributions, one depends on the average of charging levels of all the

batteries, the other one depends on the individual final SoC of each battery. To be more precise,

for t ≤ T − 1, the average charging level needs to approach some target power ct. For t = T , the

batteries expect to approach their maximum SoCs.

Numerical simulations. The parameters are chosen as follows:

• N = 100, T = 24
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• sini (resp. smax
i ) is chosen randomly and uniformly in {0, 1, . . . , 20} (resp. {20, 21, . . . , 40}),

umax
i = 4

• αt is chosen randomly and uniformly in [1, 2], βi is chosen randomly and uniformly in [0, 1]

• ct = 1.5⌊sin(πt/12) + 1⌋.

Thus, for t = 0, 1, . . . , 23, the diameter of the range set Yit is less than umax
i = 4, and the Lipschitz

constant L̃t is 2α
t, which is less than 4. Then, we have the following upper bound for the relaxation

gap C1/2N :

C1

2N
≤ 1

200
· 1

100
·

23∑
t=0

(
4 ·

100∑
i=1

42

)
= 7, 68.

Fig. 2.4 shows the outcome of Algorithm 2.1 with 500 iterations to get an approximation of

the minimum J ∗ of the relaxed problem. The curve represents the relaxed cost. Fig. 2.5 shows

the outcome of Algorithm 2.2, for different choices of nk with 100 iterations. Since the algorithm

is stochastic, we ran it 50 times independently to evaluate its efficiency; the curves represent the

average value of γk = J(xk) − J ∗. The standard deviation is displayed in the right part of Fig.

2.6. In all cases, an average value of the gap significantly smaller than 7, 68 can be reached; the

standard deviation is also significantly smaller than 7, 68 at the last iterations. We have initialized

the algorithm with values of x0i such that uti = 0, for any t = 0, . . . , T − 1.
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Figure 2.4: Frank-Wolfe Algorithm with 500 iterations for the relaxed problem.

2.8 Conclusion

We have investigated a large-scale and aggregative optimization problem and its relaxation. New

error bounds for the relaxation gap have been obtained. We have proposed a tractable algorithm for

its resolution with a detailed convergence analysis relying on concentration inequalities. Assuming

that an efficient method for the resolution of the subproblems is available, the implementation of

our stochastic Frank-Wolfe method is easy.
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Figure 2.5: Algorithm 2.2 with 100 iterations, expectation of the gap.
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Figure 2.6: Algorithm 2.2 with 100 iterations, standard deviation of the gap.

Future research will focus on refinements of the selection method, allowing the computation of

O(q ∧N/N2)-solutions. We also aim at working on more complex problems, involving for example

convex constraints on the aggregate, as for example the resource allocation problems mentioned in

section 2.5.2. Such constraints could be handled with extensions of the Frank-Wolfe algorithm for

non-smooth costs as those proposed in [SFMF20, YFC19]. Finally, we intend to apply our method

to large-scale optimal control problems, such as nonconvex variants of the problem investigated in

[SAB+23].

2.9 Appendix

2.9.1 Concentration inequalities and other technical lemmas

Proposition 2.9.1. Consider T real-valued random variables (Yt)t=1,...,T . Let (Ft)t=1,...,T denote

the associated filtration (F0 is the trivial σ-algebra). Let Zt = E[Y 2
t |Ft−1] and let ST =

∑T
t=1 Yt.

Assume the following:

(i) E[Yt | Ft−1] = 0, (ii) Yt ≤ m, (iii)

T∑
t′=1

Zt′ ≤ v, a.s. (2.9.1)
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for all t = 1, ..., T and for some constants m and v. Then, E[S2
T ] ≤ v. Moreover, for any ϵ > 0,

P
[
ST ≥ ϵ

]
≤ exp

(
− ϵ2

2 (v + ϵm/3)

)
. (2.9.2)

Proof. The estimate of E[S2
T ] can be easily obtained by induction. For the estimate of P

[
ST ≥ ϵ

]
,

see [Del15, Theorem 7].

As a corollary, we obtain the following McDiarmid’s inequality of “variance type”.

Corollary 2.9.2. Let (Ω,F ,P) be a probability space and let (Ωi)i=1,...,n be n measurable subsets

of Ω. Let X = (Xi)i=1,...,n be n independent random variables valued respectively in (Ωi)i=1,...,n.

Consider a measurable function f :
∏n

i=1Ωi → R and real constants m ∈ R and (vi)i=1,...,n such

that

Var
[
f(Xi, x−i)

]
≤ v2i , a.s.,

∣∣f(Xi, x−i)− E
[
f(Xi, x−i)

]∣∣ ≤ m, a.s.,

for all i = 1, ..., n and for all x−i ∈
(∏i−1

j=1Ωi

)
×
(∏n

j=i+1Ωj

)
. Then, for any ϵ > 0,

P
[
f(x)− E

[
f(x)

]
≥ ϵ
]
≤ exp

(
− ϵ2

2
(∑n

i=1 v
2
i +

mϵ
3

)). (2.9.3)

Proof. Define Yt = E [f(X) | X1, . . . , Xt]−E [f(X) | X1, . . . , Xt−1] and apply Proposition 2.9.1.

Lemma 2.9.3. For all k ∈ N, denote ωk = 2
k+2 . Let (uk)k∈N and (γk)k∈N be two sequences of real

numbers. Assume that there exists a positive number C such that

γk+1 ≤ (1− ωk)γk + Cω2
k + uk, (2.9.4)

for all k ∈ N. Then, for all K ∈ N∗,

γK ≤ 4C

K
+

K−1∑
k=0

(k + 1)(k + 2)

K(K + 1)
uk. (2.9.5)

Proof. We proof this lemma by induction on K. We have ω0 = 1, thus taking k = 0 in (2.9.4), we

obtain that γ1 ≤ C + u0, which proves the claim for K = 1. Let us assume that the claim holds

true for some K ∈ N∗. We deduce from (2.9.4) that

γK+1 ≤
( 1

K + 2
+

1

(K + 2)2

)
4C +

K

K + 2

(K−1∑
k=0

(k + 1)(k + 2)

K(K + 1)
uk

)
+ uK

≤ 4C

K + 1
+

K∑
k=0

(k + 1)(k + 2)

(K + 1)(K + 2)
uk.

Therefore the claim holds for K + 1. This concludes the proof.

Lemma 2.9.4. Let A, B, and C be three random variables. Assume that B is independent of (A,C)

and that B ∼ Bern(ω) for some ω ∈ [0, 1]. Let F be a real-valued function of (A,B,C). Assume

that |F (A, 1, C)−F (A, 0, C)| ≤ δ, a.s. Finally, define U = E[F (A,B,C) | A,B]−E[F (A,B,C) | A].

Then,

E[U | A] = 0, U ≤ δ, E[U2 | A] ≤ ω(1− ω)δ2, a.s.
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Proof. The equality E[U | A] = 0 is trivial. We have U = E[Z | A,B], where

Z = F (A,B,C)− E[F (A,B,C) | A,C].

It is easy to verify that Z ≤ δ, a.s., which implies that E[U | A] = E[Z | A] ≤ δ. The first inequality

is proved. For the second inequality, we first note that

E[Z2 | A,C] = ω(1− ω)(F (A, 1, C)− F (A, 0, C))2,

as can be easily verified. Thus E[Z | A] ≤ ω(1 − ω)δ2. Next by Jensen’s inequality, we have

U2 ≤ E[Z2 | A,B]. Therefore,

E[U2 | A] ≤ E
[
E[Z2 | A,B] | A

]
= E[Z2 | A] ≤ ω(1− ω)δ2,

as was to be proved.

The following lemma is an elementary property of the conditional expectation. For the sake of

simplicity, we only state it (and prove it) with discrete random variables.

Lemma 2.9.5. Let X, Y , and Z be three random variables. Assume that Y and Z are discrete

and that Z is independent of (X,Y ). Then, E
[
X | Y,Z

]
= E

[
X | Y

]
.

Proof. By definition, E
[
X | Y,Z

]
= ϕ(Y,Z), where ϕ is defined as follows: for any pair (y, z) such

that P
[
Y = y and Z = z

]
̸= 0,

ϕ(y, z) =
E
[
X1Y=y1Z=z

]
P
[
Y = y and Z = z

] = E
[
X1Y=y

]
P
[
Y = y

] ,
since Z is independent of (X,Y ). Thus ϕ does not depend on Z and the result follows.
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Chapter 3

Mean field optimization problems:
stability results and Lagrangian
discretization

3.1 Introduction

Mean field optimization (MFO) problems have recently gained significant interest in various do-

mains, including training problems with neural networks with one hidden layer [CB18, MMN18],

sparse inverse problems with differentiable observation models [BSR17], etc. The abstract mean

field optimization problem of interest writes:

inf
µ∈P

F(µ),

where P is a set of probability measures and F is a function from P to R. This article is concerned
with the case where P is the set of probability measures sharing the same marginal distribution

and F(µ) depends on the expectation of µ with respect to a certain function. To be more concrete,

let X and Y be two complete and separable metric spaces and let H be a separable Hilbert space.

Let Z be a closed subset of X × Y and let m be a probability measure on X. We focus on the

following problem, parameterized by m:

inf
µ∈Pm(Z)

f

(∫
Z
gdµ

)
, (Pm)

where g : Z → H is a Borel measurable function and f : H → R is a convex function. The admissible

set Pm(Z) is the set of all probability measures on Z whose marginal distribution on X is m. We

mention that the rigorous setting for (Pm) is presented in Sec. 3.2.3.

Motivation. Problem (Pm) can be viewed as a social welfare optimization problem, where we

consider nonatomic agents (the case with atomic agents is explored in [Wan17, BLO+22]). Here, the

agents’ positions are distributed according to m, and the set Z consists of all feasible pairs of agent

positions and strategies. The function g(x, y) represents the contribution to some common goods

made by an agent situated at some position x and following a strategy y. The objective function of
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(Pm) involves a function f , called social cost f , evaluated at the aggregate term
∫
Z gdµ. It is worth

mentioning that problem (Pm) has the general form of the potential formulation of several games

with variational structure, including aggregative congestion games [LOW22], nonatomic potential

games [CL18b], and potential Lagrangian mean field games (MFGs) [BCS17] described in detail in

the following paragraph. This is a consequence of the first-order necessary and sufficient optimality

condition: As will be shown, any µ̄ ∈ Pm(Z) is a solution to (Pm) if and only if for λ̄ = ∇f(
∫
Z gdµ̄),

it holds that

supp(µ̄x) ⊆ BRλ̄(x) := argmin
y∈Y

{
⟨λ̄, g(x, y)⟩ | (x, y) ∈ Z

}
, for a.e. x in m. (3.1.1)

Here (µ̄x)x∈X denotes the disintegration of µ̄ (see Theorem 3.2.7) and supp(µ̄x) denotes the support

of µ̄x (see (3.2.1)). This result is precisely stated in Corollary 3.3.5. In other words, (3.1.1) defines

the conditions for a Nash equilibrium: an agent at position x must minimize ⟨λ̄, g(x, ·)⟩ and λ̄ is a

coupling variable, common to all agents, which results from their collective behavior through the

relation λ̄ = ∇f(
∫
Z gdµ̄).

Lagrangian MFGs. The framework of the potential Lagrangian mean field games (MFGs) follows

from [BCS17, SS21, CC18, Sar22]. Let us fix a domain Ω ⊆ Rd and a final time T > 0. Let

AC([0, T ],Rd) be the set of all absolutely continuous functions from [0, 1] to Rd. For any x ∈ Ω,

we denote,

Γ := {γ ∈ AC([0, T ],Rd) | γ(t) ∈ Ω, ∀t ∈ [0, T ]}, Γx := {γ ∈ Γ | γ(0) = x}.

Let Z = {(x, γ) | x ∈ Ω, γ ∈ Γx}. Let m ∈ P(Ω) be the distribution of initial states of players.

Following [Sar22], a general potential Lagrangian MFG writes:

inf
µ∈Pm(Z)

∫
Z

∫ T

0
L̃(γ̇(t))dtdµ(z) +

∫ T

t=0
F̃(et#π2#µ)dt, (3.1.2)

where L̃ : Rd → R is a running cost, F̃ : P(Ω) → R∪{+∞} is a congestion cost, et : Γ → Ω, γ 7→ γ(t),

and π2 : Z → Γ, (x, γ) 7→ γ. We are interested in the case where there exist two functions g̃ : Rd → R
and f̃ : R → R such that for any ν ∈ P(Ω),

F̃(ν) = f̃

(∫
g̃(x)dν(x)

)
.

In this case, the previous Lagrangian MFG (3.1.2) writes:

inf
µ∈Pm(Z)

∫
Z

∫ T

0
L̃(γ̇(t))dtdµ(x, γ) +

∫ T

t=0
f̃

(∫
Z
g̃(γ(t))dµ(x, γ)

)
dt, (3.1.3)

which follows the structure of problem (Pm). We comment more in details on this example in

Remark 3.3.6.

Theoretical results. We study the MFO problem (Pm) from both primal and dual perspectives.

In the primal sense, we establish a first-order optimality condition for (Pm) under mild assump-

tions. As we already explained, this condition turns out to be equivalent to a Nash equilibrium
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condition for Lagrangian MFGs and nonatomic potential games, as discussed in Remarks 3.3.6-

3.3.7. Additionally, we provide an existence result for the solution under a “tightness” assumption

on the minimizing sequence of (Pm).

The first contribution of this article lies in the stability analysis of the primal problem (Pm), see

Theorem 3.3.16. Firstly, we derive an upper bound for the variation of the optimal cost of (Pm)

for two different parameters m. The obtained bound is linear with respect to the Kantorovich-

Rubinstein distance of the parameters. Secondly, we introduce a recovery method (Algorithm 3.1),

which bridges approximate solutions for problems with different parameters. This recovery method

is important for the discretization of the problem, since it permits to construct an approximate

minimizer of the original problem (Pm) based on an approximate solution of the discretized problem

(PmN
) stated later.

From the dual perspective, we prove the strong duality for (Pm) under certain qualification

assumptions. We also conduct a stability analysis for dual problems with different parameters,

obtaining upper bounds for both the gap of the dual values and the distance of the dual solutions.

At the end of this section, we provide a formula for the directional derivative of the value function

of (Pm) using the strong duality result.

Discretization and algorithms. We present an original resolution method for the MFO problem

(Pm). Our approach relies first on a discretization of the marginal m, as proposed in [Sar22] for

Lagrangian MFGs. We approximate the common marginal distribution m in (Pm) by an empirical

distribution mN = 1
N

∑N
i=1 δxi

, where xi ∈ X for i = 1, . . . , N and N is a sufficiently large integer.

This allows us to write the associated discretized problem for (Pm) as

inf
µ∈PmN

(Z)
f

(∫
Z
gdµ

)
. (PmN

)

To solve (PmN
) numerically, a first approach is the Frank-Wolfe algorithm [Jag13], in which one

needs to solve a linearized problem (3.5.2) at each iteration. This approach is similar to the

fictitious play algorithm applied to the Lagrangian MFG in [CH17]. As mentioned in [BSR17,

CB18, BLO+22], one major issue of the Frank-Wolfe algorithm is the increase of the cardinality of

the support of the approximate solution along the iterations, which may cause a memory overflow

problem.

We suggest to leverage the fact that the discretized problem (PmN
) can be equivalently rep-

resented as the relaxation of an aggregative optimization problem involving N agents, as defined

by the authors in [BLO+22]. This allows to apply to (PmN
) the Stochastic Frank-Wolfe algorithm

proposed and investigated in [BLO+22]. The output of Algorithm 3.3 has a support of fixed size

N .

Finally, the combination of the Stochastic Frank-Wolfe algorithm (Algorithm 3.3) with the

recovery method (Algorithm 3.1) allows to obtain an approximate solution of (Pm) whose quality

improves as the discretization parameterN increases, as demonstrated in Lemma 3.5.1 and Theorem

3.5.8. To illustrate the effectiveness of our approach, we apply it to a numerical example taken

from [GHS22], involving the optimal exploitation of exhaustible resources.

Organization. In Section 3.2, we present some notations and results in measure theory and

set-valued functions, as well as the rigorous description of the data of problem (Pm). Section 3.3 is
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dedicated to the primal problem: We provide a first-order optimality condition, an existence result

and a stability analysis for the primal problem. In Section 3.4, we formulate the dual problem of

(Pm), we prove strong duality, and we prove the stability of the dual solution. We provide our

numerical method in Section 3.5. We perform in Section 3.6 some numerical simulations for a

Lagrangian MFG model taken from [GHS22].

3.2 Preliminaries

3.2.1 Results in measure theory

A metric space is called a Polish space if it is complete and separable. Let X be a Polish space

equipped with a metric dX , and let X be a σ-algebra on X. The Borel σ-algebra on X is denoted

by BX . Given any measure m on X , we refer to the triplet (X,X ,m) as a measure space. Measure

spaces are said to be complete if for any A ∈ X with m(A) = 0 and for any subset B of A, we have

B ∈ X . We define

P(X) :=
{
m is a positive Borel measure on X, and m(X) = 1

}
;

P1(X) :=

{
m ∈ P(X)

∣∣∣ ∃x0 ∈ X such that

∫
X
dX(x, x0)dm < +∞

}
.

Let δx denote the Dirac measure at point x. We denote by Pδ(Ω) the set of finitely supported

probability measures, defined by

Pδ(X) :=

{
K∑
k=1

ωkδxk

∣∣∣K ∈ N, (ωk)
K
k=1 ∈ (R+)

K , (xk)
K
k=1 ∈ XK ,

K∑
k=1

ωk = 1

}
.

In particular, we call m ∈ Pδ(X) an empirical distribution if λk = 1/K for k = 1, . . . ,K.

The set P(X) is endowed with the narrow topology. We say that a sequence (mn)n≥1 in P(Z)

narrowly converges to some m ∈ P(X) if for any bounded and continuous function F : X → R,

lim
n→+∞

∫
X
Fdmn =

∫
X
Fdm.

The space P1(X) is endowed with the Kantorovich–Rubinstein Distance,

d1(m0,m1) := sup
F∈Lip1(X)

∫
Ω
Fd(m0 −m1),

where Lip1(X) is the set of all 1-Lipschitz continuous functions on X. For any m ∈ P(X), the

support of m is defined by

supp(m) :=
{
x ∈ X | m(V ) > 0 for all open set V such that x ∈ V

}
. (3.2.1)

Lemma 3.2.1. Let m ∈ P(X). Let F : X → R+ be a Borel measurable function. Assume that∫
X
Fdm = 0.

Then F = 0, m-a.e. Moreover, if F−1({0}) is closed, then supp(m) ⊆ F−1({0}).
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Proof. The fact that F = 0, m-a.e., is from [Rud87, Thm. 1.39(a)]. Now, let F−1({0}) be closed.

Suppose that there exists x ∈ supp(m) such that x /∈ F−1({0}). Since F−1({0}) is closed, there

exists an open neighborhood V of x such that F (x) > 0, for all x ∈ V . By the definition of

the support of a probability measure, we have m(V ) > 0. Therefore,
∫
X Fdm ≥

∫
V Fdm > 0,

contradiction.

3.2.2 Results about set-valued functions

In this subsection, we consider a metric space X equipped with a metric dX , a σ-algebra X on X,

and a measure m on X . Additionally, we fix a Polish space Y with a metric dY , and we denote

the Borel σ-algebra on Y by BY . We call F a set-valued function from X to Y if F (x) ⊆ Y for all

x ∈ X, denoted by X ⇝ Y for short. The graph of F is defined by

Graph(F ) := {(x, y) ∈ X × Y | y ∈ F (x)} .

We say that F has closed (non-empty) images, if for any x ∈ X, F (x) is closed (non-empty) in Y .

Let us give some definitions concerning regularity properties of set-valued functions, which are

from [AF09, Def. 1.4.1, Def. 1.4.2, Def. 1.4.5, and Def. 8.1.1].

Definition 3.2.2. Let F : X ⇝ Y be a set-valued function with non-empty images.

1. (Lower semi-continuity). The set-valued function F is lower semi-continuous at point x ∈ X

if for any y ∈ F (x) and any sequence (xn ∈ X)n≥1 converging to x, there exists yn ∈ F (xn)

converging to y. The set-valued function F is said to be lower semi-continuous if it is lower

semi-continuous at each point x ∈ X.

2. (Upper semi-continuity). The set-valued function F is upper semi-continuous at point x ∈ X

if for any neighborhood U of F (x), there exists η > 0 such that for any x′ ∈ BX(x, η), we have

F (x′) ⊆ U .

The set-valued function F is said to be upper semi-continuous if it is upper semi-continuous

at each point x ∈ X.

3. (Lipschitz continuity). When X and Y are normed vector spaces, we say that F is L-Lipschitz

continuous on X, for some L > 0, if for any x1, x2 ∈ X,

F (x1) ⊆ F (x2) +BY (0, LdX(x1, x2)).

Here BY (0, r) denotes the closed ball in Y centered at 0 with radius r > 0.

4. (Measurability). The set-valued function F is measurable if the inverse image of any open

subset O of Y is measurable, i.e.,

F−1(O) := {x ∈ X | F (x) ∩ O ≠ ∅} ∈ X .

An important property of measurable set-valued functions is the existence of measurable selec-

tions.
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Theorem 3.2.3 (Measurable selection). Let F : X ⇝ Y be a measurable set-valued function with

non-empty images. Then F has a measurable selection f , i.e., f : X → Y is (X ,BY )-measurable

and f(x) ∈ F (x) for any x ∈ X.

Proof. See [AF09, Thm. 8.1.3].

The following two lemmas will allow us to prove the measurability of some set-valued functions.

Lemma 3.2.4. If F : X ⇝ Y is a set-valued function such that F−1(C) ∈ X for any closed subset

C of Y , then F is measurable.

Proof. See [CV06, Prop. III.11].

Lemma 3.2.5. Let (X,X ,m) be a complete measure space, with m a positive measure such that

m(X) = 1. Then any set-valued mapping F : X ⇝ Y is measurable if and only if Graph(F ) belongs

to X ⊗ BY .

Proof. See [AF09, Thm. 8.1.4].

3.2.3 Data setting and technical lemmas

Recall the MFO problem (Pm). We consider the following setting:

• Two Polish spaces and their Borel σ-algebras: (X,BX) and (Y,BY ).

• A probability distribution on X: m ∈ P(X).

• A set-valued function F : X ⇝ Y with a closed graph and non-empty images. Let

Z := Graph(F ), Zx := F (x), ∀x ∈ X.

• The admissible set of probability measures:

Pm(Z) := {µ ∈ P(Z) | π1#µ = m} ,

where π1 : Z → X, (x, y) 7→ x.

• A separable Hilbert space: H.

• Two Borel measurable functions: g : Z → H and f : H → R.

The integral
∫
Z gdµ in (Pm) should be interpreted in the Bochner integration sense. We refer

to [Coh13, Appx. E] for Bochner integrable functions.

Lemma 3.2.6. If there exists a constant M > 0 such that ∥g(z)∥ ≤ M for any z ∈ Z, then the

function g is Bochner integrable with respect to any µ ∈ P(Z), i.e.,
∫
Z gdµ exists. Moreover, for

any λ ∈ H, we have 〈
λ,

∫
Z
gdµ

〉
=

∫
Z
⟨λ, g⟩dµ.

As a consequence, for any µ1, µ2 ∈ P(Z), we have〈∫
Z
gdµ1 ,

∫
Z
gdµ2

〉
=

∫
Z

∫
Z
⟨g(x), g(y)⟩dµ1(x)dµ2(y).
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Proof. As H is separable, the function g is strongly measurable. Moreover, as the constant function

M is Bochner integrable with respect to any µ ∈ P(Z), and |g(z)| ≤ M for any z ∈ Z, it follows

from [Coh13, Prop. E.2, Thm. E.6] that g is Bochner integrable with respect to any µ ∈ P(Z).

Therefore, we can apply [Coh13, Prop. E.11] to obtain the first equality of this lemma. The second

equality is obtained by applying twice the first one.

Theorem 3.2.7 (Disintegration theorem). For any µ ∈ Pm(Z), there exists a family of probability

measures {µx∈X ∈ P(Y )}x such that for any Borel measurable function f : Z → R+, we have∫
Z
fdµ =

∫
X

∫
Zx

f(x, y)dµx(y)dm(x).

Moreover, for a.e. x ∈ X, µx is uniquely determined.

Proof. See [AGS05, Thm. 5.3.1].

Remark 3.2.8. It is not difficult to generalize Theorems 3.2.7 to functions f bounded from below,

by adding to f a sufficient large positive constant.

3.3 Primal mean field optimization problem

3.3.1 Assumptions and constants

To simplify the presentation of the assumptions and the results of the article, we introduce the

following (set-valued) functions, parameterized by λ ∈ H:

• gλ : Z → R and uλ : X → R,

gλ(x, y) = ⟨λ , g(x, y)⟩ , uλ(x) = inf
y∈Zx

gλ(x, y);

• Gλ : X ⇝ R and BRλ : X ⇝ Y ,

Gλ(x) = {gλ(x, y) | y ∈ Zx} , BRλ(x) = argmin
y∈Zx

gλ(x, y).

Assumption A. The following holds:

1. The function g is bounded. The function f is convex and differentiable, and ∇f is Lipschitz

continuous with modulus L.

2. Let Hf := ∇f(H). Fixing any λ ∈ Hf , we have:

• the function gλ is lower semi-continuous;

• the set-valued function Gλ is lower semi-continuous;

• the set-valued function BRλ has non-empty images.
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Three useful constants below are defined, following Assumption A:

M := sup
z∈Z

∥g(z)∥, D := sup
z1,z2∈Z

∥g(z1)− g(z2)∥2, C := sup
µ∈P(Z)

∥∥∥∥∇f

(∫
Z
gdµ

)∥∥∥∥ .
We present here a lemma following Assumption A. A similar result for the Lagrangian MFG is

presented in [CC18, Lem. 3.4].

Lemma 3.3.1. Under Assumption A, for any λ ∈ Hf , the set-valued function BRλ has a closed

graph.

Proof. Let xk ∈ X converge to some x̄ ∈ X, and let yk ∈ BRλ(xk) converge to some ȳ ∈ Y . We

have to prove that ȳ ∈ BRλ(x̄). First, we have ȳ ∈ Zx̄, since Z is closed. Fix any y ∈ Zx̄. Since

Gλ is lower semi-continuous, there exists a sequence (ŷk)k∈N in Zxk
such that

gλ(x̄, y) = lim
k→∞

gλ(xk, ŷk).

By the lower semi-continuity of gλ, we have

gλ(x̄, ȳ) ≤ lim inf
k→∞

gλ(xk, yk).

Since yk ∈ BRλ(xk) and ŷk ∈ Zxk
, we have gλ(xk, yk) ≤ gλ(xk, ŷk) for any k. Passing to the limit

in this inequality (using the above inequalities), we deduce that gλ(x̄, ȳ) ≤ gλ(x̄, y). Thus, BRλ

has a closed graph.

In Section 3.4, we will consider the dual problem of (Pm). For the analysis of Section 3.4,

Assumption A needs to be strengthened as follows:

Assumption A∗. Assumption A(1) holds true and Assumption A(2) holds true for all λ ∈
dom(f∗), where f∗ is the Fenchel conjugate of f .

Remark 3.3.2. Assumption A∗ is indeed stronger than Assumption A since Hf = ∇f(H) ⊆
dom(f∗). This inclusion is deduced from Fenchel’s relation: y = ∇f(x) ⇔ f∗(y) = ⟨x, y⟩ − f(x).

3.3.2 First-order-optimality condition

The following lemma plays a key role in proving the first-order optimality condition for (Pm).

Lemma 3.3.3. Let Assumption A hold true. For any λ ∈ Hf , we have

inf
µ∈Pm(Z)

∫
Z
gλdµ =

∫
X
uλdm.

Here we present a proof of Lemma 3.3.3 for the case where m has finite support, that is,

m ∈ Pδ(X). This particular case provides us with insight into the general proof, and proves

beneficial for resolving the discretized problem introduced in Section 3.5.
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Proof of Lemma 3.3.3 when m ∈ Pδ(X). Fix any µ ∈ Pm(Z). Since g is bounded over Z, the

function gλ is bounded from below. By Lemma 3.2.7 and Remark 3.2.8, we have∫
Z
gλdµ =

∫
X

∫
Zx

gλ(x, y)dµx(y)dm(x) ≥
∫
X
uλdm,

where the second inequality follows from the definition of uλ.

Let us prove the converse inequality. Let us fix m ∈ Pδ(X). Let K ∈ N, let (xk)k=1,...,K ∈ Xk

and let (ωk)k=1,...,K ∈ RK
+ be such that

∑K
k=1 ωk = 1 and m =

∑K
k=1 ωkδxk

. For any k = 1, . . . ,K,

let yk ∈ BRλ(xk). Let us define

µ̃ =

K∑
k=1

ωkδ(xk,yk).

Clearly µ̃ ∈ Pm(Z). Moreover,∫
Z
gλdµ̃ =

K∑
k=1

ωkgλ(xk, yk) =

K∑
k=1

ωkuλ(xk) =

∫
X
uλdm.

The conclusion follows, moreover, µ̃ minimizes
∫
Z gλdµ over Pm(Z).

In the general case, one has to find a measurable selection of BRλ, which requires us to prove

the measurability of BRλ, which cannot be done in a direct fashion. The complete proof is given

in Appendix 3.7.1.

Theorem 3.3.4 (First-order optimality condition). Let Assumption A(1) hold true. Let µ̄ ∈ Pm(Z)

and λ̄ = ∇f
(∫

Z gdµ̄
)
. Consider the following three assertions:

1. The measure µ̄ is a solution of problem (Pm);

2.
∫
Z gλ̄dµ̄ = infµ∈Pm(Z)

∫
Z gλ̄dµ;

3. supp(µ̄x) ⊆ BRλ̄(x), m-a.e., where µ̄x is defined by the disintegration theorem.

Then, assertions (1) and (2) are equivalent. Moreover, under Assumption A(2), assertions (1),

(2), and (3) are equivalent.

Proof. Step 1. (Equivalence between (1) and (2)). We first prove that (1) ⇒ (2). Suppose that µ̄

is a solution of problem (Pm). Take an arbitrary µ ∈ Pm(Z). Then, for any α ∈ [0, 1], we have

f

(∫
Z
gdµ̄

)
≤ f

(∫
Z
gd(µ̄+ α(µ− µ̄))

)
≤ f

(∫
Z
gdµ̄

)
+ α

〈
λ̄ ,

∫
Z
gd(µ− µ̄)

〉
+

α2LD

2
,

where the second inequality follows from the Lipschitz-continuity of ∇f and the definition of D.

Therefore

0 ≤
〈
λ̄ ,

∫
Z
gd(µ− µ̄)

〉
+

αLD

2
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Let α go to 0. We obtain that〈
λ̄ ,

∫
Z
gdµ̄

〉
= inf

µ∈Pm(Z)

〈
λ̄ ,

∫
Z
gdµ

〉
. (3.3.1)

This implies (2) by the definition of gλ̄.

We now prove (2) ⇒ (1). Let (2) hold true. We obtain (3.3.1) by the definition of gλ̄. The

convexity of f implies that for any µ ∈ Pm(Z),

f

(∫
Z
gdµ

)
≥ f

(∫
Z
gdµ̄

)
+

〈
λ̄ ,

∫
Z
gdµ−

∫
Z
gdµ̄

〉
≥ f

(∫
Z
gdµ̄

)
.

Therefore, µ̄ is a solution of problem (Pm).

Step 2. (Equivalence between (2) and (3)). By Theorem 3.2.7, we have∫
Z
gλ̄dµ̄ =

∫
X

∫
Zx

gλ̄(x, y)dµ̄x(y)dm(x).

By Lemma 3.3.3, we have

inf
µ∈Pm(Z)

∫
Z
gλ̄dµ =

∫
X
uλ̄dm.

Therefore, assertion (2) is equivalent to∫
X

∫
Zx

gλ̄(x, y)dµ̄x(y)dm(x) =

∫
X
uλ̄dm. (3.3.2)

Let (3) hold true. It follows that
∫
Zx

gλ̄(x, y)dµ̄x(y) = uλ̄(x), m-a.e., which implies (3.3.2).

Let (2) hold true. We obtain (3.3.2). The function x 7→
( ∫

Zx
gλ̄(x, y)dµ̄x(y)

)
−uλ̄(x) is nonneg-

ative, for a.e. x ∈ X, by the definition of uλ̄. By (3.3.2), its integral is null, thus, as a consequence

of Lemma 3.2.1, we have∫
Zx

gλ̄(x, y)dµ̄x(y) = uλ̄(x) = inf
y∈Zx

gλ̄(x, y), m-a.e. (3.3.3)

Fix x ∈ X such that equality holds in (3.3.3). Consider the map y ∈ Zx 7→ gλ̄(x, y) − uλ̄(x). It is

nonnegative, with a null integral, and BRλ̄(x) is non-empty and closed. Then assertion (3) follows

with Lemma 3.2.1.

Corollary 3.3.5. Under Assumption A, µ̄ is a solution of (Pm) if and only if the following equi-

librium equation is satisfied:  λ̄ = ∇f
(∫

Z gdµ̄
)
,

supp(µ̄x) ⊆ BRλ̄(x), m-a.e.
(3.3.4)

Proof. This is a consequence of Theorem 3.3.4.

The equilibrium equation (3.3.4) shares similarities with the conditions that characterize Nash

equilibria in Lagrangian MFGs [CC18, SS21] and nonatomic potential games [CL18b], as illustrated

in the following two remarks.
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Remark 3.3.6. In the Lagrangian MFG (3.1.3), if (λ̄, µ̄) satisfies (3.3.4), then λ̄ = (1, p(µ̄)), where

p(µ̄) = ∇f̃
(∫

Z g̃(γ(t))dµ̄(x, γ)
)
. The variable p(µ̄) can be interpreted as a social price determined

by the population distribution µ̄. The second line of (3.3.4) indicates that for almost every x with

respect to the measure m, the elements in supp(µ̄x) are solutions of an optimal control problem,

similarly to [CC18, Def. 3.1, Eq. 3.32] and [SS21, Def. 2.2]. In the framework of (3.1.3), this

problem writes:

inf
γ∈Γx

∫ T

0
L̃(γ̇(t)) + ⟨p(µ̄)(t), g̃(γ(t))⟩dt.

Remark 3.3.7. To investigate the connection with the nonatomic potential games presented in

[CL18b], let us consider a specific case of (Pm) where m = δx0
for some x0 ∈ X. In this scenario,

(Pm) can be rewritten as:

inf
ν∈P(Zx0 )

f

(∫
Zx0

g(x0, y)dν(y)

)
.

Let ν̄ be a solution to the aforementioned problem, and define λ̄ = ∇f
(∫

Zx0

g(x0, y)dν̄(y)
)
. The

second line of (3.3.4) can be expressed as:

⟨λ̄, g(x0, ȳ)⟩ ≤ ⟨λ̄, g(x0, y)⟩, ∀ȳ ∈ supp(ν̄), ∀y ∈ Zx0
,

which is consistent with the definition of Nash equilibrium in nonatomic potential games presented

in [CL18b, Sec. 3].

3.3.3 Existence of a solution under tightness assumptions

We denote by val(Pm) the value of problem (Pm). We can easily deduce from Assumption A that

val(Pm) > −∞. The following proposition demonstrates the existence of a solution to problem

(Pm) under some additional assumptions.

Proposition 3.3.8 (Existence). Let Assumption A hold true. Let (µn)n≥1 be a minimizing sequence

for problem (Pm). Suppose that {µn}n≥1 is tight in P(Z), i.e. for any ϵ > 0, there exists a compact

subset Kϵ of Z such that

µn(Kϵ) ≥ 1− ϵ, ∀n ≥ 1.

Then every accumulation point of {µn}n≥1 for the narrow topology (there exists at least one) is a

solution of (Pm).

Proof. By Prokhorov’s theorem [Vil09, p. 43], the set {µn}n≥1 is relatively compact with respect

to the narrow topology. Without loss of generality, suppose that µn narrowly converges to some

µ̄ ∈ P(Z). The set Pm(Z) is closed with respect to narrow topology by [SS21, Prop. 2.4]. This

implies that µ̄ ∈ Pm(Z). Let λ̄ = ∇f(
∫
Z gdµ̄). Since f is convex, we have

f

(∫
Z
gdµn

)
≥ f

(∫
Z
gdµ̄

)
+

∫
Z
gλ̄d(µn − µ̄). (3.3.5)
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Since gλ̄ : Z → R is lower semi-continuous and bounded from below by Assumption A, we deduce

the following inequality from [Vil09, Lem. 4.3]:

lim inf
n→+∞

∫
Z
gλ̄d(µn − µ̄) ≥ 0.

In inequality (3.3.5), letting n go to infinity, by the definition of µn, we have

val(Pm) = lim inf
n→+∞

f

(∫
Z
gdµn

)
≥ f

(∫
Z
gdµ̄

)
≥ val(Pm).

Therefore, µ̄ is a solution of problem (Pm).

Remark 3.3.9. Let us make some comments on the assumption of tightness of {µn}n≥1 in Propo-

sition 3.3.8. One simple example is that where Z is compact in X × Y . Let us consider another

example inspired from the Lagrangian MFGs (3.1.3). We assume that f̃ in (3.1.3) is positive. Let

(µn)n≥1 be a minimizing sequence for (3.1.3). Since val(3.1.3) < +∞, there exists 0 < M̄ < ∞
such that f(

∫
Z gdµn) ≤ M̄ for all n. Then, we construct

Kϵ =

{
(x, γ) ∈ Z

∣∣∣ ∫ T

0
L(γ̇(t))dt ≤ M̄

ϵ

}
. (3.3.6)

By Markov’s inequality, for any n ≥ 1,

µn(Kϵ) = 1− µn

({
(x, γ) ∈ Z

∣∣∣ ∫ T

0
L(γ̇(t))dt >

M̄

ϵ

})
≥ 1− ϵ

∫
Z

∫ T
0 L(γ̇(t))dtdµn

M̄
.

Since f̃ ≥ 0, we have
∫
Z

∫ T
0 L(γ̇(t))dtdµn ≤ f(

∫
Z gdµn) ≤ M̄ . Then, µn(Kϵ) ≥ 1 − ϵ, for any

n ≥ 1. Furthermore, if we assume that Kϵ defined by (3.3.6) is compact in Z, then the tightness

of {µn}n≥1 follows. This approach is employed in [SS21], in the proof of existence of a solution of

a Lagrangian MFG.

3.3.4 Stability of primal problem

In this subsection, we study the stability of the primal problem (Pm) with respect to its parameter

m. We need the following assumptions (recall the data setting introduced in Sec. 3.2.3).

Assumption B. The following holds:

1. The space X is a closed subset of a separable Banach space;

2. The function g : Z → H is continuous;

3. The set Zx is compact for any x ∈ X and the set-valued function F : X ⇝ Y is upper

semi-continuous;

4. There exists Lg ≥ 0 such that the set-valued function

Z : X ⇝ H, x 7→ {g(x, y) | y ∈ Zx} (3.3.7)

is Lg-Lipschitz on X.

92



Let m0 and m1 lie in P(X). We consider the following two instances of (Pm) with m = m0 and

m = m1 respectively:

inf
µ∈Pm0

(Z)
f

(∫
Z
gdµ

)
; (Pm0

)

inf
µ∈Pm1 (Z)

f

(∫
Z
gdµ

)
. (Pm1

)

Suppose that we have an (approximate) solution of problem (Pm0
), denoted by µ̄0. Our goal

is to propose a feasible approach for recovering an approximate solution of problem (Pm1
) from

µ̄0 and to study the performance of this approximation. Our recovery approach relies on µ̄0 and

the solution of the optimal transport problem (OT1) stated later. To introduce (OT1), we need to

define some projection operators

Recall that π1 : Z → X, (x, y) 7→ x, and π2 : Z → X, (x, y) 7→ y. The other projection operators

used in this subsection are defined as:

π̃1 : X ×X → X, (x, x′) 7→ x, π̃2 : X ×X → X, (x, x′) 7→ x′, π3 : Z ×X → X, (x, y, x′) 7→ x′,

π12 : Z ×X → Z, (x, y, x′) 7→ (x, y), π13 : Z ×X → Z, (x, y, x′) 7→ (x, x′).

