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Chapter 1

Introduction

This thesis is a contribution to the mathematical eld of shape optimization which may be seen as a
sub-discipline of the calculus of variations. We are interested in the study of isoperimetric estimations
relating spectral and geometric shape functionals.

1.1 Notational conventions and de nitions

Although the notations used in this manuscript will be properly introduced in due time, we gather
here, for the sake of readability, the most common ones used throughout the chapters.

~ Sets and classes of sets:

1. N is the set of non-negative integersN is dened asN = NnfQg.

2. R is the set of real numbers,R is dened as R := RnfOg, R* (resp. R ) is the set of
non-negative (resp. non-positive) real numbersR, (resp. R ) is the set of positive (resp.
negative) real numbers.

4. For any n 2 N, K" is the class of convex compact subsets ®" and K} is the class of
convex compact subsets oR" of unit Lebesgue measure.

5. Foranyn 2 N , S" is the class of open bounded simply connected subsets Bf .
6. forany N 3, Py is the class of convex polygons of at mosiN sides.

" Shape functionals:Let n 2 N .

1. The diameter of a given set R" is denotedd() .
2. Theinradius of a given set R" (which is the radius largest ball included in ) is denoted

r() .

3. The underlying measure is the Lebesgue measure. For any any Borel set R",j jis the
n-th dimensional Lebesgue measure. It is calledolume of or more speci cally area of
whenn =2.

4. For any any Borel set R", P() denotes theperimeter of De Giorgi of in R", see for
example [140]. We note that there are other de nitions for the perimeter and that they all
agree for domains with Lipschitz boundary conditions.

5. Let R" be a bounded Borel set. TheCheeger constantof is de ned as
. P(E)
h = f —_ .
0 inf iE]

E measurable



AsetC for which the in mum is attained is called a Cheeger set of .

6. Let R" be an open subset oR". The rst eigenvalue of the Laplace operator with
Dirichlet boundary conditions is de ned as follows:
, ir uj?dx
1() = inf > :
u2HZ() nfog u2dx

1.2 Structure of the introduction

This Introduction is structured as follows:

We present the main problems and questions treated in the present thesis in Sectign 1.3. We state
and comment our main results in Section[ I.4 and describe the sketches of proofs and the developed
methods. Finally, in Section[1.5, We present some open problems and possible research projects.

Problem Presentation of the | Main results and | Detailed proofs
problem and main | methods of proofs
guestions
Blaschke-Santab Section|1.3. Section|1.4. Chapter@
diagrams for
(P;hii 1)
Blaschke-Santab Section|1.3. Section|1.4. Chapterlg]
diagrams for
(P; 13j )
Blaschke-Santab Section|1.3. Section|1.4. Section 1 of Chap-
diagram for ter E]
(r;h;j )
Cheeger's inequal-| Section|1.3. Section|1.4. Sections 2 & 3 of
ity for convex sets Chapter H
Numerical  study | Section|1.3. Section|1.4. Chapter|£_3]
of convexity con-
straint
Optimal placement | Section|1.3. Section|1.4. Chapter@
of an obstacle

1.3 Presentation of the problems

Let us rstintroduce the reader to the subject of shape optimization: let J be a shape functional, that
is an application that takes a set R"™ (n 2 N ) as an input and returns a real valueJ() 2 R. We
would be interested in problems of the form:

Izgfad J(0)

where F 4 is a class of admissible shapes. It encodes the constraints of the problem. This can for
example be the class of convex sets or those of unit volume...

Unfortunately, the task of explicitly nding optimal shapes (when they exist) can be very challeng-
ing (or even impossible), thus it is natural and classical to ask the following type of questions when
working on a shape optimization problem:

Does the problem admit a solution ?

~ Can we prove some qualitative results on the optimal set (regularity, symmetries...)?



" Can we prove that a given shape is a local solution for the problem ? (the term local depends
on the choice of topology of the class of domains).

" How can we use numerical simulations to nd approximations of the optimal shapes?

We note that each of those questions will be discussed at a certain level in this thesis.

The present thesis is structured in 5 chapters organized in two parts:

Part I: Study of some relevant Blaschke-Santab diagrams.

Chapter 2} Blaschke-Santab diagrams for the volume, the perimeter and the Cheeger constant.

Chapter Blaschke-Santab diagrams for the volume, the perimeter and the rst Dirichlet
eigenvalue.

Chapter f} On the Cheeger inequality for convex sets.

Chapter B} Numerical study of the convexity constraint and application to Blaschke Santab
diagrams.

Part II: Optimal placement of an obstacle.

Chapter |6} Where to place a spherical obstacle so as to maximize the rst Steklov eigenvalue ?

1.3.1 Chapters[2 &[3 and Section 1 of Chaptef 4: Blaschke-Santab diagrams
Introduction to Blaschke-Santab diagrams

In all mathematical elds, it is always interesting and useful to have (sharp) estimates of quantities
(for which it could be di cult or impossible to have an explicit expression) via other functionals (easier
to handle). This is why inequalities relating given shape functionals were extensively studied in the
literature by various mathematical communities.

When studying the inequalities relating some given quantities, a natural question arises:

Can one describe all the possible inequalities relating given shape functionals? in the
sense that there would be no other estimate (involving the considered quantities) which
improves the latter ones.

The rst mathematician who raised interest of such questions was Blaschke| [28] in 1915. He
considered a compact convex set in R3, with volume | j, surface areaP() , and integral of the
mean curvature M () . He asked for a characterization of the set of all points inR® of the form
(G ;PO :M()) as ranges over the familyK? (where K" denotes the class of compact convex sets
in R" for n  1). Due to scaling arguments, the latter problem is equivalent to the characterization of
the following set of points:

P();M() jjj=1 and 2K3:

This set of points is known as theBlaschke diagram Then, in 1959, L. A. Santab proposed a related
family of problems involving the following purely geometrical functionals: areaj j, perimeter P,
diameter d, minimal width w, circumradius R and inradius r for the classK?. As in [28], the problem
is to nd complete systems of inequalities for any3 quantities chosen from the ones listed above (this
yields a total of g = 20 problems). In his work |163], L.A. Santab completely solved 6 cases, then
came a series of recent papers [110, 112,/36, 111} 71], where 8 other diagrams are solved, meanwhile,
up to our knowledge the remaining 6 problems remain unsolved. We refer to the introduction of the
very recent paper [71] for a detailed state of the art.

Let us now settle the general framework of the so calleBlaschke-Santab diagrams we consider
3 homogeneousshape functionalsJ;, J, and J; de ned on a given classF,4 of subsets ofR" for



n 2 N . By homogeneous, we mean that there exists;; »; 32 R suchthat Ji(t)= t iJ;() for
everyt> 0Oand 2F, andi 2f1;2;3g. Itis possible (due to homogeneity properties) to de ne the
Blaschke-Santab diagram associated to the triplet (J1;J2;J3) in the classF,4 as the following set of
points:

Dr,, = J1() :J2) j Js()=1 and 2Fgq :

The ultimate goal is to provide the explicit description of Dg_,. In this case, we say that we
managed to nd a complete system of inequalities relating the three functionalsl;, J, and J; on the
classF,4. Unfortunately, the task of nding the diagram may be very dicult or even impossible,
especially when a spectral quantity is involved, see the discussion of Conjectufé 4 for example. Here
is a non-exhaustive list of recent works in this framework|[11}, 13, 22, 23, 24, 44, 49,|60,/92, 138]. Here
are some questions that are classically asked when working on Blaschke-Santab diagrams:

1. is the diagram closed ? arcwise connected ?

In general, both assertions are true wherF o4 is given by the class of convex sets dR". The proof
of this is quite classical and relies on the continuity of the functionals, compactness of convex
sets for the Hausdor distance (see Blaschke selection Theorem [164]) and the use of Minkowski
sums to construct continuous paths relating points of the diagram. We refer for example to| [13,
Theorem 2.2] and [[138, Proposition 3.10].

2. Does the diagram contain holes ?

Even though, this seems in general to be false, this might be quite challenging to prove, see for
example [13, Conjecture 1] and|[138, Conjecture 2]. In Chapters]| 2 ar[d 3, we develop a strategy
that allows to tackle this question for the studied diagrams in the case of convex sets. This result
(of simple connectedness) seems up to our knowledge to be the rst of its kind when dealing with
diagrams mixing spectral and geometrical quantities on convex sets. In Sectidn 1.4.2, we explain
the main di culties in this framework (in contrary to the purely geometrical one) and present
the methods we developed to overpass it.

3. Is the diagram convex ? or at least vertically or horizontally convex ?

A diagram is said to be vertically (resp. horizontally) convex, if the segment relating any couple
of points with the same abscissa (resp. ordinate) is included in the diagram.

We note that proving the convexity of a Blaschke-Santab diagram is a quite challenging question,
see for example| [49] where the authors could not establish the convexity of a certain diagram but
proved the vertical and horizontal convexity.

4. Can we give qualitative properties on the boundary of the diagram ?

For example one may be interested in properties such as continuity, monotonicity, di erentiability
or convexity of the curves describing the boundary of the diagram, see for example [49, 138].

Another classical problem is to nd or at least have estimates on the tangent of the boundary at
some special points (for example the one corresponding to the ball). We refer for instance to [44]
where the authors prove that the boundary of the diagram associated to the triplet( 1; 2;j j)
(where ; and , are the rst and second Dirichlet Laplacian eigenvalues) has a horizontal
tangent at its lowest point corresponding to the union of two disjoint balls of half measure.

5. Can we numerically describe the diagram ? and state new conjectures ?

Numerical simulations may signi cantly help to have a better understanding of the diagram. It
may be used to state or numerically validate some related conjectures. We refer for example to
Chapter [§ for a description of the di erent methods we used to study some relevant diagrams.



Study of an example: the (P;j j;r)-diagram

For a better understanding, let us discuss the purely geometrical diagram of the triplet(P;j j;r) in
the case of planar convex domains. We recall that this diagram had already been solved by Santab in
[163].
Let us rst recall some classical inequalities between the considered quantities. We have for every
2K?2:
PO P(B) _,P-
i i jBji2
where B R? is the ball of unit volume. This is the famous isoperimetric inequality.
Then, there are the following inequalities, which are direct consequences of the inclusion of the
inscribed ball in

(1.1)

ji r() 2 (1.2)
and
P() 2 r(): (1.3)

All these inequalities are sharp as equality occurs when is a ball, but, as explained before, the
main question is to know if they form a complete system of inequalities: to do so we study the following
set of points:

D= PO:jj jr(OO=1 and 2K?:

We note that inequalities (1)), and (1.3) are represented in the diagram as the curves of some

functions that delimit a subregion of R? which contains the diagram D, indeed:

(x;y) 2D ) 9 2K? suchthat r()=1 ; x=P() and y=j j;
X2
4

) y Y and x 2:

Thus, we get the inclusion:

) X2 . )
D xy)jy 7 \f (xy)jy g\f (xy)jx 2g

Figure shows inequalities [(1.])[(1.R) and[(1]3) and the domain they describe which contains
D. We note that thanks to this graphical representation, one can easily see that the isoperimetric
inequality (IL.I) is stronger than (L.3). This is one of the reasons that make these diagrams useful and
very interesting to study.

— The isoperimetric inequality f;ﬁ—?), > %

—The inequality |Q| > 7r(Q2)?

- - The inequality P(€2) > 27r(f2)

Domain containing the diagram

. . . . . .
5 6 7 8 9 10 1 12 13 14
Perimeter

Figure 1.1: A domain containing the Diagram D.



Now that we have a better understanding of the diagram, let us push forward the analysis and give
the explicit description of D. This is done in two steps:

Step 1: Finding the (external) boundary of the diagram D
In general to do so, one has to solve the following shape optimization problems:

%inffj il 2KZ%r()=1 and P()= pog;
supfi jj 2KZ%r()=1 and P()= pog;

inffP() j 2K2r()=1 andj j= ag;
“supfP() j 0 2K%Zr()=1 and j j= ag;

(1.4)

wherepy 2 [2; +1 )andag 2 [; +1 ). As noted by Santab, these problems are solved in [35]: the
rst and third are solved by stadiums, while the second and fourth are solved by symmetric 2-cap
bodies, namely the convex hull of a disk of radiusl and two points lined-up with its center. We then
have the following inequalities:

POOr() 2 j; (1.5)
and:
jior() PO r() : (1.6)

This shows that the (external) boundary of the diagram D is given by the curves of the functions:

Xx2[2: +1)7! g and x2[2: +1)7! x

Step 2: Filling the diagram (i.e. showing that it contains no holes)

Once the external boundary is found, it remains to prove that the whole region delimited by this
boundary is in the diagram. As it is explained above, this step could be rather challenging when
dealing with diagrams for which no (or few) information on the extremal sets (those corresponding
to the points on the external boundary) is known. Fortunately, this is not the case for the present
(P,j j,r) diagram. Indeed, one can use the linearity property of perimeter and inradius for Minkowski
sums and the continuity of the functionals for Hausdor distance in K? to construct vertical lines that
connect the upper boundary to the lower one. Let us takeK; and K, two convex sets of inradius1
and perimeter pg: for everyt 2 [0; 1], we haveP(tK ;1 +(1 t)Ko)=t P(K)+@ t) P(Kz)= po
andr(tK; +(1 tKy) =t r(Ky)+@ t) r(Ky) =1, thus, the vertical and continuous line
fpog [jK1j;jK2j] relating the points corresponding toK; and K, is included in the diagram D.

Finally, we conclude that:

D=f(xy)jy x g\f(xy)jy x=2g,

which means that inequalities (1.3) and [1.6) form a complete system of inequalities of the triplet

(P;j j;r), see Figurg 1.p.
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ol ,/ 1| - - The isoperimetric inequality ‘1;(‘?; > ‘PB(‘?,E
7 - - The inequality || > 7r(2)?
e - - The inequality P(Q) > 27r(2)

Area

—The inequality P(Q)r(Q) < 2|

The inequality |Q| < r(Q)(P(Q) — 7r(R))

The exact diagram

N

Perimeter

Figure 1.2: The Diagram D and related inequalities.

Another classical representation of the diagrams

At last, we point out that it is classical to represent Blaschke-Santab diagrams in the square|[0; 1]

[0; 1]. It is done by looking for 2 inequalities such that each one involves only two functionals. These
inequalities allows to de ne new variablesX;Y 2 [0;1]. In our case, as already mentioned in|[163],
this may be done by using inequalities:

P 2
2r () P() and j()j 4;
and then considering the following set of points:
2r() 4] ] 2
; 2K 0;1] [O;1]:
Let us denote X = 270 and Y = 5J%, where 2 K2. Inequalities (I.) and (L§) are

respectively equivalent to:
Y X and Y X(@2 X):

The diagram is then given by Figure[1.3.

Figure 1.3: The diagram that ts into the unit square [0;1] [O;1].
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An overview on the main diagrams studied in the present thesis

In the present thesis, we are mainly interested in the study of the following diagrams:
" The diagram of the triplet (P;h;j j) is studied in Chapter|[2.
" The diagram of the triplet (P; 1;j j) is studied in Chapter[3.
" The diagram of the triplet (r;h;j j) is studied in Chapter[4.

Let us give more details on the problems and the questions we are interested in.
The diagram (P; h;j j)

Since the Cheeger constant is de ned via the in mum of the ratio between the perimeter and the
area, it seems natural to seek for complete systems of inequalities that relates the latter functionals.
We are then interested in the study of the following sets of points:

DL:=f P() ;h() j 2Candj j=1g;

where Cis a class of planarmeasurable sets.

Let us rst give some classical and trivial inequalities: if is a measurable subset oR? and B a
disk of unit area, we have:

" the isoperimetric inequality:
PO P(B) _,P-
AN 7

" a consequence of the de nition of the Cheeger constant

: P(E) PO
h = inf — —, 1.8
0 E IE] I (18)
" a Faber-Krahn type inequality:
L= L= P(B) P
1=2 1=2 — — .
j i7°h() J BjT°h(B) = B =2 (1.9)

One should note that inequalities {1.8) and [1.9) imply (1.7) and also de ne a region in the plane
that contains the diagram, more precisely:

DL f (xy)jx h(B);y P(B)andy xg:

It is then natural to ask the following questions:

Questions 1. Let C a given class of measurable planar domains (we investigate simply connected
sets, convex sets and convex polygons). Do inequaliti€.8) and form a complete system of
inequalities for the classC? If not, Can we nd a complete system of inequalities for the triplet
(P;h;j j) in the classC.

We refer to Section[1.4.]1 for the statement of the related results and sketches of proofs and to
Chapter [2 for detailed demonstrations.
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The diagram (P; 1;j j)

Another interesting functional is the rst eigenvalue of the Laplace operator with Dirichlet boundary
condition denoted ;. As for the latter example, we are interested in describing sets of points:

g =FtP(0); () j 2Candj j=1g;

where Cis a class of open sets.
Again, we are interested in the inequalities that relates the three functionals:P, j j and ;. In

addition to the isoperimetric inequality ({.7), there is the classical Faber-Krahn inequality that states
that for every open set R" (wheren 2), one has:

j it 10 i BT 1(B); (1.10)
where B is a ball of unit volume.

The isoperimetric and Faber-Krahn's inequalities (1.7) and [1.10) imply that the diagrams D" are
included in the quadrant [P(B);+1 ) [ 1(B);+1 ). This leads to the following question:

Questions 2. Do inequalities (L.7) and ) provide a complete system of inequalities for the triplet
(P, i)

Yet, the answer to the latter question depends on the choice of the class of se@ If the response
is not trivial for general open sets (we refer to the rst part of Theorem of the Thesis@, it is not
di cult to see that for other classes of domains the answer is no. For example, ifC is given by the
class of planar bounded convex domains denoteld?, there are other inequalities relating the involved

functions which are sometimes better than [1.7) and[(Z.1p). Indeed, if we denot&? the class of planar
convex bodies, we have for any 2 K?2:

1. Polya's inequality [156] (1959)

2 P *
1() < 7 37 (1.11)
2. Makai's inequality [141] (1960):
2 PO 2
() > % j] (1.12)

3. Payne-Weinberger's inequality [154] (1961):
1 P() 2
Ji(o1) 4]

where B is a disk of unit area, J; is the Bessel function of the rst kind of order one andjg; is
the rst zero of the Bessel function of the rst kind and of order zero.

10 JBjaB) 1(B) (1.13)

These inequalities in addition to (1.1Q) provide a region in the plane (which is strictly included in the
quadrant [P(B);+1 ) [ 1(B);+1)) that contains the diagram D%, see Figur.
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Figure 1.4: The smallest known domain that contains the diagram (in yellow).

Since, there is no explicit formula for the rst Dirichlet eigenvalue, giving an explicit description
of the diagram D, does not seem to be possible, this is in general the case for diagrams that involve
spectral quantities, this why in this framework one is interested in proving qualitative properties of
the diagrams, see for example [13, 24, 44, 49, 138]. Numerical simulations may be very helpful in
conjecturing some properties of a Blaschke-Santab diagram. In a rst time, let us give a numerical
approximation of D, by generating 10° random convex sets (polygons) of unit area for each we
compute the rst Dirichlet eigenvalue and the perimeter. We then obtain the following Figure [L.5]

140

120

.
o
S

Eigenvalue
®
3

60

40

35 4 4.5 5 55 6 6.5 7 7.5
Perimeter

Figure 1.5: Approximation of the Blaschke-Santab diagram D% obtained by generating 10° random
convex polygons.

As one sees in FigurS, the diagranD, >; seems to be given by the set of points located between
the curves of two continuous and strictly increasing functions. Thus, it is natural to ask the following
guestions:
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Questions 3. ~ Can we prove thatD % is exactly given by the set of points contained between the
curves of two continuous and strictly increasing functions? Note that this will in particular
prove the vertical and horizontal convexities oD% .

" Can we give asymptotic information on the boundary of the diagram ?

We refer to Section[1.4.2 for the statement of the related results and sketches of proofs and to
Chapter [3 for more details.

The diagram (r; h; j j) for planar convex sets

At last, we are interested in describing the inequalities between the inradius, the Cheeger constant
and the area of planar convex sets. Here also, we introduce and study a Blaschke-Santab diagram:

r — 1
SN

Again, we denoteB a ball of unit area. Let us state the trivial and classical inequalities relating the
involved functionals:

:h() j 2KZ%andj j=1

the Faber-Krahn type inequality:
P(B) _ P-

i N0 BIThE) = e =2 (1.14)
" an isoperimetric inequality for the inradius:
r() r(B)
== 1.1
j i B (19
" a consequence of the inclusiomB, () and the de nition of the Cheeger constant:
P(Br() ) 2
h . — = ; 1.16
0 Boi 10 (1.16)

where B, () is a ball of radiusr() contained in

We note that the choice of de ning the diagram via % instead of r is purely done to have a better
readability of the diagram as the quantity % appears in di erent inequalities, this is for example the
case for [1.16). It also allows, by inequalities [(1.14) and[(1.15), to have a diagram included in the
quadrant [1=r(B);+1 ) [h(B);+1).

Here also, it is natural to ask:

—

Questions 4. Do inequalities (1.14) and ) provide a complete system of inequalities of the triple
(r;h;j j) in the classK2? If not, can we nd the explicit description of the diagram Dg.?

We refer to Section[1.4.3 for the statement of the related results (se®heorem of the Thesis[4 and
sketches of proofs and to the rst section of Chaptef 4 for detailed demonstrations.
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1.3.2 Chapter[4: The Cheeger inequality for convex sets

A celebrated inequality proven by Je Cheeger in [55] states that, for every bounded domain R",
with n 1, one has:

0 Fh0 % (117)

Recently, Enea Parini remarked in [152] that for planar convex sets the constani=4 is not optimal.
He took a shape optimization point of view and studied the functional

In() =

It is important to note that the functional J, is invariant by rigid motions and by dilations (i.e.
Jn(t) = Jn() fort> 0): this is a consequence of the following homothety properties for the rst
Dirichlet eigenvalue and the Cheeger constant:

10

t2

and h(t)= @:

8t> 0, ()=

The planar case: study of the functional J,

We summarize the main results of|[152] in the following Theorem:

Theorem 1. We have the following bounds:

8 2K2, TZ<J2(): 1()

2
h()2 = 4’

(1.18)

"~ The upper bound is sharp: every sequende i) in K?, such thatj j= V for someV > 0 and
d( «) k|! . +1 , whered( ) is the diameter of |, satises

2
lim J = —:
k! +1 2( ) 4
~ J, admits a minimizer in the classKZ2. Thus, the lower bound% is not optimal.

We note that in the original work of E. Parini, the improved Cheeger inequality (J2() > %) is
stated in a large form. Let us quickly show how one can obtain strict inequality: Parini's proof is
based on the de nition of the Cheeger constant and the following classical inequality proved by Hersch
[115]:

2
4r() 2°
To get the strict inequality, we can use the following Protter's inequality [158], which is an improved

version of (1.19):

8 2K?  1() (1.19)

2 1 + 1
4 r()2 d()?
For the denominator, E. Parini uses the following upper bound obtained by taking the inscribed
ball B,() as a test set in the variational de nition of the Cheeger constant of

8 2K?; 1) (1.20)

PE) PBw)_ 2
JE] iBroy | r¢) ’

this inequality is an equality if and only if  is a ball.

h():= inf
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We then write:

0 _ a0 0?2 2,00t 2
hO2" h) r() 2 16 d() 16

We note that even-though the use of Protter's inequality allows to obtain a strict inequality (and
even a stronger lower bound in term of the diameter and the inrhadius of ), it is not su cient to

improve the constant 1—; Indeed, if we take  :=(0;k) (0;2) for k 2 Nnf0Q; 1g, we haved( k) k
andr( ) =1. In this case, the correcting term goes to0:

S 1
dl ) k' +1

J2() =

Thus, we cannot expect to obtain a better constant than % with these estimates.
It is natural to try to nd (or at least conjecture) the optimal lower bound rr21|i<n2 J2() or have

more information on the minimizer (i.e. any set 2 K2 such that rg}i<n2 Jo()= J2( ).

In [152], the author gives some optimality conditions that a set should satisfy to be a minimizer
and conjectures that it is given by squares (we recall thatJ is scaling invariant). In this case, the
optimal lower bound would be:

2 2
J, (0;1)? = 1:387::
2 (0;1) m
As far as we know, this conjecture was supported by the fact that the square (numerically) seems
to realise the lowest value ofJ, between all regular polygons, it also the best between rectangles. It is
then natural to ask the following question which is studied in Chapter[5:

Questions 5. Can we provide more numerical evidence to validate Parini's conjecture that states that
the squares manimize the functionall, between planar convex sets ?

We note that it is quite unusual for the minimizer to be "“singular” in shape optimization, which
seems to be the case for the problem of minimizing over planar convex domains as the minimizer
seems to be a square. The phenomena of apparition of singular optimal sets (more precisely polygons)
when imposing convexity constraint was observed in quite di erent elds [62,/129]. Then came a series
of works by A. Novruzi, J. Lamboley and M. Pierre who extensively studied the convexity constraint
and determined some "toncavity" conditions on the functionals, which, once satis ed, ensure that the
optimal set would be polygonal, we refer to|[13[1, 134] (see also the work of C. Bianchini and A. Henrot
[25] for the complete resolution of a purely geometrical shape optimization problem under convexity
constraint).

Before getting back to the Cheeger inequality and stating the related questions theoretically studied
in this thesis, let us give a beautiful and quite eloquent analogy that would help us heuristically under-
stand why polygons may appear when imposing convexity constraint: in nite dimension optimization,
it is quite common to minimize a given convex function on a compact subset (constraints) oR", where
n 1, but what happens if we assume the function to be concave? It is clear that in this case the
solution of the minimization problem will be on the boundary of the compact subset and thus saturates
the constraints. In the same spirit, if we assume our shape depending functional to be "concave"in a
certain sense and minimize it under convexity constraint (over the set of convex domains) the solution
should logically "saturate" the convexity constraint in the sense that its boundary tends to have at
parts.

Questions 6. Can we nd a better lower bound for i2an2 J2() than the 1—; obtained in TheoremB ?

17



We refer to Section[1.4.3 for the statement of the related results (se®heorem of the Thesis[J and
sketches of proofs and Sectioh 413 of Chapt¢i 4 for detailed demonstrations.

On higher dimensions

It is natural to seek for generalizations of Theoreni 1 in higher dimensions. We distinguish two main
reseach directions:

1. Finding upper and lower bounds for the functional J,.

A natural and rst strategy to attack the rst point is to look for generalizations of the arguments
used by Parini in the planar case. By doing so, L. Brasco recently remarked that the upper
bound holds for any dimensions|[40, Remark 1.1.]. Similarly, for the lower bound, we remark
that Hersch's inequality (fL.19) holds for higher dimensions (seq [158, Theorem 2]). We then use
the same strategy of Parini (detailed in the last paragraph) and obtain the following lower bound:

2

2Kn. > -
8 D0 > g

which improves the original constant% given by J. Cheeger only forn 2 f 2; 3g. In this case, we
have:
2 2

8 2K? J > __ 06l6: and 8 2KS3 J > 0274
2() 16 3() 36

2. Proving the existence of a minimizer of J, in the classkK".

The proof of [152] for the planar case follows the classical method of calculus of variations: the
author proves that any minimizing sequence( ) of planar convex sets cannot collapse to a
segment: indeed, if it was the case the author proves tha(J,( k) converges toT2 which is
strictly higher than J, (0;1)?> and thus cannot be a minimizing sequence. In his paper [152],
the author used explicit values of the Cheeger constant of triangles and noted (see [152, Section
6]) that such results are lacking in higher dimensions which makes the problem more challenging
in this case.

In the present thesis, we study the following question:

Questions 7. Can we prove the existence of a minimizer o, in the classK"?

We refer to Section[1.4.3 for the statement of the related results (se&heorem of the Thesis[§
and to Section[4.4 of Chapter[ 4 for detailed demonstrations.

In Subsection[1.4.3, we state the related results, explain the main challenges behind the latter
questions and present the ideas and methods developed in order to overcome these di culties. The
details of the proofs may be found in Chapter 4.

1.3.3 Chapter[8: Numerical study of the convexity constraint and application to
Blaschke-Santab diagrams

Parametrization of shape optimization problems

As highlighted in the beginning of Section[1.3, the task of theoretically nding an optimal shape (when
it exists) may be very challenging or even impossible, this motivates to develop numerical methods
of shape optimization. This numerical framework is very interesting as it has various applications in
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di erent elds, see for example |4,|5] for industrial examples and |[31| 34] for more theoretical ones. In
the present thesis, we focus on numerical simulations related to spectral geometry.

When aiming to numerically solve a shape optimization problem, the rst step is to understand the
situation and the related constraints in order to choose a suitable parametrization of the considered
shapes so as to reduce the optimization problem to a nite dimensional one in order to be able to
use common methods and software developed for nite dimensional optimization: this is known as
parametric shape optimization.

Mathematically, if we want to solve the following shape optimization problem:

|2rF\fad J(O) ; (1.21)
whereJ ©: 2 F, 7! J() 2 R is a given shape functional andF .4 is a class of sets inR? or

R® de ning the constraints or the problem (for example Fq could be the class of planar convex sets
of unit area). The idea is to choose an e cient (approximated) description of the set via a nite
number of parameters(py;:::;pn ). We then consider the function

jo(pinpe) 2RY 71 j(pinpe) = 3() ¢

The constraints encoded inF,¢9 would be given by inequalities and/or equalities on(ps;::;pn ).
Problem (1.21) is then approximated by the following nite dimensional optimization problem:

8 . .
5 infj(p;ipn);
| SHRI PN

8k 2 ;LK  Ck(pr;iiipn) O
T8k2JLL%K  C(py;ipn) =0;

where Cy and C¢? are real functions associated to the constraints.

An example: the isoperimetric inequality for triangles

For a better understanding, let us develop an example. Assume that we want to solve the isoperimetric
problem for triangles, which is to look for the triangle that minimizes the perimeter between triangles
of the same areaVy ? (The answer is well known: as expected, it is the regular one). Our problem
could be written as in (1.2):

inf P() ;

2Ty,
where Ty, is the class of triangles of areavy. A natural parametrization of this problem would be via
the coordinates of the vertices of the triangles, then each triangle := A;A,A3z will be corresponding
to the parameters (X1; X2; X3, Y1;Y2; ¥3), wWhere (X;;Vi)izr 1.2:39 are the coordinates ofA;. The problem
is then equivalent to the following one:

. p p p
2 inf (X1 X2)2+(y1 Y2)2+ (X2 X3)2+(y2 y3)?+ (X3 X1)2+(ys Y1)?%
Zi(X1Y2  Xay1) +(X2Ys XaY2) +(Xay1 Xay1)j = Vo

This problem can then be solved by any optimization solver and one will obtain the coordinates of a
regular triangle.

An important tool: shape derivation

We note that to have accurate results it is highly recommended (if not to say mandatory) to have good
approximations of the gradients of the objective function and the constraints. Being time-consuming
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and less e cient, the nite di erence approximation is in general not suitable in the framework of
shape optimization, especially when dealing with functionals depending on solutions of PDEs. This is
one of the motivations behind the extensive study of the so calleghape derivation which is a notion of
di erentiation of a given shape depending functional. We recall that the term shape derivative usually
refers either to Eulerian semiderivatives, using the speed method to de ne domain perturbations, see
for example [67, Chapter 9], or to Fechet derivatives, obtained using the method of perturbation of
identity, see for example [108, Chapter 5]. It is well-known that they yield the same expression for the
rst order derivative, but di erent expressions for second order derivatives.

Throughout the following thesis the term directional shape derivative will correspond to the fol-
lowing notion:

De nition 1. let us take a shape depending functional : R"! R,wheren 2, andletV :
R" I R" a perturbation vector eld. Let R", we denote ;= (1 +tV)() wherel :x2 R" 7! x
is the identity map andt a su ciently small positive number. We say that the functional J admits
a directional shape derivative at in the direction V if the following limit t‘Iin& M exists. In

this case we denote:

e 30030
V= fim =

The importance given to the study of shape derivatives comes from the variety of their applications,
we state for instance:

" Showing that a certain shape is a critical point for a shape optimization problem by proving
that the rst order shape derivative vanishes. In this case one could go further and study the
coercivity of the second order shape derivative in order to prove that the latter critical shape is
a local minimum of maximum of the functional, see for example|[33, 159].

" Showing some quantitative inequalities and stability results, see for example [63, 41, 143].

~ Numerical simulation of optimal shapes. Indeed, having an explicit formula of the shape deriva-
tive allows to get an e cient estimate of the shape gradient with less numerical costs.

When dealing with shape derivatives, two natural and main questions arise:

1. Do shape derivatives of a given functional exist ? If yes, then how can we compute it ?

A classical tool to show di erentiability is the implicit functions Theorem, but it does not give

a formula of the derivative, for example as explained in|[106, Chapter 5] one may show without
assuming any regularity assumption on the shape that the perimeter is di erentiable (as a shape
functional) at any order, but cannot write down formulae of the derivatives (unless more regularity
is assumed).

If we want to sum up, there are up to our knowledge3 ways of computing shape derivatives:

(a) by direct di erentiation if we have an explicit formula of the functional, which is the case
of the volume for example, as one can see in the example developed below.

(b) By di erentiating a variational formulation as it is classically done to compute shape deriva-
tives of Dirichlet energy or rst Dirichlet eigenvalue ; (see for example|[106, Chapter 5]).

(c) By using classical techniques developed for di erentiation of functions de ned as in ma,
namely Danskin's Theorem [65] which allows to show the existence and compute rst order
directional derivatives of such functions. This allows to prove that a functional de ned as
inmum (or supremum) of a certain quantity over some given space admits a rst order
directional shape derivative and also to derive a formula. For examples, we refer to [139]
where the authors use similar approach for rst Dirichlet eigenvalue ofp-Laplace operator
and [153] for the Cheeger constant.
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2. Are there di erent expressions for shape derivatives ?

It is common to express shape derivatives as integrals on the domain or (if possible) its boundary.
Indeed, it is natural to expect that the variation of the functional could be quanti ed by the
variation of the boundary of the domain along its normal directions. These type of results are
called "Structure theorems for shape derivatives; they have been studied in detail for smooth
domains, see for example [146], and are challenging in non-smooth settings, see for example [86,
85,87,/ 135].

The main purpose behind the introduction of shape derivatives in this thesis is to apply them in
numerical shape optimization. We ask the following question:

Questions 8. How can we compute the directional shape derivatives of the diameter and the Cheeger
constant and use them in numerical simulations?

We refer to Theorems[19 and 2D of Chaptef]5 for the corresponding results.

Convexity constraint

Let us now talk about the principal geometrical constraint treated in in this thesis: it is the convexity
constraint. As explained above in the beginning of Sectiof 113, the convexity constraint allows in
general to have the existence of a solution of shape optimization problems and also may be very
captivating since the optimal domain could be singular (polygonal for example, see [134]), which is not
very common in shape optimization and seems to be very challenging to study from a numerical point
of view, see Chaptef b.

One classical problem in spectral geometry is to nd the domain that minimizes (or maximizes) a
certain eigenvalue of a di erential operator, for example the Laplacian, which was extensively studied
in the last century and continues nowadays to interest various communities. One early result in
this direction was (independently) obtained by Faber [78] and Krahn [126], who show that the set
minimizing the rst Dirichlet eigenvalue ; among domains of given volume is the ball. As for the
second one it was proved that the minimum is attained by the union of any two disjoint balls of half
volume, see|[155, 117, 126].

In 1973, Troesch performed some numerical simulations and remarked that if one add convexity
constraint to the problem of minimizing , among planar sets of given area, the solution seems to be
a stadium (ie. the convex hull of two balls). This conjecture was refuted in 2002 by A. Henrot and E.
Oudet [107] who proved that the boundary of the optimal domains cannot contain circular arcs, which
excludes stadiums, but proved that it contains two segments as supported by numerical evidence.

At last, here is a non-exhaustive list of works where authors obtain numerical results of shape
optimization problems under convexity constraint:

~ Maximizing Steklov eigenvalues under area constraint [32].

~ Minimization of Dirichlet eigenvalues with constant width constraint [33].
~ Numerical approximation of optimal convex shapes|[19].

~ Using the support function to parametrize convex sets|[20, 128]

The questions we are interested in in the present thesis are the following
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Questions 9. How is the convexity constraint classically handled in the literature? can we prg
vide some original methods?

" What are the advantages and disadvantages of each method ?

