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Abstract

In this thesis, we study geometrical aspects of nonholonomic systems in connection
with the hamiltonization problem. In particular, we study the classical example of
an homogeneous ball rolling without sliding in the interior side of a convex surface of
revolution from a geometric perspective and we observe that it is hamiltonizable after
a reduction process by a Lie group.

Indeed, we compute the nonholonomic bracket, which is an almost Poisson bracket
describing the dynamics, and we observe that the associated reduced bracket, defined
on the reduced space, is not Poisson. Afterwards, following [5, 6, 8], we find a gauge
transformation that preserves the dynamics and as a consequence we compute a new
reduced bracket that is Poisson and describes the reduced dynamics. Moreover, we
observe that this new bracket is rank-two on a dense set of the reduced phase space
and has a symplectic foliation determined by the level sets of two Casimirs induced
by first integrals of the system that are horizontal gauge momenta [41]. From the
theoretical point of view, we extendend some results given in [6] so that the current
example fits in that framework.
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Resumo

Nesta tese estudamos aspectos geométricos de sistemas não-holônomos en conexão
com o problema de hamiltonização. Em particular, estudamos o exemplo clássico
de uma bola homogênea rolando sem deslizar no lado interior de uma superf́ıcie de
revolução convexa de um ponto de vista geométrico e observamos que é hamiltonizável
após uma redução pela ação de um grupo de Lie.

Começamos calculando o colchete não-holônomo, que é um colchete almost Pois-
son que descreve a dinâmica, e observamos que o colchete reduzido associado, definido
no espaço reduzido, não é Poisson. Logo, seguindo [5, 6, 8], encontramos uma trans-
formação de gauge que preserva a dinâmica e como consequência calculamos um novo
colchete reduzido que é Poisson e descreve a dinâmica reduzida. Alem disso, observa-
mos que esse novo colchete tem posto dois num subconjunto denso do espaço reduzido
onde tem uma folhação simplética determinada pelos conjuntos de ńıvel de dois Casi-
mires induzidos por integrais primeiras do sistema que são horizontal gauge momenta
[41]. Desde o ponto de vista teorico, generalizamos resultados dados em [6] para que
o exemplo possa ser estudado usando essas ferramentas.
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Introduction

Mechanical systems are described by positions and velocities (in Lagrangian mechan-
ics) or positions and momenta (in Hamiltonian mechanics). Sometimes not all con-
figurations of position and velocities/momenta are allowed and the system is then
called constrained. Nonholonomic systems are defined by constraints in the veloci-
ties which cannot be reduced to equations in the positions (i.e. the constraints are
not integrable). Those systems describe typically objects rolling over surfaces with
non-sliding constraints.

Standard references that develop the mathematical formalism of mechanics are
the books of Arnold [3], Abraham & Marsden [1], Marsden & Ratiu [71], Cushman &
Bates [35] and D. Holm [53, 54]. Books treating nonholonomic mechanics and related
systems are Neimark & Fufaev [76], Bloch et al. [15], Cortés [32] and Cushman,
Duistermaat & Sniatycki [36].

The problem of a homogeneous ball constrained to roll without sliding inside a
convex surface of revolution with vertical axis under the action of gravity has been
treated since Routh [79] and more recently caught the attention of reserchers studing
conserved quantities, integrability and qualitative aspects of the dynamics, [24, 40,
52, 77, 88]. See an illustration of the mechanical system in Fig. 1.

In this thesis we perform the hamiltonization of this example using tools of differ-
ential geometry and the existence of first integrals which are related to the symmetries
of the system [5, 6, 8, 47]. More precisely, we show that the reduced system is de-
scribed by a Poisson structure induced by the reduction by symmetries of an almost
Poisson bracket which is obtained by a gauge transformation of the nonholonomic

Figure 1: Ball inside a convex surface of revolution.
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bracket following the ideas of [8] and extending some of the theory in [6] so that the
current example fits in that framework.

Nonholonomic systems

From a more geometric point of view it is known that the equations of motion for a
mechanical system with nonholonomic constraints cannot be formulated as a classical
Hamiltonian system with respect to a symplectic or Poisson structure. Instead, they
are written using an almost Poisson bracket called nonholonomic bracket which fails to
satisfy the Jacobi identity [55, 69, 86]. More precisely, let Q denote the configuration
manifold of the mechanical system. The nonholonomic constraints are described by
a nonintegrable distribution D on Q and from the Lagrangian L : TQ → R one
constructs a triple (M, {·, ·}nh, HM), where M ⊂ T ∗M is the constraint manifold,
{·, ·}nh is the nonholonomic bracket on M and HM denotes the Hamiltonian restricted
to M. The dynamics of the nonholonomic system is given by the integral curves of the
vector field Xnh called nonholonomic vector field defined with respect to the almost
Poisson bracket {·, ·}nh,

Xnh = {·, HM}nh. (I.1)

It is worth mentioning here that the bracket {·, ·}nh is never Poisson because of the
nonintegrability of the distribution of permitted velocities D.

When the nonholonomic system admits symmetries given by the action of a Lie
group, it is possible to perform a reduction obtaining a reduced system (with fewer de-
grees of freedom). More precisely, letG denote the Lie group symmetry of the nonholo-
nomic system which means that the G-action preserves the triple (M, {·, ·}nh, HM).
By performing the reduction by the symmetry group we get the reduced triple
(M/G, {·, ·}red, Hred), where {·, ·}red is, in principle, an almost Poisson bracket. The
reduced dynamics is given by the integral curves of the vector field Xred given by

Xred = {·, Hred}red. (I.2)

There are several differences between hamiltonian dynamics and nonholonomic
dynamics. Nonholonomic systems are not variational, in the sense that equations
of motion are derived from Lagrange d’Alembert Principle and not from Hamilton’s
Principle. Conservation of energy also occurs in nonholonomic systems though, often,
these systems do not have associated momentum conservation laws as Hamiltonian
systems. In other words, the presence of symmetries does not necessarily induce first
integrals (there is no Noether Theorem). Examples of this fact are the rolling disk,
the rattleback and the snakeboard [16]. On the other hand, for Hamiltonian systems
we can assert the preservation of volume on the phase space but, again this is not the
case for nonholonomic systems [14]. This fact leads to interesting asymptotic stability
in some cases, despite energy conservation.

Finally, we see that if we are interested in the integrability of a nonholonomic
systems (in the sense of the presence of a foliation by tori of the manifold), we can-
not use Arnold-Liouville Theorem since the bracket describing the dynamics is not
Poisson[3, 35]. In this case, there are other theorems studying integrability whose
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formulations are independent of the geometric structure describing the dynamics, see
e.g. [4, 18].

The hamiltonization problem and its geometric ap-

proach

As it was observed in [24, 58, 77, 40, 46, 6, 47] in a number of examples, the re-
duced equations of motion allow a Hamiltonian formulation (sometimes after a time
reparametrization), recalling that the equations of motion for a nonholonomic system
are never hamiltonian before reduction. When this phenomenon occurs, we say that
the system is hamiltonizable. The question of whether a nonholonomic system ad-
mits a hamiltonian formulation after a reduction process is called the hamiltonization
problem, see [8, 6, 21, 22, 23, 47, 43, 57, 58, 87, 65, 87].

Recall that, from a geometric standpoint, the dynamics of a nonholonomic sys-
tem is described by the nonholonomic bracket as in (I.1) which is an almost Poisson
bracket. However, after a reduction process, the reduced bracket may become a Pois-
son bracket. Therefore, the reduced dynamics will have a hamiltonian formulation
in terms of a Poisson bracket. Hence, from a geometric perspective, we say that the
nonholonomic system is hamiltonizable if there exists a Poisson bracket describing the
reduced dynamics (in particular, if {·, ·}red is Poisson).

(M, {·, ·}nh)

Xnh = {·,HM}nh

reduction
by symmetries

��

geometric
structure

///o/o/o/o/o/o/o almost Poisson manifold

reduction
by symmetries

��

(M/G, {·, ·}red)

Xred = {·,Hred}red

///o/o/o/o/o/o/o
almost Poisson manifold?

Poisson manifold?

As we already mentioned, hamiltonian systems have strong properties that, in
general, are not satisfied by nonholonomic systems. If after a reduction process, the
reduced nonholonomic system is hamiltonian then this reduced system will have all
the known properties of hamiltonian systems. This process is central to study different
aspects of nonholonomic systems such as integrability, Hamilton-Jacobi theory, and
even numerical methods (e.g., variational integrators) [40, 19, 20, 17, 75, 32, 33, 67,
49, 50].

In this thesis we follow the techniques of [5, 6, 8, 46, 47] using gauge transformations
by a 2-form, introduced by Severa and Weinstein in [80], in order to hamiltonize our
nonholonomic system. The idea is that we use a 2-form B to generate another almost
Poisson bracket {·, ·}B on M by means of a gauge transformation. Then, if we impose
the dynamical condition that iXnh

B = 0 (see [46, 8]) the new bracket {·, ·}B will also
describe the dynamics, i.e.,

Xnh = {·, HM}B,

3



and we say that B defines a dynamical gauge transformation.

In the presence of symmetries, if {·, ·}B is G-invariant, it can be reduced to the
quotient space M/G and then, we obtain a new reduced bracket {·, ·}Bred that describes
the reduced dynamics

Xred = {·, Hred}
B
red.

It was observed in [8, 46] that the reduced brackets {·, ·}red and {·, ·}Bred may have
different properties, for example one can be Poisson while the other not. The geomet-
rical approach to hamiltonization proposed in [46] and then developed in [5, 6, 8, 47]
is to find a B so that the reduced bracket {·, ·}Bred is Poisson (or conformally Poisson,
or twisted Poisson). If such a B is found, then the reduced nonholonomic system is
described by a Poisson bracket and we say also that the system is hamiltonizable. We
illustrate the gauge transformation by a 2-form B with the following diagram:

(M, {·, ·}nh)

Not Poisson

reduction
by symmetries

��

gauge
transformation

///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o
(M, {·, ·}B)

Not Poisson

reduction
by symmetries

��

(M/G, {·, ·}red)

Xred = {·,Hred}red

Poisson? / almost Poisson?

(M/G, {·, ·}Bred)

Xred = {·,Hred}
B
red

Poisson? / almost Poisson?

(I.3)

In this thesis, we study the hamiltonization problem of the set of examples de-
scribed by a homogeneous ball rolling without sliding on a convex surface of revolution
using the approach of the diagram (I.3). In particular, we study first integrals J (1)

and J (2) induced by the presence of symmetries (called horizontal gauge momenta,
[41]) and we observe that the corresponding hamiltonian vector fields π♯nh(dJ

(1)) and

π♯nh(dJ
(2)) are not vertical with respect to the orbit projection ρ : M → M/G. We

compute a 2-form B so that π♯B(dJ (1)) and π♯B(dJ (2)) are, in fact, vertical. As a conse-
quence of the G-invariance of the first integrals J (1) and J (2) they become Casimirs of
the reduced bracket {·, ·}Bred. We use these Casimirs to prove that the reduced bracket
{·, ·}Bred is Poisson and moreover, it describes the reduced dynamics. This approach
to find a 2-form B was also studied in [6] and [47], however the present work was
done independently. In particular, we extended some of the results in [6] so that this
example fits in the theory.

Previous work on hamiltonization

One very interesting example of hamiltonization concerns the Chaplygin ball or Chap-
lygin sphere. Even though the formulation and integration of the equations of motion
dates to Chaplygin [29], the hamiltonian property of the reduced equations was only
discovered in 2001 by Borisov and Mamaev [21]. The geometric understanding of this
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example has been performed by Luis Garćıa-Naranjo [46] and his subsequent work with
P. Balseiro [8] has explicitly introduced and used the method of gauge transformation
to show the hamiltonization of the Chaplygin ball. More recently the hamiltonization
of a family of examples consisting of convex solids of revolution rolling on a plane
was proved in [6] and [47]. In particular, in [47] the authors presented a coordinate
method to find a gauge transformation so that the first integrals becomes Casimirs on
the reduced bracket.

The hamiltonization of a mechanical system is also an interesting feature because it
is related to integrability. In fact, this may have been the original motivation for Chap-
lygin to consider the problem of hamiltonization and to prove his Chaplygin reducing
multiplier Theorem [30]. Recently, Jovanovic [58] proved that the n-dimensional ver-
sion of the Chaplygin sphere problem is also hamiltonizable and integrable at the zero
level of the SO(n− 1)-moment map, and the hamiltonization was a crucial step in his
proof of integrability. Moreover, Fedorov and Jovanovic [43] also used hamiltonization
to prove the integrability of the multidimensional Veselova system.

More related to our mechanical example, Borisov, Mamaev and Kilin discovered
that a number of classical nonholonomic systems with symmetries give rise to re-
duced systems which are hamiltonian with respect to a Poisson structure after a time
reparametrization [24, 25]. In these references, rank-two Poisson structures are proven
to exist for a variety of examples in which a heavy body rolls on a surface. This in-
cludes the so-called Routh sphere (a ball rolling on a plane but where its geometric
center does not coincide with its center of mass), the disk rolling on a plane and the
sphere rolling inside a convex surface of revolution. A detailed study of the form
of these Poisson tensors has been developed in [77], where it was also observed that
time reparametrization is not necessary for rank-two bivectors. In all these cases,
the reduced systems share common features: their phase space is four-dimensional,
they possess three independent integrals of motion and their dynamics is periodic (at
least in some open dense subset of the reduced phase space). One of the integrals of
motion is the Hamiltonian of the reduced system and the other two are Casimirs of
the reduced Poisson structure. For the sphere rolling inside a convex surface of revo-
lution, the authors in [40] showed that the existence of the reduced Poisson structure
is linked to a strong property: the fact that the reduced periodic orbits are the fibers
of a locally trivial fibration. The periodicity property was already known and has
been studied by Hermans [52], who also showed that the reconstructed dynamics is
quasi-periodic on tori of dimension at most three.

Main results in this thesis

We now present the main results obtained in this thesis. In our geometric framework, a
nonholonomic system is then described by a triple (M, {·, ·}nh, HM) and the reduction
by the proper G-symmetry defines a triple (M/G, {·, ·}red, Hred). In order to verify the
failure of the Jacobi identity for the brackets {·, ·}nh and {·, ·}red, we use the Jacobiator
formulas proved in [5]. These formulas depend on the choice of a G-invariant vertical
complement of the constraints (2.3.10), that we denoted by W . In [6] was proved that,
for a proper action, a vertical complement W (of constant rank) always exists and in
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this thesis we observe that it is also possible to choose W so that it is G-invariant, see
Prop. 2.3.2.

Afterwards, in Chapter 3, we study dynamical gauge transformations by a 2-form
B and first integrals of a nonholonomic system induced by the presence of symmetries
(horizontal gauge momenta). In particular, we characterize the properties that B
has to satisfy in order to transform the horizontal gauge momenta of the system into
Casimirs of the reduced bracket {·, ·}Bred, Prop. 3.3.2. We study also the system of
equations defining the 2-form B so that, if the nonholonomic system has k G-invariant
horizontal gauge momenta (functionally independent), then the k functions become
Casimirs of the reduced bracket {·, ·}Bred.

Next, we prove that if the amount of Casimirs coincides with the rank of S :=
D∩V , where V is the vertical space associated to the G-action, then the characteristic
distribution of {·, ·}Bred is involutive, Prop. 3.4.1. This fact was already observed in
[6] for the particular case of vertical symmetries (Remark 2.3.1) and here we extend
it for the general case.

Finally, away from singularities we observe that if rank(D) = rank(S) + 1 and the
nonholonomic system admits l (independent) horizontal gauge momenta {J1, ..., Jl}
(where l = rank(S)) then there is a unique gauge transformation by a 2-form B
which transforms these horizontal gauge momenta into Casimirs of the reduced bracket
{·, ·}Bred. Consequently, the reduced bracket {·, ·}Bred is a rank 2 Poisson bracket and
we give an explicit simple formulation in coordinates, Lemma 3.5.4. Under one extra
(technical) condition, the mentioned gauge transformation is dynamical, Prop. 3.5.5.

Chapter 4 is devoted to the hamiltonization problem of the mechanical system
describing a homogeneous ball rolling without sliding on a convex surface of revolution.
First we study the geometrical framework underlying the example and we write the
nonholonomic bracket {·, ·}nh on the constraint manifold M. We also perform the
reduction by a Lie group G that acts properly on Q obtaining the reduced bracket
{·, ·}red on the differential space M/G. In order to verify that {·, ·}red is not Poisson we
compute the formulas characterizing the failure of the Jacobi identity for this specific
example, Prop. 4.2.13.

Following [41, 40] we study the existence of two first integrals of this example which
are, in fact, horizontal gauge momenta associated to theG-symmetry. Then, in Section
4.3.2, we set the system of equations that the 2-form B has to satisfy in order to be
dynamical and to transform the horizontal gauge momenta into Casimirs of the reduced
bracket {·, ·}Bred. We compute the appropriate dynamical gauge transformation B and
we write the corresponding brackets {·, ·}B and {·, ·}Bred. Finally we check that {·, ·}Bred
is Poisson using two different approaches. On one hand, we check the Jacobi identity
using the formulas computed in [6] adapted to the example. On the other hand,
away from the singularities, we check that it is Poisson using Prop. 3.4.1. Hence, we
conclude that the example of a homogeneous ball rolling without slipping on a convex
surface of revolution is hamiltonizable after a gauge transformation and a reduction by
symmetries as diagram I.3 shows. We ended this section by recalling some integrability
and qualitative aspects of the dynamics of this nonholonomic system.

This dissertation is organized as follows. In Chapter 1. we give some preliminaries
on nonholonomic mechanical system and present some examples. Chapter 2. gives a
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presentation of reduction by symmetries, mainly for proper actions. Chapter 3. treats
the problem of finding a dynamical gauge transformation from the existence of hori-
zontal gauge momenta. Chapter 4 studies the nonholonomic example and states the
main results of the thesis. We show that the first integrals J (1) and J (2) of our sys-
tem are G-invariant horizontal gauge momenta, and compute the 2-form B giving the
gauge transformation of the nonholonomic bracket whose reduction by the symmetry
group is Poisson.
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Chapter 1

Geometric formalism of

nonholonomic systems

Nonholonomic systems are mechanical systems with constraints in the velocities which
cannot be derived from constraints in the positions [15, 32, 36, 76]. Typical examples
of such mechanical systems are solids rolling over a surface without slipping since in
that case the angular velocity due to rolling is tied to the linear velocity of the center
of mass of the solid.

One of the initial tasks is to present the geometric framework of nonholonomic
mechanics and illustrate the theory with some standard examples. We suppose that
all the differentiable objects treated in this dissertation are smooth, i.e C∞. The
standard notation X(Q) indicates the set of smooth vector fields on the manifold Q.
Finally, given a bundle E → Q, we use the usual notation Γ(E) or Γ(Q,E) to mean
the set of all smooth sections of the bundle.

1.1 Holonomic vs. nonholonomic constraints

Let Q be a n-dimensional differentiable manifold representing the space of configu-
rations of a mechanical system. The local charts in this manifold define generalized
coordinates, i.e. locally Q have coordinates (qi), i = 1, · · · , n. The work of Lagrange
in the second half of the 18th century allowed the generalization de Newton’s Second
Law to the generalized coordinates and the derivation of the equations of motion from
physically motivated variational principles.

Let us recall some basic facts from classical lagrangian mechanics. We start from
a Lagrange function (or symply Lagrangian) L : TQ → R, (qi, vi) 7→ L(qi, vi). In
mechanical examples we take as Lagrangian the difference between the kinetic energy
and the potential energy V , thus L(qi, vi) = 1

2
κij(q)v

ivj − V (q), which is called a
Lagrangian of mechanical type and κ is a Riemmanian metric called the kinetic energy
metric.

Applying the Hamilton’s principle (sometimes called principle of least action, see
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discussion in Section 1.2 of [15]), we are led to the Euler-Lagrange equations of motion:

d

dt

∂L

∂vi
(q(t), q̇(t)) −

∂L

∂qi
(q(t), q̇(t)) = 0, i = 1, · · · , n. (1.1.1)

On the other hand, Hamiltonian mechanics is defined in the cotangent bundle T ∗Q.
The Hamiltonian function H : T ∗Q → R, (qi, pi) 7→ H(qi, pi) induces the Hamilton’s
equations given by

q̇i =
∂H

∂pi
, ṗi = −

∂H

∂qi
, i = 1, · · · , n, (1.1.2)

and the function H (independent of the time) is a conserved quantity of the flow
of Hamilton’s equation. In fact, the flow of (1.1.2) has other properties such as
the existence of an invariant measure in T ∗Q and thus it cannot have attracting
or repelling fixed points. These properties are based on the symplectic structure
associated canonically to T ∗Q, as we recall in Section 1.3.

The relationship between the Lagrangian and Hamiltonian mechanics is given by
means of the Legendre transformation.

Definition 1.1.1. Let L : TQ → R be a given Lagrangian. We define the fiber
derivative FL : TQ→ T ∗Q by

〈FL(v), w〉 =
d

dt
|t=0L(x, v + tw),

for any w ∈ Γ(TQ), where x is the base point of the vector v. In coordinates (qi, vi)
of TQ and (qi, pi) of T ∗Q we have

FL(qi, vi) =

(

xi, pi =
∂L

∂vi

)

.

The change of variables induced by FL is called the Legendre transformation, also
denoted Leg.

Under the assumption of a mechanical-type Lagrangian, the Legendre transfor-
mation Leg = κ♭ : TQ → T ∗Q is a global diffeomorphism and such Lagrangians
are called hyperregular, where κ♭(X)(Y ) = κ(X, Y ) for X, Y ∈ Γ(TQ). It that case,
given a hyperregular Lagrangian one defines the corresponding Hamiltonian H by
H := E ◦ (FL)−1, where E : TQ → R is called the energy associated to L and is
defined in coordinates (qi, vi) by

E = vi
∂L

∂vi
− L.

The next example illustrated a simple mechanical systems with constraints in the
positions.

Example 1.1.1. Consider a pendulum oscillating under the influence of gravity. The
simplest model consists of a mass m = 1 attached at one end of a massless rod of
length l = 1, the other end being fixed to some point considered as the origin. Then,
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the mass has coordinates (x, y, z) ∈ R
3. In the absence of Coriolis’ force, equilibrium

of forces and other basic considerations permit to conclude that the motion is actually
constrained to a plane, which we can take to be the xy-plane with coordinates (x, y, 0).
The constraint fixed by the length of the rod indicates that the coordinates x and y
lie on the submanifold {(x, y, 0) ∈ R

3 : x2 + y2 = 1}. Then it becomes clear that
the system is better described letting the configuration space to be the 1-dimensional
manifold S1, with only one generalized coordinate, the angle φ.

The Lagrangian is given by

L(φ, φ̇) =
1

2
φ̇2 − g cos(φ),

where g is the constant of gravity. From Euler-Lagrange equations (1.1.1) one derives
easily the dimensionless (g = 1) equations of motion:

φ̈ = − sin(φ).

A good qualitative comprehension of the structure of the orbits of this nonlinear differ-
ential equation can be achieved considering the phase space, S1 ×R, that is a cylinder
with coordinates (φ, p), where the equations of motion are:

φ̇ = p

ṗ = − sin(φ).

This example and the orbits on the phase space are illustrated in Chapter 2 of [31].

In the following we are interested in constrained mechanical systems subject to
constraints in the velocities. More precisely we study mechanical system with linear
constraints in the velocities. In mechanical examples these constraints are originated
by instance when one object rolls over another. In that case the velocity of the center
of mass of the object is tied with the angular velocity. In fact there is a linear relation
between both velocities and therefore, for each point q of the configuration space Q,
only a linear subspace Dq of the tangent space TqQ defines the permitted velocities.
More precisely we have the following

Definition 1.1.2. A distribution D on the manifold Q is a collection of linear sub-
spaces of TQ such that for every q ∈ Q we have Dq ⊂ TqQ.

A distribution D on Q is called regular if the linear subspaces Dq, have the same
dimension for any q ∈ Q and that dimension is called the rank of the distribution,
otherwise it is called a singular or generalized distribution. The regular case is actually
equivalent to define a subbundle of the tangent bundle TQ. Many aspects of the
differential geometry studied in this dissertation are related to almost Poisson and
Poisson manifolds where generalized distributions are natural objects. Thus we recall
the notion of smoothness in this context.

The (generalized) distribution D on Q is smooth at a point q ∈ Q if any tangent
vector X|q ∈ Dq can be extended to some neighbourhood U of q to a vector field X
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such that X|p ∈ Dp for any p ∈ U . The distribution is smooth if it is smooth at any
point.

The subbundle D ⊂ TQ is involutive if it is closed with respect to the Lie bracket,
i.e. X,Y ∈ D implies [X, Y ] ∈ D. Moreover the subbundle D is called integrable if for
any q ∈ Q, there exists a (local) submanifold N ⊂ Q called (local) integral manifold
such that TqN = Dq. The classic formulation of Frobenius theorem claims that a
regular smooth distribution (or subbundle) is integrable if and only if it is involutive.
We discuss integrability in more detail in Section 1.2.

Constraints on the positions are called holonomic and constraints in the veloci-
ties which cannot be reduced to holonomic constraints are said nonholonomic. More
precisely we give the following

Definition 1.1.3. A mechanical system with constraints in velocities in the Lagrangian
formalism consists in:

1. A smooth manifold Q, called space of configurations.

2. A smooth function L : TQ→ R, called the Lagrangian function.

3. A smooth (regular) distribution D ⊂ TQ defining the permitted velocities (con-
straints in velocities).

Definition 1.1.4. A mechanical system with constraints in velocities is holonomic if
the distribution D is integrable, otherwise the system is called nonholonomic.

Nonholonomic mechanical systems are qualitatively different from nonholonomic
systems in the geometric and dynamical point of view. We summarize some features
of both systems in the following table:

Feature Holonomic system Nonholonomic system

Energy Preserved by the dynamics Preserved by the dynamics

Volume in phase space Preserved by the dynamics Not preserved by the dynamics

Geometry Integrable structures Non-integrable structures

Symplectic Almost symplectic

Poisson Almost Poisson

First integrals Noether’s theorem Not all symmetries induce first
integrals and some first inte-
grals do not come from sym-
metries.

Example 1.1.2. (The nonholonomic particle) This is a very simple an ideal model
introduced by Rosenberg [78] and used usually in the nonholonomic mechanics liter-
ature. It consists of a punctual particle moving in Q = R

3, without potential energy
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and having a linear constraint in the velocities given by

ż = yẋ. (1.1.3)

The associated distribution D describing the permitted velocities verifying (1.1.3) is
given by

D = span{Yx :=
∂

∂x
+ y

∂

∂z
,
∂

∂y
}. (1.1.4)

The computation [Yx,
∂
∂y

] = − ∂
∂z

shows that the distribution is not involutive. Since D

is regular of rank 2 and smooth (generated by vector fields) we conclude by Frobenius
theorem that it is not integrable.

Example 1.1.3. (The vertical rolling disk) The physical system is a disk rolling with-
out slipping on a horizontal plane and consider for simplicity that the plane containing
the disk is orthogonal to the horizontal plane, that is the disk is not allowed to ’fall’.
We can imagine a coin rolling vertically on a horizontal table. We can imagine a
coin rolling vertically without sliding on a horizontal table. The configuration space is
Q = R

2 × S1 × S1, with coordinates (x, y, θ, φ), where (x, y) indicates the contact po-
sition of the disk and the xy-plane, θ is the rotation angle of the disk, and φ indicates
the ’heading angle’, i.e. the angle between the xz-plane and the plane containing the
disk. If R is the radius of the disk then the condition of non-slipping is represented by
the (linear) constraints:

ẋ−R(cosφ)θ̇ = 0, ẏ −R(sinφ)θ̇ = 0,

Then the constraint distribution is given by

D = span{Yθ := R cos(φ)
∂

∂x
+R sin(φ)

∂

∂y
+

∂

∂θ
, Yφ :=

∂

∂φ
}.

Computing the Lie bracket we get [Yθ, Yφ] = R(sinφ ∂
∂x

− cosφ ∂
∂x

) we conclude that
the (rank 2) smooth distribution D is not involutive, then it is not integrable and the
constraints are nonholonomic.

1.2 Integrability of distributions and foliations

In general, the constrained distribution D of a nonholonomic system is described by
the kernel of certain number of differential 1-forms. Before studying general results, let
us consider some examples where the constraints are defined by the kernel of 1-forms
and integrability/non-integrability can be directly stated. For a unique constraint,
Example 1.2.3 bellow gives a necessary and sufficient condition for the integrability.
The general case for regular distributions is treated using the theorem of Frobenius
(see Thm. 1.2.3) and for generalized distributions, integrability conditions are given
by the theorem o Stefan-Sussmann (see Thm. 1.2.5.

Before stating the theorems, let us present some examples where integrability is
illustrated from elementary results of Calculus and differential geometry.
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Example 1.2.1. Consider the 1-form ω ∈ Ω1(R2 − {0}) given by ω = 2xdx + 2ydy.
It is clear that ω is an exact form, i.e. ω = df , where f(x, y) = x2 + y2 so that the
integral curves are given by f(x, y) = c, where c is a constant, and form a foliation
whose leaves are circles (dimension 1). Which is important here is the fact that the
initial constraints have been reduced to a constraint in the positions f(x, y) = c, i.e.
the constraints are holonomic. Note that for c > 0, the configuration space is better
described by the manifold S1 with a local coordinate θ representing the angle.

Example 1.2.2. (From [44, p. 92-93]) Take ω = yzdx+xzdy+dz. Now it is not clear
if the form is exact as in the last example. In fact, it is not exact, but it possesses
and ’integrant factor’ it can be shown that ω = e−xyd(zexy) with ’integral surfaces’
(leaves) given by zexy = c, with c a constant. Thus the system is integrable, and
suitable coordinates can be found in the leaves where the dynamics is constrained. On
the contrary, the more easier-looking form ω = dz−ydx−dy, defines a non integrable
distribution as can be verified easily using the following example.

Example 1.2.3. More generally, the kernel of a 1-form ω defines a smooth codimension-
one distribution. Then, the formula of the exterior derivative gives

dω(X, Y ) = X(ω(Y )) − Y (ω(X)) − ω([X, Y ]), (1.2.5)

which implies that if ω is a closed 1-form then its kernel is involutive. In fact, formula
(1.2.5) implies more: denoting D = Ker ω, then dω|D = 0 if and only if D is a
(regular) involutive distribution, then integrable.

Example 1.2.4. (The nonholonomic particle) Continuing with Example 1.1.2, from
the linear constraint in the velocities given by ż = yẋ, we obtain easily the constraint
1-form given by

ǫ1 = dz − ydx.

Using the basis of the constraint distribution D in (1.1.4), we compute easily

dǫ1|D = dx ∧ dy|D 6= 0,

so, by Example 1.2.3, the constraint distribution is nonintegrable and the system is
nonholonomic.

There exists a criterion to decide if several 1-forms ωa, a = 1, · · · , k, are (pointwise)
independent, that consists in verifying that ω1 ∧ · · · ∧ ωk 6= 0. In this case the issue
of integrability is more complicated and we need an appropriate formulation of the
Frobenius Theorem.

The presentation here is based on [2], others useful references are [74] and [44].
Recall that the classic formulation of Frobenius theorem claims that a regular smooth
distribution (or subbundle) is integrable if and only if it is involutive.

The (global) theorem of Frobenius is related to the concept of foliation. In fact
the integral manifolds can be smoothly collected such that they are disjoint and the
union of all them is Q. More precisely we have the following
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Definition 1.2.1. A (regular) foliation F of dimension k of the n-dimensional man-
ifold Q is a decomposition F = {Fα, α ∈ A} of the manifold Q in arc-connected
disjoint sets called leaves and verifying the following property: for any q ∈ Q there
exists a local chart φ = (x1, · · · , xk, y1, · · · , yn−k) : U → R

k × R
n−k such that the

connected components of Fα ∩ U have the form

{q ∈ U : y1(q) = const., · · · , yn−k(q) = const.}.

In fact each leaf of the foliation is a k-dimensional immersed submanifold of Q. In
general the leaves are not embedded as any leaf can accumulate over itself. We refer
the reader to the references mentioned in the beginning of this section for the proofs
of those facts. We that that a distribution D is tangent to a foliation F , and denoted
D = TF if for any q ∈ Q, we have Dq = TqFα, where Fα is the unique maximal
integral manifold passing through q. A maximal integral manifold is a connected
integral manifold which contains every connected integral manifold with which it has
a point in common. Consequently, the global version of Frobenius Theorem is stated
as:

Theorem 1.2.2. (Global Frobenius theorem) For every smooth involutive (regular)
distribution D on the smooth manifold Q, the collection of all maximal integral man-
ifolds forms a foliation F of Q, and D = TF .

We are interested in a dual formulation of the Frobenius theorem in terms of
differential forms.

Theorem 1.2.3. (Frobenius Theorem, [2]) Let M be an n-manifold and E ⊂ TM be
a subbundle with k-dimensional fiber, and I(E) the associated ideal. The following are
equivalent:

1. E is integrable.

2. E is involutive.

3. For every point of M there exists an open set U and ω1, ..., ωn−k in Ω1(U) gen-
erating I(E) such that:

dωi =
n−k
∑

j=1

ωij ∧ ωj (1.2.6)

for some ωij in Ω1(U).

4. As in the last item, but ωi verifying

dωi ∧ ω1 ∧ · · · ∧ ωn−k = 0. (1.2.7)

We illustrate the theorem with some examples.

Example 1.2.5. Consider the following 1-form on R
2 in standard (x, y) coordinates:

ω = P (x, y)dx+Q(x, y)dy. (1.2.8)
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We seek a solution to ω = 0. Using the Frobenius theorem, since dω∧ω = 0 ∈ Ω3(R2),
integral manifolds exist and are unique. In R

3, dω ∧ ω = 0 is a genuine condition.
Take the 1-form:

ω = P (x, y, z)dx+Q(x, y, z)dy +R(x, y, z)dz, (1.2.9)

so that

dω ∧ ω =

[

P (
∂R

∂y
−
∂Q

∂z
) +Q(

∂P

∂z
−
∂R

∂x
) +R(

∂Q

∂x
−
∂P

∂y
)

]

dxdydz. (1.2.10)

Therefore the distribution defined by Kerω is integrable if and only if the term in
square brackets is zero.

Example 1.2.6. (Pfaffian systems) Let consider 1-forms ǫi ∈ Ω1(U), i = 0, · · · , n−k,
where U ⊂ R

n is an open set. A solution to the system: ǫi = 0, i = 0, · · · , n − k, is
a k-dimensional submanifold N of U such that all ǫi annihilates TN . If the forms ǫi

are independent, their common kernel defines a subbundle E = {v ∈ T (U) : ǫi(v) =
0, i = 1, .., n− k}. By Frobenius theorem this subbundle is integrable if

dǫi ∧ ǫ1 ∧ · · · ∧ ǫn−k = 0, i = 1, · · · , n− k.

Example 1.2.7. (The vertical rolling disk) We continue with the example started
in Example 1.1.3. The configuration space is Q = R

2 × S1 × S1, with coordinates
(x, y, θ, φ). If R is the radius of the disk then the condition of non-slipping is repre-
sented by the (linear) constraints:

ẋ−R(cosφ)θ̇ = 0, ẏ −R(sinφ)θ̇ = 0,

with associated constraint 1-forms

ǫ1 = dx−R cos(φ)dθ, ǫ1 = dy −R sin(φ)dθ.

We have dǫi ∧ ǫ1 ∧ ǫ2 6= 0, i = 1, 2, so the constraint distribution is nonintegrable and
the system is nonholonomic.

Example 1.2.8. (From [2]) In R
n with coordinates (qi) = (rα, sa) ∈ R

(n−m) × R
m,

consider the following equation:

ωa(q) = dsa − Aaα(r, s)dr
α, a = 1, · · · ,m. (1.2.11)

By Frobenius theorem, the subbundle E = {v ∈ T (U) : εi(v) = 0, i = 1, .., n − k} is
integrable if there exist 1-forms ωabsuch that

dωa =
n−m
∑

b=1

ωab ∧ ωb. (1.2.12)

A straightforward computation shows that:

dωa = Ka
αβdr

α ∧ drβ +
∂Aaα
∂sb

drα ∧ ωb, (1.2.13)
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where:

Ka
αβ =

∂Aaα
∂rβ

−
∂Aaβ
∂rα

+ Abα
∂Aaβ
∂sb

− Abβ
∂Aaα
∂sb

. (1.2.14)

Since {drα, ωa} form a basis of T ∗
R
n, we see that Ka

αβ = 0 iff

dωa =
n−m
∑

b=1

ωab ∧ ωb (1.2.15)

for some 1-forms ωab. We conclude that the system is integrable if and only if Ka
αβ = 0.

Generalized foliations and Stefan-Sussmann Theorem

Generalized or singular foliations are the analogous of foliations for generalized distri-
bution. Intuitively the dimension of the leaves can vary.

Definition 1.2.4. A generalized foliation F of the n-dimensional manifold Q is a
decomposition F = {Fα, α ∈ A} of the manifold Q in smooth immersed arc-connected
submanifolds called leaves and verifying the following property: for any q ∈ Q, denote
by Fq the leaf containing q and d its dimension. Then there exists a local chart
φ = (x1, · · · , xd, y1, · · · , yn−d) : U → R

k × R
n−k such that the connected components

of Fq ∩ U have the form

{q ∈ U : y1(q) = 0, · · · , yn−d(q) = 0}.

and the sets with local coordinates

{q ∈ U : y1(q) = const., · · · , yn−d(q) = const.},

are contained in some leaf Fα of F .

A foliation F has an associated tangent distribution DF such that, at each q ∈ Q,
DF
q is the tangent space to the leaf Fq containing q. Then, the tangent distribution

of a smooth generalized foliation is a smooth generalized distribution. A smooth
generalized foliation D on Q is an integrable distribution if every point q ∈ Q is
contained in a maximal integral manifold of D.

Let F be a family of smooth vector fields on Q. The distribution DF generated by
the family F is the generalized distribution given, at each q ∈ Q, by DF

q = span{Xq ∈
TqQ : X ∈ DF}.

A distribution D is called invariant with respect to the family of vector fields F if
for any X ∈ F, the distribution D is invariant under the flow of X, i.e. if φtX indicated
the flow of X at time t then (φtX)∗Dq = Dφt

X(q) whenever φtX(q) is well defined.