It directly follows from the above definitions that

π̃1 ◦ π13 = π1 ◦ π12 and π̃2 ◦ π13 = π3.

Now we consider the following optimal transport problem:

inf
ρ∈Π(m0,m1)

∫
X×X

dX(x, x′)dρ(x, x′), (OT1)

where Π(m0,m1) = {ρ ∈ P(X ×X) | π̃1#ρ = m0, π̃2#ρ = m1}. It follows from [Vil09, Rem. 6.5]

that if m0 and m1 lie in P1(X), then d1(m0,m1) = val(OT1).

The following particular example will provide an intuitive understanding of our recovery method.

A particular case. Let us assume that the distributions m0, m1, and µ̄0 are empirical dis-

tributions with supports of size N , i.e., there exists (xi)
N
i=1, (x̃i)

N
i=1 ∈ XN and (yi)

N
i=1 ∈

∏N
i=1 Zxi

such that

m0 =
1

N

N∑
i=1

δxi
, m1 =

1

N

N∑
i=1

δx̃i
, µ̄0 =

1

N

N∑
i=1

δ(xi,yi). (3.3.8)

Lemma 3.3.10. Let m0 and m1 be defined by (3.3.8). Then problem (OT1) has a solution

ρ =
1

N

N∑
i=1

δ(xi,x′
i)
, (3.3.9)

where {x′1, . . . , x′N} is a permutation of {x̃1, . . . , x̃N}.

Proof. This is a consequence of [PC19, Prop. 2.1].
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Let ρ be given by Lemma 3.3.10. By Assumption B(4), for any i, there exists y′i ∈ Zx′
i
such that

∥g(x′i, y′i)− g(xi, yi)∥ ≤ LgdX(xi, x
′
i). (3.3.10)

In our recovery method, each xi is transformed to x′i while simultaneously moving yi to the point

y′i ∈ Zx′
i
for i = 1, . . . , N . This can be expressed as follows:

µ̄0 =
1

N

N∑
i=1

δ(xi,yi) −→ µ1 =
1

N

N∑
i=1

δ(x′
i,y

′
i)
. (3.3.11)

To provide a clearer formula of the construction of µ1, we introduce the empirical distribution

νN ∈ P(Z ×X) and the mapping sN : {(xi, yi, x′i)}Ni=1 → {(xi, y′i)}Ni=1, defined as:

νN =
1

N

N∑
i=1

δ(xi,yi,x′
i)
,

sN (xi, yi, x
′
i) = (x′i, y

′
i), ∀i = 1, 2, . . . , N.

It can be observed that π12#νN = µ̄0 and π3#νN = m1. Furthermore, we will demonstrate later

in Lemma 3.3.11 that νN is a solution of another optimal transport problem (OT2). Then the

approximate solution µ1 of problem (Pm1
) can be written as:

µ1 = sN#νN .

The distribution µ1 belongs to Pm1
(Z), and furthermore,∥∥∥∥∫

Z
gdµ̄0 −

∫
Z
gdµ1

∥∥∥∥ =

∥∥∥∥∥ 1

N

N∑
i=1

(
g(xi, yi)− g(x′i, y

′
i)
)∥∥∥∥∥

≤ Lg

N

N∑
i=1

∥g(xi, yi)− g(x′i, y
′
i)∥

≤ Lg

N

N∑
i=1

dX(xi, x
′
i) = Lgd1(m0,m1),

where the second line follows from the triangle inequality and the third line follows from (3.3.10)

and Lemma 3.3.10. The above inequality demonstrates that the distance between the aggregates

associated with µ̄0 and µ1 is controlled by the d1-distance of m0 and m1.

The general case. To investigate the stability and present the recovery method in the general

case, we draw inspiration from the constructions of νN and sN in the previous particular case and

introduce the following:

• the auxiliary optimal transport problem:

inf
ν∈Π(µ̄0,m1)

∫
Z×X

dX(x, x′)dν(x, y, x′), (OT2)

where Π(µ̄0,m1) := {ν ∈ P(Z ×X) | π12#ν = µ̄0, π3#ν = m1};

94



• the set-valued function S : Z ×X ⇝ Z,

S(x, y, x′) =
{
(x′, y′) ∈ Z | ∥g(x′, y′)− g(x, y)∥ ≤ LgdX(x, x′)

}
. (3.3.12)

Note that problems (OT2) and (OT1) are similar in so far as the integrand of the cost function

is the same, moreover, the second marginal of ν in (OT2) (resp. ρ in (OT1)) must be equal to m1.

The following lemma shows the equivalence between problems (OT1) and (OT2). We will see that

the solution of (OT2) will play the role of νN in the particular case mentioned earlier.

Lemma 3.3.11. If m0 and m1 lie in P1(X), then both problems (OT1) and (OT2) have solutions,

moreover,

val(OT1) = val(OT2) = d1(m0,m1).

Proof. Sincem0,m1 ∈ P1(X), by [Vil09, Rem. 6.5], we have d1(m0,m1) = val(OT1). The existence

of solutions of problems (OT2) and (OT1) is from [Vil09, Thm. 4.1].

Let ν be a solution to (OT2) and let ρ = π13#ν, which is clearly an element of P(X ×X). By

the basic properties of push-forward measures, we have that π̃1#ρ = π̃1#(π13#ν) = (π̃1 ◦ π13)#ν.

Using the relation π̃1 ◦π13 = π1 ◦π12, we obtain that (π̃1 ◦π13)#ρ = (π1 ◦π12)#ρ = π1#(π12#ν) =

π1#µ̄0 = m0. It follows that π̃1#ρ = m0. By similar arguments, we deduce that π̃2#ρ = m1 from

the relation π̃2 ◦ π13 = π3. Therefore, µ ∈ Π(m0,m1), moreover,∫
X×X

dX(x, x′)dπ13#ν(x, x′) =

∫
Z×X

dX(π13(x, y, x
′))dν(x, y, x′) = val(OT2).

It follows that d1(m0,m1) ≤ val(OT2).

On the other hand, let ρ be a solution of (OT1). Since µ̄0 and ρ have the same marginal

distribution m0 with respect to their first variable, by the Gluing lemma [Vil09, p. 11], there exists

a probability measure ν ∈ P(X × Y ×X) such that

π12#ν = µ̄0, π13#ν = ρ.

Since µ̄0 ∈ P(Z), we have ν ∈ P(Z × X). From the relation π3 = π̃2 ◦ π13, we deduce that

π3#ν = π̃2#(π13#ν) = π̃2#ρ = m1. Thus, ν ∈ Π(µ̄0,m1), moreover,∫
Z×X

dX(x, x′)dν(x, y, x′) =

∫
Z×X

dX(π13(x, y, x
′))dν(x, y, x′) =

∫
X×X

dX(x, x′)dπ13#ν(x, x′)

=

∫
X×X

dX(x, x′)dρ(x, x′) = d1(m0,m1).

It follows that d1(m0,m1) ≥ val(OT2).

The following two lemmas demonstrate that the set-valued function S has a measurable selection,

which will be denoted by s. We will see that the function s will fulfill the role of sN in the particular

case discussed earlier.

Lemma 3.3.12. Under Assumption B(3), let (xn)n≥1 be a sequence in X converging to some

x0 ∈ X. Then any sequence (yn ∈ Zxn
)n≥1 has a convergent sub-sequence with its limit in Zx0

.
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Proof. Since F : X ⇝ Y is upper semi-continuous, for any k ≥ 1, there exists ηk > 0 such that

for any x ∈ BX(x0, ηk), we have Zx ⊆ BY (Zx0
, 1/k) := ∪y∈Zx0

BY (y, 1/k). For k = 1, there exists

φ(1) ∈ N+ such that Zxφ(1)
⊆ BY (Zx0

, 1), i.e., there exists ȳ1 ∈ Zx0
such that

dY (yφ(1), ȳ1) ≤ 1.

Assume now we have φ(k) ∈ N+ and ȳk ∈ Zx0
for k = 1, . . . ,K such that

dY (yφ(k), ȳk) ≤
1

k
, k = 1, . . . ,K.

Since xn → x0, we can find φ(K+1) > φ(K) such that xφ(K+1) ∈ BX(x0, ηK+1). As a consequence,

there exists ȳK+1 ∈ Zx0
such that

dY (yφ(K+1), ȳK+1) ≤
1

K + 1
.

Since Zx0
is compact, (ȳk)k≥1 has a convergent sub-sequence (ȳϕ(k))k≥1 with a limit ȳ ∈ Zx0

. By

the triangle inequality,

dY (yϕ(φ(k)), ȳ) ≤ dY (yϕ(φ(k)), ȳϕ(φ(k))) + dY (ȳϕ(φ(k)), ȳ) ≤
1

ϕ(φ(k))
+ dY (ȳϕ(φ(k)), ȳ).

Since ϕ and φ are strictly increasing functions going to +∞, we have limk→+∞ dY (yϕ(φ(k)), ȳ) = 0.

Therefore, (yϕ(φ(k)))k≥1 is a convergent sub-sequence of (yn)n≥1 with its limit ȳ ∈ Zx0
.

Lemma 3.3.13. Under Assumption B, the set-valued function S has a Borel measurable selection

function s : Z ×X → Z. Furthermore, we have ∥g(s(x, y, x′))− g(x, y)∥ ≤ LgdX(x, x′).

Proof. We will apply Theorem 3.2.3 and Lemma 3.2.4 to prove the result. The images of S are

non-empty since the set-valued mapping Z (defined in (3.3.7)) is supposed to be Lg-Lipschitz. Let

us first verify that S has non-empty closed images. Fix any (x, y, x′) ∈ Z × X, and assume that

(x′, zn) ∈ S(x, y, x′) converges to some (x′, z) ∈ Z. It suffices to prove that (x′, z) ∈ S(x, y, x′), i.e.,

∥g(x′, z)− g(x, y)∥ ≤ LgdX(x, x′). This is true since g is continuous and zn → z.

Then, let us show that S−1(C) is closed for any closed subset C in Z. By (3.3.12), we have

S−1(C) =
{
(x, y, x′) ∈ Z ×X | S(x, y, x′) ∩ C ̸= ∅

}
=

{
(x, y, x′) ∈ Z ×X | ∃ y′ ∈ Zx′ such that

{
(x′, y′) ∈ C,
∥g(x′, y′)− g(x, y)∥ ≤ LgdX(x, x′)

}
.

If S−1(C) = ∅, then the conclusion is obvious. Assume that S−1(C) ̸= ∅ and let (xn, yn, x
′
n)n≥1 ∈

S−1(C) be a convergent sequence with its limit point (x0, y0, x
′
0) ∈ Z×X. Then, it suffices to prove

that (x0, y0, x
′
0) ∈ S−1(C). Since (xn, yn, x

′
n) ∈ S−1(C), there exists y′n ∈ Zx′

n
, for any n, such that

(x′n, y
′
n) ∈ C, ∥g(x′n, y′n)− g(xn, yn)∥ ≤ LgdX(xn, x

′
n).

By Lemma 3.3.12, the sequence (y′n)n≥1 has a convergent sub-sequence (y′φ(n))n≥1 with its limit

y′0 ∈ Zx′
0
. Hence, limn→∞(x′φ(n), y

′
φ(n)) = (x′0, y

′
0). Since C is closed, we have (x′0, y

′
0) ∈ C. By the
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triangle inequality,

∥g(x′0, y′0)− g(x0, y0)∥ ≤ ∥g(x′0, y′0)− g(x′φ(n), y
′
φ(n))∥+ ∥g(x′φ(n), y

′
φ(n))− g(xφ(n), yφ(n))∥

+∥g(xφ(n), yφ(n))− g(x0, y0)∥.

By the continuity of g, we have

∥g(x′0, y′0)− g(x0, y0)∥ ≤ lim sup
n→∞

∥g(x′φ(n), y
′
φ(n))− g(xφ(n), yφ(n))∥

≤ lim sup
n→∞

LgdX(xφ(n), x
′
φ(n)) = LgdX(x0, x

′
0).

Therefore, y′0 ∈ Zx′
0
, (x′0, y

′
0) ∈ C and ∥g(x′0, y′0) − g(x0, y0)∥ ≤ LgdX(x0, x

′
0). It follows that

(x0, y0, x
′
0) ∈ S−1(C), which implies that S−1(C) is closed, thus a Borel set.

Lemma 3.2.4 shows that the set-valued function S is Borel measurable, and Theorem 3.2.3 shows

the existence of a Borel measurable selection s of S. Since s(x, y, x′) ∈ S(x, y, x′), the inequality

∥g(s(x, y, x′))− g(x, y)∥ ≤ LgdX(x, x′) is a direct consequence of (3.3.12).

Lemma 3.3.14. Let Assumptions A-B hold true. Let ν ∈ Π(µ̄0,m1) and s be the Borel measurable

selection of S obtained Lemma 3.3.13. Let µ1 = s#ν. Then µ1 ∈ Pm1
(Z) and

f

(∫
Z
gdµ1

)
− f

(∫
Z
gdµ̄0

)
≤ Lg(C + LM)

∫
Z×X

dX(x, x′)dν(x, y, x′).

Proof. Step 1. (Properties of µ1). Since ν ∈ P(Z × S) and s : Z × S → Z is a Borel measurable

function, we have µ = s#ν ∈ P(Z). Observing that π1◦s = π3, it follows that π1#µ = (π1◦s)#ν =

π3#ν = m1. Thus, µ1 ∈ Pm1
(Z). For any λ ∈ H, gλ : Z → R is bounded. Then,∫

Z
gλdµ1 =

∫
Z×X

gλ ◦ s dν. (3.3.13)

Step 2. (Quadratic upper bound). By the Lipschitz continuity of ∇f , we have

f

(∫
Z
gdµ1

)
− f

(∫
Z
gdµ̄0

)
≤
∫
Z
gλ0

(dµ1 − dµ̄0) +
L

2

∥∥∥∥∫
Z
gdµ1 −

∫
Z
gdµ̄0

∥∥∥∥2 , (3.3.14)

where λ0 = ∇f(
∫
Z gdµ̄0).

Step 3. (First-order estimate). Let us study the first-order term in (3.3.14). By (3.3.13), we

have ∫
Z
gλ0

dµ1 =

∫
Z×X

gλ0
◦ sdν =

∫
Z×X

⟨λ0 , g(s(x, y, x
′))⟩dν(x, y, x′).

From the relation π12#ν = µ̄0, we deduce that∫
Z
gλ0

dµ̄0 =

∫
Z×X

⟨λ0 , g(x, y)⟩dν(x, y, x′).

Using the previous two equalities, Lemma 3.3.13, and the Cauchy–Schwarz inequality, we obtain

that ∫
Z
gλ0

(dµ1 − dµ̄0) ≤ Lg∥λ0∥
∫
Z×X

dX(x, x′)dν(x, y, x′).
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Step 4. (Second-order estimate). Let us study the second-order term in (3.3.14). Developing

it and using Lemma 3.2.6, we obtain that∥∥∥∥∫
Z
gdµ1 −

∫
Z
gdµ̄0

∥∥∥∥2 = γ1 + γ2, (3.3.15)

where

γ1 =

∫
Z

∫
Z
⟨g(z1), g(z2)⟩ d(µ1 − µ̄0)(z1) dµ1(z2);

γ2 =

∫
Z

∫
Z
⟨g(z1), g(z2)⟩ d(µ̄0 − µ1)(z1) dµ̄0(z2).

Fix any z2 ∈ Z. Following the same argument as in step 3, we have∥∥∥∥∫
Z
⟨g(z1), g(z2)⟩ d(µ1 − µ̄0)(z1)

∥∥∥∥ ≤ Lg∥g(z2)∥
∫
Z×X

dX(x, x′)dν(x, y, x′).

It follows that

γ1 + γ2 ≤ 2LgM

∫
Z×X

dX(x, x′)dν(x, y, x′).

Step 5. As a consequence of Steps 2-4, we deduce that

f

(∫
Z
gdµ1

)
− f

(∫
Z
gdµ̄0

)
≤ Lg(∥λ0∥+ LM)

∫
Z×X

dX(x, x′)dν(x, y, x′).

By the definition of the constant C, we have C ≥ ∥λ0∥. The conclusion follows.

We can now state the recovery algorithm that enables us to obtain an approximate solution of

(Pm1
), given an approximate solution µ̄0 of (Pm0

).

Algorithm 3.1: Recovery method

Input: m0,m1 ∈ P1(Z), and µ̄0 ∈ Pm0
(Z).

Step 1. Find a solution ρ of the optimal transport problem (OT1).

Step 2. Find ν ∈ P(Z ×X) such that π12#ν = µ̄0 and π13#ν = ρ.

Step 3. Set µ1 = s#ν ∈ Pm1
(Z), where s is constructed in Lemma 3.3.13.

Output: µ1.

Remark 3.3.15. We have already discussed the case where m0, m1, and µ̄0 are empirical dis-

tributions. We discuss now the slightly more general case where only m0 and µ̄0 are empirical

distributions:

m0 =
1

N

N∑
i=1

δxi
, µ̄0 =

1

N

N∑
i=1

δ(xi,yi).

This situation corresponds to the algorithm presented in Section 3.5. Since ρ ∈ Pm0
(X ×X), by

Lemma 3.5.5, we have ρ = 1
N

∑N
i=1 δxi

⊗ ρxi
, where ρxi

is defined in Theorem 3.2.7. Then the

probability distribution µ, obtained in general with the Gluing lemma, is given here in an explicit

form:

ν =
1

N

N∑
i=1

δ(xi,yi) ⊗ ρxi
.
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Theorem 3.3.16. Let Assumptions A-B hold true. Assume that m0,m1 ∈ P1(Z) and that µ̄0 is

an ϵ0-minimizer of problem (Pm0
) for some ϵ0 ≥ 0. The following holds true.

1. |val(Pm0
)− val(Pm1

)| ≤ Lg(C + LM)d1(m0,m1);

2. If µ1 ∈ Pm1
(Z) is the output of Algorithm 3.1, then µ1 is an η-minimizer of problem (Pm1

),

where

η = ϵ0 + 2Lg(C + LM)d1(m0,m1).

Proof. We prove (1). Fix any ϵ > 0. Let µϵ
0 be an ϵ-minimizer of problem (Pm0

). By Lemma 3.3.11,

there exists νϵ ∈ Π(µϵ
0,m1) such that∫

Z×X
dX(x, x′)dν(x, y, x′) = d1(m0,m1).

We deduce from Lemma 3.3.14 that there exists µϵ
1 ∈ Pm1

(Z) such that

f

(∫
z
gµϵ

1

)
− f

(∫
Z
gdµϵ

0

)
≤ Lg(C + LM)d1(m0,m1).

Since µϵ
1 ∈ Pm1

(Z), val(Pm1
) ≤ f

(∫
z gµ1

)
. Combining this with the fact val(Pm0

) ≥ f
(∫

Z gdµϵ
0

)
−

ϵ, we obtain that

val(Pm1
)− val(Pm0

) ≤ f

(∫
z
gµϵ

1

)
− f

(∫
Z
gdµϵ

0

)
+ ϵ.

Therefore, val(Pm1
)− val(Pm0

) ≤ Lg(C + LM)d1(m0,m1) by the arbitrariness of ϵ. We conclude

the first part of the proof by exchanging the positions of m0 and m1.

Let µ1 be the output of Algorithm 3.1. To prove (2), we do the following decomposition:

f

(∫
gdµ1

)
− val(Pm1

) = γ1 + γ2 + γ3,

where

γ1 = f

(∫
gdµ1

)
− f

(∫
gdµ̄0

)
, γ2 = f

(∫
gdµ̄0

)
− val(Pm0

), γ3 = val(Pm0
)− val(Pm1

).

From the proof of Lemma 3.3.11, we know that ν (the result of step 2 in Algorithm 3.1) is a

solution of (OT2). Then, Lemma 3.3.14 shows that γ1 ≤ Lg(C + LM)d1(m0,m1). Since µ̄0 is an

ϵ-minimizer, γ2 ≤ ϵ. By point (1), γ3 ≤ Lg(C + LM)d1(m0,m1). The conclusion follows.

3.4 Dual problem

This section is dedicated to the duality analysis of the primal problem (Pm). In the sequel of this

section, let Assumptions A∗ and B hold true. Consider the equivalent formulation of problem of

(Pm),

inf
µ∈Pm(Z), β∈H

f (β) , s.t. β =

∫
Z
gdµ. (P̃m)
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The Lagrangian L : H2 × Pm(Z) → R associated with (P̃m) writes,

L(λ, β, µ) = f(β) +

〈
λ,

∫
Z
gdµ− β

〉
.

Then, the dual problem of (P̃m) is,

sup
λ∈H

inf
β∈H , µ∈Pm(Z)

L(λ, β, µ) = sup
λ∈H

(
− f∗(λ) + inf

µ∈Pm(Z)

∫
Z
⟨λ , g(z)⟩ dµ(z)

)
, (3.4.1)

where f∗ is the Fenchel conjugate of f . For any λ ∈ H, since g is bounded over Z, the second term

infµ∈Pm(Z)

∫
Z ⟨λ , g(z)⟩ dµ(z) is finite. Therefore, it suffices to study (3.4.1) for λ ∈ dom(f∗), i.e.,

sup
λ∈dom(f∗)

(
− f∗(λ) + inf

µ∈Pm(Z)

∫
Z
gλdµ

)
.

The result of Lemma 3.3.3 holds true for all λ ∈ dom(f∗) under Assumption A∗. Applying it to

the previous problem, we obtain the following equivalent dual problem:

− inf
λ∈dom(f∗)

Dm(λ) := f∗(λ)−
∫
X
uλdm. (Dm)

Lemma 3.4.1. The function Dm is strongly convex with modulus 1/L. As a consequence, problem

(Dm) has a unique solution, denoted by λ∗(m). Moreover, there exists a constant C∗ independent

of m such that

∥λ∗(m)∥ ≤ C∗.

Proof. Since∇f is L-Lipschitz continuous, we know that f∗ is strongly convex with modulus 1/(2L)

(i.e. f∗ − 1/L∥ · ∥2 is convex) (see [BC11, Thm. 18.15]). Let us consider uλ(x) as a function of λ

while fixing any x ∈ X. By definition, λ 7→ uλ(x) is the infimum of a family of affine functions

(with respect to λ), thus it is concave with respect to λ. Consequently, −
∫
X uλdm is convex with

respect to λ. Therefore, Dm is 1/L-strongly convex. Additionally, dom(f∗) is both convex and

closed. These properties guarantee the existence and uniqueness of the minimizer λ∗(m).

Since M is an upper bound of ∥g(z)∥, it follows that for all λ ∈ H:

−M∥λ∥ ≤ inf
y∈Zx

−∥λ∥∥g(x, y)∥ ≤ uλ(x) ≤ sup
y∈Zx

∥λ∥∥g(x, y)∥ ≤ M∥λ∥.

Let λ0 ∈ dom(f∗). As Dm(λ∗(m)) ≤ Dm(λ0), we can derive the following inequalities:

f∗(λ0) +M∥λ0∥ ≥ Dm(λ0) ≥ Dm(λ∗(m)) ≥ f∗(λ∗(m))−M∥λ∗(m)∥.

The strong convexity of f∗ yields that

1

2L
∥λ∗(m)− λ0∥2 + ⟨p0, λ∗(m)− λ0⟩ ≤ f∗(λ∗(m))− f∗(λ0),

where p0 ∈ ∂f∗(λ0). Combining the two above inequalities, we obtain:

1

2L
∥λ∗(m)− λ0∥2 + ⟨p0, λ∗(m)− λ0⟩ ≤ M(∥λ∗(m)∥+ ∥λ0∥).

where p0 ∈ ∂f∗(λ0). The announced result follows, with C∗ = 3∥λ0∥+ 2L(M + ∥p0∥).
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3.4.1 Strong duality

Let us now prove the strong duality principle between (Pm) and (Dm), i.e., val(Pm) = val(Dm) .

We will apply the Fenchel-Rockafellar theorem [Roc97] to prove this relation.

Proposition 3.4.2. Assume that the set Gm := {
∫
µ gdµ | µ ∈ Pm(Z)} ⊆ H is closed. Then,

1. val(Pm) = val(Dm);

2. the primal problem (Pm) has a solution;

3. let λ∗(m) be the solution of (Dm) and let µ be a solution of (Pm), then

λ∗(m) = ∇f

(∫
Z
gdµ

)
.

Proof. Let us consider the following optimization problem with variable in H:

inf
z∈H

f(z) + χGm
(z). (3.4.2)

It is obvious that val(Pm) = val(P̃m) = val(3.4.2). The dual problem of (3.4.2) writes

sup
λ∈H

−f∗(λ)− χ∗
Gm

(−λ). (3.4.3)

By the definition of the Fenchel conjugate and the definition of Gm, we have

−χ∗
Gm

(−λ) = inf
z∈Gm

⟨λ, z⟩ = inf
µ∈Pm(Z)

〈
λ,

∫
Z
gdµ

〉
.

Therefore, val(Dm) = val(3.4.1) = val(3.4.3). Let us apply the Fenchel-Rockafellar theorem to

(3.4.2). The function f is convex and continuous. The function χGm
is convex and lower semi-

continuous from the fact that Gm is convex and closed. It is obvious that Gm is non-empty.

Therefore, 0 ∈ int(H−Gm) = int(domf − domχGm
). By the Fenchel-Rockafellar theorem [Roc97],

val(3.4.3) = val(3.4.2), thus, val(Pm) = val(Dm).

Since Gm is non-empty, bounded, convex, and closed, and since f is continuous and convex, we

deduce from [Bré11, Cor. 3.23] that problem (3.4.2) has a solution. Therefore, (Pm) has a solution,

denoted by µ. Since λ∗(m) is the solution of (Dm), by the strong duality,

−f∗(λ∗(m)) + inf
z∈Gm

⟨λ∗(m), z⟩ = f

(∫
Z
gdµ

)
.

On the other hand, by the definition of Fenchel’s conjugate,

f

(∫
Z
gdµ

)
+ f∗(λ∗(m)) ≤

〈
λ∗(m),

∫
Z
gdµ

〉
.

Combining the previous two inequalities and the fact that
∫
Z gdµ ∈ Gm, we deduce that

f

(∫
Z
gdµ

)
+ f∗(λ∗(m)) =

〈
λ∗(m),

∫
Z
gdµ

〉
.

We obtain that λ∗(m) = ∇f(
∫
Z gdµ) from Fenchel’s relation.
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3.4.2 Stability of the dual problem

Lemma 3.4.3. For any λ1, λ2 ∈ H and x1, x2 ∈ X, it holds that

|uλ1
(x1)− uλ2

(x2)| ≤ Lg∥λ1∥dX(x1, x2) +M∥λ1 − λ2∥.

Proof. By the triangle ineqaulity,

|uλ1
(x1)− uλ2

(x2)| ≤ |uλ1
(x1)− uλ1

(x2)|+ |uλ1
(x2)− uλ2

(x2)|.

By the definition of uλ, we have

uλ1
(x1)− uλ1

(x2) = inf
y1∈Zx1

⟨λ1 , g(x1, y1)⟩ − inf
y2∈Zx2

⟨λ1 , g(x2, y2)⟩.

Let ỹϵ2 be an ϵ-minimizer of infy2∈Zx2
⟨λ1 , g(x2, y2)⟩, with ϵ > 0. By the Lipschitz continuity of Z,

there exists ỹϵ1 ∈ Zx1
such that

∥g(x1, ỹϵ1)− g(x2, ỹ
ϵ
2)∥ ≤ LgdX(x1, x2).

By the Cauchy-Schwarz inequality, we have

uλ1
(x1)− uλ1

(x2) ≤ ⟨λ1 , g(x1, ỹ
ϵ
1)− g(x2, ỹ

ϵ
2)⟩+ ϵ ≤ ∥λ1∥LgdX(x1, x2) + ϵ.

By the arbitrariness of ϵ, we have |uλ1
(x1)− uλ1

(x2)| ≤ ∥λ1∥LgdX(x1, x2).

On the other hand,

uλ1
(x2)− uλ2

(x2) = inf
y∈Zx2

⟨λ1 , g(x2, y)⟩ − inf
y∈Zx2

⟨λ2 , g(x2, y)⟩ ≤ sup
y∈Zx2

⟨λ1 − λ2 , g(x2, y)⟩.

By the Cauchy–Schwarz inequality and the definition of M , we have that

uλ1
(x2)− uλ2

(x2) ≤ M∥λ1 − λ2∥.

The conclusion follows.

Lemma 3.4.4 (Stability of the dual problem). For any m0, m1 ∈ P(Ω), we have

|Dm0
(λ∗(m0))−Dm1

(λ∗(m1))| ≤ C∗Lg d1(m0,m1), (3.4.4)

∥λ∗(m0)− λ∗(m1)∥2 ≤ 2C∗LgLd1(m0,m1), (3.4.5)

where C∗ is the a priori bound of ∥λ∗(·)∥ obtained in Lemma 3.4.1

Proof. According to Lemma 3.4.1, we know that ∥λ∗(m0)∥ and ∥λ∗(m1)∥ are smaller than C∗.

Then, by Lemma 3.4.3, uλ∗(m0)(x) and uλ∗(m1)(x) are (C∗Lg)-Lipschitz continuous with respect to

x. Hence,

Dm0
(λ∗(m0)) = f∗(λ∗(m0))−

∫
X
uλ∗(m0)(x)dm0(x)

= f∗(λ∗(m0))−
∫
X
uλ∗(m0)(x)dm1(x) +

∫
X
uλ∗(m0)(x)d(m1 −m0)(x)

≥ Dm1
(λ∗(m0))− C∗Lgd1(m0,m1),

(3.4.6)
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where the third line is by the definition of the Kantorovich–Rubinstein distance. Since λ∗(m1)

minimizes Dm1
and since Dm1

is 1/L-strongly convex, we have

Dm1
(λ∗(m0)) ≥ Dm1

(λ∗(m1)) +
1

2L
∥λ∗(m0)− λ∗(m1)∥2. (3.4.7)

Combining (3.4.6) and (3.4.7), we obtain that

Dm0
(λ∗(m0)) ≥ Dm1

(λ∗(m1)) +
1

2L
∥λ∗(m0)− λ∗(m1)∥2 − C∗Lgd1(m0,m1).

In particular, we have Dm1
(λ∗(m1))−Dm0

(λ∗(m0)) ≤ C∗Lgd1(m0,m1). Exchanging the positions

of m0 and m1 in (3.4.6), we obtain

Dm1
(λ∗(m1)) ≥ Dm0

(λ∗(m0)) +
1

2L
∥λ∗(m0)− λ∗(m1)∥2 − C∗Lgd1(m0,m1). (3.4.8)

Inequality (3.4.4) follows immediately and (3.4.5) is deduced by summing (3.4.6)-(3.4.8).

3.4.3 Directional derivative of the value function

The value function of problem (Pm) is defined by

V : P1(X) → R, m 7→ val(Pm).

Our goal is to characterize the directional derivative of V . Define the following function:

v : P1(X)×X → R, (m,x) 7→ uλ∗(m)(x).

Proposition 3.4.5. Assume that Gm is closed for any m ∈ P1(X). Then for any m0,m1 ∈ P1(X),

we have

lim
t→0+

V (m0 + t(m1 −m0))− V (m0)

t
=

∫
X
v(m0, x)d(m1 −m0)(x).

As a consequence, v is the directional derivative of V , i.e.,

V (m1)− V (m0) =

∫ 1

t=0

∫
X
v(m0 + t(m1 −m0), x)d(m1 −m0)(x)dt.

Proof. For any t ∈ [0, 1], let mt = m0 + t(m1 −m0). By the strong duality, we have

V (mt)− V (m0) = Dm0
(λ∗(m0))−Dmt

(λ∗(mt)).

From (3.4.6), we deduce that

Dm0
(λ∗(m0))−Dmt

(λ∗(mt)) ≥
∫
X
v(m0, x)d(mt −m0)(x) = t

∫
X
v(m0, x)d(m1 −m0)(x). (3.4.9)

On the other hand, let µ0 and µ1 be solutions of (Pm) with m = m0 and m1 respectively. Let

µt = µ0 + t(µ1 − µ0). It is obvious that π1#µt = mt. Therefore,

V (mt)− V (m0) ≤ f

(∫
Z
gdµt

)
− f

(∫
Z
gdµ0

)
.
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By Proposition 3.4.2, λ∗(m0) = ∇f(
∫
Z gdµ0). Since ∇f is L-Lipschitz, it follows that

f

(∫
Z
gdµt

)
− f

(∫
Z
gdµ0

)
≤ t

∫
X
v(m0, x)d(m1 −m0)(x) +

Lt2

2

∥∥∥∥∫
Z
gd(µ1 − µ0)

∥∥∥∥2 .
Recall the definition of D. Combining the two inequalities above, we have

V (mt)− V (m0) ≤ t

∫
X
v(m0, x)d(m1 −m0)(x) +

LDt2

2
. (3.4.10)

We have V (m0) = −Dm0
(λ∗(m0)) and V (mt) = −Dmt

(λ∗(mt)). Using (3.4.9)-(3.4.10) and letting

t go to 0+, we obtain that

lim
t→0+

V (mt)− V (m0)

t
=

∫
X
v(m0, x)d(m1 −m0)(x).

From Lemmas 3.4.3-3.4.4, we deduce that the function v(m,x) is continuous in P1(X)×X with

respect to the distance (d1, dX). Let us define two functions from [0, 1] to R,

V̄ : [0, 1] → R, t 7→ V (mt);

v̄ : [0, 1] → R, t 7→
∫
X
v(mt, x)d(m1 −m0)(x).

For any 0 ≤ t ≤ T < 1, observe that mT = mt +
T−t
1−t (m1 −mt) and m1 −mt = (1− t)(m1 −m0).

By using the same arguments as in (3.4.9)-(3.4.10), we have

(T − t)v̄(t) ≤ V̄ (T )− V̄ (t) ≤ (T − t)v̄(t) +
LD(T − t)2

2(1− t)2
.

We deduce that v̄(t) is the right derivative of V̄ at t for any t ∈ [0, 1). By exchanging positions

of m0 and m1, we can prove that v̄(t) is the left derivative of V̄ at t for any t ∈ (0, 1]. Therefore,

V̄ is differentiable at each point on [0, 1] and v̄ is its derivative. Since v̄ is continuous, by the

fundamental theorem of calculus [Rud87, Thm. 7.21], we have that V̄ (1)− V̄ (0) =
∫ 1
t=0 v̄(t)dt.

3.5 Algorithms for the discretized MFO problem

We present in this section our numerical method for solving (Pm). The first step of resolution

consists in discretizing m. We replace it by an empirical distribution mN and focus next on the

resolution of (PmN
). By Theorem 3.3.16(1), we have

|val(Pm)− val(PmN
)| ≤ Lg(C + LM)d1(m,mN ). (3.5.1)

We give theoretical bounds for the minimal value of d1(m,mN ) in Subsection 3.5.1. Then we discuss

the resolution of (PmN
) with the Frank-Wolfe algorithm in Subsection 3.5.2. Finally in Subsection

3.5.3 we propose to use a variant of the Frank-Wolfe algorithm, called Stochastic Frank-Wolfe

(SFW) algorithm, introduced in [BLO+22]. This method generates a solution to (PmN
) which is

an empirical distribution.
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3.5.1 Discretization

In view of (3.5.1), one should look for an empirical distribution mN = 1
N

∑N
i=1 δxi

that is as close

as possible to m for the d1-distance. This problem is commonly known as the optimal quantization

problem, and for detailed information on this topic, we refer to [GG12]. Here, we present a slightly

modified version of an optimal quantization result obtained in [MM16, Prop. 12]. For any subset A

of X, we denote by rN (A) the minimum radius r required to cover A with N closed balls of radius

r. It is defined by

rN (A) := inf
x∈AN

min

{
r ≥ 0

∣∣∣A ⊆
N⋃
i=1

BX(xi, r)

}
.

The upper box-counting dimension (or the upper Minkowski dimension) of A [Fal04, p. 41] is defined

as follows:

D̄(A) := inf
{
D̄ > 0

∣∣ ∃C̄ > 0 such that rN (A) ≤ C̄N−1/D̄, ∀N ∈ N+

}
.

Lemma 3.5.1. Let m ∈ P1(X), and let A ⊆ X be the support of m. There exists a sequence

(mN )N≥1 of empirical distributions on X such that the following holds:

1. If D̄(A) > 1, then there exists a constant C̃1 such that for any N ≥ 1,

d1(m,mN ) ≤ C̃1N
− 1

D̄(A) .

2. If D̄(A) = 1, then there exists a constant C̃2 such that for any N ≥ 1,

d1(m,mN ) ≤ C̃2N
−1 logN.

3. If D̄(A) < 1, then there exists a constant C̃3 such that for any N ≥ 1,

d1(m,mN ) ≤ C̃3N
−1.

Proof. This follows from the proof presented in [MM16, Prop. 12], with the only difference being

that in the final inequality, we employ the triangle inequality for the d1-distance instead of the

Minkowski inequality for the Wasserstein-2 distance.

Remark 3.5.2. If A is a subset of a smooth d-dimensional submanifold of a Euclidean space, then

D̄(A) ≤ d. This estimate is deduced from [Fal04, p. 48 (i)-(ii)].

3.5.2 Frank-Wolfe algorithm

For general convex optimization problems, the Frank-Wolfe algorithm relies on the resolution of

a sequence of linearized problems, obtained by replacing the cost function of the problem by a

first-order Taylor approximation of it. In the context of problem (PmN
), the linearized problem is

of the general form:

inf
µ∈PmN

(Z)

〈
λ,

∫
Z
gdµ

〉
, (3.5.2)
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for some λ ∈ ∇f(H).

A key observation from Lemma 3.3.3 is that a solution of the linearized problem, denoted

by µλ, can be solved as in the proof of Lemma 3.3.3, in the simple case where m is a finitely-

supported probability measure: for all i = 1, . . . , N , find yi ∈ BRλ(xi) and set µλ = 1
N

∑N
i=1 δ(xi,yi).

Therefore, one can consider applying the Frank-Wolfe algorithm to solve (PmN
), in which the main

task is to solve (3.5.2).

Algorithm 3.2: Frank-Wolfe Algorithm

Initialization: µ0 ∈ PmN
(Z). Set K ≥ 1.

for k = 0, 1, 2, . . . ,K − 1 do

Compute λk = ∇f
(∫

Z gdµk
)
.

Solve (3.5.2) for λ = λk, the solution is denoted by µλk .

Choose ωk ∈ [0, 1].

Set µk+1 = (1− ωk)µ
k + ωkµλk .

end for

Remark 3.5.3. If we take ωk = 1/(k+1) for all k, then it is easy to see that µK = 1
K

∑K−1
k=0 µλk . We

recover the fictitious play algorithm in [CH17] applied to the Lagrangian discretization of first-order

MFGs.

Lemma 3.5.4. Let Assumption A hold true. In Algorithm 3.2, we set ωk = 2/(k + 2) for all k.

Then for any K ≥ 1,

f

(∫
Z
gdµK

)
− val(PmN

) ≤ 2LD

K
.

Proof. This is a consequence of [BLO+22, Prop. 3.4].

3.5.3 Stochastic Frank-Wolfe algorithm

In Algorithm 3.2, at each iteration, we generate the output by taking a convex combination of the

previous iteration’s result and the solution of (3.5.2). This process requires us to add N points from

BRλk(xi), for i = 1, . . . , N , to stock the support of solution at each iteration. As a consequence,

this approach can lead to a memory overflow issue, as K going to infinity. The large support of µK

will also raise the difficulty of Step 2 in Algorithm 3.1, in which we will take µ̄0 = µK . To address

this issue, we will use the stochastic Frank-Wolfe algorithm [BLO+22] to (PmN
). This approach

will enable us to obtain an approximate empirical solution (PmN
), and can effectively handle the

large support of µK .

Lemma 3.5.5. Let µ ∈ P(Z). Then µ lies in PmN
(Z) if and only if there exists µi ∈ P(Zxi

) for

any i = 1, . . . , N such that µ = 1
N

∑N
i=1 δxi

⊗ µi.

Proof. If µi ∈ P(Zxi
), then π1#(δxi

⊗ µi) = δxi
. Since the push-forward operator # is linear, we

have that π1#( 1
N

∑N
i=1 δxi

⊗ µi) =
1
N

∑N
i=1 δxi

= mN .