" How to use numerical simulations to have a quite optimal and satisfying numerical descriptio
of Blaschke-Santab diagrams involving the rst Dirichlet eigenvalue, the perimeter, the area
and the diameter?

>

In Subsection[1.4.4, we describe the di erent numerical approaches used in this thesis and present
some numerical results. For more information and numerical results, we refer to Chaptdr]5.

1.3.4 Chapter 5: Where to place a spherical obstacle so as to maximize the rst
Steklov eigenvalue ?

Up to this point a major interest was given to the study of shape optimization among convex sets. In
the last part of the thesis, we study di erent kind of problems: we look for the sets that optimize certain
functionals between multiply-connected domains (that contain holes) or in particular doubly-connected
sets (that contain one simply connected hole). One can consider several extremum problems, letting
the boundary conditions vary on the outer boundary and/or the hole. Most of the known results were
obtained in the sixties by Payne, Weinberger and Hersch, see¢ [114, 154]. Let us recall some classical
results.

Maximizing the rst Dirichlet-Neumann eigenvalue

Let O_,.a be the class of doubly-connected planadomains of areaA > 0 with outer boundary
o of length Lo > 0 and inner boundary . We denote by " the rst eigenvalue of the following

mixed problem:

<

Theorem 2. (Payne-Weinberger [154])
The annular ring (with concentric circles) maximizes [ in the classOZ ., .

The proof relies on the construction of relevant test functions that one can plug into the variational
characterization of the eigenvalue, we refer to| [106, Section 3.5] for a survey on the topic and some
detailed proofs. The latter idea is then adapted to other situations: for example if one denote©a. ,
the class of doubly-connected planadomains of areaA > 0 with inner boundary ; oflengthL; > 0O
and outer boundary , Hersch proved in [114] that here also the annular ring (with concentric circles)
maximizes f the rst eigenvalue of the following mixed problem:

8 h

< u= 7() u on ,
= on ,
0 on 1.

©)

u
n

e

For similar results for several holes, we refer to [150] for some recent generalisations to the case of
the p Laplace operator. As far as we know the latter problems are still open in higher dimensions.

On the pure Dirichlet boundary condition

One interesting case that has been widely studied is when we take Dirichlet boundary condition
on both the outer and inner boundaries. A rst result in this framework was obtained by Hersch, it is
stated as follows:
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Theorem 3. (Hersch [114])
Let O? be the class of doubly-connected planar domains of area A satisfying:

" the outer boundary has length_o > 0,
" the inner boundary has lengthL; > 0,
"L Li2=4A.

Then, the annular ring (with concentric circles) maximizes the rst Dirichlet eigenvalue ; in the class
02

The proof relies on a result of H. Weinberger|[173], that states that we can nd a closed curve
\between" g and ; such that the rst eigenfunction u; of satis es:

%: 0 on:
Then, the author considers the doubly connected sets ; and ; respectively delimited by o and
one hand and by and ; on the other, he remarks that ()= [¥( ¢)= 19( 1) and then applies

the latter results to write:
1() min( 7" (Ro); T(R1));

where Ry (resp. R;) is the annular ring whose inner (resp. external) boundary's length is equal toL g
(resp. L1) and such that jRoj = j oj and jR3j = j 1j. This brings the problem to the comparison of
eigenvalues of annular rings (for which one has explicit expressions).

The case of spherical obstacles

Theorem@ implies, in particular, that for doubly connected domains of the formB;nB, where B,
and B, are two disks such thatB, B3, the rst Dirichlet eigenvalue is maximal when the disks are
concentric. Later, this result was simultaneously extended to higher dimensions by M. Ashbaugh and
T. Chatelain in a private communication, E. Harrell, P. Kroger and K. Kurata in [105]|and R. Kesavan
in [123]. Actually, the generalization of [10%] is given in the following way:

Theorem 4. Let be a convex domain inR" (n 2) and B a ball contained in . Assume that is
symmetric with respect to some hyperplanél. We are interested in the position of B which maximizes
or minimizes the rst Dirichlet eigenvalue :( nB). Then:

at the minimizing position B touches the boundary of ,
"~ at the maximizing position B is centered onH .

The proof relies on the judicious use of shape derivative, re ection arguments and the maximum
principle that allow to prove a certain monotonicity result which is mainly that the eigenvalue decreases
as the spherical obstacle approaches the boundary of.

After, came a series of works treating the case of spherical obstacles for di erent boundary condi-
tions, we cite for example 8, 57| 73, 75, 172].

Steklov boundary condition

Very recently, there has been a grown interest for the so-calle&teklov boundary condition which
denotes a situation where the eigenvalue is de ned in the equation on the boundary: let R", be a
bounded, open set with Lipschitz boundary. The Steklov eigenvalue problem for the Laplace operator
corresponds to the following system:

(1.22)
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It is well-know that the Steklov spectrum is discrete as long as the trace operatoH() ! L?(@) is
compact, which is the case when the domain has Lipschitz boundary; in other words, in our framework
the values of for which the problem admits non-trivial solutions form an increasing sequence
of eigenvaluesD = () < 1() 2() % +1 , known as the Steklov spectrum of .

Up to our knowledge, problems of optimal placement of obstacles in the framework of pure Steklov
boundary conditions have not been extensively studied (at least as it was the case for other boundary
conditions problems) and yet much problems remain unsolved.

Finally, before stating the main question tackled in this thesis, let us point out some recent results
in the case of mixed Dirichlet-Steklov boundary conditions: we are interested in the rst eigenvalue of

the problem: 8 o
> u=0 in nK,
S us= 0 on @K (1.23)
gu=u on@,
where R" and K is a simply connected open set contained in .

Up to our knowledge, this speci ¢ problem was considered for the rst time by Hersch and Payne
in 1968 [116], where the authors use conformal mapping to provide an upper estimate of the rst
eigenvalue of problem [(1.2B) in the case of planar doubly connected domains. Recently, S. Verma and
G. Santhanam [172] proved that in the particular case when both and K are balls, the eigenvalue 3
is maximal when in the concentric case (this result was proved for dimensiona 3 and is extended
to the planar case f = 2) in the present thesis, see Theorer@Z). This result was then extended from
Euclidean spaces to two-point homogeneous spaces by D.H. Sezo [165]. Furthermore, in their very recent
paper [149], G. Paoli, R. Piscitelli, and R. Sannipoli proved that the spherical shell locally maximizes
the rst eigenvalue among nearly spherical sets when both the internal ball and the volume are xed.

To the best of our knowledge, results as those stated above have not been proven yet for the pure
Steklov case which also seems very challenging as classical techniques (as the maximum principle and
re ection arguments) cannot be used, we also note that the eigenfunctions corresponding to the rst
non-trivial eigenvalue of the spherical shell (the case of concentric balls) are not radial functions which
complicates the computations and make it di cult to use them to construct suitable test functions.

In this thesis we provide an answer to the following questions:

Questions 10. = Where to place a spherical obstacle inside a given ball so as to maximize its frst
non-trivial (pure) Steklov eigenvalue ?

" Can we provide an alternative proof of|[172, Theorem 1] that does not rely on MATHEMATICA
? and can we extend the result to the planar case ?

In Subsection[1.4.3, we state the related results and describe the ideas and methods used in the
proofs, we note that our approach allows to give an alternative and simpler proof to/[172, Theorem 1].
For more information and detailed demonstrations, we refer to Chapter 6.

1.4 Main contributions and methods of the Thesis

1.4.1 Contributions of Chapter 1: Blaschke-Santab diagrams for volume, perimeter
and Cheeger constant.

Main results

As explained in Paragraph[1.3.1, we are interested in describing all possible inequalities relating the
perimeter, the area and the Cheeger constant for di erent classes of planasets: we mainly consider
the classS? of simply connected sets, the clas&? of convex sets and the clas®y of convex polygons
of at most N sides.
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All'in all, in Theorem of the Thesis[] we provide complete descriptions of the diagrams:
DI, := P();h() j 2S%?andj j=1; DR.:= P();h() j 2KZandj j=1

and

DY == P();h() | 2Pyandjj=1;
whenN 2f3g[f 2k jk 2gand provide an advanced description of the boundary oD, whenN 5
is odd.

Theorem of the Thesis 1. (P; h;j j)-diagrams.
We denote byB a ball of unit area in R? and Ry the regular polygon ofN sides and unit area.

1. We denote byDg2 the diagram in the case of simply connected sets &2, we have:
Dg. = f(P(B);P(B)g[f (xy) j x P(B) and P(B)<y xg:

2. We denote byD,Q2 the diagram in the case of convex domains dR?, we have:

DI, = (xy) j x P(B) and %x+p7 y X

3. Let us now state results on Blaschke-Santab diagrams foPy : we distinguish the following
cases:

(@) if N =3, we have D
Ds=f(x;x=2+" )j x P(Rs)g

(b) if N is even, then
DR = (x;y)jx P(Ry) and x=2+ P y fn(x) ;

X+ P X2 +4( N tan o)

wherefy :x 2 [P(Ry);+1) 7! >
(c) if N 5is odd, we provide a qualitative description of the boundary of the diagrarby :

" The lower boundary is given by the half line:
f(xy)jx P(Ry)andy=x=2+" g

which is included in the diagramDy .
" The upper boundary is given by the curve:

f(xy)jx P(Rn)andy= gy (X)g;

which is also included in the diagramDy, where gy is a continuous and strictly
increasing function such that gy fn on P(Ry);+1 Moreover, there exists
cn by >P (Rn) such thatgy = fy on[P(Ry);by]andgy <fyn on coy;+1
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Figure 1.6: lllustrations of the diagrams studied in Theorem of the ThesisDr

Some comments on the results of Theorem of the Thesis] 1

In the rst assertion of Theorem of the Thesisﬂ we prove that inequalities ) and ) provide
a complete system of inequalities for the clas§?. Meanwhile, we show in the second assertion
that this is no longer the case for convex sets for which inequalities (1]8) and the following new
one: p
PO+ 41,

/| ’
are shown to realise a complete system of inequalities. We note (as explained in Chap@r 2 (see
Section[2.3.]) and also in[[50, Remark 32]) that inequality [(1.2}4) was already known for Cheeger
regular polygons (those whose all sides touch their Cheeger set), but as far as we know the result
was not known for arbitrary planar convex sets (neither general convex polygons).

8 2K?2  h() (1.24)

We note that in the proof of the case of simply connected sets relies on the characterization of
the diagram of convex sets given in the second assertion, but we chose to present the result in
this order for a more coherent presentation.
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" In the case of convex polygons, we prove and use an improved version of inequalify (IL.8) in the
classPy:

q
P()+ P() 2+4 Ntan g j j
I ’
which, in addition to (£.24), provide a complete system of inequalities for the clas$y only when
N  4is even. Indeed, whenN is odd, we prove that the curve

( P

Z¥4( Ntan o
(y)ix P(Ry)andy= " T RiEta)

8 2Py; h() (1.25)

which corresponds to inequality ), does not match with the upper boundary of the diagram
Dy .

As it is explained in the sketches of proofs, the method used to treat the cases of convex sets
(diagram D) and convex N -gons (diagramsDy ), when N is even, tightly relies on the fact
that we are able (in the present cases) to nd explicit extremal domains (that corresponds to the
points on the boundary). Unfortunately, when N 5 is odd, the problem of nding the upper
domains seems to be very challenging as we do not have uniqueness of the solutions and we do
not dispose of an explicit formula of the Cheeger constant when the polygons are not Cheeger
regular: we note that numerical simulations suggest that for higher values ofpg, solutions of
problems

maxfh() j 2Pn; P()= po and j j=1g

are not Cheeger regular.

Sketches of proofs and methods

As stated in the comments above, the proof of the rst assertion relies on the second one, we then
begin by giving the elements of proof for the class of convex sets then we explain how to solve the case
of simply connected sets, the case of convex polygons is developed in the last part.

The second assertion: the case of convex sets

We rst give the sketch of proof of inequality (, then we present the strategy used to give the
description of D ,.

Sketch of proof of inequality (1.24):

The proof is done in three steps:

1. As mentioned in [50, Remark 32], in the case of Cheeger regular polygons (those whose all
sides touch their Cheeger set), the inequality is a direct consequence of the explicit formula of
the Cheeger constant given in|[122] and the isoperimetric inequality on polygons (seg [147] for
example).

2. For general polygons, we prove that if a polygon is not Cheeger regular, one can judiciously
move its sides in such a way to obtain a Cheeger regular polygofn satisfying

h()= h(y: P(Y P() and jjj 7
We then conclude as follows:
g p_———
P+ 4~ P~ P() PO+ 47 ]
h()= h ~ = + G— -+t =
0 2~ 2~ ~ 2 i 2 j
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3. Once proven for polygons, one easily extend inequality (1.24) to arbitrary convex sets by density
of polygons in the class of convex sets and continuity of the involved functionals functionals for
Hausdor distance.

Characterization of the diagram D{}:

The proof is done in 3 steps schematized in Figurg 18:

"~ Step 1: By inequalities (1.24) and h() % we have the following inclusion:

DR, (x;y) j x P(B) and %x+p7 y X

" Step 2: We then prove that the half lines f(x;x) j x P(B)g and f(x;x=2 + p7) ix P(B)g
are included in the diagram DQZ, as they respectively could be lled by continuous families of
stadiums and tear shaped sets that are domains given by convex hulls of the bal and a point
outside it which continuously moves away from it, see Figurd 1.J7.

Figure 1.7: Tear shaped domain and stadium.

Step 3:The last step isto Il the diagram. We want to do as for the diagram of (P;r; j j) developed
in Section, by introducing continuous paths (de ned via Minkowski sums) that connect the
upper boundary to the lower one. Unfortunately, in our case the paths are not given by straight
lines and we do not have explicit description of them, but we do know that the domains in the
extremities of those paths continuously vary, this allows to show a certain "uniform continuity"

of the paths which permits to use the continuity of the index (winding number) of closed curves
to show that we Il the whole zone located between the upper and lower boundaries.

The rst assertion: the case of simply connected sets
We denote

D%:= f(P(B);P(B)Y[f (xy)ix P(B)andP(B)<y xg:

We want to prove that D}, = D% By using inequalities (1.8) and {1.9) and the fact thatK? S 2, we
have the following inclusions:

DEZ D gz D O:
It remains to prove the inclusion DD}, D 1., which means to prove that for every(x;y) 2 DD,
we are able to nd 2 S? of unit area such thatx = P() andy = h() . This is done by considering
a 'tailed" ver&ion LO (see Figure) of the tear shaped seL of unit area that corresponds to the

point (2(y 7);y) (which lays on the lower boundary ofD,QZ). Indeed, for such domains the Cheeger
constant is constant while the perimeter continuously grows to in nity as the tail is elongated.
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Step 1: The diagram is included Step 2: The boundary of the yellow region

in the yellow region. is included in the diagram.
h

A

P

Step 3: The yellow region is filled by continuous
paths that connect the upper boundary to the lower one.

Figure 1.8: lllustration of the steps of proof in the convex case.

Figure 1.9: Tailed domain.

The third assertion: the case of convex polygons

p—
The caseN = 3 follows from the fact that if  is a triangle, then: h() = W'

From now on we takeN 4. We rst give the sketch of proof of inequality ( which improves
inequality h() % for convex N -gons, then present the ideas of demonstrations of the stated
results on the diagramsDy .
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Sketch of proof of inequality (1.25):

The proof is done in two steps:

1. rst, we recall (see [122, Proposition 4]) that if a polygon is Cheeger regular, then its Cheeger
constant is given by

q
PO+ PO? 4T0 |
h() = o ;

P
where T () := mn% and ; are the inner angles of the polygon .
i 2

It is natural to wonder about what happens if we drop the assumption of Cheeger regularity: we
are able to prove that in this case one has only an inequality:

q
PO+ PO 2 4T0) i

h() 7] ; (1.26)

with equality if and only if  is Cheeger regular. The proof is based on a nice idea consisting of
using an estimate of the areas of the inner sets ;= fx 2 jd(x;@) >tgto have an upper
or lower bound of the Cheeger constanh() which is the inverse of the solution of the equation
i+ = t?ontheinterval 0;r()

2. Then we conclude by using the following inequality which holds for convexN -gons:
Ntan — T() ;
an N O ;

where equality occurs if and only if the polygon hasN sides and its angles are equal.

When N is even:

In this case, we are able to nd continuous families ofN -gons that Il the upper and lower bound-
Bries of Dy (respectively corresponding to the curvesf x;fy(X) | x P(Rn)g and f(x;x=2 +
)ix P(Rn)g). We then Il the diagram as for the case of convex sets by constructing continuous
paths connecting the upper domains to the lower ones. We should note that one could no longer use
Minkowski sums as they increase the number of sides, we construct the continuous paths by moving
the vertices.

When N in odd:

The techniques used to prove that the upper bound is given by the curve of a continuous and
strictly increasing function are quite similar to those used in the study of the boundary of the diagram
D5, we then refer to Section| 1.4.P for more details and to ChapteﬁZ for the proofs.

1.4.2 Contributions of Chapter 2. Blaschke-Santab diagram for volume, perimeter
and rst Dirichlet eigenvalue

As explained in Paragraph[1.3.1, we are interested in describing all possible inequalities relating the
perimeter, the area and the rst Dirichlet eigenvalue for the class of open subsets dR", wheren 2,
and the class of planar convex sets. This leads to the study of the following Blaschke-Santab diagrams:

Dgh = P(): 1() j 20"andj j=1 and D&:= P();h() j 2KZandj j=1

In Theorem of the Thesis[2 we give a complete description of the diagram for open sets in any
dimension, and provide an advanced description in the case of planar convex sets.

Let us note that in the planar convex case, contrary to the triplet (P; h;j j) treated in Chapter@], we
do not expect to give a complete description of the extremal domains (those laying on the boundary):
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indeed, by numerical simulations we conjecture that the regular polygons are located on the lower
boundary of the diagram. We show in Chapter{3 (see the discussion of the Conjectufg 4 of Chaptg} 3)
that the latter assertion is stronger (in the case of convex polygons) than a famous and open Conjecture
due to Polya which states that the regular polygon minimizes the rst Dirichlet eigenvalue between
polygons with given measure and number of sides. Thus, the latter strategy of using the extremal
domains to construct continuous paths that connect the upper and lower boundaries cannot be used.
Fortunately, we managed to give a quite advanced description of the diagram and its boundary by only
using few information on the involved functionals. We also note that the methods developed in this
framework could be applied for other functionals and thus allow to give similar qualitative results for
other diagrams (see Chaptef b).

Theorem of the Thesis 2. (P; 1;j j)-diagrams.

1. Let O" be the class ofC! open sets inR", with n 2, we have:

Don = P(B);+1 1(B);+1 [ P(B): 1(B)
whereB is a ball of volumel. This shows that in the case ofC! open sets, the only inequalities
relating the three quantitiesP, ; andj j are the isoperimetric PO _PB) and Faber-
jgmm jBjm

Krahn's j j"2 1() j Bj™? 1(B) inequalities.

2. As for planar convex sets, we show that there exist two functiont : [xo;+1) ! R and
g:[xo;+1)! R (wherexg:= P(B)), such that

(a) the diagram D% is made of all points in R? lying between the graphs of and g, more

precisely: n 0

D3 = (xy)2R% x xo and f(x) y g(x) ; (2.27)

(b) functions f and g are continuous and strictly increasing, this, combined with the (8.3)
imply that the diagram D, % is horizontally and vertically convex.
(c) For every x>xo, let 2K?2suchthatj j=1 and ()= x, then
“if P()= g(x), then is CY1,
“if P()= f(x),then is a polygon.
(d) fUx)=0 and limsupd®) 9) — 38) 1) 3

X! Xo

Eigenvalue

21p

|

as 36 a7 38 39 4 41 42 43 a4
Perimeter

Figure 1.10: The diagram of open sets on the left and the diagram of convex sets on the right.
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Sketches of proofs and methods

Let us now give the sketches of proofs of the two cases treated ifheorem of the Thesis[]

1. It is easy to see that the diagram is included in the quadrantfP(B);+1 ) [ 1(B);+1 ) asitis
a direct consequence of the isoperimetric and Faber-Krahn inequalities:

P() P(B) and () 1(B);

where is a smooth subset ofR" with unit volume.

Now, we want to Il the quadrant, which means showing that for any (xo;y0) 2 (P(B);+1)

( 1(B);+1), one is able to construct an open smooth set of unit volume such that P() = Xg
and 1() = vyo. Heuristically, lling the upper part of the quadrant means to increase the
eigenvalue of a set while controlling its perimeter, to do so we use perforated domains and
classical results on homogenization (see [568]). As for the lower part of the diagram, the idea this
time is to use sets given as union of a domain and a cylinder of high perimeter, by this process
we keep the eigenvalue constant while increasing the perimeter.

2. The description of the diagram is done in 3 steps: rst, we focus on the study of its boundary and
prove that it is given by the union of the curves of two strictly increasing functions. Then, we
show that the diagram contains no holes and thus exactly corresponds to the set of points located
between the two curves. Finally, some information on the slopes near the vertex corresponding
to the ball are given in addition to some asymptotics of the in nite branches of the boundary.

1) Study of the boundary of the diagram

We de ne the functions f and g as follows:

f: [PB);+1) ! R

p 70 min 4() ; 2KZ%jj=landP()= p ;
g: [P(B)+1) ! R

p 70 max () 5 2K%j j=landP()= p ;

where B is a ball of unit volume.

" Continuity of the functions f and g:
Sincef and g are de ned as in mum and supremum, a natural strategy to prove their
continuity is to show inequalities on their inferior and superior limits. To do so we had
to prove a certain perturbation lemma for the perimeter of convex sets: we show that one
can continuously deform a planarconvex set so as tostrictly increase or decrease (when
di erent from the ball) its perimeter while preserving the area and the convexity. The
lemma is stated as follows:

Lemma 1. (Perturbation Lemma for the perimeter)

We recall that K2 := f 2K?jj j=1g, we have:

1. The ball is the only local minimizer of the perimeter in the classk? for the Hausdor
distance.

2. There is no local maximizer of the perimeter in the clasK? for the Hausdor distance.

If decreasing the perimeter can be easily done by continuous Steiner symmetrization which
preserves the volume and the convexity in any dimension, this is unfortunately not the case
when trying to increase the perimeter where it seems di cult to preserve the convexity
especially in higher dimensions: this is why the perturbation Lemma is only stated for
planar sets as it relies on results of| [132] which are up to our knowledge only known for the
planar case.

32



Monotonicity of the functions f and g

As for the monotonicty of the functions, we argue by contradiction by assuming that the
function f (resp. @) is not strictly increasing, this yields in particular to the existence of
a convex set of unit area denoted ¢ (resp. ) (dierent from the ball) that is a local
minimizer (resp. maximizer) of 3 under area and convexity constraints, then we use the
following perturbation lemma for the rst Dirichlet eigenvalue ; to nd a contradiction,

see Figurg T.I]1.

Lemma 2. (Perturbation Lemma for ;)

We recall that K2 := f 2K?jj j=1g, we have:

1. The ball is the only local minimizer of ; in the classK? for the Hausdor distance.

2. A C¥1 convex domain cannot be a local maximizer of ; in K2 for the Hausdor distance.

As for the perimeter, decreasing ; could be easily done by continuous Steiner symmetriza-
tion but increasing it under convexity and volume constraints is a rather challenging task:
to do so we use an upcoming result of J. Lamboley and A. Novruz| [130] that states that in
the planar case, a local maximizer of ; under convexity and area constraints is a polygon
and thus cannot be C*, it will then remain to prove that there exists ¢ which is C* and
corresponds to a local maximum of the functiong: this is done by remarking that one can
choose to work with a domain 4 which is a solution of a certain minimization problem:.

minfP() j 2K?%j j=1and ()= g

where > {(B), see Figurg 1.1[l. We then want to apply the result of[[134, Theorem 2.6]
with the constraint m: 7! j j; 1() , to do so one have rst to check that the rst
order shape derivatives of the constraints are linearly independent; we are then tempted to
use the classical Serrin's Theorem [166], but this is unfortunately not possible since we do
not have any regularity as the sets are only assumed to be convex. We then extend Serrin's
result [166] to convex sets (in arbitrary dimensions):

Lemma 3. Let be an open and bounded convex set R" (n  2), and u a rst eigenfunc-
tion of the Dirichlet-Laplacian in . We also assume that there exists constart 0 such
that

jrui=c on@:

Then is a ball andc > 0.

This result is interesting for itself and is obtained by adapting the regularity theory of free
boundaries problems by taking advantage of the convexity of .

2) The diagram contains no holes

Once we proved that the diagram is contained between the curves of two continuous functions
(which are also included in the diagram), it remains to prove that we can |l all the points
between the latter curves. As explained in Chapter 8, the explicit description of the extremal
sets seems to be di cult and challenging (we refer to the discussion of Conjecturg|4 of Chapter
@, thus we cannot use similar strategy as for the diagram(P; h;j j), this is why we propose an
approach based only on the construction of relevant continuous paths included in the diagram
via Minkowski sums, the perturbation results of the perimeter of convex sets and Blaschke's
selection Theorem|[164, Theorem 1.8.6].

The proof is done by contradiction: by assuming that there exists a pointA(Xa;ya) 2 f (X;y) jx >
P(B) and f (x) <y < g (x)g which is not included in the diagram. The idea of is to study the
‘position” of the curves (obtained by Minkowski sums) relating domains (of unit area) having
the same perimeterp2 [P(B);+1 ): when p is close tox, we are able to prove that there exist
curves which are located 'on the left of A" (the notion of being on the left or the right of the
point A is rigorously de ned in Chapter 8] via the index, also called winding number, of a closed
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Figure 1.11: Using the perturbation LemmaB to prove the monotonicity off and g.

curve around a point), meanwhile for su ciently higher values of p we show that all the curves
are this time "on the right of A". We then introduce the value po such that:

(a) for every p < po, there existsa couple convex sets of unit area and of perimetep who are
related by a continuous path which is located "on the left of A"

(b) For every p > po, all couples of convex sets of unit area and perimetep are related by
continuous paths which are located "on the right of A"

We then analyse two case: i corresponds to thecase (a)or to the case (b) By using continuity
properties of the index, the perturbation Lemma for the perimeter of planar convex sets and the
Blaschke selection Theorem (se¢ [164]), we are able to prove that both cases are impossible, which
provides the desired contradiction.

3) Study of the slopes of the boundary at the vertex corresponding to the ball

Since the ball is a critical point for the perimeter and Dirichlet eigenvalue under volume con-
straint, the study of the slopes of the diagram near the vertex(P (B); 1(B)) involves second order
shape derivatives. In Sectior[ 3.33, we study (for arbitrary dimensions) some stability results
and quantitative (Faber-Krahn and isoperimetric) inequalities that are then applied to develop
a better understanding of the asymptotics of the boundary of the diagram in the neighborhood
of the vertex (P(B); 1(B)).

If the theoretical study (done in arbitrary dimensions) of Section (see also [145, 64]) supports
that the upper boundary (the curve of g) admits an oblique tangent at (P(B); 1(B)) which is
equivalent to the existence of a constanth, (depending only on the dimensionn and for which
we are able to give a lower estimate, see Corollary] 5) such that

9(x)  9(xo0) , Xobn (X Xo);
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where we recall that xg := P(B) where B R" is a ball of unit volume, the behaviour of
the lower boundary (the curve of f) is much interesting to study as it is tightly related to new
guantitative Faber-Krahn's inequalities. Our theoretical study supports the following conjecture:

Conjecture 1. There exist ¢,;h, > 0 depending only on the dimensionn such that for every
8 2Kn" close toB in the sense thatd™ ( ;B) h,, we have:

P() PB) %

i i2=n H 12=n
] 1() ] Bj 1(B) ¢ -
j it ™ jBjt &

(1.28)

Let us give some comments:

~ The exponent 3=2 may seem unexpected in rst sight as it mainly appears because of the
convexity assumption. Indeed, inequalities of the type:

PO P(B)

i :2=n H B-Z:n B
720 1 BT 1(B) G TET OBt

where is a positive constant, fails for general open sets.

Conjecture[] is tightly related to the asymptotic study of the lower boundary (that corre-
sponds to the curve of the functionf) in the neighborhood of the vertex P(B); 1(B) =
Xo; 1(B) as it implies the following result:

8x 2 [xo;xo+ h);  f(X) f(xo) G(x xo):

Theoretical and numerical evidences support the fact the exponen8=2 is optimal. We note
that it is retrieved in the planar case by two di erent ways (by studying exponents  such
that the ball B is a local minimizer for the functional ; P P(B) ,see Theore
and by studying the regular polygons which numerically seem to be on the lower boundary,
see Proposition] §).

We should nally note that one could use the quantitative inequalities of [102] to obtain
quit similar estimates as (1.28) but with non-optimal exponents (larger than the expected
3=2).

1.4.3 Contributions of Chapter A} On the Cheeger inequality for convex sets
Main results

Now that we introduced the Cheeger inequality and E. Parini's results for the case of convex planar
sets, let us describe the contributions of the present thesis and give some comments on the proofs. As
one sees in Questiong|7, there are two directions we want to explore: the rst one is to improve the

lower bound 1—2 0:616::: (which we recall to be signi cantly lower than the conjectured one given by

(zﬂfa%—z 1:383::), the second one is to generalize and develop a better understanding of the problem

in higher dimensions.
. . 2
In the following Theorem, we improve the lower bound 4:

Theorem of the Thesis 3. We have:

1() j o1
h() 2 2o +

8 2K2  Jy():= 0:902::

wherejo; denotes the rst zero of the rst Bessel function.
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The proof uses a new sharp upper bound of the Cheeger constant via the inradius and the area in

the case of planar convex sets which was found while working on the Blaschke-Santab diagram relating
the latter quantities. The results are stated as follows:

Theorem of the Thesis 4. We have:

wherer() denotes the inradius of

stadiums in the lower estimate and for domains that are homothetical to their form bodies in the
upper one.

Moreover, we have the following explicit description of the Blaschke-Santab diagram:

whereB  RZ? is a ball of unit area.

r
2. 1 r() 1 .
8 2K% Lot N0 ot (1.29)

. These inequalities are sharp as equalities are obtained for

%;h() i 2KZandj j=1 = (xy) X izp*andx+; y x+P-

r(B)

h() 2

Figure 1.12: The diagram of the triplet (r; h; j j).

At last, we provide an existence theorem of optimal shape that minimizes the functionall,, :
10)

7!
in the classK" of convex shapes.
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Theorem of the Thesis 5. Let us de ne the real sequencd ), as follows:

8n2 N ; n = iglszn();

whered, : 2K" 7! h%§)2. We have:
1. ( n)n is a decreasing sequence.
H -1
2. n!Ilrpl n= 7

3. For n 2, if the strict inequality , < |, 1 holds, we have the following existence result:

9 ,2K" Jn( )= irzlllzn‘]n():

Some comments on the results of Theorems of the Thes[g 8] 4 B 5

Before presenting the sketches of proofs, let us give some relevant comments on the latter results:

~ In Theorem of the Thesig 3we obtain an improved lower bound of the functionalJ, : 7! hg)z

for planar convex sets, we note that this result is improved for special classes of convex sets namely
triangles, rhombi and stadiums, see Propositiorj P.

In Theorem of the ThesisB the choice of working with % instead of the inradius is purely
esthetical: indeed, in this setting the upper boundary of the corr%sponding Blaschke-Santab
diagram is given by the curves of the linear functionx 7! x + =, meanwhile, the lower
boundary is given by the curve of a continuous and strictly increasing function. This, in our
humble opinion, makes the diagram more easy to read.

It is interesting to note that by combining the upper bound of inequality ({.29) with the reverse
Cheeger inequality [152]:

8 2K 2. \]2( ) — 1( ) < :
L h() 2 4 L
we obtain a new sharp upper bound of the rst Dirichlet eigenvalue of planar convex set :
r— »
2 1
2K?2: - —+ —
2 4 r() i

where equality asymptotically holds for any family of thin collapsing domains, see Prposition
of Chapter[4. This inequality, is often better than the one obtained by using the inclusion

Br() (where B, (y is a ball of radiusr() included in ) and the monotonicity of ;:
1() 1B = Jo
r() r‘( ) 27

where equality holds when is a ball.

The convergence result IIirp1 n = % of Theorem of the Thesis|%shows that the constant%
n!

given in the original Cheeger inequality [55] is optimal in the sense that there exists no constant
C > 1 such that:
10)

. n.
B L8 2K" 55

C:
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" We believe that the assertion , < , 1 istrue forany n 2. This conjecture is motivated by
the discussion of Sectior 4.4]2.

In particular:

{ whenn =2, we have:
2

2<Z: 1;

thus we retrieve Parini's result of existence in the class of planar sets without using the
explicit formulae of Cheeger constants of planar convex sets.

{ When n = 3, it is interesting to note that if one manages to improve the lower bound of
J, up to a certain value, this will imply the existence of the optimal shape in dimension
3. Indeed, by using the explicit value of the Cheeger constant of the tubel = (0;1) D
recently obtained in [29] (whereD  R? is disk of unit radius), we have:

(T) _ 1(D)+ o
h(T)2 ~ h(T)2

= j = < I
3 ||'2]|£3J3() J3(T) 1:043

Thus, if one manages to show the following estimate:
8 2K?  Jy() 1:.043

which is weaker than Parini's conjecture [152] (that states that the square minimizesJ,
among planar convex sets), he will be able to prove that , > 1:043> 3 and thus apply
the latter Theorem to prove the existence of an optimal shape in dimension 3.

Unfortunately, even if the result of Theorem of the Thesis[3 provides a signi cant improve-
2 . . P . .
ment of the lower bound 4z of J> (given in [152]), it is still not su cient to prove the

assertion 3 < .
Sketches of proofs and methods

Since Theorem of the Thesis[3is a consequence of the upper bound of (1.29), we rst discuss the ideas
of proof of Theorem of the Thesis[4

Theorem of the ThesisB: study of the(r;h; j j) diagram
Let us rst give the sketches of proofs of inequalities |(1.2P):

" The lower estimate is a consequence of two arguments: the rst is the classical Bonnesen's [35]
inequality: o
8 2K% P()  r(+ rJ(—J;
where equality occurs if is a stadium, and the second is to remark that the set and its
Cheeger set have the same inradius.

The upper estimate is more tricky as its demonstration is inspired from an idea of proof of
inequality ([L.26)): since the Cheeger constant of a planar convex set is given by the inverse of
the solution of the equation

i d=t% fort2 or()

where :=fx2 jd(x;@) >tg (called aninner setof ), if one can bound the area of the
inner sets by a functiong:t2 0O;r() 7! g(t), this will provide an estimation of the Cheeger
constant h() via the rst solution of the equation g(t) = t 2 on the interval 0;r()
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In the present case we use a classical inequality found in [142, Theorem 2]:

t 2

ZON

where equality holds if and only if is homothetical to its form bodyfl}

8t2 or() ; boddod

The latter inequalities de ne the upper and lower boundaries and we are able (as it is the case
for the diagram (P;h;j j)) to explicit two families of convex sets which are continuous for Hausdor
distance and that respectively Il the upper and lower boundaries of the diagram (stadiums for the
lower boundary and symmetrical two cups for the upper one). Thus, by reproducing the same steps
as in Chapter[d (Section 1.4.]1) we can |l all the region between these curves.

Theorem of the Thesis[3: improving the Cheeger inequality for planar convex sets

This Theorem is a consequence of the upper bound given if (1.p9), Faber-Krahn's inequality [78,

126]j j 1() j Bj 1(B) (whereB R?is a ball) and Hersch's inequality [115] 1() ﬁ.

Theorem of the Thesis[$: on the existence of a minimizer in higher dimensions

Let us discuss the proofs of the 3 assertion oTheorem of the Thesis[5

1. Letn 2. In order to prove inequality , 1 n, we studied the Cheeger constant of cylinders
of the form !  (0;d) whend tends to in nity, where 2 K" 1. We are able to prove that:

d!”Tl o b (Gd) =0 a(t);

and nally conclude as follows:

n=inf Jn() inffda L (0;d) ! 2K" Yandd> 0g |Kin§ nah)= a0 w

2. To compute the limit of ( ,), we use the explicit known values of the Cheeger constant and
Dirichlet eigenvalue of ballsB R". We write:

AR GRS

3. Let us nally give the idea of proof of the existence result. Letn 2, we assume that , < , 1.
We prove that if ( k) is a minimizing sequence such thaf ¢j = 1 for every k 2 N, then the
sequence d( ) of diameters is bounded. Indeed, if it was not the case (that is to say that
d( «) k'! o +1 up to a subsequence), we prove that:

liminf J >
iminf Jn( «) | Yz Dy
by the hypothesis of the Theorem.