The following result generalizes Frobenius Theorem for generalized distribution.

Theorem 1.2.5. (Stefan-Sussman Theorem, [83, 84, 37]) Let D be a smooth gener-
alized distribution on Q. Then the following conditions are equivalent:

1. D is integrable.
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2. D is generated by a family F of smooth vector fields, and it is invariant with
respect to F.

3. D is the tangent distribution DF of a smooth generalized foliation F .

A smooth distribution D on Q is called locally finitelly generated if for any q ∈ Q
there is neighbourhood U of q such that there exist a finite number of smooth vector
fields X1, ·, Xn in U which are tangent to D, such that any smooth vector field Y in U
tangent to D can be written Y =

∑

fiXi with fi ∈ C∞(U). In that case, by a result
of Hermann [51], any locally finitely generated smooth involutive distribution on Q is
integrable.

Example 1.2.9. The distribution D on R
2 generated by the vector field x ∂

∂x
+ y ∂

∂x

has rank 0 at the origin (0, 0) and rank 1 otherwise. It is integrable, with foliation by
maximal integral manifolds given by the radial rays arising from the origin, and the
origin itself (as a leaf).

We will see many relevant examples of generalized distributions and foliations in
the next Section (Poisson hamiltonain system) and in Chapter 2 when considering
action of groups.

1.3 Hamiltonian formalism for classical mechanics

Symplectic hamiltonian systems

The basic mathematical objects in the study of the Hamiltonian formalism of classical
mechanics are symplectic manifolds.

Definition 1.3.1. An almost symplectic manifold is a pair, (M,Ω), where M is a dif-
ferentiable manifold and Ω is a nondegenerate two-form on M . An almost symplectic
manifold is symplectic if the Ω is closed.

The nondegeneracy of the 2-form Ω implies the existence of the ’musical’ isomor-
phisms, which are inverse one of another,

Ω♭ : X (M) → Ω1(M),

Ω♯ : Ω1(M) → X (M),

defined by Ω♭(X) = iXΩ and Ω♯ = (Ω♭)−1. Given a function f ∈ C∞(M), we define
the corresponding Hamiltonian vector field by

Xf = Ω♯(df), (1.3.16)

or equivalently
iXf

Ω = df. (1.3.17)

Vector fields X on M which leave invariant the symplectic form, i.e. £XΩ = 0,
are called symplectic. By Cartan’s formula Hamiltonian vector field are symplectic.
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The cotangent bundle T ∗Q of a smooth manifold Q carries a canonical symplectic
structure, i.e. (T ∗Q,ΩQ). In fact, as a consequence of Darboux’s theorem, every
symplectic manifold is locally isomorphic to a cotangent bundle. Let us recall the
canonical symplectic structure of T ∗Q.

Let Q be a smooth manifold. Consider the cotangent bundle M := T ∗Q, with
projection map τ : M → Q and tangent map Tτ : TM → TQ. The cotangent bundle
admits a canonical global 1-form called tautological form defined, for p ∈ T ∗

τ(p)Q, by

ΘQ(Xp) := 〈Tτ(X), p〉.

The coordinates (qi) of Q induces coordinates (qi, pi) on M and the local expression
of ΘQ is ΘQ(qi, pi) =

∑

i pidq
i. The canonical symplectic form on T ∗Q is defined by

ΩQ = −dΘQ. Indeed, this form is clearly closed, with local expression
∑

i dq
i ∧ dpi.

The n-th power of ΩQ is ±dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn 6= 0, which implies that ΩQ

is nondegenerate and consequently symplectic.

Recall that the nondegeneracy of ΩQ is equivalent to the fact that Ω♭
Q|q : TqQ →

T ∗
qM is an isomorphism for any q ∈ Q, which implies that 1-forms and vector fields

are in one-to-one correspondence.

Definition 1.3.2. Let H be a smooth function on T ∗Q called Hamiltonian function.
The unique vector field XH ∈ X (M) verifying

iXH
ΩQ = dH (1.3.18)

is called the Hamiltonian vector field associated to H. The vector field XH describes
the dynamics of the mechanical hamiltonian system and (1.3.18) are the (free) Hamil-
ton’s equations written in intrinsic form.

In the local coordinates (qi, pi) of T ∗Q, it is straightforward to find the form of the
Hamiltonian vector field:

XH =
∑

j

(

∂H

∂pj

∂

∂qj
−
∂H

∂qj
∂

∂pj

)

. (1.3.19)

The integral curve of this vector field is a curve written in local coordinates as
(q(t), p(t)) verifying, at least near a point (q(0), p(0)), the equation (q̇(t), ṗ(t)) =
q̇(t) ∂

∂qj + ṗ(t) ∂
∂pj

= XH(q(t), p(t)) which, by (1.3.19), is equivalent to the classic form

of the (free) Hamilton’s equations (1.1.2).

Poisson hamiltonian systems

Symplectic manifolds are examples of more general structures defining Poisson man-
ifolds. Let us recall the basic definitions and properties of Poisson structures. Our
references for this section are [85] and [37].

Definition 1.3.3. A Poisson bracket on a smooth manifold M is an R-bilinear skew-
symmetric operation

C∞(M) × C∞(M) → C∞(M), (f, g) 7→ {f, g}
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which verifies Leibniz identity

{f, gh} = {f, g}h+ g{f, h},

and the Jacobi identity

{{f, g}, h} + {{g, h}, f} + {{h, f}, g} = 0,

for any f, g, h ∈ C∞(M). The pair (M, {·, ·}) is called a Poisson manifold. A bracket
verifying all the conditions but not necessarily the Jacobi identity is called an almost
Poisson bracket.

Every symplectic manifold (M,Ω) is naturally equipped with a bracket of functions
given by

C∞(M) × C∞(M) → C∞(M)

(f, g) 7→ {f, g} := Ω(Xf , Xg).

The Jacobi identity is equivalent to the fact that the 2-form Ω is closed and then this
bracket is a Poisson bracket. Thus every symplectic manifold is a Poisson manifold.

The Poisson bracket {·, ·} defines a bivector field π ∈ Γ(
∧2 TM) on M by the

relation
π(df, dg) = {f, g}, for f, g ∈ C∞(M).

We denote by π♯ : T ∗M → TM the map given, at each α, β ∈ T ∗Q, by β(π♯(α)) =
π(α, β).

Hamiltonian vector fields can in general be defined for Poisson manifolds. By the
Leibniz property, given a function f ∈ C∞(M), the map g 7→ {f, g} is a derivation
and then defines a vector field Xf on M called the Hamiltonian vector field of f, such
that

Xf (g) = −{f, g},

for any g ∈ C∞(M). It is straightforward to see that this definition coincides with
the definition given of symplectic manifolds in (1.3.16).

Hamiltonian vector fields are closed with respect to Lie bracket. More precisely the
Jacobi identity implies that the map f 7→ Xf is a anti-homomorphism of Lie algebras
from C∞(M) with the Poisson bracket to the Lie algebra of vector fields on M under
the usual Lie bracket. In other words the following formula holds

[Xf , Xg] = −X{f,g}. (1.3.20)

The characteristic distribution of the Poisson manifold (M, {·, ·}) is the (general-
ized) distribution C, given at each point q ∈M , by

Cq = {Xf (q) : f ∈ C∞(M)}.

The dimension of Cq is called the rank of the Poisson structure at q, it is denoted
rank π|q and it can be shown that it is lower-semicontinuous function of q, i.e. for any
q ∈ M there is some neighbourhood U containing q such that rank π|p ≥ rank π|q
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for any p ∈ U . When rank π|q is equal to dim(M) we say that the Poisson structure
is nondegenerate at q. If the rank does not depend on the point q, then the bracket
defines a regular Poisson structure.

The hamiltonian vector fields preserve the characteristic distribution and then C is
integrable by the Stefan-Sussmann theorem and corresponds to a foliation F . Denote
by Fq the leaf passing by q ∈ M . For f̃ , g̃ ∈ C∞(Fq), define the following bracket on
Fq

{f̃ , g̃}(q) = {f, g}(q) = Xf (g)(q), (1.3.21)

where f, g ∈ C∞(M) are any extension of f̃ , g̃, respectively. It can be shown that
(1.3.21) does not depend of the extensions f, g and that it defines a nondegenerate
Poisson bracket on Fq. Therefore the leaf Fq is a symplectic manifold and F is called
the symplectic foliation of the Poisson manifold (M, {·, ·}).

The local structure of Poisson manifolds is well described using Weinstein’s split-
ting theorem which asserts that in a neighbourhood of a point a Poisson manifold of
rank 2k is a product of a 2k-dimensional symplectic manifold (the ’local’ symplectic
leaf) and a Poisson manifold with bivector of rank 0 at the point considered, see e.g.
[37, 85].

Given a Hamiltonian H : M → R, the dynamics or equations of motion is given
the hamiltonian vector field XH on M , i.e.

XH = {·, H},

or equivalently, given any function (observable) f ∈ C∞(M), the evolution of f under
the dynamics verifies

ḟ = {f,H},

where ḟ := XH(f) is usually called orbital derivative of f . Consequently, a first integral
(or constant of motion or preserved quantity) is some function f ∈ C∞(M) such that
ḟ = 0. Observe that, by definition, XH is tangent to the symplectic leaves, then the
dynamics evolves on the leaves under the symplectic structure and the Hamiltonian
restricted on the leaves of the symplectic foliation of M .

Two functions f, g ∈ C∞(M) such that {f, g} = 0 are said in involution, then the
collection of first integrals is exactly the collection of functions which are in involution
with the Hamiltonian H. As easy consequences, by the skew-symmetry of the Poisson
bracket, the Hamiltonian H is a first integral of XH , and by Jacobi identity, if f and
g are first integrals, then {f, g} is also a first integral (not necessarily independent of
f and g).

A functions f ∈ C∞(M) which commutes with any other function is called a
Casimir of the Poisson structure. In particular Casimirs are first integrals for any
Hamiltonian. In other words, Casimirs are constant on the symplectic leaves, or
equivalently, symplectic leaves are in the level sets of Casimirs.

Using the notations and notion defined we now present the hamiltonian formalism
of nonholonomic systems.
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1.4 Nonholonomic hamiltonian systems

Consider a mechanical system on the n-dimensional configuration manifold Q with a
Lagrangian L : TQ→ R of mechanical type, i.e., L is of the form L = 1

2
κ−τ ∗TQV , where

κ is the kinetic energy metric, V : Q → R the potential energy and τTQ : TQ → Q
the canonical projection.

Let us assume that the system admits k constraints in the velocities –that in the
case of the rolling ball are the non-sliding conditions (4.1.1)– which are geometrically
represented by a constant rank nonintegrable distribution D on Q (of constant rank
n− k), that is, at the configuration point q ∈ Q, the permitted velocities belong to a
subspace Dq of TqQ.

Under the assumption of a mechanical-type Lagrangian, the Legendre transform
Leg = κ♭ : TQ → T ∗Q is a global diffeomorphism, where κ♭(X)(Y ) = κ(X, Y ) for
X, Y ∈ X(Q). Hence, the distribution D on Q induces a submanifold M of T ∗Q,

M := Leg(D) ⊂ T ∗Q, (1.4.22)

called the constraint manifold. Since Leg : TQ→ T ∗Q is linear on the fibers, M → Q
is also a subbundle of τT ∗Q : T ∗Q→ Q of rank n− k. Note that, as a manifold, M is
of dimension 2n−k. Let us denote by ιM : M →֒ T ∗Q the inclusion and τM : M → Q
the canonical projection.

The distribution D also induces a nonintegrable (constant rank) distribution C on
M given, at a point m ∈ M, by

Cm = {vm ∈ TmM | TτM(vm) ∈ Dτ(m)}. (1.4.23)

We will denote by ΩM the pull back to M of the canonical 2-form ΩQ in T ∗Q and
by ΩC the point-wise restriction of ΩM to C, i.e.

ΩM := ι∗
M

ΩQ and ΩC := ΩM|C. (1.4.24)

Since the 2-section ΩC is nondegenerate (see [11]), it is possible to define the nonholo-
nomic bracket {·, ·}nh on M [55, 69, 86] such that, for any f, g ∈ C∞(M),

{f, g}nh = −Xf (g) where Xf ∈ Γ(C) such that iXf
ΩC = df |C, (1.4.25)

which is an almost Poisson bracket, i.e. it is bilinear, skew-symmetric, verifies Leibniz
property but does not necessarily satisfies the Jacobi identity. Moreover, the dis-
tribution on M generated by the hamiltonian vector fields Xf –called characteristic
distribution– is the nonintegrable distribution C of constant rank 2(n− k).

The nonholonomic bracket defines a bivector field πnh on M by the relation,

πnh(df, dg) = {f, g}nh, for f, g ∈ C∞(M). (1.4.26)

We denote by π♯nh : T ∗M → TM the map given, at each α, β ∈ T ∗M, by β(π♯nh(α)) =
πnh(α, β).
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The bivector field πnh ∈ Γ(
∧2 TM) defined in (1.4.26) is, of course, not Poisson.

This implies that that map f 7→ Xf is not an antihomomorphism of Lie algebras as
in the Poisson case (see (1.3.20)). In fact, using the Schouten bracket, (see e.g. [85]),

[·, ·] : Γ(

p
∧

TM) × Γ(

q
∧

TM) → Γ(

p+q−1
∧

TM),

the failure of the Jacobi identity is given by the Jacobiator, defined as

Jac(f, g, h) :=
1

2
[π, π](df, dg, dh). (1.4.27)

Using the properties of the Schouten bracket we also have

1

2
[π, π](df, dg, dh) = cyclic[{f, {g, h}}], (1.4.28)

where cyclic indicates the sum of cyclic permutations of its parameters. Hence, for
almost Poisson the following holds instead of the antihomomorphism in (1.3.20).

Proposition 1.4.1 ([26]). Let π be any bivector field with associated almost Poisson
bracket {·, ·}. Then, for any f, g ∈ C∞(M), the following formula holds

−X{f,g} = [Xf , Xg] −
1

2
idf∧dg[π, π],

or equivalently, for any h ∈ C∞(M),

−X{f,g}(h) = [Xf , Xg](h) −
1

2
[π, π](df, dg, dh),

Proof. By definition:
−X{f,g}(h) = −{h, {f, g}},

and

[Xf , Xg](h) = Xf (Xg(h)) −Xg(Xf (h)) = Xf ({h, g}) −Xg({h, f})

= {f, {g, h}} + {g, {h, f}}.

Collecting the latter expressions we get Jac(f, g, h) = [Xf , Xg](h) +X{f,g}(h).

Example 1.4.1. (Twisted Poisson structures) Twisted Poisson structures can be con-
sidered as intermediate structures between Poisson and (non-Poisson) almost Poisson
structures. In fact the Jacobi identity is not verified but the Jacobiator is controlled
by a closed 3-form φ. That is, for f, g, h ∈ C∞(M), the following holds

cyclic[{f, {g, h}}] = φ(Xf , Xg, Xh). (1.4.29)

The main property of φ-twisted Poisson structures is that its characteristic distribution
is integrable and that the leaf-wise bracket induces a nondegenerate 2-form ΩF which
is not closed but dΩF = φ.

If π is the bivector field on M defined by a nondegenerate 2-form Ω, then pi is
φ-twisted with φ = dΩ. On the other hand, any bivector having a regular integrable
characteristic distribution is φ-Twisted Poisson but φ is not uniquely determined, see
[8] (or Appendix 1.). Note that a φ-twisted Poisson manifold having a foliation of
dimension at most 2 is Poisson (trivially dΩF = 0).
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The dynamics of the nonholonomic system is given by the (intrinsic) constrained
Hamilton’s equations,

iXnh
ι∗
M

ΩQ = ι∗
M

(dH + λaτ
∗
M
ǫa), (1.4.30)

where the scalar functions λa are referred to as Lagrange multipliers. Restricting
(1.4.30) to the distribution C we get

iXnh
ΩC = dHM|C, (1.4.31)

which, by nondegeneracy of ΩC, defines uniquely the nonholonomic vector field Xnh on
M. The function HM ∈ C∞(M) is the restriction to M of the Hamiltonian function
H : T ∗Q → R induced by the Lagrangian L : TQ → R, [11]. Equivalently, the
vector field Xnh is defined by Xnh = −π♯nh(dHM). Hence, we say that a nonholonomic
system is described by the triple (M, πnh, HM), or that the nonholonomic dynamics is
described by the bivector field πnh.

Recall that the constraint distribution D ⊂ TQ can be written as D = {(q, q̇) :
ǫa(q)(q̇) = 0, a = 1, · · · , k}. If we consider canonical coordinates (qi, pi) on T ∗Q,
equation (1.4.30) becomes

q̇i =
∂H

∂pi
, ṗi = −

∂H

∂qi
+ λaε

a
i

and the constraints are give by:

ǫai (q)
∂H

∂pi
= 0, a = 1, · · · , k. (1.4.32)

1.5 Examples

We present some examples to illustrate the geometric framework of hamiltonian non-
holonomic systems explained in this chapter. We will return to the examples in the
following chapters in order to illustrate the new theoretical framework and results.

1.5.1 The nonholonomic particle

We continue with the ideal example introduced in Ex. 1.1.2 and Ex. 1.2.4. Recall
that the configuration manifold is Q = R

3, the constraint 1-form is given by ǫ1 =
dz − ydx and the constraint distribution D is given in (1.1.4) and is nonintegrable.
The Lagrangian of the system is L : (q, v) 7→ q · q, where the dot means the standard
dot product in R

3.

The constraint distribution D is the kernel of the 1-form ǫ1. Writing an arbitrary
tangent vector in R

3 as v = a ∂
∂x

+b ∂
∂y

+c ∂
∂z

, the condition v ∈ Ker(ǫ1) implies c = ay,

so that v = a( ∂
∂x

+ y ∂
∂z

) + b( ∂
∂y

). Hence we get

D = span{Yx :=
∂

∂x
+ y

∂

∂z
,
∂

∂y
}.
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Completing to a base of TQ we have

TQ = span{Yx,
∂

∂y
,
∂

∂z
},

with dual basis
T ∗Q = span{dx, dy, ǫ1}, (1.5.33)

and associated coordinates (px, py, pz). The constraint manifold in T ∗Q is given by
M = {κ♭(X) : X ∈ D}. The metric κ here is proportional to the standard Euclidean
metric, hence, writing M = {aκ♭( ∂

∂x
+ y ∂

∂z
) + bκ♭( ∂

∂y
)}, it is not difficult to find

M = span{(1 + y2)dx+ yǫ1, dy}.

In the coordinates of T ∗Q, M is described by

M = {(x, y, z, px, py, pz) : pz =
y

1 + y2
px}.

Then,

TM = span{Yx,
∂

∂y
,
∂

∂z
,
∂

∂px
,
∂

∂py
},

and, from the definition of C in (1.4.23),

C = span{Yx,
∂

∂y
,
∂

∂px
,
∂

∂py
}.

The Hamiltonian restricted to M is given by

HM =
1

2
(

p2
x

1 + y2
+ p2

y).

Now we compute the nonholonomic bivector field. The Liouville 1-form restricted to
M is ΘM = pxdx+ pydy+ y

1+y2
pxǫ

1. Then ΩM = dx∧ dpx + dy ∧ dpy − d( ypx

1+y2
)∧ ǫ1 −

y
1+y2

pxdǫ
1 and

ΩC = dx ∧ dpx + dy ∧ dpy −
y

1 + y2
pxdx ∧ dy.

The nonholonomic bivector field is given by

πnh = Yx ∧
∂

∂px
+

∂

∂y
∧

∂

∂py
+

y

1 + y2
px

∂

∂px
∧

∂

∂py
,

and the nonholonomic dynamics Xnh = −π#
nh(dHM) is given by

Xnh =
px

1 + y2
Yx + py

∂

∂y
+

y

1 + y2
pxpy

∂

∂px
.
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1.5.2 Vertical rolling disk

We continue with the example presented in Ex. 1.1.3. The configuration space is
Q = R

2 × S1 × S1, with coordinates (x, y, θ, φ). The Lagrangian L is given by the
kinetic energy,

L(x, y, θ, φ, ẋ, ẏ, θ̇, φ̇) =
1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
Jφ̇2, (1.5.34)

where m is the mass of the disk, R the radius of the disk, I is the moment of inertia
of the disk about its axis and J is the moment of inertia about an axis in the plane of
the disk, both axes passing through the center of the disk. The associated constraint
1-forms are

ǫ1 = dx−R cos(φ)dθ, ǫ2 = dy −R sin(φ)dθ.

We have dǫi ∧ ǫ1 ∧ ǫ2 6= 0, i = 1, 2, so the constraint distribution is nonintegrable and
the system is nonholonomic.

Writing an arbitrary tangent vector in TQ as v = a ∂
∂x

+ b ∂
∂y

+ c ∂
∂θ

+ d ∂
∂φ

, the

condition v ∈ Ker(ǫ1) ∩Ker(ǫ2) is equivalent to:

a−R cos(φ)c = 0, b−R sin(φ)c = 0,

so that the constraint distribution is given by

D = span{Yθ := R cos(φ)
∂

∂x
+R sin(φ)

∂

∂y
+

∂

∂θ
, Yφ :=

∂

∂φ
}.

Details for the computation of the constraint manifold M are explained in the next
example (snakeboard). Here we just present the final result:

M = {(x, y, θ, φ, p̃x, p̃y, p̃θ, p̃φ) : p̃x =
Rm cos(φ)

E
p̃θ, p̃y =

Rm sin(φ)

E
p̃θ},

where E = I+R2m, where we use the (adapted) coordinates (p̃θ, p̃φ, p̃x, p̃y) associated
to the dual basis in T ∗Q given by {dθ, dφ, ǫ1, ǫ2}.

The Hamiltonian restricted in our coordinates is given by

HM =
1

2E
p̃2
θ +

1

2I
p̃2
φ, (1.5.35)

the 2-section ΩC is given by

ΩC = dθ ∧ dp̃θ + dφ ∧ dp̃φ, (1.5.36)

and the nonholonomic bivector field πnh by

πnh = Yθ ∧
∂

∂p̃θ
+ Yφ ∧

∂

∂p̃φ
. (1.5.37)

Finally the nonholonomic vector field Xnh = −π#
nh(dHM) is given by

Xnh =
p̃θ
E
Yθ +

p̃φ
I
Yφ. (1.5.38)
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1.5.3 Snakeboard

It is a variation of a standard skate permitting the axis of the wheels to rotate by the
effect of a human rider creating a torque allowing the board to spin about a vertical
axis. A better description of the geometry of the system, including a figure, is given in
[15, p. 271]. The configuration manifold is Q = SE(2)×S1 ×S1, and the Lagrangian
is the kinetic energy of the system given by

L(q, q̇) =
1

2
m(ẋ2 + ẏ2 + r2θ̇2) +

1

2
Jψ̇2 + Jψ̇θ̇ + J1φ̇

2.

The non-sliding constraints are given by the kernels of the 1-forms:

ǫ1 = dx+ r cot(φ) cos(θ)dθ,

ǫ2 = dy + r cot(φ) sin(θ)dθ.

Writing a general vector in TQ as v = ẋ ∂
∂x

+ ẏ ∂
∂y

+ θ̇ ∂
∂θ

+ φ̇ ∂
∂φ

+ ψ̇ ∂
∂ψ

, then to verify
the constraints it must annihilate the constraint 1-forms, i.e.,

ǫ1(v) = ẋ+ rcot(φ)cos(θ)θ̇ = 0,

ǫ2(v) = ẏ + rcot(φ)sin(θ)θ̇ = 0.

Using these relations between the coefficients of v, we obtain the constraint distribu-
tion,

D = span{Yθ :=
∂

∂θ
− rcot(φ)cos(θ)

∂

∂x
− rcot(φ)sin(θ)

∂

∂y
, Yφ :=

∂

∂φ
, Yψ :=

∂

∂ψ
}.

(1.5.39)

We complete D to form bases for TQ and T ∗Q,

TQ = {Yθ, Yφ, Yψ,
∂

∂x
,
∂

∂y
}

T ∗Q = {dθ, dφ, dψ, ǫ1, ǫ2},

with coordinates (p̃θ, p̃φ, p̃ψ, p̃x, p̃y) on T ∗Q.

The constraint manifold M is computed from M = {κ♭(X) : X ∈ D}. From the
Lagrangian, the metric tensor is given by

κ =
m

2
dx⊗dx+

m

2
dy⊗dy+

mr2

2
dθ⊗dθ+J1dφ⊗dφ+

J

2
dψ⊗dψ+

J

2
(dθ⊗dψ+dψ⊗dθ).

Using the expression for the metric we find

κ♭(
∂

∂θ
) =

mr2

2
dθ +

J

2
dψ,

κ♭(
∂

∂φ
) = J1dφ,

κ♭(
∂

∂ψ
) =

J

2
(dθ + dψ),

κ♭(
∂

∂x
) =

m

2
ε1 −

rm

2
cot(θ) cos(θ)dθ,

κ♭(
∂

∂y
) =

m

2
ε2 −

rm

2
cot(θ) sin(θ)dθ.

(1.5.40)
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Then
M = span{κ♭(Yθ), κ

♭(Yφ), κ
♭(Yψ)}, (1.5.41)

where κ♭(Yφ) and κ♭(Yψ) are read directly from (1.5.40) and

κ♭(Yθ) = −
rm

2
cot(φ) cos(θ)ε1 −

rm

2
cot(φ) sin(θ)ε2 +

r2m

2
dθ+

r2m

2
cot2(φ)dθ+

J

2
dψ.

Writing a general element of M in the form α = p̃θdθ + p̃φdφ + p̃ψdψ + p̃xε
1 + p̃yε

2,
we find

p̃θ = a
r2m

2
(1 + cot2(φ)) + c

J

2
,

p̃φ = bJ1,

p̃ψ =
J

2
(a+ c),

p̃x = −a
rm

2
cot(φ) cos(θ),

p̃y = −a
rm

2
cot(φ) sin(θ),

where a, b, c are the coefficients of α with respect to (1.5.41). Then, M is given by

M = {(qi, p̃θ, p̃φ, p̃ψ, p̃x, p̃y) :p̃x = −
mr cos(θ) sin2(φ) cot(φ)

mr2 − J sin2(φ)
(p̃θ − p̃ψ),

p̃y = −
mr sin(θ) sin2(φ) cot(φ)

mr2 − J sin2(φ)
(p̃θ − p̃ψ)}.

The restricted Hamiltonian HM is computed in our adapted variables and we get

HM =
sin2(φ)

2(mr2 − J sin2(φ))
(p̃θ − p̃ψ)2 +

1

J
p̃ψ

2 +
1

4J1

p̃φ
2.

The 2-section ΩC is given by

ΩC = dθ ∧ dp̃θ + dφ ∧ dp̃φ + dψ ∧ dp̃ψ +
mr2 cot(φ)

mr2 − J sin2(φ)
(p̃θ − p̃ψ)dθ ∧ dφ,

which allows the computation of the bivector field πnh.

1.5.4 The rigid body and the Chaplygin ball

To understand the configuration space we fix an orthonormal basis (inertial frame)
in space (e1, e2, e3), and attach other orthonormal basis (E1,E2,E3) to the body at
the center of mass (the body frame). If the body rotate about its center of mass, the
two frames are related by and orthonormal matrix g(t) ∈ SO(3):

ei(t) = g(t)Ei, i = 1, 2, 3.
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The center of mass can be in any point of the space, so that the configuration space
of the system is the direct product of Lie groups, Q = SO(3) × R

3. A point q ∈ Q
will be denoted q = (g, (x, y, z)).

We identify, as usual, the Lie algebra of SO(3), denoted so(3), with R
3 using the

’hat-map’:

v =











v1

v2

v3











7→ v̂ =











0 −v3 v2

v3 0 −v1

−v2 v1 0











,

which is a Lie algebra isomorphism taking the vector product × to be the commutator
in so(3).

An important example of a rigid body with nonholonomic constraints is the Chap-
lygin sphere or Chaplygin ball [29], consisting in an inhomogeneous sphere whose
geometric center coincides with its center of mass and which is allowed to roll without
sliding over a horizontal plane.

If x ∈ R
3 describes the coordinates of the center of mass and ω the angular velocity

of the body with respect to the space frame, then the rolling constraint can be written
as a linear equation relating ẋ and ω. These constraints are written

ẋ = rAω,

where r is the radius of the sphere, and A is matrix whose rank specifies a special
kind of rolling. For instance the rolling over a plane uses the matrix

A =











0 1 0

−1 0 0

0 0 0











. (1.5.42)

Denote by Ω the angular velocity in body coordinates, then we have the relations

ω̂ = ġ(t)g−1(t), Ω̂ = g−1(t)ġ(t),

where (g(t), x(t)) ∈ Q describes the motion of the body. Hence ω = gΩ, and the
constraints can also be written as ẋ = rAgΩ.

Consider the left and right Maurer-Cartan forms on SO(3), λ and ρ, respectively.
These are so(3)-valued 1-forms verifying ρ = gλ and such that for a tangent vector
vg ∈ TgSO(3), identifying so(3) with R

3, the following holds for g ∈ SO(3),

ω = ρ(g)(vg), Ω = λ(g)(vg).

Using these 1-forms, the constraints can be defined by a R
3-valued 1-form ǫ =

(ǫ1, ǫ2, ǫ3) as:
ǫ = dx− rAρ = dx− rAgλ.
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Denote XR the moving frame of SO(3) dual to ρ, and XL the moving frame dual to
λ. Then, the constraint distribution D is given by

D = span{XR + rA
∂

∂x
} = span{XL + rAg

∂

∂x
}. (1.5.43)

If I denotes the inertia tensor (a symmetric definite positive 3 × 3 matrix), we
assume additionally that the body frame is aligned with the principal axes of inertia
(the eigenvectors of I) of the body. In that basis I is represented by a diagonal matrix
with positive entries I1, I2, I3, the principal moments of inertia (the eigenvalues of I).

The Lagrangian of the rigid body is the total kinetic energy, i.e.,

L(g,x, ġ, ẋ) =
1

2
ΩT

IΩ +
1

2
mxTx,

where we write x and Ω as column vectors, and T indicate the matrix transpose.
Defining the linear momentum by p = mẋ, Lagrange-d’Alembert equations give the
system:

ṗ = µ,

IΩ̇ = IΩ × Ω − rg−1ATµ,

where µ are Lagrange multipliers. Using the constraint and the fact that ġΩ = 0, we
find µ = mrAgΩ̇, which permits to decouple de system as

IΩ̇ = IΩ × Ω −mr2g−1ATAgΩ̇.

On the cotangent bundle T ∗Q we consider the frame {λ, dx} with coordinates (M ,p),
then a co-vector α ∈ T ∗Q can be written as

α = M · λ + p · dx. (1.5.44)

The Legendre transformation FL : TQ→ T ∗Q gives the new momentum coordinates,

M = IΩ,

p = mẋ.

In order to deal with the constraints, we work with the frame {λ, ε} of T ∗Q, with
coordinates (M̃ , p̃). Comparing with (1.5.44) we obtain

M̃ = M + rgTATp,

p̃ = p.
(1.5.45)

Now we compute the constraint manifold M = Leg(D) ⊂ T ∗M. We get

M = {(g,x,M̃ , p̃) : p̃ = mrAgΩ}, (1.5.46)

where
M̃ = IΩ +mr2gTATAgΩ. (1.5.47)
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The Hamiltonian in the coordinates (M ,p) is given by

H =
1

2
M · I

−1M +
1

2m
p · p.

Passing to the adapted variables (M̃ , p̃) and using the relation in (1.5.46), we get the
restriction of the Hamiltonian to M,

HM =
1

2
M̃ · Ω,

where Ω can be written in the variables on M using (1.5.47).

The nonintegrable distribution C, defined in (1.4.23), is given by

C = {XL + rgTAT
∂

∂x
,
∂

∂M̃
}.

The canonical two-form Q on T ∗Q is given by

ΩQ = −d(M̃ · λ + p̃ · ǫ)

= λ · dM̃ − M̃ · dλ − p̃ · dǫ + ǫ · dp̃,

and a small computation using Maurer-Cartan equations gives dǫ = rAgdλ. There-
fore,

ΩQ = λ · dM̃ − (M̃ +mr2gTAT p̃) · dλ + ǫ · dp̃.

Recalling that ιM : M →֒ T ∗Q denotes the inclusion and using that p̃ = mrAgΩ
holds along M, we have

ΩM = ι∗(ΩQ) = λ · dM̃ − (M̃ +mr2gTATAgΩ) · dλ + ι∗
M

(ǫ · dp̃).

Finally, considering that ǫ vanishes over C, we have

ΩC = ΩM|C = λ · dM̃ − (M̃ +mr2gTATAgΩ) · dλ. (1.5.48)

We compute the nonholonomic bivector field πnh using (1.4.25) and (1.4.26),

πnh = XL ∧
∂

∂M̃
+ rAg

∂

∂x̃
∧

∂

∂M̃
+ (M̃ +mr2gTATAgΩ)

∂

∂M̃
∧

∂

∂M̃
. (1.5.49)

Finally, computing the nonholonomic vector field Xnh = −π♯nh(dHM), we obtain

Xnh = Ω · XL + rAgΩ ·
∂

∂x
+ (M̃ × Ω) ·

∂

∂M̃
. (1.5.50)

1.5.5 Homogeneous ball in a cylinder

The systems consist of a homogeneous ball of radius r and scalar moment of inertia
I = I · id rolling without sliding inside a circular cylinder of radius R and subject to
the force of gravity, see [5, 10, 70].
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The configuration space is Q = R × S1 × SO(3) with coordinates (z, θ, g) where
(z, θ) indicate the vertical position and the angle of the center of mass in cylindrical
coordinates, and g as in the last example indicates the orientation of the ball with
respect to some fixed frame.

Following [5, 70], from the right invariant frame XR = (XR
1 , X

R
2 , X

R
3 ), we construct

a new (moving) frame (Xn, Xθ, Xz) obtained by a rotation of XR of angle θ with
respect to the z-axis, and with associated coordinates of the angular velocity given by
ω = (ωn, ωθ, ωz), and dual basis denoted by (βn, βθ, βz).

The velocity constraints are given by

ż = rωn, θ̇ = −
r

R− r
ωz, (1.5.51)

with constraint 1-forms

ǫθ = βθ −
dz

r
, ǫz = βz +

R− r

r
dθ, (1.5.52)

which define de constraint distribution D given by

D = span{Yz :=
∂

∂z
+

1

r
Xθ, Yθ :=

∂

∂θ
−
R− r

r
Xz, Xn}. (1.5.53)

We observe that, by instance, [Yθ, Xn] = R−r
r

∂
∂θ
/∈ Γ(D), then the regular distribution

D is not integrable.

The Lagrangian L : TQ→ R is given by

L(z, θ, g, ż, θ̇,ω) =
m

2
((R− r)2θ̇2 + ż2) +

I

2
ω · ω +magz, (1.5.54)

where ag denotes the acceleration of gravity.

We choose the following basis of TQ

TQ = span{Yz, Yθ, Xn, Xθ, Xz},

and dual basis of T ∗Q,
T ∗Q = span{dz, dθ, βn, ǫ

θ, ǫz},

with associated coordinates (p̃z, p̃θ, M̃n, M̃θ, M̃z).

Using the kinetic energy metric one computes the constraint manifold M =
Leg(D),

M = {(z, θ, g, p̃z, p̃θ, M̃n, M̃θ, M̃z) : M̃θ =
Ir

E
p̃z, M̃z = −

Ir

E(R− r)
p̃θ},

where E = I +mr2. On the other hand, using

dβn|C = −
R

r2
dz ∧ dθ, dβθ|C =

R

r
βn ∧ dθ, dβz|C =

1

r
βn ∧ dz,

the 2-section ΩC is given by

ΩC = −dp̃z ∧ dz − dp̃θ ∧ dθ − dM̃n ∧ dβn −
I

E

R

r
p̃zβn ∧ dθ +

I

E(R− r)
p̃θβn ∧ dz,
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and the nonholonomic bivector field is

πnh =Yz ∧
∂

∂p̃z
+ Yθ ∧

∂

∂p̃θ
+Xn ∧

∂

∂M̃n

−
R

r2
M̃n

∂

∂p̃z
∧

∂

∂p̃θ
+

I

E(R− r)
p̃θ

∂

∂p̃z
∧

∂

∂M̃n

−
IR

E
p̃z

∂

∂p̃θ
∧

∂

∂M̃n

.

Computing the Hamiltonian, writing it in the adapted coordinates and restricting to
M we get

HM =
r2

2E

(

p̃z
2 +

p̃θ
2

(R− r)2

)

+
M̃n

2

2I
−magz.

Then, the nonholonomic vector field is

Xnh =
r2

(R− r)2E
Yθ+

r2

E
p̃zYz+

M̃n

I
Xn−

rp̃θM̃n

E(R− r)2

∂

∂p̃z
+

Ir3p̃θp̃z
E2(R− r)2

∂

∂M̃n

−agm
∂

∂p̃z
.

(1.5.55)
We can compare with the formulas obtained in [5] using the relations

p̃z =
E

mr2
pz, p̃θ =

E

mr2
pθ,

M̃n = Mn, M̃θ = Mθ, M̃z = Mz.

1.5.6 Body of revolution

Following [6, 36] we consider a strictly convex body of revolution rolling without sliding
over a horizontal plane which we take to be described by {z = 0}. We denote by m
the mass of the body and by I = (I1, I2, I3) the moment of inertia with respect to an
orthonormal frame (e1, e2, e3) attached to the body where e3 is oriented along the
axis of symmetry of the body. By the rotational symmetry we have I1 = I2. Moreover
we indicate by a ∈ R

3 the coordinates of the center of mass and by g the orthogonal
matrix indicating the orientation of the body. Then, the configuration manifold of
the free mechanical system is given by R

3 × SO(3) with coordinates (a, g) and the
Lagrangian L : TQ→ R (of mechanical type) is given by

L(a, g, ȧ,Ω) =
1

2
m〈ȧ, ȧ〉 +

1

2
〈IΩ,Ω〉 −mag〈ȧ, e3〉, (1.5.56)

where Ω = (Ω1,Ω2,Ω3) is the angular velocity in the body frame and 〈·, ·〉 denotes
the standard scalar product in R

3.

We start considering the constraints. First let us describe the holonomic constraint
and write the configuration manifold Q. We call ~a the vector in the space frame joining
the center of mass to the contact point. Thus, the holonomic constraint imposing the
fact that the body is on the plane is written

a3 = −〈~a,e3〉.