Conversely, let us assume that µ ∈ PmN
(Z). By Theorem 3.2.7 and its remark, we can conclude

that there exists µxi
∈ P(Zxi

) for i = 1, . . . , N such that for any bounded and continuous function
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h : Z → R, we have ∫
Z
hdµ =

1

N

N∑
i=1

∫
Zxi

h(xi, yi)dµxi
(yi).

Applying Fubini’s theorem to the equality above, we have∫
Z
h dµ =

1

N

N∑
i=1

∫
Z
h d (δxi

⊗ µxi
) =

∫
Z
h d

(
1

N

N∑
i=1

δxi
⊗ µxi

)
.

This implies that µ = 1
N

∑N
i=1 δxi

⊗ µxi
.

According to Lemma 3.5.5 and Fubini’s theorem, the discretized problem (PmN
) is equivalent

to

inf
µi∈P(Zxi

)
f

(
1

N

N∑
i=1

∫
Zxi

g(xi, yi)dµi(yi)

)
. (3.5.3)

Problem (3.5.3) is the randomized relaxation of an N -agent optimization problem as investigated

in [BLO+22],

inf
y∈

∏N
i=1 Zxi

f

(
1

N

N∑
i=1

g(xi, yi)

)
. (3.5.4)

Problem (3.5.4) is equivalent to a version of problem (3.5.3) in which the probability measures µi

are restricted to be Dirac measures. In particular, we can associate with each feasible element

y = (yi)i=1,...,N ∈
∏N

i=1 Zxi
(for problem (3.5.4)) the tuple (δxi

)i=1,...,N , which is feasible for (3.5.3),

and the probability distribution 1
N

∑N
i=1 δ(xi,yi), which is feasible for (PmN

).

We apply the following Stochastic Frank-Wolfe algorithm, investigated in [BLO+22], to solve

problems (3.5.3) and (3.5.4). Let Bern(ω) be the Bernoulli distribution with a parameter ω ∈ [0, 1].

Algorithm 3.3: Stochastic Frank-Wolfe Algorithm

Initialization: y0 ∈
∏N

i=1 Zxi
. Set K ≥ 1.

for k = 0, 1, 2, . . . ,K − 1 do

Compute λk = ∇f( 1
N

∑N
i=1 g(xi, y

k
i )).

for i = 1, 2, . . . , N do

Find ȳki ∈ BRλk(xi).

end for

Choose nk ∈ N∗. Set ωk = 2/(k + 2).

for j = 1, 2, . . . , nk do

for i = 1, 2, . . . , N do

Simulate P k,j
i ∼ Bern(ωk), independently of all previously defined random variables.

Set ŷk,ji = (1− P k,j
i )yki + P k,j

i ȳki .

end for

Define ŷk,j = (ŷk,ji )i=1,...,N .

end for

Find yk+1 ∈ argmin
{
f( 1

N

∑N
i=1 g(xi, yi))

∣∣ y ∈ {ŷk,j , j = 1, 2, . . . , nk}
}
.

end for
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The interest of Algorithm 3.3 is that it provides an approximate solution to (3.5.4), and the

associated empirical distribution serves as a reliable approximate solution of the problem (3.5.3), as

demonstrated in the following lemma. Additionally, this empirical distribution has a fixed support

size N , which does not increase with the iteration number, making the algorithm memory-efficient.

Lemma 3.5.6. in Algorithm 3.3, whatever the numbers (nk)k∈N, we have for any K = 1, 2, . . . , 2N

that

E

[
f

(
1

N

N∑
i=1

g(xi, y
K
i )

)]
− val(3.5.3) ≤ 4LD

K
.

Proof. This is from [BLO+22, Thm. 3.7].

Remark 3.5.7. Lemma 3.5.6 provides a convergence result for Algorithm 3.3 in terms of expectation.

An estimate of the following quantity can be found in [BLO+22, Thm. 3.7]:

P

[
f

(
1

N

N∑
i=1

g(xi, y
K
i )

)
≥ val(3.5.3) + ϵ+

4LD

K

]
,

for a given ϵ > 0. In particular, this probability can be made arbitrarily small, provided that the

numbers nk are large enough.

In order to obtain an approximate solution of (Pm), we combine Algorithm 3.3 with Algorithm

3.1. Let us consider the outcome yK of Algorithm 3.3 after K iterations, for 1 ≤ K ≤ 2N and for

arbitrary numbers nk ≥ 1 of simulations. Let µK
N = 1

N

∑N
i=1 δ(xi,yK

i ). Moving on to Algorithm 3.1,

we utilize the following inputs: m0 = mN , m1 = m, and µ̄0 = µK
N . The output of Algorithm 3.1

is denoted as µ̃K , which is an element of the set Pm(Z). We have the following convergence result

for the combination of Algorithm 3.1 and 3.3.

Theorem 3.5.8. Let Assumptions A-B hold true, and let m ∈ P1(Z). Then,

E
[
f

(∫
Z
gdµ̃K

)]
− val(Pm) ≤ 4LD

K
+ 2Lg(C + LM)d1(mN ,m).

Proof. Since f
(∫

Z gdµK
N

)
= f

(
1
N

∑N
i=1 g(xi, y

K
i )
)
, by Lemma 3.3.14, we have

f

(∫
Z
gµ̃K

)
− f

(
1

N

N∑
i=1

g(xi, y
K
i )

)
≤ Lg(C + LM)d1(mN ,m), almost surely.

Taking expectation on both sides of the previous inequality, and applying Lemma 3.5.6 and the

relation val(3.5.3) = val(PmN
), we have

E
[
f

(∫
Z
gdµ̃K

)]
− val(PmN

) ≤ 2LD

K
+ Lg(C + LM)d1(mN ,m).

Combining with Theorem 3.3.16(1), the proof is complete.

Remark 3.5.9. The realization of Algorithm 3.1 can be simplified in Theorem 3.5.8 thanks to the

empirical structure of m0 and µ̄0, as noted in Remark 3.3.15.
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3.6 Numerical simulation

We consider a Lagrangian MFG in which the agents exploit their own stock of an exhaustible

resource. The model is taken from [GHS22]. We fix a time horizon [0, T ] where T ∈ [0,+∞) (the

case T = ∞ investigated in [GHS22] is not considered here). The state variable of a representative

agent is the level of the stock of resource at any time, denoted (Xq
t )t∈[0,T ] and the control is the

speed of extraction at any time, denoted q. The dynamic of a given producer with an initial position

x0 ≥ 0 is described as follows:

Xq
t := x0 −

∫ t

0
qτdτ, t ∈ [0, T ],

where qt ≥ 0, for any t ∈ [0, T ]. We impose that Xq
T ≥ 0, which implies that Xq

t ≥ 0 at any time.

We define the set of aggregate production, denoted as G, by

G := {Q ∈ L2([0, T ],R) | 0 ≤ Q(t) ≤ 1

2
, ∀t ∈ [0, T ]}.

The price of the resource for this representative producer depends on its extracting speed and an

aggregate production Q ∈ G,

pt := 1− qt − ϵQt, t ∈ [0, T ],

where ϵ ∈ (0, 1) is a constant. The gain of this representative producer writes,∫ T

0
e−rtqt(1− qt − ϵQt)dt.

where r ≥ 0 is a discount rate. Therefore, given an aggregate production Q ∈ G and an initial

position x0 ≥ 0, we can formulate an optimal control problem associated with this representative

producer, 
inf
q∈G

JQ(q) :=

∫ T

0
e−rtqt(qt − 1 + ϵQt)dt;

s.t.

∫ T

0
qtdt ≤ x0.

(3.6.1)

Lemma 3.6.1. Problem (3.6.1) has a unique solution qQ(x0). Moreover, 0 ≤ qQ(x0)(t) ≤ 1
2 , for

a.e. t ∈ (0, T ).

Proof. It is easy to see that G is a non-empty and convex subset of L2([0, T ],R). Following [Rud87,

Thm. 3.12], if (fn ∈ G)n≥1 converges to f in L2 sense, then there exists a subsequence of (fn)n≥1

converges to f a.e. As a consequence, f lies in G. Therefore, G is closed. Furthermore, by Hölder’s

inequality, we obtain that {q ∈ L2([0, T ],R) |
∫ T
0 qtdt ≤ x0} is non-empty, convex and closed in

L2([0, T ],R). It follows that the admissible set of problem (3.6.1) is non-empty, closed and convex

in Hilbert space L2([0, T ],R). On the other hand, the cost function JQ(·) is strongly convex. Then

the existence of the solution of (3.6.1) comes from [Bré11, Cor. 3.23] and the uniqueness is by the

strong convexity of JQ.
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Let q be the solution to (3.6.1). Define q′(t) = min{q(t), 12}, for a.e. t ∈ (0, T ). Since q′ ≤ q, q′

is also feasible for problem (3.6.1). Moreover, the running cost q0 7→ q0(q0 − 1 + εQt) is increasing

for q0 ≥ 1
2 . As a consequence, JQ(q′) ≤ JQ(q). Therefore, q′ is optimal, and since the solution is

unique, we have q = q′, which proves that q ≤ 1
2 .

Let m ∈ P([0,+∞)) denote the distribution of the initial conditions of the producers. The

aggregate production rate corresponding to qQ is given by

QQ
t :=

∫ ∞

0
qQt (x0)dm(x0), ∀t ∈ [0, T ].

Following [GHS22], we call Nash equilibrium a solution Q∗ to the fix-point problem:

Q∗ = QQ∗
, Q∗ ∈ G. (3.6.2)

3.6.1 Potential problem

In this subsection, we find an optimization problem associated with the fixed point problem (3.6.2),

which is a particular case of problem (Pm). Let us specific metric spaces and admissible sets in

(Pm) associated to (3.6.2):

X = [0,∞), Y = G, F (x) =

{
q ∈ G |

∫ T

0
qtdt ≤ x

}
, Z = Graph(F ), Zx = F (x).

Let us define the separable Hilbert space L2
e−rt([0, T ]) [Rud87, Example. 4.5(b)]:

L2
e−rt([0, T ]) :=

{
ζ : [0, T ] → R is Lebesgue measurable

∣∣∣ ∫ T

0
e−rt|ζ(t)|2dt < +∞

}
,

with a scalar product,

⟨f1, f2⟩L2
e−rt ([0,T ]) =

∫ T

0
e−rtf1(t)f2(t)dt.

It is easy to check that Y = G ⊆ L2
e−rt([0, T ]). Then, in (Pm), we set H = R× L2

e−rt([0, T ]),

g : Z → H, (x, q) 7→
(∫ T

0
e−rt(q2t − qt)dt, q

)
,

f : H → R, (y1, y2) 7→ y1 +
ϵ

2
∥y2∥2L2

e−rt ([0,T ]).

Therefore, problem (Pm) associated with (3.6.2) writes:

inf
µ∈Pm(Z)

∫
Z

∫ T

0
e−rt(q2t − qt)dtdµ(x, q) +

ϵ

2

∫ T

0
e−rt

(∫
Z
qtdµ(x, q)

)2

dt. (3.6.3)

Remark 3.6.2. Problem (3.6.3) lies in the framework of the Lagrangian MFG (3.1.3).

Proposition 3.6.3. If µ̄ is a solution of problem (3.6.3), then Q∗ =
∫
Z qdµ̄(x, q) is a Nash equilib-

rium of the optimal exploitation of exhaustible resources problem, i.e., Q∗ is a solution of (3.6.2).
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Proof. Let us first check that Assumption A holds true for problem (3.6.3). It is easy to see that

Assumption A(1) and the first and the third points in Assumption A(2) are true by the continuity

of g and Lemma 3.6.1. Let us prove that Gλ is lower semi-continuous for any λ ∈ Hf . This is a

consequence of the claim that the set-valued function Z : X ⇝ H, x 7→ {g(x, y) | y ∈ Zx} is locally

Lipschitz, i.e. Lipschitz in any compact set of X. To see the local Lipschitz continuity, we fix any

x1 < x2 in X. If q ∈ Zx1
, then we have immediately that q ∈ Zx2

. This implies that Zx1
⊆ Zx2

.

On the other hand, let q ∈ Zx2
. We construct q′ ∈ Zx1

by the following method:

q′t =

{
qt, if

∫ t
0 qτdτ ≤ x1;

0, otherwise.

As a consequence, we have that ∥q′ − q∥L1([0,T ]) ≤ x2 − x1. Therefore, by Hölder’s inequality,

∥q′ − q∥2L2
e−rt ([0,T ]) ≤ ∥e−rt(q′ − q)∥L∞([0,T ])∥q′ − q∥L1([0,T ]) ≤ x2(x2 − x1).

This implies that Zx2
⊆ Zx1

+ BY (0,
√

x2(x2 − x1)). Therefore, Assumption A follows.

Let µ̄ be a solution of problem (3.6.3), λ̄ = ∇f(
∫
Z gdµ̄) andQ∗ =

∫
Z qdµ̄(x, q). By the definitions

of f and g, we obtain that λ̄ = (1, ϵQ∗), moreover,

gλ̄(x, q) =

∫ T

0
e−rtqt(qt − 1 + ϵQ∗

t )dt.

By Lemma 3.6.1, BRλ̄(x0) = {qQ∗
(x0)} for any x0 ∈ X. By Corollary 3.3.5, we have that (λ̄, µ̄)

satisfies the following equilibrium equation:{
λ̄ =

(
1 , ϵ

∫
Z qdµ̄

)
µ̄x = δqQ∗ (x), m-a.e.

Combining with Theorem 3.2.7, we obtain that
∫
Z qdµ̄ =

∫
X qQ

∗
(x)dm(x). Recall thatQ∗ =

∫
Z qdµ̄,

then (3.6.2) follows.

3.6.2 Numerical simulations

Let the initial measure m be an exponential distribution with parameter a ≥ 0, i.e., dm(x) =

ae−axdx for all x ≥ 0. Let us independently sample the distribution m for N times, denoting the

samples by x1, x2, ..., xN , and mN = 1
N

∑N
i=1 δxi

. The time space [0, T ] is discretized with a step

size ∆t = T/M for some M ≥ 1. Then, a totally discretized problem associated with (3.6.3) writes: infq∈RN⊗M JN (q) := ∆t
N

∑N
i=1

∑M−1
t=0 e−rt∆t(q2i,t − qi,t) +

ϵ∆t
2

∑M−1
t=0 e−rt

(
1
N

∑N
i=1 qi,t

)2
,

such that qi ∈ SM (xi) := {q ∈ [0, 1/2]M | ∆t
∑M−1

t=0 qt ≤ xi}, i = 1, 2, . . . , N.

(3.6.4)

We apply Algorithm 3.3 to solve (3.6.4). At each iteration, the evaluation of a best-response,

for each producer i amounts to solve a problem of the following form:{
infqi∈RM ∆t

∑M−1
t=0 e−rt∆tqi,t(qi,t − 1 + ϵQt),

such that qi ∈ SM (xi),
(3.6.5)
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for a given Q ∈ [0, 1/2]M . This problem is a convex quadratic programming problem in RM that

can be dealt with by some solvers, such as GUROBI [GO18].

For the resolution of the problem, we chose the following parameters: T = 10, ϵ = r = a = 1,

N = 100, M = 100, K = 100, nk = 10, for all k. Figure 3.1 shows the extracting speeds and

the stocks of three producers with initial stocks: 0.9, 1.2, and 3.1. From Figure 3.1, we see that

the producers with the higher initial stock have the same extracting speed as those with a lower

initial stock, at the beginning. However, as the smaller agents exhaust their resource, the larger

ones progressively raise their extraction speed. Once the extraction speed reaches its maximum

value, it rapidly decreases to zero. These observations are consistent with the numerical findings

of [GHS22, Sec. 3.3].
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Figure 3.1: Extracting speeds and stocks of three producers with initial stocks: 0.9, 1.2, and 3.1.

To study the error caused by sampling, we independently sample the exponential distribution

m for 100 ∗N times, and group them into batches of N . The empirical distribution corresponding

to each batch is set as the initial distribution. Then we apply Algorithm 3.3 to compute Q∗

corresponding to each initial distribution. In Figure 3.2, we show the mean and standard deviation

of the results of the 100 simulations.

3.7 Appendix

3.7.1 Proof and Lemma 3.3.3

Before proving Lemma 3.3.3, let us recall the definitions of the restriction of a measure and the

completion of a probability space, taken from [Rud87, Thm. 1.36].

Definition 3.7.1 (Restriction). Let X1 be a Polish space, let X and X ′ be two σ-algebras on X1

such that X ′ ⊆ X , and let ν be a measure on X . The restriction measure of ν on X ′ is defined as

follows:

ν|X ′(A) := ν(A), for any A ∈ X ′.
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Figure 3.2: Mean and standard deviation of the equilibria of 100 batches

Definition 3.7.2 (Completion). Let (X1,BX1 , ν) be a probability space. Let Bν be the collection

of all E ⊆ X1 such that there exists A and B in BX1 , A ⊆ E ⊆ B, and ν(B −A) = 0. For such an

E, we define a function ν̂(E) as

ν̂(E) = ν(A).

Then (X1,Bν , ν̂) is a complete measure space. We say that (X1,Bν , ν̂) is the completion of

(X1,BX1 , ν).

Sketch of the proof of Lemma 3.3.3. The proof of the direction that the left-hand-side of (3.3.2) is

greater than the right-hand-side is the same as the proof for the case that m ∈ Pδ(X).

Let us prove the converse inequality. Let (X,Bm, m̂) be the completion of the probability space

(X,BX ,m). Fix any λ ∈ Hf . By Assumption A, the set-valued function BRλ : X ⇝ Y has

non-empty closed images. By Lemma 3.3.1, Graph(BRλ) is closed in X × Y , thus is a Bm ⊗ BY -

measurable set. By Lemma 3.2.5 and Theorem 3.2.3, the set-valued function BRλ : X ⇝ Y is

(Bm,BY )-measurable, and there exists a (Bm,BY )-measurable function brλ : X → Y such that for

any x ∈ X,

brλ(x) ∈ BRλ(x).

We define A : X → Z, x 7→ (x,brλ(x)). Since brλ is (Bm,BY )-measurable, we have that A is

(Bm,Bm ⊗ BY )-measurable, see [Kal97, Lem. 1.8]. Let BZ be the Borel σ-algebra on Z. It is

obvious that BZ ⊆ BX ⊗ BY ⊆ Bm ⊗ BY . Let us take

µ̃ = A#m̂|BZ .

Then µ̃ is a positive Borel measure on Z. Moreover, we deduce from Definitions 3.7.1-3.7.2 that

µ̃(Z) = A#m̂(Z) = m̂(X) = m(X) = 1.
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Therefore, µ̃ ∈ P(Z). Assume that the following two equalities hold true:

π1#µ̃ = m, (3.7.1)∫
Z
gλdµ̃ =

∫
X
gλ ◦ A dm. (3.7.2)

By the definitions of uλ and A,

gλ ◦ A(x) = gλ(x,brλ(x)) = inf
y∈Zx

gλ(x, y) = uλ(x), ∀x ∈ X. (3.7.3)

Combining (3.7.1)-(3.7.3), we obtain that

inf
µ∈Pm(Z)

∫
Z
gλdµ ≤

∫
Z
gλdµ̃ =

∫
X
gλ ◦ A dm =

∫
X
uλdm.

The conclusion follows.

For completing the proof of Lemma 3.3.3, it remains to prove equalities (3.7.1)-(3.7.2). They

are deduced from Lemmas 3.7.3-3.7.4:

• To prove (3.7.1), we take X̃ = X and h = π1 in Lemma 3.7.3;

• To prove (3.7.2), we take X̃ = [−M∥λ∥,+∞) and h = gλ in Lemma 3.7.3, and Lemma 3.7.4

implies that gλ ◦ A = uλ is Borel measurable.

Recall the definition of A : X → Z in the previous proof and recall that µ̃ = A#m̂|BZ .

Lemma 3.7.3. Let X̃ be a Polish space. Let h : Z → X̃ be a Borel measurable function. Assume

that h ◦ A : X → X̃ is Borel measurable. Then it holds:

h#µ̃ = (h ◦ A)#m.

As a consequence, if X̃ = [c,+∞) for some c ∈ R, then∫
Z
h dµ̃ =

∫
X
h ◦ A dm.

Proof. Let B be any Borel set in X̃. By the property of push-forward measure, h#µ̃(B) =

µ̃(h−1(B)). Since h is Borel measurable, we have that h−1(B) ∈ BZ . This yields that

h#µ̃(B) = A#m̂(h−1(B)).

Next, by the property of the push-forward measure,

A#m̂(h−1(B)) = m̂(A−1h−1(B)) = m̂((h ◦ A)−1(B)).

Since h ◦ A is Borel measurable, we have that (h ◦ A)−1(B) ∈ BX . As a consequence,

m̂((h ◦ A)−1(B)) = m((h ◦ A)−1(B)) = (h ◦ A)#m(B).
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Therefore, h#µ̃(B) = (h ◦ A)#m(B) for any Borel set B ⊆ X̃. We conclude the first part of the

proof.

In the case that X3 = [c,+∞) for some c ∈ R, since c =
∫
X2

c dµ̃ =
∫
X1

c ◦ A dm, it suffices to

prove the conclusion for h − c in instead of h. Therefore, we can assume that X3 = R+. By the

change-of-variable formula for push-forward measures,∫
Z
hdµ̃ =

∫
R+

x d(h#µ̃(x)).

Next, it follows from the equality h#µ̃ = (h ◦ A)#m that∫
R+

x d(h#µ̃(x)) =

∫
R+

x d((h ◦ A)#m(x)).

Again, by the change-of-variable formula, we obtain that∫
R+

x d((h ◦ A)#m(x)) =

∫
X
h ◦ A dm.

The conclusion follows.

Lemma 3.7.4. Under Assumption A, the function uλ is upper semi-continuous for any λ ∈ Hf ,

thus Borel measurable.

Proof. Let λ ∈ Hf . Since g is bounded over Z, we have that uλ(x) > −∞ for any x ∈ X. Fix

any x ∈ X. Let y ∈ BRλ(x). Let (xn ∈ X)n≥1 be a sequence converging to x. By the lower

semi-continuity of Gλ, there exists yn ∈ Zxn
such that gλ(x, y) = limn→∞ gλ(xn, yn). Therefore,

uλ(x) = gλ(x, y) = lim
n→∞

gλ(xn, yn) ≥ lim sup
n→∞

uλ(xn).

We obtain the upper semi-continuuity of uλ for any λ ∈ Hf . Since any upper semi-continuous

function defined on a metric space is the limit of a monotonically decreasing sequence of continuous

functions [Ton52, Thm. 3], we deduce that uλ is Borel measurable.
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Chapter 4

Error estimates of a theta-scheme for
second-order mean field games

4.1 Introduction

Mean field games (MFGs), introduced in 2006 independently by J.-M. Lasry and P.-L. Lions in

[LL07] and M. Huang et al. in [HMC06], describe the asymptotic behavior of Nash equilibria in

stochastic differential games, as the number of players goes to infinity. In this type of games, players

have symmetric dynamics and payoff function. The latter function depends on the own strategy

of a given player and on an interaction cost depending on the distribution of all players. Mean

field games have important applications in various domains, like crowd motion [LST10], sociology,

biology, macroeconomics [ABL+14], trade crowding [CL18a], and finance.

Second-order MFGs (see [LL07, ACD10, Car10]) are coupled systems, including a backward

Hamilton-Jacobi-Bellman (HJB) equation and a forward Fokker-Planck (FP) equation. The source

term of the HJB equation depends on the solution m of the FP equation while the velocity (the

optimal control) v in the transport term of the FP equation depends on the solution u of the HJB

equation. Under appropriate hypotheses, we can express v as a function of ∇u at each time. Let Td

be the d-dimensional torus and let Q = [0, 1]× Td. We consider the following second-order MFG:
(i) −∂tu− σ∆u+Hc (t, x,∇u(t, x)) = f c(t, x,m(t)) (t, x) ∈ Q,

(ii) v(t, x) = −Hc
p (t, x,∇u(t, x)) (t, x) ∈ Q,

(iii) ∂tm− σ∆m+ div(vm) = 0 (t, x) ∈ Q,

(iv) m(0, x) = mc
0(x), u(1, x) = gc(x) x ∈ Td.

(MFG)

The Hamiltonian Hc is related to the Fenchel conjugate of a running cost ℓc:

Hc(t, x, p) = sup
v∈Rd

⟨−p, v⟩ − ℓc(t, x, v). (4.1.1)

We introduce in this article a theta-scheme for the discretization of (MFG); our main result

states that, under suitable assumptions, the solution of the theta-scheme converges to the unique

solution of (MFG). To the best of the authors’ knowledge, this article is the first one, in the context

of MFGs, to give a precise convergence order for a fully discrete numerical scheme, namely O(hr),
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where h is the step size of the space variable and r ∈ (0, 1) is related to regularity properties of the

solution of (MFG).

Let us describe more in detail the theta-scheme which we propose. Let us denote by ∇h, divh
and ∆h the discrete gradient, divergence and Laplace operators of the centered finite-difference

scheme (precise definitions are in Section 2). Let θ ∈ [0, 1]. At any time t, the theta-scheme of the

FP equation consists of two steps:

1. An explicit scheme for an intermediate FP equation, with a weight (1− θ) for the Laplacian

term:
m(t+ 1/2)−m(t)

∆t
− (1− θ)σ∆hm(t) + divh(mv(t)) = 0. (S1)

2. An implicit scheme for an intermediate heat equation (without divergence term):

m(t+ 1)−m(t+ 1/2)

∆t
− θσ∆h(m(t+ 1)) = 0. (S2)

Notice that when there is no divergence term (v = 0), the above scheme (S1)-(S2) coincides with

the classical theta-scheme for the heat equation [All07]. For the HJB equation, we propose an

adjoint scheme; at each time t, two steps are performed: (1) an implicit scheme for an intermediate

heat equation (without the Hamiltonian term) and (2) an explicit scheme for an intermediate

HJB equation. The adjoint structure of the coupled system (MFG) is preserved in the resulting

discretized system, which is an important property for the analysis.

Motivations of the theta-scheme. Let us describe the main properties of the theta-scheme,

which justify our interest for it. If θ = 0, our scheme is an explicit scheme which has a natural

interpretation as a discrete mean field game. However, it is not clear whether the explicit scheme

for the FP equation, when θ = 0, enjoys stability properties for some ℓ2-norm. To ensure stability, a

natural idea consists in taking an implicit scheme for the second-order term, i.e. θ = 1. This yields a

mixed scheme (implicit for the Laplacian term and explicit for the divergence term). We emphasize

that the divergence term should remain explicit, in order to guarantee that the discrete system has

a structure of a discrete MFG. When θ = 1, we see that (S1) is an explicit scheme of a continuity

equation (without diffusion term). To ensure the monotonicity of (S1), an upwind discretization for

the divergence term should be employed, instead of centered scheme. In comparison with a centered

discretization, the upwind discretization has the following disadvantages: (1) the consistency error

is of a lower order, (2) we need then to construct a numerical Hamiltonian (see [ACD10, ACCD13])

to preserve the adjoint structure. Finally, we propose to take θ ∈ (1/2, 1) in (S1)-(S2) and to keep

the centered scheme for the first-order term. The ℓ2-stability is proved in Proposition 4.4.5 for the

case when θ > 1/2. The monotonicity property is obtained under a CFL condition (CFL), for all

θ < 1, see Theorem 4.4.4. We end up with a discrete system which has a structure of a discrete

MFG, has a higher order for the consistency error, and which does not require the construction of

a numerical Hamiltonian.

Under suitable assumptions, MFGs have a potential structure (see [CH17, Def. 1.1]), i.e. the sys-

tem (MFG) can be interpreted as the first order optimality condition of an optimal control problem

of the FP equation, see [LL07, LST10, LP22]. Then some optimization algorithms can be applied
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to solve this optimal control problem, such as the fictitious play [CH17], the generalized conditional

gradient algorithm [LP22], ADMM and Chambolle-Pock’s algorithm [AL20, BLP23], etc. The last

important feature of our theta-scheme is that it preserves the potential structure (when it exists),

which allows the application of the previously mentioned methods directly on the discrete system.

These methods avoid solving a large discrete nonlinear forward-backward system. For instance, the

fictitious play [CH17] and the generalized conditional gradient algorithm [LP22] require to solve

the discrete HJB and FP equations iteratively. One significant difference between the theta-scheme

and the implicit scheme proposed in [ACCD13] is that the first-order terms in the discrete HJB

and FP equations of the former are explicit. Thanks to this, at each time step of the discrete HJB

equation, the difficulty of our method lies in solving a linear equation associated with the implicit

part of the theta-scheme, which is much cheaper than solving a nonlinear algebraic equation in

the totally implicit scheme [ACCD13]. We mention that the aforementioned linear equation to be

solved is an implicit scheme of a heat equation. Consequently, in high-dimensional cases, we can

consider splitting methods [Tho95, Sec. 4.4] to decompose the discrete Laplace operator and reduce

computational complexity.

Related works. In 2010, a first result concerning the convergence of a finite-difference scheme for

stationary MFGs was obtained in [ACD10]. In this paper, the authors also proposed an implicit

scheme for time-dependent MFGs and proved the existence and uniqueness of the solution of this

scheme. In 2013, a convergence result was obtained for the same implicit scheme in [ACCD13] when

the Hamiltonian has a monomial form, i.e. Hc(x, p) = H(x) + |p|β, with β ∈ (1,+∞). The two

cited works assume the existence of a classical solution for (MFG). In 2016, in the absence of this

existence assumption, [AP16] proved that the solution of the implicit scheme converges to a weak

solution of (MFG) when the grid steps tend to zero. No assumption on the Hamiltonian is made

in [AP16], but a technical assumption, Assumption (g5), is required for the numerical Hamiltonian

(the discrete counterpart of the Hamiltonian). An example of a numerical Hamiltonian satisfying

(g5) is only presented for a Hamiltonian with a monomial form (as above), with β ∈ (1, 2].

Other discretization techniques have been considered in the literature. We mention the articles

[CS14, CS15] in which a semi-Lagrangian discretization is proposed for first-order and second-order

MFGs, respectiveley. The well-posedness of the resulting discrete system is established for both

cases. In [CS15], the scheme’s convergence is proven for non-degenerate second-order MFGs in

any dimension and for degenerate second-order and first-order cases in dimension one. A sort

of semi-Lagrangian discretization is proposed in [HS19] for first-order MFGs and convergence is

established in general dimension. In [BC22] a semi-discretization in space, with finite differences,

is investigated. It is shown that the solution of the semi-discrete master equation converges to the

solution of the continuous master equation, with an explicit rate of convergence. Finally, we cite

the article [AL20], which gives a good summary of the numerical methods for MFGs.

Numerical analysis. In this paper, we assume that the running cost ℓc is strongly convex with

respect to the control variable. This is equivalent to the Lipschitz continuity of ∇Hc with respect

to its third variable. This assumption plays a key role in the stability analysis. We assume that

the coupling function f c is Lipschitz continuous w.r.t. x and with respect to m, for the L2-norm.

Note that our regularity assumptions on f c are stronger than those of [ACCD13]. We also make a
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monotonicity assumption for f c, in Lasry and Lions’ sense, see [LL07, Thm. 2.4]. This assumption

ensures the uniqueness of the solution of (MFG). For the consistency analysis, we assume that

the exact solution of (MFG) lies in the Hölder space C1+r/2,2+r(Q) (see [Kry96, Ch. 8.5] for the

definition). In Appendix 4.6.2, we provide sufficient conditions on the data for this regularity

assumption to hold, for an exponent r which is explicit. We also make use of assumptions dealing

with the regularity of ℓc, mc
0 and gc. Our convergence analysis relies on a consistency analysis and

a stability analysis, the latter relies on a fundamental inequality and an energy estimate for the

discrete FP equation.

Consistency analysis. We prove that the discrete HJB equation has a consistency error of order

O(∆thr) at each time step. For the discrete FP equation, the consistency error is the sum of two

terms: one is in the form of the discrete divergence of a term of order O(∆th2r+d) (which can be

dealt with by a discrete integration by parts formula in the convergence proof), the other one is

of order O(∆thr+d). In comparison with [ACD10, ACCD13], there is no numerical Hamiltonian

in our scheme. This simplifies the consistency analysis and avoids the treatment of an additional

error term.

Fundamental inequality. The fundamental inequality (Proposition 4.3.7) is established for a

general class of discrete MFGs, for which the existence and uniqueness of a solution is easily

obtained with a standard fixpoint approach. The fundamental inequality allows us to quantify the

variation of the control variable v when a discrete MFG is subject to perturbations. It is deduced

from equality (4.3.22), which is similar to the fundamental equality proved in [ACCD13, Eq. 3.20]

for an implicit scheme. Our proof of the fundamental inequality also relies on the following technical

lemma, given in [Nes18, Thm. 2.1.5]: If F is a convex function with L-Lipschitz gradient, then for

any p, q, it follows that

1

2L
∥∇F (p)−∇F (q)∥2 ≤ F (p)− F (q)− ⟨∇F (q), p− q⟩. (4.1.2)

We give a second proof of the fundamental inequality, which does not rely on the fundamental

equality (4.3.22). Instead we define a “relative” potential function, and deduce the fundamental

inequality from upper and lower bounds of this relative potential function.

Energy estimate. We provide in Proposition 4.4.5 an upper bound of the ℓ2-norm of the solution

of the discrete FP equation under some perturbations. The proof of the energy inequality is

inspired by the one for parabolic PDEs, see [Lio71, LSU88], and the one for the implicit scheme,

see [ACCD13].

Numerical Hamiltonian. As we mentioned earlier, it is assumed in [AP16] that the numerical

Hamiltonian satisfies a specific assumption, Assumption (g5). It turns out that when the numerical

Hamiltonian is convex and has a Lipschitz gradient, then (g5) can be easily deduced from inequality

(4.1.2), as we show in Lemma 4.6.3. Using this technical result, we provide an example of a

numerical Hamiltonian which satisfies all the assumptions of [AP16], for the case of a running cost

which is strongly convex with respect to the control variable, uniformly in time and space. See

Theorem 4.6.4. This result is of independent interest since our theta-scheme does not require the

construction of a numerical Hamiltonian.

Organization of the paper. In Section 2, we present the theta-scheme and state our main result.
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Section 3 is dedicated to a general class of discrete MFGs (covering the theta-scheme). We prove

in this section the fundamental inequality. In Section 4, some properties of the theta-scheme are

demonstrated, in particular, we prove the announced energy estimate for the FP equation. The

consistency analysis and the proof of the main result are given in Section 5.

4.2 The theta-scheme and the convergence result

4.2.1 Preliminaries

The set of functions from some finite set A to R (resp. Rd) is denoted by R(A) (resp. Rd(A)):

R(A) = {m : A → R}, Rd(A) = {m : A → Rd}.

Let us introduce the set of probability measures on A, defined by

P(A) =
{
m ∈ R(A)

∣∣∣ ∀x ∈ A, m(x) ≥ 0,
∑
y∈A

m(y) = 1
}
.

We denote by ∥ · ∥ and ⟨·, ·⟩ the Euclidean norm and the scalar product in Rn. We define below a

scalar product and a norm for functions defined on a finite set.

Definition 4.2.1. Let n ∈ N+ and let A1 and A2 be two finite sets. For any µ, ν ∈ Rn(A1) and

p ∈ [1,∞), we define

⟨µ, ν⟩ =
∑
x∈A1

⟨µ(x), ν(x)⟩; ∥µ∥p =
( ∑

x∈A1

∥µ(x)∥p
)1/p

; ∥µ∥∞ = max
x∈A1

∥µ(x)∥.

For any µ ∈ Rn(A1 ×A2) and p1, p2 ∈ [1,∞], we define

∥µ∥p1,p2
=
∥∥∥(∥µ(x, ·)∥p2

)
x∈A1

∥∥∥
p1

=


(∑

x∈A1
∥µ(x, ·)∥p1

p2

)1/p1 , if p1 ∈ [1,∞),

maxx∈A1
∥µ(x, ·)∥p2

, if p1 = ∞.

Lemma 4.2.2 (Hölder’s inequality). Let µ, ν ∈ Rn(A1 ×A2). Then,∑
x1∈A1

∑
x2∈A2

∣∣∣⟨µ(x1, x2), ν(x1, x2)⟩∣∣∣ ≤ ∥µ∥p1,p2
∥ν∥p∗

1 ,p
∗
2
,

where pi ∈ [1,∞] and 1/pi + 1/p∗i = 1, for i = 1, 2.

We make use of Nemytskii operators, in order to alleviate some notations.

Definition 4.2.3 (Nemytskii operators). Let ζ : X × Y → Z and let u : X → Y. Then, the

associated Nemytskii operator is the mapping ζ[u], defined from X to Z by

ζ[u](x) = ζ(x, u(x)).
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4.2.2 Notations for the finite-difference scheme

The time step is ∆t = 1/T , for T ∈ N+. We assume that T > 1. The set of time indices is denoted

by T (T̃ when the final time T is included):

T = {0, 1, . . . , T − 1}; T̃ = {0, 1, . . . , T}. (4.2.1)

Let S be the uniform discretization of the torus Td with step size h = 1/N , for N ∈ N+, defined by

S =
{
(i1, i2, . . . , id)h | i1, . . . , id ∈ Z/NZ

}
. (4.2.2)

Let (ei)i=1,...,d be the natural canonical basis of Rd. The discrete Laplace, gradient, and divergence

operators for the centered finite-difference scheme are defined as follows:

∆hµ(x) =

d∑
i=1

µ(x+ hei) + µ(x− hei)− 2µ(x)

h2
, ∀µ ∈ R(S), ∀ x ∈ S,

∇hµ(x) =
(µ(x+ hei)− µ(x− hei)

2h

)d
i=1

, ∀µ ∈ R(S), ∀ x ∈ S,

divhω(x) =

d∑
i=1

ωi(x+ hei)− ωi(x− hei)

2h
, ∀ ω ∈ Rd(S), ∀ x ∈ S,

where ωi is the ith coordinate of ω. The forward discrete gradient is defined by

∇+
h µ(x) =

(µ(x+ hei)− µ(x)

h

)d
i=1

, ∀µ ∈ R(S), ∀x ∈ S. (4.2.3)

Lemma 4.2.4 (Integration by parts formula). For any ω ∈ Rd(S) and for any µ, ν ∈ R(S), it

holds that

−
∑
x∈S

µ(x)divhω(x) =
∑
x∈S

⟨∇hµ(x), ω(x)⟩ ; (4.2.4)

−
∑
x∈S

ν(x)∆hµ(x) =
∑
x∈S

〈
∇+

h ν(x),∇
+
h µ(x)

〉
. (4.2.5)

The proof is given in the Appendix 4.6.1.

Lemma 4.2.5. For any µ ∈ R(S), the following inequality holds:

∥∇hµ∥22 ≤ ∥∇+
h µ∥

2
2. (4.2.6)

The proof is given in the Appendix 4.6.1. The following lemma shows some general properties

of the implicit scheme associated with the heat equation ∂m
∂t − c∆m = 0, used in our theta-scheme.

Lemma 4.2.6. Let X ∈ R|S|. Consider the scheme

Y (x)−X(x)

∆t
− c∆hY (x) = 0, ∀ x ∈ S, (4.2.7)

with unknown Y ∈ R|S|. The following holds true.
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1. (Existence and uniqueness) The scheme (4.2.7) has a unique solution Y .

2. (Monotonicity) If X ≥ 0, then Y ≥ 0. Moreover, if X ∈ P(S), then Y ∈ P(S).

3. (Lipschitz constant) If X is L-Lipschitz, then Y has the same Lipschitz constant L.

4. (Continuity of the discrete gradient and Laplacian) Suppose that ∆hX is α-Hölder continuous

with constant L′, where 0 < α ≤ 1. Then there exists a constant C, independent of ∆t and h,

such that

∥∇hX −∇hY ∥∞ ≤ C∆thα−1, ∥∆hX −∆hY ∥∞ ≤ C∆thα−2.

The proof is given in the Appendix 4.6.1.