We note that the proof of inequality Iklm inlf Jn( k) n 1 follows from the use of relevant test
I+

sets in the variational characterization of the Cheeger constant (which provides a bound from
above of the Cheeger constant) and a lower bound (found in the proof of [41, Lemma 6.11]) of
1 via the eigenvalue of(n 1) dimensional sections.

1We refer to [136] Section 1.1] for the de nition of form bodies and to [164] for more details.
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1.4.4 Contributions of Chapter B Numerical study of convexity constraint and
application to Blaschke-Santab diagrams

In this section, we give a brief description of the methods used and the main results of Chaptér 5.

Parametrizing the convexity constraint

One originality of the numerical study of the present thesis is that we do not limit ourselves to numer-
ically nd optimal shapes but present and discuss di erent (classical and original) parametrizations
that allow to handle the convexity constraint. As expected, the e ciency of a method mainly depends
on the regularity of the optimal shape. The results presented in Chaptef b correspond to a work in
progress: in a rst time, we only perform qualitative comparison between the di erent methods, in the
upcoming work [89] we will present a deeper analysis.

We brie y list and comment the 4 methods used in this thesis, for more details and de nitions we
refer to Chapter[5.

Method 1: Approximating the support function by Fourier series

This method is quite classical now. It was up to our knowledge used for the rst time in [20] for
purely geometrical functionals in the planar case and then successfully used by other authors for
other problems (in dimension 3 and also for problems involving spectral quantities), see [20, B33,
15]. This method often allows to obtain good approximations of the optimal shapes (especially
when it contains no at parts because those ones correspond to Dirac measures in the radius
of curvature which corresponds to sum of the support function and its second order derivative),
allows to handle the convexity and diameter constraints quite easily (they are parametrized as
linear constraints), but is not very adapted when the expected shape is polygonal.

Method 2: Approximating the gauge function by Fourier series

This method is quite similar to the last one, as the convexity constraint is handled in a similar
way (linear constraints), it was already stated in [20, Remark 6.], but we did not nd a work
where it has been used. The advantage compared to the previous one is that it can easily detect
at parts (as they correspond this time to a null curvature, which is proportional to the sum of

the gauge function and its second order derivative). As for disadvantages, this method is not
suitable when the expected optimal shape has corners (as they correspond to Dirac measures in
the curvature), which is of course the case for polygons and other relevant shapes as Reuleaux
triangles. At last, this setting is not quite adapted to handle the the diameter constraint.

Method 3: Using the radial function

This method consists on assuming that the set contains the origin and using a polygonal ap-
proximation of its boundary, we then show that the convexity constraint can be parametrized

in an elegant way (by means of quadratic inequalities): up to our knowledge this method is
original. In addition to the easy formulation of the convexity constraint, this method allows

to handle the diameter constraints and provides quite satisfying results (even when the optimal
shapes are polygonal). Nevertheless, it is less suitable than the latter methods when the optimal
shape is smooth: which is expected as here the sets are approached by polygons in contrary to
before where the support and gauge functions are approached by truncated ones corresponding
to smooth shapes. It may also be more time consuming.

Method 4: Optimizing the coordinates of the vertices

Here, the convexity constraint is equivalent to the condition that all the inner angles should be
less than , this also leads to quadratic inequalities on the coordinates of the vertices. This last
method is quite e cient when the optimal shapes are polygons (with a reasonable number of
sides), unfortunately, it fails when we consider a large number of vertices as the sides quickly
overlap as soon as the process of optimization is launched.
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Application to Blaschke-Santab diagrams

The complete description of Blaschke-Santab diagrams seems in general to be very challenging (if not
to say impossible), especially when they involve spectral quantities. It is then natural to use numerical
simulations in order to have an approximation of these diagrams and conjecture some of their properties
and new inequalities.

One rst idea is to randomly generate a large number of convex sets for which we compute the
values of the functionals and then plot the obtained points. This was for example done in [11, 13]
where the authors randomly generate polygons of at mos8 sides. In the present thesis we use an
algorithm based on a work of P. Valtr [171] in order to generate convex polygons with large number of
sides (we use polygons of at mos30 sides), we refer to|[162] for a nice description and implementation
of the latter algorithm. Although, considering polygons with large humber of sides provides a slight
improved versions of the diagrams, it is still not satisfying as it is quite di cult to describe the boundary
(especially when the optimal sets are expected to be smooth).

The main novelty of the present thesis is that we combine the theoretical results of simple con-
nectedness (more precisely vertical convexity) of the diagrams (see Theorem|23) with the numerical
description of the boundary of the diagram, which is done by (numerically) solving some shape opti-
mization problems under convexity constraint (similar to () to provide a quite satisfying description
of the diagrams and thus to state some interesting conjectures.

In this thesis, a special attention is given to the investigation of the relations between the rst
Dirichlet eigenvalue 3 (spectral functional), the perimeter P, the areaj j and the diameter d (geo-
metrical functionals) of planar convex sets. This gives ust diagrams to study: (P; 1;j j), (d; 1;] J),
(P; 1;d) and the purely geometrical (P; d;j j)-diagram. We also brie y discuss other diagrams involv-
ing other relevant functionals as the Cheeger constant and the inradius (for which we propose a quite
e cient method of computation based on Matlab's toolbox "Clipper").

An example: (P; i1;j j)-Diagram

For a better understanding let us develop the example of triplet(P; 1;j j) studied in Chapter @: to
describe the boundaries of the corresponding diagram we (numerically) solve the following problems:

min=maxf () j 2K2P()= po and j j=1g;

wherepy P(B)=2 P ~. As shown in Theorem of the Thesis@ the upper domains (solutions of the
maximization problem) are smooth (C*1), meanwhile the lower ones are singular (polygons). This is
why we had to use di erent approaches for each case (methods 1,2 and 3 give satisfying results for the
upper domains, while one we use method 4 for the lower), see ChaptE} 5 for more details.

In Figure [[.13, we give the optimal shapes obtained for di erent values ofyy and in Figure[1.14, we
plot the improved description of the diagram obtained by lling all the region between the curves of
the upper and lower boundaries and compare it to the one obtained by random generation of polygons.
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Problem Po = P(B)=2p* po=3:8 po=4 Po=4:2

Upper boundary

Lower boundary

Figure 1.13: Numerically obtained optimal shapes corresponding to di erent values ofy.

Figure 1.14: Improved (P; 1;j j)-diagram.

1.4.5 Contributions of Chapter 5:

Main results

In Chapter ] we are interested in nding the optimal placement of a spherical obstacle in a given
ball in order to optimize a certain quantity. In this thesis, we consider the rst Steklov eigenvalue
of the Laplacian introduced and de ned in Section. We prove that the optimal situation (that
maximizes the eigenvalue) is when the balls are concentric. In [172], the authors consider a mixed
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Steklov-Dirichlet eigenvalue problem. They prove that the rst non-trivial eigenvalue is maximal when
the balls are concentric in dimensions larger or equal thar8 (see|[172, Theorem 1]) and note that the
planar case remains open (cf. Remark 2). We show that the ideas developed for the latter case provide
an alternative and simpler proof of Theorem 1[172]. Then, we extend this result to the planar case,
see Theorenj 2P of Chaptef|6.

Our main result in the pure Steklov setting is stated as follows:

Theorem of the Thesis 6. Among all doubly connected domains oR" (n  2) of the form B.nB,,
where B; and B, are open balls of xed radii such thatB, B;. The rst non-trivial Steklov
eigenvalue achieves its maximal value uniquely when the balls are concentric.

Sketches of proofs and methods

One classical method in spectral geometry when trying to prove an upper estimate of a quantity de ned
via a Rayleigh quotient (as it is the case for Laplace eigenvalues) is to use suitable test functions. Let
us enlighten this idea by developing the example of the pure Steklov boundary conditions: we recall
that the rst non trivial Steklov eigenvalue of a Lipschitz set  is given by

r uj2dx z

1() = inf JR% u2 H() nfOg such that ud =0 ;
@ ud @

R
thus, for every function u 2 H() nf0g satisfying @ ud =0, we have the following inequality

jr ujZdx
uzd

1()
@

¢ uitd
Any upper bound of the quotient B% will give an estimate from above of the eigenvalue 1() .

Of course, the choice of a suitable ?est function is not an easy task. In both cases of Theorem of the
Thesis[§, we chose the eigenfunctions corresponding to the spherical shell (for which the external and
internal balls are concentric) as test functions.

We take a doubly connected domain ofR" (wheren 2) of the form B.nB,, whereB; and B,
are open balls of xed radii such that B, B and denote ¢ := ?8 B the spherical shell such that
BY is the ball with same radius asB, and same center a8;. We denote by f an eigenfunction cor-
responding to 1( o): the rst Steklov eigenvalue of concentric spherical shells and the gorresponding
eigenfunctions are computed in Theore 6. We remark by symmetry arguments that . fd =0,
thus f can be used as a test function in the Rayleigh quotient corresponding to the eigenvalue;() :

R
jr fj2dx
1() R
e f2d
R
] jr fj2dx .
Since 1( o) = g the problem would be solved if one manages to prove that
@ o

R R
. 2 . 2
olr f j2dx .l fjcdx
@fzd f2d
0

@

Surprisingly, in both considered cases, the numerator and denominator both behave in the ad hoc
way, in the sense that one could prove the following inequalities:
z Z z z
jr fj2dx jr fj2dx and f 2d f2d: (1.30)
0 @ @ o
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At last, it is interesting to note that the constant term is treated with an elegant way that allows
to avoid complicated computations: the idea is to interpret it as a geometrical quantity (perimeter
or volume of a translated ball in our case) and use its invariance by translations, see the proofs of
Lemmas[9 andID.

1.5 Open problems & research projects

We nally present possible research projects.

1.5.1 On Blaschke-Santa diagrams
An interesting diagram

In the present thesis we present theoretical and numerical studies of some relevant diagrams. We note
that there are still other diagrams that are very interesting and worth to explore. Let us develop an
example.

In Chapter B} we numerically study diagrams involving the rst Dirichlet eigenvalue and other
geometric functionals, we numerically nd the extremal domains which are in some cases quite simple
to describe (like symmetrical lens, symmetrical 2-cap bodies and symmetrical slices). Unfortunately,
theoretical demonstrations of these observations seem to be very challenging. Nevertheless, there is
one interesting take away idea that we would like to highlight:

'If you do not manage to prove a conjecture involving the rst Dirichlet eigenvalue,
then try rst to prove it for the Cheeger constant.”

Indeed, the Cheeger constant corresponds to the rst eigenvalue of th&é-Laplace operator, see [121]
for more details. It is then quite natural to expect some similar behaviours with ;. The advantage
of working with the Cheeger constant is that in addition to being a bit easier to handle (as it involves
the perimeter and the volume), there are various works that provide a better understanding of this
constant, the most complete one is the classical paper [122] of T. Lachand Robert and B. Kawohl that
provides a characterization of the Cheeger constant of planar convex sets. In this spirit, we cite the
work [50] of D. Bucur and I. Fragala who proved that among polygons with the same number of sides
and same area, the Cheeger constant is minimized by the regular one. This result is a variant of a
classical and very di cult conjecture stated in the sixties by G. Polya for the rst Dirichlet eigenvalue.

Let us now give an example of a relevant diagram for which an explicit description is expected. It
is the diagram relating the Cheeger constant, the diameter and the area of planar convex sets: more
precisely, we are interested studying the following set of points:

D:= d();h() j 2K?andj j=1

By combining the inequality

1 r

_ 7,
r() j]
which is an equality for shapes that are homothetic to their form bodieE] (this result is stated in
Theorem of the thesis[4 and proved in the rst section of Chapter f) and results on the diagram

(j j;d;r) obtained in [110] (see also|[711]), we are able to explicitly describe the lower boundary.
Indeed, we have the following proposition:

8 2K2 h()

Proposition 1. Let dy d(B) = #%. The solution of the problem
minfh() jj j=1; d()= doand 2K?2g

is given by the symmetrical 2-cap body of unit area and diameted.

2We refer to [136] Section 1.1] for the de nition of form bodies and to [164] for more details.
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Proof. Let dy d(B)= #%~. We denote Ci.4, the symmetrical 2-cap body of unit area and diameter
do. We have:

minfh() jj j=1;d()= doand 2K2g min %+ 3 ji=1;d()= dgand 2K?
= min % jj=1;d()= dgand 2K? +P-
1 r

= + - . by the results of [110
Cras) * iComi =20

h(Ci.q,) (becauseC;q, is homothetic to its form body)
minfh() jj j=1;d()= dyand 2K?2g:

Thus we have the equality
minfh() jj j=1;d()= doand 2K2g= h(Cygq,):
O

In Figure , we provide a numerical approximation of the diagramD by generating 10° random
convex polygon. We also plot the curves corresponding to the lower domains given by symmetrical
2-cap bodies and the expectedipper domains, which are given by symmetrical slices and smoothed
nonagons (introduced for the rst time in [71]), see Figure[1.15.

Figure 1.15: From left to right: a symmetrical 2-cap body, a smoothed nonagon and a symmetrical
slice.

Numerical simulations support the following conjecture:

Conjecture 2. Letd d(B)= s~ andd = 312:4 be the diameter of the regular triangle of unit area,
we have:

“if dg 2 (d(B);d ), the problem
maxfh() jj j=1;d()= doand 2K?g
is solved by a smoothed nonagon.

" If dg d, the problem is solved by the symmetrical slice.
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Figure 1.16: The diagram of the triplet (d;h;j j).

Generalizing the approach used for the study of the(P; 1;j j)-diagram

It is interesting to note that the methods developed for the qualitative study of the (P; 1;j j)-diagram
seem to apply for other functionals. It is then natural to seek for a general theorem such that once
some conditions are satis ed by 3 given functionalsJ;, J, and J3, one is able to give qualitative
properties on the diagram such as the continuity and monotonicity of the upper and lower curves and
the non-existence of holes.

What about other classes of sets?

In this thesis, we mainly focus on Blaschke-Santab diagrams of convex sets. Nevertheless, it is in-
teresting to develop a better understanding of what happens for other relevant classes of shapes, for
example the star-shaped ones or the simply connected ones.

1.5.2 An upper estimate of the area of inner convex sets

Let 2K? fort2 0;r() ,wedene :=1fx2 jdx@) >tg As explained in Section
[1.4.1, nding estimates of the area of inner sets is very linked to the study of inequalities involving the
Cheeger constant. We wanted to apply this strategy to prove inequality:

p D Er——
+
8 2Kz h() SO 40l (1.31)
2 ]
Surprisingly, we did not nd in the literature an upper estimate of j j that can be used. We then
conjecture the following result which seems to be true and which can be used to give an alternative

proof of inequality .31 and characterize the case of equality:

Conjecture 3. Let 2 K?2, we have for everyt 2 0;r()

L P() 2
joddod P()t+4(j)jt2; (1.32)
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with equality if and only if  is homothetic to its form body.

Remark 1. We are thankful to Simon Larson for proposing an idea to prove the following weaker

version of ([L.32):
2
8t2 0;r() ; i di i PO t+ %tz:

The proof uses the result of([136, Theorem 1.2] (which is demonstrated in arbitrary dimensions), where
it is proved that:

t .
0 P() ;

where equality holds if and only if is homothetic to its form body. By integrating the latter inequality
on (0;t), we obtain:

8t2 0;r() ; P( 1) 1

: C P() ?...
8t2 O;r() & dJ 1 PO tH () L
which is an equality if and only if is homothetic to its form body. At last, we use the bound
r() P() | |jtogetrid of the inradius and nally obtain the announced inequality.

1.5.3 Shape derivation of functionals de ned as in ma

Many shape functionals are de ned as an in mum (or supremum) of a certain quantity, this is for
example the case for the diameter, the Cheeger constant and the rst Dirichlet eigenvalue. there are
various works in the literature where the rst order shape derivatives of such functionals are computed,
we refer for example to:

" [153] for the Cheeger constant, see also our revised version in Theoré¢m 20.

" |67, Chapter 10] for the Dirichlet energy.

" [139] for the rst eigenvalue of the p-Laplace operator with Dirichlet boundary condition.
" Theorem[19 of the present thesis for the diameter.

All this results are proven by following a classical strategy introduced by Danskin |[65]. Unfor-
tunately, the hypothesises of Danskin's Theorem are not straightforward to check (especially in the
shape derivation framework, see for example [67, Chapter 10]). It is then very interesting to look for
a speci ¢ shape optimization theorem with more straightforward assumptions.
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Part |

Study of some relevant Blaschke-Santab
diagrams
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Chapter 2

Blaschke-Santab diagrams for the
volume, the perimeter and the Cheeger
constant.

This chapter is a reprint of the submitted paperComplete systems of inequalities relating the
perimeter, the area and the Cheeger constant of planar domains [88].

Abstract

We are interested in nding complete systems of inequalities between the perimeteP, the areaj |
and the Cheeger constanth of planar sets. To do so, we study the so called Blaschke-Santab diagram
of the triplet (P;j j;h) for di erent classes of domains: simply connected sets, convex sets and convex
polygons with at most N sides. We are able to completely determine the diagram in the latter cases
except for the class of convexN -gons whenN 5 is odd: therein, we show that the external boundary
of the diagram is given by the curves of two continuous and strictly increasing functions, we give an
explicit formula of the lower one and provide a numerical method to obtain the upper one. We nally
give some applications of the results and methods developed in the present paper.

2.1 Introduction and main results

Let be a bounded subset oR" (wheren  2). The Cheeger problem consists of studying the
following minimization problem:
P(E)

h() :=inf JE) E measurable andE ; (2.1)

where P (E) is the distributional perimeter of E measured with respect toR" (see for example|[151]
for de nitions) and jEj is the n-dimensional Lebesgue measure d&. The quantity h() is calledthe
Cheeger constant of and any setC for which the in mum is attained is called a Cheeger set of

Since the early work of Je Cheeger|[55], the study of the Cheeger problem has interested various
authors, we refer to [151] for an introductory survey on the subject. We recall that every bounded
domain  with Lipschitz boundary admits at least one Cheeger setC , see for example|[151, Propo-
sition 3.1]. In [6], the authors prove unigueness of the Cheeger set when R" is convex, but as far
as we know there is no complete characterization o€ in the case of higher dimensionsr 3 (even
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when convexity is assumed), in contrary with the planar case which was treated by Bernd Kawohl and
Thomas Lachand-Robert in [122] where a complete description of the Cheeger sets of planar convex
domains is given in addition to an algorithm to compute the Cheeger constant of convex polygons.

In this paper we are interested in describing all possible geometrical inequalities involving the
perimeter, the volume and the Cheeger constant of a given planashape. This is equivalent to study
a so called Blaschke-Santab diagram of the triplet(P;j j;h).

A Blaschke-Santab diagram is a tool that allows to visualize all possible inequalities between three
quantities depending on the shape of a set: it was named as a reference [to [163, 28], where the authors
were looking for the description of inequalities involving three geometrical quantities for a given convex
set. Afterward, this diagrams have been extensively studied especially for the class of planar convex
sets. We refer to [110] for more details and various examples.

For more precision, let us de ne the Blaschke-Santab diagrams we are interested in in this paper:
given F a class of measurable sets d®?, we de ne
n o]

(x;y)2R%, 9 2F suchthatj j=1;P()= x; h()= y
n o]
P();h() + 2F;jj=1

De

We note that thanks to the following homothety properties

8t> 0; h(t)= @; jt j=t]jj and P(t)= tP() ;

one can give a scaling invariant formulation of the diagram:

n 0
De = (xXYy)2R?% 9 2F suchthatP() 5 j*2=x; j j*2 10)= vy
P A
= j§1):2;1 j?h() ;o 2F

In the whole paper, we denote:

K2 the set of planar non-empty convex sets,

" Py the set of convex polygons of at mosN sides,

B the disk of unit area,

" Ry aregular polygon of N sides and unit area,
~ d" the Hausdor distance, see for example|[108, Chapter 2] for de nition and more details.
" d() andr() respectively the diameter and inradius of the set R?.

We are aiming at describing all possible inequalities relating?, j j and h in di erent classes of planar
sets and then describing the associated Blaschke-Santab diagrams. Let us rst state the inequalities
we already know; if is measurable, we have :

" the isoperimetric inequality:
PO P(B) _,P-

= 2.2
j i¥2 jBji @2
" a consequence of the de nition of the Cheeger constant
. P(E) PO
h() = inf —_ —_, 2.3
()= in E] i (2.3)

50



" a Faber-Krahn type inequality:

P(B) _,P-

By (2.4)

j i?h() i Bj*™*h(B) =

this inequality readily follows from de nition (4.1)|and the isoperimetric inequality. Indeed:

P(C o) P(C o p—

—— ———~ h(B)= P(B)=2
iC i iC i (B)=P(B)

i i?h()= h( 9=

where %:=j j ¥2 andC , is a ball with the same volume asC o.

Note that each inequality may be visualised in the Blaschke-Santab diagram as the curve of a given
function, see Figure[2.1, and that the rst inequality may be obtained by combining the second and
third ones.

It is natural to wonder if there are other inequalities, we prove that this is not the case for general
sets, indeed, in Theorenj b we give the explicit description of the Blaschke-Santab diagram in the case
of simply connected domains (see also Figurfe 4.1). One could wonder why we chose to work with the
class of simply connected domains: the main reason is that for any subclass of measurable domains
that contains the simply connected ones, the diagram is the same.

Now, let us provide complete descriptions of the Blaschke-Santab diagram of the triplet(P; h;j j)
for both the classesS? of planar simply connected sets and<? of planar convex sets.

Theorem 5. Denote xg = P(B) =2 P o

1. The diagram of the classS of planar simply connected domains is given by:

Dsz = f(Xo;X0)g[f (X;y) ] X Xo and Xo<y xg:

2. The diagram of the classK of planar convex domains is given by:

n
Dk2= (xX;y) X Xo and g+p7 y X

(o]

Figure 2.1: Blaschke-Santab diagrams for the classes of simply connected sets and convex sets.
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We note that by taking advantage of inequalities (2.3) and (2.4), it is also classical to represent
Blaschke-Santab diagram as subset of0; 1%, in our situation, this means to consider sets:
P(B). h(B)
P() "h()

where F is a given class of planar sets. With this parametrization, Blaschke-Santab diagrams for the
classesS and K? are given by the following sets:

D2 := (X;Y)j9 2F suchasj j=1and (X;Y)= [0; 17%;

8
< Dgz

f(1;Dg[f (X;Y)jX 2(0;1)and X Y < 1g;

DY, f(X;Y)jX 2(0;1]and X Y

2X
x 9

which are represented in Figurg 2.p.

Figure 2.2: Blaschke-Santab diagrams for the classes of simply connected sets and convex sets repre-
sented in [0; 1]2.

Let us give some comments on the latter results:

" One major step in the study of the diagram of convex sets is to prove the following sharp
inequality:

PO+ 7]
2
where equality occurs for example for circumscribed polygons (ie. those whose sides touch their

incircles) and more generally for sets which are homothetical to their form bodi@

8 2K2  h() (2.5)

Inequality (R.5) is rather easy to prove when the convex is a Cheeger-regular polygon (that
is, its Cheeger set touches all of its sides), sege [50, Remark 32], but much di cult to prove for
general convex sets as shown in the present paper. We also note that this inequality may be seen
as a quantitative isoperimetric inequality for the Cheeger constant of convex planar sets: indeed,
it could be written in the following form

P()  P(B)

2. Poil=2 i i1=2
8 2K% jj7°h() j Bj""h(B) iBj2

NI
=
1l
N

1We refer to [164] Page 386] for the de nition of form bodies.
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At last, we note in Section that inequality (2.5) is stronger than a classical result [[4B,
Theorem 3] due to R. Brooks and P. Waksman. It also improves in the planar case a more recent
estimate given in [39, Corollary 5.2], that states that for any open bounded convex set R",
wheren 2, one has:

h()

I

" We note that the rst statement of Theorem §lasserts that (2.3) and (2.4) form a complete system
of inequalities of the triplet (P;h;j j) in any class of sets that contains the clas$s. Meanwhile,
the second one asserts that this is no longer the case for the clak$ of planar convex sets, where
estimates {2.3) and [2.5) are then shown to be forming a complete system of inequalities of the
triplet (P;h;j j).

1 PO .
n

We nally note that due to technical convenience, we rst show the second assertion (diagram
of convex sets) and then use it to prove the rst one (diagram of simply connected sets).

Now, let us focus on the class of convex polygons. We give an improvement of inequali.3) in
the classPy of convex polygons of at mostN sides, whereN 3. We recall that since triangles are
inscribed polygons, one has:

p N ErE——y
8 2P3 h()= M (2.6)
2
As for the caseN 4, we prove the following sharp upper bound for the Cheeger constant of convex

N -gons:

q
P()+ P() 2+4 Ntan o j j
2 j ’
with equality if and only if is Cheeger-regular and all of its angles are equal (tgN  2) =N ).
Equality is also attained asymptotically by the following family (0;1) (0;d) , , of rectangles when
d!' +1.

It is interesting to note that inequalities (2.5] and (£.7) form a complete system of inequalities of
the triplet (P;j j;h) in the classPy if and only if N is even. In the following Theorem@, we give an
explicit description of the diagram of convex polygons whenN is even or equal to3, give the explicit
description of the lower boundary and provide some qualitative results on the upper one wheilN is
odd. In Section[2.4, we perform some numerical simulations in order to numerically nd the extremal
upper domains and thus give a numerical description of the upper boundary.

8 2Py; h() (2.7)

Theorem 6. Take N 3, we recall that Ry denotes a regular polygon o sides and unit area.
We denote

P s
Dy := j §3=2;J i**2h() 2Py
We distinguish the following cases:
~if N =3, we have n o
D3 = x;g+p7 X P(R3)
“ if N is even, then
n X p_ o
Dy = (xy)jx P(Ry) and -+ y fn(x)
x+px2+4( N tan <)
wherefy : x 2 [P(Rn);+1 ) 7! > N
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" if N 5is odd, we provide a qualitative description of the boundary of the diagrarby :

{ The lower boundary is given by the half line:
fcy)jx  P(Ry)andy=x=2+" g
which is included in the diagramDy .
{ The upper boundary is given by the curve:

f(x;y)ix P(Rn)andy = gu(X)g;
which is also included in the diagramDy , where gy is a continuous and strictly increasing
function such that gy fn on P(Ry);+1 . Moreover, there existscy by >P(Rn)
such thatgy = fy on[P(Rn);bv]and gy <fpy on coy;+1

The paper is organized as follows: Sectioh 2.2 contains two subsections, in the rst one we recall
some classical results needed for the proofs, in the second one we state and prove some preliminary
lemmas which are also interesting for themselves. The proofs of the main results are given in Section
[2.3. Then, we provide some numerical results on the diagram®y in Section[2.4. Finally, we give
some applications of the results and ideas of the present paper in Secti¢n 2.5.

2.2 Classical results and preliminaries

2.2.1 Classical results

In this subsection, we recall some classical results that are used throughout the whole paper.
Theorem 7. [61, Th.2 and Remark 3]

Take N 3 and R? a convex polygon olN sides. We de ne:
X
TO= tan g
i=1 2

where ; 2 (0; ] are the inner angles of . We have the following estimates:
PO 2.

4 j

The lower bound is attained if and only if all the angles ; are equal (to % ), meanwhile the upper
one is an equality if and only the polygon is circumscribed.

N tan N T() (2.8)

Remark 2. The lower bound is a simple application of Jensen's inequality to the function cotan which
is strictly convex on (0; =2). On the other hand, sinceN tan - > , the upper estimate may be seen
as an improvement of the isoperimetric inequality for convex polygons. We refer to [61] for a detailed
proof of Theorem[7.

Let us now recall some classical and important results on the Cheeger problem for planar convex
sets.

Theorem 8. [122, Th. 1] There exists a unique valuet = t > 0 such thatj j = t2. Then
h()=1 =t and the Cheeger setof isC = | +t By, with B; denoting the unit disk.

Theorem 9. [122, Th. 3] If is a Cheeger-regular polygon (that is, its Cheeger set touches every side
of ), then:

q
ay- PO POZ 4TO 0]
2 | '
It is natural to wonder if equality holds also for some Cheeger irregular polygons: in Lemma]4,

we prove that there is only an inequality and that the equality case occurs only when the polygon is
Cheeger regular.
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2.2.2 Preliminary lemmas

In this section we prove some important Lemmas that we use in Sectiop 2|3 for the proofs of the main
results.

The following Lemma shows that the equality of Theorem[§ which is valid for Cheeger regular
polygons becomes an inequality for general polygons and thus gives an upper bound of the Cheeger
constant of polygons that we use to prove inequality ).

Lemma 4. If is a polygon, one has:

q
PO+ P02 4TO |
h() o ;

with equality if and only if  is Cheeger-regular.
Proof. Let us denote:

q
PO+ PO ?* 4T( i
FO) = 5] :

The key of the proof is to understand the graphical interpretation of h() and F() . Indeed:

" 1=h() is the (unique) solution of the equationg(t):=j ¢ t2in[0;r()] ,

~ 1=F() is the smallest solution of the equationf (t):=j j P() t+ T() t2 t2in[0;r()] ,
wherer() is the inradius of

The number of sides of the inner sets ; of a polygon is decreasing with respect td 0. Actually,
the function t 2 [O;r ] 7! n(t) (where n(t) is the number of sides of ) is a piece-wise constant
decreasing function. We introduce the sequenc® = to <t; <:: <ty = r() , whereN 2 N, such

that:
8k 2 JO;N 1K 8t 2 [ty;tk+1) n(t) = n(0) k:

Letustaket 2 [0;r()] and ak 2 J1;NK We have:

j tkj (t 1:k)P( Ik)+(t tk)zT( tk)z J tk 1j (tk tk l)P( tk 1)+(tk tk 1)2T( tk)
t t) P( o)) 2t te DTC o ,) +(t t)?T(
> 4t te DPC o D)F(t e )PTC L)

where we used Steiner formulas for inner convex polygons for the rst equality and the fact that
T( +t ,)<T( ) forthe inequality (see [122, Section 5.]). By straightforward induction we show
that for every k 2 J1;NK one has:

8t 2 [0;r()] ; jwd (PO )+t tPT( ) § PO+ TO (29

Now, let us take k 2 JO;NKand t 2 [tk;tk+1 ). We have:

g =i o P00 W) @l tPEioad ( tIPC w)F(t W)PT( b)) t?
i tPO+ tT()  t2=f();
where equality g(t) = f (t) holds only on [0; t1].

Finally
Caiaon: o= f):

8t2 tir() ; g(t) >f (t)
where equality holds only on[0;t;]. This tells us that 1=h() , the rst zero of gon[0;r()] , is actually
larger than 1=F() , the rst zero of f, with equality if and only if the rst zero of gis in [0;t;], which

is the case if and only when the polygon is Cheeger-regular (see [122, Theorem 3.]). This ends the
proof. O
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Since inequality (2.5) is quite easy to obtain for Cheeger regular polygons (because in this case we
have an explicit formula for the Cheeger constant in terms of the perimeter, the area and the inner
angles), it is natural when dealing with general polygons to try to come back the latter case of Cheeger
regular ones. The following Lemma shows how to deform a given polygon to a Cheeger regular with
while preserving its Cheeger constant, increasing its perimeter and decreasing its area, this allows as
shown in Step 2 of Section[2.3.] to prove inequality [2.5) for the case of general polygons.

Lemma 5. Let be a polygon. There exists a Cheeger-regulgiolygon € such that:j j j €j, P()
P € andh()= h €,

Proof. If is Cheeger regular we take®= . Let be a Cheeger irregular polygon. We give an
algorithm of deforming into a Cheeger regular polygon with the same Cheeger set (thus also the
same Cheeger value), larger perimeter and smaller area.

Since is Cheeger irregular, there exists three consecutive vertices that we denoté, Y and Z
such that at least one (may be both) of the sidesXY and Y Z does not touch the Cheeger seC .

First step: using parallel chord movements

We begin by the case where both the sideXY and Y Z does not touchC . We use a parallel
chord movement. More precisely, we moveY along the line passing throughY and being parallel to
the line (XZ ). This way, the volume is preserved, and the perimeter must increase when moviny
away from the perpendicular bisector of[XZ ] (which is possible at least in one direction). We assume
without loss of generality that the direction which increases the perimeter is fromZ to X (see Figure
[2.3). We then moveY until one the following cases occurs:

1. (XY ) becomes colinear to the other side of extremityX .

2. [Y Z] touches the boundary ofC .

Figure 2.3: Case 1 on the left and case 2 on the right.

In both cases, the number of sides that do not touch@C is diminished by one, while the area and
the Cheeger constant are conserved and the perimeter is increased.
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We iterate the latter process for all vertices which are extremities of two sides that do not touch
@C, since the number of vertices is nite, in a nite number of steps we obtain a polygon where there
are no consecutive sides that do not touch@C.

Second step: rotating the remaining sides

The second step is to 'rotate" the remaining sides that do not touch@C in such a way to make
them touch it (see Figure[2.4), in order to get a Cheeger-regular polygon with the same Cheeger
constant, larger perimeter and smaller area. This kind of deformations was inspired from the work of
D. Bucur and I. Fragala [50].

We denote by 1, » 2 (0; ) the inner angles of the polygon respectively associated to the vertices
X and Y, O the mid-point of the side [XY ], t the angle of our 'rotation" and X; and Y; the vertices
of the obtained polygon ; (see Figure]2.4).

Figure 2.4: Rotation of the free side along its midpoint.

Without loss of generality, we assume that pandt 0. Itis classical that and : have
the same Cheeger constant, moreover if the sidgXY ] is not touching @C then 1+ » (see|[122,
Section 5]).

By using the sinus formula on trianglesOXX ; and OY Y;, we have:

o _ _
st D and OX¢ = agy g

8
< AX

int — sin
e 27D and OY: = agy( iy

BY:

wherea ;= OX = XY=2.
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Moreover, if we denote bySpxx , and Spy v, the areas of the trianglesOXX ; and OY Y;, we have:

Jdgod =  Soxx. S ovv,
1 . 1 .
= éOX OX; sint EOY OY; sint
a? sin 4 sin

= - - - int
2 sin( ;1 t) sin( 2+1t) sin

a?sin’tsin( 1+ 2)
= - - 0
2sin( 1 t)sin( 2+ t)

becauset 0, ; t; ,+t2][0; Jand 1+ ,2][; 2 ], because is a convex polygon and the side
[XY ] does not touch@C (see [122, Section 5]).

For the perimeters, we have:

P() P() = XX+ OX(+ OY; XY YY
B sint N sin 1 N sin » sint
sin( 1 t) sin(1 t) sin( 2+1t) sin( 2+ t)
sint+sin ;1 sin , sint
= a - + —
sin( 1 t) sin( 2+ t) |
_ o, 2sin -t cos -t , 2sin 2t cos 2t 2'
2sin ' cos %t = 2sin 2t cos -2t
S S )
_ g, Sin —rt sin -t o
H t . +t .
sin — sin 7=

Finally, in a nite number of steps, we get a Cheeger-regular polygon™ such that: j j j €j,
P() P € andh()= h €.
O

Let us now recall the de nition of a radial function: let  be a starlike planar domain that contains
the origin O. We de ne the radial function f :R! R of as follows:

., cos
. - S
8 2R; f ()=sup t OjtSin 2

In the following Lemma we give some quantitative estimates for the Cheeger constant and area via
radial functions, that will be used in the fourth step of Section[2.3.2.

Lemma 6. Take ; and , two starlike planar domains with radial functions f; and f, such that
fi;f2 ro, whererg > 0.

We have:

1. jh( 1) h( 2)] % k f]_ f2k1 .

"o
2. 4 2 max(kf1ky ;Kkfaoky ) k f1 fakg

Proof. 1. The proof of this assertion inspired from [[59, Proposition 1].
We denoted = kf; fok; , we have(1+ d=rp)f; (f2 d)+ d= f,, thus:

1 d

d 2d
1+ d=ry 2 = 1+G h( 2) h( 2)+ah(Bro):h( 2) + X

71
o

h( 1)
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where B, is the disk of radiusryg.