Since here we work in the body frame, it is convenient to call s = g−1~a and γ = g−1e3,
the corresponding coordinates of ~a and e3 in the body frame. More explicitly

s(γ) = (̺(γ3)γ1, ̺(γ3)γ2, ζ(γ3)),
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where ̺ : (−1, 1) → R and ζ : (−1, 1) → R are smooth functions depending on
the parametrization of the surface of revolution given in [36, Sec. 6.7.1] that can be
extended smoothly to a neighbourhood of ±1.

Consequently the configuration manifold is given by

Q = {(a, g) ∈ R
3 × SO(3) : a3 = −〈s,γ〉}. (1.5.57)

We define a local basis of TQ given by {XL
1 , X

L
2 , X

L
3 ,

∂
∂a1
, ∂
∂a1

} with coordinates (Ω, ȧ1, ȧ2),

where we denote by (XL
1 , X

L
2 , X

L
3 ) the left-invariant vector fields, with dual basis

λ = (λ1, λ2, λ3) given by the left Maurer-Cartan 1-forms. Then, the nonholonomic
constraint of rolling without slipping is given in the body coordinates by

g−1ȧ = −Ω × s,

or equivalently
ȧ = −g(Ω × s).

Taking the first two coordinates of the last relation, and denoting α,β,γ (this is
coherent with our previous use of γ) the rows of the matrix g we get

ȧ1 = −〈α,Ω × s〉, ȧ1 = −〈β,Ω × s〉,

and therefore the constraint 1-forms are written:

ǫ1 = da1 + 〈α,λ × s〉, ǫ2 = da2 + 〈β,λ × s〉. (1.5.58)

We get the constraint distribution D computing Ker{ǫ1, ǫ2}, that is

D = span{Y1, Y2, Y3}, (1.5.59)

where Yi := XL
i + (α × s)i

∂
∂a1

+ (β × s)i
∂
∂a2

+ (γ × s)i
∂
∂a3

.

We denote Y = (Y1, Y2, Y3) and complete D to form a basis of TQ with the vectors
∂
∂a1

and ∂
∂a2

, thus

TQ = span{Y1, Y2, Y3,
∂

∂a1

,
∂

∂a2

} = {Y ,
∂

∂a1

,
∂

∂a2

}.

Using the dual basis in T ∗Q given by {λ, ǫ1, ǫ2} with coordinates (M̃ , p̃1, p̃2), and using
the kinetic energy metric given in (1.5.56) we can compute the constraint manifold
M = Leg(D). We get

M = {(a1, a2, g,M̃ , p̃1, p̃2) : p̃1 = m〈α, s × Ω〉, p̃2 = m〈β, s × Ω〉}, (1.5.60)

where M̃ = IΩ +ms × (Ω × s). Then, the coordinates of M are (a1, a2, g,M̃ ) and
the bundle τM : M → Q is given by (a1, a2, g,M̃ ) 7→ (a1, a2, g).

The Liouville 1-form written in our basis of T ∗Q is ΘQ = M̃ · λ + p̃1ǫ
1 + p̃2ǫ

2.
The computation of the 2-section ΩC has been performed in [6, Prop. 3.3]. We do not
repeat the details here since they are better explained considering symmetries and
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other constructions which are recalled and explianed in Chapter 2. The final form of
the nonholonomic bivector πnh is

πnh = Y ∧
∂

∂M̃
+ (M̃ + K)

∂

∂M̃
× ∧

∂

∂M̃
, (1.5.61)

where ∂
∂M̃

= ( ∂
∂M̃1

, ∂
∂M̃2

, ∂
∂M̃3

) and

K = −m̺〈γ, s〉Ω + Qγ + Pe3, (1.5.62)

with

Q = −m(̺2〈Ω,γ〉 + ̺′c3), P = m(L̺〈Ω,γ〉 + L′c3),

c3 = (γ × (Ω × s))3, L = L(γ3) = ̺γ3 − ζ(γ3).
(1.5.63)

The Hamiltonian restricted to M has been computed in [36, Sec. 6.4] (in the La-
grangian formalism) and is given by

HM =
1

2
〈M̃ ,Ω〉 +mag〈a, e3〉. (1.5.64)

The nonholonomic vector field has also been computed in [36] (see also [6]):

Xnh = 〈Ω,Y 〉 + 〈 ˙̃
M ,

∂

∂M̃
〉, (1.5.65)

where
˙̃

M = M̃ × Ω +m(Ω × ṡ) × s −magγ × s.
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Chapter 2

Nonholonomic systems with

symmetries

In this chapter we present the geometric framework we use to write the equations of
motion before and after reduction by symmetries. We follow the previous works in
[5, 8, 11, 16, 46, 55, 86].

2.1 G-actions in nonholonomic mechanics

The objective of this section is to recall the reduction of nonholonomic systems with
a proper G-action. First we recall some standard facts about smooth group actions
and fix some notations, see e.g. [1, 38, 66].

2.1.1 Free and proper G-actions

Let G be a Lie group and M an n-dimensional smooth manifold. A smooth action (or
simply action) of G on M is a smooth map ψ : G×M → M such that, if we denote
ψ(g,m) by g ·m, then,

(i) e ·m = m and (ii) (gh) ·m = g · (h ·m),

for any g, h ∈ G, m ∈M , and where e ∈ G denotes the unit of the Lie group. For any
g ∈ G the action diffeomorphism ψg : M → M , is given by m 7→ g ·m. Equivalently
one can define the action as a group homomorphism G→ Diff(M) given by g 7→ ψg
where the product in Diff(M) is the composition.

We say that the action is free if when g ·m = m implies g = e, i.e. if g 6= e then the
map ψg : M → M has no fixed points. The action is called proper if the map given
by G×M → M ×M , such that (g, x) 7→ (x, g · x) is a proper map (the preimage of
a compact set is compact).

The orbit of a point m ∈ M is the set denoted G ·m or Orb(m) given by {g ·m :
g ∈ G}. The orbits of a smooth action are immersed submanifolds of M and if the
action is proper (in particular if G is compact) then the orbits are embedded closed
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submanifolds of M . If, in addition, the action is free then the orbits are diffeomorphic
to G.

The Lie algebra g of the Lie group G, defines and infinitesimal action on M , given
by fundamental vector fields or infinitesimal generators. Given a element ξ ∈ g, the
associated infinitesimal generator of the action on M , denoted ξM , is the vector field
defined by

ξM(m) :=
d

dt
|t=0 exp(tξ) ·m, (2.1.1)

where exp : g → G is the exponental map (see [38]). Then, the tangent space to the
orbit passing through m ∈ M , Orb(m), is generated the infinitesimal generators at
m, i.e.

TmOrb(m) = {ξM(m) : ξ ∈ g}. (2.1.2)

If the action is free then ξM(m) 6= 0, for any ξ ∈ g, and then the orbits Orb(m) are
rank(g)-dimensional submanifolds of M . In fact, Thm. 2.1.1 bellow shows that the
orbits are the fibers of a G-principal bundle.

The isotropy group or stabilizer Gm of a point m ∈M is the subgroup: Gm = {g ∈
G|g ·m = m}. Since Gm is a closed subgroup then it is a Lie subgroup. By definition,
an action is free if all the isotropy groups are trivial. Moreover isotropy groups for
proper actions are compact.

The quotient space M/G is a topological space with the quotient topology and the
quotient map ρ : M → M/G is usually called orbit projection and is continuous and
open. If the action is proper, the fact that the orbits are closed imply that M/G is
Hausdorff.

Theorem 2.1.1. If the Lie group G acts freely and properly over a manifold M , then
the quotient space M/G is a smooth manifold and the quotient map ρ : M →M/G is
a G-principal bundle.

In particular the projection map ρ : M → M/G is a submersion. Thus a smooth
function f : M/G → R on the quotient manifold M/G is equivalent to a smooth
function F : M → R constant on the orbits (or G-invariant). We denote C∞(M)G

the collection of all G-invariant functions on M and then we have the equivalence
C∞(M/G) ≃ C∞(M)G.

We present here two examples of smooth actions which illustrate symmetries in
mechanical systems.

Example 2.1.1. (The nonholonomic particle) Continuing with the example developed
in Section 1.5.1, we recall that the configuration space is Q = R3. We will see in
Section 2.4.1 that the system has symmetry group G = R

2. The action of (a, b) ∈ G
on (x, y, z) ∈ Q is given by

(a, b) · (x, y, z) = (x+ a, y, z + b),

and it is straightforward to see that it is free and proper. The orbit projection ρ : Q→
Q/G ≃ R

1 is given in coordinates by (x, y, z) 7→ (y).
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Example 2.1.2. (A ball on a plane under gravity) The configuration space is R
2 ×

SO(3) with coordinates (x, y, g) and since the position of the center of mass as well as
the orientation in the plane are not relevant (homogeneity and isotropy of space, in the
physics nomenclature), we consider a symmetry group G = SE(2) = R

2 × SO(2) ≃
R

2 × S1 acting as

((a, b), ϕ) · (x, y, g) = (hϕ(x, y) + (a, b), ĥϕg),

where hϕ is the 2 × 2 orthogonal matrix representing counter-clockwise rotation of

angle ϕ, and ĥϕ is the 3 × 3 orthogonal matrix representing a rotation of angle ϕ
with respect to the z-axis. The action is free and proper and the quotient space Q/G,
is diffeomorphic to SO(3)/S1 ≃ S2. In this case the map ρ : Q → S2 is given in
coordinates by (x, y, g) 7→ γ, where γ is the third row of the orthogonal matrix g.

2.1.2 Proper G-actions

If the action ψ : G×Q→ Q is not free then the quotient space Q/G is not necessarily
a smooth manifold but it can be understood as a differential space, see for instance
[13, 35, 36, 82].

Definition 2.1.2. A differential space M is a topological space endowed with the ring
C∞(M) of continuous functions that satisfy the following conditions:

1. The family {f−1(I)|f ∈ C∞(M) and I an open interval of R} is a subbasis of
the topology of M .

2. If f1, · · · , fn ∈ C∞(M) and F ∈ C∞(Rn), then F (f1, · · · , fn) ∈ C∞(M).

3. If f : M → R is a function such that for each m ∈M there is a neighbourhood
U of p and a function fp ∈ C∞(M) satisfying fp|U = f |U , then f ∈ C∞(M).

When necessary we use the pair (M,C∞(M)) to denote the differential space. Let
(M,C∞(M)) and (N,C∞(N)) be two differential spaces, a continuous map ϕ : M →
N is said a smooth map from (M,C∞(M)) to (N,C∞(N)) if ϕ∗(C∞(N)) ⊂ C∞(M) .
If ϕ is a homeomorphism and ϕ−1 is also smooth then ϕ is called a diffeomorphism of
the differential spaces (M,C∞(M)) and (N,C∞(N)).

Example 2.1.3. A smooth manifold M with its ring of smooth functions C∞(M) is
a differential space.

Example 2.1.4. If G is a Lie group acting properly on a smooth manifold Q, then
the quotient space Q/G is a Hausdorff topological space. Moreover Q/G is also a
differential space by declaring the ring of smooth functions on Q/G as being the ring
of smooth G-invariant functions on Q denoted by C∞(Q)G. That is, if we denote by
ρ : Q→ Q/G the orbit projection, then a smooth function f̄ ∈ C∞(Q/G) is identified
with the corresponding G-invariant function f on Q s.t. ρ∗f̄ = f . It can be shown
that (Q/G,C∞(Q/G)) is a differential space, that ρ : Q → Q/G is smooth map and
that the quotient topology coincides with the differential space topology of Q/G, see e.g
[35, Sec. VII.3.2].
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If the action is not free at m ∈M , then there exits ξ ∈ g such that its infinitesimal
generator vanishes at m, i.e. ξM(m) = 0. Denote by gm the Lie subalgebra given
by gm = {ξ ∈ g : ξM(m) = 0}, then it is equal to the Lie algebra Lie(Gm) of the
isotropy group Gm even if the action is non-proper. In this case, as we mentioned
in Section 2.1.1, the orbit Orb(m) is a embedded closed submanifold of M , but not
necessarily of dimension rank(g). In fact, its tangent space is still given by (2.1.2),
but has dimension dim(g/gm). See the book [38] for details and other result for proper
actions on manifolds.

2.1.3 Reduction of nonholonomic systems

Consider a Lie group G acting properly on the configurations manifold Q such that the
tangent lift of the action to TQ leaves invariant the Lagrangian L and the distribution
D. As a consequence the corresponding cotangent lift of the action to T ∗Q leaves
invariant the constraint manifold M ⊂ T ∗Q, the bivector field πnh on M and the
restricted Hamiltonian HM.

Definition 2.1.3. A G-action on the constraint manifold M is called a G-symmetry
of the nonholonomic system (M, πnh, HM) if it preserves the bivector field πnh and
the restricted Hamiltonian HM.

Consequently, a G-symmetry of the nonholonomic system (M, πnh, HM) induces
the reduced dynamics on the quotient space M/G. We have seen in Example 2.1.4
that the orbit space M/G is a Hausdorff differential space such that C∞(M/G) ≃
C∞(M)G. Then, the G-invariant nonholonomic bracket {·, ·}nh on M and the orbit
projection ρ : M → M/G induce a reduced almost Poisson bracket on the differential
space M/G given by,

{f̄ , ḡ}red ◦ ρ = {f, g}nh ,∀f̄ , ḡ ∈ C∞(M/G), (2.1.3)

where f = ρ∗f̄ and g = ρ∗ḡ belong to C∞(M)G.

Since the Hamiltonian HM is G-invariant, the reduced bracket {·, ·}red describes
the reduced dynamics: Xred = {·, Hred}red ∈ X(M/G), where Hred : M/G → R is
the reduced Hamiltonian give by ρ∗Hred = HM (see [6, 12]). Observe that Xred is a
priori only a derivation on the differential space M/G. We will see in the next Section
that, for a proper G-action, the differential space M/G has also the structure of a
subcartesian space and a stratified space, which allow one to understand the meaning
of vector fields in X(M/G).

Example 2.1.5. (An axisymmetric ball on a plane under gravity) Recall the mechan-
ical system in Example 2.1.2. Suppose that the ball has an axis of symmetry which
induces a new (left) S1-action and commuting with the SE(2)-action.

Recall that the configuration space is Q = R
2 × SO(3) with coordinates (x, y, g)

and now G = SE(2) × S1 acts as

((a, b), ϕ, α) · (x, y, g) = (hϕ(x, y) + (a, b), ĥϕgĥα),
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where, as before, hϕ is the 2 × 2 orthogonal matrix representing counter-clockwise

rotation of angle ϕ, and ĥϕ (resp. ĥα) is the 3 × 3 orthogonal matrix representing a
rotation of angle ϕ (resp. α) with respect to the z-axis.

The action is proper but it is not free. Indeed, for any gz ∈ SO(3) representing a
rotation around the vertical axis (then commuting with ĥα), the element ((0, 0), ϕ,−ϕ)
fixes the point (0, 0, gz). In this case the quotient space Q/G, is diffeomorphic to
S2/S1 ≃ I, where I denotes a closed interval, which is not a smooth manifold. In this
case the map ρ : Q → Q/G given in local coordinates by (x, y, g) 7→ γ3, where γ3 is
the z-component of the vector γ (using the usual notation for the rows of the matrix
g, see Example 2.1.2).

Example 2.1.6. The last example is an instance on a solid of revolution rolling on
a plane, developed in [6, 36, 47] and presented in Section 1.5.6. As a consequence,
the G-symmetry for that example does not come from a free action. We will illustrate
in Section 2.4.6 the use of invariant functions to show the results about the reduced
Poisson structure on M/G. Moreover, the example treated in thesis and developed in
Chapter 4 also admits a proper non-free action.

2.2 The quotient M/G seen as a subcartesian and

stratified space

We now briefly explain the structure of the quotient space M/G for proper actions,
more specifically we discuss the existence of vector fields and the orbit type stratifi-
cation. For more details see the books [35, 36, 38, 82] and the paper [81].

For a proper G-action, the space M/G has more properties in addition of being
a differential space. First, it is a subcartesian space, meaning that it is a Hausdorff
differential space, locally diffeomorphic (as a differential space) to a open subset of
the Cartesian space R

n. On the other hand M/G is a stratified space1 given by the
orbit type stratification associated to the G-action.

A derivation X on a subcartesian space C is called a vector field if the unique
maximal integral curve passing by a given point is a local one-parameter group of
local diffeomorphisms. Given a family F of vector fields in a subcartesian space C,
the orbit of F passing through p ∈ C is the subset of C formed by points which can be
attained from p following, during finite times, the integral curves of a finite number of
vector fields of the family F. For such families F, Sniatycki [81] has shown an analogue
of Stefan-Sussmann orbit theorem for subcartesian spaces. In particular, the orbits of
the family X(C) of all vector fields in a subcartesian space C are smooth manifolds
immersed in C and gives rise to a generalized foliation of C where the leaves are
the orbits of X(C). The orbits of a (sub-)family of vector fields are also manifolds
contained in the orbits of all vector fields X(C) but are not necessarily maximal.

1Recall that a stratification of a paracompact Hausdorff space S is a partition of S on a locally
finite number of locally closed subspaces called strata such that: (i) each stratum M is a smooth
manifold with the indiced topology, and (ii) if M , N are strata and M ∩ N̄ 6= ∅, then either M = N

or M ⊂ N̄ − N , where N̄ denotes the topological closure of N , [81].
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Let us recall the orbit type stratification associated to a proper action. Consider
in general a proper action of a Lie group G on a manifold M . The isotropy group Gm

of a point m ∈ M is then compact. Let H be a compact subgroup of G. The subset
of M of orbit type H is given by

M(H) = {m ∈M |Gm = gHg−1 for some g ∈ G}.

It can be shown that each connected component of M(H) is a submanifold of M . The
family of connected components of M(H) as H varies over compact subgroups of G
gives rise to a stratification of M called orbit type stratification of M. Moreover the
projection of the orbit type stratification of M by the orbit map ρ gives a (minimal)
stratification in M/G called the orbit type stratification of M/G where the strata are
the orbit projections M(H)/G of the strata of the orbit type stratification of M .

Returning to the quotient M/G by a proper action. It is proved in [35, Sec. VII.3.3]
(see also [36, Sec. 2.5]) that M/G with its differential space structure given by G-
invariant functions is a subcartesian space. Moreover, we get a generalized foliation
of M/G by the orbits of all vector fields X(M/G), which coincide with the strata of
the orbit type stratification of M/G, see [81, Sec. 7].

We summarize now the results of Chapter 8 of [82] for almost Poisson mani-
folds. Recall that a proper G-symmetry induces, by (2.1.3), an almost Poisson bracket
{·, ·}red on the stratified differential space M/G. Then, each stratum N of the orbit
type stratification of M/G is an almost Poisson manifold with bracket {·, ·}red|N . For
a smooth function f̄ on M/G, the derivation of M/G given by

Xf̄ (ḡ) = −{f̄ , ḡ}red

defines a vector field on M/G that it is also called the Hamiltonian vector field of f̄ .
The orbits of the family of all Hamiltonian vector fields in M/G are smooth manifolds
immersed in the strata of M/G and are not necessarily integral manifolds. Let us
call O, with O ⊂ N ⊂ M/G, one of such orbits, then any Hamiltonian vector field on
M/G induces a smooth vector field in the manifold O by restriction.

In the case of a nonholonomic system (M, πnh, HM) with a proper G-symmetry,
the space M/G is an almost Poisson differential space with bracket {·, ·}red and it
is stratified by orbit type, each stratum is an almost Poisson manifold and Xred is a
vector field in M/G inducing a smooth vector field on each stratum which preserves
the orbit type stratification of M/G.

We are interested in the integrability properties of the reduced bracket {·, ·}red in
M/G, that is, the failure of the Jacobi identity. In order to compute this failure, we
will use the formulas proved in [5] which are based in certain splittings of the tangent
bundle TQ explained in detail in the next Section.

2.3 The failure of the Jacobi identity of nonholo-

nomic brackets

In this section we present formulas for the Jacobiator of nonholonomic bracket {·, ·}nh
and the reduced bracket {·, ·}red for nonholonomic systems with symmetries. These
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formulas were proved in [5] for nonholonomic systems with free and properG-symmetries
and are based on the construction of the 3-form dJ ∧KW , see Section 2.3.2. The for-
mulas for the Jacobiator were generalized to proper G-actions in [6] where one key
assumption was the so-called vertical symmetry condition, see Rmk. 2.3.1. The main
result in the following section is that, if the action not necessarily free and G is com-
pact, then the vertical symmetry condition is no longer necessary to compute the
Jacobiator, see Eqs. (2.3.20) and (2.3.21)

2.3.1 Splittings adapted to the constraints

Following our discussion of Section 2.1.3, let us consider a nonholonomic system
(M, πnh, HM) with a properG-symmetry. Let us denote by V the (generalized) smooth
distribution on Q, called vertical distribution, given, at each q ∈ Q, by the tangent
space to the orbit by G passing through the point q, i.e. Vq := TqOrb(q). In this thesis
we will suppose that the dimension assumption [16] holds, i.e.

TqQ = Dq + Vq, (2.3.4)

for q ∈ Q. Since the action is not necessarily free, the rank of the vertical distribution
V ⊂ TQ may vary.

Now let us define the (generalized) smooth distribution S in Q given, at each
q ∈ Q, by

Sq := Dq ∩ Vq. (2.3.5)

It was shown in [6, Prop. 2.2] that the dimension assumption implies the existence of
a constant rank smooth distribution W on Q such that for all q ∈ Q,

TqQ = Dq ⊕Wq and Wq ⊂ Vq, (2.3.6)

which is equivalent to the following splitting of the vertical distribution,

Vq = Sq ⊕Wq. (2.3.7)

Let g denote the m-dimensional Lie algebra of G. Following [16], for each q ∈ Q,
let us define the vector subspace gS|q of g by

η ∈ gS|q ⇔ ηQ(q) ∈ Sq, (2.3.8)

where ηQ denotes the infinitesimal generator of the action of G on Q associated to the
element η ∈ g. Moreover, it was shown in [6] that the dimension assumption implies
that gS → Q is, in fact, a vector subbundle of the trivial bundle g × Q → Q. Then
η ∈ Γ(gS) if ηQ(q) ∈ Sq, where ηQ(q) := (η|q)Q(q). The bundle gS → Q admits a
(non-unique) bundle complement gW → Q such that, for any q ∈ Q,

(g ×Q)|q = gS|q ⊕ gW |q. (2.3.9)

Then, the distribution W ⊂ V in (2.3.7) is defined by

Wq = span{ξQ(q) : ξ ∈ gW |q}, (2.3.10)

and it is smooth with constant rank. The bundle W is called a vertical complement
of the constraints if, in addition to (2.3.6), it is G-invariant.
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Remark 2.3.1. Following [5, 6], let us recall that the bundle W in (2.3.10) satisfy the
vertical symmetry condition is the bundle gW → Q is given by a Ad-invariant subspace
w ∈ g, i.e. gW |q ≃ w for any q ∈ Q. In fact, the vertical symmetry condition is
equivalent to the existence of a normal Lie subgroup GW ⊂ G, such that W is the
vertical space associated to the corresponding GW -action, i.e. TqOrbGW

(q) ≃ Wq, for
any q ∈ Q, where OrbGW

(q) is the orbit of q by the action of GW . ⋄

Proposition 2.3.2. Let G be a compact (and connected) Lie group acting (properly)
on Q. If the dimension assumption is satisfied, then there exists a G-invariant comple-
ment W ⊂ V verifying (2.3.6) (or equivalently there exists an Ad-invariant subbundle
gW → Q of g ×Q→ Q verifying (2.3.9)).

Proof. Since the group G is compact, the Lie algebra g admits an Ad-invariant scalar
product ([60, Proposition 4.24]), which induces an Ad-invariant bundle metric in the
trivial bundle g ×Q→ Q.

For any g ∈ G, let us consider the bundle map Adg : g×Q→ g×Q, over the action
diffeomorphism ψg : Q → Q, given at each η ∈ Γ(g ×Q) by Adg(η)|ψg(q) := Adg(η|q).
By the dimension assumption gS → Q is a subbundle of the trivial bundle g×Q→ Q
[6], and since the distribution S is G-invariant then gS is Ad-invariant and thus Adg
restricts to a bundle map Adg : gS → gS, see [32, Lemma. 4.4.8]. By Ad-invariance
of the bundle metric on g × Q → Q, if gW in (2.3.9) is chosen to be the orthogonal
complement of the bundle gS with respect to this metric, then gW → Q is an Ad-
invariant subbundle of g × Q → Q. Defining the distribution W as in (2.3.10), we
obtain that it is G-invariant.

Remark 2.3.3. In the last proof we used the fact that if S is G-invariant then gS is
Ad-invariant and thus Adg restricts to a bundle map Adg : gS → gS. Indeed since S is
G-invariant, the Ad-invariance of gS follows from the formula (see [32, Lemma. 4.4.8]),

Tqψg(ξQ(q)) = (Adg(ξ))Q(ψg(q)),

where Tqψg denotes the derivative of ψg at the point q ∈ Q and ξ ∈ Γ(g × Q).
When there is no risk of confusion we will use the short notation for the G-action:
g · q := ψg(q). ⋄

Remark 2.3.4. For completeness we recall the averaging procedure used to show
that the bundle g × Q → Q admits an Ad-invariant bundle metric. First, the trivial
bundle g ×Q → Q as a vector bundle admits a bundle metric, i.e. a family of scalar
products on the fibers varying smoothly with the base point, see e.g. [56, Sec. 2.1].
Let us denote by 〈·, ·〉q the bundle metric of g×Q→ Q on the fibre over q ∈ Q. Since
the Lie group G is compact, it admits a left (and right) Haar measure denoted by dg.
We claim that the following bilinear form 〈〈·, ·〉〉 on g ×Q→ Q,

〈〈η|q, ξ|q〉〉q :=

∫

G

〈Adg(ξ|q), Adg(η|q)〉g·qdg,

is an Ad-invariant metric on g×Q→ Q. It is straightforward to show that it is in fact
a scalar product, then it remains to see that 〈〈·, ·〉〉 is Adh-invariant for any h ∈ G.
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Indeed,

〈〈Adh(η|q), Adh(ξ|q)〉〉h·q =

∫

G

〈Adg(Adh(ξ|q)), Adg(Adh(η|q))〉g·(h·q)dg

=

∫

G

〈Adgh(ξ|q)), Adgh(η|q))〉(gh)·qdg.

(2.3.11)

Since for any function f : G → R, we have that
∫

G
fdg =

∫

G
(f ◦ Rh)dg, where

Rh : G → G is the right multiplication, Rh(g) = gh, then (2.3.11) is equivalent to
∫

G
〈Adg(ξ|q), Adg(η|q)〉g·qdg and thus we obtain the Ad-invariance. ⋄

Remark 2.3.5. The Killing form K of a compact Lie algebra is an Ad-invariant,
negative semidefinite bilinear form. If G is semisimple K is non-degenerate, thus
for compact semisimple Lie algebras, −K works well as Ad-invariant scalar product.
However our example has symmetry group S1×SO(3) which is not semisimple because
the factor S1 is abelian. ⋄

Remark 2.3.6. There is a general theory for Lie algebras admitting Ad-invariant
scalar products. The following statements are equivalent for a connected Lie group G
with Lie algebra g: G admits a bi-invariant metric, G is isomorphic to the Cartesian
product of a compact group and a vector space, the Lie algebra g admits an Ad-
invariant scalar product, see for instance [45, Chap. 18]. This would allow to apply
the last proposition for others examples such as the solid of revolution rolling on a
plane, see [6, 47], where the symmetry group is not compact but has the mentioned
Cartesian product structure. ⋄

Following [5], the splitting (2.3.6) on TQ induces a splitting on M. More precisely,
the G-action on M defines a (generalized) vertical distribution V on M by Vm :=
TmOrb(m), for m ∈ M. Then, the constant rank distribution W given by

Wm = span{ξM(m) : ξ ∈ gW |q, q = τM(m)}, (2.3.12)

is a vertical complement of the constraints C since

TM = C ⊕W and W ⊂ V . (2.3.13)

As in Prop. 2.3.2, the distribution W is G-invariant as long as gW → Q is Ad-invariant.
We thus define the (generalized) distribution S on M given, at each point m ∈ M,
by

Sm := Cm ∩ Vm, (2.3.14)

and we see that
Vm = Sm ⊕Wm. (2.3.15)

2.3.2 The Jacobiator and the 3-form dJ ∧KW

Now, we recall the formula that casts the failure of the Jacobi identity of the nonholo-
nomic bracket {·, ·}nh and the reduced one {·, ·}red, see [5, 7]. First, let us consider
the g-valued 1-form AW on Q given, at each q ∈ Q and vq ∈ TqQ, by

AW (vq) = ξ ∈ g if and only if PW (vq) = ξQ(q), (2.3.16)
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where PW : TQ → W is the projection to the second factor in the splitting (2.3.6).
Analogously we denote by PD : TQ → D the projection to the first factor in the
splitting (2.3.6) of TQ. Then we define the g-valued 2-form on Q given by

KW (X, Y ) = dAW (PD(X), PD(Y )), X, Y ∈ X(Q). (2.3.17)

The W-curvature KW is the g-valued 2-form on M induced by (2.3.17) given by

KW(X̃, Ỹ ) = KW (TτM(X̃), T τM(Ỹ )), X̃, Ỹ ∈ X(M). (2.3.18)

Second, let J : M → g∗ be the restriction to M of the canonical moment map on
T ∗Q, i.e. 〈J(m), η〉 = iηM(m)ΘM(m), for η ∈ g and ΘM the Liouville 1-form restricted
to M. Finally, we have the 3-form on M,

dJ ∧KW(X̃, Ỹ , Z̃) = cyclic[〈dJ(X̃), KW(Ỹ , Z̃)〉], X̃, Ỹ , Z̃ ∈ X(M), (2.3.19)

where the pairing 〈·, ·〉 is the natural pairing between g∗ and g (recall that dJ(X̃) ∈
Γ(M × g∗) and KW(X̃, Ỹ ) ∈ Γ(M × g) ) and cyclic indicates the sum of cyclic
permutations of the variables (see [5] and [7] for more details).

The 3-form dJ ∧ KW is G-invariant, see [5]. This is a consequence of the fact
that the moment map J : M → g∗ is Ad∗-equivariant, and, if W is G-invariant, the
W-curvature KW is Ad-equivariant, see [5, Prop. 4.4].

The 3-form (2.3.19) appears in [5] to describe intrinsic formulas for the Jacobiator
of πnh and {·, ·}red in the presence of symmetries. More precisely, let (M, {·, ·}nh) be
the G-invariant almost Poisson manifold associated to a nonholonomic system with
symmetries satisfying the dimension assumption (2.3.4). If W is a G-invariant vertical
complement of C, then:

1. The nonholonomic bracket {·, ·}nh on M satisfies, for all f, g, h ∈ C∞(M),

cyclic[{f, {g, h}nh}nh] =(dJ ∧KW)(π#
nh(df), π#

nh(dg), π
#
nh(dh))

− ψπnh
(df, dg, dh),

(2.3.20)

where ψπnh
is the trivector given by ψπnh

(α, β, γ) = cyclic[γ(KW(π#
nh(α), π#

nh(β))M)],
for α, β, γ 1-forms in M, and which vanishes if and only if the distribution C is
involutive.

2. For f̄ , ḡ, h̄ ∈ C∞(M/G),

cyclic[{f̄ , {ḡ, h̄}red}red ◦ ρ] = (dJ ∧KW)(π#
nh(dρ

∗f̄), π#
nh(dρ

∗ḡ), π#
nh(dρ

∗h̄)),
(2.3.21)

where {·, ·}red is the reduced bracket on M/G defined in (2.1.3). We observe
that (2.3.21) also works for the case where the quotient M/G is a differential
space.

From formula (2.3.20) one concludes that {·, ·}nh is never Poisson because the
trivector ψπnh

is never zero if C is non-integrable (as is our case). Indeed, by definition
the W-curvature KW is zero if and only if the regular distribution C is involutive,
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see [5, Sec. 4.1]. In fact, the latter argument shows that {·, ·}nh is not even twisted
Poisson, see Example 1.4.1, since the C is the characteristic distribution of {·, ·}nh.

On the other hand, using formula (2.3.21) one observe that the reduced bracket
{·, ·}red is Poisson if the RHS of (2.3.21) is zero. Moreover, if the action is free and
proper, Cor. 4.10 of [5] shows that if 3-form dJ ∧KW is closed and basic with respect
to ρ : M → M/G, then {·, ·}red is φ-twisted Poisson, where φ ∈ Ω3(M/G) is given by
ρ∗φ = dJ ∧KW . In fact, it is enough to check that the 3-form dJ ∧KW is semi-basic
with respect to ρ : M → M/G, since in that case the G-invariance of dJ∧KW implies
that it is basic.

We close the section illustrating the reduction process where the reduced bracket
{·, ·}red could in principle have better integrability properties that the nonholonomic
bracket {·, ·}nh:

(M, {, }nh)




y

(M/G, {, }red)

Poisson/twisted Poisson?

2.3.3 Formulas in local basis

Let us fix some notations in order to write formulas of the W-curvature KW and the
3-form dJ ∧KW in coordinates. Take a basis of sections {ηi, ξa} of g×Q→ Q where
ηi ∈ Γ(gS) and ξa ∈ Γ(gW ), for i = 1, · · · , l; a = l+1, · · · , l+k and dim(g) = m = l+k.
In the following, we will use indices i, j for objects related to S, indices a, b for objects
related to W , and uppercase indices I, J,K when considering objects both in S and
in W .

In order to apply formula (2.3.21) in the example treated in the next section, we
compute the 3-form dJ∧KW in coordinates adapted to the splitting (2.3.9). The basis
of sections {ξa}, a = l+1, · · · ,m, of the bundle gW → Q, induces a basis {Za = (ξa)Q}
of W by (2.3.10). Choosing a basis {Xi}, i = 1, · · · , l, of the distribution D, we get
a basis of sections {Xi, Za} of TQ, with dual basis {X i, ǫa}. Let us denote by ǫ̃a,
a = l + 1, · · · ,m the pull-back to M of the constraint 1-forms, i.e. ǫ̃a = τ ∗

M
ǫa, where

as usual τM : M → Q is the canonical projection.

Using these notations we first compute in coordinates the W-curvature KW defined
in (2.3.18) which is semi-basic with respect to the bundle M → Q [5].

Lemma 2.3.7. In the basis of sections {ξa}, a = l+1, · · · ,m, of the bundle gW → Q,
the W-curvature KW is given by

KW |C = dǫ̃a|C ⊗ ξa and KW |W = 0. (2.3.22)

Proof. Let {χI} be a basis of g (i.e. χI , I = 1, · · · ,m, are constant sections of
g ×Q→ Q), then we can write the sections ξa ∈ gW using Einstein convention as

ξa = hIaχI , a = l + 1, · · · ,m

for functions hIa ∈ C∞(Q).
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The projection PW : TQ→ W , associated to the splitting TQ = D⊕W , is given by
PW = ǫa ⊗ Za, where Za = (ξa)Q ∈ Γ(W ) by (2.3.10). The g-valued 1-form AW given
in (2.3.16) is written as AW = ǫa ⊗ ξa, and therefore AW = hIaǫ

a ⊗ χI . Differentiating
AW we obtain:

dAW = d(ǫa ⊗ ξa)

= dǫa ⊗ ξa + dhIa ∧ ǫ
a ⊗ χI .

Therefore the W-curvature KW given in (2.3.18) is computed as follows, for X̃, Ỹ ∈
X(M),

KW(X̃, Ỹ ) = KW (TτMX̃, T τMỸ ) = dAW (PDTτMX̃, PDTτMỸ )

= dǫa(PDTτMX̃, PDTτMỸ ) ⊗ ξa,
(2.3.23)

where in the last equality we used that ǫa annihilates the distribution D. By definition
of the distribution C in M (1.4.23), we see that the following diagram commutes,

TM
PC−−−→ C

TτM





y





y

TτM

TQ
PD−−−→ D,

where PC : TM → C denotes the projection associated to splitting TM = C ⊕ W
in (2.3.13). Then, since ǫ̃a = τ ∗

M
ǫa, we see that the last term in (2.3.23) is equal to

dǫ̃a(PCX̃, PCỸ ) ⊗ ξa and hence we obtain (2.3.22).

Before presenting the coordinate expression of dJ∧KW |C, let us fix some notations
concerning change of basis of sections of the bundle g × Q → Q. As in the proof
of the last Lemma consider a basis of g denoted by {χ1, · · · , χm}, with dual basis
{χ1, · · · , χm}. Also consider the basis of sections of g × Q ∼= gS ⊕ gW → Q given by
{ηi, ξa}, with dual basis {ηi, ξa}, i = 1, · · · , l, a = l + 1, · · · ,m. We can relate the
corresponding basis by

ηi = hKi χK , ξa = hKa χK , (2.3.24)

for functions hKi , hKa ∈ C∞(Q), and form the m×m square matrix h with entries hKJ ,
where the l first rows are given by hKi and the next rows (for J = l + 1, · · · ,m) are
given by hKa . We denote by h̄ the inverse transpose of h. With this notation the dual
basis {ηi, ξa} and {χK} are related by

ηi = h̄iKχ
K , ξa = h̄aKχ

K . (2.3.25)

Proposition 2.3.8. Consider a basis {ηi, ξa} of g×Q adapted to the splitting (2.3.9)
and define the functions JL on M by Ji := i(ηi)MΘM and Ja := i(ξa)MΘM, L =
1, · · · ,m; i = 1, · · · , l; a = l + 1, · · · ,m. Then the 3-form dJ ∧ KW restricted to C
verifies

dJ ∧KW |C =
(

dJa ∧ dǫ̃
a + JLφ

L
)

|C, (2.3.26)

where φL are 3-forms (basic with respect to τM : M → Q) defined by φL = hKa dh̄
L
K∧dǫ̃a

and the functions hKa , h̄LK ∈ C∞(Q) are given in (2.3.24) and (2.3.25), respectively.
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Proof. The moment map J : M → g∗ can be written as

J = i(ηi)MΘM ⊗ ηi + i(ξa)MΘM ⊗ ξa = Ja ⊗ ξa + Ji ⊗ ηi.

Therefore from (2.3.25),

dJ = d(h̄aKJa) ⊗ χK + d(h̄iKJi) ⊗ χK

= dJa ⊗ ξa + dJi ⊗ ηi + JLdh̄
L
K ⊗ χK .