4.2.3 The theta-scheme and the main result

We describe the MFG system of interest. Let us fix a running cost ℓc, a coupling cost f c, an initial

condition mc
0 and a terminal cost g, where

ℓc : Q× Rd → R, f c : Q×D → R, mc
0 ∈ D, gc : Td → R,

and where the set D is defined by D =
{
µ ∈ L2(Td) |µ ≥ 0,

∫
Td µ(x)dx = 1

}
. Recall the formulation

of the continuous mean field game:
(i) −∂tu− σ∆u+Hc (t, x,∇u(x, t)) = f c(t, x,m(t)) (t, x) ∈ Q,

(ii) v(t, x) = −Hc
p (t, x,∇u(x, t)) (t, x) ∈ Q,

(iii) ∂tm− σ∆m+ div(vm) = 0 (t, x) ∈ Q,

(iv) m(0, x) = mc
0(x), u(1, x) = gc(x) x ∈ Td,

where Hc(t, x, p) = supv∈Rd⟨−p, v⟩ − ℓc(t, x, v). We make the following assumptions on the data

functions.

Assumption A. The following holds:

1. Regularity. The running cost ℓc is continuously differentiable with respect to v. There exist

positive constants Lc
ℓ, L

c
g, and Lc

f such that for any (t, x) ∈ Q, for any v ∈ Rd, and for any

m ∈ D,

• ℓc(·, x, v), ℓc(t, ·, v), and ℓcv(·, x, v) are Lc
ℓ-Lipschitz continuous

• gc is Lc
g-Lipschitz continuous

• f c(·, x,m), f c(t, ·,m), and f c(t, x, ·) are Lc
f -Lipschitz continuous (with respect to the

∥ · ∥L2-norm for the third variable).

2. Strong convexity. There exists α > 0 such that for any (t, x) ∈ Q, ℓc(t, x, ·) is strongly convex

with modulus αc, i.e.

ℓc(t, x, v2) ≥ ℓc(t, x, v1) + ⟨ℓcv(t, x, v1), v2 − v1⟩+
αc

2
∥v2 − v1∥2, ∀v1, v2 ∈ Rd.
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3. Monotonicity. The global cost f c is monotone, i.e., for any t ∈ [0, T ], for any m1 and m2 ∈ D,∫
Td

(
f c(t, x′,m1)− f c(t, x′,m2)

)(
m1(x

′)−m2(x
′)
)
dx′ ≥ 0.

Lemma 4.2.7. Let Assumption A hold true. Then Hc is continuously differentiable with respect

to p and Hc
p is (1/α)-Lipschitz continuous with respect to p. Moreover, Hc and Hc

p are respectively

Lc
ℓ- and (Lc

ℓ/α)-Lipschitz continuous with respect to t.

The proof is given in Appendix 4.6.1. Following [Kry96, page 117], we introduce the following

spaces. Given r ∈ (0, 1), Cr/2,r(Q) denotes the set of real-valued functions over Q which are Hölder

continuous with exponent r (resp. r/2) with respect to x (resp. t). We denote by C1+r/2,2+r(Q) the

set of real-values functions Q which are such that m, ∂tm, ∂xi
m, ∂xixj

m lie in Cr/2,r(Q), for any

i, j = 1, . . . d.

We make the following assumption on the solution of (MFG).

Assumption B. The continuous mean field game (MFG) has a unique solution (u∗, v∗,m∗), with

u∗,m∗ ∈ C1+r/2,2+r(Q) and v∗ ∈ Cr(Q) ∩ L∞([0, 1]; C1+r(Td)), where r ∈ (0, 1).

In Appendix 4.6.2, we propose a set of regularity assumptions on ℓc, f c, mc
0 and gc (Assumption

C). We show in Theorem 4.6.2 that Assumptions A and C together imply the Assumption B, for

an explicit value of r.

Assumptions A and B are supposed to be satisfied throughout the article.

Let us now discretize the data functions. Let us define Bh(x) =
∏d

i=1[x−hei/2, x+hei/2). We

introduce two operators Ih : R(Td) → R(S) and Rh : R(S) → R(Td), defined as follows: For any

mc ∈ R(Td) and for any m ∈ R(S),

Ih(mc)(x) =

∫
Bh(x)

mc(y)dy, ∀x ∈ S;

Rh(m)(y) =
m(x)

hd
, ∀x ∈ S, y ∈ Bh(x).

(4.2.8)

The discrete counterparts of the data functions ℓc, Hc, mc
0, and gc are the functions defined as

follows: For any t ∈ T̃ , x ∈ S and p ∈ Rd,

ℓ(t, x, p) = ℓc(t∆t, x, p), H(t, x, p) = Hc(t∆t, x, p),

m0(x) = Ih(mc
0)(x), g(x) = gc(x).

(4.2.9)

The discrete counterpart of f c is the function f : T × S × R(S) to R defined by

f(t, x,m) =
1

hd

∫
y∈Bh(x)

f c
(
t∆t, y,Rh(m)

)
dy. (4.2.10)

Taking any θ ∈ [0, 1], we introduce the theta-scheme of (MFG): find (u, v,m) ∈ R(T̄ ×S)×Rd(T ×
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S)× R(T̄ × S) such that ∀(t, x) ∈ T × S,

(i)

−u(t+1,x)−u(t+1/2,x)
∆t − θσ∆hu(t+ 1/2, x) = 0,

−u(t+1/2,x)−u(t,x)
∆t − (1− θ)σ∆hu(t+ 1/2, x) +H[∇hu(·+ 1/2, ·)](t, x) = f(t, x,m(t));

(ii) v(t, x) = −Hp[∇hu(·+ 1/2, ·)](t, x);

(iii)


m(t+1/2,x)−m(t,x)

∆t − (1− θ)∆hm(t, x) + divh(vm)(t, x) = 0,

m(t+1,x)−m(t+1/2,x)
∆t − θσ∆hm(t+ 1, x) = 0;

(iv) m(0, x) = m0(x), u(T, x) = g(x).

(θ-MFG)

Denoting B1 = Id − θσ∆t∆h, the first equation in the dynamic programming equation can be

rewritten as follows: B1u(t + 1/2, ·) = u(t + 1, ·). By Lemma 4.2.6, B1 is invertible. This allows

us to consider u(t+ 1/2, ·) as an auxiliary variable, uniquely determined by u(t+ 1, ·), and thus to

regard the unknown value function u of the theta-scheme as an element of R(T̄ × S). The same

argument also holds for the other auxiliary variable m(t+ 1/2, ·).
We fix now a constant M , defined as follows:

M =
1

αc

(
2 max
(t,x)∈Q

∥ℓcv(t, x, 0)∥+
√
d(Lc

ℓ + Lc
f + Lc

g)
)
. (4.2.11)

The constant M is an upper bound of ∥v∥∞,∞, as will be seen in Theorem 4.4.4. We consider the

following condition on (∆t, h):

∆t ≤ h2

2d(1− θ)σ
, h ≤ 2(1− θ)σ

M
. (CFL)

Remark 4.2.8. Let us reformulate the explicit part of (θ-MFG)(iii) by isolating m(t+ 1/2, x):

m(t+ 1/2, x) =
(
1− 2d(1− θ)σ∆t

h2

)
m(t, x) + ∆t

d∑
i=1

((1− θ)σ

h2
− vi(t, x+ hei)

2h

)
m(t, x+ hei)

+∆t

d∑
i=1

((1− θ)σ

h2
+

vi(t, x− hei)

2h

)
m(t, x− hei).

(4.2.12)

The coefficients preceding m(t, x) and m(t, x ± hei) in (4.2.12) are affine functions with respect

to v(t, x) and v(t, x ± hei) respectively, and these coefficients are positive under the condition

(CFL) since M is an upper bound of ∥v∥∞,∞. Moreover, summing (4.2.12) over x yields that∑
x∈S m(t + 1/2, x) =

∑
x∈S m(t, x). Therefore, under the condition (CFL), if m(t) ∈ P(S), then

m(t+1/2) ∈ P(S). Since m(t+1) is the solution of an implicit scheme for the heat equation (with

source term m(t+1/2, x)), we have that m(t+1) ∈ P(S) if m(t+1/2) ∈ P(S), by Lemma 4.2.6. In

other words, probability distributions on S are preserved by the discrete Fokker-Planck equation

under the condition (CFL).
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Remark 4.2.9. Let us discuss the choice of θ in the theta-scheme (θ-MFG). If we set θ = 1, we

cannot guarantee the positivity of the coefficients preceding m(t, x±hei) in (4.2.12). As a result, we

cannot use the same argument presented in Remark 4.2.8 to ensure the preservation of probability

distributions of the discrete FP equation. On the other hand, to obtain an energy estimate (ℓ2-

stability) of the discrete FP equation, we require that θ > 1/2, as demonstrated in Proposition

4.4.5.

Theorem 4.2.10. Let Assumptions A and B hold true. Let θ ∈ (1/2, 1) and let (∆t, h) satisfy the

condition (CFL). Then, the theta-scheme (θ-MFG) has a unique solution (uh, vh,mh). Moreover,

there exists a constant C > 0, independent of ∆t and h, such that

∥uh − u∗h∥∞,∞ + ∥mh −m∗
h∥∞,1 ≤ Chr,

where u∗h,m
∗
h ∈ R(T̃ × S) are defined by u∗h(t, x) = u∗(t∆t, x) and m∗

h(t) = Ih(m∗(t∆t)).

The proof of Theorem 4.2.10 is given in Section 4.5.2.

4.3 General properties of discrete mean field games

We consider in this section a general class of discrete time and finite state space mean field games,

for which we establish the existence and uniqueness of a solution as well as a fundamental inequality.

We will show in Section 4.4 that the theta-scheme falls into this class of problems.

4.3.1 Notations and assumptions

In this section, the state space S is an arbitrary discrete set in Rd, not necessarily a discretization

of Td. Let us introduce the set of discrete curves of probability measures and the set of transition

processes, defined by

P(T̃ , S) =
{
m ∈ R(T̃ × S)

∣∣∣ ∀t ∈ T̃ , m(t, ·) ∈ P(S)
}
,

Π(T , S) =
{
π ∈ R(T × S × S)

∣∣∣ ∀(t, x) ∈ T × S, π(t, x, ·) ∈ P(S)
}
.

Remark 4.3.1. Any π ∈ R(T × S × S) is a transition process if and only if for any m ∈ P(S) and

for any t ∈ T , we have m′ ∈ P(S), for m′(y) =
∑

x∈S π(t, x, y)m(x), for all y ∈ S.

We introduce now a running cost ℓ, a coupling cost f , an initial condition m0 and a terminal

cost g, where

ℓ : T × S × Rd → R, f : T × S × R(S) → R, m0 ∈ P(S), g ∈ R(S).

In this section, ℓ, f , m0, and g are considered independently of the definition (4.2.9). We will

consider again definition (4.2.9) in the next section when we interpret the theta-scheme as a discrete

MFG.

To formulate the discrete MFG system, we need a control bound D̄ > 0. The admissible control

space, denoted by Rd
D̄
(T ×S), is the set of all elements v ∈ Rd(T ×S) such that ∥v∥∞,∞ ≤ D̄. The
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probability of the motion from one state x ∈ S to another state y ∈ S at a time t ∈ T under some

control v ∈ Rd
D̄
(T × S) is given by

π[v](t, x, y) := π(t, x, y, v(t, x)),

where π is a function from T × S × S × Rd to R. We assume that π[v] is a transition process for

any admissible control v, i.e.,

π[v] ∈ Π(T , S), ∀v ∈ Rd
D̄(T × S). (4.3.1)

For any D ∈ (0,∞], we denote by ℓD : T × S × Rd → R ∪ {∞} the function defined by

ℓD(t, x, v) =

{
ℓ(t, x, v), if ∥v∥ ≤ D,

∞, otherwise.
(4.3.2)

When D = ∞, ℓD = ℓ. The Hamiltonian HD is defined as follows:

HD(t, x, p) = sup
v∈Rd

⟨−p, v⟩ − ℓD(t, x, v) = sup
v∈Rd, ∥v∥≤D

⟨−p, v⟩ − ℓ(t, x, v). (4.3.3)

We consider the following assumptions on the previous data.

Assumption 4.1. The following holds:

1. Regularity. There exist positive constants Lℓ, Lg, Lf , and Lf ′ such that for any t ∈ T , for

any v ∈ Rd, and for any m ∈ P(S), the functions ℓ(t, ·, v), g(·), and f(t, ·,m) are resp. Lℓ, Lg,

and Lf -Lipschitz continuous, i.e.

|ℓ(t, x1, v)− ℓ(t, x2, v)| ≤ Lℓ∥x1 − x2∥,
|g(x1)− g(x2)| ≤ Lg∥x1 − x2∥,

|f(t, x1,m)− f(t, x2,m)| ≤ Lf∥x1 − x2∥,

for all x1 and x2 in S. Moreover, the function f(t, x, ·) is L′
f -Lipschitz w.r.t. m for the ∥ · ∥2

norm , i.e., for all m1 and m2 in P(S),

|f(t, x,m1)− f(t, x,m2)| ≤ L′
f∥m1 −m2∥2.

2. Strong convexity. There exist α > 0 such that for any t ∈ T and for any x ∈ S, the function

ℓ(t, x, ·) is α-strongly convex, i.e.,

ℓ(t, x, v2) ≥ ℓ(t, x, v1) + ⟨p, v2 − v1⟩+
α

2
∥v2 − v1∥2,

for all v1 and v2 in Rn and for all p ∈ ∂pℓ(t, x, v1).

3. Monotonicity. For any t ∈ T , for any m1 and m2 in P(S),∑
x∈S

(
f(t, x,m1)− f(t, x,m2)

)
(m1(x)−m2(x)) ≥ 0.
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Lemma 4.3.2. Let D ∈ (0,∞]. The following holds true.

1. The Hamiltonian HD is continuously differentiable with respect to p.

2. For any t ∈ T , for any x ∈ S, and for any v ∈ Rd, we have HD(t, x, p) = −⟨p, v⟩ − ℓD(t, x, v)

if and only if v = −HD
p (t, x, p).

3. The partial derivative HD
p is 1

α -Lipschitz continuous with respect to p.

4. For any t ∈ T , for any x ∈ S, for any v ∈ Rd, and for any p0 ∈ ∂vℓ(t, x, 0),∥∥HD
p (t, x, p)

∥∥ ≤ 1

α

(
2∥p0∥+ ∥p∥

)
. (4.3.4)

The proof is given in the Appendix 4.6.1. A direct consequence of Lemma 4.3.2 is the following.

Corollary 4.3.3. Let (t, x, p) ∈ T × S ×Rd. Let p0 ∈ ∂vℓ(t, x, 0). Let D1 and D2 ∈ (0,∞] be such

that Di ≥ 1
α

(
2∥p0∥+ ∥p∥

)
, for i = 1, 2. Then

HD1(t, x, p) = HD2(t, x, p) and HD1
p (t, x, p) = HD2

p (t, x, p).

Lemma 4.3.4. Let D ∈ (0,∞], let t ∈ T and let x ∈ S. For any v, for any p̄ ∈ Rd, for any m ≥ 0

and for any m̄ ∈ R, it holds that

ℓD(t, x, v)m− ℓD(t, x, v̄)m̄ ≥ −HD(t, x, p̄)(m− m̄)− ⟨p̄,mv − m̄v̄⟩+ α

2
∥v − v̄∥2m, (4.3.5)

where v̄ = −HD
p (t, x, p̄).

The proof is given in the Appendix 4.6.1.

4.3.2 The discrete MFG model

The discrete MFG model of interest in this section is a coupled system of three variables: a

value function u ∈ R(T̃ × S), a policy v ∈ Rd
D̄
(T × S), and a curve of probability distributions

m ∈ R(T̃ × S). It consists of a Kolmogorov equation, a dynamic programming equation, and a

feedback relation.

• Given v ∈ Rd
D̄
(T × S), denote by FP(v) ∈ R(T × S) the solution m to the Kolmogorov

equation {
m(t+ 1, y) =

∑
x∈S π[v](t, x, y)m(t, x), ∀(t, y) ∈ T × S,

m(0, x) = m0(x), ∀x ∈ S.
(4.3.6)

• Given µ ∈ P(T̃ , S), denote byHJB(µ) ∈ R(T̃ ×S) the solution u to the dynamic programming

equation u(t, x) = inf
ω∈Rd

(
ℓ̃D̄µ (t, x, ω)∆t+

∑
y∈S π(t, x, y, ω)u(t+ 1, y)

)
, ∀(t, x) ∈ T × S;

u(T, x) = g(x), ∀x ∈ S,

(4.3.7)

where ℓ̃D̄µ (t, x, ω) = ℓD̄(t, x, ω) + f(t, x, µ(t)).
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• Given u ∈ R(T̃ × S), denote by V(u) the policy v defined by

v(t, x) = argmin
ω∈Rd

(
ℓD̄(t, x, ω)∆t+

∑
y∈S

π(t, x, y, ω)u(t+ 1, y)
)
, ∀(t, x) ∈ T × S. (4.3.8)

The uniqueness of the minimizer in the above definition is a consequence of Lemma 4.3.2.

The discrete MFG consists in finding a triplet (u, v,m) such that u = HJB(m), v = V(u), and

m = FP(v). This is equivalent to find a fixpoint to the map ϕ, defined by

ϕ : m ∈ P(T̃ , S) 7→ FP ◦V ◦HJB(m) ∈ P(T̃ , S).

It is easy to verify that ϕ is indeed valued in P(T̃ ×S). Let m ∈ P(T̃ ×S) and let v = V◦HJB(m).

By definition, ∥v∥∞,∞ ≤ D̄. Therefore, by assumption (4.3.1), π[v] is a transition process. Then

FP(v) ∈ P(T̃ , S), by Remark 4.3.1.

The discrete MFG can be formulated as the following coupled system: for all (t, x) ∈ T × S,

(i) u(t, x) = infω∈Rd ℓ̃D̄m(t, x, ω)∆t+
∑

y∈S π(t, x, y, ω)u(t+ 1, y);

(ii) v(t, x) = argminω∈Rd ℓD̄(t, x, ω)∆t+
∑

y∈S π(t, x, y, ω)u(t+ 1, y);

(iii) m(t+ 1, x) =
∑

y∈S π[v](t, y, x)m(t, y);

(iv) m(0, x) = m0(x), u(T, x) = g(x).

(4.3.9)

As mentioned in Remark 4.2.8, the coefficients preceding m(t, x ± hei) in (4.2.12) are affine

functions with respect to v(t, x ± hei). Furthermore, m(t + 1) can be seen as a linear function

of m(t + 1/2) independent of v from the implicit part of (θ-MFG)(iii). Therefore, in the theta-

scheme (θ-MFG), we can express m(t+1, x) as a linear combination of m(t, y) for y ∈ S, where the

coefficients preceding m(t, y) are affine functions with respect to v(t, y). Comparing this with the

coefficients π[v](t, y, x) = π(t, y, x, v(t, y)) in (4.3.9)(iii), in order to study (θ-MFG) as a particular

case of (4.3.9), we find it convenient to consider π(t, x, y, ω) in an affine form of ω, i.e.,

π(t, x, y, ω) = π0(t, x, y) + ∆t⟨π1(t, x, y), ω⟩, ∀(t, x, y, ω) ∈ T × S2 × Rd, (4.3.10)

where π0 ∈ R(T × S × S) and π1 ∈ Rd(T × S × S). The exact formulas for π0 and π1 associated

with (θ-MFG) are given in (4.4.3)-(4.4.4).

In the sequel of this section, we consider π given by (4.3.10). We make the following assumption

on π0 and π1.

Assumption 4.2. The elements π0 and π1 satisfy the following condition:
π0(t, x, ·) ∈ P(S), ∀(t, x) ∈ T × S,∑

y∈S π1(t, x, y) = 0, ∀(t, x) ∈ T × S,

π0(t, x, y) ≥ ∆tD̄∥π1(t, x, y)∥, ∀(t, x, y) ∈ T × S × S.

Lemma 4.3.5. For π given by (4.3.10), Assumption 4.2 is equivalent to (4.3.1).
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The proof of the previous lemma is left to the reader.

Thanks to (4.3.10), we can simplify (4.3.9) (i)-(ii) with the help of HD̄ (defined by (4.3.3)). Let

us define p0, p1, q0, and q1 as follows: for all (t, x) ∈ T × S,

p0(t, x) =
∑
s∈S

π0(t, x, s)u(t+ 1, s), p1(t, x) =
∑
s∈S

π1(t, x, s)u(t+ 1, s); (4.3.11)

q0(t, x) =
∑
s∈S

π0(t, s, x)m(t, s), q1[v](t, x) =
∑
s∈S

⟨π1(t, s, x), v(t, s)m(t, s)⟩. (4.3.12)

Observe that the dependence of p0 and p1 with respect to u is not explicitly mentioned, similarly,

the dependence of q0 and q1 with respect to m and v is not explicitly mentioned and will be clear

from the context. Then system (4.3.9) equivalently writes: for all (t, x) ∈ T × S,

(i) u(t, x) =
(
−HD̄[p1](t, x) + f(t, x,m(t))

)
∆t+ p0(t, x);

(ii) v(t, x) = −HD̄
p [p1](t, x);

(iii) m(t+ 1, x) = q0(t, x) + ∆tq1[v](t, x);

(iv) m(0, x) = m0(x), u(T, x) = g(x).

(DMFG)

Theorem 4.3.6 (Existence). Under Assumptions 4.1 and 4.2, (DMFG) has at least one solution.

Furthermore, if (ū, v̄, m̄) is a solution of (DMFG), then m̄ ∈ P(T̃ , S).

Proof (first part). We equip the finite-dimensional space R(T̃ × S) with the norm ∥ · ∥∞,1. The set

P(T̃ , S) is non-empty, convex, and compact. In order to prove the existence of a solution, we need

to show the existence of fixpoint for the map ϕ, defined in (4.3.2). By the Brouwer fixed-point

theorem, it suffices to show that ϕ is a continuous mapping, which we do in appendix 4.6.1.

4.3.3 A fundamental inequality

Let us define a perturbed version of (DMFG) with additional terms (η, δ) ∈ R2(T × S) in the

right-hand side: for all (t, x) ∈ T × S,

(i) u(t, x) =
(
−HD̄[p1](t, x) + f(t, x,m(t))

)
∆t+ p0(t, x) + η(t, x);

(ii) v(t, x) = −HD̄
p [p1](t, x);

(iii) m(t+ 1, x) = q0(t, x) + ∆tq1[v](t, x) + δ(t, x);

(iv) m(0, x) = m0(x), u(T, x) = g(x).

(PDMFG)

The fundamental inequality proved in the next proposition is an essential tool in the stability

analysis for the system (DMFG).

Proposition 4.3.7 (Fundamental inequality). Let Assumptions 4.1 and 4.2 hold true. Let (ū, v̄, m̄)

be a solution of (DMFG) and let (u, v,m) satisfy (PDMFG) with m ≥ 0. Then, the following
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inequality holds:

∆tα

2

∑
t∈T

∑
x∈S

∥(v − v̄)(t, x)∥2(m+ m̄)(t, x) ≤
∑
t∈T

∑
x∈S

(u− ū)(t+ 1, x)δ(t, x) + (m̄−m)(t, x)η(t, x).

(4.3.13)

This fundamental inequality is of the same nature as the one established in [ACCD13, Sec.

3.3]. We provide two different proofs of Proposition 4.3.7 in the next subsection. The fundamental

inequality allows us to show the uniqueness of the solution to (DMFG).

Lemma 4.3.8 (Uniqueness). Under Assumptions 4.1-4.2, (DMFG) has a unique solution.

Proof. The existence result was already established in Theorem 4.3.6. Let (u1, v1,m1) and (u2, v2,m2)

be two solutions of (DMFG). By Theorem 4.3.6, m1 ≥ and m2 ≥ 0. Viewing (u2, v2,m2) as a

solution to (PDMFG) with (η, δ) = (0, 0), we deduce from the fundamental inequality that

∥v1(t, x)− v2(t, x)∥(m1(t, x) +m2(t, x)) = 0.

Thus for any (t, x) ∈ T ×S, either v1(t, x) = v2(t, x), or m1(t, x) = m2(t, x) = 0. Let µ = m1−m2,

then µ satisfies the following equation: for any (t, x) ∈ T × S,{
µ(t+ 1, x) =

∑
s∈S π[v1](t, s, x)µ(t, s) + ∆t

∑
s∈S⟨π1(t, s, x), (v1 − v2)m2(t, s)⟩,

µ(0, x) = 0.

It follows by induction that µ = 0, i.e. m1 = m2. Then u1 = HJB(m1) = HJB(m2) = u2 and

v1 = V(u1) = V(u2) = v2, which concludes the proof.

4.3.4 Two proofs of the fundamental inequality

In this subsection, (u, v,m) is a solution of (PDMFG) and (p0, p1) is defined by (4.3.11). Let

(ū, v̄, m̄) be a solution to (DMFG). Let (p̄0, p̄1) be defined by (4.3.11), for the triplet (ū, v̄, m̄). The

following sum-by-parts formulas will be used in both two methods of proof. For all t ∈ T ,∑
x∈S

p̄0m̄(t, x) + ∆t⟨p̄1, m̄v̄⟩(t, x) =
∑
y∈S

ū(t+ 1, y)m̄(t+ 1, y); (4.3.14)

∑
x∈S

p̄0m(t, x) + ∆t⟨p̄1,mv⟩(t, x) =
∑
y∈S

ū(t+ 1, y)m(t+ 1, y)−
∑
y∈S

ū(t+ 1, y)δ(t, y); (4.3.15)

∑
x∈S

p0m̄(t, x) + ∆t⟨p1, m̄v̄⟩(t, x) =
∑
y∈S

u(t+ 1, y)m̄(t+ 1, y); (4.3.16)

∑
x∈S

p0m(t, x) + ∆t⟨p1,mv⟩(t, x) =
∑
y∈S

u(t+ 1, y)m(t+ 1, y)−
∑
y∈S

u(t+ 1, y)δ(t, y). (4.3.17)

For proving (4.3.14), one simply needs to multiply the first equation in (4.3.11) by m̄(t, x), to

multiply the second equation in (4.3.11) by m̄v̄(t, x) and to sum the results over x. This yields∑
x∈S

p̄0m̄(t, x) + ∆t⟨p̄1, m̄v̄⟩(t, x) =
∑
x∈S

∑
s∈S

ū(t+ 1, s)
(
π0(t, x, s)m̄(t, x) + ∆t⟨π1(t, x, s), v̄m̄(t, s)⟩

)
.

Then (4.3.14) follows from (DMFG)-(iii). The proofs of the other three equations can be obtained

similarly. We provide now two different proofs of Proposition 4.3.7.
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1. Direct method We follow [ACCD13]. Summing the difference of (4.3.15) and (4.3.14) over

t ∈ T , we get

T∑
t=1

∑
x∈S

ū(m−m̄)(t, x) =
∑
t∈T

∑
x∈S

p̄0(m−m̄)(t, x)+∆t⟨p̄1,mv−m̄v̄⟩(t, x)+ū(t+1, x)δ(t, x). (4.3.18)

In addition, summing the difference of (4.3.17) and (4.3.16) over t ∈ T , we get

T∑
t=1

∑
x∈S

u(m−m̄)(t, x) =
∑
t∈T

∑
x∈S

p0(m−m̄)(t, x)+∆t⟨p1,mv−m̄v̄⟩(t, x)+u(t+1, x)δ(t, x). (4.3.19)

Taking the difference of (4.3.19) and (4.3.18), we have

T∑
t=1

∑
x∈S

(u− ū)(m− m̄)(t, x)

=
∑
t∈T

∑
x∈S

(p0 − p̄0)(m− m̄)(t, x) + ∆t⟨p1 − p̄1,mv − m̄v̄⟩(t, x) + (u− ū)(t+ 1, x)δ(t, x).

(4.3.20)

Moreover, taking the difference of (PDMFG) (i) and (DMFG) (i), multiplying the result by m−m̄,

summing over (t, x) ∈ T × S, we obtain that∑
t∈T

∑
x∈S

(u− ū)(m− m̄)(t, x)

=
∑
t∈T

∑
x∈S

(p0 − p̄0)(m− m̄)(t, x) + ∆t
(
HD̄[p̄1]−HD̄[p1]

)
(m− m̄)(t, x)

+
∑
t∈T

∑
x∈S

∆t
(
f(t, x,m(t))− f(t, x, m̄(t))

)
(m− m̄)(t, x) + η(m− m̄)(t, x).

(4.3.21)

Comparing (4.3.20) and (4.3.21) and using the relations v = −HD̄
p [p1], v̄ = −HD̄

p [p̄1], we obtain

the following equality:

∆t
∑
t∈T

∑
x∈S

m
(
HD̄[p̄1]−HD̄[p1]− ⟨HD̄

p [p1], p̄1 − p1⟩
)
(t, x)

+ ∆t
∑
t∈T

∑
x∈S

m̄
(
HD̄[p1]−HD̄[p̄1]− ⟨HD̄

p [p̄1], p1 − p̄1⟩
)
(t, x)

+ ∆t
∑
t∈T

∑
x∈S

(
f(t, x,m(t))− f(t, x, m̄(t))

)
(m− m̄)(t, x)

=
∑
t∈T

∑
x∈S

(u− ū)(t+ 1, x)δ(t, x) + (m̄−m)(t, x)η(t, x).

(4.3.22)

Since HD̄ is convex and HD̄
p is 1/α-Lipschitz, we obtain with inequality (4.1.2) (see [Nes18, Thm.

2.1.5]) that

HD̄[p̄1]−HD̄[p1]− ⟨HD̄
p [p1], p̄1 − p1⟩ ≥

α

2

∥∥HD̄
p [p1]−HD̄

p [p̄1]
∥∥2 = α

2
∥v − v̄∥2;

HD̄[p1]−HD̄[p̄1]− ⟨HD̄
p [p̄1], p1 − p̄1⟩ ≥

α

2

∥∥HD̄
p [p1]−HD̄

p [p̄1]
∥∥2 = α

2
∥v − v̄∥2.
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We substitute the last two inequalities into (4.3.22). Then, inequality (4.3.13) follows from the

non-negativity of m and m̄ and the monotonicity of f in Assumption 4.1.

2. Variational method Let us define a “relative” potential function J̃m̄ : Rd(T ×S)×P(T̃ , S) → R,

J̃m̄(v,m) = ∆t
∑
t∈T

∑
x∈S

m(t, x)
(
ℓD̄(t, x, v(t, x)) + f(t, x, m̄(t))

)
+
∑
x∈S

g(x)m(T, x).

Note that in the above function J̃m̄, the third variable of f is fixed to m̄. The second proof of

Proposition 4.3.7 consists in proving a lower bound and an upper bound of J̃m̄(v,m) − J̃m̄(v̄, m̄),

from which the fundamental inequality directly follows.

Step 1. Let us prove that

J̃m̄(v,m)− J̃m̄(v̄, m̄) ≥
∑
t∈T

∑
x∈S

ū(t+ 1, x)δ(t, x) + ∆t
∑
t∈T

∑
x∈S

α

2
∥v − v̄∥2m(t, x).

By Lemma 4.3.4, we have(
ℓD̄[v]m− ℓD̄[v̄]m̄

)
∆t ≥

(
−HD̄[p̄1](m− m̄)− ⟨p̄1,mv − m̄v̄⟩+ α

2
∥v − v̄∥2m

)
∆t

= (ū− p̄0 −∆tf(t, x, m̄(t))) (m− m̄)−∆t⟨p̄1,mv − m̄v̄⟩+∆t
α

2
∥v − v̄∥2m

= ū(m− m̄) + (p̄0m̄+∆t⟨p̄1, m̄v̄⟩)− (p̄0m+∆t⟨p̄1,mv⟩)

−∆tf(t, x, m̄(t))(m− m̄) + ∆t
α

2
∥v − v̄∥2m.

It follows that

J̃m̄(v,m)− J̃m̄(v̄, m̄)

= ∆t
∑
t∈T

∑
x∈S

(
ℓD̄[v]m− ℓD̄[v̄]m̄+ f(t, x, m̄(t))(m− m̄)

)
(t, x) +

∑
x∈S

g(x)(m− m̄)(T, x)

≥
∑
t∈T

∑
x∈S

ū(m− m̄) + (p̄0m̄+∆t⟨p̄1, m̄v̄⟩)− (p̄0m+∆t⟨p̄1,mv⟩) + ∆t
α

2
∥v − v̄∥2m

+
∑
x∈S

g(x)(m− m̄)(T, x)

=
∑
t∈T

∑
x∈S

ū(t+ 1, x)δ(t, x) + ∆t
∑
t∈T

∑
x∈S

α

2
∥v − v̄∥2m(t, x),

where the last equality was obtained with (4.3.14) and (4.3.15).

Step 2. Let us prove that

J̃m̄(v,m)− J̃m̄(v̄, m̄) ≤
∑
t∈T

∑
x∈S

u(t+ 1, x)δ(t, x)− η(m− m̄)(t, x)−∆t
α

2
∥v − v̄∥2m̄(t, x).

Since v satisfies (PDMFG)-(ii), by Fenchel’s relation [HUL93, Cor. 1.4.4], we have

ℓD̄[v] = −⟨p1, v⟩ −HD̄[p1], −p1 ∈ ∂ℓD̄[v].
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Then, by the α-strong convexity of ℓ and the last equality, we have

ℓD̄[v̄] ≥ ℓD̄[v] + ⟨−p1, v̄ − v⟩+ α

2
∥v̄ − v∥2 = −HD̄[p1]− ⟨p1, v̄⟩+

α

2
∥v̄ − v∥2.

Using the nonnegativity of m and m̄, we obtain that(
ℓD̄[v]m− ℓD̄[v̄]m̄

)
∆t ≤

(
−HD̄[p1](m− m̄)− ⟨p1,mv − m̄v̄⟩ − α

2
∥v̄ − v∥2m̄

)
∆t

= (u− p0 −∆tf(t, x,m(t))− η) (m− m̄)−∆t⟨p1,mv − m̄v̄⟩ −∆t
α

2
∥v̄ − v∥2m̄

= u(m− m̄) + (p0m̄+∆t⟨p1, m̄v̄⟩)− (p0m+∆t⟨p1,mv⟩)

− (∆tf(t, x,m(t)) + η) (m− m̄)−∆t
α

2
∥v̄ − v∥2m̄.

It follows that

J̃m̄(v,m)− J̃m̄(v̄, m̄)

= ∆t
∑
t∈T

∑
x∈S

(
ℓD̄[v]m− ℓD̄[v̄]m̄+ f(t, x, m̄(t))(m− m̄)

)
(t, x) +

∑
x∈S

g(x)(m− m̄)(T, x)

≤
∑
t∈T

∑
x∈S

u(m− m̄) + (p0m̄+∆t⟨p1, m̄v̄⟩)− (p0m+∆t⟨p1,mv⟩) +
∑
x∈S

g(x)(m− m̄)(T, x)

−
∑
t∈T

∑
x∈S

∆t (f(t, x,m(t))− f(t, x, m̄(t))) (m− m̄)(t, x)

−
∑
t∈T

∑
x∈S

η(m− m̄)(t, x) + ∆t
α

2
∥v − v̄∥2m̄(t, x)

≤
∑
t∈T

∑
x∈S

u(t+ 1, x)δ(t, x)− η(t, x)(m− m̄)(t, x)−∆t
α

2
∥v − v̄∥2m̄(t, x),

where the last inequality is a consequence of (4.3.16), (4.3.17), and the monotonicity of f .

4.4 Stability analysis for the theta-scheme

We turn back to the stability analysis of the theta-scheme. It consists of two steps: the fundamental

inequality, which is obtained by formulating (DMFG) as a discrete MFG, and an energy estimate

for the Kolmogorov equation.

From now on ℓ, H, g, m0, and f are again to be understood according to the definitions given

in (4.2.9) and (4.2.10).

4.4.1 Reformulation of the theta-scheme as a discrete MFG

The goal of this subsection is to show the equivalence between the scheme (θ-MFG) and a discrete

MFG of the form (DMFG). Given D ∈ (0,∞], define ℓD as in (4.3.2) and HD as in (4.3.3). Note

that for D = ∞, HD = H. Consider the following system, with unknown variables u ∈ R(T̄ × S),
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v ∈ Rd(T × S), and m ∈ R(T̄ × S):

(i)


(Id− θσ∆t∆h)u(t+ 1/2) = u(t+ 1),

u(t, x) =
[
−HD[∇hu(·+ 1/2, ·)](t, x) + f(t, x,m(t))

]
∆t

+
(
Id + (1− θ)σ∆t∆h

)
u(t+ 1/2)(x),

∀(t, x) ∈ T × S;

(ii) v(t, x) = −HD
p [∇hu(·+ 1/2, ·)](t, x), ∀(t, x) ∈ T × S;

(iii)

{
m(t+ 1/2) =

(
Id + (1− θ)σ∆t∆h

)
m(t)−∆tdivh

(
v(t)m(t)

)
,

(Id− θσ∆t∆h)m(t+ 1) = m(t+ 1/2),
∀t ∈ T ;

(iv) m(0, x) = m0(x), u(T, x) = g(x), ∀x ∈ S.

(θ-MFG(D))

Multiplying the dynamic programming equation (i) and the Kolmogorov equation (iii) of (θ-MFG)

by ∆t, we easily see that (θ-MFG) is equivalent to (θ-MFG(D)) with D = ∞.

We recall here the definition of the matrix B1 and introduce a new matrix B2:

B1 = Id− θσ∆t∆h, B2 = (1− θ)σ∆h. (4.4.1)

By Lemma 4.2.6, the matrix B1 is invertible.

We regard the variables u and m of the system (θ-MFG(D)) as elements of R(T̄ ×S), since the

auxiliary variables u(t+1/2, ·) and m(t+1/2, ·) are uniquely determined by u(t+1, ·) and m(t, ·).
In the sequel, we will make use of the following convention: Given u ∈ R(T̄ × S), we denote

u(t+ 1/2, ·) = B−1
1 u(t+ 1, ·), ∀t ∈ T . (4.4.2)

Lemma 4.4.1. For any D > 0, the system (θ-MFG(D)) is equivalent to the system (DMFG) with

running cost ℓ, control bound D̄ = D, coupling function f , final cost g, initial distribution m0 and

with π0 and π1 defined by:

π0(t, x, y) = B−1
1 (y, x) + ∆t(B−1

1 B2)(y, x), (4.4.3)

π1(t, x, y) =
(B−1

1 (y, x+ hei)−B−1
1 (y, x− hei)

2h

)d
i=1

. (4.4.4)

Proof. We make use of the notations p0, p1, q0 and q1, defined as in (4.3.11)-(4.3.12). By the

definition of B1 and B2, the implicit steps in equations (i) and (iii) are equivalent to

u(t+ 1/2) = B−1
1 u(t+ 1) and m(t+ 1) = B−1

1 m(t+ 1/2).

Next we verify the equivalences between each of the three equations of the two systems.
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Step 1. Using the definition of B1 and π1, we have that

∇hu(t+ 1/2, x) =

(
u(t+ 1/2, x+ hei)− u(t+ 1/2, x− hei)

2h

)d

i=1

=

∑y∈S

(
B−1

1 (x+ hei, y)−B−1
1 (x− hei, y)

)
u(t+ 1, y)

2h

d

i=1

=
∑
y∈S

π1(t, x, y)u(t+ 1, y) = p1(t, x).

The equivalence of the feedback relations follows.

Step 2. The dynamic programming equation is equivalent to

u(t, x) =
[
−HD[p1](t, x) + f(t, x,m(t))

]
∆t+

(
Id + ∆tB2

)
B−1

1 u(t+ 1)(x).

Observe that(
Id + ∆tB2

)
B−1

1 u(t+ 1)(x)

=
∑
y∈S

B−1
1 (x, y)u(t+ 1, y) + ∆t

∑
z∈S

∑
y∈S

B2(x, z)B
−1
1 (z, y)u(t+ 1, y)

=
∑
y∈S

B−1
1 (y, x)u(t+ 1, y) + ∆t

∑
y∈S

(∑
z∈S

B−1
1 (y, z)B2(z, x)

)
u(t+ 1, y)

=
∑
y∈S

π0(t, x, y)u(t+ 1, y) = p0(x),

The equivalence with the dynamic programming equation of (DMFG) follows.

Step 3. The Kolmogorov equation in (θ-MFG(D)) is equivalent to

m(t+ 1, y) =
∑
x∈S

(
B−1

1 (y, x) + ∆t(B−1
1 B2)(y, x)

)
m(t, x)

−∆t

d∑
i=1

∑
x∈S

B−1
1 (y, x)

vi(t, x+ hei)m(t, x+ hei)− vi(t, x− hei)m(t, x− hei)

2h

=
∑
x∈S

(
B−1(y, x) + ∆t(B−1

1 B2)(y, x)
)
m(t, x)

+ ∆t
∑
x∈S

d∑
i=1

B−1
1 (y, x+ hei)−B−1

1 (y, x− hei)

2h
vi(t, x)m(t, x)

=
∑
x∈S

π0(t, x, y)m(t, x) + ∆t⟨π1(t, x, y), v(t, x)⟩m(t, x)

= q0(t, y) + ∆tq1[v](t, y).