By similar arguments we obtain:

2d
h( 2) h( )+ —;
o

which proves the announced inequality.
2. We have
a2 = (F2() f3( )d
(F20)i+if20)0) 1 f20)  f2()id
max(kflkl i kfokq ) k fi1 fokg

2.3 Proof of the main results
2.3.1 Proof of inequality (2.5)

The proof is done in four steps:

Step 1: Cheeger-regular polygons

Even-though the inequality was already known in this case, we brie y recall the proof for sake of
completeness.
Since is a Cheeger-regular polygon, by Theorerf|9, we dispose of an explicit formula of its Cheeger
constant, we then just have to use Theorenj J7 to conclude.
We write:
r
q 2 o
PO+ PO Z 4T()  jj PO* PO2 457 00 5o, Pagg
h() = — — = — :
2 j 2 j 2 j
Step 2: General polygons

By Lemma E there exists ~ a Cheeger-regular polygon such that;j j j €j, P()= P € and

h()= h €.
Then, we get:
r
P & + 4 € p——
p €
h(): he = + P.().+p::M:
2 e 2 € e g ] Jo 2

Step 3: General convex sets

By density of the polygons in K2 and the continuity of the area, perimeter and Cheeger constant
for the Hausdor distance, we show that the inequality holds for general convex sets.

Step 4: Equality for sets that are homothetical to their form bodies

If is homothetical to its form body (which is in the case of circumscribed polygons), we have by
using (164, (7.168)] and equality%r() PO= jj:

2
8200;()] ; | = 1 % P i=i P()t+P4(j)j2:

59



Thus, by using Theorem[8 we obtain the equality:

pf
PO+ 4] ].

h() = 5 (2.10)

2.3.2 Proof of the second assertion of Theorer|5 (convex sets)
As explained in the introduction, inequalities (2.3) and imply that

Dk (x;y) j X Xo and %x+p7 y X

It remains to prove the reverse inclusion. The proof follows the following steps:

1. We explicit a continuous family (Sp), p(g) Of convex bodies which Il the upper boundary of
the diagram.

2. We explicit a continuous family (L), p(g) Of convex bodies which Il the lower boundary of the
diagram.

3. We use the latter domains to construct (via Minkowski sums) a family of continuous paths
( p)p p(8) Which relate upper domains to lower ones. By continuously increasing the perimeter,
we show that we are able to cover all the area between the upper and lower boundaries.

Step 1: The upper boundary of the diagram:

The upper boundary corresponds to domains which are Cheeger of themselves, which means that
C = . ltisshown in [122, Theorem 2] that stadiums (i.e. the convex hull of two identical disks) are
Cheeger of themselves, we then use them to Il the upper boundary (x;x) j x P(B)g.

Let us consider the family of stadiums(Q;); o given by convex hulls of the balls of unit radius

centred in O(0; 0) and O;(0;t) rescaled so agQ;j = 1. The function t 2 [0;+1 ) 7! P(Qy) = 5%
is continuous and strictly increasing. Thus, we have by the intermediate values Theorem:

P(Qu);h(Qt) jt 0g= P(Q);P(Q) jt 0g=f(xx)jx P(B):
Step 2: The lower boundary of the diagram:

Since equality ) holds for sets that are homothetical to their form bodies, we use such domains
to Il the lower boundary.

Let us consider the family (Cq)g 2 of the so-called symmetrical cup-bodies, which are given by
convex hulls of the unit ball ( centred in O(0; 0) of radius 1) and the points of coordinates( d=2;0)
and (d=2; 0) rescaled so a$Cyj = 1. By using formulae (7) and (8) of [113], we have for everd  2:

r p— —
P(Cq)=2 d? 1+2arcsma:

q a5
The function d2 [2;+1 ) 7! P(Cy) =2 v daz 1+ 2arcsin§ is continuous and strictly increasing,
this shows by the intermediate values Theorem that:

P(Ca);N(Cy) jd 2g9= P(Ct);P(Ct):2+p7 jd 29:f(X;X=2+p7)J'X P(B) :

Step 3: Continuous paths:

q 5

Since the functionst 2 [0;+1 ) 7! P(Q)) = #--) andd 2 [2+1) 7! P(Cq)=2 i 1+2arcsin 2

are continuous and strictly increasing, we have that for everyp P(B) there exists a unique
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(tp;dp) 2 [0;+1) [2,+1) such that P(Q,) = P(Cq,) = p: from now on we denoteS, = Q
and Lp = Cq, .

p

For everyp P (B), we introduce the closed and continuous path  :

p 1 [0;3] ! 8 R?
3 P(Kp):h(Kp) if t 2 [0;1];
to7h @ DRI+ Opt DP(B)+@  (pR2+ P if t 2 [1;2]
(t 2P(B)+(E3 bvp; (t 2PB)+E t)p ift2[23];
where

KL= Z

PTTS, v (I HLy)
The application t 2 [0;1] 7! tSp+(1 t)Lp 2 (K?;d") is continuous and since the measure is
continuous for the Hausdor distance, we deduce thatt 2 [0;1] 7! K}, 2 (K%;d") is continuous,
thus by continuity of the perimeter and the Cheeger constant for the Hausdor distance, the path
t21[0;3]7! p(t) 2 R? is a continuous curve.

Since the diameters oflL, and S;, are colinear, we can use the results of steps 1. and 3. of the proof
of [ftouhi], thus we have

8t 2 [0 1]; g P(KY) p: (2.11)
Step 4: Stability of the paths:
Now, we prove a continuity result on the paths o P(B) let us takepp P(B) and"> 0, we
show that:
9 .>0;8p2(p o+ )\ [P(B)+1); sup k p(t)  p(k " (212)
t2[0;3]

Let us take p 2 [P(B); po + 1], with straightforward computations we have that for every t 2 [1; 3]:
k p(t)  p(tk 2p poj! O
P’ Po

The remaining case { 2 [0; 1]) requires more computations. For everyt 2 [0; 1], we have

kp(t)  p(k | P(Kp)  PKpi+ih(Kp) h(Kp)i 2 +M d (K5 Kp,):
l Cp{oz>0 }
Indeed, we used:
"~ for the term with perimeters
ZZ ZZ
jP(Kp) P(K)i= . hi g . ey, 2 heg  heg, =2 d" (K Kp, )i

" the rst assertion of Lemma 6] for the term with the Cheeger constants, with the setsK; and

Ky, that we assume to contain the originO and whose radial functions are denoted p;fp, -

. . 2
Jh(K,t)) h(K,tao)J X 5 K fpt fpoike  (by Lemmalf)
min r(K§);r(Kg)
2 . Kptka Klpoitks , d(KLKS)  (by [B7, Proposition 2])
min r(K§);r(Kg) min r(K§);r(K§)
+1)° i P
%d“ (KLKL)  (we usedr() P‘()‘ (see [40]) andkfk;  d() %
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Moreover, we have:

H t. t —
¢ (KEKE) = hg N,

n(l t)tho + thspo n(l t)th + thsp
CJ@ Dlpe + Spo]  J@ DLy + 1Sy]

1

h h
1 1) p—— o
j(A t)Lp, + tSp,j jA t)Lp+ tSp 1
n hspo n hsp
P = . | o R
j(1 t)Lp, + tSpj j( t)Lp + tSpj 1

1
i@ HL, + 1Sy

hSPo hSD 1 + hLPo hLP 1

1 1
I DL+ 1Sy (@ g *+ tSp]

+ hspo 1 T h'—po 1
d" (Spo: Sp) + d" (Lpo;Lp)
+ hs, |+ h, | (1 OLp+1tSpi | (I t)lp, + Spyj
d™ (Spos Sp) + d™ (LpyiLp)

X2
+ hSPo 1 + hLPo 1 jWk(Lp;Sp) Wk(Lpo;Spo)j:
{Zk=0 }

G(pipo) ! O
p! po

Finally, we deduce that pl.i”g sup k o(t)  po(t)k =0, which proves (2.12).
' Pot200;3]

Step 5: Conclusion:

Now that we proved that the boundaries f(x;x) | x P(B)g and f(x;x=2 + pj i x
P(B)g are included in the diagram Dg:, it remains to show that it is also the case for the set of
points contained between thenb We argue by contradiction, assuming that there existA (Xa;ya) 2
f(x;y) j x>xo and x=2+ <y <X g, suchthat A 2Dg-:.

We consider the function A :p2 [P(B);+1) 7! ind( p;A), where ind( ,;A) is the index of A
with respect to | (also called the winding number of the closed curve ;, around the point A).

" By Step 3 and continuity of the index, the function , is constant on[P(B);+1 ).

" By the rst inequality of (2.11)| for every p  xa the point A is in the exterior of ,, thus
A(P)=0.

" On the other hand, By the second inequality of [2.11), for everyp  2xa, the point A is in the
exterior of , thus A(p) 6 0.

By the last three points we get a contradiction, thus A 2 D:z. Finally, we get the equality

+p7

Dkz2= (x5¥) j X Xo and %x y X
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2.3.3 Proof of the rst assertion of Theorem [5 (simply connected sets)

By inequalities (2.3) and (2.4) we have
Dsz f (Xo;X0)g[f (x;y) | X X0 and 0<y xg:

We have (xo;Xo) = P(B);h(B) 2 S?2. Take (p;)2f(x;y) j x>xo and 0<y xg, let us
prove that there exists a simply connected domain R? of unit area such that P() = p and
h() =

If - p=22+ P ~, then by the second assertion of Theoren[]S there exists apconvex (thus simply
connected) domain satisfying the latter properties. Now, let us assume < p=2+ " : we takelL, as
in the proof of the second assertion of Theorer]5 to be the convex hull of a disk and a point outside
it such that h(Lp) = ~ and jL,j = 1. As shown in Figure, it is possible to continuously deformL
in such a way to increase its perimeter while keeping constant its area and its Cheeger constant, thus
there exists a simply connected seLp such that jL)j = 1, P(LJ) = p and h(L}) = °, which means
that (p;) 2Ds.

Finally, we obtain the equality

Dsz2 = f(Xo;X0)g[f (X;y) ] X Xo and 0<y Xg:

Figure 2.5: Tailed domain Lg with the same area and Cheeger set and higher perimeter.

2.3.4 Proof of inequality (2.7)

This is a quite direct application of Lemma [4 and the inequality T() N tan - (see Theoreny J).
Indeed, for any 2 Py, one has:

q q
P()+ P() 2 4T() il PO+ P() 2+4 Ntan g ] j_

h = — —
O FO 7] 7]
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The rst inequality is an equality if and only if is Cheeger-regular and the second one is an equality

if and only if T()= N tan -, which is equivalentto ;= 1= = 852 .

2.3.5 Proof of Theorem[®

If N=3
We have by (2.8):
P — P p_
8 2Ps; e ;%+ ;
thus we have the inclusion: n X p 0]
D3 X;=+  x P(R3) :

2
The reverse in%lusion is shown by considering for example the familyTy)q 1 Of isosceles triangles of
verticesXg 0;—> ,Yq 5,0 andZgq $;0.
We have for everyd 1.
8 p

— = 5(Td) - d+ dZ2+3 |
2 P(Rs)= X1 Xa: jTai 220G a4 *1
-Bh(R): = BTa) 4 P prmp 3 P +1 -
VEN YOS T 3=+ g al e T1

where inequalitiesx; xg andy; Yyq are consequences of the isoperimetric inequality for triangles.
This shows by using the intermediate value Theorem, that:

P(Ta) . 4 . . N x_p- °
jTijﬁ)z;Jdel-zh(Td) jd 1 =f(xaya)jd 1g= x5+ x P(Rs) D

thus, we obtain the equality n

If N is even

We have by inequalities [2.5) and [2.7):

n . x p_ o
Dn (x;y)jix P(Rn) and 5t y fn(x)

P
wherefy :x 2 [P(Ry);+1) 7! X x2+4(2 N@nw)

It remains to prove the reverse inclusion: we are able to provide explicit families of elements &y
that respectively Il the upper and lower boundaries of Dy and then use those domains to construct
continuous paths that Il the diagram.

Step 1: The upper boundary:

We recall that inequality ( is an equality if and only if  is Cheeger-regular and all its angles are
equalto (N 2) =N . A natural family of N -gons that satisfy those two properties is the one obtained
by elongating two parallel sides ofRy (the regular N -gon of unit area). Note that the existence of
two parallel sides is due to the fact that N is even. We parameterize this family via the diameters of
its elements and denote it(U ) yry)-

Since the map 2 [P(Ry);+1) 7! U 2 (Py;d") is continuous, the perimeter and area are
continuous for the Hausdor distance d™, P(Ugry)) = P(Rn) and

P(U) P(U) 2 _ 2 2 | .
ju j1=2 =2 d(Ry )2 =2 ((Ry )12 - d(Ry )12 F g +1; (2.13)
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we deduce by the intermediate values Theorem that

P(U,) _

BP P(RVIO p dRw) i -

Moreover, the sets(U ) are Cheeger-regular and have all angles equal titN  2) =N , thus they all
realise equality in (2.7) :

q I

PU)+ PU)2+4 N tan g jU j P(U)

jU j*2h(U ) = — = fn p—=
ju j7h(u ) 25U i=2 N T

Finally, we deduce that the upper boundary of Dy is given by the set of points x;fn(X) | X
P(Rn) -

Step 2: The lower boundary:

As for the upper boundary's case we construct a continuous family oN-gons (V) ¢, ). such
that Vyr,) = Ry andd(V )= for every d(Rn). We assume that the diameter ofRy is given by
[OA], whereO = (0;0) and A = (d(Ry ); 0) and denoteBy its incircle (see Figure[2.6) andM1;::;; My
its vertices.

Take d(Rn), we denoteA = (;0)and ( );( ©°) the lines passing throughA which are
tangent to By. The line () (resp. ( )) cuts the boundary of Ry in two points: we denote M,
(resp. My ,;) the farthest one from A (see Figure] 2.5), wherek 2 J1;N=2Ksuch that 2k 2 s
the number of vertices of Ry that are in the region given by the convex cone delimited by( ) and
( 9). We then de ne V as the (convex) polygon whose vertices are given by:

8 M; = My = 0O;
M, = M;; forall k2 J32;k 1K
M =::::MN7
My, = A
MNT+1=:::=MN+2 K
"M; =M; forallk2J%+2;N 1K

Note that V has at mostN sides and that it is a circumscribed polygon which means that it lays
on the lower boundary of the diagramDy . We also, note that the applications 2 [P(Ry);+1 ) 7!
M, 2 R? are continuous and thus it is also the case for 2 [P(Ry);+1) 7! V 2 (Py;d"). Then,

by similar estimates than (2.13) we get that lIim1 jf’/(j‘ﬁjz =+ 1, thus the lower boundary of Dy is
I+
given by the set of points  x;x=2+ P i x P(Ry) .

Step 3: Continuous paths:

Now that we have two families (U ) and (V ) of extremal shapes, it remains to de ne continuous
paths that relates the upper domains to the lower ones and Il the whole diagram. Unfortunately,
unlike for the case of the classk?, one cannot use Minkowski sums as they increase the number of
sides and thus could give polygons that are not in the clas®y , we will then construct the paths paths
by continuously mapping the lower and upper polygons vertices.

We assume without loss of generality that as fo’vV the diameter of U is given by OA . We denote
by O = LyLoiinbys, 4 = A Lz iiiLy the vertices of U . For t 2 [0;1], we dene  as the
polygon of vertices((1 t)M, + tL | )op:n- The polygon  is convex and included in the rectangle
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Figure 2.6: Construction of the circumscribed polygonsvV for N =8.

(0; ) 0;d(Rn) , thus we have the following inequality :

P( ¢) 2 2 1=2
[ ’ ], J tjlzz 1=2 d(RN )1:2 d(RN )1:2 ( )

d(Rn ), we introduce the closed and continuous path

For every
o3 R?
% PG dthC ) if 2 [0; 1]
t 7 § (t DPRN)+R Dt (t HPRu)+(2 t)zf\}jlzﬁpf) if t 2 [1;2];
Tt PRY)FE DG (€ QPR)+E D55 if t 2 23]
Step 4: Stability of the paths:
Take o d(Rn) and"> O, let us show that
9 .>08 2(o - 0o+ )\ [P(Ry)i+1); supk (1) L)k ™ (2.15)

t2[0;3]
Let us take 2 [d(Rn); o + 1], with straightforward computations we have that for every t 2 [1; 3]:

. P(U) PMU,)  P(V) PV, | .
k (t) O(t)k 2min jUjl:Z jU 0j1:2 Yjvj]_:Z jVOj1:2 { 00.
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Moreover, by the quantitative estimates of Section[ 2.2, there exist constant<C( ); CY o) > 0 depend-
ing only on ¢ such that for all 2 [d(Rn); o+1] and all t 2 [0; 1]

P P ° LA . .
ook FLd FED g ) )
t t

C(o) JP( ) PC™i*+Jdi Ch+ihC ) h(C °)j
Clo)  max kL OM; +t, (1 OM;° t;°k

CY% o) izr?ﬁlzl(K(kMi Mok + kL L;°K) ! Oo:

Finally, we deduce that lim sup k (t) o(t)k =0, which proves (2.15).

012[0;3]

Step 5: Conclusion:

As for the che of convex sets, once we proved that the boundaridsx;fn(X) j X P(Rn)gQ
and f(x;x=2+ " ) ] x P(Ry)g are included in the diagram Dy, it remains to show that it
is also the case for the zone between them. Ve{e argue by contradiction, assuming that there exists
A(Xa;ya) 2f(x;y) j x>P (Ry) and x=2+ " <y<x g,suchthatA2Dy.

We consider the function 5 : 2 [d(Rn);+1 ) 7! ind( ;A), where ind( p;A) is the index of A
with respect to  (also called the winding number pf the closed curve around the point A).

" By Step 4 and the continuity of the index, the function , is constant on[P(Ry);+1 ).

" By the estimates above (step 4), for su ciently close to  the point A is in the interior of
thus A()=0.

" On the other hand, by inequality (R.14), the point A is in the interior of  for su ciently high
values of ,thus A( ) 60.

By the last three points we get a contradiction, thus A 2 Dy . Finally, we get the equality

Dv= (oY) j x PR) and ox+ "y fn(x)
If N is odd
By inequalities (2.5) and (2.7), we have:
Dy f (xy)jx PRy)andx=2+"" y fy(0g
Let us study the upper and lower boundaries of the diagramDy .
Lower boundary:
SinceN 1 is even, we have by Sectiof 2.3]5 that:

f(x;x:2+p7)jX PRy 1) Pn 1 P e

It remains to prove that f(x;x=2 + p,) i x2[P(R(N);P(Ry 1)lg P . To do so, we continuously
move two consecutive sides of the polygomy so as to align them while keeping the polygon circum-
scribed, this gives us a continuous (for the Hausdor distance) family (W¢).20:1) of convex inscribed
polygons such thatWy = Ry and W1 is an element ofPy 1, see Figurg 2.J.
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Figure 2.7: Construction of the circumscribed polygonswi;.

Since the mapt 2 [0;1] 7! W, 2 (K?;d") is continuous, the functionals perimeter, area and
Cheeger constant are continuous orfK?; d" ) and ]5% P(Rn 1) (because of the polygonal isoperi-
1
metric inequality in Py 1), we have by the intermediate values Theorem:
! )
JWijh(Wh) t2[0;1] D n:

foxx=2+" )i x 2 [P(R):P(Ry 10 5%;'0

t

We nally have: D
f(x;x=2+  )jx2[P(R(N);+1)g P u:

Upper boundary:

Let us now study the upper boundary. We introduce the function

on: [P(Rn);+1) ! R
p 70 supfh() j 2Py; j j=1andP()= pg (2.16)

First, let us prove that the problem supfh() j 2PyN; j j=1 andP()= pg admits a solution,
that we denote ,2Py.

Take (' p)nz2n Sequence of elements d?y such thatj Jj=1 andP( ;)= pforeveryn 2 N which

satis es
n!Iirpl h( g):supfh() j 2Pn; jj=landP()= pg:

Since the diameters of the setg ) are all bounded byp and the involved functionals are invariant
by translations, we may assume without loss of generality that there exist a xed ballD  R? that
contains all the polygons 7. Let us denoteA7;:::; Ay the vertices of [, the sequencegAT); ::; (AY)
are bounded inR?, thus, by Bolzano-Weirstrass Theorem, there exist : N'! N strictly increasing
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and Aq;:;Any 2 R? such that ,IirPl Ak(”) = Ag. By elementary arguments of convex geometry
n:

one shows that the pointsAj;::;; Ay are the vertices of a convex polygon ,, which is also the limit
of ( p(”))n for Hausdor distance. By the continuity of the perimeter, the volume and the Cheeger

constant for the Hausdor distance among convex sets, we have:

8
%Jpj
2

|II'T+] J (n)J —

P(p)= lm P p(”’ =p

h( p)= lim h o =supfh() j 2Pn; j j=1andP()= pg:
Finally, we conclude that , 2 Py is a solution of the problemsupfh() j 2Py; j j=1 andP()= pg.
Next, let us prove the stated properties of the functiongy .

1) The function gy is continuous
Let po 2 [P(Rn);+1)

" We rst show an superior limit inequality . Let (p,)n 1 real sequence converging t@y such that

llg;Spljph( p) = lim h( p,):

As the perimeter of (. )n2n is uniformly bounded, one may assume that the domaing . )n2n
are included in a xed ball: then by similar arguments than above, ( p,) converges to a convex
polygon 2 Py for the Hausdor distance, up to a subsequence that we also denotg, for
simplicity.

Again, by the continuity of the perimeter, the volume and the Cheeger constant for the Hausdor
distance among convex sets we have:

1 0mm,1ni
E PC )= lim P(p)= lim pn=po
= nI!|rr}rl h( pn):hrg!sgop h( )

Then by de nition of gy (since 2Py,j j=1andP( )= pg), we obtain:

ov(po) h( )= lim h( pn)=lirglsgp h( p)=lirglsgp o (P):
. : 0 : 0

It remains to prove an inferior limit inequality . Let (py)n 1 be a real sequence converging tpg
such that:

liminf gy (p) = lim gy (Pn):
p! po n! +1

By using parallel chord movements (see the proof of Lemmp]5), we can construct a sequence of
unit area polygons(K ), 1 with at most N sides, converging to p, for Hausdor distance such
that P(K,) = pn for su ciently high values of n2 N .

By using the de nition of gy one can write

8n2 N ; onv(pn) h(Ky):
Passing to the limit, we get:

liminf gy (P) = lim gy (Pa)  lim - h(Kn) = h( p,) = On(Po):
p!l' po nt +1 nto+1
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As a consequence we nally getpling on (p) = on (Po), SO gn is continuous on[P(Ry );+1 ).
! po

2) The function gy is strictly increasing

Let us assume by contradiction thatgy is not strictly increasing, then there existp, > p1  P(Rn)
such that gy (p2) < gn (p1), and from the equality case in the polygonal isoperimetric inequality, we
necessarily havep; > P (Ry ). Sinceg is continuous, it reaches its maximum on[P (Ry ); pz] at a point
p 2 (P(Rn);p2), that is to say

8 2Py suchthatj j=1 and P() 2 [P(Rn);pal; h( p)=onv(p) h() : (2.17)

We note that gy (p ) >p =2+ P ~, indeed if it is not the case (i.egy(p )= p =2+ P ) we have
forh> 0: p_ p_
on(p +h) (p+h)=2+" >p =2+ =ov(p);
this contradicts the fact that gy admits a local maximum at p .

) shows that |, is a local maximizer of the Cheeger consbant between conveX -gons of unit
area. On the other hand, the fact thath( , )= gy (p ) > W implies that , is not a
P() 2

circumscribed polygon. Let us now show that any non-circumscribed polygon (ie. T() < =)
could be perturbed (while preserving the number of sides) in such a way to increage j*=2h() .

We denote ("i)i21;n the lengths of the sides of the polygon and ( i)i2q1;n] its inner angles and
denote N
i

min : —
1iNtan 5 o +tan 5 >

lo =

We distinguish two cases:

T jj reP()+ r3(T() ) 0, this means by [122, Theorem 3] that there exists a side
of that does not touch the Cheeger setC or touch it in one point. We consider a parallel
displacement of this side as shown in Figur¢ 2|8. Fot > 0 su ciently small, the polygons
and - have the same Cheeger set, thus we haye -j*=2h( ) > j j¥72h() .

Figure 2.8: Parallel displacement of one side.

" Onthe other handifj j roP()+ r3(T() ) < 0, then by [122, Theorem 3], the polygons
and - (for |"j su ciently small) are Cheeger-regular and thus we have an explicit expression
of their Cheeger constants.

We have forj"j su ciently small

. p ~z - — ) 2

A(T() )E
(2.18)
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where we usedl () = T( -) for the last equality.
As stated in the proof of [50, Lemma 23] through elementary geometric arguments, we have

8
2 P( ) = P()+ tan 1i 1 + tanl i + sin 1i 1 + sinl i K
z 1 A " n2.
. b= J I+ +% tan1|1+tan1\ &
Thus :
2
P( ")2 _ P()+ tan 1i 1 + tanl i + sin 1‘ 1 + sin1 i )
I i+t % tanl 1 tanl 2 "z
2
= P() + P() 2 = + 1 + — 1 + .1 P() ‘i "+ 0 (")Z
] ] | tan i 1 tan SE i1 sin I } "1 0

Let us show that there existsi 2 [1;N] such that ; 6 0. We assume by contradiction that
i =0 for everyi 2 [1;N], we then have

X
i =0;
i=1
which is equivalent to
P()= 4 j 1+_1 :411 li:4jj T0) -
P() - tan § sin P() - tan 4 P()

As stated in Theorem[7, this equality holds if and only if is a circumscribed polygon, which
is not the case as assumed above. Thus, there exists2 [1;N] such that ; 6 0, then by
performing a parallel displacement (in the suitable sense) of the™ side, one is able to strictly

increaseP () 5 j*2 which by increaseg j*2h() .
3) Comparison betweengy and fy and asymptotic

" It is immediate by the inclusion Py 1 P yn and inequality (.7) that fx 1 oOn fn on
[P(Rn);+1).

If we perform parallel displacement of one of the sides of the regular polygoRy we obtain
a continuous (for Hausdor distance) family of Cheeger regular polygons( -)-»o:,) with the
same angles afky such that P( +)j «j¥2 >P () j j*7 for every " 2 (0;"y), this proves that
there exist%b\, P( )5 »,j*? > P (Ry) such that for every p 2 [P(Ry);bn] we have
p+  p2+4( N tan &) _

on (p) = 5 = fn (p).

Letus prove thatif is a unit area polygon ofN sides whose angles are all equal (toy := NZ—NZ ),
one has N

P() &—— (2.19)
tan -

Let us assume that f y 0Og and its longest side is given by the segmenfOA] where A("; 0)
and "~ > 0. SinceN is odd and all the angles of are equal, we deduce that there exists a unique
vertex B (xg; ) which is strictly higher (ie. has the largest ordinate) than all other vertices. We
can assume without loss of generality thatxg ~ "=2. As shown in Figure, by convexity of

, the line obtained by extending the left side of extremity B intersects the axis of abscissa in a
point C(Xc;0) such that xc 0.
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C(xc;0) @

=2 XB

A(; 0)
Figure 2.9: An N-gon with all angles equal to .
We have
1\
_ N _ 5 _ Soas 4.
= cotan— = = =23 >
tan -3 2  XB Xc (Xs  Xc) (xg  Xc) 2

where the last inequality is a consequence 0Boas

1 (becauseOAB ) and Xxg  Xc¢

Xg =2
Thus, we have the result

P(O) N° 2N :

tan -
This proves that there is no polygon of unit area, N sides and perimeter larger thanptz"‘iN
whose inner angles are all equal (to v ). T
Thus for every 2Py suchthatj j=1 and P() p;’:‘—N we have
he) PO+ PO 2 4T() j J<P()+ P() 2+4 N tan g | j:fN e ()
2 ] 2

where the rst inequality is (2.7) and the second (strict) one is a consequence of Theorein 7.

We nally have that:

2N
8p > g——; on (P) <fn(p):
tan -
SinceN 4, we have
q
X+ X2+ 4( (N 1)tan g—)
8x P(Rn 1); 5 =fn (X)) onv(x)  fan(x):
Thus
N o x
x! +1
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2.4 Numerical simulations

Since it does not seem to be easy to explicitly nd the upper boundary of the diagramDy when
N is odd, we perform some simulations in order to have an approximation of the functiongy ; we
numerically solve the following problems:

maxfh() j 2Pyn; j j=1andP()= pog; (2.20)

wherepy 2 [P(Rn);+1 ).

2.4.1 Parameterization of the domains
we parameterize a polygon via its vertices' coordinates A1(Xz1;Vy1); 5 An (XN YN).-

" Let us rst express the constraint of convexity in terms of the coordinates of the vertices of .
It is classical that is convex if and only if all the interior angles are less than or equal to . By
using the cross product (see [19] for example), this, is equivalent to the constraints

Cio(XaimnXnsyninyn) = (X 1 X)Wk Y)Wk 1 V)X X)) O
for k =1;:::; N, where we used the convention®\g = Ay and Ay +1 = Aj.

" The volume and the perimeter of are given by the following formulae

P p
P() = Ezl (Xks1 Xk)2+(Yks1  YK)Z

8
< F(X1; XN Y G YN)

= E:l (XkYk+1  Xk+1 Y)

N[

O(X1; XN YL YN

~ Finally, we introduce the function

(X Xy YL Y ) T h() if the polygon  does not have overlapping sides
XL XN YL s YN 1 if the polygon  does have overlapping sides

where is the polygon of verticesA1(X1;Vy1);::: An (XN ;YN ). The Cheeger constant is computed
by using an open source code of Beniamin Bogosel [30] based on the results| of [122].

We are now able to write the Problem {2.20) in the following form

8
% sup (X1; 59N );
8k 2 JI;NK  Cy(Xq;:nXniYinyn) O
% f (X152 XNG Y1 YND) = Po
’ O(X1; XN Y inyn) =1

2.4.2 Computation of the gradients

We want to use Matlab's routine fmincon to solve the last problem, to do so we should compute the
gradients of the constraints Cy; f;g and the objective function

Cx;f; g are explicitly expressed via usual functions of(x1; :::; yn ), we then have by easy computa-
tions explicit formulae for the gradients. This is not the case for the objective function . We use the
following shape derivative formula of the Cheeger constant proved in [153]:

z
h% :V):= lim h(o hO _ 1 h() H;nidH?;
t! 0 t JC J @Cc\ @
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whereV 2 R? | R? is a smooth perturbation, = (Id + tV)() , n(x) is the normal to @ at the
point x and is the curvature of @ at the point x.

Since is a convex polygon andC is C1, we haveK?appa=0 on @C\ @ . Thus, if we denote
Vx, andV,, the perturbations respectively associated to the variables, and yi, wherek 2 J1;NK we
have : 8 R

< 7@% (X135 XNG Y15 YN ) = 7jc()j @c\ @ HVy, ;nidH?;
R
& (xinxnY ) = s gey @ W nidH?

2.4.3 Results

In Figure .10, we plot the points corresponding to 1000 random convex pentagons and the points
corresponding to the optimal pentagons obtained forpy 2 fP(Rs) +0:02 k j k 2 J1;100K, in
addition to the curves representing Inequalities [2.8) and [2.7). We note (as proved in Theoren|6)
that for small values of pg, the points corresponding to the optimal domains are exactly located on
the curve of the function fs (that represents inequality (2.7)) which is no longuer the case for those
corresponding to larger values ofyg.

Figure 2.10: Blaschke-Santab diagram of convex pentagons.
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We give in the Figure[2.11 a zoom on the upper boundary, where one notes that the points cor-
responding to the upper pentagons are at rst exactly located on the red curve corresponding to
inequality (2.7) and then come o and become strictly lower than it. We numerically note that the ab-
scissabs introduced in the statement of Theorem[§ is indeed (as proven in the present paper) bounded

from above by p—1o—.
20

Figure 2.11: A zoom on the upper boundary.

Finally, we give the obtained optimal shapes forpy 2 f 3:86; 4; 5g. We note that for larger values of
po the maximizers seem not to be Cheeger-regular.

Figure 2.12: Optimal pentagons obtained forpy 2 f 3:86; 4; 5g.
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Remark 3. Our numerical approach is validated by testing it on the cases for which we have a theoretical
description our the boundary, namely:

" The lower boundary of the diagramsDy, where N 3, which is given as stated in Theorenj |6
by:

f(x;x=2+ P )jx P(Rn)O:

" The upper boundary of the diagram®y , where N is even, which is given as stated in Theorem
by: ( D ! )
X+ X2+ 4 N tan )
5 P(Rn)

X;

In both cases, satisfying results were obtained.

2.5 Some applications

We give some applications of the results and ideas developed in this paper.

2.5.1 First application

One early result in the spirit of inequality (£.5) is due to R. Brooks and P. Waksman, see Theoren |2
below. It gives a lower estimate of the Cheeger constant of convex polygons, which we show to be a

consequence inequality[(2]5).

Proposition 2. [48, Th 3.] If is a convex polygon, we denote the (unique up to rigid motions)
circumscribed polygon which has the same area as and whose angles are the same as those of then

p p_

T
O (2.21)
with equality if and only if = (up to rigid motions).
Proof. We show inequality (2.5) gives an alternative proof.
p—— p-—p p—— P pP—- P—— p_
PO+ 4jj 2jj TO+ 4jj_ T+ _ T )+
h() P - - P - P ’
2 | i i I

where we respectively used[(2]5) and[(2]8) for the rst and second inequalities and the fact that

has the same area and angles as for the last equality. By Theorem [7] the second inequality is an

equality if and only if  is circumscribed, in this case the rst inequality becomes also an equality.
On the other hand, Bince is an inscribed polygon, we havel ()= P( )?=(4j j) (by Theorem

Et)and h( )= %_
Thus: p p_

This ends the proof. O
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2.5.2 Second application: on the stability of the Cheeger constant of polygons

We use inequality (2.3) and [52, Proposition 2.1] to give a quantitative version of the Faber-Krahn
type inequality for convex polygons:

Proposition 3. Take N 3. There exists a positive constantCy such that for every convex unit area
N-gon there exists a rigid motion of R? such that

hO 2 h( n)?2 Cyd® 5 ()% (2.22)
Proof. Take N 3 and aN-gon , we have by inequality (2.5)
PO 200 ") and  P(w)=2(h( n) ")
thus
2 2 P—2 P—2
P() P( n) 4(h() )° 4(h( ~) )

= an0)? n(w)? 22700 h( )
ah() 2 h( n)?;

where the last inequality is a consequence of the polygonal Faber-Krahn type inequalitir( ) h( n).

On the other hand, it is proved in [52, Proposition 2.1], that there exists Cy > 0 depending only
on N such that )

P()? P(n)* 4Cnd 5 (n) 5

combining with the latest inequality we get the announced result. O
Remark 4. The quantitative inequality (2.22) shows in particular the stability of the Cheeger constant
in the neighborhood of regular polygons between convex polygons with the same number of sides, in
the sense that if the Cheeger constant of a convex polygon is close to the one of the unit area regular

polygon with the same number of sides, then the polygon looks (up to rigid motions) like the latter one.
A similar result can be obtained for non convexN -gons, see|[583].
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Chapter 3

Blaschke-Santab diagrams for the
volume, the perimeter and the rst
Dirichlet eigenvalue

This chapter is a reprint of the paper Blaschke-Santab diagram for volume, perimeter and
rst Dirichlet eigenvalue [92], in collaboration with Jimmy Lamboley, accepted for publication in
SIAM Journal on Mathematical Analysis.

Abstract

We are interested in the study of Blaschke-Santab diagrams describing the possible inequalities in-
volving the rst Dirichlet eigenvalue, the perimeter and the volume, for di erent classes of sets. We
give a complete description of the diagram for the class of open sets iRY, basically showing that
the isoperimetric and Faber-Krahn inequalities form a complete system of inequalities for these three
guantities. We also give some qualitative results for the Blaschke-Santab diagram for the class of
planar convex domains: we prove that in this case the diagram can be described as the set of points
contained between the graphs of two continuous and increasing functions. This shows in particular
that the diagram is simply connected, and even horizontally and vertically convex. We also prove that
the shapes that Il the upper part of the boundary of the diagram are smooth (C%!), while those on
the lower one are polygons (except for the ball). Finally, we perform some numerical simulations in
order to have an idea on the shape of the diagram; we deduce both from theoretical and numerical
results some new conjectures about geometrical inequalities involving the functionals under study in
this paper.

3.1 Introduction

In this paper, we are interested in describing all possible geometrical inequalities that are invariant
under homotheties and involving the three following quantities: the volume, the perimeter, and the
rst Dirichlet eigenvalue of a given shape.