Using Lemma 2.3.7 we get,

dJ ∧KW |C =
(

dJa ∧ dǫ̃
a + hKa JLdh̄

L
K ∧ dǫ̃a

)

|C,

and we observe that the last term has the form JLφ
L, a semi-basic 3-form with respect

to the bundle τM : M → Q, and φL is the basic 3-form appearing in (2.3.26).

Remark 2.3.9. If the bundleW verifies the vertical symmetry condition (Rmk. 2.3.1),
then the functions barhaK in 2.3.24 are constant and hence in Prop. 2.3.8 we have
φL = 0. Consequently (2.3.26) becomes

dJ ∧KW |C = (dJa ∧ dǫ̃
a)|C,

, which implies that
dJ ∧KW |C = d〈J,KW〉,

where 〈J,KW〉 = Jadǫ̃
a. The 2-form 〈J,KW〉 is semi-basic with respect to the bundle

τM : M → Q and G-invariant, see [5], where it has been studied thoughtfully. ⋄

In Section 4.2.3 we apply the geometric framework and reduction by symmetries
together with Proposition 2.3.8 to show that, for the example studied in this thesis,
the reduced bracket {·, ·}red in the quotient system M/G is not Poisson.

2.4 Examples

2.4.1 The nonholonomic particle

Continuing with the example of Section 1.5.1 and Ex. (2.1.1) , we recall that the
system has a symmetry group G = R

2 with Lie algebra g ≃ R
2. The action is free

and proper with the vertical distribution V given by V = span{ ∂
∂x
, ∂
∂z
}. Recalling

the constraint distribution D computed in (1.1.4), we have that S = D ∩ V = {Yx}.
We choose a vertical complement W = span{ ∂

∂z
} which verifies the vertical symmetry

condition. Indeed, W is generated by the Lie subalgebra span{(0, 1)} ⊂ g.

The lifted action to M is given by

(a, b) · (x, y, z, p̃x, p̃y) = (x+ a, y, z + b, p̃x, p̃y), (2.4.27)

then the vertical space is V = span{ ∂
∂x
, ∂
∂z
}, with vertical complement W = span{ ∂

∂z
},

which verifies the vertical symmetry condition.
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The bundle gS → Q associated to S is generated by the section η = (1, y
1+y2

) ∈
g × Q. On the other hand, as a consequence of the vertical symmetry condition we
have that dJ ∧KW = d〈J,KW〉. Moreover

〈J,KW〉 =
yp̃x

1 + y2
dx ∧ dy.

We can now compute the Jacobiator of the reduced bracket {·, ·}red in the reduced
space M/G ≃ R

3. We get

d〈J,KW〉(πnh(ρ
∗dy), πnh(ρ

∗dp̃x), πnh(ρ
∗dp̃y) = 0,

and therefore the reduced bracket {·, ·}red is Poisson.

2.4.2 The vertical rolling disk

We continue the study of the example described in Section 1.5.2. Recall that the
configuration manifold is Q = R2 ×S1 ×S1 and that the group G = R

2 ×S1 acts as a
symmetry of the nonholonomic system. The action of an element (a, b, α) on a point
of M is given by

(a, b, α) · (x, y, θ, φ, p̃θ, p̃φ) = (x+ a, y + b, θ + α, φ, p̃θ, p̃φ),

with orbit projection ρ : M → M/G given by

(x, y, θ, φ, p̃θ, p̃φ) 7→ (φ, p̃θ, p̃φ),

and vertical space V = span{ ∂
∂x
, ∂
∂y
, ∂
∂θ
}. We choose the vertical complement W as

W = span{ ∂
∂x
, ∂
∂y
}, which verifies the vertical symmetry condition in Rmk. 2.3.1.

We compute the 3-form dJ ∧KW and we get zero. In fact, 〈J,KW〉 = 0 and use
that here dJ ∧KW = d〈J,KW〉. As a consequence, by the Jacobiator formula (2.3.21),
the reduced bivector field is Poisson.

2.4.3 Snakeboard

We continue with the example started in Section 1.5.3. The symmetry group of the
system is given by the action of the group G = R

2 × S1 such that,

(a, b, α) · (x, y, θ, φ, ψ) = (x+ a, y + b, θ, φ, ψ + α),

which is clearly free and proper. Using the canonical basis of the Lie algebra g ≃ R
3,

we compute the vertical space:

V = span{
∂

∂x
,
∂

∂y
,
∂

∂ψ
}. (2.4.28)

The constraint distribution D was computed in (1.5.39). We choose the vertical
complement asW = span{ ∂

∂x
, ∂
∂y
} and we observe that it verifies the vertical symmetry

condition in Rmk. 2.3.1.
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The (free and proper) lifted action to M is given by

(a, b, α) · (x, y, θ, φ, ψ, p̃θ, p̃φ, p̃ψ) = (x+ a, y + b, θ, φ, ψ + α, p̃θ, p̃φ, p̃ψ),

and then the quotient M/G is a smooth manifold diffeomorphic to T
2×R3 with orbit

map ρ : M → M/G given by

ρ(x, y, θ, φ, ψ, p̃θ, p̃φ, p̃ψ) = (θ, φ, p̃θ, p̃φ, p̃ψ).

Using the canonical basis of the Lie algebra g, we compute the moment map J : M →
g∗ and get J(m) = (ι∗

M
(p̃x), ι

∗
M

(p̃y), p̃ψ), with ιM : M → T ∗Q the inclusion. The
W-curvature is given in our basis by KW = (dǫ1, dǫ1, 0), and then

〈J,KW〉 = −
mr2 cotφ

mr2 − J sin2 φ
(p̃θ − p̃ψ)dθ ∧ dφ, (2.4.29)

which is basic with respect to the bundle M → M/G. Since, as in the previous ex-
amples, d〈J,KW〉 = dJ ∧KW , we conclude that the reduced bracket {·, ·}red is twisted
Poisson and then it has an integrable characteristic distribution (see the discussion
after formula (2.3.21)).

2.4.4 Rigid body and Chaplygin ball

The nonholonomic system presented in Section 1.5.4 admits a symmetry group G =
{(h, a) ∈ SO(3) × R

2 : he3 = e3} ≃ SO(2) × R
2 which acts on a point (g, x) ∈ Q as

(h, a) · (g, x) = (hg, hx+ a). (2.4.30)

The lifted action to TQ and M preserves and nonholonomic structure and the Hamil-
tonian HM. One see easily that the action is free and proper.

The vertical space V is computed from the infinitesimal generators computed from
the (abelian) Lie algebra g ≃ R × R

2. We get

(1, 0, 0)Q =〈γ,XL〉 − x2 ∂

∂x1
+ x1 ∂

∂x2
,

(0, 1, 0)Q =
∂

∂x1
, (0, 0, 1)Q =

∂

∂x2
,

(2.4.31)

where recall that γ is the third row of the matrix g ∈ SO(3). Then, the vertical space
V is given by

V = span{〈γ,XL〉 − x2 ∂

∂x1
+ x1 ∂

∂x2
,
∂

∂x1
,
∂

∂x2
}, (2.4.32)

and the system verifies the dimension assumption (2.3.4). Moreover, the distribution
S is given by

S = span{〈γ,XL + rAg
∂

∂x
〉} = span{〈γ,XL〉}, (2.4.33)

where in the last equality we used the form of the matrix A given in (1.5.42). The
distribution S is generated using the section η ∈ gS, such that η = (1,−y, x) and
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ηQ = 〈γ,XL〉. The vertical complement to the distribution D given in (1.5.43) is
chosen as W = span{ ∂

∂x1 ,
∂
∂x2}, which verifies the vertical symmetry condition (see

Rmk. 2.3.1) and is generated by the Lie subalgebra w = span{(0, 1, 0), (0, 0, 1)}.

Then we get the splitting TQ = D⊕W generated by {Y , ∂
∂x1 ,

∂
∂x2}, with dual basis

{λ, ǫ}, where λ = (λ1, λ2, λ3) denotes the left Maurer-Cartan forms and ǫ = (ǫ1, ǫ2)
denotes the constraint 1-forms. The associated coordinates on T ∗Q are (M̃ , p̃).

The constraint manifold M ⊂ T ∗Q has been computed in (1.5.46). The lifted
G-action to M is given by

(h, a) · (g, x,M̃) = (hg, hx+ a,M̃), (2.4.34)

where we observe that M̃ is left invariant. This action is free and proper and thus its
quotient space M/G is a smooth manifold diffeomorphic to S2 ×R

3. In fact the orbit
projection ρ : M → M/G is given by ((g, x,M̃) 7→ (γ,M̃).

The 2-form 〈J,KW〉 has been computed in [5, Sec. 7.3] and it is given by

〈J,KW〉|C = r2m(gΩTATAgλ × λ|C.

Using the expression of the matrix A given in (1.5.42), we have

〈J,KW〉|C = r2m〈Ω,λ × λ〉|C − r2m〈γ,Ω〉〈γ, dγ × dγ)|C. (2.4.35)

Using the Jacobiator formula for the reduced bracker {·, ·}red we can verify that it is
not Poisson. In fact, by the vertical symmetry condition dJ ∧ KW = d〈J,KW〉 and
moreover it is stated in [5, Sec. 7.3] that iXd〈J,KW〉 6= 0, for X ∈ Γ(S). Consequently
the reduced bracket {·, ·}red cannot be twisted Poisson and, since {·, ·}red is regular
[8], the characteristic distribution of {·, ·}red is not integrable, as was proved in [46].

2.4.5 Homogeneous ball in a cylinder

We study the symmetries of the example presented in Section 1.5.5. That nonholo-
nomic system admits a symmetry given by the group G = S1 × SO(3) where the
action of an element (ϕ, h) of G on a point (z, θ, g) of Q is given by

(ϕ, h) · (z, θ, g) = (z, θ + ϕ,Rϕgh), (2.4.36)

where Rϕ denotes a 3 × 3 orthogonal matrix representing a rotation of angle ϕ with
respect to the vertical axis. The action is easily seen to be free, and since G is compact,
the action is also proper.

The lift of the action in (2.4.36) to M ⊂ T ∗Q is given by

(ϕ, h) · (z, θ, g, p̃z, p̃θ,Mn) = (z, θ + ϕ,Rϕgh, p̃z, p̃θ,Mn),

and the orbit projection ρ : M → M/G is given by (z, θ, g, p̃z, p̃θ,Mn) 7→ (z, p̃z, p̃θ,Mn).

Considering the Lie algebra g ≃ R×so(3) ofG, with the canonical basis {(1,0), (0, ei)}
for i = 1, 2, 3, we get the infinitesimal generators:

(1,0)Q =
∂

∂θ
+XR

3 , (2.4.37)
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and
(0, ei)Q = αiX

R
1 + βiX

R
2 + γiX

R
3 , i = 1, 2, 3, (2.4.38)

where αi, βi, γi are the components of the vectors α,β,γ indicating, as usual, the rows
of the matrix g. Then, the vertical space V is generated as follows,

V = span{
∂

∂θ
+XR

3 , X
R
1 , X

R
2 , X

R
3 } = span{

∂

∂θ
+Xz, Xn, Xθ, Xz}, (2.4.39)

where in the last equality we used that (XR
1 , X

R
2 , X

R
3 ) and (Xn, Xθ, Xz) are both bases

of sections in TSO(3). Recalling the basis of D in (1.5.53), we compute S = D∩V =
{Yθ, Xn}. The vertical complement W is chosen as W = span{Xθ, Xz} and we observe
that it does not verify the vertical symmetry condition.

The G-invariant 3-form dJ ∧KW is given by

IR

r2m
dpz ∧ βn ∧ dθ −

I

r2m(R− r)
dpθ ∧ βn ∧ dz, (2.4.40)

which is not basic. Since dJ∧KW(π♯nh(dMn), π
♯
nh(dMn), π

♯
nh(dMn)) 6= 0, the Jacobiator

formula for the reduced bivector (2.3.21) shows that the reduced bivector field πrednh

is not Poisson. In fact πrednh is not even Twisted Poisson because dJ ∧ KW is not
semi-basic, see [5, Cor. 4.7].

2.4.6 Body of revolution on a plane

We continue with the example introduced in Section 1.5.6. The configuration manifold
Q is given in (1.5.57) and it is diffeomorphic to R

2×SO(3), the Lagrangian L is given
in (1.5.56) and the constraint distribution D in (1.5.59). The mechanical system has
the symmetry group SE(2) acting on the left (space frame) as in the case of the
Chaplygin ball (see Section 2.4.4) and because the body has a symmetry axis, there
is a S1-action by the right (body frame). The two actions commute (see [6, 36]) and
therefore an element (x, y, φ, θ) ∈ R

2 × SO(2) × S1 acts on a point (a1, a2, g) ∈ Q as

(x, y, φ, θ) · (a1, a2, g) = (Rφ(a1, a2) + (x, y), R̂φgR̂−θ), (2.4.41)

whereRφ is a 2×2 rotation matrix with angle φ and R̂φ and R̂−θ denote 3×3 orthogonal
matrices representing a rotation about the z-axis of angles φ and −θ, respectively. It
is shown in [36] that this G-action is a symmetry of the nonholonomic system.

We have seen this action in Example 2.1.5 and we observed that it is proper but
not free. The Lie algebra g of G is isomorphic to R

2 × R × R , and the infinitesimal
generators for the S1-action is given by

((0, 0), 0, 1)Q = −XL
3 , (2.4.42)

where, as usual, we denote by XL = (XL
1 , X

L
2 , X

L
3 ) the left invariant vector fields for

SO(3). On the other hand the infinitesimal generators for the SE(2)-action are given
by

((1, 0), 0, 0)Q =
∂

∂a1

, ((0, 1), 0, 0)Q =
∂

∂a1

,

((0, 0), 1, 0)Q =〈γ,XL〉 − a2
∂

∂a1

+ a1
∂

∂a2

.

(2.4.43)
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As was observed in Example 2.1.5, at the point (0, 0, gz) ∈ Q, where gz has a third
row (0, 0,±1), the infinitesimal generators (0, 0, 0, 1)Q and (0, 0, 1, 0)Q coincide, and
the action is not free. Then, the vertical space V generated by the infinitesimal
generators (2.4.42) and (2.4.43) does not have constant rank and more precisely the
rank decreases exactly at the points (0, 0, gz) which have nontrivial isotropy group.
Nevertheless, the dimension assumption (2.3.4) is verified.

Using the basis of D given in (1.5.59) we compute S = D∩V = span{Y3, 〈γ,Y 〉},
where Y = (Y1, Y2, Y3), and observe that its rank is also nonconstant. The bundle
gS → Q is generated by 2 sections η1, η2 ∈ Γ(gS) (see Eq. (3.41) in [6]), which verifies
(η1)Q = Y3, and (η2)Q = 〈γ,Y 〉.

On the other hand, we choose the vertical complement W as

W = span{
∂

∂a1

,
∂

∂a2

},

and we observe that it is G-invariant. Moreover, W verifies the vertical symmetry
condition (see Rmk. 2.3.1) because it is generated by the subalgebra

w = span{((1, 0), 0, 0), ((0, 1), 0, 0)}.

Then, we have the splittings TQ = D ⊕ W generated by {Y , ∂
∂a1
, ∂
∂a2

} with dual

basis {λ, ǫ1, ǫ2} and associated coordinates (M̃ , p̃) = (M̃1, M̃2, M̃3, p̃1, p̃2) (recall that
λ = (λ1, λ2, λ3) denotes the left Maurer-Cartan 1-form).

The constraint manifold M ⊂ T ∗Q has been computed in (1.5.60). Since G is a
symmetry of the system it leaves invariant M and the lifted action of the element
(x, y, φ, θ) ∈ G on a point ((a1, a2), g,M̃) ∈ M is given by

(x, y, φ, θ) · ((a1, a2), g,M̃) = (Rφ(a1, a2) + (x, y), R̂φgR̂θ, R̂θM̃ ),

where we observe that M̃ is invariant by the left E(2)-action. The action on M is also
proper but not free and we treat the quotient M/G as a stratified differential space.
Reducing by stages, observe that E(2) is a normal subgroup of G and the E(2)-action
is free and proper. Then, the quotient M/SE(2) is a manifold which is diffeomorphic
to S2×R

3 with coordinates (γ,M̃) (see Example 2.1.5). The S1-action on M/SE(2)
is not free and we describe the resulting differential space M/G using invariant theory,
see [6, 36]. The ring of S1-invariant polynomials in S2 × R

3 is generated by

τ1 =γ3, τ2 = γ1M2 − γ2M1, τ3 = γ1M1 + γ2M2,

τ4 =M3, τ5 = M2
1 +M2

2 ,

and the quotient space M/G is represented by the following semi-algebraic set in R
5

with coordinates (τ1, τ2, τ3, τ4, τ5):

{(τ1, τ2, τ3, τ4, τ5) ∈ R
5 : |τ1| ≤ 1, τ5 ≥ 0, τ 2

2 + τ 2
3 = (1 − τ 2

1 )τ5}.

To describe the stratification of M/G, observe that the S1-action on M/E(2) ≃
S2 × R

3 ⊂ R
3 × R

3 is given by

θ · (γ,M̃) = (R̂θγ.R̂θM̃),
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and then the points (0, 0,±1, 0, 0,M3) are fixed and have S1 as isotropy group. Thus,
the singular stratum of M/G corresponding to S1-isotropy type are the points of the
1-dimensional manifold

Msing = {(±1, 0, 0, τ4, 0) ∈ M | τ4 ∈ R}, (2.4.44)

and corresponds to the configuration where the body of revolution is spinning over
one the two poles which remains fixed on the plane. Since there are no other isotropy
types, the regular stratum is the complementary 4-dimensional manifold, i.e. Mreg :=
M−Msing.

To perform the reduction recall that the nonholonomic bivector field πnh given
in (1.5.61) and its associated nonholonomic bracket {·, ·}nh induce a reduced bracket
{·, ·}red on M/G from (2.1.3). Since our choice of W verifies the vertical symmetry
condition the 3-form dJ ∧KW verifies dJ ∧KW = d〈J,KW〉 and the 2-form 〈J,KW〉
is G-invariant and semi-basic with respect to M → Q (see [5]). It has been computed
in [6, Lemma 3.2] and can be written as

〈J,KW〉 = 〈K, dλ〉,

where K = (K1, K2, K3) is given (1.5.62). Using the Jacobiator formula (2.3.21) it is
shown in [6, Prop. 3.3] that the reduced bracket {·, ·}red is not Poisson.
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Chapter 3

Gauge transformations and

conserved quantities

Following [5, 8], we will generate a new almost Poisson bracket πB on M preserving the
dynamics so that its reduction by symmetries to the differential space M/G becomes
Poisson. In order to do that we assume that the system has first integrals and study
properties of the first integrals of the system that are horizontal gauge momenta [40]
and their relation with gauge transformations, see also [6, 47]. Our work has been
developed independently of [47], which treat generally the problem of finding gauge
transformation to induce Casimirs from horizontal gauge momenta.

3.1 Gauge transformations

Consider a nonholonomic system (M, πnh, HM). In this section we recall the concept
of dynamical gauge transformation of πnh by a 2-form [8] (see also [80]), which is
a “deformation” of πnh that generates a new bivector πB which also describes the
dynamics: π#

B (dHM) = −Xnh.

First, following [8], observe that a regular almost Poisson manifold (M,π) is always
defined by a distribution F on M (its characteristic distribution) and a nondegenerate
2-section Ω on F such that

π#(α) = −X ⇔ iXΩ|F = α|F , for α ∈ T ∗M.

Definition 3.1.1 ([80]). Consider a 2-form B on M such that the 2-section Ω +B|F
is nondegenerate. The gauge transformation of the bivector field π by the 2-form B
induces a new bivector field πB on M defined by

π#
B (α) = −X ⇔ iX(Ω +B)|F = α|F , for α ∈ T ∗M. (3.1.1)

In this case, the new bivector πB is defined by the same distribution F on M and the
2-section Ω +B|F , and we say that πnh and πB are gauge related.

In particular observe that the almost Poisson manifold (M, πnh) presented in Sec-
tion 1.4 is defined by the (non-integrable) distribution C in (1.4.23) and the nondegen-
erate 2-section ΩC on C defined in (1.4.24). Following (3.1.1), if we consider a 2-form
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B on M such that ΩC + B|C is a nondegenerate 2-section, we get a new bivector πB
gauge related to πnh. Moreover, since we are interested in bivector fields πB describing
the dynamics in the sense that π♯B(dHM) = −Xnh, we recall the following

Definition 3.1.2 ([8]). A 2-form B on M defines a dynamical gauge transformation
if ΩC +B|C is a nondegenerate 2-section and iXnh

B = 0. The dynamical gauge related
bivector field πB is the bivector defined by

π♯B(α) = −X ⇔ iX(ΩM +B)|C = α|C, for α ∈ T ∗M, (3.1.2)

and it also describes the nonholonomic dynamics.

Remark 3.1.3. (i) If we consider a semi-basic (or horizontal) 2-form B with re-
spect to the bundle τM : M → Q (i.e. iXB = 0 if TτM(X) = 0), then ΩC + B|C
is nondegenerate, see [8]. The motivation behind this result is the standard
construction given by addition of a ‘magnetic type term’ to the canonical sym-
plectic manifold (T ∗Q,ΩQ). In fact, if B is a closed 2-form, basic w.r.t. the
bundle T ∗Q→ Q, then it induces the symplectic manifold (T ∗Q,ΩQ +B).

(ii) If ΩC + B|C is nondegenerate, then by definition the bivector fields πnh and πB
have the same (non-integrable) characteristic distribution C, then πB cannot be
Poisson.

(iii) From (3.1.2), we see that the bivector field πB only depends on the restriction of
B to the characteristic distribution C. Therefore, following [5], once we choose
a vertical complement W so that TM = C ⊕W, we will also ask that

iXB ≡ 0, X ∈ Γ(W). (3.1.3)

(iv) Gauge transformations can be defined in the more general context of Dirac
structures [80] and were introduced in nonholonomic mechanics for almost Dirac
structures in [8]. We give a summary of this more general construction in Ap-
pendix 1.

⋄

One interesting feature when considering a dynamical gauge related bivector πB of
πnh is that, under the presence of symmetries, we may consider the reduction of both
bivectors and obtain, in the reduced space M/G, two brackets {·, ·}Bred and {·, ·}red,
respectively, describing the reduced dynamics. It was already observed in previous
examples [5, 6, 8, 47] that the integrability properties of {·, ·}Bred can be very different
from the original reduced bracket {·, ·}red. In particular they can have different char-
acteristic distributions or even one can be Poisson while the other not. More precisely,
consider a nonholonomic system (M, πnh, HM) with a proper G-symmetry satisfying
the dimension assumption and let B be a 2-form defining a dynamical gauge trans-
formation. If B is G-invariant, then the gauge related bivector πB is G-invariant and
it induces a reduced almost Poisson bracket {·, ·}Bred on the differential space M/G
given, for f̄ , ḡ ∈ C∞(M/G), by

{f̄ , ḡ}Bred ◦ ρ = {f̄ ◦ ρ, ḡ ◦ ρ}B, (3.1.4)

55



where as usual ρ : M → M/G is the orbit projection, and {·, ·}B is the bracket
associated to πB. Moreover, since iXnh

B = 0, the reduced bracket {·, ·}Bred describes
the nonholonomic reduced dynamics

Xred = {·, Hred}
B
red ∈ X(M/G), (3.1.5)

where Hred : M/G → R is the reduced Hamiltonian. We illustrated the gauge trans-
formation by a 2-form B and reduction by the G-symmetry in Fig. (I.3) in the
introduction chapter.

Following [5], in order to analyse the failure of the Jacobi identity of {·, ·}Bred we
use an analogous formula to (2.3.21) but now considering the gauge transformation.
That is, let πB be a bivector field on M gauge related to πnh by a G-invariant 2-form
B satisfying that iZB ≡ 0, for Z ∈ Γ(W). If W is a G-invariant vertical complement
of C, then:

1. The nonholonomic bracket {·, ·}B on M satisfies, for all f, g, h ∈ C∞(M),

cyclic[{f, {g, h}B}B] =(dJ ∧KW − dB)(π#
B (df), π#

B (dg), π#
B (dh))

− ψπB
(df, dg, dh),

(3.1.6)

where ψπB
is the trivector given by ψπB

(α, β, γ) = cyclic[γ(KW(π#
B (α), π#

B (β))M)],
for α, β, γ 1-forms in M.

2. For f̄ , ḡ, h̄ ∈ C∞(M/G),

cyclic[{f̄ , {ḡ, h̄}Bred}
B
red ◦ ρ] = (dJ ∧KW − dB)(π#

B (dρ∗f̄), π#
B (dρ∗ḡ), π#

B (dρ∗h̄)),
(3.1.7)

where {·, ·}Bred is the reduced bracket on M/G defined in (2.1.3). As in the case
of (2.3.21), we observe that (3.1.7) also works for the case where the quotient
M/G is a differential space.

By definition, the gauge transformation does not change the (non-integrable) char-
acteristic distribution C of the nonholonomic bracket {·, ·}nh. Consequently (and also
from formula (3.1.6)), the bracket {·, ·}B is never Poisson. In fact, by the same argu-
ment, the bracket {·, ·}B is never twisted Poisson (see Example 1.4.1).

From formula (3.1.7) one observe that the reduced bracket {·, ·}Bred is Poisson if
the RHS of (3.1.7) is zero. More generally, the reduced bracket {·, ·}Bred is Poisson if

(dJ ∧KW − dB)|UB
= 0,

where UB is the distribution on M given by

UB = span{π♯B(df) : f ∈ C∞(M)G}.

On the other hand, if the action is free and proper, Cor. 4.10 of [5] shows that if 3-form
dJ ∧KW is closed and dJ ∧KW − dB is basic with respect to ρ : M → M/G, then
{·, ·}Bred is φ-twisted Poisson, where φ ∈ Ω3(M/G) is given by ρ∗φ = dJ ∧KW − dB.
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Remark 3.1.4. Following [6], suppose that G acts freely and properly on M and that
the bivectors fields πnh and πB are gauge related by a 2-form B basic with respect
to the (principal) bundle ρ : M → M/G, then the corresponding reduced brackets
{·, ·}red and {·, ·}Bred are gauge related by the 2-form B̄ on M/G such that ρ∗B̄ = B.
Therefore, in that case the gauge transformation does not change the integrability
properties of the reduced brackets. ⋄

Next, we present formulas in local coordinates and afterwards we see how to find
an appropriate 2-form B in such a way that the reduced bracket {·, ·}Bred has enough
Casimirs so that its characteristic distribution is integrable. In particular, in the
example studied in this thesis we show that {·, ·}Bred is Poisson. In order to do that
we study the first integrals of the nonholonomic system induced by the presence of
symmetries, see also [6, 47].

3.2 Formulas in local basis

In this section we present formulas in local basis for a gauge transformation and see
how it affects the expression of the nonholonomic bivector field πnh when we write it
in adapted bases to the constraints and the symmetry, i.e. adapted to the splitting
TQ = D ⊕W in (2.3.6).

If Q is n-dimensional and we have k constraints, take a basis of (local) sections ofD
and W such that D = span{Xi}, i = 1, · · · , n− k, and W = span{Za}, a = 1, · · · , n.
Then, we have

TQ = span{Xi, Za}, (3.2.8)

with dual basis {X i, ǫa} s.t.

T ∗Q = span{X i, ǫa}, (3.2.9)

and associated coordinates (p̃i, p̃a). In the rest of this section we use Einstein notation,
the indices of i, j, l,m vary in the range 1, · · · , n− k, and a in the range 1, · · · , k.

From the basis (3.2.9) we construct a basis of T ∗M using the map τM : M → Q.

We denote X̃ i = τ ∗
M
X i, and ǫ̃a = τ ∗

M
ǫa, and we form the basis of T ∗M such that

T ∗M = span{X̃ i, ǫ̃a, dp̃i}, (3.2.10)

with corresponding dual basis generating TM, that is,

TM = span{X̃i, Z̃a,
∂

∂p̃i
}.

Then the distribution C defined in (1.4.23) is generated by

C = span{X̃i,
∂

∂p̃i
}.

The Liouville 1-form restricted to M is given by

ΘM = p̃iX̃ i + ι∗
M

(p̃a)ǫ̃
a,
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where, as usual, we use the inclusion ιM : M → T ∗Q. Then the canonical 2-form
restricted to M (see(1.4.24)) is

ΩM = X̃ i ∧ dp̃i − p̃idX̃ i + ǫ̃a ∧ ι∗
M

(dp̃a) − ι∗
M

(p̃a)dǫ̃
a,

and after point-wise restriction to C we get

ΩC = (X̃ i ∧ dp̃i − p̃idX̃ i − ι∗
M

(p̃a)dǫ̃
a)|C. (3.2.11)

The 2-forms dX̃ i and dǫ̃a can be written in the basis of the exterior algebra associated
to (3.2.9). After restriccion to C they take the form

dX̃ i|C = f ilmX̃
l ∧ X̃m, dǫ̃a|C = galmX̃

l ∧ X̃m, (3.2.12)

where f ilm = dX̃ i(X̃l, X̃m) and galm = dǫ̃a(X̃l, X̃m). On the one hand, using the stan-
dard Eq. (1.2.5), we have

dX̃ i(X̃l, X̃m) = X̃l(X̃ i(X̃m)) − X̃m(X̃ i(X̃l)) − X̃ i([X̃l, X̃m])

= −X̃ i(cnlmX̃n + dalmZ̃a) = −cilm,
(3.2.13)

where we used properties of the dual basic and we denoted by cilm and dalm the structure
functions of the Lie bracket associated to the basis (3.2.8) of TQ. More precisely, we
write

[Xl, Xm] = cnlmXn + dalmZa. (3.2.14)

On the other hand, we get

dǫ̃a(X̃l, X̃m) = −ǫ̃a(cnlmX̃n + dblmZ̃b) = −dalm.

Then, Eq. (3.2.12) become

dX̃ i|C = −cilmX̃
l ∧ X̃m, dǫ̃a|C = −dalmX̃

l ∧ X̃m, (3.2.15)

and, replacing in (3.2.11),

ΩC = X̃ i ∧ dp̃i + p̃i c
i
lmX̃

l ∧ X̃m + ι∗
M

(p̃a)d
a
lmX̃

l ∧ X̃m,

From the definition of the nonholonomic bivector field πnh, Eqs. (1.4.25)-(1.4.26), we
compute

π♯nh(X̃
i) =

∂

∂p̃i
,

π♯nh(dp̃j) = −X̃j − p̃ic
i
jm

∂

∂p̃m
− ι∗

M
(p̃a)d

a
jm

∂

∂p̃m
,

πnh(ǫ̃
a) = 0,

or equivalently

πnh = X̃i ∧
∂

∂p̃i
− p̃ic

i
jm

∂

∂p̃j
∧

∂

∂p̃m
− ι∗

M
(p̃a)d

a
jm

∂

∂p̃j
∧

∂

∂p̃m
. (3.2.16)
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Now we study the form of the gauge related bivector field πB, for a 2-form B on M
semi-basic with respect to M → Q and such that iXB = 0, for X ∈ Γ(W). In the
basis (3.2.10), the 2-form B has the form

B = bijX̃ i ∧ X̃j,

and then the 2-section ΩC + B defining the gauge transformed bivector field πB is
written

ΩC +B = X̃ i ∧ dp̃i + (p̃i c
i
lm + ι∗

M
(p̃a)d

a
lm + blm)X̃ l ∧ X̃m,

hence

πB = X̃i ∧
∂

∂p̃i
− p̃ic

i
jm

∂

∂p̃j
∧

∂

∂p̃m
− ι∗

M
(p̃a)d

a
jm

∂

∂p̃j
∧

∂

∂p̃m
− bjm

∂

∂p̃j
∧

∂

∂p̃m
. (3.2.17)

Comparing (3.2.16) and (3.2.17), we see that the gauge transformation only changes

the terms associated to ∂
∂p̃j

∧ ∂
∂p̃m

. Thus, π♯B(X̃ i) = ∂
∂p̃i

.

3.3 Horizontal gauge symmetries and the choice of

a gauge transformation

Consider a nonholonomic system (M, πnh, HM) with a proper G-symmetry satisfy-
ing the dimension assumption (2.3.4). Recall from Section 2.3.1 that the dimension
assumption induces a splitting of the trivial bundle g ×Q→ Q as in (2.3.9):

(g ×Q)|q = gS|q ⊕ gW |q.

The nonholonomic moment map [16] is the map Jnh : M → g∗
S defined, at each

m ∈ M and η ∈ Γ(gS), by

Jη(m) = 〈Jnh, η〉(m) = 〈Jnh(m), η(τM(m))〉 := iηMΘM(m), (3.3.18)

where ΘM is the restriction to M of the Liouville 1-form ΘQ on T ∗Q. Observe that
the function Jη on M is linear on the fibers of the bundle τM : M → Q. However,
contrarily to the standard moment map for Hamiltonian systems, Jη is not necessarily
a first integral of the dynamics Xnh. In fact, using the G-invariance of the restricted
Hamiltonian HM, we have (see [9])

Xnh(Jη) = (£ηMΘM)(Xnh),

where £ is the Lie derivative. Indeed, using (3.3.18), and using Cartan’s formula we
have

Xnh(Jη) = dJη(Xnh) = (£ηMΘM)(Xnh) − (iηMdΘM)(Xnh). (3.3.19)

Writing η ∈ Γ(gS) as η =
∑

fiχi , with χi ∈ g and fi ∈ C∞(Q), we have that the last
term of the RHS of (3.3.19) is equal to

ΩM(ηM, Xnh) = −ΩM(Xnh, ηM) = −dHM(ηM) = −ηM(HM) = −fi(χi)M(HM) = 0,
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where in the last equality we used that HM is G-invariant.

Following [41] we call horizontal gauge momentum of Xnh a function of the type
Jζ = 〈Jnh, ζ〉 ∈ C∞(M) such that Jζ is a first integral of Xnh, and the section
ζ ∈ Γ(gS) is called horizontal gauge symmetry. Moreover, it was proven in [41] (see
also [9]) that ζ is a horizontal gauge symmetry if and only if the cotangent lift of the
vector field ζQ leaves the Hamiltonian invariant, i.e. ζT

∗Q
Q (HM)|M = 0.

Let us consider {ηi}, i = 1, · · · , l, a basis of sections of the bundle gS → Q.
The components of the nonholonomic moment map in this basis are the functions
Ji ∈ C∞(M), i = 1, · · · , l, given by

Ji := 〈Jnh, ηi〉. (3.3.20)

Therefore, any ζ ∈ Γ(gS) can be written as ζ =
∑

i fiηi, for functions f1, · · · , fl ∈
C∞(Q), and its associated function Jζ given in (3.3.18) is of the form Jζ =

∑

i fiJi.

Next, we show how the knowledge of horizontal gauge momenta Jζ can give condi-

tions on the (dynamical) gauge transformation B such that π#
B (dJζ) becomes a section

of Γ(V). More precisely, we look for a B so that π#
B (dJζ) = −ζM. The importance

of the mentioned property of π#
B (dJζ) is illustrated in Lemma 3.3.1. These ideas are

generalizations of the results presented in [6] to the case when the vertical complement
W does not satisfy the vertical symmetry condition (see Remark 2.3.1).

Lemma 3.3.1. If f is a G-invariant function on M such that π#
B (df) ∈ Γ(V), then

the reduced function f̄ is a Casimir of the reduced bracket {·, ·}Bred where f̄ is the
function on M/G such that f = ρ∗f̄ .

Proof. For all ḡ ∈ C∞(M/G), we have

{ḡ, f̄}Bred ◦ ρ = {ρ∗ḡ, f}B = π#
B (df)(ρ∗ḡ) = 0,

because π#
B (df) ∈ Γ(V) and ρ∗ḡ is G-invariant.

Proposition 3.3.2. Let ζ be a section of the bundle gS → Q and Jζ the corresponding
associated function as in (3.3.18). Then:

(i) π#
nh(dJζ − Λ) = −ζM, for Λ the 1-form given by

Λ|C = −iζMΩC + dJζ |C = £ζMΘM|C. (3.3.21)

(ii) If iζMB = Λ, where Λ is given in (3.3.21), then

π#
B (dJζ) = −ζM. (3.3.22)

Proof. (i) By definition of the nonholonomic bivector we have that π#
nh(dJζ−Λ) = −ζM

if and only if iζMΩC = dJζ |C−Λ|C. The second equality in (3.3.21) holds using (3.3.18)
and Cartan’s formula.

(ii) From item (i) we get that the 1-form Λ satisfies that iζMΩC = dJζ |C − Λ|C. If

iζMB = Λ then iζM(ΩC +B)|C = dJζ |C and hence π#
B (dJζ) = −ζM.

Note that if Jζ is G-invariant and B satisfies that iζMB = Λ then, by Proposition
3.3.2 (ii) and Lemma 3.3.1, J̄ζ becomes a Casimir of {·, ·}Bred, where we denote by J̄ζ
the associated reduced function on M/G (i.e. Jζ = ρ∗J̄ζ).
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3.4 Sufficient condition for the integrability of the

characteristic distribution of {·, ·}Bred

The following proposition has been proved in [6] in the case where the G-invariant
vertical complementW in (2.3.6) satisfies the vertical symmetry condition (see Remark
2.3.1) and the G-action is free and proper. We prove here that the same conclusion is
valid without vertical symmetry condition. Let us denote by Mreg the stratum of M
where the G-action is free and M̄reg := Mreg/G the quotient manifold.

Proposition 3.4.1. Let πB be a bivector gauge related to πnh by a G-invariant 2-form
B in M. If there are G-invariant functions J1, · · · , Jl ∈ C∞(M) such that over points
in Mreg, the set {π#

B (dJi)}, i = 1, · · · , l, generates S = C ∩ V, then the characteristic
distribution on M̄reg of the reduced bracket {·, ·}Bred is involutive.