The lemma is proved.

Lemma 4.4.2. The maps ℓ, f , and g satisfy Assumption 4.1 with the following constants:

α = αc, Lℓ = Lc
ℓ, Lf = Lc

f , L′
f = Lc

fh
−d/2, and Lg = Lc

g.
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Proof. The Lipschitz-continuity of ℓ, f , and g, and the strong convexity of ℓ are straightforward.

For all (t, x) ∈ T × S and µ1, µ2 ∈ P(S), we have

f(t, x, µ1)− f(t, x, µ2) =
1

hd

∫
Bh(x)

f c
(
t∆t, x,Rh(µ1)

)
− f c

(
t∆t, x,Rh(µ2)

)
dy

≤ Lc
f

∥∥Rh(µ1)−Rh(µ2)
∥∥
L2

= Lc
f

(∑
x∈S

hd
(µ1(x)

hd
− µ2(x)

hd

)2)1/2
= Lc

fh
−d/2∥µ1 − µ2∥2.

This proves the Lipschitz continuity of f with respect to its third variable. Let us consider again

µ1, µ2 ∈ P(S) and t ∈ T . We have∑
x∈S

(f(t, x, µ1)− f(t, x, µ2))(µ1(x)− µ2(x))

=
1

hd

∑
x∈S

∫
y∈Bh(x)

f c(t∆t, y,Rh(µ1))− f c(t∆t, y,Rh(µ2))dy(µ1(x)− µ2(x))

=
∑
x∈S

∫
y∈Bh(x)

(
f c(t∆t, y,Rh(µ1))− f c(t∆t, y,Rh(µ2))

)(µ1(x)

hd
− µ2(x)

hd

)
dy

=
∑
x∈S

∫
y∈Bh(x)

(
f c(t∆t, y,Rh(µ1))− f c(t∆t, y,Rh(µ2))

)(
Rh(µ1)(y)−Rh(µ2)(y)

)
dy

=

∫
Td

(
f c(t∆t, y,Rh(µ1))− f c(t∆t, y,Rh(µ2))

)(
Rh(µ1)(y)−Rh(µ2)(y)

)
dy ≥ 0.

This proves the monotonicity assumption. The lemma is proved.

Lemma 4.4.3 (Lipschitz continuity). Let D ∈ (0,∞]. Let (m,u, v) be a solution to (θ-MFG(D)).

Suppose that (∆t, h) satisfies the condition (CFL). Then for all t ∈ T̄ , u(t, ·) and u(t+ 1/2, ·) are
(Lc

g + Lc
f + Lc

ℓ)-Lipschitz continuous. Moreover, ∥v∥∞,∞ ≤ M , where M was defined in (4.2.11).

Proof. We define, for any t ∈ T̄ , Lt = Lc
g +∆t(T − t)(Lc

f +Lc
ℓ). We prove by induction that for any

t ∈ T̄ , u(t, ·) is Lt-Lipschitz continuous. The claim is obvious for t = T , by the terminal condition.

Suppose that u(t + 1, ·) is Lt+1-Lipschitz for some t ∈ T . The first equation in (θ-MFG(D)) is

equivalent to the dynamic programming equation:
(Id− θσ∆t∆h)u(t+ 1/2) = u(t+ 1);

u(t, x) = ∆t infω

{
f(t, x,m(t)) + ℓD(t, x, ω) +

〈
ω,∇hu(t+ 1/2, x)

〉}
+
(
Id + (1− θ)σ∆t∆h

)
u(t+ 1/2)(x), ∀ x ∈ S.

(4.4.5)

By the third statement of Lemma 4.2.6, we have that u(t + 1/2, ·) is Lt+1-Lipschitz. Therefore,

∥∇hu(t+1/2, ·)∥ ≤
√
d(Lc

g +Lc
f +Lc

ℓ). Next let us take y ∈ S and let us set ωy = v(t, y). We have

ωy = argmin
∥ω∥≤D

(
ℓ(t, y, ω) +

〈
ω,∇hu(t+ 1/2, y)

〉)
.
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By inequality (4.3.4) of Lemma 4.3.2, we have ∥ωy∥ ≤ M . Let r′ = (1− θ)σ∆t/h2, then, for any x,

we have

u(t, x)− u(t, y) ≤
(
f(t, x,m(t))− f(t, z,m(t)) + ℓ(t, x, ωy)− ℓ(t, y, ωy)

)
∆t

+ (1− 2dr′)
(
u(t+ 1/2, x)− u(t+ 1/2, y)

)
+

d∑
i=1

(
r′ +

(ωz)i
2h

)(
u(t+ 1/2, x+ hei)− u(t+ 1/2, y + hei)

)
+

d∑
i=1

(
r′ − (ωz)i

2h

)(
u(t+ 1/2, x− hei)− u(t+ 1/2, y − hei)

)
.

The coefficients
(
1− 2dr′

)
,
(
r′+ (ωz)i

2h

)
, and

(
r′− (ωz)i

2h

)
are positive by the condition (CFL). Thus,

u(t, x)− u(t, z) ≤ ∥x− z∥
(
∆t(Lc

f + Lc
ℓ) + Lt+1

)
≤ Lt∥x− z∥,

where Lt = Lg +∆t(T − t)(Lf + Lℓ) ≤ Lg + Lf + Lℓ. Since x and y are arbitrary, we deduce that

u(t, ·) is Lt-Lipschitz. The claim is proved. We have meanwhile established that ∥v∥∞,∞ ≤ M .

The lemma is proved, since for any t ∈ T̄ , Lt ≤ Lc
g + Lc

f + Lc
ℓ.

Theorem 4.4.4. Let the condition (CFL) hold true. Then the discretized MFG system (θ-MFG)

is equivalent to the system (θ-MFG(D)) with D = M , which is itself equivalent to a discrete MFG

of the form (DMFG), satisfying Assumptions 4.1 and 4.2, with π0 and π1 defined by (4.4.3) and

(4.4.4) and with control bound D̄ = M . As a consequence, (θ-MFG) has a unique solution.

Proof. By construction, (4.4.6) is equivalent to (θ-MFG(D)) with D = ∞. As a direct conse-

quence of Corollary 4.3.3 and Lemma 4.4.3, the system (θ-MFG(D)) with D = ∞ is equivalent

to (θ-MFG(D)) with D = M . We already know that (θ-MFG(D)) is equivalent to (DMFG), by

Lemma 4.4.1 and that Assumption 4.1 is satisfied, by Lemma 4.4.2. It remains to verify that

(θ-MFG(D)) satisfy Assumption 4.2, for D̄ = M . To do this, we need to verify that for any

v ∈ Rd(T × S) with ∥v∥∞,∞ ≤ D, π[v] is a transition process, by Lemma 4.3.5. By Remark 4.3.1,

this is equivalent to show that for any t ∈ T , for any m(t) ∈ P(S), for any v ∈ Rd(T ×S) such that

∥v∥∞,∞ ≤ M , we have m(t+ 1) ∈ P(S), where m(t+ 1) is defined by equation (θ-MFG(D))-(iii).

We conclude that m(t+ 1) ∈ P(S) from Remark 4.2.8.

4.4.2 Energy estimate for the discrete FP equation

We investigate here the ℓ2-stability of the discrete Fokker-Planck equation of the theta-scheme. To

this aim we consider the following perturbed equation:
(Id− θσ∆t∆h)µ(t+ 1) =

(
Id + (1− θ)σ∆t∆h

)
µ(t)−∆tdivh

(
v(t)µ(t)

)
−∆tdivh

(
δv(t)

)
+∆tδ(t),

µ(0) = µ0,

(4.4.6)
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where δv ∈ Rd(S), δ ∈ R(S). Note that we have no sign condition on µ. The first error term

−∆tdivh
(
δv(t)

)
represents a perturbation in the form of a discrete divergence and ∆tδ(t) is another

general perturbation term.

Proposition 4.4.5 (Energy inequality). Let θ > 1/2 and µ be a solution of (4.4.6). Let v ∈
Rd(T ×S) be such that ∥v∥∞,∞ ≤ M . Then, there exists some constant c independent of h and ∆t

such that

max
t∈T̃

∥∥µ(t)∥∥2
2
≤ c

(∥∥µ0

∥∥2
2
+ (1− θ)σ

∥∥∇+
h µ0

∥∥2
2
+
∑
τ∈T

∆t
(∥∥δv(τ)∥∥22 + ∥∥δ(τ)∥∥22)

)
. (4.4.7)

Proof. Recall that the forward discrete gradient was defined in (4.2.3). Computing the scalar

product with µ(t + 1) of both sides of (4.4.6) and applying the integration by parts formulas

(4.2.4)-(4.2.5), we obtain that〈
µ(t+ 1)− µ(t), µ(t+ 1)

〉
+ θσ∆tβ1 =(1− θ)σ∆tβ2 +∆t

(
γ1 + γ2 + γ3

)
, (4.4.8)

where

β1 = −
〈
µ(t+ 1),∆hµ(t+ 1)

〉
=
∥∥∇+

h µ(t+ 1)
∥∥2
2
,

β2 =
〈
µ(t+ 1),∆hµ(t)

〉
= −

〈
∇+

h µ(t+ 1),∇+
h µ(t)

〉
,

γ1 = −
〈
divh

(
µ(t)v(t)

)
, µ(t+ 1)

〉
=
∑
x∈S

〈
∇hµ(t+ 1, x), µv(t, x)

〉
,

γ2 = −
〈
divh

(
δv(t)

)
, µ(t+ 1)

〉
=
∑
x∈S

〈
∇hµ(t+ 1, x), δv(t, x)

〉
,

γ3 =
〈
δ(t), µ(t+ 1)

〉
.

Using Young’s inequality, it is easy to prove that〈
µ(t+ 1)− µ(t), µ(t+ 1)

〉
≥ 1

2

(
∥µ(t+ 1)∥22 − ∥µ(t)∥22

)
.

Combining the above inequality with (4.4.8), we obtain that

1

2

(
∥µ(t+ 1)∥22 − ∥µ(t)∥22

)
+ θσ∆t

∥∥∇+
h µ(t+ 1)

∥∥2
2

≤ −(1− θ)σ∆t
〈
∇+

h µ(t+ 1),∇+
h µ(t)

〉
+∆t

(
γ1 + γ2 + γ3

)
.

(4.4.9)

Applying Young’s inequality to the right-hand side of (4.4.9) and using inequality (4.2.6), we obtain

that for all positive numbers α0, α1, α2 and α3, we have

−
〈
∇+

h µ(t+ 1),∇+
h µ(t)

〉
≤ α0

2

∥∥∇+
h µ(t+ 1)

∥∥2
2
+

1

2α0

∥∥∇+
h µ(t)

∥∥2
2
;

γ1 ≤
α1

2

∥∥∇+
h µ(t+ 1)

∥∥2
2
+

M2

2α1

∥∥µ(t)∥∥2
2
;

γ2 ≤
α2

2

∥∥∇+
h µ(t+ 1)

∥∥2
2
+

1

2α2

∥∥δv(t)∥∥22;
γ3 ≤

α3

2

∥∥δ(t)∥∥2
2
+

1

2α3

∥∥µ(t+ 1)
∥∥2
2
.
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Taking α0 = 1, α1 = α2 = σ(2θ − 1) > 0, and α3 = 1, we have

(1−∆t)
∥∥µ(t+ 1)

∥∥2
2
− (1−∆t)

∥∥µ(t)∥∥2
2
+ (1− θ)σ∆t

(∥∥∇+
h µ(t+ 1)

∥∥2
2
−
∥∥∇+

h µ(t)
∥∥2
2

)
≤ ∆t

(
c1
∥∥µ(t)∥∥2

2
+ c2

∥∥δv(t)∥∥22 + ∥∥δ(t)∥∥22),
where c1 = 1 + M2

σ(2θ−1) and c2 =
1

σ(2θ−1) . Summing the above equation over t, it follows that

(1−∆t)
∥∥µ(t+ 1)

∥∥2
2
≤ ∆t

t∑
τ=0

(
c1
∥∥µ(τ)∥∥2

2
+ c2

∥∥δv(τ)∥∥22 + ∥∥δ(τ)∥∥22)+ c3,

where c3 = (1 − ∆t)∥µ0∥22 + (1 − θ)σ∆t∥∇+
h µ0∥22. Since 1 − ∆t ≥ 1/2, by the discrete Gronwall

inequality [Cla87], there exists some constant c independent of (∆t, h) such that

max
t∈T̃

∥∥µ(t)∥∥2
2
≤ c

(∥∥µ0

∥∥2
2
+ (1− θ)σ

∥∥∇+
h µ0

∥∥2
2
+
∑
τ∈T

∆t
(∥∥δv(τ)∥∥22 + ∥∥δ(τ)∥∥22)

)
.

The proposition is proved.

Remark 4.4.6. By taking α1 = α2 < σ(2θ − 1) in the proof, we can get a refined energy estimate

with an additional term
∑

t∈T̃ ∆t
∥∥∇+

h µ(t)
∥∥2
2
on the left-hand side of (4.4.7). This refined energy

estimate is consistent with the continuous case [LSU88, Thm. 2.1].

4.5 Consistency analysis of the theta-scheme

This section is dedicated to the consistency analysis of the theta-scheme and to the proof of Theorem

4.2.10. To alleviate the proofs, we will make use of the big O notation: Given f1, f2 ∈ Rn(T × S)

and γ > 0, the notation f1−f2 = O(hγ) (or f1 = f2+O(hγ)) means that there exists some constant

C independent of h and ∆t such that ∥f1 − f2∥∞,∞ ≤ Chγ . In particular, f1 = O(hγ) means that

∥f1∥∞,∞ ≤ Chγ .

All along the section, (CFL) is supposed to be satisfied. Therefore, we have ∆t = O(h2).

4.5.1 Consistency error

Let us recall that (u∗, v∗,m∗) is the unique solution to the continuous system (MFG). The restric-

tion of (u∗,m∗) on the grid, denoted by (u∗h, v
∗
h), is defined as in Theorem 4.2.10. Making use of

the convention (4.4.2), we define v∗h ∈ Rd(T × S) by

v∗h(t, x) = −HM
p [∇hu

∗
h(·+ 1/2, ·)](t, x). (4.5.1)

Then, (u∗h, v
∗
h,m

∗
h) can be considered as a solution of the perturbed discrete mean field game

(PDMFG) with perturbation terms η and δ specified later in Lemma 4.5.5.

Lemma 4.5.1. For any t ∈ T̄ , u∗h(t, ·) is (Lc
ℓ + Lc

f + Lc
g)-Lipschitz continuous. For any t ∈ T ,

u∗h(t+ 1/2, .) is also (Lc
ℓ + Lc

f + Lc
g)-Lipschitz continuous. Moreover, ∥v∗h∥∞ ≤ M and

HM [∇hu
∗
h(·+ 1/2, ·)](t, x) = Hc[∇hu

∗
h(·+ 1/2, ·)](t, x)

HM
p [∇hu

∗
h(·+ 1/2, ·)](t, x) = Hc

p[∇hu
∗
h(·+ 1/2, ·)](t, x).
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Proof. It can be proved, with similar ideas to those of the proof of Lemma 4.4.3, that u∗(t, ·)
is (Lc

ℓ + Lc
f + Lc

g)-Lipschitz continuous, for any t ∈ [0, 1]. The first claim of the lemma follows

immediately. The other claims can be shown with the same arguments as those of the proof of

Lemma 4.4.3.

Below we state (without proof) elementary consistency estimates, all directly deduced from

Assumption B:

u∗(t+∆t,x)−u∗(t,x)
∆t − ∂u∗(t,x)

∂t = O(∆tr/2), m∗(t+∆t,x)−m∗(t,x)
∆t − ∂m∗(t,x)

∂t = O(∆tr/2),

∇hu
∗(t, x)−∇u∗(t, x) = O(h1+r), divh(m

∗v∗)(t, x)− div(m∗v∗)(t, x) = O(hr),

∆hu
∗(t, x)−∆u∗(t, x) = O(hr), ∆hm

∗(t, x)−∆m∗(t, x) = O(hr).

(4.5.2)

We also observe that the discrete differential operators commute with integrals. For example,

∆h(Ih(m∗))(t, x) =
1

h2

d∑
i=1

∫
Bh(x)

(
m∗(t, y + hei) +m∗(t, y − hei)− 2m∗(t, y)

)
dy

=

∫
Bh(x)

∆hm
∗(t, y)dy = Ih(∆hm

∗)(t, x).

(4.5.3)

In the following three lemmas, we investigate the consistency errors associated with the coupling

cost, the Hamiltonian, and the divergence term of the Fokker-Planck equation.

Lemma 4.5.2. For the global cost term, there holds: for all (t, x) ∈ T × S,

f
(
t, x,m∗

h(t)
)
− f c

(
(t+ 1)∆t, x,m∗((t+ 1)∆t)

)
= O(h). (4.5.4)

Proof. Since m∗ is Lipschitz continuous in time, uniformly in x, we have that

∥m∗((t+ 1)∆t)−m∗(t∆t)∥L2 = O(∆t).

Then the Lipschitz continuity of f c with respect to t and m implies that

f c
(
(t+ 1)∆t, x,m∗((t+ 1)∆t)

)
− f c

(
t∆t, x,m∗(t∆t)

)
= O(∆t).

Using the definition of f (provided in (4.2.10)) and the Lipschitz continuity of f c, we have∣∣f(t, x,m∗
h(t))− f c(t∆t, x,m∗(t∆t))

∣∣
=
∣∣∣ 1
hd

∫
Bh(x)

(
f c(t∆t, y,RhIh(m∗(t∆t)))− f c(t∆t, x,m∗(t∆t))

)
dy
∣∣∣

≤ Lc
f

(√
dh+

∥∥RhIh(m∗(t∆t))−m∗(t∆t)
∥∥
L2

)
.
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Then we estimate
∥∥RhIh(m∗(t∆t))−m∗(t∆t)

∥∥
L2 as follows:

∥∥RhIh(m∗(t∆t))−m∗(t∆t)
∥∥
L2 =

(∑
x∈S

∫
y∈Bh(x)

∣∣∣Ih(m∗(t∆t))(x)

hd
−m∗(t∆t, y)

∣∣∣2dy)1/2
≤
(∑

x∈S

∫
y∈Bh(x)

∫
z∈Bh(x)

|m∗(t∆t, z)−m∗(t∆t, y)|2

hd
dzdy

)1/2
=
(∑

x∈S

∫
y∈Bh(x)

∫
z∈Bh(x)

O(h2)

hd
dzdy

)1/2
= O(h),

where the second line is a consequence of Jensen’s inequality. The lemma is proved.

Lemma 4.5.3. It holds: for all (t, x) ∈ T × S,

HM
(
t, x,∇hu

∗
h(t+ 1/2, x)

)
−Hc

(
(t+ 1)∆t, x,∇u∗((t+ 1)∆t, x)

)
= O(h1+r). (4.5.5)

Moreover,

v∗((t+ 1)∆t, x)− v∗h(t, x)

= HM
p

(
t, x,∇hu

∗
h(t+ 1/2, x)

)
−Hc

p

(
(t+ 1)∆t, x,∇u∗((t+ 1)∆t, x)

)
= O(h1+r).

(4.5.6)

Proof. By Lemma 4.5.1, we have ∥∇hu
∗
h(t + 1/2, x)∥ ≤ C and ∥∇u∗((t + 1)∆, x)∥ ≤ C, where

C =
√
d(Lc

ℓ + Lc
f + Lc

g). Let Ω denote the closed ball of radius Ω. Since Hc is uniformly Lipschitz

with respect to t and continuously differentiable with respect to p (see Lemma 4.2.7), we deduce that

Hc(·, x, ·) is Lipschitz continuous on [0, T ] × Ω, uniformly in x. Let LH denote the corresponding

modulus. Then,∣∣∣HM
(
t, x,∇hu

∗
h(t+ 1/2, x)

)
−Hc

(
(t+ 1)∆t, x,∇u∗((t+ 1)∆t, x)

)∣∣∣
≤ LH∥∇hu

∗
h(t+ 1/2, x)−∇u∗((t+ 1)∆t, x)∥+O(∆t).

It is easy to deduce from the regularity of u∗ (Assumption B) that ∆hu
∗
h(t+1, ·) is Hölderian with

exponent r. Then, using the fourth statement of Lemma 4.2.6 and the consistency estimate (4.5.2),

we obtain that

∇hu
∗
h(t+ 1/2, x) = ∇hu

∗
h(t+ 1, x) +O(∆thr−1) = ∇u∗((t+ 1)∆t, x) +O(∆thr−1 + h1+r).

The estimate (4.5.5) follows and estimate (4.5.6) can be proved similarly.

Lemma 4.5.4. For the divergence term, there holds: for all (t, x) ∈ T × S,

divh(v
∗
hm

∗
h(t, x))−

∫
Bh(x)

div(v∗m∗)((t+ 1)∆t, y)dy = O(hr+d) + divh(ϵ1); (4.5.7)

divh(v
∗
hm

∗
h(t, x))−

∫
Bh(x)

div(v∗m∗)(t∆t, y)dy = O(hr+d) + divh(ϵ2), (4.5.8)

where ϵ1 = O(h1+r+d), and ϵ2 = O(h2r+d).
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Proof. In order to prove (4.5.7), let us decompose v∗hm
∗
h as the sum of three terms, γ1, γ2, and γ3,

defined by

γ1(t, x) =
(
v∗h(t, x)− v∗((t+ 1)∆t, x)

)
m∗

h(t, x);

γ2(t, x) = v∗((t+ 1)∆t, x)
(
m∗

h(t, x)−m∗
h(t+ 1, x)

)
;

γ3(t, x) = v∗((t+ 1)∆t, x)m∗
h(t+ 1, x).

Step 1: Estimation of γ1. Since m∗
h(t, x) = O(hd), we directly obtain with Lemma 4.5.3 that

γ1(t, x) = O(h1+r+d).

Step 2: Estimation of γ2. By the definition of m∗
h, we have

m∗
h(t, x)−m∗

h(t+ 1, x) =

∫
Bh(x)

(
m∗(t∆t, y)−m∗((t+ 1)∆t, y)

)
dy = O(∆thd).

Then γ2 = O(h2+d), since v∗ is uniformly bounded.

Step 3: Estimation of divhγ3. Using the definitions of γ3 and m∗
h, we obtain that

divh(γ3)(t, x) =

∫
Bh(0)

divh

(
v∗((t+ 1)∆t, ·)m∗((t+ 1)∆t, ·+ y)

)
(x) dy

=

∫
Bh(0)

div
(
v∗((t+ 1)∆t, ·)m∗((t+ 1)∆t, ·+ y)

)
(x) dy +O(hr+d)

=

∫
Bh(0)

div
(
v∗((t+ 1)∆t, ·+ y)m∗((t+ 1)∆t, ·+ y)

)
(x) dy +O(hr+d)

=

∫
Bh(x)

div(v∗m∗)((t+ 1)∆t)(y) dy +O(hr+d).

The second equality follows from the fact that (v∗m∗)((t + 1)∆t, · + y) ∈ C1+r(Td). For the third

one, we use that v∗ and Dxv are Hölderian with exponent r. Then, the estimate (4.5.7) holds true.

Step 4: Proof of (4.5.8). Since v∗m∗(t∆t, ·) and v∗m∗((t + 1)∆t, ·) lie in C1+r(Td), we first have

that

div(v∗m∗)(t∆t, y)− divh(v
∗m∗)(t∆t, y) = O(hr);

div(v∗m∗((t+ 1)∆t, y))− divh(v
∗m∗)((t+ 1)∆t, y) = O(hr).

Since v∗m∗(·, y) ∈ Cr([0, 1]), we have

v∗m∗((t+ 1)∆t, y)− v∗m∗(t∆t, y) = O(∆tr) = O(h2r).

Then we have∫
Bh(x)

divh

(
v∗m∗((t+ 1)∆t, ·)− v∗m∗(t∆t, ·)(y)

)
dy

= divh

(∫
Bh(0)

(
v∗m∗((t+ 1)∆t, ·+ y)− v∗m∗(t∆t, ·+ y)

)
dy
)
(x).

The right-hand side is a discrete divergence of a term of order O(h2r+d). The estimate (4.5.8)

follows.
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We are ready to derive a complete consistency estimate for the triplet (u∗h, v
∗
h,m

∗
h) defined at

the beginning of the section.

Lemma 4.5.5 (Consistency error). The triplet (u∗h, v
∗
h,m

∗
h) is a solution to the perturbed discrete

mean field game (PDMFG) with perturbation terms η and δ satisfying

η = O(∆thr), B1δ = O(∆thr+d) + ∆tdivh(ϵ3), where ϵ3 = O(h2r+d).

Proof. Step 1. The perturbation term η of the dynamic programming equation is defined by

−
u∗h(t+ 1, x)− u∗h(t, x)

∆t
−σ∆hu

∗
h(t+1/2, x)+HM [∇hu

∗
h(·+1/2, ·)](t, x) = f(t, x,m∗

h(t))+
η(t, x)

∆t
.

The continuous HJB equation, satisfied by u∗, reads at time (t+ 1)∆t as follows:

−∂u∗((t+ 1)∆t, x)

∂t
−σ∆u∗((t+1)∆t, x)+Hc[∇u∗]((t+1)∆t, x) = f c

(
(t+1)∆t, x,m∗((t+1)∆t)

)
.

Then η can be put in the form η = ∆t(r1 + r2 + r3 + r4), where

r1(t, x) =
∂u∗((t+ 1)∆t, x)

∂t
−

u∗h(t+ 1, x)− u∗h(t, x)

∆t
;

r2(t, x) = σ
(
∆u∗((t+ 1)∆t, x)−∆hu

∗
h(t+ 1/2, x)

)
;

r3(t, x) = HM [∇hu
∗
h(·+ 1/2, ·)](t, x)−Hc[∇u∗]((t+ 1)∆t, x);

r4(t, x) = f c
(
(t+ 1)∆t, x,m∗((t+ 1)∆t)

)
− f(t, x,m∗

h(t)).

By (4.5.2), we have r1 = O(∆tr/2) = O(hr). Since u∗((t + 1)∆t, ·) ∈ C2+r(Td), it follows that

∆hu
∗
h(t + 1, ·) is r-Hölder continuous. Using the fourth statement of Lemma 4.2.6 and (4.5.2), we

obtain that

∆hu
∗
h(t+ 1/2, x) = ∆hu

∗
h(t+ 1, x) +O(∆thr−2) = ∆u∗((t+ 1)∆t, x) +O(∆thr−2 + hr).

Thus r2 = O(hr). Lemmas 4.5.2 and Lemma 4.5.3 yield r3 = O(h1+r) and r4 = O(h). It follows

that η(t, x) = O(∆thr).

Step 2. For the estimation of the perturbation term of the discrete Fokker-Planck equation, we

first show that m∗
h is the solution to

m∗
h(t+ 1, x)−m∗

h(t, x)

∆t
− σθ∆hm

∗
h(t+ 1, x)− (1− θ)σ∆hm

∗
h(t, x) + divh(v

∗
hm

∗
h(t, x)) =

δ̄(t, x)

∆t
,

(4.5.9)

for some error term δ̄. It directly follows from (4.5.9) that m∗
h is the solution to the perturbed

Fokker-Planck equation in (PDMFG) with δ = B−1
1 δ̄, i.e. B1δ = δ̄. Thus it only remains to

calculate and to estimate δ̄. The Fokker-Planck equation, satisfied by m∗, writes as follows at

times t∆t and (t+ 1)∆t:

∂m∗(t∆t, x)

∂t
− σ∆m∗(t∆t, x) + div(v∗m∗(t∆t, x)) = 0;

∂m∗((t+ 1)∆t, x)

∂t
− σ∆m∗((t+ 1)∆t, x) + div(v∗m∗((t+ 1)∆t, x)) = 0.
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Let us integrate over Bh(x) the convex combination of the last two equations:

(1− θ)

∫
y∈Bh(x)

∂m∗(t∆t, y)

∂t
− σ∆m∗(t∆t, y) + div(v∗m∗(t∆t, y))dy

+ θ

∫
y∈Bh(x)

∂m∗((t+ 1)∆t, y)

∂t
− σ∆m∗((t+ 1)∆t, y) + div(v∗m∗((t+ 1)∆t, y))dy = 0.

Then δ̄ = ∆t(r̄1 + r̄2 + r̄3 + r̃1 + r̃2 + r̃3), where

r̄1(t, x) = θ
(m∗

h(t+ 1, x)−m∗
h(t, x)

∆t
−
∫
y∈Bh(x)

∂m∗((t+ 1)∆t, y)

∂t
dy
)
;

r̄2(t, x) = σθ
(∫

y∈Bh(x)
∆m∗((t+ 1)∆t, y)dy −∆hm

∗
h(t+ 1, x)

)
;

r̄3(t, x) = θ
(
divh(v

∗
hm

∗
h(t, x))−

∫
y∈Bh(x)

div(v∗m∗((t+ 1)∆t, y))dy
)
;

r̃1(t, x) = (1− θ)
(m∗

h(t+ 1, x)−m∗
h(t, x)

∆t
−
∫
y∈Bh(x)

∂m∗(t∆t, y)

∂t
dy
)
;

r̃2(t, x) = σ(1− θ)
(∫

y∈Bh(x)
∆m∗(t∆t, y)dy −∆hm

∗
h(t, x)

)
;

r̃3(t, x) = (1− θ)
(
divh(v

∗
hm

∗
h(t, x))−

∫
y∈Bh(x)

div(v∗m∗(t∆t, y))dy
)
.

Using the basic consistency estimates in (4.5.2) and the commutation property shown in (4.5.3), we

have r̄1 = O(∆tr/2hd) = O(hr+d), r̄2 = O(hr+d), r̃1 = O(∆tr/2hd) = O(hr+d), and r̃2 = O(hr+d).

Lemma 4.5.4 shows that r̄3 = O(hr+d) + θdivhϵ1 and r̃3 = O(hr+d) + (1 − θ)divhϵ2. Taking

ϵ3 = θϵ1 + (1− θ)ϵ2, the conclusion follows.

4.5.2 Proof of Theorem 4.2.10

All constants in the proof are independent of ∆t and h. The existence and uniqueness of the solution

(uh, vh,mh) to the theta-scheme was established in Theorem 4.4.4. The triplet (uh, vh,mh) is also

the unique solution to (DMFG) with control bound M . We proved in Lemma 4.5.5 that (u∗h, v
∗
h,m

∗
h)

is a solution to (PDMFG) with perturbation terms η and δ estimated as follows:

η = O(∆thr), B1δ = O(∆thr+d) + ∆tdivh(ϵ3), where ϵ3 = O(h2r+d).

Step 1. Using similar arguments to the ones of the proof of Theorem 4.3.6 (see in particular

estimate (4.6.6)), we easily obtain that

∥u∗h − uh∥∞,∞ ≤ Lc
f

∥m∗
h −mh∥∞,2

hd/2
+ ∥η∥1,∞. (4.5.10)

Step 2. Next we apply the fundamental inequality (Proposition 4.3.7) to (uh, vh,mh) and (u∗h, v
∗
h,m

∗
h).

We obtain

∆tα

2

∥∥∥v∗h − vh∥2(m∗
h +mh)

∥∥
1,1

≤
∑
t∈T

∑
x∈S

(
(u∗h − uh)(t+ 1, x)δ(t, x) + (mh −m∗

h)(t, x)η(t, x)
)
.

(4.5.11)
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Let us bound the right-hand side of the obtained inequality. Using the symmetry of B1 and the

convention (4.4.2), we first obtain that∑
t∈T

∑
x∈S

(u∗h − uh)(t+ 1, x)δ(t, x)=
∑
t∈T

∆t
〈
B−1

1 (u∗h − uh)(t+ 1, ·), B1δ(t, ·)
〉

=
∑
t∈T

∆t ⟨(u∗h − uh)(t+ 1/2, ·), B1δ(t, ·)⟩

It follows that there exist two constants C0 and C1 such that∑
t∈T

∑
x∈S

(u∗h − uh)(t+ 1, x)δ(t, x)

≤
∑
t∈T

∑
x∈S

(
∆t(u∗h − uh)(t+ 1/2, x)divh(ϵ3(t, x))

)
+ ∥u∗h − uh∥∞,∞∥B1δ −∆tdivh(ϵ3)∥1,1

≤
∑
t∈T

∑
x∈S

(
−∆t

〈
∇h(u

∗
h − uh)(t+ 1/2, x), ϵ3(t, x)

〉)
+ C0

(
Lc
f

∥m∗
h −mh∥∞,2

hd/2
+ ∥η∥1,∞

)
hr

≤ C1

(
h2r + ∥m∗

h −mh∥∞,2h
r−d/2

)
.

The first inequality is a consequence of Hölder’s inequality and the second one derives from the

discrete integration by parts formula combined with inequality (4.5.10). The third one follows from

the Lipschitz continuity of u∗h(t+ 1/2, ·) and uh(t+ 1/2, ·), which was proved in Lemmas 4.4.3 and

4.5.1.

By Hölder’s inequality, there also exists a constant C2 such that∑
t∈T

∑
x∈S

(mh −m∗
h)(t, x)η(t, x) ≤ ∥m∗

h −mh∥∞,2∥η∥1,2 ≤ C2∥m∗
h −mh∥∞,2h

r−d/2.

Then, there exists a constant C3 such that

ϵ ≤ C3

(
h2r + ∥m∗

h −mh∥∞,2h
r−d/2

)
, where: ϵ = ∆t

∥∥∥v∗h − vh∥2m∗
h

∥∥
1,1

. (4.5.12)

Step 3. We next find an upper bound of ∥m∗
h − mh∥∞,2 involving ϵ, using the energy estimate

established in Proposition 4.4.5. Let µ = m∗
h−mh. Then µ satisfies the perturbed discrete Fokker-

Planck equation defined in (4.4.6):
(Id− θσ∆t∆h)µ(t+ 1) =

(
Id + (1− θ)σ∆t∆h

)
µ(t)−∆t divh

(
vh(t)µ(t)

)
−∆t divh

(
δv(t)

)
+∆t δ′(t),

µ(0) = 0,

where

δv(t, x) = (v∗h − vh)m
∗
h(t, x)− ϵ3(t, x) and δ′ = O(hr+d).

From Theorem 4.4.4 we know that ∥vh∥∞,∞ ≤ M . Thus, the energy inequality (4.4.7) implies that

there exists a constant C4 such that

max
t∈T̃

∥∥µ(t)∥∥2
2
≤ C4

∑
τ∈T

∆t
(∥∥δv(τ)∥∥22 + ∥∥δ′(τ)∥∥22) .
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Applying inequality (a+ b)2 ≤ 2a2 + 2b2 to ∥δv(τ)∥22, there exists a constant C5 such that∥∥δv(τ)∥∥22 ≤ 2
∥∥(v∗h − vh)m

∗
h(τ)

∥∥2
2
+ 2
∥∥ϵ3(τ)∥∥22 ≤ 2

∥∥(v∗h − vh)m
∗
h(τ)

∥∥2
2
+ C5h

4r+d,∥∥δ′(τ)∥∥2
2
≤ C5h

2r+d.

Since ∥m∗
h∥∞,∞ = O(hd), there exists a constant C6 such that∑

τ∈T
∆t
(∥∥δv(τ)∥∥22 + ∥∥δ′(τ)∥∥22) ≤ C6h

d
(
ϵ+ h2r

)
.

Therefore, for some constant C7,

∥m∗
h −mh∥2∞,2 = ∥µ∥2∞,2 ≤ C7h

d
(
ϵ+ h2r

)
. (4.5.13)

Step 4. Let us combine inequality (4.5.12) with (4.5.13). We obtain that

∥m∗
h −mh∥2∞,2 ≤ C7(C3 + 1)h2r+d + C7C3∥m∗

h −mh∥∞,2h
r+d/2

≤ C7(C3 + 1)h2r+d +
∥m∗

h −mh∥2∞,2

2
+

C2
7C

2
3

2
h2r+d.

Therefore, for some constant C8,

∥m∗
h −mh∥∞,2 ≤ C8h

r+d/2. (4.5.14)

Applying Hölder’s inequality to (4.5.14) and using (4.5.10), we obtain the existence of a constant

C9 such that

∥uh − u∗h∥∞,∞ + ∥mh −m∗
h∥∞,1 ≤ C9h

r.

The conclusion follows.

4.6 Appendix

4.6.1 Technical lemmas and proofs

Proof of Lemma 4.2.4. We prove (4.2.4):

−
∑
x∈S

µ(x)divhω(x) = −
∑
x∈S

d∑
i=1

µ(x)
ωi(x+ hei)− ωi(x− hei)

2h

= −
∑
x∈S

d∑
i=1

ωi(x)
µ(x− hei)− µ(x+ hei)

2h
=
∑
x∈S

⟨∇hµ(x), ω(x)⟩ .
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We prove (4.2.5):

−
∑
x∈S

ν(x)∆hµ(x) = −
∑
x∈S

∑
y∈S

ν(x)∆h(x, y)µ(y)

=
1

h2

∑
x∈S

ν(x)

d∑
i=1

(
2µ(x)− (µ(x+ hei) + µ(x− hei))

)
=

1

h2

d∑
i=1

(∑
x∈S

µ(x+ hei)
(
ν(x+ hei)− ν(x)

)
−
∑
x∈S

µ(x− hei)
(
ν(x)− ν(x− hei)

))
=
∑
x∈S

〈
∇+

h ν(x),∇
+
h µ(x)

〉
.

The lemma is proved.

Proof of Lemma 4.2.5. Applying the inequality (a+ b)2 ≤ 2a2 + 2b2, we obtain

∥∇hµ∥22 =
1

4h2

d∑
i=1

∑
x∈S

(
µ(x+ hei)− µ(x− hei)

)2
≤ 1

2h2

d∑
i=1

∑
x∈S

(
µ(x+ hei)− µ(x)

)2
+
(
µ(x)− µ(x− hei)

)2
= ∥∇+

h µ∥
2
2.

Inequality (4.2.6) follows.

Proof of Lemma 4.2.6. Let r = c∆t/h2. Consider the mapping SX(µ) : R(S) → R(S), defined by

SX(µ)(x) =
1

1 + 2dr

(
r

d∑
j=1

µ(x+ hej) + r

d∑
j=1

µ(x− hej) +X(x)

)
. (4.6.1)

Then Y is a solution to (4.2.7) if and only if it is a fixed point of SX . For any µ1 and µ2 in R(S)
and for any x ∈ S,∣∣∣SX(µ1)(x)− SX(µ2)(x)

∣∣∣ = 1

1 + 2dr

∣∣∣∣∣r
d∑

j=1

(µ1 − µ2)(x+ hej) + r

d∑
j=1

(µ1 − µ2)(x− hej)

∣∣∣∣∣
≤ 2dr

1 + 2dr
∥µ1 − µ2∥∞.

(4.6.2)

Therefore, SX is a contraction for the ∥ · ∥∞ norm. As a consequence, it has a unique fixed point

Y , which is then the unique solution to (4.2.7). Point (1) is proved.

Let us prove point (2). Assume that X ≥ 0. Since SX is a contraction, we have that Y =

limn→∞ SnX(µ) for any µ ∈ R(S). In particular, taking µ = X,

Y = lim
n→∞

SnX(X).

It is easy to verify that for any µ ∈ R(S), if µ ≥ 0, then SX(µ) ≥ 0. Therefore, we deduce that

SnX(X) ≥ 0 for any n by induction, and therefore Y ≥ 0. If we assume that X ∈ P(S), then for

any µ ∈ P(S), we can deduce that SX(µ) ∈ P(S). This yields that Y ∈ P(S).
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Point (3) is proved similarly, assuming that X is L-Lipschitz, observing that if µ is L-Lipschitz

continuous, then SX(µ) is L-Lipschitz continuous.

Let us prove the last statement. Taking any i ∈ {1, 2, . . . , d}, we define ω̄, ω ∈ R(S) as follows:

ω̄(x) = (∇hY )i(x), ω(x) = (∇hX)i(x), ∀x ∈ S.