A Blaschke-Santab diagram is a tool that allows to visualize all possible inequalities between three
guantities depending on the shape of a set: it was named as a reference o |[28] and [163], where the
authors were looking for the description of inequalities involving three geometrical quantities for a given
convex set. Usually in convex geometry, Blaschke-Santab diagrams are studied for purely geometrical
fuctionals. We refer to [110] for more details and to|[25, 70, 71] for some recent results in this purely
geometrical setting.
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More recently, some interest has grown for geometrical inequalities involving the spectral quantities
of a given shape RY, like the eigenvalues of the Laplacian on the set with Dirichlet boundary
conditions on @ : therefore, the approach by Blaschke-Santab diagrams has been applied in this
context, see for example|[49] and [13], see also [24, 138].

In the present paper, we propose to study an example mixing geometric and spectral quantities.
In order to be more precise, let us de ne the Blaschke-Santab diagrams we are interested in in this
paper: givenC a class of open sets oRY, we de ne

n o]

Dc = (Xy)2R?% 9 2Csuchthatj j=1;P()= x; 1()= vy
n o}
= P(); 10 + 2Cjj=1

where | j denotes the volume of the set , P() = HY (@) is its perimeter, and () isits rst
Dirichlet eigenvalue, which can be quickly de ned with the following variational formulation:

87 9
3 jr uj2dx 2

1():=min _ —Z———; u2H}) nfog_; (3.1)
3 u?dx 3

where H3() denotes the completion for theH 1-norm of the spaceC?! () of in nitely di erentiable
functions of compact support in . We recall the following behavior with respect to homothety:

10) .
2’
This allows us to give a scaling invariant formulation of the diagram: if Cis a class of nonempty and
bounded open sets inRY, then

n (0]
Dc = (xy)2R% 9 2CsuchthatP() 5 j"= =x; j j¥ 1()= vy
( ! )

8t> 0, 4(t)= jt =ty j and P@t)= t P():

P .2
= ..(LI;J i .0 ; 2c
J )

We are now in position to state the rst main result in this paper:

Theorem 10. Let O be the class ofC! open sets inRY, we have:
Do = P(B);+1 1(B);+1 [ P(B); 1(B)

where B is a ball of volumel.

Let us give a few comments on this result:

the most famous inequalities in this framework are the isoperimetric and the Faber-Krahn in-
equalities, stating that

8 20 suchthatj j=1; P() P(B) and 10 (B): (3.2)

In terms of the diagram, it says that Do is included in the \up-right" quadrant de ned by the
point (P(B); 1(B)). Theorem asserts that the diagram is in fact exactly this quadrant (see
the next point for a discussion about whether the boundary of the quadrant should be included
or not in the diagram); in other words, inequalities given in (3.2) are exhaustive in the sense that
any other inequality that is invariant with homotheties and only involves the three quantities
(P; 1;] ]) are already taken into account in (3.3); we say that this is a complete system of
inequalities in the classO.
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one could wonder why we chose to work withC! domains: the main reason is that there are
several de nitions of perimeter, that all agree for smooth enough sets (say Lipschitz sets) but
may disagree for nonsmooth sets. In the smooth framework, the equality cases ifi (3.2), up to
translations, occurs if and only if is the ball B (see for example|[147, Section 2] and [120,
Example 2.11] respectively for the rst and second inequalities). It explains why the boundary of
the quadrant (except the point (P(B); 1(B))) is notincluded in the diagram. Also, it shows that
Theorem[1] is the strongest statement in the sense that for any subclass of Lipschitz domains
that contains C! -domains, the diagram is the same.

However, when working with nonsmooth domains, equality in [3.2) may happen for sets di erent
from a ball. If we choose to work with the De Giorgi's perimeter for example, one ha$(B) =
P(BnK), for any Borel set K with zero Lebesgue measure. On the other hand, for the Faber-
Krahn inequality, we have 1(B) = 1(BnK) as soon asK is a set of zero capacity, see for
example [106, Remark 3.2.2]. In remark]s we deduce from Theorem [10 a full description of the
diagram for the class of non necessarily smooth sets whe is the perimeter of De Giorgi: this
description could be di erent for another de nition of the perimeter, but as shown by Theorem
[10, this can only a ect the boundary of the diagram.

It is now natural to restrict the class of sets, so that the corresponding Blaschke-Santab diagram
becomes more challenging to understand: a natural class that has been extensively studied in the purely
geometrical context is the class of planar convex sets. The Blaschke-Santab diagram ¢P; 1;j j) in
this speci c case has been rst numerically studied by P. Antunes and P. Freitas in [12]. We would like
to give a theoretical description of the diagram, in the same spirit of [49| 25] . We obtain the following
main result:

Theorem 11. Let K2 be the class of convex planar open sets:

n )
K? = R2;  is convex and open:

We denotexg = P(B) = Zp*, where B is a disk of area 1. Then there exist two functionsf
[Xo;+1)! Randg:[xo;+1)! R such that

1. the diagram Dk is made of all points in R? lying between the graphs of and g, more precisely:

n (0]
Dkz= (GY)2R% x X and f(x) y o(x) ; (3.3)

2. the functions f and g are continuous and strictly increasing,
3. for everyx>xo, let 2K?2suchthatj j=1 and 1()= X, then
~if P() = g(x), then is CLl,
“if P()= f(x),then is a polygon.
4.1 x5 90, X2, f%%0)=0 and limsupd®) 9t )g(gx‘)) ALS B) 1B) o

X! Xo

Let us comment about this result and its proof:

this result gives a good understanding of the shape of the diagrarD_: it says in particular that
it is simply connected, and even horizontally and vertically convex.

in other words, the knowledge off and g is enough to describe all possible (scaling invariant)

inequalities involving the three quantities (P; 1;j j), in the class of convex sets oR?: these

functions quantify in which way one can improve inequalities 3.2) if one knows that the shape
is convex, and not only just an open set.
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of course, it is not expected to have an explicit formula for functionsf and g. Up to our
knowledge, Theorem[ Il is one of the rst qualitative and complete description of a Blaschke-
Santab diagram while we do not have a good knowledge of the shapes that achieve the boundary
of the diagram. Compare with [24, 138] where it is still an open problem whether the Blaschke-
Santab diagram for the triplet ( 1;T;j j) where T denotes the torsional rigidity, is simply
connected (or horizontally and vertically convex, which is a stronger statement), both for the
class of open domains (see [24, Problem 3]) and for the class of convex domains (|138, Conjecture

2]).

the proof of the rst two points in Theorem [T]is therefore the most involved part of this paper
(see also Sectiofh 3.3]2); it relies in particular on a perturbation lemma (see Lemmia| 7) among
convex sets and involving functionalsP; ; andj j, which states that if we denote K? the set of
planar convex domains with unit area endowed with the Hausdor distanced" , then

1. the ball is the only local minimizer of the perimeter, as well as the only local minimizer of
1, in (K;d)
2. however, there is no local maximizer of the perimeter in(K?;d"), and no local maximizer
of ; thatis CL1.

We believe this Lemma is interesting in itself; its second part is not easy to prove at all. It
uses the tools and results of shape optimization under convexity constraints studied in [132, 134,
133]. It mainly explains the restriction to dimension 2. Up to our knowledge, the results given

in Theorem[11 or in Lemma[7 are open in dimension 3 or higher. We also denot¢? the set of
convex open subsets dRY whend 3, and Dy« denotes the associated Blaschke-Santab diagram.
Notice that some results from Section| 3.3.p are stated and proved in arbitrary dimensions (see
Propositions[4 and[§). In Section3.4.P, we discuss the case of higher dimensions and conjecture
that as for the planar case,Dgq is given by the set of points contained between two continuous
and increasing curves, see Conjecture 5.

the third assertion provides some regularity (or non-regularity) properties for domains lying on
the boundary of the diagram. If follows from results of [134], see Corollary[3. We note that
to be able to apply [134], we have to prove a Serrin's type lemma on convex sets, where no
regularity assumption is made: see Lemma]8, which is given for arbitrary dimensions and is
rather interesting in itself. The C! regularity of the upper optimal domains allows us to restrict
the fourth assertion of the perturbation Lemma|7 to the case of smooth domains, which is easier
to prove, see also| [130].

though it is not expected to compute explicitly f and g, the last point in Theorem provides
some results about the asymptotic behavior off and g near +1 and near xo = P(B), see
Proposition [g, Corollary | (which are stated and proved in arbitrary dimensions), and Corollary
[7] (which is proved only in dimension 2). We actually provide an improvement to the result
f Axo) = 0, which is the main novelty about these asymptotics: more precisely, investigating
the lower part of the diagram for x close toP(B) is related to the following question: for what
exponent may we expect that there is an inequality of the form

10) 1(B) c(P() P(B))

for 2 K? close to the ball and for somec > 0 independent of . We show in the second part
of Theorem that must necessarily be greater or equal t8=2 for such an inequality to be
valid, and we show evidence that such an inequality is likely to be true with = 3=2 (see the
rst part of Theorem {4Jand Proposition 8} even though we are not yet in position to prove it,
see Sectior} 3.4]1. Finally, we compare the conjectured inequality (with the exponenB=2) with
the sharp quantitative Faber-Krahn inequality proved in [42], see Remark{1].
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In the following section, we give a proof of Theoren{ I0. In Sectiof 3|3, we focus on the case of
convex planar domains: we rst recall theoretical information that was known about the diagram, and
provide numerical simulations. We then prove the main lemma about perturbation results in the class
of convex sets inR? (Lemma [7]), and then deduce that the boundary of the diagram is made of the
graph of two increasing and continuous functions (see Theorein 12), and furthermore that the diagram
is simply connected (see Theoremi 13). This eventually leads to the proof of Theorefn l1. We also
describe the asymptotics off and g near+1 and xo, see Proposition § and Section 3.3]3. In the last
Section, we discuss related problems and new possible conjectures.

3.2 Proof of Theorem[10

As explained below the statement of Theorenj 10, the inclusion
Do P(B);+1 1(B);+1 [ P(B); 1(B)

is due to the isoperimetric and Faber-Krahn inequalities with equality cases, see for example [147,
Section 2] and [120, Example 2.11]. It remains to show the reverse inclusion.

Step I we rst show, using a homogenization strategy, that for any 2 (0;+1 ), there exists a
sequenceg n)n2n Of C1 open sets with unit area such that:

P( ) !, P(B) (3.4)

and
I .
W(0) L, a(B)+ (35)
Let n 2 N , we coverRY by cubes(P")i>n of size2=n. From each cubeP" such that P" B we
remove the ball T" of radius a4, centered at the center of the cube, where:

d=(d 2) )
Can it d 3 and Cyq= d@d 27,4

dn = exp Cpyn? if d=2 P it d=2-

with ! 4 classically denoting the volume of the unit ball.

S
We considern su ciently big so that agn < % Letusdene ,:=Bn T"; Where |, := fi 2
i21,
N j P" Bg S
In order to preserve the total measure, we use the sets, = | (vg + T;") which are smooth
IS i2l,
and with unit volume, where vq 2 R is chosen such thatB \ (va+ TM") = ; (see Figur).
i21p
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Figure 3.1: The domains
We have:

P( n)= P(B)+2 Card(l,)P(T]) P(B)+ Mdndag;nlnlll P(B);

where M4 dimensional constant.

Let A, : L?(B) ! L?(B) be the resolvent operator of the Dirichlet Laplacian on ,, which
associates tof 2 L?(B) the unique solutionu 2 H3( ) to u= f, extended by zero outside .

[58, Theorem 1.2] shows that, for everyf 2 L?(B), A,(f) strongly converges toA(f) in L?(B),
where A is the resolvent operator of + in H(B) with Dirichlet boundary conditions on @B
In particular, in view of [106] Theorem 2.3.2], the eigenvalues ofA, converge to the corresponding
eigenvalue ofA; as a consequence, we ha\{1(=,llirp1 1( n)= 1(B)+ . This implies n|"r+n1 1( n) =
Jim i n) = aB)+
Step 2 In this step, we analyze the e ect on the perimeter and the rst Dirichlet eigenvalue of adding
a at ellipsoid to a given open set, rescaled so that the total volume remains 1.

Givep a srr;oqth open set of volume 1, as well a8 2 (0;1) and 2 (1 ;1], we consider

= 1 "dd [ E" ,whereE" is a translated and rescaled version of

( o )

d xi 1 2
(X155 X9) 2 RT sd az T o X <1
. k=2
h L
sothat 1 "9 9 \ E" =;andjE" j="d. Note rstthat j " j=(1 "9+ "d=1.
Then for every land" 2 (0;1) we have by Faber-Krahn inequality:
" . B1 — in.i2=d 1
1(E ) 1 W - JBIJ 1(Bl) o
where By s a ball of ynit radius.
Since 1 "d¢ \E" =: wehavethat ( " )=min (@1 "%% ; (E" ), which
leads to the following fact:
o 1( o i2=d 1 "oy w1l _ 1()
if " is such thatiud)% j Bij 1(B1) 5 then o )= 12 )i = DL
(3.6)
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On the other hand, given" 2 (0;1), it is clear that the function 2 (1 ;1] 7! P( " ) is
continuous, and we have

P("H=P(@ "))+ PEH=@ " PO+ T and P( ) 1 +1;

3.7)
where 4 is the perimeter of the unit ball.

Conclusion: let x> P (B) andy > 1(B). We want to prove that there exists a smooth open set
of unit volume such that P() = x and 1() = vy. To that end, we use the previous steps, and will
adjust the parameters 2 (0;+1),n2 N, "2 (0;1), 2 (1 ;1]

" First, we use step 1 above that leads to the existence of a sequence of open detg)n2n Of unit
volume and such thatP( ) converges toP(B) and 1( ) convergesto ;(B)+ where will
be chosen later.

For eachn 2 N, we then use the second step to obtain ; for " 2 (0;1) and 2 (1 ;1] We
notice now that

if 1( n) <y thenonecan nd ", = "4(y) 2 (0;1) such thaty = 1l n)
(1 "d)2=
We therefore assume from now on that <y 1(B) and n is large enough so that 1( 1) <y.

By assuming also that is close toy 1(B), we have 1( ) as close toy as we want forn
large enough, and then clearly", is close to 0.

‘o i2=d
In particular this implies (11( d”))z Ba 11 5o using [3:6), this leads to
ndy T n

()=
independently of 2 (1 ;1]

Finally, as we just noticed that one can assumé', as small as we want, and a®( ,) is close to
P(B) if n is large, the rst formula in (§.7) shows that P( ,»'') x, and therefore by continuity
of 2 (1 ;1]7' P( "' ) and using the second part of [[3.]/), we deduce that there exists

such that P( ' )= X.

This concludes the proof.

Remark 5. As explained in the introduction (comments on Theorenj 1), ifO°is a class of open domains
that may contain nonsmooth sets, say for example the class of open subsetsRf the diagram Dgo
depends on the choice of the perimeter. For example, if we consider the distributional (De Giorgi's)
perimeter, we are able to prove

Doo= P(B);+1 1(B);+1 [ P(B); 1(B) ;

which di ers from Dg as it contains the vertical half-line f (P(B);"); ~> 1(B)g.

if we take 2 O%such that 1()=  1(B), then the H'-capacity of the symmetrical di erence

B is equal to zero, which also implies that itgl-dimensional Lebesgue measure is also equal to
zero. Thus since the distributional perimeter doesn't detect sets with zerd-dimensional Lebesgue
measure we haveP () = P(B), and thus the horizontal half line(P(B);+1 ) f 1(B)gis not
in the diagram.

On the other hand, if we take® > {(B), we are able to construct a setK- 2 O° with unit
measure such thatP (K-) = P(B) and ;(K-)= ". Let us introduce rq;r; > 0, such that:
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{ rq is the radius of the ballB  RY of unit measure.
{ ro is chosen such that ; fx 2 RY; kxk<rog = ", so in particular ro <r .

One can then chooseN- 2 N large enough so that
n o]
{ 8k2J;N- 1K 1 x2R% ro+ K ro) < pxk<rg+ (NI T s
We take
N[ 1
K-:=Bn x 2 R%: kxk=rq+
k=0
We have 1(K-)= ;1 fx2RY kxk<rog = andP(K:)= P(B), because thed-dimensional
Hausdor measure of ,E';O b x2 R kxk = ro+ k (ry rp)=N- is equal to zero and thus
not detected by the De Giorgi's perimeter.

k(rz o)

3.3 The case of convex domains

Finding estimates of ; via geometric quantities is a question that has interested various communities.

If Theorem shows that Faber-Krahn and isoperimetric inequalities form a complete system of
inequalities in the case of open sets, this is no longer the case if one restricts the class of domains to
convex or simply connected ones. We focus in this section on the case of convex sets, see Seftion|3.4.3
for some comments on the case of simply connected sets.

3.3.1 Known inequalities and numerical simulations
Let us recall the well-known inequalities providing estimates of ; in terms of perimeter and volume:

1. One early result in this direction is due to G. Polya who proved in [156] (1959) that for any
convex planar domain one has:
2 P ) 2

() <— —% (3.8)

! 4 ]
This inequality actually holds for simply connected planar sets, see| [154]. It is also sharp, as
equality is attained asymptotically by a family of vanishing thin rectangles. It is noticed in [119]
that Polya's proof of inequality (8.8) holds for convex sets in higher dimensions, and the authors
extend it to a larger class of sets. Recently, a generalization fop 2 (1;+1 ) in the case of the
rst p-Laplacian eigenvalue was obtained, see [69, 40].

2. Another classical result is proven by E. Makai in [141] (1960): it gives a lower estimate of the

fundamental frequency of a planar convex set :
O
> — = .
10 > 5 7 (39)

The inequality is sharp, as equality is attained asymptotically by a family of vanishing thin
triangles. This result was recently extended to higher dimensions by L. Brascg [39, Corollary
5.1]: ford 2, he proves:

2 PO *
d. o .

8 2KS 1() q i (3.10)
which is also sharp, as equality is attained asymptotically by a certain family of \collapsing
pyramids”. Note that [39] also generalizes such an inequality for the rstp-Laplacian eigenvalue,
wherep?2 (1;+1).
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3. The Payne-Weinberger's inequality [154] states that for every planar, open and simply connected
set , one has: ,
1 PO .
1() 1(B)  1(B) S 1 2] 1
where B is the disk of same measure as and J; is the Bessel function of the rst kind of order
one andjo; is the rst zero of the Bessel function of the rst kind and of order zero. Moreover,
equality is achieved only when is a disk. For large values ofP () , this inequality is weaker
than (B.8). But for values of P() close toP(B), (8.11) provides a quantitative estimate of
the Faber-Krahn de cit  1() 1(B) by the isoperimetric de cit. It shows in particular that
when the perimeter of is close to the perimeter of the ball with the same measure, then the
eigenvalues are also close to each other. One can nd results in the same spirit for convex domains
in arbitrary dimensions in [38, 69].

(3.11)

The stated inequalities give an explicit region inR? which contains Dx> and is, up to our knowledge,
the smallest known set containingDy:, see Figure 3.P.

160

—— Polya’s inequality

140

—— Makai’s inequality

120
100

—— Payne-Weinberger’s inequality

80

Eigenvalue

—— Faber-Krahn’s inequality

60

40

20

Perimeter

Figure 3.2: The smallest known domain that contains the diagram (in yellow).

In order to have an idea on the shape oDg:, P. Antunes and P. Freitas [12] generated random
convex polygons of unit area and whose number of sides is betwe@and 8. In this paper, we rst
get a slight improvement of the numerical diagram by generating1®® polygons whose numbers of sides
are between3 and 30, see Figure 3.B. Note that the problem of generating convex polygons is rather
interesting in itself: in [162], one can nd a brief introduction and an e cient method of generating
random convex polygons, the algorithm is based on a work of P. Valtr|[171]. We notice that with these
random polygons we get a quite good description of the lower boundary of the diagram, in contrast
with the upper part of the diagram part which seems more \sparse". This may be explained by the
fact that the domains which lay on the lower boundary are polygons while those on the upper one are
smooth (see CoroIIary@). We also notice:

on one hand, that regular polygons lay on the lower boundary of the diagram as well as superequi-
lateral triangles (that is, an isosceles triangle whose aperture (angle between its two equal sides)
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is greater that = 3).

on the other hand, that we expect thin stadiums (domains obtained by adding two half disks to
the extremities of a rectangle) to be a good approximation of domains describing the upper part
of the diagram: it is easy to prove that they realize asymptotically equality in (8.8), and they
are better candidates that any random polygons or shapes we have tested.

140 -

120 -

100 -

Eigenvalue

60 -

40

1 1 1 1 1 1 1 1 1
35 4 4.5 5 55 6 6.5 7 7.5
Perimeter

Figure 3.3: Blaschke-Santab diagram obtained by generatingl®® random convex polygons with at
most 30 edges.

By adding the latter special shapes to the diagram, one can obtain an improved version dDg:,
see Figure[ 3.4: indeed we note that thanks to Theoreri 13, we can say that it contains the surface
lying between the lowest points of the diagram (given by random polygons) and the one given by the
stadiums: this zone provides an improved numerical estimation of the diagram, see Figufe 3.4.

Actually, since the problem of theoretically nding the extremal shapes (those on the boundary
of the diagram) is most certainly challenging (see Sectioh 3.4]1) and actually likely unreachable, it is
interesting to try to provide numerical computation of optimal shapes. Then, once a precise description
of the upper and lower boundaries is obtained, from Theorerh 11 this implies a precise description of the
diagram. As mentioned before, we prove in Corollary B that the domains realizing the lower boundary
of the diagram are polygons while those realizing the upper one are quite smoottC{?): this suggests
that we should use two di erent shape optimization approaches. We refer to|[89] for a more detailed
numerical study of the optimal shapes describing the boundary oDy and also a numerical study of
other Blaschke-Santab diagrams.
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Figure 3.4: An improved description of the diagram.

We note that by taking advantage of ), it is also classical to represent Blaschke-Santab diagram
as subset of0; 112, in our situation, this means to consider the set P(B)=P() ; 1(B)= 1() | 2K?
see Figurg 3.5 below.

Figure 3.5: Blaschke-Santab diagram represented ir{0; 1%

88



3.3.2 Proof of Theorem[11l

As the proof of Theorem[1] is quite involved, we proceed in several paragraphs: we rst prove that
the diagram is closed and path-connected, which rely on the use of Hausdor convergence and classical
results, see Proposition[ #. Then in Sectioj 3.3]2 we state and prove the main perturbation lemma
(Lemma[7). With these preliminaries, we are in position to prove the four assertions of Theorerf 11:

1. see Theorenj 13, 3. see Corollary[ 3,

2. see Theorenj 12, 4. see Propositior] § and Corollarie§]5 anfl]6,

where the proofs of Theorem$ 12 and 13 are both using Lemnja 7. Finally, we note that, as their proofs
do not rely on the perturbation lemma, Propositions[4 and[§ and Corollary[$ are stated and proved
for arbitrary dimension d 2.

Strategy of proof of the rst and second assertions of Theoren| 11

Before detailing the proofs, let us rst give a few comments on the strategy of proof of the rst two
assertions of Theorenf Il1, which are consequences of Lemfja 7. We decompose the proof into two main
steps (both steps use Lemma|7): in Theorerh 12 we de né and g as the lower and upper parts of the
diagram (see [3.1}) and[(3.15)), and show that these functions are continuous and strictly increasing.
Then in Theorem we show) which implies thatD is simply connected: as already mentioned
in the introduction the simple connectedness property of a Blaschke-Santab diagram may be rather
complicated to prove. If we were able to nd explicitly the extremal domains (those who are on the
upper and lower boundaries of the diagram) then we could use them to construct continuous paths via
Minkowski sums, relating the upper boundary to the lower one, and prove that this process lls all the
surface between the upper and lower curves (in fact it is because one can observe that these explicit
optimal sets have a continuous dependence in the abscissa this seems to be a di cult statement

to achieve without knowing explicitly these optimal shapes). In our situation, nding the explicit
extremal domains is at least very challenging (see Conjecturie] 4 for example) and very likely impossible.
Nevertheless, we manage to overpass this di culty and give a proof of the simple-connectedness of the
diagram without knowing the extremal sets (see the proof of Theorenf 13): the proof is also based on
the construction of suitable Minkowski paths and the use of the perturbation Lemma[7. We believe
that our approach can be generalized and applied to other diagrams, in the sense that once a similar
perturbation lemma is achieved for a triplet of functionals (instead of (P; 1;j j)), a similar strategy
can be used to obtain qualitative results for its Blaschke-Santab diagram.

The diagram is closed

We recall the following de nition:

De nition 2. The Minkowski sum of two subsetX and Y of RY is the setX + Y := fx+vy; (x;y) 2
X Yg

Proposition 4. Taked 2, the diagram Dy is a closed and connected by arcs subset BF.

Proof. Let (Xn;Yn)n a sequence of elements ddya converging to (x;y) in R2. Let us show that

(X;y) 2 Dga.
We have, by de nition, the existence of a sequencé ), of convex open sets such that

8n2N;j nj=1; P( n)=xn and 1( n)= Ya:

We recall that for any 2 K9, one has the following inequality:

PO 1

d0) <Ca— g (3.12)

89



whered() denotes the diameter of and Cq is a dimensional constant, see [{7, Lemma 4.1].

In particular, the sequence(P( n))n is bounded (because it is convergent), since the se(s )n
are in K¢, by (B-12), (d( n))n is also bounded, and given that the considered functionals are
invariant by translation, we can assume that the domains( ), are contained in a bounded box.
Then by Blaschke selection Theorem (see for example [164, Th. 1.8.7]), there exists a convex
domain  such that ( ) converges up to a subsequence (for which we keep the notatidn ,))

for the Hausdor distance to

It is well known that the involved functionals (perimeter, volume and ;) are continuous for the
Hausdor distance among convex bodies, see for example [164] and [108, Theorem 2.3.17]. So
we can write:

8 o
3 ) 1= lm jaj=1
, PO)= i, PO =
oalC )= Iim o a(a) =y
and this concludes the proof.
" Take o; 12KY, wedenote ;= j(l(lt)t)o—ft”ljlm,sincetZ[O;l]Y! (1 t) o+t 12 (K9d")

and the functionals (j j;P; 1) are continuous for the Hausdor distance, we have by composition
that t 2 [0;1]7! P( ); 1( {) 2Dke R?is also continuous and relates ¢ to ;.
O

Corollary 1. Taked 2, foreveryp P(B) andl 1(B), the optimization problems

inf=sup 1() = 2K%j j=1andP()= p and inf=sup P() = 2K%j j=1and ()= |
have solutions.

Proof. Take p P (B), by inequalities (3.8) and (3.10) and the positivity of 1 and the perimeter, we

have:
2

8y 2 Rsuch that (p;y) 2Dxei 0y %

2
8x 2 R such that (x;1) 2 Dga; 0 x —dl;

this implies that the supremum and in mum of fy =(p;y) 2Dgag (resp. fx =(x;1) 2DgaQ) are
nite. If (yn)n (resp. (Xn)) is a minimizing or maximizing sequence (i.e. such thatmlirpl VYn =

inf =supfy =(p;y) 2 Dk«g and m"Tl Xn = inf =supfx = (x;|) 2 DkaQ), then the sequence(p;yn)n

(resp. (Xxn;1)n ) converges inR? and thus by Proposition @ the limit is in the closed setDga, thus the
existence of solutions of the problems irk ¢,

O
Main lemma

In the following, we will denote
K$=f 2K%j j=1g and K{,:=f 2K%jj=1;P()= pg
ford 2andp P(B) with B being the ball of R of volume 1.

Before stating the perturbation lemma, we recall useful classical result on the volume of the
Minkowski sum of convex sets. For more details on the Brunn-Minkowski theory, we refer for ex-
ample to [164].
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Proposition 5. There existd+1 bilinear (for Minkowski sum and dilatation) forms Wy : K¢ K 41 R,
for k 2 [0;d], named Minkowski mixed volumes, such that for everi 1;K, 2 K4 and t;;t, 2 R, we
have:

Xy

« t9 KWy (K 1; K 2): (3.13)

JtiK1 + oK =
k=0
Moreover, the Wy are continuous for the Hausdor distance, in the sense that if two sequences of
convex bodies(K '), and (KJ), converge to some convex bodigl§; and K, both for the Hausdor
distance, one has:
lim Wi(K 15 K3) = Wi(K g3 Ko):

Now, we state the perturbation Lemma.

Lemma 7. (Perturbation Lemma) We endow the space of convex bodies with the Hausdor distance.
We have:

1. the ball is the only local minimizer of the perimeter inK?;

2. the ball is the only local minimizer of 1 in K¢, whered 2;
3. there is no local maximizer of the perimeter inK?;

4. a CY1 convex domain cannot be a local maximizer of ; in Kf.

Notice that one of the main di culties for this lemma is to show that one can perturb a given
convex domain in order to increase or decrease its perimeter or its eigenvalue, and still remain convex.
Of course, if the domain is smooth and uniformly convex, such perturbations are easy to build. But
it is a di cult task, in general, to build any perturbation of a general convex domain, see for example
[132]. This mainly explains why the rst, third and fourth points are only given when d = 2. Note
that we trust that the rst point could easily be obtained for the perimeter, using the same strategy
as the for the second point: as we will use this result only in dimension 2, we chose to show a more
elementary proof for the rst point, that works well in dimension two but does not seem easy to adapt
to higher dimension.

Proof. We prove each assertion:

1. Let 2 K?2nfBg. We use the Minkowski sum to build a perturbation of  that decreases the
perimeter. We denote B; the ball of radius 1 (which is not the same asB whose volume is 1);
then, given s > 0 su ciently small, Steiner formulas give:

j+ sBlj=j j+ P() s+ jBijs?; and P(+ sBy)=P()+ sP(By);
so considering

— J{* sBi)

— - 2K?;
] + sBij

S

wheres > 0, we obtain

P(+ sBy) _ _ P()+ sP(Ba)
"7+ sBij ] j*P() s+Bys?

P( s)=

By denoting f :s2 [0;+1 ) 7! P( s), a simple computation shows

PO *
£90) = PGBy o
i
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which is such that f 40) < 0 by isoperimetric inequality sz#j) 4 =2P(B3).

So fors > 0 small enough, we haveP( ¢) < P ( ¢) = P() . Since + sB converges to
whens! 0 and the measure is continuous, both for the Hausdor distance inK?, we have that
s ! o for the Hausdor distance. This shows that is not a local minimizer of the perimeter
S!

in K2.
. Let 2K¢nfBg. We now build a perturbation that decreases i: as is not a ball, there exists

a hyperplaneH such that is not symmetric with respect to H. We choose coordinates so that
H=f(xy)2RY 1 R;y=0g We introduce the sets:

I = x2RY 1= 9y2R; (xy)2 and J*:=fy2R= (x;y)2 g wherex 2|
Since is convex and of volumel, it is bounded and non-empty, thus the setsl and J* (where
x 2 | ) are also convex, bounded and non-empty. We can then introducei;y. : 1 ! R such
that:

8x 21 ; yi(x)=inf J*¥ and vy,(x)=supJ*:

By convexity of , we can write:
= f(xy)2RT Y R; x21 and yi(x) <y <y 2(X)g;

with y; convex andy, concave.
Now, we de ne a displacement eldV : R ! RY by:

VG = 0 2 0+ va(0)

Let :=(ld+tV)() ,for0O t 1, whereld:x2 RY7! x 2 RYis the identity map. The
process of deforming = o to the symmetric set ; through the path t 7! ; is a variant of
the so called continuous Steiner symmetrization (see [47] for example). It is well known that the
volume is preserved throughout this continuous process; moreover, we can show that convexity
of domains is also preserved. Indeed, for every2 [0; 1]:

t t t t
t= (GY)2R% x21 and 1 5 V100 S0 <Y< Syi()+ 15 ya(x)

Yet, the facts that | is convex, the function Sy, + 1 5 vy, is concave and the function

1 5 y1 5Yz2isconvex yield that  is convex.
Moreover, we have that ’| o for the Hausdor distance. Indeed
t! o+

d"( ) = d"(@ ;@
= max sup inf ka a%;sup inf kb bk
a2@ . a2@ 2@ 2@

t . .
qupjyl(X) +y(x)j ! O
x21 t! ot

Finally, as is not symmetric with respect to H, it was proven in [54, Lemma 3.1] that the
continuous symmetrization strictly decreases the rst eigenvalue, and since .I o for the
t! 0*

Hausdor distance, we conclude that is not a local minimizer of 1 is K‘l’.
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3. On one hand, from [132, Theorem 2.1, Remark 2.2], we deduce that any local maximizer of the
perimeter under volume and convexity constraints must be a polygon (more precisely, in [132]
they consider local minimum where the word local in understood for thew %! -norm on the so-
called gauge function of the set ; but this is in particular the case if we consider local minimum
for the Hausdor distance).

On the other hand, no polygon can be a local maximizer of the perimeter irk?: to prove this,
we use a parallel chord movement. More precisely if is a polygon, one can consideA; B; C
three consecutive corners so tha®BC forms a triangle. One can moveB along the line passing
through B and being parallel to the line (AC). This way, the volume is preserved, and the
perimeter must increase when movingB away from the perpendicular bisector of[A; C] (which
is possible at least in one direction).

From the two previous remarks, we deduce that there is no local maximizer of the perimeter
under convexity and volume constraints.

4. In [130], the authors show that a local maximum of ; in K% is a polygon, this proves that any
smooth (in particular C1') domain is not a local maximizer of 1 in K2.

O

One can deduce the following result which gives a re nement of Lemmp]7 concerning the perimeter
functional:

Corollary 2. Let 2 K2, Then for any sequence(p,) converging toP () such thatp, P(B) for all
n 2 N, there exists a sequencé ) of elements ofK? converging to  for the Hausdor distance, and
such thatP( )= p, forall n2 N.

Proof. If 6 B, by Lemma[?], we can build a sequencéK ), of elements ofK? converging to  for
the Hausdor distance, and such that P(K) <P () <P (K2n+1) for everyn 2 N and since(py) is
bounded, we can also assum&y and K, such that p, 2 [P(Kg);P(K4)] for all n 2 N. We will use
this sequence(K ) to build ( ) : forn 2 N,

" ifpy=P() ,wetake ,= anddene (n)= n.

" if phn >P () , then asP (K +1) converges toP() from above andp, P(K31), we can de ne
(n):=max f2k+1 = P(Kx+1) pngand consider the function:

0 1

p it 7! P%rtK m*d Y §:

This function , is continuous and sincep, 2 [ n(0); n(1)]=[P() ;P(K (n)], by the interme-
diate value Theorem there existst, 2 [0; 1] such that ,(t,) = p., we then take:

LN URICIL PN

1;pn:
tnK (n) +(1 tn)

T ifpn <P () ,weset (n):=max f2k j P(K2) pngand choose . as in the previous case.

It remains to show that the sequence( ) converges to for the Hausdor distance. If the set
Il :==fn2N = p, 6 P() gis nite, then the sequence( ,) isequalto for n large enough. If on the
other hand | is in nite, the fact that P(K,) nI! 1 P() implies that nIIirp1 (n) =+ 1 , which gives
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nlIirpl K = ,thus (taK @y +(1  t5)) nI! 1 for the Hausdor distance, then by continuity
of the measure, we get that | nl! 1 for the Hausdor distance.

If = B, one may reproduce the same strategy as above by considering a sequerfég,), of
elements ofK? converging to B for the Hausdor distance such that P(B) <P (K,) for everyn 2 N

(second assertion of Lemmzﬂ?) and then use Minkowski sums and intermediate value Theorem to
construct the sets( ).

O
Study of the boundary of the diagram
We de ne functions f and g by:
f: [P(B);+1) ! R
p 70 min 1) ; 2K%j j=landP()= p (3.14)
g: [P(B);+1) ! R
p 70 max 1() ; 2K%j j=landP()= p (3.15)

and we recall that these optimization problems admit solutions, see Corollary fl. By de nition (and
by the isoperimetric inequality), we have
n o
Dk (x;y)2R?jx P@B)andf(x) y g(x) : (3.16)

In this section, we will rst give the asymptotics of f and g near+1 for arbitrary dimension d 2,
then we prove the second part of Theorenj 11, which is stated again below in Theorem|12. To obtain
the rst part of Theorem we need to show the reverse inclusion of[(3.16), which will be obtained
with Theorem 3.

Proposition 6. Taked 2, we have

2 2

2 2.
g(x)x!1 Zx and f(x)x!1 Ex.