Proof. The proof follows the same idea as Proposition 2.19 in [6], but taking into
consideration the Jacobiator formula (3.1.7). We are going to show that, given two
elements (πBred)

#(df̄) and (πBred)
#(dḡ) in the characteristic distribution of {·, ·}Bred, the

Lie bracket [(πBred)
#(df̄), (πBred)

#(dḡ)] remains in the characteristic distribution. Con-
sequently, for each f, g ∈ C∞(Mreg)

G, let us define a 1-form Υ on Mreg such that

Υ|C = iπ#
B (df)∧π#

B (dg)(dJ∧KW−dB) and Υ|W = 0. Using that the π#
B (dJi), i = 1, · · · , l,

generate S and by the G-invariance of Ji we get that the reduced functions J̄i are
Casimirs of {·, ·}Bred and hence, using (3.1.7) and the fact that the {π#

B (dJi)} generates
S, we show that Υ|S = 0. Therefore Υ|V = 0, and since Υ is G-invariant we have
that Υ is a basic 1-form, i.e. Υ = ρ∗(Ῡ) for a 1-form Ῡ in M̄reg. If we denote by πBred
the bivector field on M̄reg associated to the bracket {·, ·}Bred we have that, for each
f̄ , ḡ, h̄ ∈ C∞(M̄reg), (see [6]),

[(πBred)
#(df̄), (πBred)

#(dḡ)](h̄) = (πBred)
#(d{f̄ , ḡ}Bred)(h̄) + cyclic[{{f̄ , ḡ}Bred, h̄}

B
red].

Therefore from (3.1.7) we obtain that

[(πBred)
#(df̄), (πBred)

#(dḡ)] = (πBred)
#(d{f̄ , ḡ}Bred) − (πBred)

#(Ῡ).

Since the characteristic distribution of the bivector πBred is the image by (πBred)
# of all

1-forms in M̄reg, we have shown that it is involutive.

We remark that if the reduced bracket has regular characteristic distribution then
this distribution is integrable and the reduced bracket is twisted Poisson [59, 80]. In
that case the almost-sympletic leaves are the common level sets of the l Casimirs J̄i,
i = 1, · · · , l.

The last proposition implies that, if we find l = rank(gS) independent Casimirs J̄i
of {·, ·}Bred such that the fields π♯B(dρ∗J̄i) degenerate S on the regular stratum Mreg,
then the bracket {·, ·}Bred has involutive characteristic distribution. This explains the
utility of Lemma 3.3.1 and Prop. 3.3.2 in order to find a 2-form B inducing a bracket
{·, ·}Bred with better integrability properties than {·, ·}red.

In the regular stratum M̄reg the ranks of V and S are constant. The dimension of
M̄reg is dim(M̄reg) = dim(M)−rank(V) = rank(C)−rank(S) = rank(C)− l. Under
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the hypothesis of Proposition 3.4.1 we have l Casimirs of {·, ·}Bred and, if the charac-
teristic distribution of {·, ·}Bred is regular, the almost symplectic leaves in M̄reg are of
dimension dim(M̄reg) − l = rank(C) − 2l. In particular, when the almost symplectic
leaves of the reduced bracket {·, ·}Bred are 2-dimensional, then {·, ·}Bred is Poisson by di-
mensionality properties and thus the nonholonomic system is hamiltonizable through
a reduction procedure. We will see that this is the case for the mechanical system
we are considering in this thesis and in the next chapter we will study in detail its
hamiltonization.

3.5 System of equations determining the 2-form B

Let us consider a G-symmetry of the nonholonomic system (M, πnh, HM) given by a
free and proper action and denote l = rank(gS). Suppose that we have J1, ..., Jl hori-
zontal gauge momenta such that the associated horizontal gauge symmetries {ζ1, ..., ζl}
form a set of generators of sections of gS. Prop. 3.3.2 (i) implies that the vector field
π♯nh(dJi) is not necessarily equal to Yi := (ζi)M. In fact

π♯nh(dJi) = −Yi + π♯nh(Λi) for i = 1, · · · , l, (3.5.23)

where each Λi is a 1-form on M satisfying Λi|C = −iYi
ΩC + dJi|C = £Yi

ΘM|C.

Lemma 3.5.1. The 1-forms Λi, i = 1, · · · , l, in (3.5.23) satisfy

(i) Λi(Xnh) = 0,

(ii) Λi(Yj) = −Λj(Yi),

(iii) Λi are semi-basic with respect to the bundle τM : M → Q.

Proof. (i) From (3.5.23) we get

Λi(Xnh) = −dHM(π#
nh(Λi)) = dHM(−π#

nh(dJi) − Yi) = dJi(Xnh) − Yi(HM) = 0,

where in the last equality we used that Ji are first-integrals of Xnh and HM is G-
invariant.

(ii) Since the horizontal gauge momenta Ji, i = 1, · · · , l, are G-invariant, then
Yi(Jj) = 0, i, j = 1, · · · , l. Thus

Λi(Yj) = −iYj
iYi

ΩC + dJi(Yj) = iYi
iYj

ΩC − dJj(Yi) = −Λj(Yi).

(iii) Let us take X ∈ Ker(TτM) ∩ Γ(C), then

iXΛi = iXiYi
dΘM + iXdJi

= iX£Yi
ΘM − iXdiYi

ΘM + iXdJi,
(3.5.24)

where we used Cartan’s formula. If we write ζi = gijχj, for functions gij ∈ C∞(Q),
and {χj} a basis of g, then we have

£Yi
ΘM = i(χj)MΘMdgij + gij£(χj)MΘM. (3.5.25)
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Recall that since G is a symmetry of the nonholonomic system, then £(χj)MΘM = 0.
Thus, using that Ji = iYi

ΘM, the expression (3.5.24) becomes

iXΛi = i(χj)MΘM(iXdgij) = 0,

since the functions gij are basic with respect to the bundle M → Q.

Remark 3.5.2. The proof of (iii) of the last Proposition gives a coordinate expression
of the 1-form Λi. Indeed, from (3.5.25) we have

Λi = (i(χj)M
ΘM)dgij,

where ζi = gijχj and χj ∈ g. We can relate this with the results in [9] where the
authors introduced the concept of M-cotangent lift (ζi)

M
Q of the vector field (ζi)Q on

Q and proved that (see [9, Lemma 3.2])

(ζi)
M
Q = −π#

nh(dJi) = (ζi)M − (i(χj)M
ΘM)π#

nh(dgij).

Compare the last equality with (3.5.23). ⋄

Following the ideas of [6], in order to obtain a (gauge related) bivector field πB so
that π♯B(dJi) = −Yi ∈ Γ(V) (recall that Yi := (ζi)M) we look for a (semi-basic with
respect to τM : M → Q, see Remark 3.1.3) 2-form B such that

iYi
B|C = Λi|C for each i = 1, · · · , l. (3.5.26)

Moreover, since πB has to describe the nonholonomic dynamics (1.4.31), then we have
to impose also the dynamical condition

iXnh
B|C = 0. (3.5.27)

Next we analyze the set of equations (3.5.26) for the case where the infinitesimal
generators Yi are linearly independent, i.e., for a free and proper G-action. In this
case, the vertical spaces V and V are of constant rank (and isomophic) as well as
S = D ∩ V and S = C ∩ V. Moreover, it is clear that rank(S) = rank(gS).

Observe that Lemma 3.5.1 give conditions on the coefficients of the 1-forms Λi, i =
1, · · · , l, with respect to suitable bases that we choose in the following Proposition. In
particular the properties in Lemma 3.5.1 guarantees that the system on the coefficients
of B formed by equations (3.5.26) is compatible.

Proposition 3.5.3. Consider the nonholonomic system given by the triple
(M, πnh,HM) with a G-symmetry given by a free and proper action. If d = rank(D)
and l = rank(S), then the system of equations (3.5.26) is a system with

(

d
2

)

variables
and (d−1)+(d−2)+ · · ·+(d− l) equations that always has a (not necessarily unique)
solution.
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Proof. From Remark 3.1.3 we suppose iXB ≡ 0, for any X ∈ Γ(W), then we are
interested only on the restriction B|C. Moreover since B is semi-basic with respect
to M → Q, it is constructed by pull-backs (w.r.t the bundle τM : M → Q) of 1-

forms dual to a basis of D. Thus, by skew-symmetry, B has
(

d
2

)

= d(d−1)
2

unknown
coefficients.

The computation of the number of conditions is facilitated if we choose an adequate
basis of sections of C. Consider the vector fields Yi = (ζi)M and complete a basis of
C with sections Xα, α = 1, · · · , λ := d − l. Using indices α = 1, · · · , λ; i = 1, · · · , l;
a = 1, · · · , k, M = 1, · · · , d, we get

TM = span{Xα, Yi, Za,
∂

∂pM
},

T ∗M = span{Xα, Y i, Za, dpM},

C = span{Xα, Yi,
∂

∂pM
}.

(3.5.28)

The semi-basic 2-form (w.r.t. M → Q) B in that basis has the form

B = aα,βX
α ∧Xβ + bα,iX

α ∧ Y i + ci,jY
i ∧ Y j, (3.5.29)

where we use Einstein convention and the coefficients aα,β, bα,i and ci,j are skew-
symmetric. First we compute

iY1
B|C = −bα,1X

α + c1,iY
i,

with i = 2, · · · , l and α = 1, · · · , λ, and imposing that iY1
B|C = Λ1|C we get l + λ− 1

conditions.

Continuing the process and using the skew-symmetry of ci,j we observe that iY2
B|C =

Λ2|C gives new l+λ−2 conditions, until the case iYl
B|C = Λl|C that gives λ conditions

on the coefficients of B. Then the total number of conditions is

(l + λ− 1) + (l + λ− 2) + · · · + λ =
(2λ+ l − 1)l

2
. (3.5.30)

On the other hand the number of unknown coefficients of B is
(

d

2

)

=

(

l + λ

2

)

=
l2 + 2lλ+ λ2 − l − λ

2
. (3.5.31)

Subtracting (3.5.30) from (3.5.31) we get λ2−λ
2

which is equal to zero if λ = 0 or
λ = 1 and it is positive for λ > 1.

Then, the system of equations (3.5.26) has at least the same number of unknowns
than the number of equations. We claim that given 1-forms Λi, i = 1, · · · , l, verifying
the properties of Lemma 3.5.1, we can find exactly all the bα,i and ci,j in (3.5.29) and
there are no conditions on the aα,β, giving the non-unicity if λ ≥ 2.

Indeed, Λ1 should have the form

Λ1|C = A1,αX
α +B1,iY

i,
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with B1,1 = 0. Analogously, Λ2 has the form

Λ2|C = A2,αX
α +B2,iY

i,

with B2,2 = 0, and B2,1 = −B1,2. Continuing further we get, for i = l,

Λl|C = Al,αX
α +Bl,iY

i,

with Bl,l = 0, and Bl,i = −Bi,l.

On the other hand, using (3.5.29), we get

iYi
B|C = −bα,iX

α + ci,jY
j,

with ci,j = −cj,i. Setting iYi
B|C = Λi|C, for i = 1, · · · , l, we observe that given the

Ai,α and Bi,j we find the coefficients of B as

bα,i = −Ai,α, ci,j = Bi,j,

and this ensures that the system has at least one solution. Hence

B = Λi,jY
i ∧ Y j + Λi,αX

α ∧ Y i + aα,βX
α ∧Xβ, (3.5.32)

where Λi = Λi,jY
i + Λi,αX

α. The aα,β in (3.5.32) are free.

The special case when rank(D) − rank(S) = 1

Here we also assume that the G-action acts freely and properly on Q and thus
G acts also freely and properly on the constraint manifold M. Then, for the case
where rank(D)− rank(S) = 1 we will see that we have a unique (semi-basic) 2-form B
satisfying (3.5.26) and, moreover, under an extra (technical) assumption, this 2-form
B will satisfy the dynamical condition (3.5.27). It is worth noticing that the example
treated in this dissertation is of this type away from the singularities, but also the
examples of ball in a cylinder [5, 10], the solid of revolution rolling on a plane [6, 47],
etc.

Denote by d = rank(D) and l = rank(S) so that d − l = 1 and suppose that
{J1, ..., Jl} are l horizontal gauge momenta (functionally independent) of the non-
holonomic system with {ζ1, ..., ζl} the associated horizontal gauge symmetries (also
linearly independent). First we will set a (local) basis of T (M/G) and T ∗(M/G).
Let us consider a basis of sections {(ζi)Q, X} of Γ(D). Then we have the basis of TQ
given by BTQ = {(ζi)Q, X, Za} for {Za} a basis of section of W and its dual basis
BT ∗Q = {αi, αX , ǫ

a} with associated coordinates (pi, px, pa). As we already did in
(3.5.28), we obtain that

T ∗M = span{α̃i, α̃X , ǫ̃
a, dpi, dpx} and

TM = span{Xi, X̄, Z̄a,
∂

∂pi
,
∂

∂px
},

(3.5.33)

where α̃i = ρ∗αi, α̃X = ρ∗αX and ǫ̃a = ρ∗ǫa and where the two bases are dual. Now
we can observe that the horizontal gauge momenta Ji verify that Ji = pi and thus
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it is straightforward to check that the functions pi and px are G-invariant. Then, we
obtain that

T (M/G) = span{X := Tτ(X̄),
∂

∂pi
,
∂

∂px
}, (3.5.34)

with its associated dual basis

T ∗(M/G) = span{αX , dpi, dpx}. (3.5.35)

Observe also that, in this case, dim(M/G) = l + 2. Then, we observe that

Lemma 3.5.4. If the bivector field πBred on M/G has {J1, ..., Jl} Casimirs, then it
has the form

πBred = X ∧
∂

∂px
,

and it is Poisson.

Proof. Since dim(M/G) = l + 2, and πBred has l Casimirs, the common level sets of
the (independent) Ji, i = 1, · · · , l are 2-dimensional submanifolds. Then, the bivector
πBred has a regular integrable characteristic distribution and then it is twisted Poisson.
In fact, πBred is Poisson because the associated leaves are 2-dimensional.

To get the form of πBred, we start writing the bivector field πB of the basis (3.5.33).
By the observation we made in the end of Sec. 3.2, we see that πB has the form

πB = Xi ∧
∂

∂pi
+ X̄ ∧

∂

∂px
+
∑

fij
∂

∂pi
∧

∂

∂pj
+
∑

gi
∂

∂px
∧

∂

∂pi
,

for fij, gi functions on M. Then, computing the reduced bivector πBred, and using that
pi = Ji are Casimirs of πBred we get

(πBred)
♯(dpi) = 0, (πBred)

♯(dpx) = −X , (πBred)
♯(αX ) =

∂

∂px
. (3.5.36)

This implies that πBred = X ∧ ∂
∂px

.

Proposition 3.5.5. Let (M, πnh,HM) be a nonholonomic system with a G-symmetry
given by a free and proper action and assume that {J1, ..., Jl} are l horizontal gauge
momenta of the nonholonomic system. If d = rank(D) and l = rank(S) so that
d− l = 1, then

(i) there is a unique (semi-basic) 2-form B satisfying (3.5.26).

(ii) If B satisfies (3.5.26) for each i = 1, ..., l, and the equilibrium set E of the
reduced dynamics Xred has empty interior, then the dynamical condition (3.5.27)
is automatically satisfied.

Proof. (i) If d = l+ 1 then in the proof of Prop. 3.5.3, we have λ = 1, and we verified
than in that case

(

d
2

)

= (d− 1) + (d− 2) + ...+ (d− l).
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(ii) If Xnh(m) 6∈ Sm, for all m ∈ M, then any vector field X ∈ Γ(C) can be written
X = aXnh + biYi + cM

∂
∂pM

. Thus, using Lemma 3.5.1 (i),

B(Xnh, X) = biB(Xnh, Yi) = −biΛi(Xnh) = 0.

If there is some point m0 where Xnh(m0) ∈ Sm0
, then using the basis of C in (3.5.28)

we write Xnh = wX1 + viYi + uM
∂

∂ ˜pM
and we get

iXnh
B = w iX1

B + viΛi. (3.5.37)

We call Ẽ the inverse image of E under the orbit map and observe that Ẽ ⊂ M has
also empty interior, then this closed set coincides with its boundary. Moreover, all
points m such that Xnh(m) ∈ Sm are in Ẽ , then we can approximate any point m ∈ Ẽ
by a sequence of points (mn) where Xnh(mn) 6∈ Smn . Thus from (3.5.37) we have

w(mn) iX1
B|mn = −vi(mn)Λi|mn .

By continuity of the functions w, vi, taking the limit when mn → m and using that
w(m) = 0, we get from the latter equation that

vi(m)Λi|m = 0,

which implies from (3.5.37) that for any m ∈ Ẽ we have

iXnh(m)B|m = w(m)iX1
B|m = 0.

Hence, we conclude that if rank(D) = rank(S) + 1 and we have {J1, ..., Jl} (in-
dependent) horizontal gauge momenta, there is a unique 2-form B that transforms
these functions into Casimirs of the reduced bracket {·, ·}Bred. Moreover, this 2-form
B will satisfy the dynamical condition (3.5.26) and thus {·, ·}Bred will describe the
reduced dynamics (3.1.5). Finally, we observe that if B satisfies (3.5.26), then the
reduced bracket {·, ·}Bred is a rank 2 Poisson bracket and, in particular, for the choice
of coordinates done in (3.5.34), it has the form given in Lemma 3.5.4.

We enforce the fact that in many interesting examples, away from the singularities,
the action is free and proper, they satisfy the condition rank(D) = rank(S) + 1 and
they admit l horizontal gauge momenta for l = rank(S).

Remark 3.5.6. If d = l then there is also a unique 2-form B satisfying (3.5.26) since
(

d
2

)

= (d− 1) + (d− 2) + ...+ (d− l). However, this case is not interesting for us since
if d = l then Xnh ∈ Γ(S) and thus Xred ≡ 0 on M/G. ⋄

3.6 Examples

3.6.1 The nonholonomic particle

We continue with the example treated in Sec. 1.5.1 and Sec. 2.4.1. We have seen that
the reduced bracket {·, ·}red is Poisson and then no gauge transformation is needed.
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It is known (see e.g. [6, 9]) that

J =
1

√

1 + y2
p̃x

is a first integral of the system. In fact, J is a G-invariant horizontal gauge momenta,
and verifies π♯nh(dJ) ∈ Γ(V), then it induces a Casimir J̄ in the reduced space M/G ≃
R

3, such that ρ∗J̄ = J . The symplectic leaves of reduced Poisson bracket are 2-
dimensional and are determined by the level sets of the Casimir J̄ .

3.6.2 The vertical rolling disk

We continue with the Example from Sections 1.5.2 and 2.4.2 where we showed that
the reduced bracket {·, ·}red is Poisson, and then no gauge transformation is needed.

The distribution S = D∩V is given by S = span{Yθ = R cosφ ∂
∂x

+R sinφ ∂
∂y

+ ∂
∂θ
},

and it is induced by the bundle gS → Q generated by η = (R cosφ,R sinφ, 1), i.e.
ηQ = Yθ. In fact η is a horizontal gauge symmetry [9] with associated gauge momentum

Jη = (R
2m
E

+ 1)p̃θ. It is easy to verify that π♯nh(dJη) ∈ Γ(V), then, since Jη is G-
invariant, it induces a Casimir of the reduced bracket {·, ·}red. The symplectic leaves
are the 2-dimensional level sets of the Casimir and are diffeomorphic to cylinders
S1 × R with coordinates (φ, p̃φ).

3.6.3 Snakeboard

We have seen in Section 2.4.3 that the snakeboard has a symmetry such that the
reduced G-action induces a twisted Poisson structure in the quotient 5-dimensional
manifold M/G ≃ T

2 × R
3.

Using the distribution D given in (1.5.39) and the vertical distribution V given in
(2.4.28), we compute S = D ∩ V = span{ ∂

∂ψ
} and hence gS = span{(0, 0, 1)}, where

we use the canonical basis of g ≃ R
3. Then, taking the constant section η = (0, 0, 1)

we verify that the associated component of the nonholonomic moment map Jη is the
coordinates p̃ψ (see Section 1.5.3), which is also a first integral of the dynamics, and

hence a horizontal gauge momentum. We verify that π♯nh(dJη) = −Yψ = − ∂
∂ψ

is
vertical, and then, since p̃ψ is G-invariant, we conclude that it induces a Casimir of
the twisted Poisson bracket {·, ·}red. The level sets of the Casimir p̃ψ in M/G are the
almost symplectic leaves of the reduced bracket {·, ·}red.

3.6.4 Rigid body and Chaplygin ball

We continue with the example of Sections 1.5.4 and 2.4.4 where we showed that the
reduced bracket {·, ·}red has a nonintegrable characteristic distribution.

Consider the 2-form B on M biven by B = −r2m〈Ω,λ×λ〉, which is the non-basic
part (with respect to M → M/G) of the 2-form 〈J,KW〉 given in (2.4.35) Following
[5, Sec. 7.3], we have that B is basic with respect to M → Q, G-invariant and then
induces a G-invariant bivector field πB gauge related to πnh. In fact, in [8] it has
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been verified that iXnh
B = 0, so that the bivector πB also describes de dynamics

of the nonholonomic system. Consequently the 2-form 〈J,KW〉 + B is basic with
respect to M → M/G and then, by [8, Cor. 4.14] (see also the discussion after the
Jacobiator formula (3.1.7)), the reduced bracket {·, ·}Bred is (dBred)-twisted Poisson,
where ρ∗Bred = 〈J,KW〉 + B. In fact, in the local coordinates (γ,M̃ ) of M/G, we
have

Bred = −r2m〈γ,Ω〉〈γ, dγ × dγ〉, (3.6.38)

where Ω is related to M̃ by (1.5.47). Consequently, the reduced bracket {·, ·}Bred has
an integrable characteristic distribution.

Using the basis of sections of gS → Q given after (2.4.33), it has been verified
in [9] that η = (1,−y, x) is a horizontal gauge symmetry, such that ηM = 〈γ,XL〉,
with associated horizontal gauge momentum Jη = 〈Jnh, η〉 = i〈γ,XL〉ΘM = 〈γ,M̃〉.

Since 〈γ,M̃〉 is G-invariant, it has been proved in [8] that it is a Casimir of the
reduced bracket {·, ·}Bred. The leaves of the characteristic distribution of {·, ·}Bred are
the 4-dimensional level sets of the Casimir 〈γ,M̃〉, and are diffeomorphic to TS2.

In fact, the reduced bracket {·, ·}Bred is conformally Poisson, see [8]. Then, after
a time reparametrization using the conformal factor, there is a Poisson bracket on
M/G describing the reduced dynamics. On the 4-dimensional symplectic leaves there
are two first integrals in involution, the reduced Hamiltonian Hred and the function
J = 〈M̃ ,M̃〉 such that the joint level sets are compact on the leaf. It follows from the
Arnold-Liouville Theorem (see [1, 3]) that these joint level sets are invariant two-tori
and the dynamics are quasi-periodic on them, i.e. the system is completely integrable
on each symplectic leaf.

3.6.5 Homogeneous ball in a cylinder

We continue with the example of Sections 1.5.5 and 2.4.5. From the expression of the
nonholonomic dynamics Xnh computed in (1.5.55) we see that p̃θ is a first integral of
the the system. In fact, the system has two horizontal gauge momenta (see e.g. [10]),

J1 = p̃θ, J2 =
r

I
M̃n −

zr2

E(R− r)2
p̃θ,

which are G-invariant. The functions J1 and J2 do not induce Casimirs of {·, ·}red,
because one verifies that π♯nh(dJi) 6∈ Γ(V ).

Now we perform a gauge transformation by a 2-form B, semi-basic with respect
to M → Q and such that iXB = 0, for X ∈ Γ(W ). Starting with an ansatz on the
form

B = a dz ∧ dθ + b dθ ∧ βn + c βn ∧ dz,

and imposing π♯B(dJi) = Vi, we get for i = 1 that π♯B(dp̃θ) = −Yθ, or equivalently

iYθ
B = Λ1 = −iYθ

ΩC + dpθ,

which joint with the dynamical condition iXnh
B = 0 allow us to find the coefficients

of B. We get

B =
R

r2
M̃ndz ∧ dθ +

RI

E
p̃zdθ ∧ βn +

RI

E(R− r)2
p̃θβn ∧ dz,
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and one verifies that π♯B(dJ2) ∈ Γ(V ). As a consequence, J1 and J2 induces Casimirs
J̄1 and J̄2 of the reduced bracket {·, ·}Bred in the quotient manifold M/G and, since
dim(M/G) = 4, the 2-dimensional level sets of the Casimirs define a foliation which
is symplectic by dimensionality. Thus, the reduced bracket {·, ·}Bred is Poisson. See [5],
for another proof using the Jacobiator formula 3.1.7.

3.6.6 Body of revolution on a plane

We complete our study started in Sections 1.5.6 and 2.4.6 performing a gauge trans-
formation leading to the hamiltonization of the nonholonomic system formed by a
body of revolution rolling on a plane. Following [6, 36], this mechanical system ad-
mits two horizontal gauge momenta J1 and J2 which are G-invariant and associated
to two horizontal gauge symmetries ζ1 and ζ2 described in [6, Theo. 3.7 & Cor. 3.8].

In order have π♯B(dJi) = −(ζi)M, by Prop. 3.3.2 it is enough to look for a 2-form B
such that i(ζi)MB = Λi, where Λi = −i(ζi)MΩC + dJi. The computations are simplified
when the vertical symmetry condition is verified and in this case Λi becomes

Λi = i(ζi)M〈J,KW〉 + jkdfik,

where we write ζi = fikηk ∈ Γ(gS), with corresponding horizontal gauge momenta
Ji := Jζi = fikjk and jk = i(ηk)MΘM. For this example we have (see [6]):

(η1)M = −XL
3 −

(

M̃2
∂

∂M1

− M̃1
∂

∂M2

)

, (η2)M = 〈γ,Y 〉,

j1 = −M̃3, j2 = 〈γ,M̃〉,

(3.6.39)

and the 2-form 〈J,KW〉 was computed and written as

〈J,KW〉 = 〈K, dλ〉, (3.6.40)

where K is given in (1.5.62). The functions fij depend only on τ1 = γ3 and verify
one explicit ODE (see [6, Teo. 3.7]) implying that J1 and J2 are first integrals of Xnh.
The equality coming from the ODE appearing in the computation of Λ1 and Λ2 are

j1df11 + j2df12 = (f11Q + f12P)dγ3,

j1df21 + j2df22 = (f21Q + f22P)dγ3,

where dγ3 = γ1λ2 − γ2λ1 and P , Q are defined in (1.5.63).

We look for a 2-form B having the form

B = a λ2 ∧ λ3 + b λ3 ∧ λ1 + c λ1 ∧ λ2, (3.6.41)

which is semi-basic with respect to M → Q and then induces a bivector field πB. We
have also supposed that iXB = 0 for any X ∈ Γ(W).

Writing ζ1 = f11η1 +f12η2 and ζ2 = f21η1 +f22η2, we write the system of equations
for the coefficients of B,

f11i(η1)MB + f12i(η2)MB = Λ1, f21i(η1)MB + f22i(η2)MB = Λ2. (3.6.42)
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The system above has a unique solution given by

a = m̺〈γ, s〉Ω1, b = m̺〈γ, s〉Ω2, c = m̺〈γ, s〉Ω3. (3.6.43)

and then the G-invariant 2-form B is

B = m̺〈γ, s〉〈Ω, dλ〉, (3.6.44)

and since the horizontal gauge momenta J1 and J2 are G-invariant, they induce
Casimirs of the reduced bracket {·, ·}Bred on the regular stratum M̄reg of the strat-
ified differential space M/G. Observe that on M̄reg we have rank(D) − rank(S) = 1
and that the dynamical condition iXnh

B = 0 is verified as was proved in Section 3.5.
Moreover, the reduced bracket {·, ·}Bred is Poisson on M/G as was verified in [6] using
the Jacobiator formula 3.1.7.
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Chapter 4

The homogeneous ball on a convex

surface of revolution

4.1 Qualitative description of the system

We are interested in studying geometric properties of the equations of motion of a
homogeneous ball rolling on a convex surface of revolution [24, 40, 52, 77, 79, 88].
More precisely, consider the motion of a homogeneous ball of mass m and radius R
rolling without sliding under the influence of gravity on the interior side of a convex
surface of revolution Σ ⊂ R

3. We denote by (x, y) the coordinates of the projection of
the center of mass of the ball to the plane z = 0. The homogeneity of the ball means
that the inertia tensor has the form I = I · id, where I is a positive constant and id
the 3 × 3 identity matrix. See Fig. 4.1.

Figure 4.1: The ball rolling on the surface of revolution.

We fix a reference orthonormal frame {êx, êy, êz} in space (space frame), a moving
orthonormal frame {ê1, ê2, ê3} attached to the ball (body frame) and denote by g the
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orthogonal matrix relating both frames. Therefore the configuration space Q of the
mechanical system is R

2 × SO(3) with coordinates (x, y, g).

This mechanical system has two kinds of constraints. The holonomic one imposing
the movement of the ball over the surface Σ ⊂ R

3, and the nonholonomic one given
by the non-sliding condition described by the following vector equation relating the
angular velocity ~ω and the velocity of the center of mass ~v:

~ω × ~a = −~v, (4.1.1)

where × denotes the usual vector product in R
3 and ~a is a vector joining the center of

mass of the ball with the contact point with the surface. Denoting by ~n the exterior
unit normal vector to the surface, we have ~a = R~n. Following [24], the angular
momentum with respect to the contact point is given by

~M = I~ω +mR2~n× (~ω × ~n)

= I~ω +mR2~ω −mR2(~ω · ~n)~n.

The equations of motion can be found by considering Newton’s second law for
translations and rotations:

m~̇v = ~N + ~F ,

I~̇ω = R~n× ~N,
(4.1.2)

where ~N denotes the reaction force at the contact point and ~F the external force
applied to the center of mass [24]. The force ~F is the gradient of the potential energy
magz, where ag is the acceleration of gravity, and z the height (vertical position) of
the center of mass of the ball which is constrained to lie on the surface Σ. Eliminating
~N from (4.1.2) and using (4.1.1), we get

~̇M = mR2~̇n× (~ω × ~n) + ~MF

~̇r +R~̇n = −R~ω × ~n,
(4.1.3)

where ~MF denotes the external moment of force. See a more complete discussion on
these equations in [24]. These equations of motion do not include the orientation of
the ball, so they can be considered as the equations after reduction by the symmetry
given by SO(3). Following [24] note that the equations of motion (4.1.3) are valid
on any smooth surface. In this dissertation we restrict ourselves to the case of a
smooth convex surface of revolution with vertical axis of symmetry (parallel to the
gravity force) which has the effect of introducing a new S1-symmetry. The action
associated to the S1-symmetry leaves invariant the configurations where the ball is
spinning in the bottom of the surface, thus the action is not free. This fact has many
implications, e.g. the reduced space now is not a smooth manifold and the rank of
the vertical distribution defined in the beginning of Section 2.3.1 can vary.

Borisov, Mamaev and Kilin [24] have shown, in local coordinates, that the reduced
system is described by a Poisson bracket in the sense that the reduced equations of
motion are given by the vector field (I.2) (after a time reparametrization). The prop-
erties of this reduced Poisson bracket have also been studied by Ramos [77] (observing
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that, by a dimensional argument, reparametrization of time is not necessary), see also
Fasso-Giacobbe-Sansonetto [40]. However, it was not known if such reduced Poisson
bracket came from a reduction of an almost Poisson bivector. In this Chapter we will
show that there exists an almost Poisson bracket {·, ·}B describing the dynamics of the
nonholonomic system such that, after a reduction by symmetries, induces a reduced
bracket {·, ·}Bred which is Poisson.

4.2 The geometric approach and reduction by sym-

metries

The (convex) surface Σ is parametrized in Cartesian coordinates by

Σ = {(x, y, z) ∈ R
3 : z = φ(x2 + y2)}, (4.2.4)

where the smooth function φ describes the profile of the curve defined by the center
of mass of the ball. The function φ : R

+ → R is related to the function ϕ : R → R

given by ϕ(s) = φ(s2), and which verifies the smoothness and convexity conditions,
ϕ′(0+) = ϕ′(0−) = 0, ϕ′′(s) ≥ 0. To ensure that the ball has only one contact point
with the surface we ask the curvature of ϕ(s) to be at most 1/R.

Denoting by ~n = ~n(x, y) = (n1, n2, n3) the exterior unit normal to Σ, the following
standard formulas will be used in the sequel to simplify and re-write expressions
involving the normal vector and the derivatives of the function φ defining Σ,

n1

n3

= 2xφ′,
n2

n3

= 2yφ′, n3 = −
1

(1 + 4(x2 + y2)(φ′)2)1/2
, (4.2.5)

where φ′ denotes the derivative of φ. Observe that n3 is never zero.

Recall that the configuration manifold Q is given by the projection to the plane
z = 0 of the coordinates of the center of mass of the ball and an orthogonal matrix
indicating the orientation of the ball, thus Q = R

2 × SO(3).

Using the holonomic constraint (4.2.4) and relations (4.2.5), the mechanical La-
grangian L : TQ→ R becomes

L =
m

2

(

(1 + φ′24x2)ẋ2 + φ′28xyẋẏ + (1 + φ′24y2)ẏ2
)

+
I

2
(ω2

1 + ω2
2 + ω2

3)

−magφ(x2 + y2)

=
m

2n2
3

(

(1 − n2
2)ẋ

2 + 2n1n2ẋẏ + (1 − n2
1)ẏ

2
)

+
I

2
(ω2

1 + ω2
2 + ω2

3)

−magφ(x2 + y2).

(4.2.6)

4.2.1 The constraints and the nonholonomic bivector field

Let us denote by (ω1, ω2, ω3) the coordinates associated to the right invariant frame
{X1, X2, X3} of TSO(3), i.e. the ωi, i = 1, 2, 3, are the components of the angular
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velocity ~ω in the spatial frame. Then, the non-sliding constraints (4.1.1) are written

ẋ = −R(ω2n3 − ω3n2),

ẏ = −R(ω3n1 − ω1n3),

inducing therefore the constraint 1-forms

ǫ1 = dx−R(ρ3n2 − ρ2n3),

ǫ2 = dy −R(ρ1n3 − ρ3n1),
(4.2.7)

where we have denoted by {ρ1, ρ2, ρ3} the right Maurer-Cartan forms in T ∗SO(3),
dual to {X1, X2, X3}. The constraint distribution D on Q is the annihilator of ǫ1 and
ǫ2 and is given by

D = span

{

Yx :=
∂

∂x
+

n2

Rn3
Xn −

1

Rn3
X2, Yy :=

∂

∂y
−

n1

Rn3
Xn +

1

Rn3
X1, Xn

}

, (4.2.8)

where Xn :=
∑3

i=1 niXi.

Consider now the basis of TQ given by

BTQ = {Yx, Yy, Xn, Z1, Z2}, (4.2.9)

where Z1 and Z2 are vector fields defined by

Z1 :=
1

Rn3

X2 −
n2

Rn3

Xn, Z2 := −
1

Rn3

X1 +
n1

Rn3

Xn. (4.2.10)

Observe that the dual frame of (4.2.9) is

BT ∗Q = {dx, dy, βn, ǫ
1, ǫ2}, (4.2.11)

with
βn =

∑

niρi, (4.2.12)

with associated coordinates (ẋ, ẏ, ωn, v1, v2) for ωn = ~ω · ~n =
∑

niωi the normal
component of the angular velocity ~ω.

Remark 4.2.1. The vector fields Z1 and Z2 induce a splitting TQ = D ⊕W where
W = span{Z1, Z2}. The fact that W chosen in this way is adapted to the symmetries
will be shown in Section 4.2.3. ⋄

Remark 4.2.2. The sections Z1 and Z2 in (4.2.10) where computed so that they
complete a basis of TQ dual to {dx, dy, βn, ǫ

1, ǫ2}. The choice of {dx, dy, βn} as a
basis of the annihilator of W was motivated by [40], which uses coordinates (ẋ, ẏ, ωn).
⋄

Remark 4.2.3. Using

ρ1 = n1βn +
n1n2

Rn3

(dx− ǫ1) +
1 − n2

1

Rn3

(dy − ǫ2),

ρ2 = n2βn +
n2

2 − 1

Rn3

(dx− ǫ1) +
−n1n2

Rn3

(dy − ǫ2),

ρ3 = n3βn +
n2n3

Rn3

(dx− ǫ1) +
−n1n3

Rn3

(dy − ǫ2),

(4.2.13)
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one also verify that dβn is not in the differential ideal generated by {dx, dy, βn}, then
W is not integrable. On the other hand, the following formulas will also appear in the
computations:

ρ1 ∧ ρ2 = Bβn ∧ (dx− ǫ1) + A(dy − ǫ2) ∧ βn −
1

R2
(dy − ǫ2) ∧ (dx− ǫ1),

ρ2 ∧ ρ3 = −
1

R
(dx− ǫ1) ∧ βn −

B

R
(dx− ǫ1) ∧ (dy − ǫ2),

ρ3 ∧ ρ1 = −
1

R
(dy − ǫ2) ∧ βn −

A

R
(dy − ǫ2) ∧ (dx− ǫ1).

(4.2.14)

⋄

Computation of the constraint manifold M and the distribution C

In this section we use the notations:

ax = 1 + φ′24x2, ay = 1 + φ′24y2, bxy = φ′24xy.

Therefore in the basis {dx, dy, ρ1, ρ2, ρ3} the kinetic energy metric is written in
matrix form

κ =

























max mbxy 0 0 0

mbxy may 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I

























, (4.2.15)

or equivalently,

1

2
κ =

max
2

(dx⊗dx)+
may
2

(dy⊗dy)+
mbxy

2
(dx⊗dy)+

I

2
(ρ1 ⊗ ρ1 + ρ2 ⊗ ρ2 + ρ3 ⊗ ρ3).

We now compute the constraint manifold M = κ♭(D) = Leg(D) ⊂ T ∗Q defined
in (1.4.22). Using the basis of D given in (4.2.8), we have

κ♭(D) = ẋκ♭(Yx) + ẏκ♭(Yy) + ω̃nκ
♭(Xn).

Writing κ♭(D) in the basis (4.2.11) of T ∗Q,

κ♭(D) = p̃xdx+ p̃ydy + M̃nβn + M̃xǫ
1 + M̃yǫ

2,

we get the relations

p̃x = ẋκ(Yx, Yx) + ẏκ(Yy, Yx) + ω̃nκ(Xn, Yx)

p̃y = ẋκ(Yx, Yy) + ẏκ(Yy, Yy) + ω̃nκ(Xn, Yy)

M̃n = ẋκ(Yx, Xn) + ẏκ(Yy, Xn) + ω̃nκ(Xn, Xn)

M̃x = ẋκ(Yx, Z2) + ẏκ(Yy, Z2) + ω̃nκ(Xn, Z2)

M̃y = ẋκ(Yx, Z1) + ẏκ(Yy, Z1) + ω̃nκ(Xn, Z1).
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The components of the matrix κ(·, ·) can be computed from (4.2.15). Denoting E :=
I +mR2, we get the relations between velocities and momenta:

ẋE = −p̃yR
2n1n2 + p̃xR

2(1 − n2
1),

ẏE = −p̃xR
2n1n2 + p̃yR

2(1 − n2
2),

ω̃nI = M̃n.