Then ω̄ is the fixed point of Sω (replace X by ω in (4.6.1)). Let γ = 2dr/(1 + 2dr). Using

ω̄ = limn→∞ Snω(ω), we deduce from (4.6.2) that

∥ω̄ − ω∥∞ ≤
∞∑
k=0

∥Sk+1
ω (ω)− Skω(ω)∥∞ ≤

∞∑
k=0

γk∥Sω(ω)− ω∥∞ =
1

1− γ
∥Sω(ω)− ω∥∞.

It further follows that

∥ω̄ − ω∥∞ ≤ ∆t

1− γ

c

1 + 2dr

∥∥∆hω
∥∥
∞

≤ ∆t

1− γ

c

1 + 2dr
max
x∈S

∣∣∣∣∣∆hX(x+ hei)−∆hX(x− hei)

2h

∣∣∣∣∣ ≤ 2α−1cL′∆thα−1,

where the last inequality is a consequence of the α-Hölder continuity of ∆hX. Finally, let ω̄+
i (x) =

(∇+
h Y )i(x) and let ω+

i (x) = (∇+
hX)i(x). By the same argument, we have that ∥ω̄+

i − ω+
i ∥∞ ≤

2α−1cL′(∆thα−1). Then, for any x ∈ S, it follows from the triangle inequality that

∣∣∣∆hY (x)−∆hX(x)
∣∣∣ = ∣∣∣ d∑

i=1

ω̄+
i (x)− ω̄+

i (x− hei)

h
−

d∑
i=1

ω+
i (x)− ω+

i (x− hei)

h

∣∣∣ = 2αdcL′(∆thα−2).

The lemma is proved.

Proof of Lemma 4.2.7. The differentiability of Hc with respect to p and the Lipschitz continuity of

Hc
p are proved in [HUL93, Thm. 4.2.1, page 82]. For any t1, t2 ∈ [0, 1], we have

Hc(t1, x, p)−Hc(t2, x, p) = sup
v1∈Rd

(
⟨−p, v1⟩ − ℓc(t1, x, v1)

)
− sup

v2∈Rd

(
⟨−p, v2⟩ − ℓc(t1, x, v2)

)
≤ sup

v∈Rd

(
ℓc(t2, x, v)− ℓc(t1, x, v)

)
≤ Lc

ℓ |t1 − t2|.

Using the relation of Fenchel, −Hc
p(t, x, p) = argmaxv⟨−p, v⟩ − ℓc(t, x, v), and the continuous dif-

ferentiability of ℓc , we have the first order optimality condition

p+ ℓcv

(
t, x,−Hc

p(t, x, p)
)
= 0.

Fix x ∈ Td and p ∈ Rd. Take any t1 and t2 in [0, 1]. By the above equation,

ℓcv

(
t1, x,−Hc

p(t1, x, p)
)
= ℓcv

(
t2, x,−Hc

p(t2, x, p)
)
.
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The strong convexity of ℓc implies that

α
∥∥Hc

p(t1, x, p)−Hc
p(t2, x, p)

∥∥2
≤
〈
ℓcv
(
t1, x,−Hc

p(t1, x, p)
)
− ℓcv

(
t1, x,−Hc

p(t2, x, p)
)
, Hc

p(t2, x, p)−Hc
p(t1, x, p)

〉
=
〈
ℓcv
(
t2, x,−Hc

p(t2, x, p)
)
− ℓcv

(
t1, x,−Hc

p(t2, x, p)
)
, Hc

p(t2, x, p)−Hc
p(t1, x, p)

〉
≤ Lc

ℓ

∣∣t1 − t2
∣∣∥∥Hc

p(t1, x, p)−Hc
p(t2, x, p)

∥∥,
where the last inequality is a consequence of the Lipschitz continuity of ℓcv with respect to t. The

lemma is proved.

Proof of Lemma 4.3.2. The first three claims can be shown with the same arguments as those of

the proof of Lemma 4.2.7. Since HD
p is 1

α -Lipschitz continuous with respect to p, it is enough to

prove (4.3.4) for p = 0. Let v(t, x) = −HD
p (t, x, 0). Since v(t, x) is optimal in (4.3.3), with p = 0, we

deduce that v(t, x) minimizes ℓ(t, x, ·) over the closed ball of radius D. Using the strong convexity

of ℓ, it follows that

ℓ(t, x, 0) + ⟨p0, v(t, x)⟩+
α

2
∥v(t, x, 0)∥2 ≤ ℓ(t, x, v(t, x)) ≤ ℓ(t, x, 0),

from which we deduce that ∥v(t, x)∥ ≤ 2
α∥p0∥, by Cauchy-Schwarz inequality.

Proof of Lemma 4.3.4. By Fenchel’s relation [HUL93, Cor. 1.4.4], we know that

HD(t, x, p̄) = −⟨p̄, v̄⟩ − ℓD(t, x, v̄) and − p̄ ∈ ∂vℓ
D(t, x, v̄). (4.6.3)

Using the strong convexity of ℓD, we obtain that

ℓD(t, x, v) ≥ ℓD(t, x, v̄)− ⟨p̄, v − v̄⟩+ α

2
∥v − v̄∥2. (4.6.4)

Summing up (4.6.3) and (4.6.4), we obtain the following inequality:

HD(t, x, p̄) + ℓD(t, x, v) + ⟨p̄, v⟩ ≥ α

2

∥∥v − v̄
∥∥2. (4.6.5)

Multiplying (4.6.5) by m̄, multiplying (4.6.3) by m, and taking the difference, we obtain the desired

inequality.

Proof of Theorem 4.3.6, second part. We prove here the continuity of the mapping ϕ. Since ϕ is

the composition of (4.3.7), (4.3.8) and (4.3.6), it suffices to show that these three mappings are

continuous.

Step 1: Continuity of HJB. Take any µ1 and µ2 in Pm0
(T̃ , S). Let u1 = HJB(µ1) and u2 =

HJB(µ2). By Assumption 4.2, we have that for any x ∈ S,

|(u1 − u2)(t, x)| ≤ sup
∥ω∥≤D

∣∣ℓ̃µ1
(t, x, ω)− ℓ̃µ2

(t, x, ω)
∣∣∆t+

∣∣∣∑
y∈S

π(t, x, y, ω)
(
u1(t+ 1, y)− u2(t+ 1, y)

)∣∣∣
≤ L′

f∥(µ1 − µ2)(t, ·)∥2∆t+ ∥(u1 − u2)(t+ 1, ·)∥∞,

where the last inequality follows from the Lipschitz continuity of f and Assumption 4.2. Since

µ1(t, ·), µ2(t, ·) ∈ P(S) for any t ∈ T̃ , we have that µ1(t, s), µ2(t, s) ∈ [0, 1] for any (t, s) ∈ T̃ × S,
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which implies that ∥µ1 − µ2∥∞,∞ ≤ 1. Combining this with the fact that ∥(u2 − u1)(T, ·)∥∞ = 0,

it follows that

∥u1 − u2∥∞,∞ ≤ L′
f∆t

∑
t∈T

∥(µ1 − µ2)(t, ·)∥2 ≤ L′
f∥µ1 − µ2∥∞,2 ≤ L′

f∥µ1 − µ2∥1/2∞,1. (4.6.6)

Step 2: Continuity of V. Let v1 = V(u1) and v2 = V(u2). By the equivalent form of (4.3.8), we

have v1(t, x) = −Hp[p1,1](t, x) and v2(t, x) = −Hp[p1,2](t, x), where

p1,1(t, x) =
∑
s∈S

π1(t, x, s)u1(t+ 1, s) and p1,2(t, x) =
∑
s∈S

π1(t, x, s)u2(t+ 1, s).

By the (1/α)-Lipschitz continuity of Hp(t, x, p) on p, we have for any (t, x) ∈ T × S

∥v1(t, x)− v2(t, x)∥ ≤ 1

α
∥p1,1(t, x)− p1,2(t, x)∥ ≤ 1

α
∥π1∥∞,∞,1∥u1 − u2∥∞,∞,

where ∥π1∥∞,∞,1 = maxt,x
∑

s ∥π1(t, x, s)∥.
Step 3: Continuity of FP. Let m1 = FP(v1) and m2 = FP(v2). Then,{

(m1 −m2)(t+ 1, y) =
∑

x∈S π[v1](t, x, y)(m1 −m2)(t, x) + δv1,v2,m2
(t, y),

(m1 −m2)(0, y) = 0,

where δv1,v2,m2
(t, y) = ∆t

∑
x∈S π1(t, x, y)(v1 − v2)(t, x)m2(t, x). Since π[v1] is a transition process,

we have

∥m1(t+ 1, ·)−m2(t+ 1, ·)∥1 ≤ ∥m1(t, ·)−m2(t, ·)∥1 + ∥δv1,v2,m2
(t, ·)∥1.

The second term ∥δv1,v2,m2
(t, ·)∥1 is estimated with Hölder’s inequality:

∥δv1,v2,m2
(t, ·)∥1 = ∆t

∣∣∣ ∑
y∈S,x∈S

π1(t, x, y)(v1 − v2)(t, x)m2(t, x)
∣∣∣

≤ ∆t∥m2(t, ·)∥1∥π1∥∞,∞,1∥v1 − v2∥∞,∞ = ∆t∥π1∥∞,∞,1∥v1 − v2∥∞,∞,

where the last equality is a consequence of m2 ∈ P(T̃ , S). Therefore, we have

∥m1 −m2∥∞,1 ≤ ∥π1∥∞,∞,1∥v1 − v2∥∞,∞.

The continuity of ϕ follows.

4.6.2 On the regularity of the continuous MFG system

Recall that Q = [0, 1] × Td. For any R > 0, let BR := Q × B(0, R), where B(0, R) is the closed

ball in Rd with center 0 and radius R. Let us refer the reader fto [Kry08, pages 8 and 51] for

the definitions of the Sobolev space W k
p (Q) and the anisotropic Sobolev space W 1,2

p (Q). For any

δ ∈ (0, 1), we define the local Hölder space

Cδ/2,δ,δ
loc (Q× Rd) =

{
w ∈ C(Q× Rd)

∣∣∣ w |BR
∈ Cδ/2,δ,δ(BR), for any R > 0

}
,

where w |BR
is the restriction of w in BR and where Cδ/2,δ,δ(BR) denotes the sets of functions from

BR to R which are Hölder continuous with respect to their first (resp. second and third) variable

with exponent δ/2 (resp. δ).
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Assumption C. There exist C > 0 and 0 < r̄ < 1 such that for all (t, x) ∈ Q, for all v ∈ Rd and

for all m ∈ L∞(Td) satisfying m ≥ 0 and
∫
Td m(x)dx = 1, it holds:

• ℓc(t, x, v) ≤ C∥v∥2 + C and |f c(t, x,m)| ≤ C;

• ℓc and ℓcv are continuously differentiable, and ℓcvx, ℓ
c
vv ∈ C r̄/2,r̄,r̄

loc (Q× Rd);

• mc
0 ∈ C2+r̄(Td), and gc ∈ C3(Td).

Lemma 4.6.1. Let Assumptions A and C hold true. Then the Hamiltonian Hc is continuously

differentiable and Hc
p is also continuously differentiable. Moreover, Hc

px ∈ C r̄/2,r̄,r̄
loc (Q × Rd) and

Hc
pp ∈ C r̄/2,r̄,r̄

loc (Q× Rd).

Proof. Fix any (t0, x0, p0) ∈ (0, 1) × Td × Rd. By the strong convexity of ℓc w.r.t. v, there exists

a unique v0 ∈ Rd such that Hc(t0, x0, p0) = −⟨p0, v0⟩ − ℓc(t0, x0, v0). The first order optimality

condition writes

−p0 − ℓcv(t0, x0, v0) = 0.

Since ℓc is strongly convex, we have that ℓcvv(t0, x0, v0) is invertible. By the implicit function

theorem, there exist a neighborhood A of (t0, x0, p0) and a function v(t, x, p) from A to Rd such

that for all (t, x, p) ∈ A,

−p− ℓcv(t, x, v(t, x, p)) = 0. (4.6.7)

Since ℓcv is continuously differentiable, v(t, x, p) is continuously differentiable. Moreover,

vx(t, x, p) =
(
ℓcvv(t, x, v(t, x, p))

)−1
ℓcvx(t, x, v(t, x, p)),

vp(t, x, p) =
(
ℓcvv(t, x, v(t, x, p))

)−1
.

By the regularity of ℓcvv and ℓcvx, we deduce that vx, vp ∈ C r̄/2,r̄,r̄(A). The convexity of ℓc and the

first order optimality condition (4.6.7) imply that

Hc(t, x, p) = −⟨p, v(t, x, p)⟩ − ℓc(t, x, v(t, x, p)), ∀(t, x, p) ∈ A.

We deduce that Hc |A∈ C1(A) by the regularity of v and ℓc. Differentiating the above equation

with respect to p and using (4.6.7), we obtain that Hc
p(t, x, p) = −v(t, x, p), for all (t, x, p) ∈ A.

Then, deriving Hc
p with respect to x and p, we obtain

Hc
px(t, x, p) = −vx(t, x, p), Hc

pp(t, x, p) = −vp(t, x, p), ∀(t, x, p) ∈ A.

The conclusion follows from the regularity of v, vx and vp.

Theorem 4.6.2. Under Assumptions A and C, the continuous system (MFG) has a unique solution

(u∗, v∗,m∗) satisfying Assumption B for any r < r̄.

Proof. Fixing any 0 < r < r̄, we will prove that Assumption B is satisfied for r. Under Assumptions

A and C, according to [BHP21, Thm. 1], there exists r′ ∈ (0, r̄] such that the continuous system

(MFG) has a unique classical solution (u∗, v∗,m∗) with

u∗, m∗ ∈ C1+r′/2,2+r′(Q), v∗ ∈ Cr′(Q), and ∇v∗ ∈ Cr′(Q,Rd×d). (4.6.8)
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Step 1: Regularity of ∇u∗. By (4.6.8), we have that u∗ ∈ C1(Q). This implies that ∇u∗ ∈ L∞(Q).

Let u∗xi
be the partial derivative of u∗ w.r.t. xi. Then, u

∗
xi

is a weak solution of the following linear

equation: {
−∂tw(t, x)− σ∆w(t, x) +Hc

p[∇u∗]∇w(t, x) = f̌0(t, x), (t, x) ∈ Q ,

w(1, x) = gxi
(x), x ∈ Td,

where

f̌0(t, x) = Dxi
f c(t, x,m∗(t))−Hc

xi
[∇u∗](t, x),

where Dxi
denotes the weak derivative w.r.t. xi. By the regularity of Hc

p, H
c, f c, and u∗, we deduce

that Hc
p[∇u∗] ∈ L∞(Q) and f̌0 ∈ L∞(Q). Moreover, the regularity of g implies that gxi

∈ W 2
∞(Td).

Then [BHP21, Thm. 4] shows that u∗xi
is the unique weak solution and u∗xi

∈ W 1,2
p (Q) ⊂ W 1

p (Q)

for any p > d+ 1. Morrey’s inequality [AF03, Lem. 4.28] implies that

u∗xi
∈ Cγ(Q), with γ = 1− d+ 1

p
.

Taking p = d+1
1−r/r̄ , we have that u∗xi

∈ Cr/r̄(Q). The same result follows for ∇u∗.

Step 2: Regularity of u∗. Let φ ∈ C∞(Rd) such that φ(x) = 1 for x ∈ B(0, 2
√
d) and φ(x) = 0 for

x /∈ Ω := B(0, 3
√
d). It is straightforward that B(0, 2

√
d) contains a neighborhood of Td. Let us

set Q′ = (0, 1)× Ω.

Since u∗ can be identified to a periodic function over Rd, we define ǔ = u∗φ. Then, ǔ is the

solution of the following equation:
−∂tǔ(t, x)− σ∆ǔ(t, x) = f̌1(t, x), (t, x) ∈ Q′ ,

ǔ(t, x) = 0, (t, x) ∈ (0, 1)× ∂Ω,

ǔ(1, x) = g(x)φ(x), x ∈ Ω,

where

f̌1(t, x) = φ(x)
(
f c(t, x,m∗(t))−Hc(t, x,∇u∗(t, x))

)
− 2σ⟨∇φ(x),∇u∗(t, x)⟩ − σu∗(t, x)∆φ(x).

By the regularity of f c and m∗, we deduce the following: For any (t1, x1), (t2, x2) ∈ Q′,

f c(t1, x1,m
∗(t1))− f c(t2, x2,m

∗(t2)) ≤ Lc
f (|t1 − t2|+ ∥x1 − x2∥) + Lc

f∥m∗(t1)−m∗(t2)∥L2

≤ Lc
f (|t1 − t2|+ ∥x1 − x2∥) + Lc

f∥m∗(t1)−m∗(t2)∥L∞

≤ C(|t1 − t2|r/2 + ∥x1 − x2∥r),

for some constant C. Using the regularity properties of u∗, ∇u∗ and Hc, we obtain that f̌1 ∈
Cr/2,r(Q′). The final condition lies in Cr(Ω) by Assumption C. The boundary conditions satisfying

the requirements in [LSU88, Thm. 5.2], we deduce that ǔ ∈ C1+r/2,2+r(Q̄′), where Q̄′ is the closure

of Q′. By the definition of φ, we have that u∗(t, x) = ǔ(t, x) for all (t, x) ∈ Q. The regularity of u∗

follows.
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Step 3: Regularity of v∗. By (MFG) (ii) and the regularity of Hc, we have

v∗(t, x) = −Hc
p(t, x,∇u∗(t, x));

∇v∗(t, x) = −Hc
px(t, x,∇u∗(t, x))−Hc

pp(t, x,∇u∗(t, x))Dxxu
∗(t, x).

Since Hc
p is continuously differentiable and ∇u∗ ∈ Cr/r̄(Q), we deduce that v∗ ∈ Cr/r̄(Q) ⊂ Cr(Q).

By a similar argument, from the regularity of Hc
px, and Hc

pp in Lemma 4.6.1 and the regularity of

∇u∗ and Dxxu
∗, we have ∇v∗ ∈ Cr/2,r(Q).

Step 4: Regularity of m∗. Since m∗ ∈ C1+r′/2,2+r′(Q) and Q is bounded, we have m∗ ∈ W 1,2
p (Q)

for any p > d+ 2. By [LSU88, Lem. 3.3], it holds that

m∗ ∈ Cγ/2,γ(Q) and ∇m∗ ∈ Cγ/2,γ(Q), with γ = 1− d+ 2

p
.

Taking p = d+2
1−r , it follows that m

∗ ∈ Cr/2,r(Q) and ∇m∗ ∈ Cr/2,r(Q).

Let us define m̌ = m∗φ. Then m̌ satisfies the following equation:
∂tm̌(t, x)− σ∆m̌(t, x) + ⟨v∗,∇m̌⟩(t, x) + div(v∗)m̌(t, x) = f̌2(t, x), (t, x) ∈ Q′ ,

m̌(t, x) = 0, (t, x) ∈ (0, 1)× ∂Ω,

m̌(0, x) = m0(x)φ(x), x ∈ Ω,

where

f̌2(t, x) = −2σ⟨∇φ(x),∇m∗(t, x)⟩ − σm∗(t, x)∆φ(x) + ⟨v∗(t, x),∇φ(x)⟩m∗(t, x).

From the regularity of v∗,m∗ and ∇m∗, we deduce that f̌2 ∈ Cr/2,r(Q′). Combining with the

regularity of v∗, ∇v∗ andm0φ, we deduce that m̌ ∈ C1+r/2,2+r(Q̄′) by [LSU88, Thm. 5.2]. Therefore,

m∗ ∈ C1+r/2,2+r(Q).

4.6.3 Construction of a numerical Hamiltonian

This section, as a complementary material to the rest of the article, is dedicated to the construction

of a numerical Hamiltonian satisfying the assumptions of [AP16], in a general framework (see

equation (4.6.11)). Our main assumption is the strong convexity of the running cost with respect

to the control variable.

Given a vector q ∈ R2d, we denote

†q = (q1, q3, . . . , q2d−1), q† = (q2, q4, . . . , q2d).

Following the terminology of [AP16], we call numerical Hamiltonian a functionH : [0, 1]×Td×R2d →
R satisfying the following conditions: For any (t, x) ∈ [0, 1]× Td,

(g1) [Monotonicity] H(t, x, ·) is nonincreasing w.r.t. †qi and nondecreasing w.r.t. q†i for all i =

1, 2, . . . , d;

(g2) [Consistency] For any q such that †q = q†, it holds H(t, x, q) = Hc(t, x, q†);
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(g3) [Regularity] H(t, x, ·) is continuously differentiable;

(g4) [Convexity] H(t, x, ·) is convex;

(g5) There exists positive constants c1, c2, c3 and c4, independent of (t, x), such that for any

q ∈ R2d,

⟨Hq(t, x, q), q⟩ − H(t, x, q) ≥ c1∥Hq(t, x, q)∥2 − c2; (4.6.9)

∥Hq(t, x, q)∥ ≤ c3∥q∥+ c4. (4.6.10)

Lemma 4.6.3. Consider a function H : [0, 1] × Td × R2d → R satisfying (g3)-(g4). Assume that

Hq is uniformly Lipschitz continuous w.r.t. q, H(t, x, 0) is bounded from above, and Hq(t, x, 0) is

uniformly bounded. Then H satisfies (g5).

Proof. Let L be the Lipschitz constant of Hq(t, x, ·). Applying inequality (4.1.2), we obtain that

1

2L
∥Hq(t, x, 0)−Hq(t, x, q)∥2 ≤ H(t, x, 0)−H(t, x, q) + ⟨Hq(t, x, q), q⟩.

Applying inequality ∥a− b∥2 ≥ ∥b∥2/2− ∥a∥2, we deduce that

⟨Hq(t, x, q), q⟩ − H(t, x, q) ≥ 1

4L
∥Hq(t, x, q)∥2 −

1

2L
∥Hq(t, x, 0)∥2 −H(t, x, 0).

SinceH(t, x, 0) is bounded from above and sinceHq(t, x, 0) is uniformly bounded, (4.6.9) is satisfied.

Inequality (4.6.10) is obvious by the uniform Lipschitz continuity of Hq.

Assume that the running cost ℓc(t, x, v) : [0, 1] × Td × Rd → R is uniformly αc-convex w.r.t. v

with some αc > 0. Then, ℓc can be decomposed as

ℓc(t, x, v) = ℓc0(t, x, v) +
αc

2
∥v∥2,

where ℓc0 is convex w.r.t. v. We propose the following definition for a numerical Hamiltonian:

H(t, x, q) = sup
v∈Rd, v≥0
u∈Rd, u≤0

(
− ⟨v, †q⟩ − ⟨u, q†⟩ − ℓc0(t, x, v + u)− αc

2

(
∥v∥2 + ∥u∥2

))
. (4.6.11)

Theorem 4.6.4. Assume that ℓc : [0, 1] × Td × Rd → R is αc-convex with respect to its third

variable, ℓc is bounded from below by some constant c, and for some v0 ∈ Rd, there exists a

constant C(v0) < +∞ such that for all (t, x) ∈ [0, 1] × Td, ℓc(t, x, v0) ≤ C(v0). Then the function

H defined by (4.6.11) is a numerical Hamiltonian, for the Hamiltonian Hc defined by (4.1.1).

Proof. The condition (g1) can be easily deduced from the nonnegativity and nonpositivity con-

straints for v and u in (4.6.11).

Step 1: Proof of (g2). Let us take any q ∈ R2d, such that †q = q†. Then, we deduce that

H(t, x, q) = sup
v≥0, u≤0

−⟨v + u, q†⟩ − ℓc0(t, x, v + u)− αc

2

(
∥v∥2 + ∥u∥2

)
.
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Since v ≥ 0 and u ≤ 0, we have that ∥v∥2 + ∥u∥2 ≥ ∥u+ v∥2. Then,

H(t, x, q) ≤ sup
v≥0, u≤0

−⟨v + u, q†⟩ − ℓc0(t, x, v + u)− αc

2
(∥v + u∥2) = Hc(t, x, q†).

Conversely, take v∗ = −Hc
p(t, x, q

†), v∗+ = {max{0, v∗i }}i=1,...d and v∗− = {min{0, v∗i }}i=1,...d. We

have that v∗+ ≥ 0, v∗− ≤ 0, v∗ = v∗+ + v∗− and ∥v∗∥2 = ∥v∗+∥2 + ∥v∗−∥2. Thus, by Fenchel’s relation,

it follows that

Hc(t, x, q†) = −⟨v∗+ + v∗−, q
†⟩ − ℓc0(t, x, v

∗
+ + v∗−)−

αc

2

(
∥v∗+∥2 + ∥v∗−∥2

)
≤ H(t, x, q).

Step 2: Proof of (g3)-(g4). Consider the function ℓ̄c : [0, 1]× Td × R2d → R defined by

ℓ̄c(t, x, w) = ℓc0(t, x,
†w + w†) +

αc

2
(∥†w∥2 + ∥w†∥2) + χ+(†w) + χ−(w†),

where χ+(x) = 0 (resp. χ−(x) = 0) if x ≥ 0 (resp. x ≤ 0) and infinity otherwise. It is obvious that

ℓ̄c is uniformly αc-convex w.r.t. w. The definition (4.6.11) implies that

H(t, x, q) = (ℓ̄c)∗(t, x,−q).

By [HUL93, Thm. 4.2.1], H is convex and continuously differentiable w.r.t. q and Hq is uniformly

1/αc-Lipschitz w.r.t. q.

Step 3: Proof of (g5). We apply Lemma 4.6.3 for the proof. Taking q = 0, by the consistency of

H, we have for any (t, x) ∈ [0, 1]× Td that

H(t, x, 0) = Hc(t, x, 0) = − inf
v∈Rd

(
ℓc0(t, x, v) +

αc

2
∥v∥2

)
≤ −c,

By Fenchel’s relation, it follows that

−Hq(t, x, 0) = argmin
v≥0,u≤0

(
ℓc0(t, x, v + u) +

αc

2
(∥v∥2 + ∥u∥2)

)
.

Let us set v∗(t, x) = argminv∈Rd ℓc(t, x, v). By a similar argument to the one of Step 1, we have

that †Hq(t, x, 0) = −v∗(t, x)+ and Hq(t, x, 0)
† = −v∗(t, x)−. In order to prove that Hq(t, x, 0) is

uniformly bounded, it suffices to show the boundedness of v∗(t, x). By the strong convexity and

boundedness assumptions of ℓc, we deduce that for any (t, x) ∈ [0, 1]× Td,

C(v0) ≥ ℓc(t, x, v0) ≥ ℓc(t, x, v∗(t, x)) +
αc

2
∥v∗(t, x)− v0∥2 ≥ c+

αc

2
∥v∗(t, x)− v0∥2.

This implies that ∥v∗∥∞ ≤ ∥v0∥+
√

2(C(v0)− c)/αc. The conclusion follows.
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Chapter 5

A mesh-independent method for
second-order potential mean field
games

5.1 Introduction

5.1.1 Context and main contributions

This article is concerned with the numerical resolution of second-order mean field games (MFGs).

These models describe the asymptotic behavior of Nash equilibria in stochastic differential games,

as the number of players goes to infinity. They were introduced independently in [LL07] and

[HMC06] and have applications in various domains, such as economics, biology, finance and social

networks, see [DTT17]. In this article, we consider the following standard second-order MFG on

the space Q := [0, 1]× Td,
(i) −∂tu− σ∆u+Hc (t, x,∇u(t, x)) = f c(t, x,m(t)) (t, x) ∈ Q,

(ii) v(t, x) = −Hc
p (t, x,∇u(t, x)) (t, x) ∈ Q,

(iii) ∂tm− σ∆m+ div(vm) = 0 (t, x) ∈ Q,

(iv) m(0, x) = mc
0(x), u(1, x) = gc(x) x ∈ Td,

(MFG)

where the Hamiltonian Hc is related to the Fenchel conjugate of a running cost ℓc : Q× Rd → R:

Hc(t, x, p) := sup
v∈Rd

⟨−p, v⟩ − ℓc(t, x, v).

The existence and uniqueness of the classical solution of (MFG) is proved in [LL07] under assump-

tions on the coupling function f c.

Several discretization schemes have been proposed and analyzed for the resolution of (MFG).

They consist of a backward discrete Hamilton-Jacobi-Bellman (HJB) equation and a forward dis-

crete Fokker-Planck (FP) equation: They preserve the nature of the problem as a coupled system

of two equations. An implicit finite difference scheme has been introduced in [ACD10] and conver-

gence results for this scheme have been obtained in [ACCD13] and [AP16]. Other schemes, based
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on semi-Lagrangian discretizations have been investigated in [CS14, CS15, HS19] for first-order and

(possibly) degenerate second-order MFGs. This work will focus on a scheme called theta-scheme,

recently introduced by the authors in [BLP22]. In short, this scheme involves a Crank-Nicolson

discretization of the diffusion term and an explicit discretization of the first-order non-linear term.

The resolution of the discretized coupled system is in general a difficult task. We restrict our

attention to the case of potential MFGs, for which optimization methods can be leveraged. The

system (MFG) is said to be potential (or variational) if there exists a function F c : [0, 1]×D → R
such that for any t ∈ [0, 1] and m1,m2 ∈ D (see the definition of D in (5.4.1)),

F c(t,m1)− F c(t,m2) =

∫ 1

0

∫
x∈Td

f c(t, x,m1 + s(m2 −m1))(m2(x)−m1(x))dxds. (5.1.1)

We further restrict our attention to the case of a convex potential function F c. In the presence of

such F c, the system (MFG) can be interpreted as the first-order optimality condition of an optimal

control problem driven by the FP equation,
inf
(m,v)

Jc(m, v) :=

∫
Q
ℓc(t, x, v)m(t, x)dtdx+

∫ 1

0
F c(t,m(t))dt+

∫
Td

gc(x)m(T, x)dx,

such that

{
∂tm− σ∆m+ div(vm) = 0, ∀(t, x) ∈ Q,

m(0, x) = mc
0(x), ∀x ∈ Td.

(OC)

Problem (OC) is equivalent to a convex optimal control problem, obtained through the classical

Benamou-Brenier transform [BCS17]. Then, some numerical algorithms can be applied to find

a solution of (OC), such as ADMM [BC15, And17], the Chambolle-Pock algorithm [AL20], the

fictitious play [HS19] and the generalized Frank-Wolfe (GFW) algorithm [LP22]. Some articles

propose to discretize the optimal control problem (OC), see for example [LST10, And17]. In this

context, it is very desirable that the potential structure of the continuous MFG is preserved at

the level of the discretized coupled system, so that one can apply in a direct fashion suitable

optimization methods to the discrete system. This is in particular the case for the implicit scheme

proposed in [ACCD13] and solved in [AL20] with the Chambolle-Pock algorithm. As we establish in

this article, the theta-scheme of [BLP22] also preserves the potential structure of the MFG system.

We focus in this article on the resolution of the discrete MFG system with the Generalized

Frank-Wolfe (GFW) algorithm see [BLM09]. This algorithm is an iterative method, consisting in

solving at each iteration a partially linearized version of the potential problem (OC). The linearized

problem to be solved is equivalent to a stochastic optimal control problem that can be solved by

dynamic programming. As we will explain more in detail, this allows to interpret the GFW method

as a best-response procedure. For a specific choice of stepsize, it coincides with the fictitious play

method of [CH17]. Others works have investigated the fictitious play method for MFGs: [PPL+20]

proves the convergence of the continuous method, in a discrete setting with common noise; [HS19]

proves a general result for fully discrete MFGs, which can be applied to discretized first-order

MFGs. The article [GPL+22] shows the connexion between fictitious play and the Frank-Wolfe

algorithm for potential discrete MFGs.

The general objective of the article is to show that the performance of the GFW algorithm is

not impacted by a refinement of the discretization grid. The main results of our article are two
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mesh-independence properties for the resolution of (MFG) with the theta-scheme and the GFW

algorithm. The terminology mesh-independence was coined in the article [ABPR86]. It is said

that an algorithm satisfy a mesh-independence property when approximately the same number

of iterations is required to satisfy a stopping criterion, when comparing an infinite-dimensional

problem and its discrete counterpart. In a more precise fashion, we will say that the GFW algorithm

has a mesh-independent sublinear rate of convergence if there exists a constant C > 0, independent

of the discretization parameters, such that

Jh(m
k
h, v

k
h)− J∗

h ≤ C

k
, ∀k ≥ 1.

In the above estimate, Jh denotes the discretized counterpart of J , J∗
h denotes the value of the

discretized optimal control problem, and (mk
h, v

k
h) denotes the candidate to optimality obtained at

iteration k. Similarly, we will say that the GFW algorithm has a mesh-independent linear rate of

convergence if there exist two constants C > 0 and δ ∈ (0, 1) such that

Jh(m
k
h, v

k
h)− J∗

h ≤ Cδk, ∀k ≥ 1.

We establish that the GFW algorithm has a mesh-independent sublinear (resp. a linear) rate

for two different choices of stepsize. Our analysis is close to the one performed in [LP22], in which

the sublinear and the linear convergence of the GFW algorithm is demonstrated for the continuous

model and for the same choices of stepsizes as in the present study. While the sublinear convergence

of the GFW method (in a general setting) is classical, the linear rate of convergence relies on recent

techniques from [KW22]. To the best of our knowledge, in the context of mean field games, the

mesh-independence property has never been established so far for any other method. Though it

seems a natural property, it may not hold in general. In particular, it might not hold for primal-dual

methods, whose application relies on a saddle-point formulation of the convex counterpart of (OC)

of the form, in which the Fokker-Planck equation is “dualized”. This saddle-point formulation

involves a linear operator, encoding the (discrete) Fokker-Planck equation (see for example [AL20,

Sec. 3.2]). As the discretization parameters decrease, the operator norm of these operators (for the

Euclidean norm) increases, which has an impact on the convergence properties of methods such as

the Chambolle-Pock algorithm. In contrast, the discrete Fokker-Planck equation remains satisfied

at each iteration of the GFW equation.

This article is organized as follows. In Section 5.2, we introduce some preliminary results and

notations. In Section 5.3, we introduce a general class of potential discrete MFGs, containing

the theta-scheme. We establish the sublinear and the linear convergence of the GFW method in

this discrete setting. We give explicit formulas for the convergence constants. These constants

essentially depend on the Lipschitz-modulus of the coupling function of the MFG and on two

bounds, for different norms, of the solution of the discretized Fokker-Planck equation, denoted C1

and C2. We recall the theta-scheme in Section 5.4, we show that it preserves the potential structure

of the MFG, and we prove that the GFW algorithm has a mesh-independent sublinear and linear

rates of convergence. The technical analysis relies on precise estimates of the constants C1 and C2,

obtained thanks to a general energy estimate and an L∞-estimate for the discrete Fokker-Planck

equation.

158



5.1.2 Notation

We discretize the interval [0, 1] with a time step ∆t = 1/T , where T ∈ N+. The time set is denoted

by T (T̃ if the final time step T is included). Given a finite subset S of Rd, we denote by R(S)
(resp. Rd(S)) the set of functions from S to R (resp. Rd). We also denote by P(S) the of probability

measures over S. We call curve of probability measures any function m : T̃ × S → R such that

m(t, ·) ∈ P(S), for any t ∈ T . The set of probability curves is denoted by P(T̃ , S). In mathematical

terms,

T = {0, 1, . . . , T − 1}, T̃ = {0, 1, . . . , T};

R(S) = {m : S → R}, Rd(S) = {m : S → Rd};

P(S) =
{
m ∈ R(S) | ∀x ∈ S, m(x) ≥ 0,

∑
y∈S

m(y) = 1
}
;

P(T̃ , S) =
{
m ∈ R(T̃ × S) | ∀t ∈ T̃ , m(t, ·) ∈ P(S)

}
.

We denote by ∥ · ∥ and ⟨·, ·⟩ the Euclidean norm and the scalar product in Rd. Let S1 and S2 be

two finite sets. Let µ ∈ Rd(S1 × S2). For any x ∈ S1 and for any p1 and p2 ∈ [1,∞], we denote by

∥µ(x, ·)∥p2
the Lp2-norm of the function y 7→ µ(x, y), defined as follows:

∥µ(x, ·)∥p2
=


(∑

y∈S2
∥µ(x, y)∥p2

)1/p2

, if p2 ∈ [1,∞),

maxy∈S2
∥µ(x, y)∥, if p2 = ∞.

We next define

∥µ∥p1,p2
=


(∑

x∈S1
∥µ(x, ·)∥p1

p2

)1/p1

, if p1 ∈ [1,∞),

maxx∈S1
∥µ(x, ·)∥p2

, if p1 = ∞.

Lemma 5.1.1 (Hölder’s inequality). Let S1 and S2 be two finite sets. Let µ and ν ∈ Rn(S1 × S2)

and let p1 and p2 ∈ [1,∞]. It holds that∑
x1∈S1

∑
x2∈S2

∣∣∣⟨µ(x1, x2), ν(x1, x2)⟩∣∣∣ ≤ ∥µ∥p1,p2
∥ν∥p∗

1 ,p
∗
2
,

where 1/pi + 1/p∗i = 1, for i = 1, 2.

Definition 5.1.2 (Nemytskii operators). Let ζ be a function from X × Y to Z and let u be a

function from X to Y. Then the Nemytskii operator is the mapping ζ[u] from X to Z defined by

ζ[u](x) = ζ(x, u(x)), ∀x ∈ X .

5.2 Potential discrete mean field games

In this section we introduce a general class of discrete MFGs containing the θ-scheme of [BLP22].

We provide a first potential formulation of the discrete MFGs and show their equivalence with a

convex optimization problem, using the classical Benamou-Brenier transformation. The analysis

being rather standard (see for example [BLP23]), we mostly give succinct proofs.
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5.2.1 Problem formulation

We fix T ∈ N+ and a finite subset S of Rd. For the description of the MFG model, we fix a running

cost ℓ, a coupling cost f , an initial condition m0, and a terminal cost g, where

ℓ : T × S × Rd → R ∪ {∞}, f : T × S × R(S) → R, m0 ∈ P(S), g ∈ R(S).

For a given m ∈ P(T̃ , S), we denote by ℓ̄m the map defined by

ℓ̄m : (t, x, ω) ∈ T × S 7→ ℓ(t, x, ω) + f(t, x,m(t)),

where m(t) = (m(t, x))x∈S . We require the following assumptions for ℓ, m, f , and m0.

Assumption 5.1. The following holds:

1. Bounded domain. For all (t, x) ∈ T × S, ℓ(t, x, ·) is lower semi-continuous with a non-empty

domain. There exists D > 0 such that for any t ∈ T , for any x ∈ S, and for any ∥v∥ > D, we

have ℓ(t, x, v) = +∞.

2. Regularity. There exists Lf such that for any (t, x) and for any m1, and m2 in P(S), we have

|f(t, x,m1)− f(t, x,m2)| ≤ Lf∥m1 −m2∥2.

3. Strong convexity. There exists α > 0 such that for any t ∈ T and for any x ∈ S, the function

ℓ(t, x, ·) is α-strongly convex, i.e.,

ℓ(t, x, v2) ≥ ℓ(t, x, v1) + ⟨p, v2 − v1⟩+
α

2
∥v2 − v1∥2,

for all v1 and v2 in Rn and for all p ∈ ∂pℓ(t, x, v1).

4. Monotonicity. For any t ∈ T , for any m1 and m2 in P(S),∑
x∈S

(
f(t, x,m1)− f(t, x,m2)

)
(m1(x)−m2(x)) ≥ 0.

We now fix two elements π0 ∈ R(T × S2) and π1 ∈ Rd(T × S2) and define the map π by

π : (t, x, y, ω) ∈ T × S × S × Rd 7→ π0(t, x, y) + ∆t⟨π1(t, x, y), ω⟩.

The map π describes the probability of an agent located at time t in state x, using the control ω,

to reach state y at time t+ 1. Our analysis will exploit the fact that π is affine with respect to ω.

Recalling the constant D introduced in Assumption 5.1, we consider the following assumption.

Assumption 5.2. The elements π0 and π1 satisfy the following:
π0(t, x, ·) ∈ P(S), ∀(t, x) ∈ T × S,∑

y∈S π1(t, x, y) = 0, ∀(t, x) ∈ T × S,

π0(t, x, y) ≥ ∆tD∥π1(t, x, y)∥, ∀(t, x, y) ∈ T × S × S.