Proof. By inequalities (8.10) and (3.§), one has:
2 2
d. 2 2.
8K 2KT, ZzP(K)® 1K) < P(K)™

Then:
2

2
) 2 2.
8x P(B); 4—d2x f(x) o(x)< Zx :

However, since the right- and left-hand-side inequalities are respectively attained in the limiting case
of at collapsing cuboids and collapsing pyramids (see| [39, Corollary 5.1.]), we have the stated equiv-
alences.

O

Remark 6. In this paper, all the study is done for shapes of volumé. It is interesting to wonder about
what would happen if one removes such constraint: we believe that in this case the diagram would be
given by: ( )
. . B)P(B)T
PO 10 | 2K%= (xy)ix>oandy —EPETT
Xd 1
where the boundary corresponds to balls. We note that the idea of 'relaxing" the volume constraint
has been successfully used in [138] to give some qualitative properties of the boundary of the diagram

involving the rst Dirichlet eigenvalue, the torsion and the volume.
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Theorem 12. Assumed = 2. Then functions f and g are continuous and strictly increasing.

Remark 7. Some of the properties of and g come with minor e orts, namely the lower semicontinuity
of f (or upper one of g). But to prove the full continuity and monotonicity, we use LemmaB, and
this explains why Theoren{ 1P is restricted to dimension 2. Compare tq [138, Theorem 1.1] where the
authors could not prove that the upper part of the diagram is the graph of a continuous and increasing
function.

Proof. We start by proving the continuity of f. Let po 2 [P(B);+1 [.
Foreveryp2 [P(B);+1 [, by Corollary E] there exists | a solution of the following minimization
problem:
mn 1() j 2K2andP()= p

" We rst show an inferior limit inequality . Let (pn)n 1 real sequence converging t@, such that

1( po )

|I£T!1 Ef 1( p)= nllmll
Up to translations, as the perimeter of ( p,)n2n IS uniformly bounded, one may assume that
the domains ( p,)n2n are included in a xed ball: then by Blaschke selection Theorem,( )
converges to a convex set for the Hausdor distance, up to a subsequence that we denotey,
again for simplicity.

By the continuity of the perimeter, the volume and ; for the Hausdor distance among convex
sets, we have:

8 . . _ .
30 0= m it

: PC )= lim P(p)= lim pn=po
T a0 = fimy () = lmint ()

Then by de nition of f (since 2KZandP( )= po), we obtain:

f (po) 1( )= lim 1( pn):Iim'inf 1( p):Iim'inf f(p):
P Po P Po

nl +1

It remains to prove a superior limit inequality . Let (pn)n 1 be a real sequence converging tpg
such that:

limsupf(p)= lim_ f(pn):
p! po n! +1

By Corollary E] there exists a sequencegK,)n 1 of K% converging to ,, for the Hausdor
distance, and such thatP (K ) = p, for everyn 2 N .

Using the de nition of f one can write
8n2N; f(pn) 1(Kn):
Passing to the limit, we get:

limsupf (p) = Ilim1 f(pn) IIim1 1(Kn) = 1( po) = T (po):
P! po no+ no+

As a consequence we nally getpllirrg f(p) = f(po), sof is continuous on[P(B);+1 [. The same
method can be applied to prove the continuity of g.

95



" We now prove that f is strictly increasing. Let us assume by contradiction that it is not the
case: then by continuity of f and the fact that I+|r1n f =+ 1 (see Proposition|6), we deduce the

existence of a local minimum off at a point po > P (B). Using Corollary [1, this means there
exists 2 KZ%and"> 0 such that

P( )=po and 8p2(pp "po+"); 1( )=f(po) f(p);
which implies
8 2KZsuchthatP() 2 (po "po+"); 1( ) 1():

Because of the continuity of the perimeter inK?, this would imply that is a local minimum
(for the Hausdor distance) of ; in K2, which, from the rst point in Lemma ‘/[]mplies that
must be a ball, which in turn contradicts P( ) > P (B).

We nally prove that g is strictly increasing. Assuming by contradiction that this is not the
case, then there existp, > p;  P(B) such that g(p2) < g(p1), and from the equality case in
the isoperimetric inequality, we necessarily havep; > P (B). Sinceg is continuous, it reaches its
maximum on [P(B);pz] at a point p 2 (P(B);p2), that is to say

8 2K2suchthat[P(B);pz2]; a(p) () : (3.17)
Using Corollary [T again, one knows that the problem
minfP() ;  2K{ and 1()= 9(p)g (3.18)

admits a solution K 2 K?2.

On one hand, [3.17) implies thatK is a local maximum (for the Hausdor distance) of 1 in
K2. From Lemma|7 we deduce thatK cannot be C11.

On the other hand, K is also a solution of ). We want to apply the regularity result {134,
Theorem 2] which shows thatK is C%, which is a contradiction. This theorem applies as,
denoting m() = ( 1() ;j j) 2 R? (which are the constraints in (3.18) besides the convexity
constraint, the latter being dealt with by its own in nitely dimensional Lagrange multiplier, see
the proof of [134, Theorem 2]), it is well known that the rst order shape derivative (see for
example [108] for de nitions) writes:

Z VA
8 2C! (R%R?; miK ): = jr uij? ngk d; nek d
@K @k
whereu; is the rst normalized Dirichlet eigenfunction on K : the convexity of K is used here to
provide enough smoothness so that this formula is valid (indeed it is well-known thatu; 2 H?()
so its gradient has a trace on@K , see also [106, Theorem 2.5.1]). Therefore this shape derivative
atK isinL! (@K)? (see[[134, Section 3.3] for the link between shape derivatives and derivatives
in term of the gauge function as considered in [134, Theorem 2]), and also that it is onto: indeed,
if it was not, we would have the existence ofc 0 such that jr u;j = con @K . With Lemma E]
proven just below, this would imply that K is a ball, which is again impossible. We conclude
that g is strictly increasing, which ends the proof.

O

In the previous proof, we used the following Iemmﬂ

1We thank Bozhidar Velichkov for helping us with the proof of this lemma.
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Lemma 8. Let  be an open and bounded convex set R?, and u; solution of @.1), that is to say a
rst eigenfunction of the Dirichlet-Laplacian in . We also assume that there existe 0 a constant
such that

jruj=con@: (3.19)
Then is a ball andc > 0.

Remark 8. The result in Lemmal[§ deals with a well-known problem that goes back to the famous result
by J. Serrin [166]. The main di culty here is that we do not assume regularity for  or u;, except
the one given by the convexity of . There is an extensive literature on extensions of|[166], some
of which weakening these regularity assumptions, but we did not nd a direct answer to the question
raised in Lemma(§: the closest result we could nd was [137, Theorem 1 and Remark (2) in Section
5]. Therefore, we adapt the regularity theory of free boundary problems by taking advantage of the
convexity of , which makes the context favorable.

Proof. First note that from regularity theory, uy 2 H2() \ W™ () (see for example[[100]), s® u;
has a trace on@ , which shows that ) has a meaning in the sense of traces. Alsa 2 C°() can
be extended byO outside , and then u; 2 C°(RY).

" Let us rst exclude the casec= 0. Assuming to the contrary that the hypotheses of the lemma
are satis ed with ¢=0, we have
z z

8 2HY); rug r'dx = () u'dx + (Quy)d:
@

R
As Qu; =0 on @ and applying this property with * 1, we obtain () uidx = 0, which
is a contradiction asu; > 0in

Assumec > 0. In order to apply [[L66], we aim at proving that (B.19) implies regularity of the

domain . To that end, we use the theory of regularity for free boundaries: in our context, we
want to apply [66, Theorem 1.2] with f := 1() u; 2 CO(R%)\ L (RY), which says that as

is a Lipschitz domain, if one can prove that ) is valid in the sense of viscosity, then must

actually be C1' for some > 0. From there it is very classical with [124] that is actually C* ,

which implies that u; 2 C! () and so [166] applies and provides the conclusion.

Therefore, let us prove thatjr uij = cin the sense of viscosity: this means that for evergy 2
and every' 2 C2(RY),

1. if xg 2, " (X0) = ui(xp) and ' up; (resp. ' up), then ' (Xo) f (xo) (resp.
" (X0)  f(X0)),
2.if Xg 2 @, ' (Xo) = ui(xp) and ' + up (resp. '+ up), then jr ' (Xo)j c (resp.
jr " (X0)j c©),where' . :x2RY7! max( (x);0).

For the rst point, this follows from the regularity of u; inside , namely u; 2 C2() . Let
us focus on the second point and takexo 2 @ and ' 2 CZ2(RY). In order to simplify the
computations, we choosexg as the origin which allows to considerxg = 0: we will do a blow-up
at Xg, so we denote

ug(rx) .

= —; and 8 2R% u(x)= —=; ',(x)=

' (rx),
r r r

We then claim:

1. ( ) o is increasing and one can de ne

[
0= r
r> 0

which is a cone (it is the (interior of the) usual tangent of at X in the context of convex
geometry). We also have that(@ ) o converges to@ ¢ locally in the Hausdor sense.
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2. asu; 2 WH () , up to a subsequencéu, ) o converges locally uniformly to a function ug
de ned and Lipschitz on RY. Moreover, as forr > 0, one has  u;(x) = rf (rx) cHJ.d@lr

in the sense of distribution in RY, we have at the limit (using the previous point to justify
the convergence):

Uo(x) = cHJ.d@lo:
As ¢ is a cone, this implies that ug is 1-homogeneous: indeed, for 2 (0;1 ), consider
Up : X 7! Lug(x ). Itis easy to see thatu, has the same Laplacian aslo (in the sense of
distribution in RY), sov := ug Ug is harmonic in RY. Asr v is bounded, from Liouville
Theorem we deduce thatv is a ne, but as v(0) =0 and r v(0) =0, we deduce thatv =0,
which meansug is 1-homogeneous.

3. as' is smooth, (' ;) o converges locally uniformly to an a ne function ' ¢(x) that is such
that, up to a choice of coordinates,

8x 2 RY; ' o(X) = Axyq

where A = jr ' (Xo)j.

4. (a) Assume nowu; '4. Then up(x) 'o(X) = Axqin RY. If A=0then A c
Otherwise, we getfug > 0g f xq > 0g. From convexity of o we obtain equality of
these two domains. Then asup and x 7! cxq both satisfy the same Cauchy problem
with conditions on @xq > 0g, we deduce thatug(x) = ¢(Xq)+, and then clearlyug ' ¢
impliesc A.

(b) Assume nally that u; ' .. We reproduce here a proof similar to|[16{1, Lemma 5.31].
Using that ug is 1-homogeneous and nonnegative, we get that the trace of on9 'isa
rst eigenfunction of the Laplace-Beltrami operator on ¢\ ¢ * with Dirichlet boundary
condition on @ o\ ¢ ! corresponding to the eigenvalued 1. As o\ 4t ¢ 1.=d 1

\f x4 > Og and the Laplace-Beltrami of Sf lisalsod 1we obtainthat o= fxg> Og
and as in the previous caselg(X) = ¢(Xg)+ andc A.

We have therefore shown thatjr u;j = c is satised in the sense of viscosity, which as
mentioned above, concludes the proof.

O
Theorem[12 allows us to prove the equivalence between 4 optimization problems.

Corollary 3. Let p>P (B). The following problems are equivalent:
() minf () j 2K2 and P()= pg () maxfP() j 2K?2 and ()= f(pg

() minf 4() j 2K?% and P() pg (IV) maxtP() j 2KZ% and () f(po.

in the sense that any solution to one of the problem also solves the other ones. Moreover, any solution
to these problems is a polygon.

Similarly the following problems are equivalent :

(N maxf () j 2KfetP()= pg )y minfP() j 2Kiet 1()= 9(p)g

() maxt () j 2KfetP() pg (V) minfP() j 2Kfet «() oo
and any solution is C%1,

Proof. Let us prove the equivalence between the rst four problems.
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" We rst show that any solution of (I) polves (il):]let |, be a solution to[()] Then for every
2 K2 suchthat P()  p, one has:

1) £ PO f(P) = 1( p)
where we used the monotonicity off given by Theorem[12: therefore |, solves (Il)}

Reciprocally, let now P be a solution of[(Il)] we want to show that P must be of perimeter p.
We notice that
f (P fPCP  f(p);

where the rst inequality follows as problem allows more candidates than in the de nition
of f, and the last inequality uses again the monotonicity off . Thereforef (p)=f P( P) , and
sincef is strictly increasing, we obtain P( P) = p, which implies that P solves (1).

We proved the equivalence between problens (I) anfl (Tl); equivalence between problerps (111) ard (1)
is shown by similar manipulations.
It remains to prove the equivalence betweer (I) and (1T},

" Let , be a solution of which means that , 2K2;P( ,)= pand 1( p)= f(p). Then for
every 2K?suchthat 1()= f(p) we have:

f(p= 0 f PO ;
thus, sincef is increasing, we getp= P( ) P() , which means |, solveg(Il)]
" Let now g be a solution of|(Ill)| then we have:

f(e= 1 fPCP;
thus, by monotonicity of f we getp P( g). On the other hand, since E solves{ (I|and that
there exists |, solution to we have P ( 3) p which nally gives P( ;)= p and shows that

P
3 solve.

The same approach can be applied to prove the equivalence between the second four problems. It
remains nally to show the geometrical properties of optimal shapes:

" Let be a solution of one of the rst four problems. Thanks to the previous equivalence, it is
necessarily a solution td (I} which enters the category of \reverse isoperimetric problems". We
want to apply [134, Theorem 4] (see alsa [134, Example 8] for a similar problem, even though here

1 appears in the constraint of the problem): to that end one needs to see that the constraints
in[(IN),]thatisto say m()=( 1() :;j j)=(f(p);1) have a rst order derivative which is onto.
As in the end of the proof of Theorem, this follows from Lemm{B. We deduce that [134,
Theorem 4] applies and therefore is a polygon.

" Let be a solution of one of the last four problems: thanks to the equivalence, it is necessarily
a solution of|(IlT") 5o again as in the end of the proof of Theoren| 1P we apply [134, Theorem 2,
Corollary 2] (as in |134, Example 8], we also use [134, Propositions 5-6]) which shows that is
ctt,

O

Simple-connectedness of the diagram

In order to complete the proof of Theorem[1], we now need the following resuilt:
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Theorem 13. We have:
n )
Dk2= (Xy)2R% x PB)andf(x) y g(x) ;

thus, Dk is simply connected.

Proof. We consider a coordinate system(O;T;7). Since the involved functionals are invariant by
rotations and translations, we preliminarily remark that one may assume if needed that every domain
contains the origin O and that its diameter is colinear to the axis (O;T).

For a given convex bodyK , we denote by dian{K) its diameter and by hx and g respectively
the support and radial functions of K de ned by

8 2S%; he()=supthx; i;x2Kg; k ( )=supf 0; 2Kg (3.20)

Step 1: Minkowski sum and continuous paths:

Let Ko; K1 2 K2 such that P(Ko) = P(K;) = p. De ne:

n(l t)K0+ tK 1
TIT DKo+t

8t2[0;1];, K= (3.21)

" Sincet 2 [0;1]7! (1 t)Ko+ tK, 2 (K?;d") and the functionals (j j;P; 1) are continuous for
the Hausdor distance, we have by composition thatt 2 [0;1] 7! P (K4); 1(K{) 2 R?is also
continuous.

" We also notice that thanks to the linearity of the perimeter for the Minkowski sum, as well as
the Brunn-Minkowski inequality (see for example [164, Theorem 7.1.1]), one has:

8t2[01) P (1 DKo+ tKy =(1 P(Ko)+ tP(Ky)= p;
and j(1 Ko+ tK4jz (1 1)jKojZ + tjK4jz =1;

which implies
8t2[0;1];, P K; p: (3.22)

This shows that given two convex domains with same perimeter, 1) de nes a continuous path
linking them, which \stays on the left" as we can see on Figurg 3.p.

1

1(B)+

Figure 3.6: The path goes on the left
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Forp P(B) and for eachK(; K, 2 Kip, we therefore denote ¢ ,.x, the following closed path:

KoK 1 . [O;l] ! ( R2
P(Kz2t); 1(Kzt) if t 2 [0; 3],

t 7!
P(Ko); (2 2t) 1(Ky)+(2t 1) 1(Ko) ift2[3;1]

We note that as de ned above, the path .k, contains two components:
" the rst one corresponding to t 2 O;% , Which is included in the diagram Dy,

~ and the second one corresponding to 2 %; 1, which is just "ctional” (not necessarily included
in Dk2) and is introduced in order to obtain a closed path so as we can use the index theory.

Step 2: Continuity of the paths k,;k, with respect to (Ko;K1):

Let pp > P (B). Take Kg; K1 2 Kf;po and (K§) and (K1) two sequences oK? converging respec-

tively to Ko and K for the Hausdor distance and such that P(K§) = P(K{) forall n 2 N . Let
"> 0: we will prove that:

9N-;8n N-;8t 2 [0;1]; Kok 4 (1) kg () <™

We have for everyt 2 [3; 1]
ko1 (1) kg (t) j P(Ko) P(Kg)i+(2 20)j 1(Ky) o(KD)i+@t 1) 1(Ko) 1(Kg)j
j P(Ko) P(Kg)i+j 1(K1)  1(KD)is

so the estimate is easy to obtain thanks to the convergence ¢K §); (K1) and the continuity of 1 and
P.
For every t 2 [0; 1], we have
ko1 (D) kg (t) P(Ka) P(KZ) + 1(Ka)  1(K3): (3.23)

We want to control P(Ky) P(KZ%) and 1(Kz) 1(KZ%) independently oft. For the perimeter
this will easily follow from the behavior of perimeter and volume with respect to Minkowski sums; for
the eigenvalue the situation is more involved and we will use a quantitative version of its continuity

with respect to the Hausdor distance:
" We rst notice that for all t2 [0;1=2]and n 2 N:
i1 2)Ko+2tKqaj 1, j@ 2)K§+2tKDj 1 and P(Ky);P(K3) P(B):

Therefore using Proposition[

jP?(Ka)  P?(K3)j
P(K2a)+ P(K3
1 P(Ko)? P(K§)?

2P(B) j(@1 2)Ko+2tK1j j(1 2)KJ +2tK]j

P(Ko)? (1 2t)*Wo(Kg;K[)+4t(1 2)Wa(Kg;K])+4t*Wa(Kg;KT)
P(K§)? (1 2t)°Wo(Ko; K1) +4t(1  2)Wi(Ko; K1) +4t2Wa(Ko; K1)

P(Ka) P(K3)

NG
P(Ko)3Wik(K§;KT)  Wi(Ko;Ky)j
k=0
+iWi(Ko; K1)j j P(K{)? P(Ko)zj}i (3.24)
VA
HEO;Kl



By continuity of the perimeter, P, Wy,W; and W, for the Hausdor distance, we havenllirp1 HR ok
0 while Hg ., does not depend ort.
The result [59, Lemma 2.1] states that if ; and , are starlike planar domains with radial

functions | and , for which there existsro > Osuchthat ,; , rpandk | LK1
ro, then:

() 1 2) fél(sl)k Lk (3.25)

We want to apply this result to (K, ; K5;) fort 2 [0; %] and n large enough. We therefore seek
for a suitable ro such that the conditions of [59, Lemma 2.1] are satis ed.

Lett 2 O;% and n 2 N suciently large so that P(K{);P(K]) po+1. This implies by
[B.22) that P(KJ, po+1 for everyt 2 0;% . We now use the classical inequality (see for

example [35]) that asserts that for any convex body 2 K9, one hasr() %; wherer ()
denotes the inradius of . In particular if 2 K?% and P() po +1, we have:
1
= > 0 .
r() ro o+ 1 0 (3.26)

One can apply this result to Ky and K2;, and this implies that one can assume without loss of
generality that K, and K J; contain the ball of center O and radius ro, and this gives k,, ro
and gy ro. We moreover have:

K kaky K kg ka
2t 1 2
t rO

+1)2 )
%dH(KZt;Kg) (we usedk k; diam() P() po+1):

0

d? (Ka;K5)  (see |37, Proposition 2])

On the other hand, we have:

d™ (Ko K5) hi,.  hky

n(l 2t)hKo +2thK1 n(l 2t)hK8 +2thK?
i@ 2)Ko+2tK4y  j@ 20KJ +2tK D]

1

hy n
@ 2) p—ks s _
j@ 2)Kg +2tK 4j @ 20K +2tK ] N
n }"IK1 n hK{‘
T Ko +2tKyj A 20)K§ +2IKT]
1

P he, hkn , + he,  hgo
TI@ K§ +2tK] e e TR TG

1 1

j@ 20)KJ + 21K Dj pj(1 20)K o + 21K 4
d" (Ko;KJ)+ d¥ (Kq;KD)

+(khioky + khi kg ) J(L 20KE +2tKDj j (1 2t)Ko+2tK4j
d" (Ko; Kg)+ d¥ (Ky;KD)

+(th0k1 + th1k1 ) P

X2
+(khi ok, + ki, k; ) Wi (K S KT Wi(KoiKa)j:
{72 }

GR

0:f 1
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We then obtain the following estimate:

1 (po + 1) 2
812 0.5 1 Kku Ky 4 OT Kok o (3.27)

As for Hy .., by continuity argument we have n!Iirpl Gk, = 0. Then, we for n su ciently

large (independently ont), we have ,, K 4 ro.
We are nally able to apply (3.25) on K, and K J,. We get that for n su ciently large, we have
1 3 3 1(B1)
8t2 03 ; 1(K2t)  1(K3) 3 1Bk ky kK 1r8 Y (po+1) 2GRk .

(3.28)

By (B.23), (8.24), (3.28) and the fact that im o GR oy, = lim o HR i, =0, we conclude that
there existsN- 2 N such that:

8n  N-;  sup Kok (1) kpkp(t) <™
t2[0;1]

Step 3: The arcs go in nitely to the right when the perimeter increases:

Letp P(B) and (Ko;K;) two elements ofKip; taking advantage of the invariance with transla-

tion and rotation, we choose to align the diameters ofK o and K; with the same axe (say(O;T)). We

prove here that this implies: 0

8t2[0;1] P K >

where (K )20.1) is de ned in (B.21).

As mentioned in the beginning of the proof, we can assume that the diameter of every involved
convexK 2 K2 is aligned with (O;T), thus the diameter of K is given by

diam(K) = hy (0) + hx ( );

where hy is the support functional of K, de ned in (. On the other hand we denote"k the width
in the direction orthogonal to (O;T):

"k =he (=2)+ he ( =2):

We easily get the following estimates from Figurg 3.J7:

2 diam(K) P(K) 4 diam(K) and jKj "k diam(K) 2Kj;
In particular if K 2 Kip, then

diam(K ) g 2 8
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diam(K) = hx (0) + hx ()

Figure 3.7: The convex contains a quadrilateral and is contained in a rectangle

We denote byd; and "; the diameter and width in the direction orthogonal to (O;T) of (1 t)Ko+
tK 1, wheret 2 [0; 1]. We have:

d = TZT}E’;\;)Z?] ha Hke+rw () + ha pre+rw . ( + )
= g}g\_)zg] 1 ) (h,( )+ heo( + N+t (he,( )+ he,( + )

(R zr?o‘i‘%‘](h“()* heo( + )+t ;Poagl(hm(ﬂ he,( + )

(the diameters of K, and K ; are colinear to (O;T) )

(l t) rKo(O)'{"ZhKo( ? +t rKl(O)-{l-ZhKl( 2
do= diam (K ¢) di=d(K1)

ha oke+r . (0)+ ha pre+ ()

ZnPOag(] h(l t)K0+tK1( )+ h(l t)Ko*'tKl( + ) = dt:

Thus, we have the equalities:

(
d = ha yko+rw.(0)+ hg e+, ( )=  t)do + tdy:
"t = ha gkerk (2D + ha prerk, ( =2)=(12 )"0+ t"y:
This implies:
8t2[0;1], j(I 1)Ko+ tKyj & "t= (1 t)do+tdy (1 o+t

P, .P 8,.8 _
(1 t)§+t§ (1 t)6+tB =4
Finally, we get:

A1 Ko+ tKy (1 t)P(Ko)+ tP(Ky) p,
TI@ DKo+ K T (T DKo+ Ky 2

8t2[0;1 P(K)=P
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Step 4. Releyant paths and conclusion

0
We denoteE:= (x;y) 2 R?jx P(B)andf(x) y g(x) . We already noticed that Dx> E .
Assume by contradiction that there exists A(xa;ya) 2 EnDxz. From Proposition [} there existsr > 0
such that B(A;r) END 2. We are interested in analyzing if A is inside a judiciously chosen closed
curve: to that end, let us introduce the set:
n r o]
= p XxXa+t > =9K1;K22K§;p such that A is in the interior of «,«,

We note that for every p  xa + % and K1;K, 2 Kip, the path ¢ ,.x, does not cross the point
A. Indeed:

TA2f k() jt2 05 g, becausef k,x,(t)jt2 0;3 gis contained in Dgz, which is not
the case for the pointA as assumed above.

TA2f kk,()jt2 3;1g=f(P(K); (@2 2t) 1(K2)+(2t 1) 1(K1)jt2 119, because
P(Ky)=P(K2)=p Xa+5>Xa.

Moreover, as we do not know whether g,k , is a simple closed curve, we de ne the interior of
K.K, as the set of pointsA such that the index (also called winding number) ofA with respect to the
closed curve g,k , iS not zero, that is to say ind( «,.x,;A) 6 0. We will also say that A is exterior
to ,«k, if this index is zero.
Using the rst step, we note that xa + r=22 | : indeed using Corollary[1 we know that there exist
K1 and K, respectively solutions of the problems
n o} n 0
min  1() ;  2KL,.=2 and max 1(); 2KI .2 ;
and as the path ¢, , stays on the left ofxa + r=2 and its vertical arc is on the right of A, using that
B(A;r)\D gz = ; we deduce thatA is in the interior of «,.x,, thus xa + r=22 | and in particular
| is not empty. It is also bounded from above, as using Step 3, when the perimeter of two domains
K1;K2 is suciently large, A cannot be in the interior of ¢ ,.x,. As a consequence, we can de ne
Po=supl 2 [xa + r=2;+1 ). We analyze the two following cases:
" Caselpg2l,ie. forevery Ki;K;o 2 Kipo, A is in the exterior of .,k ,-
As po is de ned as the supremum ofl, there exists (pn)n 1 converging topo and (K7;K%9)n 1
two sequences of elements d(ipn such that A is in the interior of KDKD -

By Blaschke selection Theorem, there exis{K °,K ¥°) such that up to a subsequence (that we
do not denote) K1 n!I1 K and KJ n!Il K 5° for the Hausdor distance. Using the result of

Step 2 we get that:
8"> 0;9n- 2 N ;8t 2 [0; 1]; ko Po(t) o () <

so for a su ciently small value of " > 0, by continuity of the index under this uniform estimate,
we have:

ind poxgoiA = ind A
This i.sacontradiction (seze Fiqur) sinceA .isintheinte-rior of U (.ie. ind ke oA B
O; while asK ;K5 2 K{p,: it must also be in the exterior of K POk PO (ie. ind K;’O;K50§A =
0).
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YA -

1(B)-

Figure 3.8: Using compactness to nd setsK ° and K £°

" Case 2 pp2l,ie. there exist KI°; K5 2 K2, such that A is in the interior of k.

Considerp, = pp +1=nfor n 1. By Corollary E] there exist (K1;KJ) two sequences irKipn
such that K1 nlll KP and KJ n!Il K 5° for the Hausdor distance, see Figure.

Similarly to the rst case, using Step 3 and the continuity of the index (with respect to the curve)
we have forn large enough

ind  groyro; A =ind ko A

This is also a contradiction sinceA is in the interior of ro, po While aspy > supl, it must be
in the exterior of KDK D -

YA -

1(B)

Figure 3.9: Using Corollary@ to increase the perimeter

We obtained a contradiction in both cases, which proves thatDx> = E. Thus Dx. R? does not

contain any hole and so is simply connected. This concludes the proof. O

The following result is a direct consequence of Theorern 13.

Corollary 4. The diagram D is vertically and horizontally convex.
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3.3.3 Asymptotics of the diagram
Upper behavior: It has been proven in [145] and|[64, Proposition 5.5] that
Proposition 7. Let B1 be a ball of radius 1 inRY with d 2, and p > d.
d(d+1)P(B1) : L . N
1. If < then B, is a local minimizer of P 1 in a W2P-neighborhood

4 1(B1)( 1(B1) d)’
with volume constraint, in the sense that there exists = ( ) > 0 such that

P(B;) P(B1) [ 1(By) 1(B1)

for every B'1 such thathllj = jB1j and being nearly spherical in the sense that
n o
By := tx(1+'(x);t2[01[x2% * with' ¢ 1 R satisfying k' kwzo (@ 1

d(d+1)P(B31)

4 1(B1)( 1(B1) d)’
volume; more precisely, for > 0, there exists' 9 I R such that

2. If then B, is not a local minimizer P 1 among domains with given

Byj=iBi; K kwes@ 1y : and P(Bj) P(B1)< [1(B)) 1(Bi)l:
Corollary 5. Letd 2, xo = idl)l and g the function de ned in Section |3.3.2. Then
jBa1jd
. Ld+1
, g(x) 9(xo) 4Bij 7 1(B1) 1(B1) d
ISP X %o d(d+1)P(B1) o

Remark 9. When d = 2, inequality (8.29) becomes

p_
M — 1(B1)  a(By) 2 129264

lim sup ™
0

x! Xo

where the numerical lower bound is obtained by using a lower numerical value of(B1) = jg;l (where
jo:1 denotes the rst zero of the Bessel functiondy).

Proof. Given > d(d+1)P(Ba) andn 2 N, from PropositionH there exists' , 4 11 R
' 4180 1:(B1) O ’ | o
such that
jB1j=jB1"j; K nkwze @ 1 o and P(B;") P(Bi1)< [1(B;") 1(By)]:
Dening , = jB.B,;ljnlzd and B = 13?111:0 having unit area, we get
P(B,") P(B :
P( ) P@)= ) PO i) Bl —r a0 1B

|Baj @ |Baj d jBaj @
De ning x, = P( n), we get, asg is de ned as a maximum:

Xn X0 < —z(9(Xn)  9(X0)):
1Baj @

When n diverges to+1 , X, goes toxg, and therefore

oxn)  d(Xo) jBaj'T

imsup 90 900)
x! Xo X X n +1 Xn  Xo
!
where s arbitrary chosen in dld+1)P(By)
! @ 1By @)
This ends the proof. .
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Lower behavior: In the next result, we study the stability of the ball for the minimality of ; [P
P(B)] in order to have information about the behavior of the lower part of the diagram near the ball:

Theorem 14. Let B, be the ball of radius 1 inR® with d 2, and p > d.

1. Then there existsc > 0 and > 0 such that

i h ) i3:2
1(By) 1(B1) cP(By) P(Bi)

for every B; such thatjB, j = jB1j and being nearly spherical withk' ky 2 (¢ 1)

2. If however 2 (0;3=2), then for any ¢ > 0and > 0, there exists' :¢ 11 R such that

h i
jB1j=jB1j; K kwze(@ 1 ; and  1(By) 1(B1) <c P(B;) P(B1)

Such nearly spherical sets were considered by Fuglede in [93] where he was studying the stability of
the ball for the usual isoperimetric problem. See alsa [42] where the authors use nearly spherical sets
when studying the quantitative Faber-Krahn inequality, and [64] for a more general approach about
stability among smooth deformations of a given set.

Proof. 1. Let' @ I R such that jB'lj = jBij and the barycenter ofB'1 is 0. From [93], there
exists 1 > 0and C; > 0 such that

P(Bll) P(Bl) Cik kal(d 1y if k' kW1;1 (@ 1 1:

Moreover, using [64, Theorem 1.3 and Section 5.2] (see also [42, Theorem 3.3] in the context of
C? -perturbations), there exists , > 0 and ¢, > 0 such that

1(B;L) l(Bl) CZkI k|2_| 1=2(d 1) if k' sz;p (@ 1 2.

Therefore, setting =minf 31; »gand assumingk' Ky 2p @ 1) , we get forc > 0:
h i 3=

l(Bll) 1(Bl) c P(Bll) P(Bl) cok' kEH:Z(d 1) Ccfzzkl kal(d 1);

but from a Gagliardo-Nirenberg type inequality (see for example|[45]), we have that there exists
C3;C4 > 0 such that

' v ,2=3 v, 1=3 v ,2=3 v, 1=8 .
K kH1(d 1) C3k kH1=2(d 1)k k|]_-|2(d 1) C4k kH1=2(d 1)k k\];\/Z;p(d 1y

(we usedp >d 2) therefore

| h 30 h ) i
1(Bl) l(Bl) c P(Bl) P(Bl) k' ka 1=2(d 1) C2 Ccf_zczkl sz:p(d 1y X

which is positive if k' ky2p @ 1) is small enough.
2. Assume to the contrary that for every ' :9 I R such that jB'lj = jB1j and k' ky 2 (¢ 1y ,
we have h i

1(By)  1(B1) cP(By) P(By) ;

where 2 [0;3=2) and ¢ > 0. We choose the origin as the center oB; so that Bar(B1) = 0
where Bar denotes the barycenter of a given shape. We also denote Vol 7!j j.

We now use the framework from [[64], and in particular, if J denotes a shape functional, then
J9YB1);J%B1) denote respectively the rst and second order derivatives of 7! J(B,). From
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[64, Proposition 4.5] the perimeter functional satis es(IT 1. 11 ) which means there exists! 1
a modulus of continuity such that

. 1
P(By) P(B1)= PAB) + SPARB1)(5" )+ La(K kwen @ 1)K Ka 1y

Moreover, B; is a stable critical shape ofP under volume constraint and up to translations (see
[64, Section 5.1]), which means that there exists 2 R a Lagrange multiplier such that

PYB.): = VolYBj):; 8 2wkt (@1
and there existsc; > 0 such that
(P Vo™X(B1):(5" )k Kii 1y; 8 2 Wht (4 1) such that VolYB,):' =0 and Bar%B1): =0:
Therefore, one gets that there exists 1 > 0 such that for any ' 2 W11 (¢ 1) satisfying
Vol9B1):! =0; BarYB,):' =0 and K kw1 @1y 1
one has
P(BL) P(B) (P VOB )+ ,W0INBC ) DK Ky,
DK Ky CoK Kag o

for someC; 2 R (coming from the fact that Vol °{B) is a continuous quadratic form onL2(4 1),
see|[64, Section 2.2]).

Similarly, from [64] Theorem 1.4] 1 satis es (IT -2,y 25 ) and moreoverB; is a critical point of

1 under volume constraint, and 9{B1) is a continuous quadratic form onH=2(4 1), so there
exists , > 0 such that for any ' 2 W2P(? 1) satisfying

VolYB,):! =0; BarYB,)’ =0 and K Kwzp 1) 25

one has '
1(By) 1(B1)  CoK k|2_|1=2(d 1y°

Therefore we get as above, setting =minf 3; 20:

8' such that K' ky 2 (¢ 1) . VolYB,): =0; and BarYB,): =0;
K K@ 1y CK Ko 2y + €K Ko 1);

for some (C;€) 2 R2. Using scaling, and looking at the expressions of V§{B;);Bar%B1), we
nally obtain:

Z Z
8' such that ''=0; and 8i2 J;dK Xi" (X)=0;
d 1

d 1

' = VL2 2= V2=
k k|2_|1(d 1) C 2 2k kw2;p(d 1)k I(H1=2(d 1)

+ €K K2 1)t (3.30)
We want to get a contradiction by testing such interpolation inequality for an oscillating function

' . To that end (see [168, pages 139-141] for more details), we dendt the space of spherical
harmonics of degreek 2 N (that is, the restriction to ¢ ® of homogeneous polynomials irRY,
of degreek) and (Yk'); | 4, an orthonormal basis of Hy with respect to the L?(9 1) scalar
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product. The family (Y*')on:1 1 g, iS @ Hilbert basis of L2(9 1), so any function' in L2(4 1)
can be decomposed:

X R z
t(x) = (Y (x); forx 29 L with (') = Yi
k=0 I1=1 ¢t
' i i P 2P g2
Moreover, fors 2 R:, K' Kys@ 1y is equivalentto ., (1 + k) ok
We therefore choose' = Y1 for k 2. As Hg is made of constant functions andH, =
span(X; )iz j1.ak, We have
Z Z
8k 2 "k=0 and 8i 2 J1;dK Xi'k(x)=0
d 1

d 1

so that (' )« 2 are admissible for [3.3p). Moreover

8s 0; k' kkHs(d 1)k|l ks; and k' kkw2;p(d 1) k' kkHz(d 1)

so that (8:30) givesk? = O(k* *= k' +1) which contradicts the assumption < 3=2 and
concludes the proof.