(4.2.16)

On the other hand

M̃x = −p̃x + ẋmax + ẏmbxy,

M̃y = −p̃y + ẋmbxy + ẏmay,
(4.2.17)

and using (4.2.16) we have

ẋmax + ẏmbxy =
R2m

E
p̃x,

ẋmbxy + ẏmay =
R2m

E
p̃y.

(4.2.18)

Then, from (4.2.17) and (4.2.18), the constraint manifold M is given by

M =
{

(x, y, g, p̃x, p̃y, M̃n, M̃x, M̃y) : M̃x = −
I

E
p̃x, M̃y = −

I

E
p̃y

}

, (4.2.19)

where recall that E = I +mR2.

Next, we compute the constraint distribution C on M. Consider the basis of T ∗M
given by

BT ∗M =
{

d̃x, d̃y, β̃n, ǫ̃
1, ǫ̃2, dp̃x, dp̃y, dM̃n

}

, (4.2.20)

where d̃x = τ ∗
M
dx, d̃y = τ ∗

M
dy, β̃n = τ ∗

M
βn, ǫ̃

1 = τ ∗
M
ǫ1, ǫ̃2 = τ ∗

M
ǫ2 and, as usual,

τM : M → Q is the canonical projection.

Dualizing the basis in (4.2.20) we get the associated vector fields in M, which we
denote with a tilde to distinguish them from the corresponding fields on Q,

BTM =
{

Ỹx, Ỹy, X̃n, Z̃1, Z̃2,
∂

∂p̃x
,
∂

∂p̃y
,
∂

∂M̃n

}

. (4.2.21)

Hence, the constraint subbundle C defined in (1.4.23) is given by

C = span
{

Ỹx, Ỹy, X̃n,
∂

∂p̃x
,
∂

∂p̃y
,
∂

∂M̃n

}

. (4.2.22)

Computation of the nonholonomic bivector πnh and the dynamics Xnh

Now we are ready to we compute the nonholonomic bivector field πnh (1.4.26), and
afterwards the nonholonomic vector field Xnh = −π♯nh(dHM) describing the dynamics.
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Proposition 4.2.4. The nonholonomic bivector field πnh on M defining the nonholo-
nomic dynamics is given by

πnh =Ỹx ∧
∂

∂p̃x
+ Ỹy ∧

∂

∂p̃y
+ X̃n ∧

∂

∂M̃n

+ M̃nD
n
xy

∂

∂p̃x
∧

∂

∂p̃y
+
I

E
(p̃xD

x
yn + p̃yD

y
yn)

∂

∂p̃y
∧

∂

∂M̃n

−
I

E
(p̃xD

x
xn + p̃yD

y
xn)

∂

∂M̃n

∧
∂

∂p̃x
,

(4.2.23)

where Dn
xy, D

x
xn, D

y
yn, D

y
xn and Dx

yn are basic functions on M (with respect to the
bundle τM : M → Q) given by

Dn
xy =

1

Rn3

(

nx1 + ny2 +
1

R

)

,

Dx
xn = −Dy

yn = R

(

−ny1n3 + n1n
y
3 +

n1n2

Rn3

)

,

Dy
xn = R

(

nx1n3 − n1n
x
3 −

n2
1 + n2

3

Rn3

)

,

Dx
yn = R

(

−ny2n3 + n2n
y
3 +

n2
2 + n2

3

Rn3

)

,

(4.2.24)

with nxi and nyi the partial derivatives of ni, i = 1, 2, 3, with respect to x and y,
respectively.

Proof. First observe that the Liouville 1-form in T ∗Q in the basis (4.2.11) is written
as ΘQ = p̃xd̃x+ p̃yd̃y + M̃nβ̃n + M̃xǫ̃

1 + M̃y ǫ̃
2, and its restriction to M is

ΘM = p̃xd̃x+ p̃yd̃y + M̃nβ̃n −
I

E
p̃xǫ̃

1 + −
I

E
p̃y ǫ̃

2. (4.2.25)

Using the definition of ΩM given in (1.4.24) we obtain that

ΩM = −dp̃x ∧ d̃x− dp̃y ∧ d̃y − dM̃n ∧ β̃n

+
I

E
dp̃x ∧ ǫ̃

1 +
I

E
dp̃y ∧ ǫ̃

2 − M̃ndβ̃n +
I

E
p̃xdǫ̃

1 +
I

E
p̃ydǫ̃

2,

and its pointwise restriction to C gives

ΩC =

(

−dp̃x ∧ d̃x− dp̃y ∧ d̃y − dM̃n ∧ β̃n − M̃ndβ̃n +
I

E
p̃xdǫ̃

1 +
I

E
p̃ydǫ̃

2

)

|C.

(4.2.26)

Denoting by nx = (nx1 , n
x
2 , n

x
3) (respectively ny = (ny1, n

y
2, n

y
3)) the component-wise

partial derivatives of ~n = (n1, n2, n3) with respect to x (respectively to y), we have
the following relation

〈~n, nx〉 = 〈~n, ny〉 = 0,

78



To compute dβ̃n, using (4.2.13) we obtain at first

dn1 ∧ ρ1|C + dn2 ∧ ρ2|C + dn3 ∧ ρ3|C =

(

nx1
1

Rn3

+ ny2
1

Rn3

)

dx ∧ dy|C.

On the other hand, to compute
∑

i nidρi|C, we use formulas (4.2.14) restricted to C
and we get

(n1dρ1 + n2dρ2 + n3dρ3)|C =
1

R2n3

dx ∧ dy|C.

Consequently,

dβ̃n|C =
1

Rn3

(

nx1 + ny2 +
1

R

)

d̃x ∧ d̃y|C. (4.2.27)

Moreover, from (4.2.7) we also get

dǫ̃1|C = −R

(

−ny1n3 + n1n
y
3 +

n1n2

Rn3

)

d̃x ∧ β̃n|C

−R

(

−ny2n3 + n2n
y
3 +

n2
2 + n2

3

Rn3

)

d̃y ∧ β̃n|C,

dǫ̃2|C = −R

(

nx1n3 − n1n
x
3 −

n2
1 + n2

3

Rn3

)

d̃x ∧ β̃n|C

−R

(

ny1n3 − n1n
y
3 −

n1n2

Rn3

)

d̃y ∧ β̃n|C.

(4.2.28)

Therefore, using (4.2.27) and (4.2.28), the expression (4.2.26) becomes

ΩC = ( − dp̃x ∧ d̃x− dp̃y ∧ d̃y − dM̃n ∧ β̃n

− M̃nD
n
xyd̃x ∧ d̃y −

I

E
(p̃xD

x
xn + p̃yD

y
xn)d̃x ∧ β̃n

−
I

E
(p̃xD

x
yn + p̃yD

y
yn)d̃y ∧ β̃n)|C,

(4.2.29)

where Dn
xy, D

x
xn, D

y
xn, D

x
yn and Dy

yn are given in (4.2.24). Finally, the nonholonomic
bivector is computed using (1.4.26), and we get the desired expression (4.2.23).

Equivalently, we can write the nonholonomic bivector as

π#
nh(d̃x) =

∂

∂p̃x
, π#

nh(d̃y) =
∂

∂p̃y
, π#

nh(β̃n) =
∂

∂M̃n

,

π#
nh(dp̃x) = −Ỹx + M̃nD

n
xy

∂

∂p̃y
+
I

E
(p̃xD

x
xn + p̃yD

y
xn)

∂

∂M̃n

,

π#
nh(dp̃y) = −Ỹy − M̃nD

n
xy

∂

∂p̃x
+
I

E
(p̃xD

x
yn + p̃yD

y
yn)

∂

∂M̃n

,

π#
nh(dM̃n) = −X̃n −

I

E
(p̃xD

x
xn + p̃yD

y
xn)

∂

∂p̃x
−
I

E
(p̃xD

x
yn + p̃yD

y
yn)

∂

∂p̃y
.
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Moreover, since ǫ̃1|C ≡ 0 and ǫ̃2|C ≡ 0, the definition of the nonholonomic bivector
implies that

π#
nh(ǫ̃

1) = π#
nh(ǫ̃

2) = 0.

Now, using Prop. 4.2.4 we compute the nonholonomic dynamics Xnh = −π#
nh(dHM)

associated to our example. From the Lagrangian (4.2.6) the restricted Hamiltonian
HM is given by

HM =
R2

2E
((1 − n2

1)p̃x
2 + (1 − n2

2)p̃y
2 − 2p̃xp̃yn1n2)

+
M̃n

2

2I
+magφ(x2 + y2),

(4.2.30)

and therefore the nonholonmic vector field Xnh is written

Xnh = ẋỸx + ẏỸy + ω̃nX̃n

+

(

ẏM̃nD
n
xy + (p̃xn1 + p̃yn2)(p̃xn

x
1 + p̃yn

x
2) + ω̃n

I

E
(p̃xD

x
xn + p̃yD

y
xn)

)

∂

∂p̃x

+

(

−ẋM̃nD
n
xy + (p̃xn1 + p̃yn2)(p̃xn

y
1 + p̃yn

y
2) + ω̃n

I

E
(p̃xD

x
yn + p̃yD

y
yn)

)

∂

∂p̃y

+
I

E

(

−ẋ(p̃xD
x
xn + p̃yD

y
xn) − ẏ(p̃xD

x
yn + p̃yD

y
yn)
) ∂

∂M̃n

−magφ
′

(

2x
∂

∂p̃x
+ 2y

∂

∂p̃y

)

,

(4.2.31)

where, by Legendre transform, we have the following relations between velocities and
momenta,

ẋ =
R2

E

(

p̃x(1 − n2
1) − p̃yn1n2

)

, ω̃n =
M̃n

I
,

ẏ =
R2

E

(

p̃y(1 − n2
2) − p̃xn1n2

)

.

(4.2.32)

4.2.2 The G-symmetry and the reduced bracket {·, ·}red

Consider the compact Lie group

G = S1 × SO(3), (4.2.33)

where SO(3) acts by right action and S1 by left action on Q = R
2 × SO(3). More

precisely, the action by an element (ϕ, h) ∈ S1 × SO(3) on (x, y, g) ∈ Q is given by

(ϕ, h) · (x, y, g) = (Rϕ(x, y), R̂ϕ g h), (4.2.34)

where Rϕ denotes the 2 × 2 rotation matrix of angle ϕ and R̂ϕ denotes the 3 × 3
rotation matrix of angle ϕ with respect to the z-axis.
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We show that the G-action is a symmetry of the nonholonomic system. It is enough
to show that the action preserves the Lagrangian L and the distribution D. It is easier
start with the Lagrangian

L =
1

2
||ẋ||2 +

1

2
||ω||2 −magφ(x2 + y2),

with x = (x, y, z) taking in consideration along the computations the holonomic con-
straint for z given in (4.2.4). First, we observe that the right SO(3)-action only acts
on ω by an orthogonal transformation which preserves the norm. Second, the left S1

action leaves invariant the (spatial) angular velocity ω (which is left invariant) and
preserves x2 + y2 and ||ẋ||. Then, the Lagrangian L is G-invariant.

On the other hand consider the expression of Yx, Yy and Xn which generate the
constraint distribution D (see (4.2.8)). Observe that the vector fields Yx, Yy and Xn

are SO(3)-invariant because the vector fields Xi, i = 1, 2, 3 are right invariant by
definition and the right SO(3) action does not act on the (x, y)-coordinates. Now, for
the left S1-action, consider a rotation matrix Rϕ with respect to the vertical axis and
angle ϕ, then

((Rϕ)∗(Yx))|Rϕ·q = cosϕYx|Rϕ·q + sinYy|Rϕ·q,

((Rϕ)∗(Yy))|Rϕ·q = − sinϕYx|Rϕ·q + cosYy|Rϕ·q,

((Rϕ)∗(Xn))|Rϕ·q = Xn|Rϕ·q,

then the distribution D is G-invariant.

The Lie algebra g of G is isomorphic to R×R
3 and thus we work with the following

basis of g,
{(1,0), (0, ei)}, i = 1, 2, 3, (4.2.35)

where ei denotes the i-th canonical basis vector of R
3. The infinitesimal generator

with respect to the S1-action is

U0 := (1,0)Q = −y
∂

∂x
+ x

∂

∂y
+X3.

If we denote by α = (α1, α2, α3), β = (β1, β2, β3) and γ = (γ1, γ2, γ3) the rows of
the matrix g ∈ SO(3), then the infinitesimal generators associated to the SO(3)-action
are given by

(0, ei)Q = αiX1 + βiX2 + γiX3, i = 1, 2, 3. (4.2.36)

Denoting U = ((0, e1)Q, (0, e2)Q, (0, e3)Q), we see that X1 = 〈α,U〉, X2 = 〈β,U〉
and X3 = 〈γ,U〉, consequently the vertical (generalized) distribution V is given by

V = span{U0, X1, X2, X3}, (4.2.37)

and the G-symmetry satisfies the dimension assumption (2.3.4). We observe that the
rank of V is 3 for (x, y) = (0, 0) and it is 4 elsewhere, showing that the action is not
free (not even locally free).
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Remark 4.2.5. We express the vector fields appearing in (4.2.37) in the basis associ-
ated to the splitting TQ = D⊕W , see Rmk. 4.2.1. Recalling the expressions for Xn,
Z1 and Z2 in (4.2.10), we get the relations











n1 n2 n3

−An1 −An2 + 1
Rn3

−An3

−Bn1 −
1

Rn3
−Bn2 −Bn3





















X1

X2

X3











=











Xn

Z2

Z1











,

with inverse










n1 0 −Rn3

n2 Rn3 0

n3 −Rn2 Rn1





















Xn

Z2

Z1











=











X1

X2

X3











.

On the other hand, from the definitions of Yx and Yy in the basis of D given in (4.2.8),
we have

∂

∂x
= Yx + Z1,

∂

∂y
= Yy + Z2.

Consequently we can write

U0 = (1,0)Q = −y(Yx + Z1) + x(Yy + Z2) + n3Xn −Rn2Z2 +Rn1Z1,

and then the vertical distribution (4.2.37) is also written

V = span{U0, Xn, Z2, Z1}.

⋄

Now we describe the reduced space M/G as a stratified differential space and write
the reduced dynamics. The reduction of M by the symmetry group G = S1 × SO(3)
is performed by stages as in [40, 52]. The reduction by SO(3) gives the smooth
manifold M/SO(3) and results in the elimination of the coordinate g of M. Fur-
thermore, from (4.2.49) we see that S1 acts on M/SO(3) by ϕ · (x, y, p̃x, p̃y, M̃n) =
(Rϕ(x, y), Rϕ(p̃x, p̃y), M̃n).

Since (0, 0, 0, 0,Mn) is a fixed point for any rotation Rϕ, the S1-action is not free
and the reduction is performed using invariant theory as in [40, 52, 77]. The S1-
invariant polynomials on M/SO(3) for this action are given by

p0 = p̃x
2 + p̃y

2,

p1 = x2 + y2,

p2 = xp̃x + yp̃y,

p3 = xp̃y − yp̃x,

p4 = M̃n.

(4.2.38)

Since the S1-action is not free but it is proper the reduced space M/G is a stratified
differential space and the ring of smooth functions on M/G is identified with the
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ring C∞(M)G of G-invariant functions on M, see Section 2.1.3. By invariant theory,
the pi, i = 0, · · · , 4, form a basis of C∞(M)G and hence the polynomials pi can also
be considered as coordinates on M/G in the sense that M/G is described by the
following semi-algebraic subset of R

5,

{p = (p0, p1, p2, p3, p4) ∈ R
5 : p0 ≥ 0, p1 ≥ 0, p0p1 = p2

2 + p2
3}.

The stratified orbit space M/G has two strata corresponding to the orbit types. The
1-dimensional singular stratum associated to the S1 isotropy type is given by

M1 = {p = (p0, p1, p2, p3, p4) ∈ R
5 : p0 = p1 = p2 = p3 = 0}, (4.2.39)

and corresponds to the situation where the ball lies at the bottom of the surface and
is spinning about the vertical axis.

The other 4-dimensional stratum, called regular stratum, is the complement of M1

in M/G and is given by

M4 = {p = (p0, p1, p2, p3, p4) ∈ R
5 : p0 ≥ 0, p1 ≥ 0,

p0p1 = p2
2 + p2

3, p
2
0 + p2

1 > 0}.
(4.2.40)

It can be understood as the manifold which is the orbit space of the submanifold Mreg

of M where the action is free. Hence M4 = Mreg/G and we use the notation M̄reg

instead of M4. It has been observed that the regular stratum M̄reg is diffeomorphic to
S2×R

2, see [40, 52]. Observe that possible trajectories in the regular stratum include
the case of the ball passing by the bottom of the surface Σ, (x, y) = (0, 0), but with
non-zero velocity. On the other hand, from (4.2.32), we obtain the following relations

p̃x = ẋ
1 − n2

2

n2
3R

2
E + ẏ

n1n2

n2
3R

2
E,

p̃y = ẋ
n1n2

n2
3R

2
E + ẏ

1 − n2
1

n2
3R

2
E,

(4.2.41)

and rewriting the polynomials pi, i = 0, · · · , 4 in the velocity coordinates, we observe
that trajectories with p3 = 0 are those where the ball moves only in the radial direction,
i.e. in the intersection of the surface with a vertical plane passing by the origin, while
when p2 = 0 the ball moves in a circular trajectory at a constant height. The variables
p3 and p4 will be important when we will consider first integrals in Section 4.3.1.

Remark 4.2.6. Equivalently, we can understand the dynamics by studying the re-
duced equations of motion obtained by Hermans [52]. We recall the reduction in the
form presented in [40] and then relate it to our variables pi, i = 0, . . . , 4 defined in
(4.2.38). Consider the invariant polynomials in positions and velocities:

p̄0 =
ẋ2 + ẏ2

2
, p̄1 =

x2 + y2

2
, p̄2 = xẋ+ yẏ,

p̄3 = xẏ − yẋ, p̄4 = Rωn.

In these variable de reduced dynamics is given by,

Xred
nh = p̄2F0

∂

∂p̄0

+ p̄2
∂

∂p̄1

+ F2
∂

∂p̄2

+ p̄2p̄4F3
∂

∂p̄3

+ p̄2p̄3F4
∂

∂p̄4

. (4.2.42)
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The functions F3 and F4 depend only on p̄1. Adapting the formulas of [40] to our
notations we have

F0(p̄0, p̄1, p̄2, p̄3, p̄4) =

[

4(
I

E
p̄3p̄4 − 2p̄2

2φ′(p̄1))φ
′′(p̄1) − 2ag

mR2

E
φ′(p̄1) − 8p̄0φ

′(p̄1)
2

]

g(p̄1),

F2(p̄0, p̄1, p̄2, p̄3, p̄4) =

[

2p̄0 − 2(
I

E
p̄3p̄4 + 2ag

mR2

E
p̄1)φ

′(p̄1) + 16p̄1p̄2
2φ′(p̄1)φ

′′(p̄1)

]

g(p̄1),

F3(p̄1) =
I

E
(2φ′(p̄1) + 8p̄1φ

′′(p̄1)) g(p̄1),

F4(p̄1) =
(

8φ′(p̄1)
3 − 4φ′′(p̄1)

)

g(p̄1),

g(p̄1) =
1

1 + 2p̄1Ψ′(p̄1)2
.

(4.2.43)

Observe that g(p̄1) is equal to n2
3, the square of the z-component of the unit normal

vector ~n. Using Eqs. (4.2.41) one can find the relations between the p̄i and pi. We
get:

p0 =
2E2

n4
3R

4
p̄0 −

E2

n4
3R

4
(1 + n2

3)(n2ẋ− n1ẏ)
2

p1 = 2p̄1, p2 =
E

n2
3R

2
p̄2, p3 =

E

R2
p̄3, p4 =

I

R
p̄4.

(4.2.44)

From the latter relations and the chain rule we compute the relevant terms of the
reduced dynamics Xred in our variables pi. ⋄

The reduced dynamics is computed projecting the nonholonomic vector field Xnh

given in (4.2.31) by the quotient map ρ : M → M /G and has been presented in [52]
(see also [40]). In our reduced variables pi, i = 0, · · · , 4, the reduced nonholonomic
vector field Xred has the form:

Xred = F̄0
∂

∂p0

+
2R2n2

3

E
p2

∂

∂p1

+ F̄2
∂

∂p2

+
Rn2

3

E
F̄3p2p4

∂

∂p3

+
R3In2

3

E2
p2p3F̄4

∂

∂p4

, (4.2.45)

where n3, F̄3, F̄4 are basic functions with respect to the bundle M/G→ Q/G (thinking
of Q/G as a differential space) given by

n3 = n3(p1) = −
1

(1 + 4p1φ′(p1)2)1/2
,

F̄3 = F̄3(p1) = (2φ′(p1) + 4p1φ
′′(p1))n

2
3,

F̄4 = F̄4(p1) = (8φ′(p1)
3 − 4φ′′(p1))n

2
3,

(4.2.46)

and F̄0 and F̄2 are functions on M/G that are computed from (4.2.43) and (4.2.44).

As it has been remarked in [40], the interval of continuity of the F̄i contains a
neighbourhood of zero, so the reduced dynamics is well defined for p1 = 0 (and p0 6= 0,
in the regular stratum), that is for orbits passing at the bottom of the surface with
non-zero momentum. Note that Xred is a vector field in R

5 which is tangent to the
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space M/G as a stratified space, that is Xred is tangent to each strata [40]. In the
singular stratum M1 it reduces to the equation ṗ4 = 0 with trivial solution and on the
regular stratum it defines a smooth vector field on the smooth manifold M4.

The equilibria of the reduced equations of motion (or relative equilibria) are of
two types: the singular equilibria which are all the points of the singular stratum
with M̃n constant, and the points of the regular stratum verifying p2 = 0 and
F̄2(p0, p1, p2, p3, p4) = 0, which describe circular motions at constant height, see [40,
52, 79, 88]. Hermans [52] has shown that away from the equilibrium points all the
orbits of the reduced dynamics are periodic. The qualitative study of the relative
equilibria was started by Routh [79], where he gave necessary conditions for the sta-
bility of the relative equilibria by linearizing the dynamics. Afterwards Zenkov [88]
proved that linear stability imply nonlinear (orbital) stability. This implies that orbits
that are close to one stable relative equilibrium evolve around the periodic circular
motion given by the relative equilibrium. Finally, the case of a ball rolling inside a
circular cylinder (see Sections 1.5.5, 2.4.5, 3.6.5), can be considered as a limit case of
a surface of revolution, and for that example the Routh/Zenkov stability condition
always verified (see Eq. (2.2) of [88]). In fact, the equations of motion in this case
can be completely integrated and the oscillation of the variable z (height) has explicit
formulas, see e.g. [70, 77].

Figure 4.2: Equilibrium in the singular stratum

Figure 4.3: Relative equilibrium in the regular stratum

Remark 4.2.7. Since the surface Σ is of revolution we observe that the functions F̄3

and F̄4 can be expressed in terms of the principal curvatures λ1 and λ2 associated to
Σ. In fact, since

λ1 = −
2φ′

(1 + 4p1(φ′)2)1/2
, λ2 = −

2φ′ + 4p1φ
′′

(1 + 4p1(φ′)2)3/2
,
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the we obtain that

F̄3(p1) =
λ2

n3

, F̄4(p1) =
λ1 − λ2

n3p1

.

⋄

In the next section we will compute the 3-form dJ ∧KW defined in (2.3.19) and
prove that the reduced bracket {·, ·}red is not Poisson based on formula (2.3.21).

4.2.3 The vertical complement of the constraints and the re-

duced bracket

We begin by showing that the distribution W generated by the vector fields Z1 and
Z2 defined in (4.2.10) is G-invariant and is a vertical complement of the constraints:
W ⊂ V and TQ = D ⊕W (see (2.3.6) and Rmk. 4.2.1).

Proposition 4.2.8. For the mechanical system we are considering, the distribution
W = span{Z1, Z2} where Z1 and Z2 are given in (4.2.10) is a G-invariant vertical
complement of the constraints induced by an Ad-invariant subbundle gW → Q of
g ×Q→ Q.

Proof. From (4.2.9) we see that TQ = D ⊕W . To see that W ⊂ V , we observe that
Z1 = (ξ1)Q and Z2 = (ξ2)Q, where ξ1 and ξ2 are sections of the bundle g × Q → Q
given at the point q = (x, y, g) by

ξ1|q = 〈Ag, (0, e)〉, ξ2|q = 〈Bg, (0, e)〉, (4.2.47)

where (0, e) = ((0, e1), (0, e2), (0, e3)) with (0, ei) given in (4.2.35) and A, B are the
vectors

A = −
1

Rn3

(

n1n2, n2
2 − 1 , n2n3

)

, B =
1

Rn3

(

n2
1 − 1 , n1n2 , n1n3

)

.

Next we verify that W is G-invariant. First observe that, from (4.2.10), the vector
fields Z1 and Z2 are SO(3)-invariant(the right action of SO(3) does not involves the
(x, y)-coordinates and the fields Xi, i = 1, 2, 3 are right invariant). On the other hand,
in order to show that Z1 and Z2 are S1-invariant, consider a rotation Rϕ of angle ϕ
with respect to the z-axis and observe that

((Rϕ)∗(Z1)) |Rϕq = cosϕZ1|Rϕq + sinϕZ2|Rϕq ∈ WRϕq,

((Rϕ)∗(Z2)) |Rϕq = − sinϕZ1|Rϕq + cosϕZ2|Rϕq ∈ WRϕq.

Therefore the subbundle W of TQ is G-invariant. Consider now the vector subbundle
gW → Q of the trivial bundle g ×Q→ Q generated by the sections ξ1 and ξ2 defined
in (4.2.47). It is straightforward to see that W is induced by gW as in (2.3.10) and
that gW → Q is Ad-invariant.

Remark 4.2.9. The complement W does not satisfy the vertical symmetry condition
of [5], in fact W is not even integrable. Moreover, there is no complement satisfying
that condition since the Lie group SO(3) is simple and therefore does not have any
normal subgroup which could act on the system as a symmetry group, see [6, Remark
2.4]. ⋄
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The bundle gS → Q and the distributions S and W on the manifold M

Following (2.3.5) we compute S = span{S1 := yYx − xYy, S2 := Xn}, and we observe
that it also has nonconstant rank, it is equal to 1 when (x, y) = (0, 0) and is equal to
2 elsewhere. The subbundle gS → Q of g ×Q→ Q defined in (2.3.8) is generated by
the sections

η1|q = (1,0) + yξ1|q − xξ2|q − 〈γ, (0, e)〉|q, η2|q = 〈~ng, (0, e)〉|q, (4.2.48)

where we consider the normal ~n as a row vector, and the section ξ1 and ξ2 are given
in (4.2.47). Then we have that (η1)Q = S1 and (η2)Q = S2. As we observed in Section
2.3.1 (see also [6]), the bundle gS → Q has constant rank (here it is equal to 2) while
the distribution S varies its rank.

On the other hand, using analogous notation as in (4.2.34), the cotangent lift of
the G-action to M is computed to be

(ϕ, h) · (x, y, g, p̃x, p̃y, M̃n) = (Rϕ(x, y), R̂ϕ g h,Rϕ(p̃x, p̃y), M̃n). (4.2.49)

The infinitesimal generators of the action on M in the basis (4.2.35) of the Lie
algebra g are

(1,0)M = −y
∂

∂x
+ x

∂

∂y
+ X̃3 + p̃y

∂

∂p̃x
− p̃x

∂

∂p̃y
, (4.2.50)

(0, ei)M = αiX̃1 + βiX̃2 + γiX̃3, i = 1, 2, 3, (4.2.51)

with X̃i = τ ∗
M
Xi and τM : M → Q the canonical projection. Therefore, using the

basis (4.2.21) of TM, the vertical distribution V on M is given by

V = span

{

−yỸx + xỸy + p̃y
∂

∂p̃x
− p̃x

∂

∂p̃y
, X̃n, Z̃1, Z̃2

}

. (4.2.52)

The basis of sections {η1, η2} in (4.2.48) generating the bundle gS → Q induces a set
of generators (η1)M and (η2)M of the distribution S on M defined in (2.3.14),

S = span{(η1)M, (η2)M},

where

(η1)M = yỸx − xỸy + p̃y
∂

∂p̃x
− p̃x

∂

∂p̃y
and (η2)M = X̃n. (4.2.53)

Now, from (2.3.12), the G-invariant vertical complement W is induced by the basis
of sections of the bundle gW → Q given by {ξ1, ξ2} where ξ1 and ξ2 are defined in
(4.2.47). That is

W = span{(ξ1)M, (ξ2)M},

and observe that, in this case, (ξ1)M = Z̃1 and (ξ2)M = Z̃2. From Proposition 4.2.8
the bundle gW → Q is Ad-invariant and then W is also G-invariant.
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The 3-form dJ ∧KW

Next, using Lemma 2.3.7 we compute the W-curvature KW in the adapted basis
(4.2.20) of T ∗M.

Lemma 4.2.10. For the vertical complement W = span{Z̃1, Z̃2}, the W-curvature
KW written in the basis of constant sections of g, {(1,0), (0, ei)}, i = 1, 2, 3, is given
by,

KW = d̃x ∧ β̃n ⊗ 〈−Dx
xnAg −Dy

xnBg, (0, e)〉 + d̃y ∧ β̃n ⊗ 〈−Dx
ynAg −Dy

ynBg, (0, e)〉,

where (0, e) = ((0, e1), (0, e2), (0, e3)).

Proof. By Lemma 2.3.7 (using a = 1, 2 to match with our notations) the W-curvature
KW in the basis {ξ1, ξ2} of sections of gW → Q, given in (4.2.47) is written,

KW |C = dǫ̃1|C ⊗ ξ1 + dǫ̃2|C ⊗ ξ2 and KW |W = 0,

which is equivalent to

KW |C = dǫ̃1|C ⊗ 〈Ag, (0, e)〉 + dǫ̃2|C ⊗ 〈Bg, (0, e)〉, and KW |W = 0.

Finally from (4.2.28) we obtain,

KW =(−Dx
xnd̃x ∧ β̃n −Dx

ynd̃y ∧ β̃n) ⊗ 〈Ag, (0, e)〉

+ (−Dy
xnd̃x ∧ β̃n −Dy

ynd̃y ∧ β̃n) ⊗ 〈Bg, (0, e)〉

=d̃x ∧ β̃n ⊗ 〈−Dx
xnAg −Dy

xnBg, (0, e)〉 + d̃y ∧ β̃n ⊗ 〈−Dx
ynAg −Dy

ynBg, (0, e)〉.

The next step is to compute the 3-form dJ ∧KW using Proposition 2.3.8. As we
saw in Section 2.3.1, this 3-form is the key tool in order to prove whether the reduced
bracket {·, ·}red is Poisson or not (see (2.3.20) and (2.3.21)).

Following the notation of Prop. 2.3.8, the basis of sections of g × Q adapted to
the splitting g ×Q = gS ⊕ gW is given by

Bg×Q = {η1, η2, ξ3, ξ4}, (4.2.54)

where η1 and η2 are sections of gS → Q given in (4.2.48) and ξ3 and ξ4 correspond to
the sections ξ1 and ξ2 of gW → Q given in (4.2.47), respectively. The components of
the moment map J in the basis (4.2.54) are denoted

J1 = i(η1)MΘM, J2 = i(η2)MΘM,

and
J3 = i(ξ3)MΘM, J4 = i(ξ4)MΘM. (4.2.55)
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Proposition 4.2.11. For the choice of the vertical complement W = span{Z̃1, Z̃2}
to the constraints C, the G-invariant 3-form dJ ∧KW verifies

dJ ∧KW |C =

(

−
I

E
dp̃x ∧ dǫ̃

1 −
I

E
dp̃y ∧ dǫ̃

2 + ΨK ∧ (hK3 dǫ̃
1 + hK4 dǫ̃

2)

)

|C, (4.2.56)

where ΨK is a semi-basic 1-form (with respect to the bundle τM : M → Q) given by
ΨK = J1dh̄

1
K + J2dh̄

2
K − I

E
p̃xdh̄

3
K − I

E
p̃ydh̄

4
K, with h̄LK the entries of the matrix h̄, the

inverse transpose of the 4 × 4 matrix h given by

ηi = hKi χK , i = 1, 2,

ξa = hKa χK , a = 3, 4,

where we used the basis of g given by {χ1 = (1,0), χi+1 = (0, ei)}, i = 1, 2, 3, and
hKL ∈ C∞(Q)G; K,L = 1, · · · , 4.

Proof. Consider the basis of sections {ξa}, a = 3, 4, of gW → Q using the convention
of (4.2.54) and recall that Z̃1 = (ξ3)M and Z̃2 = (ξ4)M. Then, the components Ja,
a = 3, 4, of the moment map defined in (4.2.55) are written

J3 = iZ̃1
ΘM = −

I

E
p̃x, J4 = iZ̃2

ΘM = −
I

E
p̃y,

where we used the expression of ΘM given in (4.2.25). Consequently from Proposition
2.3.8, using that there ǫ̃a, a = 3, 4, corresponds to (the pull-back of) the constraint
1-forms ǫ̃1 and ǫ̃2, we have

dJ ∧KW |C =
(

dJ3 ∧ dǫ̃
1 + dJ4 ∧ dǫ̃

2 + hK3 JLdh̄
L
K ∧ dǫ̃1 + hK4 JLdh̄

L
K ∧ dǫ̃2

)

|C

=

(

−
I

E
dp̃x ∧ dǫ̃

1 −
I

E
dp̃y ∧ dǫ̃

2 + (JLdh̄
L
K) ∧ (hK3 dǫ̃

1 + hK4 dǫ̃
2)

)

|C.

Finally we denote by ΨK the expression JLdh̄
L
K = J1dh̄

1
K + J2dh̄

2
K + J3dh̄

3
K + J4dh̄

4
K

which gives the formula in the statement of the Proposition. The fact that dJ ∧KW

is G-invariant is a consequence of the G-invariance of the complement W (see Prop.
4.2.8 and [5]).

In other words, using (4.2.28), the 3-form dJ ∧KW can be written as,

dJ ∧KW |C = Ψ1 + Ψ2|C, (4.2.57)

where

Ψ1 =
I

E

(

Dx
xndp̃x ∧ d̃x ∧ β̃n +Dy

xndp̃y ∧ d̃x ∧ β̃n
)

+
I

E

(

Dx
yndp̃x ∧ d̃y ∧ β̃n +Dy

yndp̃y ∧ d̃y ∧ β̃n
)

,

(4.2.58)

and Ψ2 is a semi-basic 3-form (with respect to M → Q) that verifies

Ψ2|C = ΨK ∧ (hK3 dǫ̃
1 + hK4 dǫ̃

2)|C. (4.2.59)
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Remark 4.2.12. We give a second proof of the last proposition. Here we use the ex-
plicit formula of the W-curvature KW in Lemma 4.2.10. Using the canonical Liouville
1-form restricted to M, ΘM = p̃xdx+ p̃ydy+ M̃nβn−

I
E
p̃xǫ

1 − I
E
p̃yǫ

2, we can compute
the moment map J : M → g∗, by 〈J(m), ξ〉 = iξMΘM in our chosen basis of g. We
obtain for i = 1, 2, 3,

J = (J0, Ji),

where J0 = i(1,0)MΘM will not appear in the computations, and Ji = i(0,ei)MΘM. We
have:

Ji =p̃xi(0,ei)Mdx+ p̃yi(0,ei)Mdy + M̃ni(0,ei)Mβn

−
I

E
p̃xi(0,ei)Mǫ

1 −
I

E
p̃yi(0,ei)Mǫ

2.
(4.2.60)

Denoting Ki = hi1dǫ
1 + hi2dǫ

2 the coordinates of the W-curvature in our basis of g,
the 3-form dJ ∧KW can be written,

dJi ∧K
i|C =

∂Ji
∂p̃x

dp̃x ∧K
i +

∂Ji
∂p̃y

dp̃y ∧K
i +

∂Ji

∂M̃n

dM̃n ∧K
i

+ Yx(Ji)dx ∧K
i + Yy(Ji)dy ∧K

i +Xn(Ji)βn ∧K
i|C,

(4.2.61)

where in the last equality we have used that C annihilates ǫ1 and ǫ2. By the form
of Ki we observe that the last three terms of (4.2.61) are semi-basic with respect
to M → Q, hence they are of the form Ψ dx ∧ dy ∧ βn for some function Ψ as in
the statement of the Proposition. The function Ψ is G-invariant because the 3-form
dJ ∧KW is G-invariant. The other terms can be computed using (4.2.60),

∂Ji
∂p̃x

=
I

E
R(γin2 − n3βi),

∂Ji
∂p̃y

=
I

E
R(αin3 − n1γi),

∂Ji

∂M̃n

= αin1 + βin2 + γin3.

(4.2.62)

We use the explicit formula of Lemma 4.2.10 to perform the scalar products in the first
three terms of the right hand side of 4.2.61. The computations are straightforward
and can the shorten using matrix notation in formulas 4.2.62. By instance:

∂Ji

∂M̃n

dM̃n ∧K
i = (−Dx

xnAg −Dy
xnBg) · (g

T~n)dM̃n ∧ dx ∧ βn

+
(

−Dx
ynAg −Dy

ynBg
)

· (gT~n)dM̃n ∧ dy ∧ βn = 0,

since B · ~n = A · ~n = 0. In the last formula we considered A,B as row vectors and
the unit normal ~n as a column vector. Analogous computations gives:

∂Ji
∂p̃x

dp̃x ∧K
i =

I

E
Dx
xndp̃x ∧ dx ∧ βn +

I

E
Dx
yndp̃x ∧ dy ∧ βn,

∂Ji
∂p̃y

dp̃y ∧K
i =

I

E
Dy
xndp̃y ∧ dx ∧ βn +

I

E
Dy
yndp̃y ∧ dy ∧ βn.

Replacing the latter formulas in (4.2.61) proves the proposition. ⋄
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The reduced bracket {·, ·}red is not Poisson

Finally we arrive to the conclusion of this section:

Theorem 4.2.13. The reduced bracket {·, ·}red on M/G induced by the nonholonomic
bracket {·, ·}nh on M and the orbit projection M → M/G is not Poisson.