(5.2.1)
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An immediate consequence of Assumption 5.2 is the following: For all (t, x) ∈ T × S, for all

ω ∈ Rd, if ∥ω∥ ≤ D, then π(t, x, ·, ω) ∈ P(S).

Assumption 5.3. There exists a function F : T ×P(S) → Rd such that for any t ∈ T and for any

m1 and m2 in P(S), it holds

F (t,m1)− F (t,m2) =

∫ 1

0

∑
x∈S

f(t, x,m1 + s(m2 −m1))(m2(x)−m1(x))ds.

We have the following convexity property for the potential function F .

Lemma 5.2.1. For any t ∈ T and for any m1 and m2 in P(S), it holds that

F (t,m2) ≥ F (t,m1) +
∑
x∈S

f(t, x,m1)(m2(x)−m1(x)). (5.2.2)

Proof. Inequality (5.2.2) follows from the definition of F and the monotonicity in Assumption

5.1.

Until the end of Section 5.3, we assume that Assumptions 5.1, 5.2, and 5.3 are satisfied. Following

[BLP22, Sec. 2.3], we consider the following discrete mean field game system, involving the variables

u ∈ R(T̃ × S), v ∈ Rd(T × S), and m ∈ P(T̃ , S):
(i) u = HJB(m),

(ii) v = V(u),

(iii) m = FP(v),

(DMFG)

where the Hamilton-Jacobi-Bellman mapping HJB, the optimal control mapping V, and the

Fokker-Planck mapping FP are defined as follows:

• Given m ∈ P(T̃ , S), u = HJB(m) ∈ R(T̃ × S) is the solution to
u(t, x) = inf

ω∈Rd
ℓ̄m(t, x, ω)∆t+

∑
y∈S π(t, x, y, ω)u(t+ 1, y), ∀(t, x) ∈ T × S,

u(T, x) = g(x), ∀x ∈ S.

(5.2.3)

• Given u ∈ R(T × S), v = V(u) ∈ Rd(T × S) is defined by

v(t, x) = argmin
ω∈Rd

ℓ(t, x, ω)∆t+
∑
y∈S

π(t, x, y, ω)u(t+ 1, y), ∀(t, x) ∈ T × S. (5.2.4)

• Given v ∈ Rd(T × S), m = FP(v) ∈ R(T̃ × S) is defined as the solution to
m(t+ 1, y) =

∑
x∈S π(t, x, y, v(t, x))m(t, x), ∀(t, y) ∈ T × S,

m(0, x) = m0(x), ∀x ∈ S.

(5.2.5)
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Lemma 5.2.2 (Continuity of HJB). For any m1 and m2 in P(T̃ , S), we have

∥HJB(m1)−HJB(m2)∥∞,∞ ≤ Lf∥m1 −m2∥∞,2. (5.2.6)

Proof. See [BLP22, Eq. A.6].

Lemma 5.2.3 (Continuity of FP). Let v1 and v2 in Rd(T × S) be such that ∥v1∥∞,∞ ≤ D and

∥v2∥∞,∞ ≤ D. There exists a constant C, independent of v1 and v2, such that∥∥FP(v1)− FP(v2)
∥∥2
∞,2

≤ C∆t
∑
t∈T

∑
x∈S

∥(v1 − v2)m1(t, x)∥2. (5.2.7)

As an immediate consequence, the mapping FP is continuous.

Proof. Let m1 = FP(v1) and m2 = FP(v2). Let µ = m1 −m2. It is easy to verify that{
µ(t+ 1, y) =

∑
x∈S π(t, x, y, v1(t, x))µ(t, x) + ∆t

∑
x∈S⟨π1(t, x, y), (v2 − v1)m2(t, x)⟩,

µ(0, y) = 0.
(5.2.8)

Inequality (5.2.7) immediately follows from Gronwall’s inequality, keeping in mind that all norms

are equivalent on the finite-dimensional vector space Rd(T × S).

Theorem 5.2.4 (Existence). Under Assumptions 5.1 and 5.2, system (DMFG) has a solution.

Proof. We follow the proof of [BLP22, Thm. 3.6]. We note first that by Assumption 5.2, the

composed mapping FP ◦ V ◦ HJB is valued in P(T̃ , S). By Brouwer’s fixed point theorem, it

suffices to show that FP ◦V ◦HJB is continuous. The continuity of HJB and FP was established

in Lemmas 5.2.2-5.2.3. The continuity of V is deduced from the strong convexity of ℓ, see step 2

of the proof of [BLP22, Thm. 3.6].

5.2.2 Potential formulation

Similarly to the case of continuous MFGs (see [LL07, BCS17] for example), the system (DMFG)

has a potential formulation. Consider the following optimal control problem:

inf
m∈P(T̃ ,S)
v∈Rd(T ×S)

J(m, v), subject to: (m, v) ∈ A, (P )

where the cost function J and the set A are defined by

J(m, v) = ∆t
∑
t∈T

∑
x∈S

ℓ[v](t, x)m(t, x) + ∆t
∑
t∈T

F (t,m(t)) +
∑
x∈S

g(x)m(T, x);

A =
{
(m, v) ∈ P(T̃ , S)× Rd(T × S)

∣∣m = FP(v), ∥v∥∞,∞ ≤ D
}
.

Problem (P ) is a non-convex problem which can be made convex with the classical Benamou-Brenier

transform (see [BCS17] for example) defined by

χ : (m, v) ∈ A 7→ (m,mv) ∈ P(T̃ , S)× Rd(T × S). (5.2.9)
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Here mv is the pointwise product of m and v: mv(t, x) := m(t, x)v(t, x), for all t ∈ T and for all

x ∈ S. We set Ã = χ(A) and consider the cost function J̃ , defined by

J̃(m,w) = ∆t
∑
t∈T

∑
x∈S

ℓ̃[m,w](t, x) + ∆t
∑
t∈T

F (t,m(t)) +
∑
x∈S

g(x)m(T, x),

where the function ℓ̃[m,w] : T × S → R̄ is defined by

ℓ̃[m,w](t, x) =


ℓ
(
t, x, w(t,x)

m(t,x)

)
m(t, x), if m(t, x) ̸= 0,

0, if m(t, x) = w(t, x) = 0,

+∞, otherwise.

The new problem of interest is

inf
m∈P(T̃ ,S)
w∈Rd(T ×S)

J̃(m,w), subject to: (m,w) ∈ Ã. (P̃ )

In the rest of the section, we investigate some properties of Problems (P ) and (P̃ ), as well as their

relationship with (DMFG)

Lemma 5.2.5. It holds that val(P ) = val(P̃ ).

Proof. It follows from the definitions of A, J , J̃ , and χ that for any (m, v) ∈ A, we have

J̃(χ(m, v)) = J(m, v). The lemma follows immediately.

We next discuss the convexity of Problem (P̃ ).

Lemma 5.2.6 (Convexity). The set Ã is convex. The cost function J̃(m,w) is convex.

Proof. Take any (m1, w1), (m2, w2) in Ã and any λ ∈ (0, 1). By the definition of Ã, there exist

v1, v2 ∈ Rd(T × S), such that (mi, vi) ∈ A and wi = mivi for i = 1, 2. Let

m = λm1 + (1− λ)m2,

w = λw1 + (1− λ)w2,

v(t, x) =

{
0, if m1(t, x) = m2(t, x) = 0,
λm1v1+(1−λ)m2v2

λm1+(1−λ)m2
(t, x), otherwise.

We can check that (m, v) ∈ A and that (m,w) = χ(m, v). The convexity of Ã follows.

The function J̃ is defined as the sum of three terms. The last one is linear, thus convex. The

second one is also convex, by Lemma 5.2.1. Finally, for any (t, x), the map (m,w) 7→ ℓ̃[m,w](t, x)

is convex (see [Com18, Proposition 2.3]). The convexity of J̃ follow.

Given m′ ∈ P(T̃ , S), we consider the cost function J̃m′ , defined by

J̃m′(m,w) = ∆t
∑
t∈T

∑
x∈S

ℓ̃[m,w](t, x) + f(t, x,m′(t))m(t, x) +
∑
x∈S

g(x)m(T, x),
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for (m,w) ∈ P(T̃ , S) × Rd(T × S). We will regard J̃m′ as a partial linearization of J around m′.

We define the corresponding optimal control problem:

inf
(m,w)∈Ã

J̃m′(m,w). (Pm′)

Lemma 5.2.7. Let (m1, w1) and (m2, w2) be in Ã. Then

J̃(m2, w2)− J̃(m1, w1) ≥ J̃m1
(m2, w2)− J̃m1

(m1, w1).

Proof. This is an immediate consequence of the definitions of J̃ , J̃m′ , and Lemma 5.2.1.

The next lemma provides us with a solution to Problem (Pm′).

Lemma 5.2.8. Let m′ ∈ P(T̃ , S). Let us set ṽ = V ◦ HJB(m′), m̃ = FP ◦ V ◦ HJB(m′), and

w̃ = m̃ṽ. Then (m̃, w̃) is the unique solution to (Pm′). Moreover, for any (m,w) ∈ Ã and for any

v such that w = mv, it holds that

J̃m′(m,w)− J̃m′(m̃, w̃) ≥ α

2
∆t
∑
t∈T

∑
x∈S

∥(v − ṽ)(t, x)∥2m(t, x). (5.2.10)

Proof. The first inequality is proved in [BLP22, Sec. 3.5, page 14]. It is of similar nature to the

fundamental equality of [ACCD13]. As a consequence of (5.2.10), the pair (m̃, w̃) is a solution to

(Pm′). It remains to prove uniqueness. Let (m̂, ŵ) ∈ Ã be a solution to (Pm′). Let v̂ be such

that ŵ = m̂v̂. Then, by inequality (5.2.10), we have
∑

t∈T
∑

x∈S ∥v̂(t, x) − ṽ(t, x)∥2m̂(t, x) = 0.

It follows next that (v̂ − ṽ)(t, x)m̂(t, x) = 0 for all (t, x). Applying Lemma 5.2.3, we immediately

obtain that m̂ = m̃. Finally, we have ŵ− w̃ = m̂v̂− m̃ṽ = m̂(v̂− ṽ) = 0, which concludes the proof

of uniqueness.

Lemma 5.2.9. System (DMFG) has a unique solution (m̄, ū, v̄). Moreover, (m̄, w̄) := χ(m̄, v̄) is

the unique solution to (P̃ ).

Proof. Let (m′, u′, v′) be a solution to (DMFG). Let w′ = m′v′. Combining Lemma 5.2.7 and

Lemma 5.2.8, we deduce that for any (m,w) ∈ Ã,

J̃(m,w)− J̃(m′, w′) ≥ J̃m′(m,w)− J̃m′(m′, w′) ≥ 0.

Thus (m′, w′) is a solution to (P̃ ).

We next prove that (m′, w′) is the unique solution to (P̃ ). Let (m,w) be a solution to (P̃ ). The

above inequality shows that (m,w) is also a solution to (Pm′). Thus by Lemma 5.2.8, (m,w) =

(m′, w′).

It remains to prove the uniqueness of the solution to (DMFG). Let (m,u, v) be a solution to

(DMFG). As was proved above, (m,mv) is a solution to (P̃ ) and therefore m = m′. It follows that

u = HJB(m) = HJB(m′) = u′ and that v = V(u) = V(u′) = v′, which concludes the proof.
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5.3 Generalized Frank-Wolfe algorithm: the discrete case

We investigate in this section the convergence of the GFW algorithm, applied to the (convex)

potential problem (P̃ ). In this section, Assumptions 5.1-5.3 are supposed to be satisfied. We recall

that (DMFG) has a unique solution (ū, v̄, m̄) and that by Lemma 5.2.9, (m̄, w̄) = χ(m̄, v̄) is the

unique solution of problem (P̃ ).

5.3.1 Algorithm and convergence results

We first define the mapping BR : P(T̃ , S) → Ã. Given m′ ∈ P(T̃ , S), we obtain (m̃, w̃) = BR(m′)

by successively computing

ṽ = V ◦HJB(m′), m̃ = FP(ṽ), and w̃ = m̃ṽ.

We refer to BR as the best-response mapping: given a prediction m′ of the equilibrium distribution

of the agents, ṽ (as defined above) is the optimal feedback for the underlying optimal control

problem and m̃ the resulting distribution. As was demonstrated in Lemma 5.2.8, BR(m′) is also

the unique solution to the linearized problem (Pm′). This allows us to write the GFW algorithm

for the resolution of (P̃ ) in the form of a best-response algorithm.

Algorithm 5.1: Generalized Frank-Wolfe Algorithm

Initialization: (m0, w0) ∈ Ã;

First iteration: (m1, w1) = (m̄0, w̄0) = BR(m0) ;

for k = 1, 2, . . . do

Step 1: Resolution of the partial linearized problem.

Set (m̄k, w̄k) = BR(mk);

Step 2: Update.

Choose λk ∈ [0, 1];

Set (mk+1, wk+1) = (1− λk)(m
k, wk) + λk(m̄

k, w̄k);

end

Note that the choice of the stepsize λk will be discussed in Proposition 5.3.1. We introduce now

three constants, C1, C2, and C3, that will be used for the convergence analysis of Algorithm 5.1.

The constants C1 and C2 are defined by

C1 = sup
∥v∥∞,∞≤D

∥FP(v)∥2∞,2 and C2 = sup
m∈P(T̃ ,S)

∥FP ◦V ◦HJB(m)∥∞,∞. (5.3.1)

The finiteness of C1 and C2 follows from the compactness of P(T̃ , S) and from the continuity of

the three mappings HJB, V, and FP. Note that

C1 = sup
(m,v)∈A

∥m∥2∞,2 = sup
(m,w)∈Ã

∥m∥2∞,2. (5.3.2)
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By Lemma 5.2.3, there exists a constant C3 > 0 such that for any (m1, v1) and (m2, v2) in A,

∥m1 −m2∥2∞,2 ≤ C3∆t
∑
t∈T

∑
x∈S

∥(v1 − v2)m1(t, x)∥2. (5.3.3)

We next introduce three other constants, D1, D2, and c, defined by:

D1 = C1Lf |S|1/2, D2 = (Lf + |S|1/2)
√

2C2C3

α
, c = max

{
1− α

4C2C3Lf |S|1/2
,
1

2

}
. (5.3.4)

Proposition 5.3.1. We consider the sequence (mk, wk)k≥1 generated by Algorithm (5.1).

1. Sublinear rate. Assume that λk = 2/(k + 2), for all k ≥ 1. Then,

J̃(mk, wk)− J̃(m̄, w̄) ≤ 8D1

k
, ∀k ≥ 1. (5.3.5)

2. Linear rate. Assume that

λk = min

{
J̃mk(mk, wk)− J̃mk(m̄k, w̄k)

Lf |S|1/2∥mk − m̄k∥2∞,2

, 1

}
, (5.3.6)

for all k ≥ 1. Then,

J̃(mk, wk)− J̃(m̄, w̄) ≤ 4D1c
k, ∀k ≥ 1. (5.3.7)

The following subsection is dedicated to the proof of Proposition 5.3.1. The used stepsize rule

(5.3.6) is motivated in the proof of convergence (see (5.3.13)).

5.3.2 Convergence analysis

Lemma 5.3.2 (A priori bounds). For any k ≥ 1, we have (mk, wk) ∈ Ã. As a consequence,

∥mk∥2∞,2 ≤ C1 and ∥mk∥∞,∞ ≤ C2. (5.3.8)

Proof. Using the definitions of C1 and C2 (given in (5.3.1)) and using (5.3.2), we have that

∥m̄k∥2∞,2 ≤ C1, ∥m̄k∥∞,∞ ≤ C2, and (m̄k, w̄k) ∈ Ã, (5.3.9)

for any k ≥ 1. To conclude the proof of the lemma, it suffices to observe that for any k ≥ 1,

(mk, wk) is a convex combination of (m̄κ, w̄κ) ∈ Ã for 0 ≤ κ ≤ k − 1. Then we have (mk, wk) ∈ Ã,

since Ã is convex, by Lemma 5.2.6. Inequality (5.3.8) follows from (5.3.9) and from the triangle

inequality.

Lemma 5.3.3. For any t ∈ T and for any m1 and m2 in P(S), we have

F (t,m2) ≤ F (t,m1) +
∑
x∈S

f(t, x,m1)(m2(x)−m1(x)) +
Lf |S|1/2

2
∥m2 −m1∥22. (5.3.10)
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Proof. Combining Assumption 5.3 and the Lipschitz-continuity of f (Assumption 5.1), we deduce

that

F (t,m2) ≤ F (t,m1) +
∑
x∈S

f(t, x,m1)(m2(x)−m1(x)) +
Lf

2
∥m2 −m1∥2∥m2 −m1∥1.

By Hölder’s inequality, we have that ∥m2 −m1∥1 ≤ |S|1/2∥m2 −m1∥2. Inequality (5.3.10) follows.

Algorithm 5.1 generates two sequences (mk, wk)k≥0 and (m̄k, w̄k)k≥0 in Ã. For the analysis, we

need to fix two sequences (vk)k≥0 and (v̄k)k≥0 such that wk = mkvk and w̄k = m̄kv̄k. We introduce

the following six sequences of positive numbers:

δk = ∥mk − m̄∥2∞,2, δ̄k = ∥mk − m̄k∥2∞,2;

γk = J̃(mk, wk)− J̃(m̄, w̄), γ̄k = J̃mk(mk, wk)− J̃mk(m̄k, w̄k);

ϵk = ∆t
∑
t∈T

∑
x∈S

∥vk − v̄∥2mk(t, x), ϵ̄k = ∆t
∑
t∈T

∑
x∈S

∥vk − v̄k∥2mk(t, x).

The following lemma establishes various relationships between these sequences, independent of

the choice of stepsize (λk)k≥1. For convenience, we fix λ0 = 1 and make use of the fact that

(m1, w1) = (1− λ0)(m
0, w0) + λ0(m̄

0, w̄0).

Lemma 5.3.4. For any choice of stepsizes (λk)k≥1, we have δ̄k ≤ 4C1, for any k ≥ 1. Moreover

we have that

γk ≤ γ̄k and γk+1 ≤ γk − λkγ̄k + λ2
k

Lf |S|1/2

2
δ̄k. (5.3.11)

We also have the following estimates:

α

2C2C3
δk ≤ α

2
ϵk ≤ γk and

α

2C2C3
δ̄k ≤ α

2
ϵ̄k ≤ γ̄k. (5.3.12)

Proof. Step 1. The inequality δ̄k = ∥mk − m̄k∥2∞,2 ≤ 4C1 follows from the bounds ∥mk∥2∞,2 ≤ C1

and ∥m̄k∥2∞,2 ≤ C1 obtained in Lemma 5.3.2.

Step 2. We next prove that γk ≤ γ̄k. Recalling that (m̄k, w̄k) minimizes J̃mk(·) over Ã, we

obtain that

γ̄k = J̃mk(mk, wk)− J̃mk(m̄k, w̄k) ≥ J̃mk(mk, wk)− J̃mk(m̄, w̄).

Using next Lemma 5.2.7, we deduce that γ̄k ≥ J(mk, wk)− J(m̄, w̄) = γk. Let us prove the upper

bound of γk+1. Since ℓ̃ is convex (see the proof of Lemma 5.2.6), we have

ℓ̃[mk+1, wk+1](t, x) ≤ (1− λk)ℓ̃[m
k, wk](t, x) + λk ℓ̃[m̄

k, w̄k](t, x).

Moreover, by Lemma 5.3.3, we have

F (t,mk+1(t)) ≤ F (t,mk(t)) + λk

∑
x∈S

f(t, x,mk(t))(m̄k(t, x)−mk(t, x)) +
λ2
kLf |S|1/2

2
δ̄k.
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Then (5.3.11) follows from the above two inequalities and the definitions of J̃ , J̃mk , γk, and γ̄k.

Step 3. Let us prove (5.3.12). From the definition of C3 and Lemma 5.3.2 we have that

δk ≤ C3δt
∑
t∈T

∑
x∈S

∥(vk − v̄)(t, x)mk(t, x)∥2

≤ C2C3δt
∑
t∈T

∑
x∈S

∥(vk − v̄)(t, x)∥2mk(t, x) = C2C3ϵk.

Moreover, using Lemmas 5.2.7 and 5.2.8, we obtain that

γk ≥ J̃m̄(mk)− J̃m̄(m̄) ≥ α

2
ϵk.

We prove in a similar fashion that δ̄k ≤ C2C3ϵ̄k and that γ̄k ≥ α
2 ϵ̄k.

Lemma 5.3.5. In Algorithm 5.1, let uk = HJB(mk). Then, whatever the choice of stepsizes

(λk)k≥1, we have

∥uk − ū∥∞,∞ + ∥mk − m̄∥∞,1 ≤ D2
√
γk.

Proof. By Cauchy-Schwarz inequality and Lemma 5.3.4, we have

∥mk − m̄∥∞,1 ≤
√

|S|
√

δk ≤
√

|S|
√

2C2C3

α

√
γk.

By Lemma 5.2.2, we have ∥uk − ū∥∞,∞ ≤ Lf

√
δk. Recalling the definition of D2, we obtain the

announced result.

Proof of Proposition 5.3.1. Sublinear case. Combining the two inequalities in (5.3.11) and using

the bound δ̄k ≤ 4C1, we obtain that

γk+1 ≤ (1− λk)γk + 2λ2
kC1Lf |S|1/2 = (1− λk)γk + 2λ2

kD1.

In particular, for k = 0, we have λ0 = 1, therefore γ1 ≤ 2D1. It is then easy to prove by induction

the inequality γk ≤ 8D1/k (see [Jag13, Thm. 1] for example).

Linear case. Note first that the stepsize rule (5.3.6) writes

λk = min

{
γ̄k

Lf |S|1/2δ̄k
, 1

}
.

It is easy to verify that λk minimizes the upper-bound (5.3.11), that is to say:

λk = argmin
λ∈[0,1]

− λγ̄k + λ2Lf |S|1/2

2δ̄k
. (5.3.13)

Let k ≥ 1. We consider the following two cases:

1. If γ̄k ≥ Lf |S|1/2δ̄k, then λk = 1. We deduce from (5.3.11) that

γk+1 ≤ γk − γ̄k +
Lf |S|1/2

2
δ̄k ≤ γk −

γ̄k
2

≤ γk
2

≤ cγk,

where the second inequality follows from the assumption γ̄k ≥ Lf |S|1/2δ̄k, the third one from

the inequality γk ≤ γ̄k and the last one from the fact that c ≥ 1/2.
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2. If γ̄k ≤ Lf |S|1/2δ̄k, then λk = γ̄k

Lf |S|1/2δ̄k
. We deduce from (5.3.11) and from the inequality

γk ≤ γ̄k that

γk+1 ≤ γk −
γ̄k

2Lf |S|1/2δ̄k
γ̄k ≤

(
1− γ̄k

2Lf |S|1/2δ̄k

)
γk.

By (5.3.12), we know that γ̄k/δ̄k ≥ α
2C2C3

. It follows that

γk+1 ≤
(
1− α

4C2C3Lf |S|1/2

)
γk ≤ cγk.

It follows that γk ≤ γ1c
k−1 for all k ≥ 1. Since c−1 ≤ 2 and γ1 ≤ 2D1, estimate (5.3.7) holds

true.

5.4 Mesh-independent convergence of the GFW algorithm for second-
order MFGs

We establish in this section two mesh-independence principles for the GFW algorithm, applied to a

discretization of (MFG) with the θ-scheme proposed in [BLP22]. First, we recall the theta-scheme

and the main convergence result of [BLP22]. Then, we show that the potential structure of the

continuous (MFG) is preserved by the theta-scheme at the discrete level. Therefore, Algorithm

5.1 can be applied to the theta-scheme. The mesh-independence principles are stated in Theorems

5.4.5 and 5.4.9 and demonstrated in Subsections 5.4.3 and 5.4.4.

5.4.1 The theta-scheme and error estimates

In this subsection, we recall the theta-scheme of the continuous system (MFG) investigated in

[BLP22] and its main result. Let us define

D =
{
µ ∈ L2(Td) |µ ≥ 0,

∫
Td

µ(x)dx = 1
}
. (5.4.1)

We make the following assumptions on the data function ℓc : Q×Rd → R, gc : Td → R, f c : Q×D →
R, and mc : Td → R of the continuous model (MFG).

Assumption A. The following holds:

1. Regularity. The function ℓc is continuously differentiable with respect to v. There exist

positive constants Lc
ℓ, L

c
g, and Lc

f such that for any (t, x) ∈ Q, for any v ∈ Rd, and for any

m ∈ D,

• ℓc(·, x, v), ℓc(t, ·, v), and ℓcv(·, x, v) are Lc
ℓ-Lipschitz continuous

• gc is Lc
g-Lipschitz continuous

• f c(·, x,m), f c(t, ·,m), and f c(t, x, ·) are Lc
f -Lipschitz continuous (with respect to the

∥ · ∥L2-norm for the third variable).
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2. Strong convexity. There exists αc > 0 such that for any (t, x) ∈ Q, ℓc(t, x, ·) is strongly convex

with modulus αc, i.e.

ℓc(t, x, v2) ≥ ℓc(t, x, v1) + ⟨ℓcv(t, x, v1), v2 − v1⟩+
αc

2
∥v2 − v1∥2, ∀v1, v2 ∈ Rd.

3. Monotonicity. The function f c is monotone, i.e., for any t ∈ [0, T ], for any m1 and m2 ∈ D,∫
Td

(
f c(t, x′,m1)− f c(t, x′,m2)

)(
m1(x

′)−m2(x
′)
)
dx′ ≥ 0.

Assumption B. The continuous mean field game (MFG) admits a unique solution (u∗, v∗,m∗),

with u∗,m∗ ∈ C1+r/2,2+r(Q) and v∗ ∈ Cr(Q) ∩ L∞([0, 1]; C1+r(Td)), where r ∈ (0, 1).

Note that more explicit assumptions on the problem data allows to verify Assumption B, see

[BLP22, Appendix B].

The time and space discretization parameters are denoted ∆t > 0 and h > 0. As in the discrete

model, we suppose that ∆t = 1/T and that h = 1/N , for two integers T and N . The discrete state

space is defined as

S = Td/hZd =
{
(i1, i2, . . . , id)h | i1, . . . , id ∈ Z/NZ

}
.

Given x ∈ Td, let us set Bh(x) =
∏n

i=1[x − hei/2, x + hei/2). Given y ∈ Td, we denote by xh[y]

the unique point x in S such that y ∈ Bh(x). We consider the mappings Ih : R(Td) → R(S) and

Rh : R(S) → R(Td), defined as follows: For any mc ∈ R(Td) and for any m ∈ R(S),

Ih(mc)(x) =

∫
Bh(x)

mc(y)dy, ∀x ∈ S;

Rh(m)(y) =
m(xh[y])

hd
, ∀y ∈ Td.

We consider the constant M > 0, defined by

M =
1

αc

(
2 max
(t,x)∈Q

∥ℓcv(t, x, 0)∥+
√
d(Lc

ℓ + Lc
f + Lc

g)
)
. (5.4.2)

Note that M is independent of ∆t and h. We define the truncated running cost ℓ̂c as follows:

ℓ̂c(t, x, v) =

{
ℓc(t, x, v), if ∥v∥ ≤ M,

+∞, otherwise.

The discrete counterparts of ℓc, gc, f c, and mc
0 are defined as follows: For any t ∈ T , for any x ∈ S,

for any v ∈ Rd, for any m ∈ P(S),

ℓ(t, x, p) = ℓ̂c(t∆t, x, v)

g(x) = gc(x),

f(t, x,m) =
1

hd

∫
Bh(x)

f c
(
t∆t, y,Rh(m)

)
dy,

m0(x) = Ih(mc
0)(x).

(5.4.3)
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We denote by H : T × S × Rd the associated Hamiltonian, defined by

H(t, x, p) = sup
v∈Rd

−⟨p, v⟩ − ℓ(t, x, v). (5.4.4)

Let us now discetize the differential operators appearing in the continuous MFG system. Let

(ei)i=1,...,d denote the canonical basis of Rd. The discrete Laplace, gradient and divergence operators

for the centered finite-difference scheme are defined as follows:

∆hµ(x) =

d∑
i=1

µ(x+ hei) + µ(x− hei)− 2µ(x)

h2
, ∀ µ ∈ R(S), ∀ x ∈ S,

∇hµ(x) =
(µ(x+ hei)− µ(x− hei)

2h

)d
i=1

, ∀ µ ∈ R(S), ∀ x ∈ S,

divhµ(x) =

d∑
i=1

µi(x+ hei)− µi(x− hei)

2h
, ∀ µ ∈ Rd(S), ∀ x ∈ S,

where µi is the i-th coordinate of µ.

Finally, we fix θ ∈ (1/2, 1). The theta-scheme for (MFG), introduced in [BLP22, Sec. 2.3],

writes: 
(i) u = HJBθ(m),

(ii) v = Vθ(u),

(iii) m = FPθ(v),

(Theta-mfg)

where the Hamilton-Jacobi-Bellman mapping HJBθ : P(T̃ , S) → R(T̃ × S), m 7→ u, is defined by
−u(t+1,x)−u(t+1/2,x)

∆t − θσ∆hu(t+ 1/2, x) = 0,

−u(t+1/2,x)−u(t,x)
∆t − (1− θ)σ∆hu(t+ 1/2, x) +H[∇hu(·+ 1/2, ·)](t, x) = f(t, x,m(t)),

u(T, x) = g(x),

the optimal control mapping Vθ : R(T̃ × S) → Rd(T × S), u 7→ v, is defined by −u(t+1,x)−u(t+1/2,x)
∆t − θσ∆hu(t+ 1/2, x) = 0,

v(t, x) = −Hp(t, x,∇hu(t+ 1/2, x)),

and the Fokker-Planck mapping FPθ : Rd(T × S) → R(T̃ × S), v 7→ m, is defined by
m(t+1,x)−m(t,x)

∆t − θσ∆hm(t+ 1, x)− (1− θ)σ∆hm(t, x) + divh
(
vm(t, x)

)
= 0;

m(0, x) = m0(x).

Let us briefly motivate the theta-scheme. For the Fokker-Planck equation, a Crank-Nicolson dis-

cretization of the Laplace operator and an explicit discretization of the first-order term are utilized.

An adjoint scheme is used for the HJB equation.
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Given u(t+1, ·), one first needs to solve an implicit scheme for the heat equation, corresponding

to a diffusion equal to θσ. This yields the intermediate function u(t+ 1/2, ·), which is not “saved”

in the output HJBθ. Then u(t, ·) is obtained by solving an explicit scheme, containing the first

order term and a diffusion equal to (1− θ)σ.

Remark 5.4.1. The evaluation of the mapping HJBθ, which is a crucial step in the GFW algorithm,

requires to solve successively linear equations (for the implicit part) and explicit equations. It is

therefore easier to implement than fully implicit schemes, which would require to solve general

non-linear equations (with a policy iteration algorithm, for example).

Let us consider the following CFL condition:

∆t ≤ h2

2d(1− θ)σ
, h ≤ 2(1− θ)σ

M
. (CFL)

Lemma 5.4.2. Let Assumption A and condition (CFL) hold true. Then the system (Theta-mfg)

is a particular case of (DMFG), with ℓ, f , m0 and g defined by (5.4.3). Furthermore, Assumptions

5.1-5.2 hold with the constants

D = M, Lf = Lc
fh

−d/2, and α = αc.

Proof. See [BLP22, Lem. 4.1, Lem. 4.2, Thm. 4.4].

Let us emphasize that the well-posedness of the mappings HJBθ, Vθ, and FPθ is a corollary

of the fact that (Theta-mfg) is a discrete MFG. The explicit formulas for π0 and π1 are provided

in [BLP22, Lemma 4.1]. We define the traces u∗h ∈ R(T̃ × S) and m∗
h ∈ P(T̃ , S) of the continuous

solution (u∗,m∗) as follows:

u∗h(t, x) = u∗(t∆, x) and m∗
h(t, ·) = Ih(m∗(t∆t, ·)), ∀t ∈ T̃ ,∀x ∈ S. (5.4.5)

The main result of [BLP22] is the following error estimate.

Theorem 5.4.3. Let 1/2 < θ < 1. Let Assumptions A-B and condition (CFL) hold true. Then

(Theta-mfg) admits a unique solution (uh, vh,mh). There exists C∗ independent of ∆t and h such

that

∥uh − u∗h∥∞,∞ + ∥mh −m∗
h∥∞,1 ≤ C∗hr.

Proof. See [BLP22, Thm. 2.10].

5.4.2 GFW algorithm for the theta-scheme and main results

Let us first give the assumption on the potential structure of f .

Assumption C. There exists a function F c : [0, 1]×D → Rd such that (5.1.1) holds.

The following lemma shows that the discretization of f c proposed in (5.4.3) preserves the po-

tential structure of the MFG system at the discrete level.
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Lemma 5.4.4. Let Assumption C hold true. Then, f defined by (5.4.3) satisfies Assumption 5.3,

with the primitive function F defined by

F (t,m) = F c(t∆t,Rh(m)).

Proof. Taking any (t,m1,m2) ∈ T × P(S)2, we have that

F (t,m1)− F (t,m2) = F c(t∆t,Rh(m1))− F c(t∆t,Rh(m2))

=

∫ 1

0

∫
x∈Td

f c(t∆t, x,Rh(m1 + s(m2 −m1)))(Rh(m2)(x)−Rh(m1)(x))dxds

=

∫ 1

0

∑
x∈S

1

hd

∫
y∈Bh(x)

f c(t∆t, y,Rh(m1 + s(m2 −m1)))dy(m2(x)−m1(x))ds

=

∫ 1

0

∑
x∈S

f(t, x,m1 + s(m2 −m1))(m2(x)−m1(x))ds,

where the second equality follows from Assumption C and the linearity of operator Rh, the third

equality comes from the fact that Rh(m) is constant in Bh(x), and the last equality derives from

the definition of f .

Following the definition of BR in Sec. 5.3, we define the best response mapping for (Theta-mfg):

for any m′ ∈ P(T̃ , S),

BRθ(m
′) = χ(m̃, ṽ), where ṽ = Vθ ◦HJBθ(m

′) and m̃ = FPθ(ṽ).

The GFW algorithm writes as follows.

Algorithm 5.2: Generalized Frank-Wolfe Algorithm for (Theta-mfg)

Initialization: m0
h ∈ P(T̃ , S);

First iteration: (m1
h, w

1
h) = BRθ(m

0
h) ;

for k = 1, 2, . . . do

Step 1: Resolution of the partial linearized problem.

Set (m̄k
h, w̄

k
h) = BRθ(m

k
h);

Step 2: Update.

Choose λk ∈ [0, 1];

Set (mk+1
h , wk+1

h ) = (1− λk)(m
k
h, w

k
h) + λk(m̄

k
h, w̄

k
h);

end

From now on, all notations introduced in Sections 5.2 and 5.3 for general discrete MFGs will be

restricted to (Theta-mfg), without the adjunction of the subscript θ. For example, we will denote

by γk the optimality gap in Algorithm 5.2. The following result is our first mesh-independence

principle. Recall that (uh,mh) and (u∗h,m
∗
h) have been introduced in Theorem 5.4.3.
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Theorem 5.4.5 (Sublinear rate). Let Assumptions A-C and condition (CFL) hold true. In Algo-

rithm 5.2, take λk = 2/(k + 2), for any k ≥ 1. Then there exist two constants Cθ and C̄θ, both

independent of ∆t and h, such that

γk ≤ Cθ

k
, ∀k ≥ 1, (5.4.6)

and such that

∥ukh − uh∥∞,∞ + ∥mk
h −mh∥∞,1 ≤

C̄θ√
khd/2

,

∥ukh − u∗h∥∞,∞ + ∥mk
h −m∗

h∥∞,1 ≤ C̄θ

(
hr +

1√
khd/2

)
,

(5.4.7)

for any k ≥ 1. In particular, for k ≥ h−(2r+d/2), we have

∥ukh − u∗h∥∞,∞ + ∥mk
h −m∗

h∥∞,1 ≤ 2C̄θh
r. (5.4.8)

Remark 5.4.6. Let us emphasize that only the estimate (5.4.6) is mesh-independent. The estimates

provided in (5.4.7) get worse as h → 0.

The proof of Theorem 5.4.5 is given in Subsec. 5.4.3. It is based on Proposition 5.3.1, more

precisely on estimates of the three fundamental constants C1, C2, and C3. We will derive from these

estimates some estimates of the constants D1, D2, and c (as defined in (5.3.4)). A key point is

that the estimate of the constant D1 is mesh-independent. Our analysis mainly relies on a stability

result for the discrete Fokker-Planck equation, for the ℓ2-norm.

In order to establish mesh-independent estimates of D2 and c, so as to have a mesh-independent

linear rate of convergence, we need to establish an ℓ∞-estimate for the discrete Fokker-Planck,

assuming that the involved vector field v derives from a value function u. In the continuous case,

such an estimate is relatively easy to deduce from the semi-concavity of u. The transposition of this

analysis to a discrete setting is quite delicate; our analysis is restricted to the case of a separable

running cost (with respect to the control variables).

A function l : Rd → R is said to be semi-concave if l(x) − L∥x∥2/2 is concave, for some L ≥ 0.

This definition makes no sense when l is a function defined on torus. In fact, one can check that a

periodical function is concave if and only if it is constant. Besides the previous definition, a second

one based on a quadratic inequality is introduced in [CS04, Def. 1.1.1] for functions on an open set.

We use the latter one for our definition of semi-concavity on a torus and its discretization.

Definition 5.4.7. [Semi-concave functions on the torus] Let L be a positive constant. A function

lc : Td → R is said to be L-semi-concave if

lc (x) ≥ lc(x+ y) + lc(x− y)

2
− L∥y∥2, ∀x, y ∈ Td. (5.4.9)

Remark 5.4.8. If a function lc : Td → R is C2, then it is semi-concave, as can be easily verified.

We consider the following assumption.

Assumption D. The following holds:
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1. Semi-concavity. There exists Lc > 0, such that for any (t, v,m) ∈ [0, 1]×Rd×D with ∥v∥ ≤ M ,

the functions ℓc(t, x, v), f c(t, x,m), and gc(x) are Lc-semi-concave with respect to x.

2. Separability. There exist functions ℓci : Q × R → R for i = 1, 2, . . . , d, such that for any

(t, x, v) ∈ Q× Rd,

ℓc(t, x, v) =

d∑
i=1

ℓci (t, x, vi),

where vi is the i-th coordinate of v.

In the next theorem we establish a linear and mesh-independent rate of convergence for the

GFW algorithm with the line-search rule (5.3.6).

Theorem 5.4.9 (Linear rate). Let Assumptions A-D and condition (CFL) hold true. In Algorithm

5.2, set λk with the rule (5.3.6), for all k ≥ 1. Then there exist three constants cθ ∈ (0, 1), Cθ > 0

and C̄θ, independent of ∆t and h, such that

γk ≤ Cθc
k
θ , ∀k ≥ 1, (5.4.10)

and such that

∥ukh − uh∥∞,∞ + ∥mk
h −mh∥∞,1 ≤ C̄θc

k/2
θ ,

∥ukh − u∗h∥∞,∞ + ∥mk
h −m∗

h∥∞,1 ≤ C̄θ

(
hr + c

k/2
θ

)
,

(5.4.11)

for any k ≥ 1. In particular, taking k ≥ 2r log(h)/ log(cθ), we have

∥ukh − u∗h∥∞,∞ + ∥mk
h −m∗

h∥∞,1 ≤ 2C̄θh
r. (5.4.12)

Note that both estimates (5.4.10) and (5.4.11) are now mesh-independent. The proof of Theorem

5.4.9 is given in Subsec. 5.4.4.

5.4.3 Proof of the sublinear rate of convergence

We prove in this section Theorem 5.4.5. Assumptions A-C are supposed to be satisfied all along

the subsection, as well as the condition (CFL). Our analysis relies on an energy estimate, obtained

in Lemma 5.4.10, which allows us to find first estimates of the convergence constants C1, C2, C3,

D1, and D2 (in Lemma 5.4.11).

We define the forward discrete gradient as follows:

∇+
h ν(x) =

(ν(x+ hei)− ν(x)

h

)d
i=1

, ∀ν ∈ R(S), ∀x ∈ S.