O

Corollary 6. Take 2 (0;3=2), d 2 and xo= & we have

iB1j7d

liminf f(x) fxo) =

xtxo (X Xo) o

Proof. Take ¢ > 0. By the second assertion of Theorem 14, for evern 2 N there exists’ , ¢ 11 R
such that
‘ 1 . h [
jBlnj: jB]_], k' nkWZ;p(d 1y H; and O 1(Bl") 1(B]_)<C P(Bln) P(Bl)
The last inequality is equivalent to
!
P(By")  P(Bi1)
By BajT

0 j By"j& 1(By") j Bij# 1(By)<c j Bys

so, we get .
0 f(xn) f(xo) ] B d(xn xo) ;

wherex, = P(B;")=B; "7 N P(B1)5B1j T = Xo, becausek’' nkyzpo 1y L |

+1 nl’ +1

Thus, we can write

gc>0 0 fiminf ) T pine T Tx0) g vy
x!'xo (X Xo) nt+1  (Xn  Xo)

Finally, we get the result liminf -0 — g
x! xg (X Xo)

O

The most interesting part of Theorem|[14 and Corollary[§ is that the exponent3=2 was apparently
unknown and seems to be optimal (see Sectidn 3.4); in the planar cask= 2, we actually improve the
result of Corollary [ and retrieve the same exponent in a completely di erent (and independent) way,
by studying the asymptotics of ; and P for regular polygons:
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Proposition 8. Let d =2 and for n 3, denote S, the regular n gon with unit area (and again B
denotes the disk of unit area). We have:

(S 1B) o P(S) P(B)

with .
4 32 (3) 1(B).
0-— 15 1

P
where :x2 (1;+1) 7! nix is the Riemann zeta function.
n=1
Proof. We take the asymptotic expansion of the fundamental frequency of regular polygons found in
[144] :
43 .B), 1

1(Sn)  1(B)= 3 3 (3.31)

and r .

_,P— p—-_ =z 1 1
P(S,) P(B)=2 n tanﬁ 2 =5 F+0 3 (3.32)
Then we can write: ,
1(Sh)  1(B) 4 32 (3) 1(B) _

P(Sh) P(B) 7t *

O

This Proposition allows us to get the following asymptotic property on f .
Corollary 7. Let d=2, xo and f de ned in Section[3.3.3. Then
1.8 2(0;3=2); f(x) f(Xo)=o0(X Xo) ,
in particular by taking =1, we get thatf is di erentiable at xo and f q(xo) =0.

f(x) f(xo)

- f(x) f(xo) R
2. 0 liminf (Xif’ lim sup X X0)32

X! Xo X0)3=2 x! Xo
Remark 10. Enlightened with the results of Theorenj T4 and Corollary 6, which are stated for arbitrary
dimensions, we believe that the rst assertion holds fod 2. Unfortunately, we did not manage to

prove it because of the lack of information on the asymptotic behaviour of, := P(B'ln):jB'lnde1
introduced in the proof of Corollary [g].

Proof. Take 2 (0;3=2], we introduce the integer valued function which associates tx 2 Xg; P (S3)
the integer ny :=maxfn 3; P(S,) xg, note that Xllirr)1( Ny =+1.
* Xo

We have:
f(x) f(xop) f P(Sy,,) f P(B)
N N 55y PE)  ecauses P(Sna)and () 1 P(S.))

1(Snx) 1(B)

(P(Sn,+1) P(B)) (by the de nition of f)

- l(Snx) 1(B) P(Snx) P(B)
P(Snx) P(B) P(Snx+l) P(B)
U 1
40 1(B) o
ny n2 A
Xt xo 21 @ 3 N (by (B-31) and (3:32))
3o 3 (7
522 1 3=2
T n2 ]
x! xg ° 3 2 (becauseny | y +1),
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thus, if 2 (0;3=2), we have lim W = 0, which is equivalent to the rst assertion. On the
' Xo

other hand if = 3=2, we get the proof of the second assertion.
O

3.4 Further remarks and Conjectures
3.4.1 About Dg2

Our theoretical and numerical studies highlight some remaining open problems aboubD-:

1. is it true that f and g de ned in (B.14) and (B.15) are convex?

2. is it true that
p_
9%xo) = 3 1(B1) 1(B1) 2 and  f(x) f(Xo)x! XOC(X X0)3™2

p—
for somec > 0? These questions are closely related to the following: for > —- 1(B1)

1(B1) 2 ,canwe nd c> 0andV a neighborhood ofB in K? (for the Hausdor distance)
such that

8 2V; c(P() P®B)Z 1) 1(B)  (PO)  P(B) ?

Proposition [7] and Theorem[14 shows that such inequalities are valid in a smooth neighborhood
of B, but it is well-known that achieving a similar result in a non-smooth neighborhood requires
more work (see for example| [1, 94] and [64, Section 6]). We note that numerical evidence that
will appear in [89] suggests that the optimal value of the constantc is given by the ¢ introduced

in Proposition It also supports that the inequality may in fact be global, which means we
conjecture the following inequality:

3=2
8 2KZ 1() 1B) o P() P(B)
Remark 11. It is interesting to note that if we combine the conjectured inequality

() 1B) cP() P@®) (3.33)

with the famous quantitative isoperimetric inequality of [95], which a rms the existence of a constant
d ,» depending only on the dimensiord, such that for every Borel set RY, one has

P() PB) 4AQ?%

where A() is the so called Fraenkel asymmetry of the set, we get that for every 2 K?

1() 1(B) P A

The exponent3 is not optimal, it is higher than the optimal one given in [42], where the authors prove
that there exists a dimensional constant 4 such that for every open set RY with unit measure,
one has

1() 1(B) ¢ A ()% (3-34)

Nevertheless, we note that inequality(3.33) is stronger in some cases than(3.34). Indeed, if we take
the regular polygons(S,) introduced in Proposition B] we have by straightforward computations:

P(Sn) P(B)n 2 A (Sh);

11
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where ; is a positive constant. Thus, for su ciently large values of n, we have
3=2 =
1) 1(B) cP(S)) P(B) ¢ A (Sn)*F

where c° is a positive constant. This shows that(3.34) is (in this case) weaker than the conjecture
@33

One could also wonder if we can improve our understanding of the shapes realizing the boundary
of the diagram, that is to say solutions of the optimization problems in Corollary[3. For example, one
can state:

Conjecture 4. The regular polygons are on the lower part of@y:.

This result seems to be veri ed numerically. Using Theoren{ 1P, we will observe however (see the
proof below) that this statement (regular polygons are on the lower boundary) is actually a stronger
statement than Polya's conjecture in the restricted class of convex sets. Recall that this conjecture
states that among polygons of xed measure and whose number of sides is bounded by, the regular
N -gon has the lowest rst Dirichlet eigenvalue. This conjecture is expected to be valid for any polygon,
but even in the class of convex polygons, the result is not known (foN  5) and already expected to
be very challenging.

Indeed, let us takeN 3 and denote | the regular polygon of unit measure andN sides. By
the isoperimetric inequality for polygons (see|[14[7, Theorem 5.1]), we havE () P( y). for every
convex polygon of unit measure and at mostN sides. Now, if we assume that the regular polygon

n IS on the lower boundary of the diagram, thatistosay 1( ,)=f P( ) .then by monotonicity
of f, we conclude that: 1( )= T P( ) f P() 1() , with equality if and only if s
equal to |, up to rigid motions.

3.4.2 About Dy« ford 3

As stated in the introduction, a major part of our results for convex sets are restricted to the planar
case mainly because some of the assertions of Leminp 7 are only given in dimensband seem to
be rather challenging to extend to higher dimensions, see Remafk 3.3.2. Nevertheless, we believe that
once a similar result is proven ford 3, it would be possible to apply the same strategy developed in
the present paper to prove the following conjecture:

Conjecture 5. We denotexy = P(B) whereB is a ball of unit volume.

1. the diagram Dy« is made of all points in R? lying between the graphs of and g, more precisely:

n 0
Dka = (XY)2R% x %o and f(x) y gX) ; (3.35)

wheref and g are de ned in (3.14) and (3.15).

2. functions f and g are continuous and strictly increasing.

3.4.3 About Dgs where SY is the class of simply connected domains

We decided to focus on two classes of domaing) the class of open domains irRY, and K9 the class
of convex domains inRY. But one could also focus on an intermediate class which is

sl=f RY;  is open, bounded and simply-connectegt

We give here some thoughts about the Blaschke-Santab diagram of 1;P;j j) in this class, denoted
Dsd: note rst that as for the class of open domains, there is uncertainty about the de nition of
the perimeter P. But since we are not giving any speci c statement here, we consider part of the
investigation to decide in which way a change in the de nition of P may a ect the shape of Dga.
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1. Assume rst that d = 2: since inequalities [3.8) and [3.1]1) also hold for the class of planar
simply connected domains, the diagramDg:2 is bounded from above by a continuous function,
and therefore di erent from the diagram of open setsDo described in Theorem[1D. However,
we expect that the lower boundary of the diagram is simply given by the horizontal half line
[P(B);+1) f 1(B)g. More precisely we formulate:

Conjecture 6. There existsh a continuous and increasing function such that
Ds2 = f P(B); 1(B) g[f (xy) i x>P (B); 1(B)<y h(x)g:

This is supported by the fact that we can nd shapes with a high perimeter but whose rst
Dirichlet-eigenvalue is close to the one of the ball, for example by adding a thin tail to a ball (see
for example [68] for results on tailed domains).

Finally, notice that we do not know whether we should expecth and g to be equal or not. This
is probably also a challenging question.

2. If we now assumed 3, the class of simply connected domains behave very di erently. Actually,
we can introduce an even more restrictive class of domains, namely

&=t RY;  is open and homeomorphic to a bali:
We believe that in this case we have
Dss = Dg, = Do

To support this conjecture, we refer to the construction described in|[64, Remark 6.2] and inspired
by [82].

3. Itwould also be interesting to study the diagram in the class of sharshaped domains. In dimension
2, it is not clear whether we expect the diagram to be the same as the diagram for simply
connected sets or not. In dimension higher than 3 however, it would be more natural to expect
that the diagram di ers from the one of simply connected sets, but we did not investigate this
guestion yet.
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Chapter 4

On the Cheeger inequality for convex
sets

This chapter is a reprint of the submitted paper:'On the Cheeger inequality for convex sets"
[90].

Abstract

In this paper, we prove new sharp bounds for the Cheeger constant of planar convex sets that we use to
study the relations between the Cheeger constant and the rst eigenvalue of the Laplace operator with
Dirichlet boundary conditions. This problem is closely related to the study of the so-called Cheeger
inequality for which we provide an improvement in the class of planar convex sets. We then provide
an existence theorem that highlights the tight relation between improving the Cheeger inequality and
proving the existence of a minimizer of a the functionald, := 1=h? in any dimensionn. We nally,
provide some new sharp bounds for the rst Dirichlet eigenvalue of planar convex sets and a new
sharp upper bound for triangles which is better than the conjecture stated in|[16]7] in the case of thin
triangles.

4.1 Introduction and main results

A celebrated inequality due to Je Cheeger states that for every open bounded set 2 R" (where
n 2)one has:

0 h0 %

where 1() is the rst Dirichlet eigenvalue and h() is the Cheeger constant of , which is de ned
as follows:

h() :=inf % E measurable andE ; (4.2)
where P(E) is the perimeter of De-Giorgi of E measured with respect toR" (see for example|[151]
for de nitions) and jEj is the n-dimensional Lebesgue measure d&. Any set C for which the

in mum is attained is called (when it exists) a Cheeger set of . We refer to [151] for an introduction
to the Cheeger problem.

In the present paper,d and r respectively correspond to the diameter and the inradius functionals.

Recently, E. Parini [152] remarked that the constant% can be improved for the clasK? (for every
n 2 N , we denoteK" the class of bounded convex subsets &"). He proved the following inequality:
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2
8 2K2%  1() 1600 2, (4.2)

and noted that the constant % is also not optimal. He then took a shape optimization point of view
by introducing the functional J, : 2 K2 7! Jy() := hz§—)z for which he proves the existence of a

minimizer in K2 and conjectures that it is the square; in which case the optimal lower bound would
be given by:
2 2

min J = J, (0;1) = 1:387::

nin, 2() 2 (0;1) ﬁ
Nevertheless, as far as we know, as mentioned in [152, Section 6] the existence of an optimal shape in
higher dimensions(n  3) remains open.

Moreover, in the same paper|[152], the author proved the following reverse Cheeger's inequality:

8 2K%  4() < Zzh() %; (4.3)

which is sharp as it is asymptotically attained by any sequence( g)xz2n Of planar convex sets such
that j xj =V (whereV > 0) and d( ) kI! L +1 , see|[152, Proposition 4.1]. It was then remarked
I+

by L. Brasco [40, Remark 1] that the main argument used by Parini, which is Polya's inequality
2

1() < 72 % holds in higher dimensions (se€ [119]). Thus, the reverse Cheeger inequality also
holds for higher dimensions and is sharp as any sequencé (0;1=k) ,, where! 2 K" 1, provides
asymptotic equality when k tends to +1 .

For the lower bound, one can combine the inequalityh() ﬁ (which is obtained by taking
the inscribed ball B,() as a test set in the de nition of the Cheeger constanth() ) and Protter's
inequality [158]:

2 1 n 1
—_— ——t ——
4 r()2z d()
which generalises Hersch's inequality| [115] (used by Parini for the planar case) to higher dimensions.
We then obtain the following lower bound:

8 2K"; 1() (4.4)

8n 28 2K"; Jn():=

which improves the original constant % given by J. Cheeger only forn 2 f 2;3g. In which cases, we

have:
2 2

2. > — 0616 s > — 0274
8 2K~% Ju() 16 0:616:: and 8 2K=®; J3() 36 0:274
In the present paper, we improve the Cheeger-Parini's inequality[(4.R). Our result in this direction
is stated as follows:

Theorem 15. We have:

1() j o1

8 2K? Jy()= :
0= Rz Zo+

0:902::

wherejo; denotes the rst zero of the rst Bessel function.

This result relies on the combination of Protter's inequality ( and a diametrical Faber-Krahn
type inequality (see [33, Theorem 2.1] or|[79, Theorem 3.3]) in order to bound 1() from below.

The study of complete systems of inequalities relating some given functionals is an interesting
subject for its own. It is closely related to the so calledBlaschke-Santab diagrams, we refer to the
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original works of Blaschke 28] and Santab [163] and to the more recent works [36, 7L, 111, 112, 113]
for some interesting examples involving geometric functionals.

In the present paper we provide a complete system of inequalities relating the Cheeger constaht
the inradius r and the areaj j of planar convex sets, which corresponds to a complete description of
the related Blaschke-Santab diagram introduced in the following Theorem:

Theorem 16. We have:

r
1 1
1,0 h() —+ —
r() i r() i
These inequalities are sharp as equalities are obtained for stadiums in the lower estimate and for
domains that are homothetic to their form bodie@ in the upper one.

Moreover, we have the following explicit description of the Blaschke-Santab diagram:

. o 1 p_ p_
2 — — . — o .
h() j 2Kcandj j=1 = (Xjy) X @) andx+X y X+ ;

8 2K?; (4.5)

t.
rQ)

whereB  R? is a ball of unit area.

Figure 4.1: The diagram of the triplet (r;h;j j).
At last, we are interested by the question of the existence of an minimizer of, for higher dimensions
n 3. We prove the following Theorem:

Theorem 17. Let us de ne the real sequencd ), as follows:
8n2 N ; n = iglzn\]n():
We have:

1. ( n)n is a decreasing sequence.

2. lim =1
1 N4

IWe refer to [136] Section 1.1] for the de nition of form bodies and to [164] for more details.
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3. For n 2, if the strict inequality , < , 1 holds, we have the following existence result:

9 ,2K" ()= iEII]:an()Z

Let us give a few interesting comments on Theorer 17:

" The convergence result 'Iirpl n = % of shows that the constant% given in the original Cheeger
n:

inequality [B5] is optimal in the sense that there exists no constantC > % such that:

8n 1,8 2K"; 1()

h() 2 C:

" We believe that the assertion , < , 1 istrue forany n 2. This conjecture is motivated by
the discussion of Sectiori 4.4]2. In particular, whem = 2, we have:

2
0 < = g, 20

Thus, we retrieve Parini's result of existence in the class of planar sets without using the explicit
formulae of Cheeger constants of planar convex sets.

The present paper is organized as follows: in Sectidn 4.2, we provide the proof of the sharp estimates
of the Cheeger constant given in Theorer 16. Sectidn 4.3 is devoted to the improvement of the Cheeger-
Parini's inequality for planar convex sets (4.3), we also give improved results for some special shapes
(triangles, rhombii and stadiums), see Propositior] 9. We then prove the existence result of Theorefn [L7
in Section[4.4. We nally discuss some new sharp inequalities involving the rst Dirichlet eigenvalue,
the Cheeger constant, the inradius and the area of planar convex sets in Append|x 4.5.

4.2 Sharp estimates for the Cheeger constant: Proof of Theorem 16

The proof of Theorem[1§ is presented in 3 parts:
The upper bound:

Let 2K?2. We have by [142, Theorem 2]:

t 2

8t2 O;r ; j i1 — 4.6
0 boddo 0 (4.6)
with equality if and only if  is homothetic to its form body.
2
If is homothetic to its form body, we have by solving the equationj ¢j=j j 1 # = t2
r
1
h()= —+ —:
2 r() I

From now on, we assume that is not homothetic to its form body. Let us introduce the functions:

“fit2 or() 7Y j 1 4 t2=jj Alt+ I t2;

ﬂ
—~
~
=
—~
~|
N

Tgit2 or() 7! N
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Figure 4.2: Idea of proof of the upper bound.

By (4.6), we have: (

9(0) = f(0);

8t2 Or() ; o(t) > f (1);
This implies that 1=h() , the rst zero of gon[0;r()] , is strictly larger than the rst zero of f given
by A+ a — 1 (see Figure] 4.2) , which proves the inequality.

r() I

The lower bound:

Let 2K?2, we denoteC 2 K? its (unique) Cheeger set. Let us show that:

r()= r(C):
By the characterization of the Cheeger set of planar convex sets of [122], we ha@e = . + ﬁBl,
where B is the ball of unit radius centred at the origin. We then have:
1 1 1 1
r(C)—I’ #"' WB]_ =T # +r WB:]_ —I’() W"' Wr(Bl)—r() .
Since, the Cheeger se€ is convex, we can use the following Bonnesen's inequality [35]:
ic .

P(C) r(C)+

r(C)’
with equality if and only if C is a stadium (nhote that does not mean that is a stadium). Thus:
o= PC) TCI*Ih _r0 1 10, 1
iC | iC | icj rQ o7
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where the last inequality is a consequence of the inclusio® and thus is an equality if and only
if = C . Finally, we proved the lower bound and the equality holds if and only if is a stadium.

The diagram:

The demonstration is exactly similar to the case of the diagram relating the Cheeger constant, the
area and the perimeter studied in detail in [88], one just has to replace the perimeter by the inradius
and reproduce the same steps of the proof of [88, Theorem 1].

4.3 Improving the Cheeger inequality for planar convex sets

In this section, we provide the proof of Theorem{ 15 and prove some improved bounds fak, in some
special sub-classes df?, namely: triangles, rhombii and stadiums.

4.3.1 Proof of Theorem[15
Let 2 KZ2. We have by Hersch inequality [115] and Faber-krahn inequaliy [78, 126]:

o o 4
J0a0) maXJo1vW

On the other hand, we recall the upper estimate of Theorenj 16:

P— -
h +
j ih() 0O
Thus, we have:
c2. P2, 22
0 max ) o1 zr(y 2 o max ] o1 7 i o1
JO)= m p— = - 0:902::
h() 2 pﬁ+ p_° e (x+ 5 )2 201 +
rQO)
The minimum is taken over [p 5 +1) because—— P- for every 2 K2. Moreover, it is attained

()

for x = % see Figur.

P2 . 2y
max | o153

(x+" )2 ’

2

Figure 4.3: Curve of the function x 7!
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4.3.2 A slight improvement of the result of Theorem [15

We note that one can combine the following Protter's inequality [158]:

2. 2 1 1 .
8 2K% 0 7 petay e

which is an improvement of Hersch's inequality [115, Section 8] with the optimal inequality (7) of [113]:

s
i d) ° 20 . dO
1+ —— +2arcsin —— = — 4.7)
r() 2 r() d() r()
to provide a slight improvement of the lower bound of Theorem[I5.
Indeed, the function' is continuous and strictly increasing on[2;+1 ) (we note that d() =r() 2
[2;+1 ), thus by considering the inverse function denoted !, inequality becomes:

8 2K?;

8 2K?2: & o1 I
0 r¢) 2
. We then write:
2 2 2!
max s—— 1+ —A— o
1) T s M
h() 2 , 9=
1 o4
r() I
I !
2 i 1 2 . 2
max 7 gyz Y T da
_ r()
o122 p_ ?
i
oz T
2 1 .2 -
min max X 1t igril & (because—- 0" )
x2[; +1) Cx+"0) r() 2 r()?2 '

Numerical computations show that the latter minimum is approximately equal to 0:914:::, which slightly
improves the lower bound of Theoren{ Ip.
4.3.3 Improvements for special classes of shapes
We state and prove the following Proposition:
Proposition 9. Let 2K?2.
1. If is atriangle, then Jo() > 1:2076
2. If is a rhombus, thenJ;() 1:3819
3. If is a stadium (i.e. the convex hull of two identical balls), thenl,() 1:3673

Proof. Let 2 K?, sinceJ, is invariant by homothety (due to scaling properties of 1 and h), we may
assume without loss of generality thatj j=1.

1. Let us assume to be a triangle and denoted its diameter and L its perimeter. To bound ()
from below, we make use of two inequalities:
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" The rstone is the polygonal Faber-Krahn inequality for triangles, which states that between
triangles of the same area, the regular one minimizes the rst Dirichlet eigenvalue:

2
0 ()= P

where Teq is the equilateral triangle of unit area (whose diameter isdeq = 3%4)
~ The second (more recent) is due to P. Freitas and B. Siudeje [84, Corollary 4.1]:

2 2 j 2
g O qy

10 0

We then have on the one hand:
4 2 2 2 2
10) max 193 Z d ;
and on the other hand, the Cheeger constant of the triangle is given by:

PO+ "FTT_ L+P7 Le+'d

2 2 >

h() =

where L5 is the perimeter of the isoceles triangle whose diameter is equal td and area equal
to 1. By using Pythagoras' theorem, we have:

U r 2
4 4
Lisozzd"'%I d d2 @ + ?
Finally, we obtain the following inequality:
2
2 ) 2 2
max bz d+ §
J2() 1(d)= o q P - 1>
2d+ d N P

We note that d  deq. INdeed, by the isoperimetric inequality of triangles:

Numerically, we obtain dmjjn 1(d) 1:2076:
eq

. Let us assume to be the rhombus of unit area whose vertices are given by d=2;0), (0; 1=d),
(d=2;0) and (0; 1=d).

We bound () from below by using the following Hooker and Protter's estimate for for rhombi
[118]:

d 1°?
2 Y.+
1() > + d
As for the Cheeger constant, since is a circumscribed polygon, we have:
Pp— r
_ PO+ 40 _ 1 d p-
h() - T - 2 ? + Z +
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we use its explicit value in term of d.

B()  ad)= —

Numerically, we obtain mjp »(d) 1:3819:
d "2

3. Let us assume to be a stadium of unit area whose diameter is given bya + 2r, wherer >
0 is the radius of the ball of its extremity and a > 0. The condition j j = 1 implies that
r 2+2ar = 1, which is equivalent to a = % >t ®. We use the monotonicity of 1 for inclusion
(for ( r;r) (0;a+2r)) and Faber-Krahn inequality to write:

1 1

1,1 4r2 1
42 (a+2r)?

1) max  4(B); ? a+a ozt az

=max 1(B); ?

It is classical that the stadiums are Cheeger of themselves, see [122], we then have:

PO

2
h() = 0] =2a+2r :1+r :

Then: ,
max 1(B): * eyt ar

1+r2 2
r

J2() 3(r) :=

Numerically, we obtain  min 3(r)  1:3673:
r2 0;p-

4.4 On the existence of a minimizer in higher dimensions
4.4.1 Proof of Theorem[1Y

1. Letn 2, let us rst prove that:
n = iglszn() !ZE(nI 1Jn (M)= 01

The idea is to prove that for any ! 2 K" 1, there exists a family ( 4)g> o of elements ofK" such
that:

Jo a(t)= Jim 3n( a):
As the proof is quite involved, we decompose it in 3 steps.

Step 1: Lower estimates for ; and h

Let us take 2 K" and assume without loss of generality thatinfft 2 Rj \f x=tg6 ?2g=0
and denoted :=supft 2 Rj \f x=tg$6 ?g. In the proof of [41, Lemma 6.11], the authors
prove that:

ot 2[0d; 1() 1( VP x=tg):
We adapt there method to Cheeger's constant and state that:

oth 2 [0;d]; h() h( \f x=thg):
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For sake of completeness, we present the proofs of both cases.
Lett ;ty 2 (0;d) such that:

1( \fx=t g):|tr12fR 1( \f x=1tg) and h( \f x= thg):lthth( \f x = tg);

and we denote:! = \f x=t gand!, = \f x=tyQ.
Let u2 H3() a positive eigenfunction corresponding to ;1() such that kuk, = 1. We have:
z
1() = jr uj?dx
Z4 Z
jr Qj2dx° dt
0 \f x=tg
Zy z
1( \f x = tg) u2dx® dt
\f x=tg
Z4 Z
(1) u2dx? dt
0 \f x=tg
= 1( )

As for Cheeger's constant, we have ¢ 2 BV () (where BV () stands for the set of functions
of bounded variations on , we refer to [/] for de nitions and more details), thus there exists a
sequencef p) of functions of BV () \ C* () suchas:fy! ¢ inL%() andkllirp1 iDf «j(R™) =

iD ¢ j(R") = P(C).

We have:
R
iD_ ¢ j(R" ir ]
h()= D) MBge IRy gl T
iC j jcl ki +1 R ifki
d . .
i o _— o jdx%dt
ki il
R, R o
i o h( \f x:th) v X:tgjfkjdx dt
kT el
Ry
_jfijdx® dt
. _ 0 ¥ x=tg )Tk
k!“Tl h( \f x=tyQ) el

= h( \f x=thQ)

Step 2: Study of sets with increasing diameters and xed volume

Let ( k) a sequence of elementk" of the same volumesl, such that dy := d( )! +1 . Let
us prove that;
nf Jn( k) | 2{?: 1Jn l(! ):

For every k 2 N, we considerAg and AE two diametrical points of  (ie. such asjAkAEj = dy).
SinceJ, is invariant by rigid motions we can assume without loss of generality thatAx = (0;:::; 0)
and A? = (dk;0;:::;0).
By Step 1, we have for allk 2 N:

1) 1w
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where! = \f x = tgo.

We can assume without loss of generality thatty  d¢=2. Let Tx be the cone obtained by taking
the convex hull of f Ayg[ Ck, where Ci is the Cheeger set of the convex sectiohy.

Let 2]0;1[, we introduce the tube U, = C (0;(1 )tk). By convexity, we have the

following inclusions:
Un T k k

By de nition of the Cheeger constant, we have:

h ) P(UJ) _ 2 "™ LCj+ " 21 )P(Ctk _ 2, ht) h(!«) .
iG] "I )Gt T K '
L1 P(Ck) .
Indeed: - = k? jckkj , because:
iC _ iCij _ [ _ G jiCim j kiTnT
PO e ot o et o P o PE0a) B0
jCkjn jCkjn jCkjn
whereB, 1 R" 1is a ball of volume 1.
We deduce that:
1(M k) 2
8 2(0;1); Jn( «) Jn 1("k)

2
2 h(! ) k! +1
1 )tk +

Thus:

8 2(0;1); liminf Jn( «) 2Ii|miann (') 2% inf In 1)
I+

k! +1 12Kn

By letting ! 1, we obtain:

o . |
iminf Jn( ) inf Jn a(t)

Step 3: Study of long tubes

1=n k
1:k

In this step, we show that when the height of a tube goes to in nity, the value of J, of this tube
converges to the value corresponding to th€n 1)-dimensional section given by its basis. More

precisely, if we take! 2 K" 1, we prove that

Jim 3o @) 1= 30 a():

We have by Step 2:
Ik|lm+|r1f In( k) JIn (1)

We recall that ; (0;d) ! = 5 24 1(! ) and use the second assertion of Step 1 to bound
Jn (0;d) ! from above:
2
0;dy ! - T+ !
WO 1= %9 , 21()-
h (0;d) ! h(!)
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By passing to superior limit:

limsupJ, (0;d) ! Jn 1(1):
d +1
Then:
i . | = )"
d!I|r+nl Jn (0;d) ! Jn 1(1):
At last, we write:
= i )= i i . | i = .
n 1 !ZIEfn lJn (M) !ZIEf“ . d!“rpl i]n (oyg) : |2|?<fn Jn() n-

inf Jn ()
2k N
. Foreveryn 2, we take a ballB, R" of unit radius, we have:

1(Bn) _ 1§ 1 n? g
h(B,)2 N2 nt +1 n2 4’

1 .
1 |2r|1<fn\]n() Jn(Bn) =

wherejy 1. is the rst root of the n" Bessel function of rst kind. We refer to [170] for the
equivalencejy 1.1 N >

. The existence result

Now, we assume that: |2an Jn() < ! ZLnI ) Jn 1(!). Let us prove the existence of a minimizer
of J, on K".

Let ( k) be a minimizing sequence oK" (ie. such ask!lirpl Jn( k)= ig}in Jn() ). Sinced, is
scaling invariant we can assume without loss of generality thaf «j =1 for all n 2 N.

If d( ) is not bounded, we can extract a subsequencg (1)) such as

k!|II'I]1 d( '(k)):+ 1:
Thus, by Step 2:
i = i i 1)
of, Q= lim 30 !2:<nI yIn a(h):

which contradicts hypothesis , 1> ,.

We deduce that the sequence of diametersd( ) is bounded, then by compactness, there exists
2 K" and a strictly increasingmap :N ! Nsuchthat !kl for Hausdor distance.

We then have by continuity of J, for the same metric (see|[152, Proposition 3.2]):

In( )= lm 3 0= inf ()

4.4.2 Discussion of the hypothesis , < , 1

We believe that hypothesis , < , 1 istrue for any dimensionn and that one can use convex cylinders
(i.e. those of the form!  (0;d), where! 2K" ! andd > 0) to show it.

Let us analyse what happens whem = 2. In this case convex cylinders are rectangles. We consider

the family of cylinders 4 =(0;1) (0;d) (whered > 0) and denote

1( d) _ 21+ & )
2 2"
h( a) 4
1+d (d 1)2+ d

(0:1) :d>07! Jg( d):
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Figure 4.4: The curve of (g.y).

We plot the curve of (1) in Figure .4,

We remark that when d goes to innity, .5y = J2( ¢) tends to J; (0;1) = 72 from below, in
the sense that there exists an order from which the function .1y should be strictly increasing and
thus cannot have values above the limitJ; (0;1) . We believe that the same property should hold
in higher dimensions: letn 2, 4:= 1! (0;d) whered > Oand! 2 K" !, as before we denote

 :d>07! J,( 4). We have already proved above that:

Jmor(@d= lim o Jn(g)=JIn a(t):

It remains to prove that for large values of d one has:
r(d)= JIn( a) <JIn (')

To do so, we propose to show that function , is strictly increasing for large values ofd by studying
the derivative ?(d).
Let us take d > 0, we have fort > 0 su ciently small:
2 2 2 2
o= al)r e = O g ol

and
h( ar) = h( @)+ N aiVe) t+ o (1);

where Vy : R" I R" is the smooth dilatation eld such that Vg(Xq; iXn) = 0; ;O;"Tn . As
proved in [153], we have:

4
1

iC. easnaec,

h% 4;Va) = h( 4) hvg;nid;

where is the mean curvature andC | is the Cheeger set of 4. SincehVy;ni =0 onall @ 4\ @C,

except on the upper basis@ 4\ @C, \f x, = dg where is null, we have the following formula for

the shape derivative:

j@C,\f x, = dgj
jCdj

h% a5 Va) = h( q):
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By straightforward computations we obtain:

1 22 2 j@C,\f x, = dgj
0 - = = | o d n
A iCd
5 _ o
S 2 1, A )J@Cd \.f Xn = dgj
h( ¢)2 & jCdi
22 (M)

j@C, \f x, = dgj (becauseC | da, thusjC j j dj=1j!]

! 1
d h(q¢)? J'] @
Finally, it remains to prove that for su ciently large values of d one can prove estimate of the type:
j@C, \f x, = dgj > d—lz:
One can check that this assertion is correct whem = 2. Indeed, if we consider the cylinder ¢ =
(0;1) (0;d), we can easily check that

j@C,\f x, = dgj M

> 1.
dr +1 d2’

[oNN

where M, is some dimensional constant.

At last, let us mention the very recent work of E. Parini and V. Bobkov [29] where they manage to
explicitly describe the Cheeger sets of rationally invariant sets in any dimension and thus compute their
Cheeger values. By applying these results to cylinders of the forr8,, ; (0;d), whereB, ; R" lis
a ball, we remark as expected that g, , is strictly increasing for higher values ofd and thus converges
to J, 1(Bn 1) from below, which supports our strategy.

4.5 Appendix: Some applications

In this Appendix, we apply the sharp estimates given in ) to obtain some new bounds for the rst
Dirichlet eigenvalue in the case of planar convex sets.

4.5.1 Some sharp upper bounds for the rst Dirichlet eigenvalue
General planar convex sets
Proposition 10. We have the following sharp inequality:
2 1 r— 2
- 4 — ;
4 () I
where equality is asymptotically attained by any family of convex seté y)xan such asj kj = Vp for

any k 2 N (where V, is a positive constant) andd( ) kl! 1 +1

8 2K?; 1() (4.8)

Proof. We have for every 2 K?2:

2 , 2 r—— 2
< — —_ —+
0 <207 5 5t
where the rst inequality is the reverse Cheeger inequality proved by E. Parini in [152, Proposition
4.1] and the second inequality corresponds to the upper bound given if (4.5).
Let us now prove the sharpness inequality[(4.8). LetVo > O and ( k)kzn a family of convex sets
such asj xj= Vo forany k 2 Nand d( ) kl! L +1 . We have on the one hand:

r

2
<
4r( k)2

2 2 2 1 r— 2
— o = — + o
4 r( «) oK 4 r( «) Vo

8k 2N ;

1( k) <
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on the other hand, we have:

1 P(«) d( «)

—— ! +1;
rC «) 2« Vo kI +1
thus: 5
1( ®) o1 m; (4.9)
which proofs the sharpness of inequality|[(4.B). O

Remark 12. We note that one can use inequalitiesfd.5), to provide a similar equivalence as(4.9) for
the Cheeger constant. Indeed, let us consideYy > 0 and ( )kan @ family of convex sets such as
j ki= Vo forany k2 Nandd( ) k|! . +1 . We have by (@.5):

o+

r

r( «) 1
r¢ «) Vo (W r( «) jVoj
and sinceﬁ kl! o +1 , we have the following equivalence:
1
h( «) (4.10)

kio+1or( k):

By combining #.9) and (¢.10), we retrieve (with an alternative method) the asymptotic result of[[152,
Proposition 4.1]:

im 1(x) _

k!“rpl J2( 1) = ki +1 h( )2 4

It is interesting to compare inequality ( with other inequalities involving the inradius and the
area. One immediate estimate can be obtained by considering the inclusioB, () (where B, ()
is an inscribed ball of (with radius r() ). We have by the monotonicity of ;:

_ ik
B = = 4.11

l( ) 1 r() r( ) 27 ( )
where |1 denotes the rst zero of the rst Bessel function. This inequality was already stated in [152,
inequality (3)] and in [43} inequality (1.5)] in higher dimensions and for a more general setting. In
Figure [4.5, we plot the curves corresponding to the latter inequalities and an approximation of the
Blaschke-Santab diagram corresponding to the functionals i, the inradius r and the areaj j, that is
the set of points:

1

D= j 2K? jj=1
0 1) andj j
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Figure 4.5: Inequality (4.8) improves (4.13) for convex sets with small inradius (ie. larget).