Proof. Note that

π#
nh(dρ

∗p2) = p̃x
∂

∂p̃x
+ p̃y

∂

∂p̃y

+ x

(

−Ỹx + M̃nD
n
xy

∂

∂p̃y
+
I

E
(p̃xD

x
xn + p̃yD

y
xn)

∂

∂M̃n

)

+ y

(

−Ỹy − M̃nD
n
xy

∂

∂p̃x
+
I

E
(p̃xD

x
yn + p̃yD

y
yn)

∂

∂M̃n

)

,

π#
nh(dρ

∗p3) = p̃y
∂

∂p̃x
− p̃x

∂

∂p̃y

+ x

(

−Ỹy − M̃nD
n
xy

∂

∂p̃x
+
I

E
(p̃xD

x
yn + p̃yD

y
yn)

∂

∂M̃n

)

− y

(

−Ỹx + M̃nD
n
xy

∂

∂p̃y
+
I

E
(p̃xD

x
xn + p̃yD

y
xn)

∂

∂M̃n

)

,

π#
nh(dρ

∗p4) = −X̃n −
I

E
(p̃xD

x
yn + p̃yD

y
yn)

∂

∂p̃y
−
I

E
(p̃xD

x
xn + p̃yD

y
xn)

∂

∂p̃x
.

We compute dJ ∧KW(π#
nh(dρ

∗p2), π
#
nh(dρ

∗p3), π
#
nh(dρ

∗p4)) evaluating each term of the
decomposition (4.2.57). Observe that the semi-basic 3-form Ψ2 appearing in the ex-
pression of dJ ∧KW , when restricted to C has the form F (x, y) · dx ∧ dy ∧ β̃n, where
F ∈ C∞(M). Then

Ψ1((dρ
∗p2), π

#
nh(dρ

∗p3), π
#
nh(dρ

∗p4)) =
I

E
y(p̃xD

x
xn + p̃yD

y
xn) −

I

E
x(p̃xD

x
yn + p̃yD

y
yn)

+
I

E
x(p̃yD

x
xn − p̃xD

y
xn) +

I

E
y(p̃yD

x
xn − p̃xD

y
xn),

and
Ψ2|C((dρ

∗p2), π
#
nh(dρ

∗p3), π
#
nh(dρ

∗p4))) = F (x, y) · (x2 + y2).

By the Jacobiator formula (2.3.21) of the reduced bracket {·, ·}red we conclude that
{·, ·}red is not Poisson.

Remark 4.2.14. The reduced bracket {·, ·}red does not admit leaves. In fact, the
existence of 2-dimensional leaves should imply, by dimensionaly, that the bracket
{·, ·}red is Poisson, in contradiction with Thm. 4.2.13. ⋄

For completeness we compute the reduced bracket {·, ·}red. It is given in our
reduced variables pi in the following table:
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{·, ·}red p0 p1 p2 p3 p4

p0 4p2 2p0 + 2p4p3D
n
xy −2p2p4D

n
xy −2p̃xCxn − 2p̃yCyn

p1 −4p2 −2p1 0 0

p2 −2p0 − 2p4p3D
n
xy 2p1 2p3 − p4p0D

n
xy −xCxn − yCyn

p3 2p2p4D
n
xy 0 −2p3 + p4p0D

n
xy yCxn − xCyn

p4 2p̃xCxn + 2p̃yCyn 0 xCxn + yCyn yCxn − xCyn

We used the shorthand notations

Cxn =
I

E
(p̃xD

x
xn + p̃yD

y
xn), Cyn =

I

E
(p̃xD

x
yn + p̃yD

y
yn), (4.2.63)

and verified that the entries of the table are G-invariant. In fact, the three expressions

p̃xCxn + p̃yCyn, xCxn + yCyn, yCxn − xCyn

are rewritten in function of the G-invariant variables pi, i = 0, · · · , 4, after a long
computation using the complete expressions (4.2.24).

4.3 Horizontal gauge momenta and hamiltoniza-

tion

Continuing with the example in Section 4.2, now we compute a dynamical gauge
transformation of the bivector πnh given in (4.2.23) such that the reduction of the
gauge related bivector πB gives a Poisson bracket {·, ·}Bred on M/G.

In this section, we find a 2-form B based in the techniques of Proposition 3.3.2.
That is, first we study the existence of two horizontal gauge momenta and then we
compute a 2-form B so that (3.3.22) is satisfied. Since these horizontal gauge momenta
are G-invariant they induce two Casimirs of the reduced bracket {·, ·}Bred and then we
show that this reduced bracket is Poisson with symplectic leaves given by the common
level surfaces of the two Casimirs.

4.3.1 Horizontal gauge momenta associated to gS → Q

Following the ideas of Section 3.3, we look for G-invariant horizontal gauge momenta
of the system. Recall from Section 4.2 that the bundle gS → Q is generated by two
sections η1 and η2 defined in (4.2.48) and consequently an arbitrary section of gS → Q
is written as

ζ = f1η1 + f2η2, (4.3.64)

for functions f1, f2 ∈ C∞(Q). The nonholonomic moment map associated to the
section ζ is

Jζ = 〈Jnh, ζ〉 = f1J1 + f2J2,
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where, following (3.3.20), the functions J1 and J2 are the components of the nonholo-
nomic moment map in the basis {η1, η2} of gS → Q, that is,

J1 = i(η1)MΘM = −yp̃x + xp̃y = p3,

J2 = i(η2)MΘM = M̃n = p4,

(recall that S1 = (η1)M and S2 = (η2)M were computed in (4.2.53).

Since, in this case, the functions J1 and J2 are G-invariant, in order to have a G-
invariant horizontal gauge momentum of the form Jζ = f1p3 + f2p4 we impose that f1

and f2 are G-invariant as well. In this case, the function Jζ defines a reduced function
J̄ζ on M/G such that ρ∗J̄ζ = Jζ . Therefore Jζ is a first integral of Xnh if J̄ζ is a first
integral of Xred, i.e. Xred(J̄ζ) = 0. More precisely, the reduced function J̄ζ has the
form J̄ζ = f̄1p3 + f̄2p4, where f̄1 = f̄1(p1) and f̄2 = f̄2(p1) are functions on Q/G (seen
as a differential space) satisfying

Xred(J̄) = p3f̄1
′
dp1(Xred) + p4f̄2

′
dp1(Xred) + f̄1dp3(Xred) + f̄2dp4(Xred) = 0. (4.3.65)

Using the reduced dynamics Xred given in (4.2.45), the functions f̄1 and f̄2 satisfy the
following ODE:

f̄1
′
+ f̄2

RI

2E
F̄4(p1) = 0, f̄2

′
+ f̄1

1

2R
F̄3(p1) = 0, (4.3.66)

where F̄3, F̄4 ∈ C∞(Q/G) are given in (4.2.46). The solutions of the linear differential
system (4.3.66) exist and are unique in the domain of continuity of the functions
F̄3 and F̄4. Moreover starting with two independent initial conditions, the solutions
remain independent as long as they exist.

Using the following notation for the two independent solutions,

p1 7→ (f̄1(p1), f̄2(p1)), p1 7→ (ḡ1(p1), ḡ2(p1)),

which verify f1(p1)g2(p1) − g1(p1)f2(p1) 6= 0 on an interval containing the origin, we
have two first integrals in M/G of the form

¯J (1)(p1, p3, p4) = f̄1(p1)p3 + f̄2(p1)p4,

¯J (2)(p1, p3, p4) = ḡ1(p1)p3 + ḡ2(p1)p4.
(4.3.67)

It is straightforward to see that the first integrals (4.3.67) are functionally independent
in Mreg/G (as it was observed in [40]).

Hence the corresponding G-invariant horizontal gauge momenta on M are:

J (1)(x, y, g, p̃x, p̃y, M̃n) = f1 · (xp̃y − yp̃x) + f2 · M̃n,

J (2)(x, y, g, p̃x, p̃y, M̃n) = g1 · (xp̃y − yp̃x) + g2 · M̃n,
(4.3.68)

where fi = fi(x
2 + y2) = ρ∗f̄i(p1), and gi = gi(x

2 + y2) = ρ∗ḡi(p1), i = 1, 2, and
thus we have recovered in a constructive way the first integrals of this mechanical
system which where known since the work of Routh [79], see also [40, 52]. In fact
by construction, J (1) and J (2) are not only first integrals but are horizontal gauge
momenta. We summarize the results of this section by the following
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Proposition 4.3.1. The functions J (1) and J (2) are G-invariant horizontal gauge
momenta associated to the horizontal gauge symmetries

ζ1 = f1η1 + f2η2 and ζ2 = g1η1 + g2η2, (4.3.69)

where η1 and η2 are given in (4.2.48).

In general these first integrals are not explicitly known except for some particular
cases such as the circular paraboloid [24].

4.3.2 The dynamical gauge transformation and the reduced

Poisson structure

In this section we use Proposition 3.3.2 and Lemma 3.3.1 to seek for a 2-form B having
the property that it induces a dynamical gauge transformation of the bivector πnh such
that each of the G-invariant horizontal gauge momenta J (1) and J (2) in (4.3.68) define
Casimirs ¯J (1) and ¯J (2) of the reduced bracket {·, ·}Bred. Studying the properties of the
bracket {·, ·}Bred we show that it is a Poisson bracket on the differential space M/G.

Let us consider a 2-form B on M

B = a d̃x ∧ d̃y + b d̃y ∧ β̃n + c β̃n ∧ d̃x, (4.3.70)

for a, b, c arbitrary smooth functions on M. Observe that B is semi-basic with respect
to the bundle M → Q and thus it induces a new bivector field πB, see Remark 3.1.3
(i). On the other hand, following Remark 3.1.3 (ii), we observe that iZB ≡ 0 for any
Z ∈ Γ(W).

Recall that J (1) and J (2) given in (4.3.68) are the horizontal gauge momenta with
associated gauge symmetries ζ1 and ζ2 given in (4.3.69) where fi, gi are the pull-back
to M of the functions f̄i, ḡi which are solutions of (4.3.66). Using Proposition 3.3.2
we will find the corresponding functions a, b, c so that π#

B (dJ (i)) = −(ζi)M ∈ Γ(V),
i = 1, 2. The infinitesimal generators associated to the horizontal gauge symmetries
ζ1 and ζ2 in (4.3.69) are given by

(ζ1)M = f1(η1)M + f2(η2)M and (ζ2)M = g1(η1)M + g2(η2)M,

where the infinitesimal generators (η1)M and (η2)M where computed in (4.2.53).

Following Proposition 3.3.2 (i), each section ζ1 and ζ2 induces 1-forms Λ1 and Λ2,
respectively, defined by

Λ1 = −f1i(η1)MΩC − f2i(η2)MΩC + J1df1 + J2df2 + f1dJ1 + f2dJ2,

Λ2 = −g1i(η1)MΩC − g2i(η2)MΩC + J1dg1 + J2dg2 + g1dJ1 + g2dJ2,
(4.3.71)

and then imposing the condition i(ζi)MB = Λi, i = 1, 2, we get

a = M̃n

(

Dn
xy + F̄3

1

R

)

,

b =
I

E

(

p̃x(D
x
yn −Ry2F̄4) + p̃y(D

y
yn +RxyF̄4)

)

,

c = −
I

E

(

p̃x(D
x
xn −RxyF̄4) + p̃y(D

y
xn +Rx2F̄4)

)

,

(4.3.72)
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where we used that the functions f̄1 and f̄2 associated to f1 and f2 satisfy the differ-
ential equations (4.3.66).

Therefore the 2-form B can be written as

B = Φ(x, y)
(

ω̃n d̃x ∧ d̃y + ẋ d̃y ∧ β̃n + ẏ β̃n ∧ d̃x
)

, (4.3.73)

where the function Φ is given by

Φ(x, y) = (1 − φ′2Rn3)
I

R2n3

, (4.3.74)

and is S1-invariant because the surface is of revolution. Recall that ẋ, ẏ and ω̃n are
related to the coordinates in M using the formulas in (4.2.32). Then we arrive to the
following result:

Proposition 4.3.2. The 2-form B given in (4.3.73) satisfies that

(i) i(ζ1)MB = Λ1 and i(ζ2)MB = Λ2, where Λi are 1-forms on M such that

π#
nh(dJ

(i)) = −(ζi)M + π#
nh(Λi) for i = 1, 2.

(ii) iXnh
B = 0, i.e. B defines a dynamical gauge transformation.

Proof. It only remains to show (ii). This is verified by direct computation using the
the expression (4.2.31) for Xnh. The computations are simplified using the fact that
B is semi-basic with respect to M → Q. Indeed, iXnh

B = iẋỸx+ẏỸy+ωnX̃n
B = 0, where

we have used (4.3.73) and the relation M̃n = Iωn from (4.2.32).

Remark 4.3.3. We observe that our mechanical system is an example where the dif-
ference between the ranks of D and S is 1 (in the regular stratum). Using Proposition
3.5.5 we have that the semi-basic 2-form B is uniquely determined by the conditions
(3.5.26) and that it induces a dynamical gauge transformation. ⋄

Using (4.2.29) and (4.3.72) the gauge transformed bivector is given by

πB =Ỹx ∧
∂

∂p̃x
+ Ỹy ∧

∂

∂p̃y
+ X̃n ∧

∂

∂M̃n

− M̃nF3
1

R

∂

∂p̃x
∧

∂

∂p̃y
−
I

E
R(xp̃y − yp̃x)F4y

∂

∂p̃y
∧

∂

∂M̃n

+
I

E
R(xp̃y − yp̃x)F4x

∂

∂M̃n

∧
∂

∂p̃x
.

(4.3.75)

As a consequence of Proposition 4.3.2 (ii) the nonholonomic system is also de-
scribed by the triple (M, πB, HM). Moreover since B is G-invariant, we obtain a
reduced almost Poisson structure (M/G, {·, ·}Bred) on the differencial space M/G as
in (3.1.4).

Recall that the G-invariant horizontal gauge momenta J (1) and J (2) on M induce
the functions ¯J (1) and ¯J (2) on M/G given in (4.3.67). Then, from Prop. 4.3.2 (i) we
have the following
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Corollary 4.3.4. The functions ¯J (1) and ¯J (2) on M/G given in (4.3.67) are Casimirs
of the reduced bracket {·, ·}Bred on M/G induced by the gauge related bivector field πB.

Proof. Since B is defined so that i(ζi)MB = Λi where Λi is given in (4.3.71), then by

Proposition 3.3.2 (ii) we have that π#
B (dJ (i)) = −(ζi)M, i = 1, 2. By the G-invariance

of J (i), Lemma 3.3.1 implies that ¯J (i) are Casimirs of the reduced bracket {·, ·}Bred.

Next we show that the bracket {·, ·}Bred is Poisson using two different arguments.
The first one, Theorem 4.3.5, works away from the singular stratum and has an easier
and more conceptual proof. On the other hand, Theorem 4.3.6 shows that the Jacobi
identity of {·, ·}Bred is zero over the differential space M/G based on the jacobiator
formula (3.1.7).

Theorem 4.3.5. On the manifold M̄reg = Mreg/G, {·, ·}Bred is a regular (rank 2)
Poisson bracket.

Proof. On the manifold M̄reg, the G-action is free and proper and thus the basis of
sections {ζ1, ζ2} of the bundle gS → Q defines a basis of S given by {(ζ1)M, (ζ2)M}.
Since π#

B (dJ (1)) = −(ζ1)M and π#
B (dJ (2)) = −(ζ2)M (see (3.3.22)), then by Proposition

3.4.1 the characteristic distribution of {·, ·}Bred is involutive. Moreover this distribution
is also regular, since the leaves are the level sets of the functions ¯J (1) and ¯J (2) (where
as usual, J̄ (i) ∈ C∞(M/G) such that J (i) = ρ∗J̄ (i)), and thus it is integrable. Finally,
since the reduced bracket {·, ·}Bred on M̄reg is regular, we conclude that {·, ·}Bred is
twisted Poisson on M̄reg (see [80] and [8, Cor. 3.7]) and hence it has an associated
almost symplectic foliation. On the other hand, since dim(M̄reg) = 4, we observe
that this foliation has 2-dimensional leaves and thus they are symplectic. This implies
that {·, ·}Bred is a (rank 2) regular Poisson bracket on M̄reg.

Note that the argument used in [40] first constructed a Poisson bivector outside
of the equilibria of Xred and then, using a specific transversality condition (which is
verified by the example), then they extended the result to M̄reg.

Theorem 4.3.6. On the differential space M/G the reduced bracket {·, ·}Bred is Pois-
son.

Proof. Now we use formula (3.1.7) that encodes the failure of the Jacobi identity of
{·, ·}Bred on a differential space. We begin computing the relevant terms of the 3-form
dB, where B is the 2-form given in (4.3.73). The coefficients of B have the form
a = anM̃n, b = bxp̃x + byp̃y and c = cxp̃x + cyp̃y, where an, bx, by, cx, cy are functions
in C∞(Q) which can be read directly from (4.3.72). Therefore the 3-form dB has the
form

dB = andM̃n ∧ d̃x ∧ d̃y + bxdp̃x ∧ d̃y ∧ β̃n + bydp̃y ∧ d̃y ∧ β̃n

+ cxdp̃x ∧ β̃n ∧ d̃x+ cydp̃y ∧ β̃n ∧ d̃x+ Ξ,
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where Ξ is a semi-basic 3-form (with respect to M → Q). Consequently, using the
expression of dJ ∧KW in Proposition 4.2.11 and formulas (4.3.72), we have,

(dJ ∧KW − dB)|C = −
I

E
RF̄4(xy dp̃x ∧ β̃n ∧ d̃x− x2 dp̃y ∧ β̃n ∧ d̃x

− y2 dp̃x ∧ d̃y ∧ β̃n + xy dp̃y ∧ d̃y ∧ β̃n)|C

−
1

I
Φ(x, y)dM̃n ∧ d̃x ∧ d̃y|C + (Ψ2 − Ξ)|C,

where Φ is given in (4.3.74) and Ψ2 in (4.2.59).

Recall that the invariant functions pi, i = 0, · · · , 4, given in (4.2.38) are seen as
coordinates on M/G and thus we have to compute the expression

(dJ ∧KW − dB)(π#
B (dρ∗pi), π

#
B (dρ∗pj), π

#
B (dρ∗pk)) (4.3.76)

for all the combinations of distinct pi, pj and pk. Since ¯J (1) and ¯J (2) depend linearly
on p3 and p4, see (4.3.67), and using that they are Casimirs of the reduced bracket
{·, ·}Bred, it is enough to check the formula of the Jacobiator in (4.3.76) on p0, p1 and
p2. We have

π#
B (dρ∗p0) = − 2p̃xỸx − 2p̃yỸy − 2p̃xM̃nF̄3

1

R

∂

∂p̃y
+ 2p̃yM̃nF̄3

1

R

∂

∂p̃x

−
I

E
2R(xp̃y − yp̃x)(xp̃x + yp̃y)F̄4

∂

∂M̃n

,

π#
B (dρ∗p1) =2x

∂

∂p̃x
+ 2y

∂

∂p̃y
,

π#
B (dρ∗p2) =p̃x

∂

∂p̃x
+ p̃y

∂

∂p̃y
+ x

(

−Ỹx − M̃nF̄3
1

R

∂

∂p̃y

)

+ y

(

−Ỹy + M̃nF̄3
1

R

∂

∂p̃x

)

−
I

E
R(xp̃y − yp̃x)(x

2 + y2)F̄4
∂

∂M̃n

.

(4.3.77)

First observe that the vector field π#
B (dρ∗p1) is in the kernel of Φ(x, y)dM̃n ∧ d̃x ∧ d̃y

and of the semi-basic form Ψ − Ξ. Then, we observe that the vector fields in (4.3.77)
do not depend on X̃n and thus we conclude that

(dJ ∧KW − dB)(π#
B (dρ∗p0), π

#
B (dρ∗p1), π

#
B (dρ∗p2)) = 0.

Hence the reduced bracket {·, ·}Bnh is Poisson on M/G.

For completeness let us compute the reduced bracket {·, ·}Bred on M/G. Using
(4.3.77) and

π#
B (dρ∗p3) = yỸx − xỸy +

(

p̃y + xM̃nF̄3
1

R

)

∂

∂p̃x
−

(

p̃x − yM̃nF̄3
1

R

)

∂

∂p̃y
,

π#
B (dρ∗p4) = −X̃n + x

I

E
R(xp̃y − yp̃x)F̄4

∂

∂p̃x
+ y

I

E
R(xp̃y − yp̃x)F̄4

∂

∂p̃y
,
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we get

{p0, p1}
B
red = 4p2, {p0, p2}

B
red = 2p0 − 2F̄3

1
R
p3p4 ,

{p0, p3}
B
red = 2F̄3

1
R
p2p4, {p0, p4}

B
red = I

E
2RF̄4p3p2,

{p1, p2}
B
red = −2p1, {p1, p3}

B
red = 0 ,

{p1, p4}
B
red = 0, {p2, p3}

B
red = F̄3

1
R
p1p4 ,

{p2, p4}
B
red = I

E
RF̄4p1p3, {p3, p4}

B
red = 0.

4.3.3 Conclusion

In conclusion, we have shown that the mechanical system describing the dynamics of
a homogeneous ball rolling without sliding on a convex surface of revolution modelled
as the nonholonomic system (M, πnh, HM) having the symmetry group S1 × SO(3),
admits a gauge transformation by a G-invariant 2-form B, semi-basic with respect
to the bundle M → Q, such that the reduced bracket {·, ·}Bred on the differential
quotient space M/G is Poisson. The reduced Poisson bracket {·, ·}Bred has two Casimirs
which come from two G-invariant horizontal gauge momenta that are computed using
the solutions of the linear differential equation (4.3.66). The common level sets of
both Casimirs of {·, ·}Bred are the symplectic leaves of the reduced Poisson structure
(M/G, {·, ·}Bred) which is rank-two in the regular stratum of M/G. From the bracket
{·, ·}Bred computed above we see that the Poisson structure on the singular stratum
(4.2.39) is trivial.

��

Nonholonomic bracket
{·, ·}nh not Poisson

red. by symm.

��

dyn. gauge trans.
//
Almost Poisson str.
π♯B(dJ (i)) = −(ζi)M

red. by symm.

��

Reduced bracket {·, ·}red
not Poisson

Poisson bracket {·, ·}Bred
¯J (1), ¯J (2) Casimirs
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Remark 4.3.7. Following [47], which was worked independently, we see that B can
be written as a contraction of the 3-form

Π = Φ(x, y) d̃x ∧ d̃y ∧ β̃n,

with the nonholonomic vector field Xnh, where Φ(x, y) is given in (4.3.74). That is,
B = iXnh

Π, which implies immediately that B defines a dynamical gauge transforma-
tion. ⋄

4.4 Integrability

As mentioned in the introduction, the nonholonomic system treated in this thesis has
being studied by several authors without reducing a bivector in M but instead working
directly with the properties of the reduced dynamics in M/G. Fassò, Giacobbe and
Sansonetto [40] utilize a specific dynamical property of the reduced system in order
to find a Poisson bracket in M/G. Outside the equilibria, the orbits of the reduced
dynamics are the fibers of a (locally trivial) fibration with fiber S1, and the period of
the flow is a continuous (and smooth) function of the initial data.

Let Mneq denote the complement of the equilibrium points of the dynamics Xred

in the regular stratum M̄reg of M/G. Calling Ē the reduced energy Hred, in [40]
it is shown that the map F = (Ē, ¯J (1), ¯J (2)) : Mneq → R

3 is a submersion. Given
the foliation F by level sets of ¯J (1) and ¯J (2), that is F = {Fc1,c2}, Fc1,c2 = { ¯J (1) =
c1,

¯J (2) = c2}, which is transversal to the level sets of Ē, and observing that Ē does
not have critical points on Mneq, Theorem 2 of [40] allows to conclude that there exist
a rank-two Poisson bivector π, with symplectic foliation F , such that the dynamics
is Hamiltonian with Hamiltonian Ē. Moreover, by construction, ¯J (1) and ¯J (2) are
Casimirs of the Poisson structure π. Under these conditions there exists a semi-local
(i.e. in a neighbourhood of a periodic orbit) system of coordinates (Ē, ¯J (1), ¯J (2), φ)
such that the reduced dynamics takes the form Xred = ω ∂

∂φ
and the bivector has the

form π = ω ∂
∂E

∧ ∂
∂φ

, with ω a non-vanishing function. Some work is required to get
a global bivector in Mneq. Under more specific hypothesis on the equilibrium set of
Xred, which are verified in our mechanical example, it is also shown in Theorem 3
of [40] that there exists a rank-two bivector π̃ in all M̄reg which is Poisson, verifies
π̃#(dĒ) = −Xred and has F as symplectic foliation.

4.5 Simulation

We performed a simulation of the unreduced dynamics Xnh. We used the expression
in polar coordinates obtained in (B.1.2). The parameters used where:

% Parameters

m = 1; % mass

R = 0.8; % ball radius

I = 0.4*m*R^2; % inertia homogenous ball

tmax = 12; % time of simulation
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We use standard methods on numerical integration includes in the routines of
the software (GNU Octave v4.2.1). Following the online reference, the routine ode45

integrates a system of non–stiff ordinary differential equations using second order
Dormand-Prince method. This is a fourth–order accurate integrator therefore the
local error normally expected is O(h5). By default, ode45 uses an adaptive timestep.
The tolerance for the timestep computation may be changed by using the options
“RelTol” and “AbsTol”.

The parameters used in the simulation of Fig. 4.5 are presented afterwards. The
vector of initial conditions X0 uses the variables (θ, r, φn, p̃θ, p̃T , M̃n) used in Appendix
B, Eq. (B.1.2) and φn is the angle associated to M̃n.

% parameters for numeric integration

odeopt = odeset (’RelTol’, 0.00001, ’AbsTol’, 0.00001, ’InitialStep’,

0.08,’MaxStep’,0.08);

% integrate, for t=[0,tmax], with given initial conditions and ’parameters’

X0 = [0.0 1.0 1.0 10.0 0 1];

[t,y] = ode45(dydt,[0 tmax], X0, odeopt);

Figure 4.4: ‘Homogeneous ball rolling on the paraboloid z = 1.2 ∗ (x2 + y2). Line in
red indicates the trajectory of the center of mass (left). Integrated trajectory seen
from “above” (right).
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Appendix A

Twisted Dirac Structures and

Gauge Transformations

A basic property of a Poisson bivector is that the characteristic distribution is inte-
grable and defines a foliation by even dimensional leaves which are endowed with a
symplectic 2-form. On the other hand almost Poisson and almost Dirac structures do
not have any associated foliation in general, however there exist ’intermediate’ struc-
tures having a foliation carrying leaf-wise 2-forms which are not symplectic. This is
the case of twisted Poisson and twisted Dirac structures defined in Section A.3. We
start by describing the main properties of the distributions and foliations associated
to those twisted structures. One way to generate examples of twisted structures is
by means of gauge transformations, see Section A.4. Finally in table A.1 we give an
overview of the effect of gauging on the involved distributions and foliations. The
main references for this appendix are [8] and [48].

A.1 Almost Dirac and H-twisted Dirac structures

As usual let Q denote a smooth manifold. We start presenting the properties of
(almost) Dirac and twisted Dirac structures because they provide a natural framework
for defining gauge transformation. Afterwards we will be more interested in the case
of almost Poisson and twisted bivector fields.

Definition A.1.1. An almost Dirac structure is a subbundle L of TQ⊕ T ∗Q that is
maximal isotropic (i.e. L = L⊥) with respect to the pairing

〈(X,α), (Y, β)〉 = α(Y ) + β(X). (A.1.1)

Let H ∈ Γ(
∧3 T ∗Q) be a closed 3-form. We say that L defines a H-twisted Dirac

structure if, in addition, L is involutive with respect to the following bracket on
TQ⊕ T ∗Q,

[(X,α), (Y, β)]H = ([X, Y ],£Xβ − iY dα+ iX∧YH), (A.1.2)

where X, Y ∈ Γ(TQ) and ξ, η ∈ Γ(T ∗Q). In this case Q is called an H-twisted Dirac
manifold. If H = 0 then L is simply called a Dirac structure and Q a Dirac manifold.
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Remark A.1.2. Observe that (A.1.2) defines a bracket which not skew-symmetric
and it is called a Dorfman bracket. It is known that it coincides with its skew-
symmetrization (called the Courant bracket) on a maximal isotropic subspace. The
Courant bracket was introduced by Courant in [34]. Dirac structures were studied
by Courant and Weinstein to unify Poisson and presymplectic geometry. For more
details see for instance [26] and [27]. ⋄

The Courant bracket itself already gives some constraints on the type of involutive
subbundles L.

Proposition A.1.3. [48] If L ⊂ TQ ⊕ T ∗Q is involutive then L must either be an
isotropic subbundle, or a bundle of type ∆⊕T ∗Q for a nontrivial involutive subbundle
∆ of TQ.

In the maximal isotropic case there exist an equivalence between the involutivity
of L and the vanishing of the following operators: for A,B,C ∈ Γ(TQ⊕ T ∗Q) define
the Nijenhuis operator

Nij(A,B,C) =
1

3
cyclic{〈[A,B], C〉},

and the Jacobiator :
Jac(A,B,C) = cyclic{[[A,B], C]},

which verifies (see [48, Prop. 3.16])

Jac(A,B,C) = d(Nij(A,B,C)).

Proposition A.1.4. [48] Let L be a maximal isotropic subbundle of TQ⊕T ∗Q, then
the following are equivalent:

1. L is involutive.

2. Nij|L = 0.

3. Jac|L = 0.

Let L be an H-twisted Dirac structure. Denote by πT the projection of L ⊂
TQ ⊕ T ∗Q onto the first component, πT : L → TQ and by [·, ·]H |L the restriction
of the bracket to the subbundle L. It can be shown that taking πT as anchor map,
the triple (L, πT , [·, ·]H |L) verifies all the axioms of a Lie algebroid and it is a general
result in the theory on Lie algebroids that the characteristic distribution, πT (L), is
an integrable distribution [68]. If the distribution πT (L) has constant rank, we say
that L is a regular Dirac structure and the induced foliation is regular. In the same
way as a Poisson manifold has a foliation by symplectic leaves, each leaf of a Dirac
manifold carries a presymplectic 2-form (closed but in general degenerate), and each
H-twisted Dirac manifold has a foliation where the induced 2-form on each leaf could
be degenerate and non-closed, where the non-closedness is controlled by the 3-form
H.
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A.2 Examples

1. Let Ω be a closed 2-form and consider the map Ω♭ : TQ → T ∗Q given by
Ω♭(X) = iXΩ. Then LΩ = graph(Ω♭) = {(X,α) ∈ TQ⊕ T ∗Q : iXΩ = −α} is a
Dirac structure.

2. Let π be a Poisson bivector field and define the map π♯ : T ∗Q → TQ by
β(π♯(α)) = π(α, β). In this case Lπ = {(X,α) ∈ TQ ⊕ T ∗Q : π♯(α) = X}
is also a Dirac structure. Note that the projection πT ∗Q : Lπ → T ∗Q identifies
T ∗Q with Lπ. Thus Lπ induces a Lie algebroid structure on T ∗Q, with anchor
map π♯ : T ∗Q→ TQ, and bracket

[α, β]π = £π♯(α)β − iπ♯(β)dα. (A.2.3)

This bracket is R-bilinear, skew-symmetric and satisfies the Leibniz property for
Lie algebroids. Note that it is uniquely characterized by [df, dg]π = d{f, g} and
the Leibniz property for Lie algebroids.

Now let π be a bivector field (not necessarily Poisson). The failure of the involu-
tivity of the Courant bracket on Lπ is measured by 1

2
[π, π] and the distribution

π♯(T ∗Q) = πT (Lπ) is in general non-integrable. Indeed the map π♯ does not
necessarily preserve the bracket but the following formula holds [26]:

π♯([α, β]π) = [π♯(α), π♯(β)] −
1

2
iα∧β[π, π], (A.2.4)

for α, β ∈ T ∗Q.

It is known from the original work of Courant [34] that the subbundle L ⊂
TQ⊕ T ∗Q is the graph of a bivector π if and only if

TQ ∩ L = {0}. (A.2.5)

3. Another very important example for us is the following. Let F ⊂ TQ be regular
distribution, Ω a 2-form on Q and define the subbundle L depending of F and
ΩF , L = L(F,ΩF ), by

L := {(X,α) ∈ TQ⊕ T ∗Q : X ∈ F, iXΩ|F = −α|F}, (A.2.6)

where ·|F means the pointwise restriction to F . If F is integrable and Ω is closed
then L is a Dirac structure.

In the case of regular almost Dirac structures, the last example characterizes
uniquely all regular almost Dirac structures in Q.

Proposition A.2.1. [8] There is a one-to-one correspondence between regular almost
Dirac structures L ⊂ TQ⊕ T ∗Q and pairs (F,ΩF ), where F is a regular distribution
on Q and ΩF ∈ Γ(

∧2 F ∗).
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Proof. Let L ⊂ TQ ⊕ T ∗Q be a regular almost Dirac structure. Define F := pr1(L),
which is also a regular (perhaps non integrable) distribution. On the other hand define
the section ΩF ∈ Γ(

∧2 F ∗), at each x ∈ Q, by

ΩF |x(Xx, Yx) = −αx(Yx), (A.2.7)

for X, Y ∈ Γ(F ) such that (Xx, αx) ∈ Lx. Using the fact that L is maximal isotropic
we can show that ΩF is well defined, i.e. it is independent of the choice of α.

Conversely, given a regular distribution F and the section ΩF in Γ(
∧2 F ∗), define

the subbunble L as the pairs (X,α) whenever X ∈ F and iXΩF = −α|F .

Using a complement to the distribution F in TQ it is possible to show that there
exists a (non-unique) 2-form Ω on Q such that Ω|F = ΩF . From the definition of ΩF

it follows that Ker(ΩF ) = L ∩ TQ. As a consequence, L is the graph of a bivector
field π if and only if ΩF is non-degenerate.

A.3 Twisted Poisson and Twisted Dirac structures

Poisson structures have two kinds of integrability. On the one hand, their charac-
teristic foliation π♯(T ∗Q) is integrable and on the other hand each leaf O carries a
non-degenerate 2-form ΩO which is closed. Twisted Poisson structures retain the in-
tegrability of π♯(T ∗Q) but allow the leafwise 2-form ΩO to be non-closed. For twisted
Dirac structures even the nondegeneracy of ΩO is lost.

Theorem A.3.1. [8] Let L ⊂ TQ ⊕ T ∗Q be a regular almost Dirac structure such
that πT (L) is an integrable distribution on Q. Then there exists an exact 3-form H
such that L is an H-twisted Dirac structure.

Proof. Using Proposition A.2.1, take the pair (F,ΩF ) corresponding to L. Since F is
integrable, it defines a foliation F tangent to F . For each leaf O of the foliation F , ΩF

defines a 2-form ΩO which, by the remark after Proposition A.2.1, is the restriction
of 2-form Ω on Q. We claim that L is a dΩ-twisted Dirac structure.

Indeed, if (X,α) and (Y, β) are sections of L, the involutivity condition of the
twisted bracket is equivalent to

i[X,Y ]Ω|F = −(£Xβ − iY dα+ iX∧Y dΩ)|F . (A.3.8)

Indeed, by the integrability of F we have that

−(£Xβ − iY dα+ iX∧Y dΩ)|F = −£X(β|F ) + iY d(α|F ) − iX∧Y d(Ω|F ), (A.3.9)

but using that iY ΩF = −β|F , iXΩF = −α|F , it is an straightforward calculation to
show that the right hand side of (A.3.9) is equal to i[X,Y ]ΩF .

A bivector field π such that graph(π♯) is an H-twisted Dirac structure is called
H-twisted Poisson bivector. The associated bracket {·, ·} verify the relation:

cyclic[{f, {g, h}}] = −H(Xf , Xg, Xh), (A.3.10)
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for f, g, h ∈ C∞(Q) and Xf = {·, f}. That means that the failure of the Jacobi
identity is controlled by the closed 3-form H.

Let π be an H-twisted Poisson structure. Note that π♯ does not preserve the
bracket [·, ·]π but if we define a new bracket [·, ·]H by

[α, β]H := £π♯(α)β − iπ♯(β)dα+ iπ♯(α)∧π♯(β)H, (A.3.11)

then it can be shown that π verifies [π♯(α), π♯(β)] = π♯([α, β]H). This implies that
(T ∗Q, [·, ·]H , π

♯) is a Lie algebroid. The characteristic distribution π♯(T ∗Q) is then
integrable and each leaf O carries a non-degenerate 2-form ΩO which is not closed, in
fact we have dΩO = H|O.

Therefore Theorem A.3.1 specializes to:

Corollary A.3.2. Let π be a bivector field on Q with an integrable regular charac-
teristic distribution. Then there exists an exact 3-form H with respect to which π is
H-twisted.

A.4 Gauge transformations

Let B be a 2-form in Q and let L ⊂ TQ⊕T ∗Q be an almost Dirac structure. Consider
the map τB : L→ TQ⊕ T ∗Q given by (X,α) 7→ (X,α+ iXB), i.e.

τB(L) = {(X,α+ iXB) : (X,α) ∈ L}. (A.4.12)

It can be show that τB(L) is also an almost Dirac structure. If B is closed and
L is a Dirac structure then τB(L) is also Dirac. Moreover if L is a H-twisted Dirac
structure, then the gauge transformation of L by the 2-form B is (H − dB)-twisted
Dirac, see [80]. Observe that L and τB(L) have the same characteristic distribution,
πT (L). Consequently, when both L and τB(L) are involutive, they have the same
associated foliation.

The presymplectic form on each leaf is modified by the restriction of B to the leaf.
In fact if L is the almost Dirac structure which corresponds to the pair (F,ΩF ), then
τB(L) corresponds to the pair (F,ΩF −B|F ). It is also shown in [8] (Proposition 3.11)
that two regular almost Dirac structures L1 and L2 are gauge related if an only if
πT (L1) = πT (L2).

Consider now an almost Poisson manifold (P, π) with associated Dirac structure
Lπ = graph(π♯) and a 2-form B on Q. The gauge transformation of Lπ by B is given
by τB(Lπ) = {(X,α + iXB) ∈ TQ ⊕ T ∗Q : X = π♯(α)}, which does not necessarily
correspond to the graph of a new bivector πB. We recall that this last condition is
true if and only if τB(Lπ)∩TQ = {0} which is equivalent to the fact that Id+B♭ ◦π♯

be invertible [34].