Lemma 5.4.10 (Energy estimate). Let µ ∈ R(T̃ × S) satisfy the following equation:{
(Id− θσ∆t∆h)µ(t+ 1) =

(
Id+ (1− θ)σ∆t∆h

)
µ(t)−∆tdivh

(
v(t)µ(t)

)
−∆tdivh

(
δv(t)

)
,

µ(0) = µ0,
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where δv(t) ∈ Rd(S) and ∥v∥∞,∞ ≤ M . Then,

max
t∈T̃

∥∥µ(t)∥∥2
2
≤ c(σ, θ,M)

(∥∥µ0

∥∥2
2
+ (1− θ)σ∆t

∥∥∇+
h µ0

∥∥2
2
+

1

σ(2θ − 1)

∑
τ∈T

∆t
∥∥δv(τ)∥∥22

)
, (5.4.13)

where

c(σ, θ,M) := 1 +
M2

σ(2θ − 1)
exp

(
M2

σ(2θ − 1)

)
. (5.4.14)

Proof. We deduce from the proof of [BLP22, Prop. 4.5] that

1

2

(
∥µ(t+ 1)∥22 − ∥µ(t)∥22

)
+ θσ∆t

∥∥∇+
h µ(t+ 1)

∥∥2
2

≤ −(1− θ)σ∆t
〈
∇+

h µ(t+ 1),∇+
h µ(t)

〉
+∆t

(
γ1 + γ2

)
,

(5.4.15)

where

γ1 =
∑
x∈S

〈
∇hµ(t+ 1, x), µv(t, x)

〉
, γ2 =

∑
x∈S

〈
∇hµ(t+ 1, x), δv(t, x)

〉
.

Let α1 = σ(2θ − 1) > 0. Applying Young’s inequality to the right-hand side of (5.4.15), we have

the following inequalities:

−
〈
∇+

h µ(t+ 1),∇+
h µ(t)

〉
≤ 1

2

∥∥∇+
h µ(t+ 1)

∥∥2
2
+

1

2

∥∥∇+
h µ(t)

∥∥2
2
;

γ1 ≤
α1

2

∥∥∇hµ(t+ 1)
∥∥2
2
+

1

2α1

∥∥µv(t)∥∥2
2
≤ α1

2

∥∥∇+
h µ(t+ 1)

∥∥2
2
+

M2

2α1

∥∥µ(t)∥∥2
2
;

γ2 ≤
α1

2

∥∥∇+
h µ(t+ 1)

∥∥2
2
+

1

2α1

∥∥δv(t)∥∥22.
Combining the above inequalities and (5.4.15), it follows that

∥µ(t+1)∥22−∥µ(t)∥22+(1−θ)σ∆t
(∥∥∇+

h µ(t+1)
∥∥2
2
−
∥∥∇+

h µ(t)
∥∥2
2

)
≤ ∆t

(M2

α1

∥∥µ(t)∥∥2
2
+

1

α1

∥∥δv(t)∥∥22).
Summing the previous inequality over t, it follows that for any t ∈ T ,

∥µ(t+ 1)∥22 ≤ γ +
M2∆t

α1

t∑
τ=0

∥∥µ(τ)∥∥2
2
,

where

γ = ∥µ0∥22 + (1− θ)σ∆t∥∇+
h µ0∥22 +

1

α1

∑
τ∈T

∆t
∥∥δv(τ)∥∥22.

We deduce from the discrete Gronwall inequality [Cla87] that

max
t∈T̃

∥∥µ(t)∥∥2
2
≤ γ + Tγ

M2∆t

α1
exp

(∑
τ∈T

M2∆t

α1

)
= γ

(
1 +

M2

α1
exp

(
M2

α1

))
.

The conclusion follows.
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We define next two constants E1 and E3, both independent of ∆t and h:

E1 = c(σ, θ,M)
(
∥mc

0∥2L∞ +
1

2
∥∇mc

0∥2L∞

)
and E3 =

c(σ, θ,M)

σ(2θ − 1)
.

A constant E2 will be introduced later on.

Lemma 5.4.11. The constants C1, C2, and C3 (as defined in (5.3.1)-(5.3.3)) satisfy the following

inequalities:

C1 ≤ E1h
d, C2 ≤

√
C1 ≤ E

1/2
1 hd/2, C3 ≤ E3. (5.4.16)

As a consequence, for the constants D1 and D2 defined in (5.3.4), we have

D1 ≤ E1L
c
f , D2 ≤ (1 + Lc

f )

√
2E

3/2
1 E3Lc

f

αc
h−d/4. (5.4.17)

Proof. The condition (CFL) implies that

d(1− θ)σ∆t ≤ h2

2
≤ 1

2
. (5.4.18)

We let the reader verify that

∥m0∥22 + (1− θ)σ∆t∥∇+
hm0∥22 ≤

(
∥mc

0∥2L∞ + d(1− θ)σ∆t∥∇mc
0∥2L∞

)
hd.

Combining the above two estimates, we deduce that

∥m0∥22 + (1− θ)σ∆t∥∇+
hm0∥22 ≤

(
∥mc

0∥2L∞ +
1

2
∥∇mc

0∥2L∞

)
hd.

Using this inequality in Lemma 5.4.10, applied with δv(t) = 0 and µ0 = m0, we obtain the estimate

of C1. Then, the estimate of C2 is deduced from Hölder’s inequality. The estimate of C3 follows

from equality (5.2.8) and Lemma 5.4.10 by taking µ0 = 0 and δv = (v1 − v2)m1. Finally, (5.4.17)

follows from (5.3.4) and the previous estimates.

Proof of Theorem 5.4.5. Inequality (5.4.6) directly follows from Proposition 5.3.1 and from the

estimate D1 ≤ E1L
c
f , with Cθ = 8E1L

c
f . Then, using Lemma 5.3.5 and the estimate of D2 obtained

in (5.4.17), we deduce that

∥uk − uh∥∞,∞ + ∥mk −mh∥∞,2 ≤ D2
√
γk ≤ 4E1L

c
f (1 + Lc

f )

√
E1E3

αc

1√
khd/2

.

Recall that C∗ was introduced in Theorem 5.4.3. The inequalities in (5.4.7) hold true with

C̄θ = max

{
4E1L

c
f (1 + Lc

f )

√
E1E3

αc
, C∗

}
.

The theorem is proved.
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5.4.4 Proof of the linear rate of convergence

We prove in this subsection Theorem 5.4.9. Assumptions A-D are supposed to be satisfied all

along the subsection, as well as the condition (CFL). At a technical level, we look for a more

precise estimate of the constant C2 (see Lemma 5.4.22), using an ℓ∞-stability result for the map

FPθ ◦ Vθ ◦ HJBθ (see Lemma 5.4.21), whose proof is inspired from the continuous case (see for

example [CL18a, Lem. 5.3]). Our analysis begins with a series of technical lemmas which will allow

us to establish the semi-concavity of the value function.

Definition 5.4.12. [Semi-concave functions on S] A function l : S → R is said to be L-semi-concave

if

l (x) ≥ l(x+ y) + l(x− y)

2
− L∥y∥2, ∀x, y ∈ S. (5.4.19)

Lemma 5.4.13. Let L, L1, and L2 be positive constants. The following statements hold:

1. Let l1 : S → R be L1-semi-concave and l2 : S → R be L2-semi-concave. For any λ1, λ2 ≥ 0,

the function λ1l1 + λ2l2 is (λ1L1 + λ2L2)-semi-concave.

2. Let {lω : S → R}ω∈Ω be a family of L-semi-concave functions. Let l : S → R, l(x) = infω∈Ω lω(x).

Suppose that for all x ∈ S, it holds that l(x0) > −∞. Then l is L-semi-concave.

Proof. The first point is obtained by the definition (5.4.19) and the non-negativity of λ1 and λ2.

Let us prove the second point. Let x0 ∈ S. We have l(x0) > −∞. Then for any ϵ > 0, there exists

ωϵ ∈ Ω such that

l(x0) ≥ lωϵ
(x0)− ϵ ≥ lωϵ

(x0 + y) + lωϵ
(x0 − y)

2
− L∥y∥2 − ϵ ≥ l(x0 + y) + l(x0 − y)

2
− L∥y∥2 − ϵ,

where the second inequality follows from the semi-concavity of lωϵ
. We deduce the L-semi-concavity

at the point x0 by the arbitrariness of ϵ.

Lemma 5.4.14. The functions ℓ, f , and g, defined in (5.4.3), are Lc-semi-concave with respect to

x.

Proof. The semi-concavity of ℓ and g is a direct consequence of their definitions in (5.4.3). Let us

prove the semi-concavity of f . By the definition of f in (5.4.3), taking any t ∈ T , m ∈ P(T , S),

and x, y ∈ S, we have

f(t, x+ y,m) + f(t, x− y,m)

=
1

hd

∫
z∈Bh(x+y)

f c(t, z,Rh(m))dz +
1

hd

∫
z∈Bh(x−y)

f c(t, z,Rh(m))dz

=
1

hd

∫
z∈Bh(0)

f c(t, x+ y + z,Rh(m)) + f c(t, x− y + z,Rh(m))dz

≤ 1

hd

∫
z∈Bh(0)

2f c(t, x+ z,Rh(m)) + 2Lc∥y∥2dz

=
1

hd

∫
z∈Bh(x)

2f c(t, z,Rh(m))dz + 2Lc∥y∥2 = 2f(t, x,m) + 2Lc∥y∥2.

The conclusion follows.
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Definition 5.4.15. Let A be a function from R(S) to R. We say that A is translation invariant if

for any X ∈ R(S) and any y ∈ S,

A(X(·)) = A(X(· − y)).

Lemma 5.4.16. Suppose that X,Y ∈ R(S) satisfy the following equation for some c > 0:

(Id− c∆t∆h)Y = X. (5.4.20)

Let A : R(S) → R be a translation invariant function. We have the following statements:

• If A is convex and l.s.c, then A(Y ) ≤ A(X).

• If A is concave and u.s.c, then A(Y ) ≥ A(X).

Proof. For any Z ∈ R(S) and y ∈ S, we define τyZ ∈ R(S) by

τyZ(·) = Z(· − y).

Let γ = c∆t/h2. We define SX : R(S) → R(S),

SX(µ) =
1

1 + 2dγ

X + γ

d∑
j=1

(
τhejµ+ τ−hejµ

) .

By the proof of [BLP22, Lemma 2.6], SX is a contraction mapping and Y is the fixed point of SX .

Suppose that A is l.s.c. and convex. Suppose that µ ∈ R(S) satisfy A(µ) ≤ A(X). By the

convexity of A, we have

A(SX(µ)) ≤ 1

1 + 2dγ

A(X) + γ

d∑
j=1

(
A(τhejµ) +A(τ−hejµ)

)
=

1

1 + 2dγ

A(X) + γ

d∑
j=1

(A(µ) +A(µ))

 ≤ A(X),

where the second line follows from the translation invariance of A. Therefore, A(SkX(X)) ≤ A(X)

for any k ≥ 1. Since Y = limk→∞ SkX(X), by the lower-semi-continuity of A, we have

A(Y ) ≤ lim inf
k→∞

A(SkX(X)) ≤ A(X).

For the case where A is u.s.c and concave, it suffices to apply the previous result to −A.

Lemma 5.4.17. Let X,Y ∈ R(S) satisfy (5.4.20). Then, the following statements hold.

1. Maximum/minimum principle:

min
x∈S

X(x) ≤ min
x∈S

Y (x) ≤ max
x∈S

Y (x) ≤ max
x∈S

X(s).
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2. Conservation of the mass: ∑
x∈S

Y (s) =
∑
x∈S

X(s).

3. Conservation of the Lipschitz constant: If X(x) is L-Lipschitz, then Y (x) is L-Lipschitz.

4. Conservation of the semi-concavity constant: If X(x) is L-semi-concave, then Y (x) is L-semi-

concave.

Proof. We use Lemma 5.4.16 for the proof. The key point is the choice of the translation invariant

function A in Lemma 5.4.16. Keep in mind that the maximum (resp. minimum) of a family of

linear functions is l.s.c. and convex (resp. u.s.c. and concave) in finite dimensions.

For point (1), it suffices to take A(X) = minx∈S{X(x)} and A(X) = maxx∈S{X(x)}. For point
(2), we take A(X) =

∑
x∈S X(x). For point (3), we take

A(X) = max
x∈S

max
y∈S,y ̸=0

X(x+ y)−X(x)

∥y∥
.

Finally, for point (4), we take

A(X) = max
x∈S

max
y∈S,y ̸=0

X(x+ y) +X(x− y)− 2X(x)

∥y∥2
.

The conclusion follows.

Lemma 5.4.18 (Semi-concavity of the value function). Let Assumptions A, D(1) and condition

(CFL) hold true. Then for any m ∈ P(T̃ , S), the unction u = HJBθ(m) is 3Lc-semi-concave with

respect to x.

Proof. Observe that HJBθ(m) is equivalent to the formulation below:

(Id− θσ∆t∆h)u(t+ 1/2) = u(t+ 1);

u(t, x) = ∆t inf∥ω∥≤M

{
f(t, x,m(t)) + ℓ(t, x, ω) +

〈
ω,∇hu(t+ 1/2, x)

〉}
+
(
Id+ (1− θ)σ∆t∆h

)
u(t+ 1/2)(x), ∀x ∈ S;

u(T, x) = g(x), ∀x ∈ S.

(5.4.21)

We prove the lemma by induction. For t = T , by the terminal condition, it is obvious that

u (T, x) ≥ u(T, x+ y) + u(T, x− y)

2
− Lc∥y∥2, ∀x, y ∈ S.

Suppose that for some t ∈ T , we have

u (t+ 1, x) ≥ u(t+ 1, x+ y) + u(t+ 1, x− y)

2
− (2(T − 1− t)∆t+ 1)Lc∥y∥2, ∀x, y ∈ S.

Since u(t+ 1) and u(t+ 1/2) satisfy the implicit scheme (5.4.20), by Lemma 5.4.17(4), we have

u (t+ 1/2, x) ≥ u(t+ 1/2, x+ y) + u(t+ 1/2, x− y)

2
− (2(T − 1− t)∆t+ 1)Lc∥y∥2, ∀x, y ∈ S.
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Let r′ = (1− θ)σ∆t/h2. The second equation in (5.4.21) can be written as follows:

u(t, x) = inf
∥ω∥≤M

lω(t, x),

where

lω(t, x) :=(1− 2dr′)u(t+ 1/2, x) +

d∑
i=1

(
r′ +

ωi

2h

)
u(t+ 1/2, x+ hei)

+

d∑
i=1

(
r′ − ωi

2h

)
u(t+ 1/2, x− hei) + ∆t(f(t, x,m(t)) + ℓ(t, x, ω)).

By condition (CFL), the coefficients of the above equation are positive for any ∥w∥ ≤ M . Then by

Lemma 5.4.13(1), the semi-concavity of u(t+1/2, ·), f , and ℓ, we have that lω is (2(T −t)∆t+1)Lc-

semi-concave. Since u(t, x) > −∞ for any x ∈ S, we deduce from Lemma 5.4.13(2) that

u(t, x) ≥ u(t, x+ y) + u(t, x− y)

2
− (2(T − t)∆t+ 1)Lc∥y∥2, ∀x, y ∈ S.

The conclusion follows by induction.

We have the following regularity result for the discrete Hamiltonian H (defined in (5.4.4)).

Lemma 5.4.19. Let Assumptions A and D(2) hold true. Then, for any (t, x) ∈ T × S and

∥p∥ ≤
√
d(Lc

ℓ + Lc
f + Lc

g),

H(t, x, p) =

d∑
i=1

Hc
i (t∆t, x, pi), Hp(t, x, p) =

(
∂Hc

i

∂pi
(t∆t, x, pi)

)d

i=1

, (5.4.22)

where pi is the i-th coordinate of p and

Hc
i (t, x, pi) = sup

vi

−vipi − ℓci (t, x, vi). (5.4.23)

Moreover, ∂Hc
i

∂pi
(t∆t, x, pi) is Lc

ℓ/α
c-Lipschitz with respect to x.

Proof. Equality (5.4.22) is from [BLP22, Lemma 5.1] and the separable form of ℓc. The Lipschitz

continuity of ∂Hc
i

∂pi
is proved with the same argument as the one the proof of [BLP22, Lemma 2.7].

Lemma 5.4.20 (Lipschitz continuity of the value function). Let Assumption A and condition

(CFL) hold true. For any m ∈ P(T̃ , S), let u = HJBθ(m) and v = Vθ(u). Then u is (Lc
ℓ+Lc

f+Lc
g)-

Lipschitz with respect to x and ∥v∥∞,∞ ≤ M .

Proof. See [BLP22, Lemma 4.3].

Lemma 5.4.21 (ℓ∞-stability). Let Assumptions A, D and condition (CFL) hold true. Then,

sup
µ∈P(T̃ ,S)

∥FPθ ◦Vθ ◦HJBθ(µ)∥∞,∞ ≤ exp

(
d(Lc

ℓ + 6Lc)

αc

)
∥m0∥∞.
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Proof. Let µ ∈ P(T̃ , S), let u = HJBθ(µ), let v = Vθ(u), and let m = FPθ(v). Observe that

m = FPθ(v) is equivalent to the formulation below:
m(t+ 1/2) =

(
Id+ (1− θ)σ∆t∆h

)
m(t)−∆tdivh

(
v(t)m(t)

)
;

(Id− θσ∆t∆h)m(t+ 1) = m(t+ 1/2);

m(0) = m0.

(5.4.24)

Let us first compare ∥m(t + 1/2, ·)∥∞ and ∥m(t + 1, ·)∥∞. Since m(t + 1) and m(t + 1/2) satisfy

the implicit scheme (5.4.20), by Lemma 5.4.17(1), we have

∥m(t+ 1, ·)∥∞ ≤ ∥m(t+ 1/2, ·)∥∞. (5.4.25)

Then, we compare ∥m(t, ·)∥∞ and ∥m(t+ 1/2, ·)∥∞. Let r′ = (1− θ)σ∆t/h2. The first equation in

(5.4.24) shows that for any (t, x) ∈ T × S,

m(t+ 1/2, x) = (1− 2dγ′)m(t, x) +

d∑
i=1

(
γ′ −∆t

vi(t, x+ hei)

2h

)
m(t, x+ hei)

+

d∑
i=1

(
γ′ +∆t

vi(t, x− hei)

2h

)
m(t, x− hei).

Condition (CFL) implies that all the coefficients in the above equation are positive. Therefore, for

any (t, x) ∈ T × S,

m(t+1/2, x) ≤

(
1−∆t

d∑
i=1

vi(t, x+ hei)− vi(t, x− hei)

2h

)
∥m(t, ·)∥∞ = (1−∆tdivhv) ∥m(t, ·)∥∞.

(5.4.26)

By Lemma 5.4.20 and Lemma 5.4.17(3), we have ∥∇hu(t + 1/2, x)∥ ≤
√
d(Lc

ℓ + Lc
f + Lc

g) for any

(t, x) ∈ T × S. Then, formula (5.4.22) implies that

−divhv(t, x) =
1

2h

d∑
i=1

∂Hc
i

∂pi
(t∆t, x+ hei, (∇hu(t+ 1/2, x+ hei))i)

− ∂Hc
i

∂pi
(t∆t, x− hei, (∇hu(t+ 1/2, x− hei))i)

≤
dLc

ℓ

αc
+

1

2h

d∑
i=1

∂Hc
i

∂pi
(t∆t, x, (∇hu(t+ 1/2, x+ hei))i)

− ∂Hc
i

∂pi
(t∆t, x, (∇hu(t+ 1/2, x− hei))i),

(5.4.27)

where the last inequality follows from the Lipschitz-continuity of ∂Hc
i

∂pi
with respect to x (established

in Lemma 5.4.19). Since Hc
i is convex on pi, the derivative ∂Hc

i

∂pi
is non-decreasing with respect to

pi. Furthermore, we know that ∂Hc
i

∂pi
is 1/αc-Lipschitz on pi by the strong convexity of ℓc. It follows

that for any (t, x) ∈ Q and p1i , p
2
i ∈ R,

∂Hc
i

∂pi
(t, x, p1i )−

∂Hc
i

∂pi
(t, x, p2i ) ≤ max

{
0,

1

αc
(p1i − p2i )

}
.
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Applying the above inequality to (5.4.27), we have

− divhv(t, x) ≤
dLc

ℓ

αc
+

1

2αch

d∑
i=1

max {0, (∇hu(t+ 1/2, x+ hei))i − (∇hu(t+ 1/2, x− hei))i}

=
dLc

ℓ

αc
+

1

αc

d∑
i=1

max

{
0,

u(t+ 1/2, x+ 2hei) + u(t+ 1/2, x− 2hei)− 2u(t+ 1/2, x)

4h2

}
.

By Lemma 5.4.18, for any (t, x, y) ∈ T × S2 and y ̸= 0, we have

u(t+ 1/2, x+ y) + u(t+ 1/2, x− y)− 2u(t+ 1/2, x)

∥y∥2
≤ 6Lc.

Taking y = 2hei, it follows that

−divhv(t, x) ≤
d(Lc

ℓ + 6Lc)

αc
. (5.4.28)

Combining (5.4.25), (5.4.26), and (5.4.28), we have

∥m(t+ 1, ·)∥∞ ≤
(
1 + ∆t

d(Lc
ℓ + 6Lc)

αc

)
∥m(t, ·)∥∞.

Since ∆t = 1/T , the conclusion follows.

We are now ready to derive an improved estimate of C2 (in comparison with the one in (5.4.16)).

We define the constant E2 as follows:

E2 = exp

(
d(Lc

ℓ + 6Lc)

αc

)
∥mc

0∥L∞ .

It is independent of ∆t and h.

Lemma 5.4.22. The constants C1, C2, and C3 defined in (5.3.1)-(5.3.3) satisfy the following

inequalities:

C1 ≤ E1h
d, C2 ≤ E2h

d, C3 ≤ E3. (5.4.29)

As a consequence, for the constants defined in (5.3.4), we have

D1 ≤ E1L
c
f , D2 ≤ (1 + Lc

f )

√
2E1E2E3Lc

f

αc
, c ≤ cθ := max

{
1− αc

4E2E3Lc
f

,
1

2

}
. (5.4.30)

Proof. The estimates of C1 and C3 are the same as in (5.4.16), and the estimate of C2 is a direct

consequence of Lemma 5.4.21 and the regularity of mc
0. Then (5.4.30) is deduced from (5.4.29) and

(5.3.4).

Proof of Theorem 5.4.9. Inequality (5.4.10) holds true with Cθ = 4E1L
c
f , as a direct consequence

of Proposition 5.3.1. Inequality (5.4.11) is established in similar fashion to inequality (5.4.7). It

holds true with

C̄θ = max

{
2E1L

c
f (1 + Lc

f )

√
2E2E3

αc
, C∗

}
.

The theorem is proved.
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5.4.5 Discussion on convergence constants

In this subsection, we study the dependence of the convergence constants Cθ and cθ (appearing

in Theorem 5.4.9) with respect to the viscosity parameter σ and the Lipschitz constant Lc
f of the

coupling term f c. First, let us recall the constant c(σ, θ,M), introduced in (5.4.14),

c(σ, θ,M) = 1 +
M2

σ(2θ − 1)
exp

(
M2

σ(2θ − 1)

)
.

It is not difficult to see that c(σ, θ,M) decreases and converges to 1 as σ goes to +∞. The constant

E2 is independent of σ and Lc
f by its definition (assuming that the change of Lc

f has no impact on

the semi-concavity constant of f c).

By the proofs in the previous subsection, we can give the following explicit formulas of Cθ and

cθ in Theorem 5.4.9 (without using E1 and E3):

Cθ = 4c(σ, θ,M)Lc
f

(
∥mc

0∥2L∞ +
1

2
∥∇mc

0∥2L∞

)
, cθ = max

{
1− σαc(2θ − 1)

4c(σ, θ,M)Lc
fE2

,
1

2

}
.

(5.4.31)

Lemma 5.4.23. For the constants in (5.4.31), we have the following.

1. Fix Lc
f and θ. There exists σ∗ > 0 and C∗

1 > 0, such that for any σ ≥ σ∗, we have

Cθ ≤ C∗
1

(
∥mc

0∥2L∞ +
1

2
∥∇mc

0∥2L∞

)
, cθ =

1

2
.

2. Fix σ and θ. There exists L∗ > 0 and C∗
2 > 0, such that for any Lc

f ≤ L∗, we have

Cθ ≤ C∗
2

(
∥mc

0∥2L∞ +
1

2
∥∇mc

0∥2L∞

)
, cθ =

1

2
.

Proof. Point (1) follows from the monotonicity of c(σ, θ,M) w.r.t. σ and the fact that M is inde-

pendent of σ. We can take C∗
1 = 5Lc

f for example. To prove (2), we first notice that if Lc
c ≤ 1, then

M ≤ M∗, where M∗ is defined by (5.4.2), replacing Lc
f with 1. The monotonicity of c(σ, θ,M)

w.r.t. M shows that c(σ, θ,M) ≤ c(σ, θ,M∗). Since c(σ, θ,M∗)Lc
f goes to 0 as Lc

f goes to 0, we

prove the existence of L∗, and C∗
2 = 4c(σ, θ,M∗)L∗.

From the proof of Proposition 5.3.1, we know that cθ = 1/2 implies that λk = 1 for any k ≥ 0.

In other words, Algorithm 5.2 is equivalent to the so-called best-response iteration, i.e., for any

k ≥ 0,

(mk+1, wk+1) = BRθ(m
k).

Combined with Lemma 5.4.23, we have the following observations.

1. High-viscosity case: let Lc
f be fixed, if σ is large enough, then the best response iteration has

a linear convergence rate with a factor 1/2.

2. Weak-coupling case: let σ be fixed, if Lc
f is small enough, then the best response iteration has

a linear convergence rate with a factor 1/2.
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5.5 Numerical tests

5.5.1 Problem formulation

In this section, we consider an example of (MFG) in dimension one. We identify the torus with

the segment [0, 1]. The initial distribution is concentrated around the point 0.5, the running cost

is a quadratic function of the control, and the terminal cost g(x) decreases to 0 as x goes to zero.

Additionally, we consider a non-local congestion term which penalizes the density of the agents

within the intervals [0.2, 0.3] and [0.7, 0.8]. We will refer to [0.2, 0.3] ∪ [0.7, 0.8] as the congestion-

sensitive zone.

To model this situation, let us introduce the functions φA,k ∈ C∞(R) and ϕA,k,l1,l2 ∈ C∞(R),
parameterized by A > 0, k > 0, 0 < l1 < l2 < 1 and defined by

φA,k(x) =

{
Ae

− 1

1−(kx)2 , if |x| < 1
k ,

0 otherwise,
ϕA,k,l1,l2(x) =


φA,k(x− l1), if x < l1,

Ae−1 if l1 ≤ x ≤ l2,

φA,k(x− l2), otherwise.

The data of our one-dimensional MFG is parameterized by five positive numbers a1, a2, k0, k1, and

k2 and defined by: For any (t, x) ∈ Q, any v ∈ R, and any m ∈ D(T),

• ℓc(t, x, v) = 1
2v

2;

• mc
0(x) = ϕ1,k0,0.49,0.51(x)/∥ϕ1,k0,0.49,0.51∥L1 ;

• gc(x) = ϕa1,k1,1/k1,1−1/k1
(x);

• f c(t, x,m) = hc(x)
∫ 1
0 hc(y)m(y)dy, where hc(x) = ϕa2,k2,0.24,0.25(x) + ϕa2,k2,0.75,0.76(x).

We take a1 = 2, a2 = 20, k0 = 10, k1 = 3, and k2 = 20. The functions mc
0, g

c, and hc are shown in

Figure 5.1. Moreover, we fix the viscosity coefficient σ = 0.02 .
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Figure 5.1: Data of the one-dimensional MFG with a1 = 2, a2 = 20, k0 = 10, k1 = 3, and k2 = 20.
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We can verify that this one-dimensional MFG satisfies Assumptions A, C, D, with the constants

in Assumption A satisfying

αc = 1, Lc
ℓ = 0, Lc

g ≤ a1k1, Lc
f ≤ a22k2

e
.

Furthermore, [BLP22, Assumption C, Appx. B] holds true for this example, which implies Assump-

tion B for any r < 1 by [BLP22, Thm. B.2].

5.5.2 Results

For the discretization of the system, we first choose the parameters

θ = 0.8, h = 1/300, and ∆t =
h2

2(1− θ)σ
= 1/720,

and we present the outcome of Algorithm (Theta-mfg) after 1000 iterations of the GFW algorithm,

for step-sizes determined by line-search. For a better interpretation of the result, we also present the

solution of the problem obtained by removing the congestion term f c, which is a simple stochastic

optimal control problem that can be solved in one iteration of the GFW method.

We present the equilibrium distribution of the agents in Figure 5.2a (without congestion term

on the left, with congestion on the right). Note that the vertical axis corresponds to the time

variable and is oriented downwards. We also present the restriction of the equilibrium distribution

to the time interval [0.2, 0.8] in Figure 5.2b, with another color scale. As the time progresses, the

agents are transported towards the target points 0 and 1. The congestion term leads to a reduced

density in the congestion-sensitive zone: We see two dark blue vertical areas corresponding to this

zone. We also see that at time t ≈ 0.35, a significant part of the agents is still located around 0.5

and has not crossed yet the sensitive zone, in comparison with the case without f c. Similarly, we

present the optimal control v in Figure 5.3 (without congestion term on the left, with congestion

term on the right). Unsurprisingly, the agents must have a high velocity (in absolute value) in the

sensitive zone. It is interesting to see that for t close to zero and for the agents not that close to

0.5, there is an incentive to “rush” to the sensitive zone. Finally, we display the value functions for

the two problems in Figure 5.3. In the present setting, note that the optimal control is the discrete

gradient of the value function.

We next investigate the convergence of Algorithm 5.2 (for the same discretization parameters

as above). We execute Algorithm 5.2 with 1000 iterations, utilizing the open-loop choice λk =

2/(k+2) and the closed-loop choice (5.3.6) (referred to as the line-search method). We present the

convergence results in Figure 5.4. Evaluating γk, equal to J (mk, wk) − J (m̄, w̄) by definition, is

difficult since the exact solution (m̄, w̄) is not known. On the other hand, the quantity γ̄k, which

serves as an upper bound of γk by (5.3.11) can directly computed in view of its definition, based

on (mk, wk) and (m̄k, w̄k). Therefore, instead of evaluating γk, we display the evolution of γ̄k, see

Figure 5.4. The two figures of Figure 5.4 are the same, with different scales for the horizontal

axis. In the left part of Figure 5.4, we see that Algorithm 5.2 exhibits a convergence rate of order

O(1/k4) for the choice λk = 2/(k+2), which is better than the theoretical convergence rate O(1/k)
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(a) Comparison of distributions in the time horizon [0, 1]: the case without fc (left), the case with fc (right).

(b) Comparison of distributions in the time horizon [0.2, 0.8]: the case without fc (left), the case with fc (right).

Figure 5.2: Distributions
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(a) Comparison of optimal controls: the case without fc (left), the case with fc (right).

(b) Comparison of value functions: the case without fc (left), the case with fc (right).

Figure 5.3: Optimal controls and value functions
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obtained from (5.3.5). In the right part of Figure 5.4, a linear convergence rate can be observed for

the line-search case, as predicted in (5.3.7).

Finally, we present numerical results concerning the mesh-independence of Algorithm 5.2 applied

to (Theta-mfg). To see this, we discretize the state space with steps sizes: h = 1/250, h = 1/500,

and h = 1/1000. The corresponding step sizes for the time space are: ∆t = 1/500, ∆t = 1/2000,

and ∆t = 1/8000. The convergence results associated with these discretization steps are displayed

in Figure 5.5. From the left part of Figure 5.5, it can be observed that the convergence rate of

Algorithm 5.2 remains unaffected by the choice of h when λk = 2/(k + 2). The right part of

Figure 5.5 shows that the convergence rate of Algorithm 5.2 can even benefit from a refinement

of the discretization parameters in the line-search case. These results are consistent with mesh-

independence properties outlined in Theorems 5.4.5 and 5.4.9.
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Figure 5.4: Convergence results of Algorithm 5.2.
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Figure 5.5: Mesh-independence property of Algorithm 5.2.
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Titre : Analyse numérique et méthodes pour les problèmes d’optimisation de type champ moyen

Mots clés : Commande optimale ; Champ moyen ; Equation de Fokker-Planck ; Algorithme de Frank-Wolfe ; Schéma de
différences finies

Résumé : Cette thèse traite de l’analyse numérique et
des méthodes pour les problèmes d’optimisation et les
jeux potentiels impliquant un grand nombre d’agents. Nous
considérons des modèles asymptotiques obtenus par une
approximation de champ moyen ; ils présentent des pro-
priétés de convexité d’un grand intérêt. Nous nous concen-
trons sur les problèmes d’optimisation agrégative de grande
dimension, pour lesquels la fonction coût dépend d’un terme
d’agrégat, qui est la somme des contributions des agents à
un bien commun. Nous nous concentrons également sur
des modèles potentiels de jeux à champ moyen (MFG), qui
sont des modèles asymptotiques pour les jeux différentiels.
La thèse comporte quatre contributions.
1) Nous proposons une relaxation de type champ moyen
pour les problèmes d’optimisation agrégative, obtenue par
randomisation. Une estimation d’ordre O(1/N) du saut de
relaxation est démontrée, où N représente le nombre d’indi-
vidus. Nous développons et prouvons la convergence d’une
variante stochastique de l’algorithme de Frank-Wolfe, ap-
pelée algorithme SFW, pour résoudre le problème agrégatif
original.
2) Nous formulons une classe générale de problèmes d’op-
timisation impliquant un ensemble de distributions de pro-

babilités avec une marginale prescrite, égale à m. Nous les
appelons problèmes d’optimisation à champ moyen (MFO).
Notre cadre contient les problèmes agrégatifs relaxés ainsi
que certains MFGs potentiels en formulation lagrangienne.
Nous démontrons un résultat de stabilité par rapport à
une perturbation de m. Nous en déduisons une estima-
tion d’erreur pour une méthode numérique reposant sur une
discrétisation de m et l’algorithme SFW.
3) Nous introduisons un nouveau schéma de différences
finies, appelé thêta-schéma, pour résoudre les MFG mo-
notones du second ordre. Nous donnons un résultat de
convergence précis pour le thêta-schéma, d’ordre O(hr),
où h est le pas de discrétisation en espace et r ∈ (0, 1)
est lié à la continuité de Hölder de la solution du problème
continu et de certaines de ses dérivées.
4) Nous considérons la résolution de MFGs potentiels du
second ordre avec l’algorithme de Frank-Wolfe généralisé,
combiné avec le thêta-schéma. Nous prouvons des taux de
convergence sous-linéaire et linéaire pour cet algorithme.
Plus important encore, ces taux possèdent la propriété
d’indépendance au maillage, c’est-à-dire que les constantes
de convergence sont indépendantes des paramètres de
discrétisation.

Title : Numerical analysis and methods for mean-field-type optimization problems

Keywords : Optimal control ; Mean fields ; Fokker-Planck equation ; Frank-Wolfe algorithm ; Finite difference scheme

Abstract : This thesis deals with the numerical analysis
and methods for optimization problems and potential games
involving a large number of agents. We consider asymptotic
models obtained through a mean-field approximation ; they
exhibit convexity properties of great interest. We focus on
large-scale aggregative optimization problems, for which the
objective function depends on an aggregate term, which is
the sum of the contributions of the agents to some common
good. We also focus on potential Mean Field Game (MFG)
models, which are limit models for differential games. The
thesis consists of four contributions.
1) We propose a mean-field relaxation for aggregative opti-
mization problems, obtained by randomization. The relaxa-
tion gap is estimated to be of order O(1/N), where N re-
presents the number of individuals. We develop and prove
the convergence of a stochastic variant of the Frank-Wolfe
algorithm, called SFW algorithm, to address the original ag-
gregative problem.
2) We formulate a general class of optimization problems
involving a set of probability distributions with a prescribed
marginal m. We call them Mean Field Optimization (MFO)

problems. Our framework contains the relaxed aggregative
problems as well as some Lagrangian potential MFGs. We
demonstrate a stability result with respect to perturbations
of m. It enables us to derive an error estimate for a nume-
rical method relying on a discretization of m and the SFW
algorithm.
3) We introduce a novel finite-difference scheme, called
theta-scheme, for solving monotone second-order MFGs.
We give a precise convergence result for the theta-scheme,
of order O(hr), where h is the step length of the space va-
riable and r ∈ (0, 1) is related to the Hölder continuity of the
solution of the continuous problem and some of its deriva-
tives.
4) We consider the resolution of potential second-order
MFGs with the generalized Frank-Wolfe algorithm, combi-
ned with the theta-scheme. We prove a sublinear and a
linear rate of convergence for this algorithm. More impor-
tantly, these rates possess the mesh-independence pro-
perty, i.e., the convergence constants are independent of
the discretization parameters.

Institut Polytechnique de Paris
91120 Palaiseau, France


	Introduction
	Elements of convex analysis and mean-field-game models
	Convex optimization and the FW algorithm
	Second-order MFGs
	Discrete MFGs
	MFO problems and Lagrangian MFGs

	Contributions of the thesis
	Large-scale nonconvex optimization: randomization, gap estimation, and numerical resolution
	Mean field optimization problems: stability results and Lagrangian discretization
	Error estimates of a theta-scheme for second-order mean field games
	A mesh-independent method for second-order potential mean field games


	Large-scale nonconvex optimization: randomization, gap estimation, and numerical resolution
	Introduction
	Notations

	Relaxation by randomization and gap estimation
	Assumptions and constants
	The randomized problem
	Selection method

	Stochastic Frank-Wolfe algorithm
	Assumptions
	Basic Frank-Wolfe algorithm
	Stochastic Frank-Wolfe algorithm
	Proof of Theorem 2.3.7 and comments
	A speed-up of the SFW algorithm
	Stopping time strategy
	Distributed algorithm

	Refined gap estimates
	Nonconvexity measure and gap estimate
	Duality and price of decentralization

	Comments on numerical aspects and examples
	Literature comparison
	Social welfare example
	Discussion on the case of finite feasible sets
	Aggregative optimal control
	Supervised learning problems

	Numerical test for MIQP
	Numerical test for discrete aggregative optimal control problems
	Reformulation
	Assumptions
	Resolution of the sub-problems
	Numerical simulations on a battery charging problem

	Conclusion
	Appendix
	Concentration inequalities and other technical lemmas


	Mean field optimization problems: stability results and Lagrangian discretization
	Introduction
	Preliminaries
	Results in measure theory
	Results about set-valued functions
	Data setting and technical lemmas

	Primal mean field optimization problem
	Assumptions and constants
	First-order-optimality condition
	Existence of a solution under tightness assumptions
	Stability of primal problem

	Dual problem
	Strong duality
	Stability of the dual problem
	Directional derivative of the value function

	Algorithms for the discretized MFO problem
	Discretization
	Frank-Wolfe algorithm
	Stochastic Frank-Wolfe algorithm

	Numerical simulation
	Potential problem
	Numerical simulations

	Appendix
	Proof and Lemma 3.3.3


	Error estimates of a theta-scheme for second-order mean field games
	Introduction
	The theta-scheme and the convergence result
	Preliminaries
	Notations for the finite-difference scheme
	The theta-scheme and the main result

	General properties of discrete mean field games
	Notations and assumptions
	The discrete MFG model
	A fundamental inequality
	Two proofs of the fundamental inequality

	Stability analysis for the theta-scheme
	Reformulation of the theta-scheme as a discrete MFG
	Energy estimate for the discrete FP equation

	Consistency analysis of the theta-scheme
	Consistency error
	Proof of Theorem 4.2.10

	Appendix
	Technical lemmas and proofs
	On the regularity of the continuous MFG system
	Construction of a numerical Hamiltonian


	A mesh-independent method for second-order potential mean field games
	Introduction
	Context and main contributions
	Notation

	Potential discrete mean field games
	Problem formulation
	Potential formulation

	Generalized Frank-Wolfe algorithm: the discrete case
	Algorithm and convergence results
	Convergence analysis

	Mesh-independent convergence of the GFW algorithm for second-order MFGs
	The theta-scheme and error estimates
	GFW algorithm for the theta-scheme and main results
	Proof of the sublinear rate of convergence
	Proof of the linear rate of convergence
	Discussion on convergence constants

	Numerical tests
	Problem formulation
	Results