Indeed if πB is a bivector then we must have

(π♯(α), α+ iπ♯(α)B) = ((πB)♯(α+ iπ♯(α)B), α+ iπ♯(α)B). (A.4.13)

In that case the relation between π and πB is given by

(πB)♯ = π♯ ◦ (Id−B♭ ◦ π♯)−1. (A.4.14)
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Table A.1: Foliations associates to the different structures.

Poisson Dirac

Symplectic foliation Presymplectic foliation

dΩO = 0 dΩO = 0

ΩO non-degenerate ΩO non-degenerate

H-twisted Poisson H-twisted Dirac

Almost Symplectic foliation Foliation

dΩO = H|O dΩO = H|O

ΩO non-degenerate ΩO non-degenerate

Regular almost Poisson Regular almost Dirac

(with integrable characteristic distribution) (with integrable characteristic distribution)

∃ closed 3-form H s.t. ∃ closed 3-form H s.t.

dΩO = H|O dΩO = H|O

ΩO non-degenerate ΩO non-degenerate

It is shown in [80] that if anH-twisted Poisson bivector π is gauge related with another
bivector πB via the 2-form B, then πB is (H − dB)-twisted. Recall that twisted
structures have integrable characteristic distributions, then the induced 2-form ΩO

on a leaf O is non-degenerate and dΩO = (H − dB)|O. Note that in particular, if π
is Poisson, then πB is (−dB)-twisted, so that if B is closed πB is also Poisson. We
present the characteristics of the different structures in Table A.1.

All the work done so far in mechanics involves real Dirac structures. Analogously,
a maximal isotropic and involutive complex subbundle L ⊂ (TQ⊕ T ∗Q)⊗C is called
a complex Dirac structure. Note that the definition still works if TQ⊕T ∗Q is replaced
with any real or complex Courant algebroid thus one may speak of Dirac structures
in an arbitrary Courant algebroid.
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Appendix B

Example in Polar Coordinates

This appendix can be read almost independently of the main text. We use references
to the main text only for the theoretical sections, but some definitions are recalled
along the presentation. The style is less formal than the main text and some details of
computations are presented. Since polar coordinates (r, θ) are not a diffeomorphism in
the origin, the result are valid away from the origin, that is when the radial coordinate
verifies r > 0.

B.1 Example: the homogeneous ball in a convex

surface of revolution

Consider the mechanical system presented in Chapter 4. Recall that the configuration
manifold Q is given by the position of the center of mass of the ball and an orthogonal
matrix relating a fixed frame in space and a frame attached to the ball. In consequence
we have Q = Σ × SO(3), where Σ ⊂ R

3 is the surface of revolution where the ball
rolls. The surface Σ is parametrized in cylindrical coordinates by

Σ = {(r, θ, z) : z = φ(r2)}.

An orthonormal frame {θ̂, T̂} on TΣ is obtained by normalizing the vectors of the
frame { ∂

∂θ
, ∂
∂r
} associated to the polar coordinates (r, θ) on the plane {z = 0}, and

then induced to TΣ by the map Tφ.

Using the symmetry of revolution it is also possible to construct the frame {θ̂, T̂}
from the canonical basis using 2 rotations. Indeed, let us consider the cylindrical
orthonormal moving frame {r̂, θ̂, ẑ} with coordinates (vr, vθ, vz). It is related to the
canonical frame (denoted (x̂, ŷ, ẑ)) by











r̂

θ̂

ẑ











=











cos θ sin θ 0

− sin θ cos θ 0

0 0 1





















x̂

ŷ

ẑ











,

with dual basis {Ψr,Ψθ,Ψz} verifying
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









Ψr

Ψθ

Ψz











=











cos θ sin θ 0

− sin θ cos θ 0

0 0 1





















dx

dy

dz











.

Remark B.1.1. We remark that if A is a matrix relating two ordered basis (vi) and
(wi), with dual bases (vi) and (wi), the coordinates of vectors with respect to those
basis are related by (AT )−1, the dual basis (vi) and (wi) are also related by (AT )−1,
and the coordinates with respect to the dual basis are related by A. In particular if
A is orthogonal, the same matrix A is used in all cases. ⋄

Let ν denote the angle between the exterior normal to the surface and the hori-
zontal. By means of an extra rotation we construct the new frame (N̂ , θ̂, T̂ ) such that
θ̂ and T̂ are tangent to the surface Σ in the ”horizontal” and ”vertical” directions,
respectively, and N̂ is normal to the surface, see Fig. B.1.

The relation between ν and the parametrization φ of the surface is given by

sin ν =
1

√

1 + (2rφ′)2
, cos ν =

2rφ′

√

1 + (2rφ′)2
,

and the change of frame by











N̂

θ̂

T̂











=











cos ν 0 − sin ν

0 1 0

sin ν 0 cos ν





















r̂

θ̂

ẑ











.

Figure B.1: The ball rolling on the surface of revolution in polar coordinates.

By right trivialization we have a frame of right invariant fields (X1, X2, X3) of
TSO(3), and then get a frame for TQ,

TQ = span{θ̂, T̂ , X1, X2, X3}.
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Analogously, we perform an orthogonal transformation on the right invariant fields
(X1, X2, X3) in order to get a new frame adapted to the surface,











Xn

Xθ

XT











=











cos ν 0 − sin ν

0 1 0

sin ν 0 cos ν





















cos θ sin θ 0

− sin θ cos θ 0

0 0 1





















X1

X2

X3











=











cos ν cos θ cos ν sin θ − sin ν

− sin θ cos θ 0

sin ν cos θ sin ν sin θ cos ν





















X1

X2

X3











.

Since we performed the same rotations this matrix is equal to the matrix relating the
frame (N̂ , θ̂, T̂ ) with the canonical frame (x̂, ŷ, ẑ).

Therefore, the new frame for TQ is

TQ = span{θ̂, T̂ , Xn, Xθ, XT}

with coordinates (vθ, vT , ωn, ωθ, ωT ), with corresponding dual frame

T ∗Q = span{Ψθ,ΨT , βn, βθ, βT}

with coordinates (pθ, pT ,Mn,Mθ,MT ), where the (co)frame (βn, βθ, βT ) is obtained
from the components of the right Maurer-Cartan form, (ρ1, ρ2, ρ3), dual to (X1, X2, X3).
We have











βn

βθ

βT











=











cos ν cos θ cos ν sin θ − sin ν

− sin θ cos θ 0

sin ν cos θ sin ν sin θ cos ν





















ρ1

ρ2

ρ3











.

Non sliding constraints

In our rotated frame the non-sliding condition (4.1.1) takes the form











ωn

ωθ

ωT











×











R

0

0











= −











vn

vθ

vT











,

which gives the relations
vθ = −RωT , vT = Rωθ.

Therefore, the constraint 1-forms

ǫT := βT +
ψθ

R
, ǫθ := βθ −

ψT

R
,
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define the constraint subbundle D which is the kernel of ǫT and ǫθ, and is given by

D = span{Yθ := −XT +Rθ̂, YT := Xθ +RT̂ ,Xn}.

We choose a complement W to the constraint distribution D such that TQ =
D ⊕W ,

W = {Xθ, XT}.

In Section B.1, where we introduce the G-symmetry of the system we will see that
the complement is vertical, W ⊂ V , and verify that it is G-invariant.

Therefore we work with the following frame of TQ adapted to the constraints and
symmetries, TQ = D ⊕W with D and W G-invariant distributions, i.e.

TQ = span{Yθ, YT , Xn, Xθ, XT},

with coordinates (ṽθ, ṽT , ω̃n, ω̃θ, ω̃T ), with dual frame

T ∗Q = span{Y θ, Y T , βn, ǫθ, ǫT}, (B.1.1)

and coordinates (p̃θ, p̃T , M̃n, M̃θ, M̃T ).

Constraint manifold and nonholonomic bivector

Lagrangian of the system L : TQ→ R is

L = T −magz

where ag is the acceleration of gravity, z = φ(r2) the height (vertical position) of the
center of mass and T = 1

2
κ is the kinetic energy. In our adapted coordinates we have

2T = EṽT
2 + Eṽθ

2 + I(ω̃n
2 + ω̃θ

2 + ω̃T
2) + 2I(ṽT ω̃θ − ṽθω̃T ),

where E := I + mR2. The kinetic energy metric κ is written in the adapted frame
(B.1.1) as

1

2
κ =

E

2
Y θ ⊗ Y θ +

I

2
βn ⊗ βn +

I

2
(Y T ⊗ ǫθ + ǫθ ⊗ Y T − Y θ ⊗ ǫT − ǫT ⊗ Y θ).

The constraint manifold M defined in (1.4.22) is given in the local coordinates
associated to (B.1.1) by:

M =
{

(r, θ, g, p̃θ, p̃T , M̃n, M̃θ, M̃T ) : M̃T = −p̃θ
I

E
, M̃θ = p̃T

I

E

}

.

The constraint subbundle C defined in 1.4.23 is given by

C = span
{

Yθ, YT , Xn,
∂

∂p̃θ
,
∂

∂p̃T
,
∂

∂M̃n

}

Now we compute the nonholonomic bivector field πnh. First observe that the
canonical 1-form in T ∗Q in the adapted coordinates (B.1.1) is given by

ΘQ = p̃θY
θ + p̃TY

T + M̃nβn + M̃θǫθ + M̃T ǫT .

Using that ΩM verifies ΩM = −dι∗MΘQ, we obtain the following:
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Proposition B.1.2. The restriction of ΩM to C for the homogeneous ball rolling on
a convex surface of revolution is given by:

ΩC = −dp̃θ ∧ Y
θ − dp̃T ∧ Y T − dM̃n ∧ βn

− A(m)Y T ∧ Y θ +B(m)Y θ ∧ βn + C(m)βn ∧ Y
T ,

where, for m ∈ M,

A(m) =

(

p̃θsin ν
R

r
− M̃n

(

1 + cos ν
R

r
+ cos ν sin2 ν

φ′ + φ′′2r2

φ′

R

r

))

,

B(m) = p̃T
I

E

(

1 + cos ν
R

r

)

,

C(m) = p̃θ
I

E

(

1 + cos ν sin2 ν
φ′ + φ′′2r2

φ′

R

r

)

.

Proof. This a long but straightforward computation (following the steps in Prop. 4.2.4)
based in formulas:

dY Θ|C = −sin ν
R

r
Y θ ∧ Y T ,

dY T |C = 0,

dβn|C = −

(

1 + cos ν
R

r
+ cos ν sin2 ν

φ′ + φ′′2r2

φ′

R

r

)

Y T ∧ Y θ,

dǫθ|C = −

(

1 + cos ν
R

r

)

Y θ ∧ βn,

dǫT |C =

(

1 + cos ν sin2 ν
φ′ + φ′′2r2

φ′

R

r

)

βn ∧ Y
T .

Corollary B.1.3. The nonholonomic bivector πnh is given by:

πnh = Yθ ∧
∂

∂p̃θ
+ YT ∧

∂

∂p̃T
+Xn ∧

∂

∂M̃n

− A(m)
∂

∂p̃θ
∧

∂

∂p̃T
−B(m)

∂

∂p̃θ
∧

∂

∂M̃n

+ C(m)
∂

∂p̃T
∧

∂

∂M̃n

,

where A(m), B(m) and C(m) are given in Proposition B.1.2.

Or equivalently:

π#
nh(Y

θ) =
∂

∂p̃θ
, π#

nh(Y
T ) =

∂

∂p̃T
, π#

nh(βn) =
∂

∂M̃n

,

π#
nh(dp̃θ) = −Yθ − A(m)

∂

∂p̃T
−B(m)

∂

∂M̃n

,

π#
nh(dp̃T ) = −YT + A(m)

∂

∂p̃θ
+ C(m)

∂

∂M̃n

,

π#
nh(dM̃n) = −Xn +B(m)

∂

∂p̃θ
− C(m)

∂

∂p̃T
.
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Since ǫθ|C ≡ 0 and ǫT |C ≡ 0, the definition of the nonholonomic bivector implies
that:

π#
nh(ǫT ) = π#

nh(ǫθ) = 0.

From Legendre transformation we get the following Hamiltonian restricted to M:

HM =
p̃T

2

2E
+
p̃θ

2

2E
+
M̃n

2

2I
+magφ(r2).

The nonholonomic vector field Xnh describing the dynamics is given by Xnh =
−π#

nh(dHM). Using that dr = Ψr = R sin νY T we get

Xnh =
p̃θ
E
Yθ +

p̃T
E
YT −

M̃n

I
Xn

−

(

−
p̃θ

2

E

R

r
sin ν +

p̃θM̃n

E

R

r
cos ν

)

∂

∂p̃T
−mag cos νR

∂

∂p̃T

+ sin ν
p̃T
E

R

r

(

p̃θ − M̃n cos ν sin ν
φ′ + φ′′2r2

φ′

)

∂

∂p̃θ

− p̃T p̃θ
I

E2

R

r
cos ν

(

sin2 ν
φ′ + φ′′2r2

φ′
− 1

)

∂

∂M̃n

.

(B.1.2)

Symmetries and the 3-form dJ ∧KW

The system has the symmetry Lie group G = S1 × SO(3). In the coordinates (r, θ, g)
of Q, the action of G is given by

(ϕ, h) · (r, θ, g) = (r, θ + ϕ,Rϕ g h),

where Rϕ denotes a rotation of angle ϕ with respect to the z-axis. The canonical lift
of the G-action to T ∗Q is given by

(ϕ, h) · (r, θ, g, pr, pθ,M) = (r, θ + ϕ,Rϕ g h, pr, pθ, RϕM).

Note that M is right invariant to it is unchanged by the right action by SO(3). The
restricted action to M is given by

(ϕ, h) · (r, θ, g, pr, pθ, M̃n) = (r, θ + ϕ,Rϕ g h, pr, pθ, M̃n).

Since the Lie algebra g of G is isomorphic to R × R
3 we choose the basis

{(1,0), (0, ei)}, i = 1, 2, 3, (B.1.3)

where {ei} denotes the canonical basis of R
3. Then, the infinitesimal generator with

respect to the S1 action is

(1, 0)Q = rθ̂ +Xr
3

=
r

R
Yθ − sin νXn +

( r

R
+ cos ν

)

XT .
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We use the following notation for an element g of SO(3),

g =











α1 α2 α3

β1 β2 β3

γ1 γ2 γ3











.

Then, the infinitesimal generator with respect to the SO(3) action is given by:

(0, ei)Q = αiX
r
1 + βiX

r
2 + γiX

r
3 , i = 1, 2, 3.

Recall the matrix

C =











cos ν cos θ cos ν sin θ −sin ν

−sin θ cos θ 0

sin ν cos θ sin ν sin θ cos ν











which relates the frames (Xn, Xθ, XT ) and (X1, X2, X3) as:











Xn

Xθ

XT











= C











X1

X2

X3











. (B.1.4)

In matrix notation the SO(3)-infinitesimal generator can be written











(0, e1)Q

(0, e2)Q

(0, e3)Q











= gTCT











Xn

Xθ

XT











(B.1.5)

The matrices g and C being orthogonal, the vertical space V is also generated by

V = span
{ r

R
Yθ +

( r

R
+ cos ν

)

XT − sin νXn, Xn, Xθ, XT

}

,

and we see that the symmetry verifies the dimension assumption (2.3.4). Recall that
D has constant rank, rank(D) = 3. We will first consider the case r > 0, where
rank(V ) = 4 and a vertical complement W ⊂ V has rank 2. In this case the subdis-
tribution S = V ∩D has rank 2, and is generated by

S = span{
r

R
Yθ, Xn} = span{Yθ, Xn}, r > 0.

We choose the vertical complement W ⊂ V as following and verify that it is
G-invariant,

W = {Xθ, XT}.
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Indeed, W is invariant by the right action SO(3) because the fields {X1, X2, X3}
related to {Xθ, XT} by (B.1.4) are G-invariant. On the other hand, we can verify that
both Xn and Xθ are S1-invariant (left action). We observe that the complement W
does not satisfy the vertical-symmetry condition, see Rmk. 2.3.1.

The projection PW : TQ → W , associated to the splitting TQ = D ⊕W is given
by PW = ǫθ⊗Xθ + ǫT ⊗XT . The associated g-valued map AW can be computed from
AW (vm) = ξ ⇔ PW (vm) = ξM(m).

From (B.1.5) we can write the rotated frame (Xn, Xθ, XT ) in function of the SO(3)-
infinitesimal generators:











Xn

Xθ

XT











= Cg











(0, e1)Q

(0, e2)Q

(0, e3)Q











,

we get

Xθ = (−α1 sin θ + β1cos θ)(0, e1)Q + (−α2sin θ + β2cos θ)(0, e2)Q

+ (−α3sin θ + β3cos θ)(0, e3)Q,

XT = (α1sin ν cos θ + β1sin ν sin θ + γ1cos ν)(0, e1)Q

+ (α2sin ν cos θ + β2sin ν sin θ + γ2cos ν)(0, e2)Q

+ (α3sin ν cos θ + β3sin ν sin θ + γ3cos ν)(0, e3)Q.

We introduce some notations to write vector expressions in short form. Using the
notations α = (α1, α2, α3), β = (β1, β2, β3) and γ = (γ1, γ2, γ3) for the rows of the
matrix g, we define the following vectors A = α cos ν cos θ + β cos ν sin θ − γ sin ν,
B = −α sin θ + β cos θ and C = α sin ν cos θ + β sin ν sin θ + γ cos ν. Note that
(A,B,C) are orthonormal.

In that notation Xθ and XT can be written as

Xθ = 〈B, (0, e)Q〉,

XT = 〈C, (0, e)Q〉,
(B.1.6)

where (0, e) = ((0, e1), (0, e2), (0, e3)). Define the following sections of the bundle
gW → Q written in the chosen basis:

ξθ = 〈B, (0, e)〉,

ξT = 〈C, (0, e)〉,

then the expression of the g-valued 1-form AW is

AW = ǫθ ⊗ ξθ + ǫT ⊗ ξT .

By Lemma 2.3.7 we compute the W-curvature,

KW = dǫθ|C ⊗ ξθ + dǫT |C ⊗ ξT .
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Using the formulas for the differentials, dǫθ|C and dǫT |C , we obtain

KW = −

(

1 +
R

r
cosν

)

Y θ ∧ βn ⊗ 〈B, (0, e)〉

+

(

1 + cos ν sin2 ν
φ′ + φ′′2r2

φ′

R

r

)

βn ∧ Y
T ⊗ 〈C, (0, e)〉.

Our next step is to compute the 3-form, dJ ∧KW .

Theorem B.1.4. The choice of the vertical complement W = {Xn, Xθ} induces the
expression for G-invariant 3-form dJ ∧KW ,

dJ ∧KW = −
I

E

(

1 + cos ν
R

r

)

dp̃T ∧ Y θ ∧ βn

+ p̃T
I

E

(

1 + cos νsin2 νF (r)
R

r

)(

− sin ν
R

r

)

βn ∧ Y
T ∧ Y θ

−
I

E

(

1 + cos ν sin2 ν F (r)
R

r

)

dp̃θ ∧ βn ∧ Y
T ,

where F (r) = φ′+φ′′2r2

φ′
.

Proof. Using the canonical 1-form ΩQ = p̃θY
θ + p̃TY

T + M̃nβn + M̃θǫθ + M̃T ǫT , and
canonical basis of g, we compute the moment map J : M → g∗, by 〈J(m), ξ〉 = iξMΘQ.
We obtain

J = (J0, M̃nA + M̃θB + M̃TC),

where J0 = i(1,0)MΘQ will not appear in the computations of dJ ∧KW . In order to
compute dJ |C, we use the following formulas:

dα = γρ2 − βρ3

dβ = −γρ1 + αρ3

dγ = βρ1 − αρ2.

Using dν = −cos ν sin2 ν φ
′+φ′′2r2

φ′
R
r
Y T , and computing dA, dB and dC we get

dJ |C = (0,AdM̃n + M̃ndA + B
I

E
dp̃T + p̃T

I

E
dB + C(−

I

E
)dp̃θ − pθ

I

E
dC.

The final expression is complicated but some of the terms will disappear when com-
puting dJ ∧KW , giving at the end the formula in the statement of the theorem.

Reduction by symmetries

Let us consider the reduction of M by the symmetry group G = S1 × SO(3). First,
observe that the reduction by the free action of SO(3) eliminates the coordinate g. In
order to perform the S1 reduction in M/SO(3) we use invariant theory as performed
in the literature, see [40, 52]. The standard reduction uses the following coordinates for
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M/SO(3): (a, ȧ, ωn) where a = (x, y) denotes the Cartesian coordinates of the center
of mass projected to the horizontal plane, the derivatives ȧ denotes the corresponding
velocities and ωn is the component to the angular velocity normal to the surface. The
Lie group S1 acts in the above coordinates by

θ · (a, ȧ, ωn) = (Rθa,Rθȧ, ωn),

where Rθ is the 2× 2 rotation matrix of angle θ in the (x, y)-plane. The action is not
free, indeed the point (0, 0, 0, 0, ωn) is fixed by the S1-action. Consider the following
invariant polynomials as in [40]:

p̄0 =
|ȧ|

2
, p̄1 =

|a|

2
, p̄2 = a · ȧ

p̄3 = xẏ − yẋ, p̄4 = ωn.

The invariant polynomials are written in our coordinates in M/SO(3) as

p̄0 =
2R2

E2
(p̃T

2 sin2 ν + p̃θ
2), p̄1 =

1

2
r2, p̄2 =

2Rr

E
p̃T sin ν (B.1.7)

p̄3 =
2Rr

E
p̃θ, p̄4 =

R

I
M̃n (B.1.8)

The S1-reduced space is describes by the following semi-algebraic set of R
5,

M/G = {p = (p̄0, p̄1, p̄2, p̄3, p̄4) ∈ R
5 : p̄0 ≥ 0, p̄1 ≥ 0, 4p̄0p̄1 = p̄2

2 + p̄3
2}. (B.1.9)

The singular 1-dimensional stratum, is given by

S1 = {p ∈ R
5 : p̄0 = p̄1 = p̄2 = p̄3 = 0},

and it corresponds to the situation where the ball is at the bottom of the surface and
spinning about the vertical axis. The 4-dimensional regular stratum M4 is given by

M4 = {p = (p̄0, p̄1, p̄2, p̄3, p̄4) ∈ R
5 : p̄0 ≥ 0, p̄1 ≥ 0, 4p̄0p̄1 = p̄2

2 + p̄3
2, p̄0

2 + p̄1
2 > 0}.

The reduced bracket is not Poisson

In Theorem B.1.4 we have computed the 3-form dJ ∧ KW which is used to verify if
the reduced brackets {·, ·}red is Poisson using the Jacobiator formula (2.3.21).

Proposition B.1.5. The reduced bracket {, }red is not Poisson.

Proof. We compute dJ ∧KW(π#
nh(dρ

∗p̄2), π#
nh(dρ

∗p̄3), π#
nh(dρ

∗p̄4)) 6= 0. Then, by the
Jacobiator formula (2.3.21) we conclude that the reduced bivector πrednh is not Poisson.
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B.2 First integrals and dynamical gauge transfor-

mation

It is known since Routh [79] that the mechanical system we are studying admits two
first integrals J1 and J2 (besides the energy). In this section we recall the construction
of those first integrals using the ad-hoc methods of the literature, see [40, 52]. We
remark that in Chapter 4 we found the mentioned first integrals using the theory of
the nonholonomic moment map and horizontal gauge momenta.

In M/G the reduced energy is given by

Ē(p̄0, p̄1, p̄2, p̄4) = p̄0 +
A

2
p̄4

2 +
1

2
p̄2

2Ψ′(p̄1)
2 +BΨ(p̄1),

where A = I
E

, B = magr2

E
, and Ψ( r

2

2
) = φ(r2). The other integrals of motion J1 and J2

are constructed from solutions of the system of equations (B.2.10), which comes from
the reduced dynamics on the regular stratum M4 given in [52] and [40]:

dp̄3

dp̄1

= F3(p̄1)p̄4,
dp̄4

dp̄1

= F4(p̄1)p̄3, (B.2.10)

where

F3(p̄1) = A (Ψ′(p̄1) + 2p̄1Ψ
′′(p̄1)) g(p̄1), (B.2.11)

F4(p̄1) =
(

Ψ′(p̄1)
3 − Ψ′′(p̄1)

)

g(p̄1), (B.2.12)

g(p̄1) =
1

1 + 2p̄1Ψ′(p̄1)2
. (B.2.13)

Using the following notation for two independent solutions of (B.2.10)

p1 7→ (σ3(p̄1), σ4(p̄1)), p1 7→ (τ3(p̄1), τ4(p̄1)),

which verify σ3(p̄1)τ4(p̄1) − σ3(p̄1)τ4(p̄1) 6= 0 in some interval containing the origin,
one can verify that the two functions

J̄1(p̄1, p̄3, p̄4) := p̄3σ4(p̄1) − p̄4σ3(p̄1), (B.2.14)

J̄2(p̄1, p̄3, p̄4) := p̄3τ4(p̄1) − p̄4τ3(p̄1), (B.2.15)

are constant of motion of the reduced system on M/G. In general these integral are
not explicitly known except for some particular cases. In Section B.3 we consider the
case of the circular paraboloid where J̄1 and J̄2 can be explicitly computed.

Hermans [52] has proved that the orbits of the reduced dynamics are only equi-
librium points or periodic orbits. In fact, the periodic orbits are the connected com-
ponents of the fibers of the submersion (Ē, J̄1, J̄2) : M4\E → R

3, where E is the
equilibrium set of the reduced dynamics, see [40].
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The Ji are gauge momenta

For each conserved quantity Ji, i = 1, 2, in (B.2.14) we look for a vector Xi ∈ Γ(S)
such that iXi

ΘM = Ji. Using the formulas for Ji and the fact that the respective Xi

belongs both to Γ(C) and Γ(V) we get

X1 =
2Rr

E
σ4(p̄1)Yθ −

2R

I
σ3(p̄1)Xn, (B.2.16)

X2 =
2Rr

E
τ4(p̄1)Yθ −

2R

I
τ3(p̄1)Xn. (B.2.17)

Using the formulas of the infinitesimal generators of the action on M,

(1,0)M =
r

R
Yθ − sin νXn +

( r

R
+ cos ν

)

XT ,

(0, ei)M =αiX
r
1 + βiX

r
2 + γiX

r
3 , i = 1, 2, 3,

we can write X1 and X2 in function of the infinitesimal generators. Indeed, since
S = span{Yθ, Xn}, it is generated by sections η1, η2 of the bundle gS → Q, i.e

(η1)M = Yθ, (η2)M = Xn,

then defining

ζ1 =
2Rr

E
σ4(p̄1)η1 −

2R

I
σ3(p̄1)η2, ζ2 =

2Rr

E
τ4(p̄1)η1 −

2R

I
τ3(p̄1)η2,

we have that (ζ1)M = X1 and (ζ2)M = X2. This shows that the J1 and J2 are
horizontal gauge momenta in the sense of [41] (see algo [9]). Indeed we have found
sections ξi ∈ Γ(gS) such that Xi = (ξi)M.

The dynamical gauge transformation and the reduced Poisson structure

Define the G-invariant 2-form:

B = M̃n(1+cos(ν)
R

r
)Y θ∧Y T + p̃θ

I

E
(1+cos(ν)

R

r
)Y T ∧βn+ p̃T

I

E
(1+cos(ν)

R

r
)βn∧Y

θ

This form B is semi-basic with respect to the fibre bundle M → Q and verifies that
iXnh

B = 0, i.e. it a dynamical gauge transformation.

The 2-section ΩC +B is given by

ΩC +B = −dp̃θ ∧ Y
θ − dp̃T ∧ Y T − dM̃n ∧ βn

−

(

p̃θsin ν
R

r
− M̃ncos νsin

2 ν
φ′ + φ′′2r2

φ′

R

r

)

Y T ∧ Y θ

+ p̃θ
I

E

R

r
cos ν

(

cos ν sin ν
φ′ + φ′′2r2

φ′
− 1

)

βn ∧ Y
T .
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and the gauge transformed bivector is biven by

π#
B (Y θ) =

∂

∂pθ
, π#

B (Y T ) =
∂

∂pT
, π#

B (βn) =
∂

∂M̃n

,

π#
B (dpθ) = −Yθ −

(

p̃θsin ν
R

r
− M̃ncos ν sin

2 ν
φ′ + φ”2r2

φ′

R

r

)

∂

∂p̃T
,

π#
B (dpT ) = −YT +

(

p̃θsin ν
R

r
− M̃ncos ν sin

2 ν
φ′ + φ”2r2

φ′

R

r

)

∂

∂p̃θ

+ p̃θ
I

E

R

r
cos ν

(

sin2 ν
φ′ + φ′′2r2

φ′
− 1

)

∂

∂M̃n

,

π#
B (dM̃n) = −Xn − p̃θ

I

E

(

cos ν sin2 ν
φ′ + φ′′2r2

φ′

R

r
−
R

r
cos ν

)

∂

∂p̃T
.

We verify that π#
B (dHM) = π#

nh(dHM) = −Xnh, that is the dynamics is preserved.

First integrals and how to find the gauge transformation

In this section we will study how to compute the 2-form B giving the gauge transfor-
mation from the knowledge of first integrals.

We compute π#
nh(dJi) = Vi + Wi, for i = 1, 2, with Vi ∈ Γ(V) being the vertical

part.

π#
nh(dJ1) = V1 +W1 = −

2Rr

E
σ4(p1)Yθ +

2R

I
σ3(p1)Xn +W1

π#
nh(dJ2) = V2 +W2 = −

2Rr

E
τ4(p1)Yθ +

2R

I
τ3(p1)Xn +W2.

The gauge transformation B is constructed so that the new bivector πB keeps only
the vertical part. More precisely for a B of the form B = aY θ∧Y T+bY T∧βn+cβn∧Y

θ,
imposing the condition iVi

(ΩC +B) = −dJi, for i = 1, 2, determines a unique B, such
that

a = M̃n

(

1 + cos(ν)
R

r

)

,

b = p̃θ
I

E

(

1 + cos(ν)
R

r

)

,

c = p̃T
I

E

(

1 + cos(ν)
R

r

)

.

By construction πB verifies

π#
B (dJ1) = V1 = −

2Rr

E
σ4(p1)Yθ +

2R

I
σ3(p1)Xn

π#
B (dJ2) = V2 = −

2Rr

E
τ4(p1)Yθ +

2R

I
τ3(p1)Xn.

Theorem B.2.1. The reduced bracket {·, ·}Bred in the differential space M/G is Pois-
son.
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Proof. We get:

(dJ∧KW−dB)|C =
IR

Er
cos3 νdp̃θ∧βn∧Y

T−

(

1 + cos ν
R

r

)

dM̃n∧Y
θ∧Y T . (B.2.18)

Recall that the invariant functions p̄i, i = 0, · · · , 4 are generators of C∞(M)G, so we
can verify the following equality:

(dJ ∧KW + dB)(π#
nh(dρ

∗p̄i), π
#
nh(dρ

∗p̄j), π
#
nh(dρ

∗p̄k)) = 0,

on all the combinations of p̄i using their expression in our adapted coordinates (B.1.7).
By the formula of the Jacobiator of the reduced bracket we conclude that the reduced
bracket {·, ·}Bred is Poisson.

Theorem B.2.2. The first integrals J̄i are casimirs of the bracket {·, ·}Bred

Proof. As the vector fields associated to the conserved quantities Ji are vertical w.r.t
ρ : M → M/G, i.e. π#

B (dJ1) = V1, both J1 and J2 are casimirs of the reduced bracket
{·, ·}Bred.

In Section B.2 we observed that the Ji are gauge momenta, i.e. here exists sections
ξi ∈ Γ(gS) such that i(ξi)MΘM = Ji.

From (B.2.16) we observe that the (ξi)M = −Vi, i = 1, 2, which shows:

π#
B (dJ1) = −(ξi)M.

B.3 Particular case: the homogeneous ball on a

paraboloid of revolution

In the particular case where the surface of revolution is a circular paraboloid the
conserves quantities Ji, i = 1, 2 can be explicitly integrated. Indeed, in that case take
Ψ(p̄1) = 2p̄1 = r2. In that case the functions F3 and F4 in (B.2.11) are given by

F3(p̄1) =
2I

E(1 + 8p̄1)
, F4(p̄1) =

8

1 + 8p̄1

.

From the system of differential equations (B.2.10) we get the following equation,

p̄3
′′ +

8

1 + 8p̄1

p̄3
′ −

2I

E

8

(1 + 8p̄1)2
p̄3 = 0,

where ′ denotes the derivative with respect to p̄1. This Euler equation can be solved

using the ansatz: p3 = (1 + 8p1)
µ. Replacing this in () we get µ2 = 1

2

√

I
E

, and the

general solution of the system () is:

p̄3 =A1(1 + 8p̄1)
µ +B1(1 + 8p̄1)

−µ

p̄4 =
4Eµ

I

(

A1(1 + 8p̄1)
µ −B1(1 + 8p̄1)

−µ
)

,
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where A1 and B1 are integration constants. Plugging the initial values (1, 0) and (0, 1)
we get two solutions (σ3, σ4) and (τ3, τ4), respectively. Computing the Wronskian we
see that they are independent. Recall the formula for the first integrals.

J̄1 = p̄3σ4(p̄1) − p̄4σ3(p̄1)

J̄2 = p̄4σ3(p̄1) − p̄3σ4(p̄1).

Two explicit solutions are:

J̄1 =
4Rrµ

I
p̃θ
(

(1 + 8p̄1)
µ − (1 + 8p̄1)

−µ
)

−
R

I
M̃n

(

(1 + 8p̄1)
µ + (1 + 8p̄1)

−µ
)

J̄2 =
Rr

E
p̃θ
(

(1 + 8p̄1)
µ + (1 + 8p̄1)

−µ
)

−
R

4Eµ
M̃n

(

(1 + 8p̄1)
µ − (1 + 8p̄1)

−µ
)

.

Now we can perform the same computations to find the gauge transformation B at
the end of the last section. The general computation performed gives a B which does
not depend on the form of the surface. Actually, this work started analysing this
particular case before considering the the general case.
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cada, Rio de Janiero, 1980.

122



[14] C. J. Blackall, On volume integral invariants of non-holonomic dynamical systems,
American Journal of Mathematics, 63:1 (1941), 155–168.

[15] A.M. Bloch, Nonholonomic Mechanics and Control. Interdisciplinary Applied Mathe-
matics, Springer-Verlag, Berlin, (2000)

[16] A. M. Bloch, P. S.Krishnapasad , J. E. Marsden, R. M. Murray; Nonholonomic me-
chanical systems with symmetry. Arch. Rat. Mech. An., 136 (1996), 21–99.

[17] T. Ohsawa and A. M. Bloch, Nonholonomic Hamilton–Jacobi equation and integrabil-
ity, J. Geom. Mech. 1, 461–481 (2009)

[18] O.I. Bogoyavlenskij, Extended integrability and bi-Hamiltonian systems, Comm. Math.

Phys. 196 (1998), 19–51.

[19] A.V. Bolsinov, A.V. Borisov, I.S. Mamaev, Hamiltonisation of non-holonomic systems
in the neighborhood of invariant manifolds, Regul. Chaotic Dyn., 116(5), (2011), 443-
464.

[20] A.V. Bolsinov, A.A. Kilin, A.O. Kazakov, Topological monodromy as an obstruction
to Hamiltonization of nonholonomic systems: Pro or contra?, Journal of Geometry and

Physics, vol. 87, 2014, 61-75.

[21] A. V. Borisov, I. S. Mamaev; Chaplygin’s Ball Rolling Problem Is Hamiltonian, Math-

ematical Notes, Vol. 70, no. 5, (2001) 793-95.

[22] A. V. Borisov, I. S. Mamaev, On the history of the development of the nonholonomic
dynamics, Regular and Chaotic Dyn. 7:1, (2002) 43–47.

[23] A.V. Borisov, I. S. Mamaev, The Rolling Body Motion Of a Rigid Body on a Plane
and a Sphere. Hierarchy of Dynamics, Regular and Chaotic Dyn., 7:2, (2002) 177–200.

[24] A. V. Borisov, A. A. Kilin, I. S. Mamaev. Rolling of a ball on a surface. New integrals
and hierarchy of dynamics. Reg. & Chaot. Dyn., (2002), 201–219.

[25] A.V. Borisov, A.A. Kilin, I.S. Mamaev, Dynamics of rolling disk. Regular & Chaotic

Dynamics 8, 201-212 (2002).

[26] H. Bursztyn, M. Crainic, Dirac structures, momentum maps, and quasi-Poisson mani-
folds, The breath of Symplectic and Poisson Geometry, Progr. Math., 232, Birkhauser
Boston, Boston MA, (2005), 1-40.

[27] H. Bursztyn, A brief introduction to Dirac manifolds, Geometric and topological meth-
ods for quantum field theory (Villa de Leyva, 2009), Cambridge University Press.

[28] F. Cantrijn, M. De León, D. Mart́ın de Diego, On almost-Poisson structures in non-
holonomic mechanics, Nonlinearity 12 (3), (1999), 721.

[29] S.A. Chaplygin; On a ball’s rolling on a horizontal plane. Regular and Chaotic Dynam-
ics, 7:2, 131-148; original paper in Mathematical Collection of the Moscow Mathemat-
ical Society, 24 (1903), 139-168.

123



[30] S. A. Chaplygin; On the theory of motion of nonholonomic systems. Theorem on the
reducing multiplier. Mat. Sbornik, 28(2) (1911), 303–314 (in Russian); Reg. Chaotic

Dyn., 13(4) (2008), 369-376 (in English).

[31] P. Collet, J.P.-Eckmann, Concepts and Results in Chaotic Dynamics: A Short Course,
Theoretical and mathematical physics, Springer-Verlag, Berlin Heidelberg, 2006.

[32] J. Cortés Monforte. Geometric, Control and Numerical aspects of non-holonomic sys-
tems. Springer-Verlag, 2002.

[33] J. Cortes, S. Martinez: Nonholonomic integrators. Nonlinearity, 14 (2001), 1365-1392.

[34] T.J. Courant, Dirac manifolds, Trans. Amer. Math. Soc., 319(2): 631-661, 1990.

[35] R. Cushman and L. Bates. Global aspects of classical integrable systems. Birkhäuser,
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