Sets that are homothetic to their form bodies: in particular "triangles”

We recall that in the case of sets that are homothetic to their form bodies, one ha%P() r()= jj

and: r

p A+ —_—
PO+ 4
ho= PO* 410 L

2 ] r() j
Thus one can write the following result, which is an immediate Corollary of the reverse Cheeger's
inequality of [152, Proposition 4.1]:

Corollary 8. For every set 2 K2, that is homothetic to its form body (in particular triangles), we
have the following inequality:
A S 10
() < — —_—t — = = ——+2 — (4.12)
' 4 x() il 1. i
The inequality is sharp as it is asymptotically attained by any sequence of convex sétsy) of unit area

that are homothetic to their form bodies such thatd( ) I(I! L +1.

The most important thing about this upper bound is that in the case of triangles, inequality (#.12)
is better than the following bound obtained by B. Siudeja in [167, Theorem 1.1] for 'thin" triangles:
2 P(Mm 2
9 iTj '
It is also interesting to note that inequality (4.12] is even better (also for thin triangles) than the
following upper bound stated in [167, Conjecture 1.2]:

1(T) (4.13)

Conjecture 7. For every triangle T, one has:
2 pm ?, P32
12 iTi 3T
Here also, let us compare the di erent estimates in a Blaschke-Santab diagram: we consider the
one involving the perimeter, the area and ; in the class of triangles, that is the set of points:

T:= P(T); 2(T) jTisatriangle such thatjTj=1 :

1(T)

(4.14)
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Figure 4.6: Comparison between inequalities[(4.]2) and (4.13) and Conjectur¢ (4.14) with a zoom on
smaller values of the perimeter.

4.5.2 A sharp Cheeger-type inequality
Proposition 11. We have the following sharp Cheeger-type inequality:

2 r— 2
8 2K? > — h — 4.15
10 >4 0 (4.15)
where equality is asymptotically attained by any family of convex sets )xan Such asj kj = Vp for
any k 2 N (where V, is a positive constant) andd( ) kl! 1 +1
Proof. Let 2K?, we have:

2 1 2 r— 2

10) ZW Zh() ﬁ )

where the rst inequality is the classical Hersch's inequality [115] and the second follows from is the

upper estimate of (4.5).
As for the equality case, let( k) a family of convex sets( y)xan Suchas) kj= Vo forany k 2 N and

d( «) I(I! o +1 . By [152, Proposition 4.1], we have: 1( ) . Tzh( «)? and by the equivalence
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i i 1 ition T i - i
@I and lim 5 =+1 (see the proof of Proposmo), we have lim h( )=+ 1 which
2

implies the equivalence: 1() T 72 h() 7o O
We note that inequality (§.15) is better than the improved Cheeger inequality of Theorem[15 (and
even the conjectureJ,() J>((0;1)?)) for thin planar convex domains, see Figur, where we
provide an approximation of the following Blaschke-Santab diagram relating 1, the Cheeger constant
and the area:
C= h(); 1() j 2K? andj j=1 :

Figure 4.7: Approximation of the Blaschke-Santab diagram C and relevant inequalities.
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Chapter 5

Numerical study of convexity constraint
and application to Blaschke-Santab
diagrams

This chapter is devoted to the numerical study of convexity constraint in shape optimization in the
plane. It contains some results of the work in progress [89].

The convexity constraint allows in general to prove the existence of shape optimization problems.
The optimal shape may be smooth or singular (polygonal for example), see for example [19, 131, 134].
This makes these kind of problems very interesting from a numerical point of view as one has to adapt
the method for each one in function of the expected regularity of the solution. We present various
(classical and more original) methods of parametrization that allow to handle convexity constraint
(and other ones related to the involved functionals). We apply these techniques for Blaschke-Santab
diagrams involving the areaj j, the perimeter P, the diameter d and the rst Dirichlet eigenvalue

1. We are then able to obtain approximations of the extremal sets (those corresponding to points on
the boundary) of these diagrams. This, combined with theoretical upcoming vertical convexity results
stated in this chapter (see Theoren{ 1B and also Corollarj/}4 of Chaptdr|3) give an improved description
of the studied Blaschke-Santab diagrams.

We consider4 di erent parametrizations of the convex sets:

1. by the support function introduced in Section[5.1.3,

2. by the gauge function introduced in Sectior 5.1.p,

3. by the radial function introduced in Section [5.1.3

4. and by the vertices of a polygonal approximation introduced in Sectior] 5.1}4.

In the present chapter, we perform some qualitativecomparisons between each method by testing
them on di erent shape optimization problems (for which the solutions vary from regular shapes to
irregular ones like polygons).

5.1 Parametrization of convex sets and numerical setting

Before describing the parametrizations used in the present thesis, let us recall the de nition of (direc-
tional) rst order shape derivative that is very important in numerical shape optimization.
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De nition 3. let us take a shape depending functional : R"! R,wheren 2, andletV :
R" I R" a perturbation vector eld. Let R", we denote ;= (1 +tV)() wherel :x2 R" 7! Xx
is the identity map andt a su ciently small positive humber. We say that the functional J admits
a directional shape derivative at in the direction V if the following limit t‘Iir(r)L M exists. In

this case we denote: 3 3
JY ;V) = lim 3D JO
t! ot t
Now, let us present the 4 parametrizations considered in this thesis and show how convexity and
other constraints are implemented.

5.1.1 Support function parametrization
De nitions and main properties

The support function is a useful tool to parametrize a convex set by a function de ned on the unit
sphere, it allows to turn geometrical problem into analytical problems and thus use tools from calculus
of variations to solve geometrical problems, we refer for example tg [104] for an analytical proof of
the classical Blaschke-Lebesgue Theorem which states that among all planar convex domains of given
constant width the Reuleaux triangle has minimal area and to [25, 103] for more examples.

Let us now recall the de nition of the support function:

De nition 4. Let 2 K" be a convex body (wher@a 2). The support function h is de ned on R"

by:
8x 2 R"; h (x):=suph;yi:
y2

The support function is positively 1-homogeneous, so one can equivalently consider the restriction of
h to the unit sphereS" 1.

The support function has various interesting properties as linearity for Minkowski sums, character-
izing a convex set and quite practical formulations of di erent geometrical quantities as the perimeter,
diameter, area and width. There are many other properties that enhance the popularity of this
parametrization, we refer to [164, Section 1.7.1] for a complete survey and detailed proofs.

Let us state the main properties of the support function used in the present thesis.

Proposition 12. Let ;; , 2 K" and h ;h , the corresponding support functions, we have the fol-
lowing properties:

1. 1= 20 h,=h,.

2. 1f 4 2, thenh | h .

3.h \ ,=min(h ;;h ).

4.h, .+, ,= 1h  + oh , where ;; 2> 0.

5 d'( 1; 2)=kh , h ,k; = supljh J(u) h o (u)j.

u2s

Since we are interested in the case of planar convex sets, from now on the support function of a set
2 K? is de ned by:
cos :
8 2R; h ()=sup x; . = sup (xpcos + xpsin ):
x2 sin (X1:%2)2

It is now natural to wonder how can the support function describe a convex shape (or more precisely
its boundary). The following Proposition provides an e cient parametrization of strictly convex planar
domains, which are considered in numerical simulations to approach the optimal shapes.
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Proposition 13. Let 2 K?2. The support function h of the convex is of classC! on R if and only
if is strictly convex, in which case its boundary@ will be parametrized as follows:

( x =h ()cos ho()sin ;

y =h ()sin +h%()cos;
where 2 [0;2 ].

Now that we know that for any convex set one can associate a support function, it is natural to
seek for conditions that a function should satisfy in order to be the support function of a convex set.
The answer is tightly related to the fact that the convexity of a set is equivalent to the positivity of
the radius of curvature at any point of its boundary.

Proposition 14. Let  a strictly convex planar set, we assume that its support functiorn is C11,
then the geometric radius of curvature of@ is given byR = h%+ h and we have:

8 2[02];, R ()=h®)+h () O (5.1)

Reciprocally, if h is a Ctit, 2 periodic function satisfying , then there exists a convex set 2 K?2
such thath = h .

Remark 13. The results above are stated for strictly convex sets with smooth support functions (which
is enough for the numerical simulations, se¢ 5.1]1). Nevertheless, let us give some remarks on the
singular cases:

" When h is just C, the condition R := h%+ h 0 can be understood in the sense of distributions

that is to say thatR := h%+ his a posri\;ive Radon measure (i.e. for allC! positive function

of compact support in[0;2 ], one has: 02 R 0).

" When is not strictly convex, the support functionh is not C*' and the measure corresponding
to the radius of curvature R may involve Dirac measures. This is for example the case for
polygons whereR  will be given by a nite sum of Dirac measures, see [164] for example.

In addition to providing a quite simple description to the convexity constraint (see (5.1))), the
support function provides elegant expressions for some relevant geometric functionals.

Proposition 15. Let 2 K?2 and h its support function, we have the following formulae:

1. for the perimeter z
2

P()= h ()d;
0

2. for the minimal width

w()= min_h()+h(+);
3. for the diameter

d)= max h ()+h (+);

4. for the area z,

ji= h?() h®()d:

NI

0
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Numerical setting

Let us take 2 K?2. Sinceh is anH?!, 2 -periodic function, it admits a decomposition in Fourier
series:

X
h ()=a+ (apcosn + b,sinn );

n=1
where (a,)n and (b,)n denote the Fourier coe cients de ned by:
z
1 2
=5 h()d
and 1 Z ) 1 7 )
8n2N; a,=— h ()cos(h )d; b,= = h ()sin(n )d:

We can then express the area and perimeter via the latter coe cient as follows:

b3
PO=2 ao and | j= aj+5 (1 k)& +H):

k=1
To retrieve a nite dimensional setting, the idea is to parametrize sets via Fourier coe cients of
their support functions truncated at a certain order N 1. Thus, we will look for solutions in the set:
( " | )
Hn = 70 a+  acosk )+ besin(k) a; anihy;  sbv2R
k=1
This approach is justi ed by the following approximation proposition:

Proposition 16. ([164, Section 3.4])
Let 2 K?and"> 0. Then there existsN- and - with support function h . 2 Hy. such that
d( ; <",

For more convergence results and application of this method for di erent problems, we refer tg [15].

Let N 1, we summarize the parametrizations of functionals and constraints:
" The set is parametrized viaag;:::;an;by;:::;by.

" The convexity constraint is given by the condition h°+ h 0on[0;2 ). In [20] the authors
provide an exact characterization of this condition in terms of the Fourier coe cients, involving
concepts from semide nite programming. In [14] the author provides a discrete alternative of the
convexity inequality which has the advantage of being linear in terms of the Fourier coe cients.
We choose ,, =2 m=M wherem 2 J1;M Kfor some positive integerM and we impose the
inequalities h°Y ) + h ( ) 0 for m 2 J;MK As already shown in [14] we obtain the
following system of linear inequalities:

0 1

do

aj
0 1 0 1
1 11 LN 11 LN : 0
. . KEavE Bk
1 N N:N N;1 N;N by 0

by

where nx =(1  k?)cosk m)and mx =(1  k?)sin(k ) for (m;k) 2 J;MK JL;NK
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" The perimeter constraint P() = pp is given by
2a0 = pPo:

" The area constraintj j= Ag is given by

X
aj+ 5 (1 K)@E+ B) = Ao
n=1

" The diameter constraint d() = do is equivalent to

( 8 2[0;2); h()+h(+ ) do

902[0;2); h(og+h ( + )= do;

again as for the convexity We choose, =2 m=M wherem 2 J1; M Kfor some positive integer
M % and we impose the inequalitiesh ( m)+ h ( + m) do for m 2 J1;M % we also assume
without loss of generality that h (0) + h ( ) = dy (because all functionals are invariant by

rotations). All theses conditions can be written in terms of (ax) and (b¢) as the following linear

constraints:

8

2 Bm2ILMY 28+ | (1+( Doosk m) a+(@+( DOsn(k m) b do
k=1

.§ 2ag + : (1+( DXax = do:
k=1

Computation of the gradients

In order to have an e cient optimization algorithm, we compute the derivatives of the eigenvalue
and the area in terms of the Fourier coe cients of the support function (while for the convexity, the
diameter and the perimeter constraints no gradient computation is needed in this setting since these
constraints are linear). To this aim, we rst consider two types of perturbations, a cosine term and
a sine term, namely two families of deformations(V,, ) and (Vy, ) that respectively correspond to the
perturbation of the coe cients (ax) and (k) in the Fourier decomposition of the support function. As
stated in Proposition I3, when s strictly convex, the support function provides a parametrization
of its boundary @= f(x ;y )j 2 [0;2 ]g; then the perturbation elds (Va, ) and (V) are explicitly
given on the boundary of as follows:

( Va (X ;y )= cosk )cos + ksin(k )sin ; cosk )sin ksin(k )cos() ; wherek 2 JO;NK

Vo (X ;¥ )= sin(k )cos + kcosk )sin ; sin(k )sin kcosk )cos ; wherek2 JI;NK

If we denote A : 7! j | the area functional, we have the following formulae for the shape
derivatives of the functional A in the directions (V,, ) and (Vp, ):

8
3 AY Va)=2 a0
AY Ve )= (1 kPa; wherek 2 JI;NK
AY ;W)= (1 k?hb; wherek2 JI;NK
As for the Dirichlet eigenvalue, we recall that when is convex (or su ciently smooth), the shape

derivative of ; in a direction V : R> !  R? is given by the following formula:
Z

9% sv)= . ir u?(x 5y ) V(X sy in(x y ) d;
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where n(x ;y ) = (cos ; sin ) stands for the exterior unit normal vector to @ , u; 2 H}() corre-
sponds to a normalized eigenfunction (i.e ku;k, = 1) corresponding to the rst eigenvalue ;() and
d =(h%+h )( )d,we refer to [106, Section 2.5] for more details on shape derivatives of eigenvalues.
It is then possible by a change of variables to write the directional shape derivatives of ; as an integral
on [0; 2 ] as follows:

8 R, . .
< 9 sVa)= 4 druii(x;y)cosk ) h )+ h () d; wherek2 JO;NK

RZ . . .
0 Wb )= o Jrui(x;y)sin(k ) h% )+ h ()d; wherek2 J;NK

The computation of the integrals is done by using an orderl trapezoidal quadrature.

5.1.2 Gauge function parametrization
De nition and main properties

A classical way to parametrize starshaped open sets (in particular convex ones) is by using the so-called
gauge function

De nition 5. Let a bounded, open subset dR" (with n  2) starshaped with respect to the origin.
The gauge functionu is de ned on R" by:

8x2R"; u X)=infft>0jtx2 g

The gauge function is positivelyl-homogeneous, so one can equivalently consider the restriction aof
to the unit sphereS" 1.

In the planar case (1 = 2), we use polar coordinates representatior{r; ) for the domains, we then
de ne the gauge function onR as follows:

8 2R u ()=inf t>0jt 2% 2
Sin

The open set is then given by:

. 1
= (n)2[0,+1) Rjr< 0
The curvature of the boundary of is given by:
u%+ u _
- 1e 2 3’

where the second order derivative is to be understood in the sense of distributions. Thus, as for the
support function, the starshaped set R? is convex if and only if:

u%+u O

Moreover, straight lines in @ are parameterized by the sef u® u = 0g, and corners in the boundary
are seen as Dirac masses in the measur®+ u . For example, the gauge function of a polygon will
be given by a nite sum of Dirac masses at angles parametrizing the corners.

Both the perimeter and area can be expressed via gauge function. Unfortunately, this is not the
case for the diameter.

Proposition 17. Let a planar set star-shaped with respect to the origin. We have the following
formulae:
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1. for the perimeter

2. for the area z,

Numerical setting

Similarly to the case of support function, in the planar case, we can decompose its gauge function as
a Fourier series:

ps
u()=a+ (ax cosk + b sink );

k=1
where (an)n and (), denote the Fourier coe cients de ned by:
z 2
%= 5 U ()d
and Z ) Z )

1 1 .
8k2N; a=-— u()cosk )d; bx=-= u ()sin(k )d:
0 0
Here also, we look for solutions among truncated functions given in the following space:

( )
X

Hy = 7! ap+ accosk )+ besin(k ) a; an;b; ;v 2R
k=1

In practice, the computation of the perimeter and the area is done by considering a uniform

discretization ¢ := % jk2J0;M 1K of the interval [0;2 ), with M a positive integer (we take

it equal to 200 for the applications). We then approach the domain by the polygon \, of vertices

Ay UCO? 5 us"‘( &, wherek 2 J0;M 1K The functionals perimeter and area (given as integrals in

Proposition[17) are then computed in terms of(ax) and (bc) by using an order 1 trapezoidal quadrature:

8 S
p 2
P aog+ ap cos(p )+ bpsin(p «) + pap sin(p «)+ pbp cos(p «)
P() il\/Pl u? () u®(k) _ LNPl p=1 p=1
M u? (k) Y 2] z
k=0 k=0 ao+ @ cos(p 1)+ by sin(p «)
p=1

HE 1 v 1 1 -1 W 1 1 .

oW oS W 5] 7
_ k=0 K20 ag+  apcos(p )+ by sin(p i)

Here also the convexity is parametrized as in the last section by linear inequalities involving the
coe cients (ax) and (by).

Computation of the gradients

The shape gradients of the area and the perimeter are computed by di erentiating the explicit formulae
above with respect to the Fourier coe cients. As for the Dirichlet eigenvalue, one has to use the
Hadamard formula: Z

% ;v)= jr ugj?hv;nid;
@
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where u; 2 H3() is a normalized eigenfunction (i.e. kuik, = 1) corresponding to 1() and V is
a perturbation eld corresponding to the perturbation of a Fourier coe cient. Let us investigate the
values of such perturbations on the boundary of : let : 2 R 7! v( ) a Lipschitz 2 -periodic
function, for su ciently small values of t> 0, we write:

1 1 !
PR
u u

1
— + = __ + :
u +t u 1 u t t!oo(t) u u? t t!oo(t)

We deduce that perturbating the gauge function in a diregjion corresponds to a perturbation eld

de ned on the boundary @= UCO? 3 US'”( ;20021 by:
cos  sin () cos() 2
B I .
s Ou ) 2@ B sn) 2R

We then deduce that the perturbation elds corresponding to the perturbations of the coe cients
(ax) and (b) are given by:

8

. si _ k . . g
2 Vak uCO? y! usm( y 032(( )) (;?ns(( )) ' wherek 2 JO; N K
> o sk _ o
T Vb 22580 = B ] wherek 2 JLNK

where 2 [0;2 ].

Once the perturbation elds are known, we use the polygonal approximation \, (introduced above
in Paragraph [5.1.3) of the domain to provide a numerical approximation of the shape gradient as
follows:

I\X 1
°%C ;Vv) it w2y OV Gy )i niid kg
k=0

with the convention Ay = Ag and:

. p
drk=" (Xa, Xaw )2+ (Yae Yaw)?

" 1y is the middle of the segment[AxAk+1 ].

Tne= g Wa Yaa) s the exterior unit vector normal to the segment [AxAx.1 J.

ko XAy Xapyg

5.1.3 Radial function parametrization
De nition and main properties

It is common to parametrize star-shaped domains via theirradial function. In this section, we present
this parametrization

De nition 6. Letn 2 and R" a domain star-shaped with respect to the origin. The radial
function is de ned on R" by:

8x 2 R"; (X)=supft>0jtx 2 ¢

The radial function is positively 1-homogeneous, so one can equivalently consider the restriction of
to the unit sphereS" 1.
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In the planar case we can de ne the radial function onR as follows:

. COS
8 2R; = t>0jt 2
()=sup It

If R? is open, it can be given in polar coordinates as follows:
= f(r; )2[0;+1) Rjr< ()g:
We remark that the radial function is simply the inverse of the gauge function introduced before.

Numerical setting

Unfortunately, in contrary to the previous cases, convexity cannot be given by linear constraints on

the Fourier coe cients of the periodic function . We propose to approximate a set via polygons of
2k
vertices (k) .-~ 2 R? wherek 2 JO;M 1Kand M a su ciently large integer (in practice we
M
take M = 200).
Thus, a star-shaped set will be parametrized via M positive distances( k)k2J1:m k that describe
cos Zk—

a polygonal approximation of  given by verticesAx = ¢ a2t - We always consider the convention
M

Ayv = Agand A ;:= Ay 1 (inparticular y = gand 1:= m 1)
This setting allows to give good approximations of the involved geometrical functionals (perimeter,
area and diameter). we have:

1. for the area:

o1 2 Xt
I 1= ésmﬁ k k+1;
k=0
2. for the perimeter: S
w1 2k
P()= K+ ka 2k kacos |
k=0
3. and the diameter:
S
d() = max -cosi -cosi 2+ -sin£ -sini 2'
BT Y ' M ! M Y/ ! M

this formula provides the diameter in O(M ?) complexity. When the polygon is convex we use a
faster method of computation (with complexity O(M )), which consists of nding all antipodal
pairs of points and looking for the diametrical between them. This is classically known as Shamos
algorithm [157].

It remains to describe the convexity constraint via the parameters( k)x20m 1« We remark that
the polygon (which contains the origin O) whose vertices are given byAy = cos%; k sin%
is convex if and only if the sum of the areas of the triangleOAKAx+1 and OA Ak 1 is less or equal
than the area of OAx 1Ak+1, see Figurg5.1L.
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Figure 5.1: Convexity constraint via areas of the triangles.

We have: 8

_ 1 2k
3 SoAk 1A= 3 k 1 kSINT
_ 1 2k
5 SoA A = 5 k k+1 SING;
- _1 LAk _ 2k %k .
SOAL 1A = 3 k 1 k+1 SN = Kk 1 k+1 SN cOST—:

Thus, the convexity constraint given by Soa, A, * Soa A S 0A. 1AL, IS €quivalent to the
following quadratic constraint:

2
Cy 1= 2cos MK Lk k(k 1+ k1) G
wherek 2 JO;M 1K

Computation of the gradients

Now that we brought the shape optimization problem to a nite dimensional optimization one, it
remains to compute the gradients of the involved functionals and constraints.

Let us take R? a domain whose starshaped with respect to the originO, that we assume
to be parametrized by ( «)k2so0m 1« For any k 2 JO;M  1Kwe denoteV , the perturbation eld
corresponding to the perturbation of the variable . It is null on the whole boundary except on the
sides[Ax 1Ak] and [AAx+1 ], see Figurg 5.p.
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Figure 5.2: Perturbation eld V.

Since we dispose of explicit formulae for the perimeter and the area, we can directly compute the
corresponding shape gradients. We have for everlg 2 JO;M 1K

sin Z-

o - — .
AT V)= 2M (k 1+ ke )s
and ) )
k k 1COS 3 K k+1 COS T
PY V)= 4 L + q = :
k1t £ 2k 1wcos i 20+ 2 2k kCoS &
For the eigenvalue, we use as before the Hadamard formula:
z
O( V) _ H 'ZH\/. A
i( 2V)= jr uijhv;nid;
@

whereu; 2 H3() is a normalized eigenfunction (i.e. ku;k, = 1) corresponding to 1() andV is a
perturbation eld.
For every k 2 JO; M 1K we discretize the side[AxAk+1] in ~ small segments of Iengthm
centred in some pointsB, 2 [AxAk+1]. We then compute approximations of the gradients as follows:
10 5V) ruj(xg s ye )WV (Xgiysi )inkid wjr (g s¥si IV, (Xgi Vsl )ik 1id k 1 ;
i=1
with:

the conventionsAy = Agand A 1:= Ay 1 (inparticular y = gand 1:= u 1),

" the points (B})i21m k

- p
dy= (XAk XAk )2 + (yAk YAca )2!

T 8i2JL°K Bhi= 14 A+ Ay,

" ng = ﬁ ii’*k X‘;Akﬂ ) is the exterior unit vector normal to the segment [AxAx+1 |-
k k+1

Finally, for the diameter, we use the following shape derivative formula obtained in Theorenj 1IP:

d% ;V)=max H;V(x) V(y) X;y 2 ; suchthatjx yj=d()
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5.1.4 Polygonal approximation and parametrization via vertices

In this section, we propose to parametrize a convex set via the coordinatey; Yk)kz2iom 1k Of the
vertices A of a corresponding polygonal approximation denoted y (with M 3). We assume that
the points (Ax)k230.m 1k form in this order a simple polygon (that is a polygon that does not intersect
itself and has no holes) and recall the convention®\yy = Agand A ;= Ay 1.

As for the previous cases, we have formulae for the involved geometrical quantities:

8
P 1p
% P(wm) = (Xk+1  Xk)2+ (Ve Vi)
k=0
o L W1
% I ml = 3 XkYk+1  Xk+1 Yk
k=0

A w) =max G XZE(n 92

It is easily seen that \ is convex if and only if all the interior angles are less than or equal to .
By using the cross product, this, in turn, is equivalent to the following quadratic constraints:

Xk 1 XK)(Ykez Y)Yk 1 Y)(Xksz  Xk) O

for k 2 JO;M 1K where we used the conventionXg := Xum, Yo := Ym,» XM +1 = X1 and yy +1 = V1.
This characterization of convexity is quite natural and has already been considered in literature, see
[19] for example.

The gradients of the perimeter, area and convexity constraints (corresponding to the variable$xy)
and (yx)) are directly obtained by di erentiating the explicit formulae given above. On the other
hand, the gradients of the eigenvalue and diameter are computed (as in the last section) by using
shape derivative formulae (see|[106, Section2.5] for, and Theorem[19 for the diameter), where, we
use the perturbation vector elds (Vy,) and (Vy,) corresponding to the variables(xx) and (yx), see

Figure 5.3.

Figure 5.3: Perturbation eld Vy, associated to the parameterxy.
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5.1.5 Computations of the functionals and numerical optimization

Let us give few words on the numerical computation of the functionals. In all the parametrizations
above we dispose of analytical formulae that provide good approximations of the area and the perimeter.
Let us give some elements on the computations of the remaining functionals involved in the present
thesis:

the rst Dirichlet eigenvalue is computed by the '"Partial Di erential Equation Toolbox" of Matlab
that is based on nite elements methods.

As explained in the sections above, the computation ofthe diameter depends on the choice of
the parametrization: indeed, when parametrizing a convex via its support function h , it is
given by d() = mza[?)g2 | h ()+h ( + ), meanwhile, when using a polygonal approximation,

we compute the diameter of the convex hull via a fast method of computation (with complexity
O(M), whereM is the number of vertices), which consists of nding all antipodal pairs of points
and looking for the diametrical between them. This is classically known as Shamos algorithm
[157].

The Cheeger constantis computed by using a Beniamin Bogosel's code [30] based on the char-
acterization of the Cheeger sets of planar convex sets given ih [122] and the toolbox Clipper, a
very good implementation of polygon o set computation by Agnus Johnson.

The inradius is also computed by using the tootbox Clipper and the fact thatr () is the solution
of the equationj j=0.

As for the optimization, we used Matlab's fmincon function with the interior-point and/or sqp
algorithms.

5.2 Application to Blaschke-Santab diagrams

In chapters[4 and[3 we gave theoretical results on Blaschke-Santab diagrams that we combine with
the latter optimization methods in order to obtain a quite advanced numerical description of diagrams
involving the diameter, area, perimeter and Dirichlet eigenvalue.

If we want to have an idea of the shape of a Blaschke-Santab diagram, we generate in a rst time
a large number of convex sets (polygons) for which we compute the values of the involved functionals.
This allows to approximate the diagram via a cloud of dots, this was done before in [11] for the case
of the triplet (P; 1;j j) and [13] for the case of 1; 2;j j) andin Chapters@ for the triplet (P; h;j j)
and[3 for the triplet (P; 1;j j).

In order to improve the results obtained with this random generation, we propose to use shape
optimization methods based on the parametrizations described in Sectiof 5.1 to describe the upper
and lower boundaries of the diagrams and use theoretical vertical convexity results on the diagrams
to conclude that the sets of points between the latter boundaries is included in the diagrams and thus
give a quite advanced description.

5.2.1 Some theoretical results on the diagrams

We recall the following setting: if J1, J> and J; are three shape functionals de ned on a clas§ of
subsets ofR", we calla Blaschke-Santab diagramof the triplet (J1;J2;J3) on the classF, the following
set of points:

De == J1() ;32() jJIs()=1 and 2F

In this section we are interested in the numerical study of some Blaschke-Santab diagrams involving
the rst Dirichlet eigenvalue 1, the diameter d, the perimeter P and the areaj j. Let us state the
following theoretical result that will appear in [89]:
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Theorem 18. (to appear in [89])

The diagrams associated to the tripletgP;j j; d), (d; 1;jj) and (P; 1;] j) are closed, simply connected
and vertically convex; indeed they are given by sets of points contained between the curves of two
continuous functions de ned on some corresponding intervals.

This result, combined with the optimization methods described above allow to give quite accurate
descriptions of the diagrams which are given by sets of points located between the numerically obtained
lower and upper boundaries.

Let us give some hints on the proof of this result:

" As explained in the introduction (Section ) when the diagram involves two functionals that
are linear for Minkowski sums and dilatations (which is the case for the triplet (P;j j;d)), itis
quite easy to prove the vertical (or horizontal) convexity of the diagram, indeed, in this case the
paths constructed by Minkowski sums are given by segments (see the example of the diagram of
(r; P;j j) developed in the introduction).

The result on the diagram of the triplet (P; 1;j j) is proved in Chapter@ and the same method
applies for (d; 1;j j), the only di erence is that we had to prove a perturbation lemma in the
spirit of Lemma [7]

5.2.2 The purely geometric diagram(P;j j;d)
Naive approach and classical results

We recall that the diagram of the triplet (P;j j;d) is given by the set of points:
Di:= P():jjj 2K?andd()=1

This diagram is (as far as we know) one of the unsolved diagrams introduced by Santab in [163]:
but one has to note that there are quite advanced results on the characterization of its boundary:

in [148], the authors solve the problem corresponding to the upper boundary, namely they prove
that the problem

supfi jj 2K?% P()= poandd()=1 g;

wherepg 2 (2; ], is solved by symmetric lenses (that are given by the intersection of two balls
with the same radius) of diameter 1 and perimeter po.

In [127], the author manages to describe the lower boundary of the diagram that corresponds to
perimeters pg 2 (2; 3], he shows that the optimal domains are given bysubequilateral triangles
(ie. isosceles triangles whose smaller inner angle is less thay).

At last, there is the famous Blaschke{Lebesgue's Theorem, named after W. Blaschke and H.
Lebesgue, which states that the Reuleaux triangle (see Figurg 5.4) has the least area of all
domains of given constant width. It is classical that sets of constant Wl&tb have the same
perimeter, thus in the diagram, those sets Il the vertical line f g [%( 3); 71, see Figure
0.4.

In the following gure, we plot the curves corresponding to the extremal sets described above and
a cloud of dots obtained by randomly generatingl0® polygons whose numbers of sides are id8; 30K
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Figure 5.4: Approximation of (P;j j;d)-diagram via random convex sets and some relevant shapes.

Study of the extremal shapes

We use methods of Section 5|1, in order to obtain a numerical approximation of the missing boundary
(which should be connecting the equilateral and Reuleaux triangles in Figuré 5]4).
We numerically solve the following shape optimization problems:

minnmaxfj jj 2K?% P()= poandd()=1 g;

wherepy 2 (3; =4).

The parametrization via the Fourier coe cients of the support function (Section allows to
obtain quite satisfying results as we obtain symmetrical lenses (see Figu@.S) as optimal shapes (which
is in concordance with the result proved in [148]).

Figure 5.5: Symmetrical lens obtained as a solution of the problemmaxfj j j 2 K2, P() =
24andd()=1 g.
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As for the lower boundary,to obtain good approximations, we combine the two methods of sections
and[5.1.3. We rst use the parametrization via Fourier coe cients of the support function
truncated at a certain order N to nd rst approximations of the extremal sets that will be used as
initial shapes for the parametrization using radial function. We note that by this process we are able
to obtain quite accurate description of the lower boundary, see Figurg 5.70.

In a rsttime, as explained in section [5.1.7], problem[5.2.2 is reduced to the following nite dimen-
sional minimization problem

!
2 X\l 2 2
min ag+ = 1 k + ;
(ao;ibn )2R2N +1 02 ( )& h%)
k=1
with linear constraints on the Fourier coe cients:

" perimeter constraint: 2a ¢ = po,

" and convexity constraint:
0 1
ao
a
0 1 01
1 11 LN 11 LN : 0
o . ... KBavE BK
; ; NN by 0
by

where mx =(1  k?)cosk m and pmx =(1  k?)sink n for (m;k) 2 JLMK J1;NK with M
taken to be equal to 1000.

Before showing the obtained results, let us rst analyse the accuracy of the present method (based
the support function): we solve the latter optimization problem for di erent values of the parameter
N in the casepg = 3 for which we know that the optimal shape is given by the equilateral triangle.
Here are the optimal shapes obtained for the choices dfl 2 f 20; 40; 100, 140g:

Figure 5.6: Obtained solutions forpyp =3 and N 2 f 20; 40; 100, 140g (approximation of an equilateral
triangle).

In the Figure 5.7, we plot the relative errors in function of the order of truncation N . It shows that

the method based on the support function is not very relevant when the optimal shape is polygonal
(which is frequent when imposing convexity constraint).
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Figure 5.7: Relative errors in function of the truncation order N in the casepy = 3.

We then obtain (see Figure[5.8) an approximation of the missing lower boundary corresponding to
domains obtained by considering401 Fourier coe cients ( N = 200).

Figure 5.8: Approximation of the missing part of the lower boundary by optimizing the Fourier coef-
cients of the support function.
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Finally, Figures 5.9 and[5.10 show how using the shapes obtained by the method of support function
as initial points for the method via the radial function (section p.1.3) allows to improve the description
of the missing lower boundary

Method Support function Radial function

Obtained shape forpg = 3:07
Corresponding area 0.5881 0.5687

Figure 5.9: The radial function parametrization allows to improve the result of the support function
method.

Figure 5.10: Improved description of the lower boundary by combining the two methods.
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Extremal shapes and improved description of the diagram

At last, we provide some extremal shapes obtained for relevant values g in Figure and improved
description of the diagram D, in Figure 5.12.

Problem Po = po = 3:07 Po=3 pPo=2:4

Upper boundary

Lower boundary

Figure 5.11: Extremal shapes corresponding to di erent values ofy.

Figure 5.12: Improved description of the diagram of the triplet (P;j j;d).

151



5.2.3 Diagram(P; 1;j ])
The diagram (P; 1;j j) is theoretically studied in Chapter 3| We recall that the diagram is given by
the set of points:
D,:=fP(); 1() j 2K?andj j=1g:
In a rsttime, we give an approximation of the diagram by generating 10° random convex polygons
(as it was done before in[[11]). We obtain the following Figureg 5.13:

Figure 5.13: Approximation of the diagram via random convex polygons.

In order to give a more satisfying approximation of the diagram, we want to nd the upper and
lower domains and thus have a more accurate description of the boundary of the diagram. We are
then led to (numerically) solve the following shape optimization problems:

maxnminf () j 2K? P()= poandj j=1g;

It is shown in Theorem[1] of Chapter[3 that apart from the ball the domains that lay on the lower
boundary are polygonal meanwhile the ones that lay on the upper boundary are smooth@*!), we
then apply Method 4 (the one based on the coordinates of the vertices) for the lower boundary and
the other methods for the upper one and obtain quite satisfying results. In Figurg 5.14, we provide
the obtained optimal shapes corresponding to some relevant values @f.
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Problem Po = P(B)=2p* po=3:8 po=4 Po=4:2

Upper boundary

Lower boundary

Figure 5.14: Numerically obtained optimal shapes corresponding to di erent values ofy.

Finally, once the boundary is known, we use the vertical convexity of the diagram of Theorenj 18
to provide an improved and quite optimal numerical description of the diagram, see Figurg 5.95.

Figure 5.15: Optimal description of the diagram (P; 1;j j).
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5.2.4 Diagram(d; 1;j j)

Let us now consider the diagram relating the diameter, the rst Dirichlet eigenvalue and the area. We
are interested in the following set of points:

Dz:=fd(); 1() j 2K?andj j=1g:

In a rst time, let us give an approximation of the diagram by generating 10° random convex
polygons. We obtain the following Figure[5.16:

Figure 5.16: Approximation of the (d; 1;j j)-diagram via 10° random convex polygons.

Here also, by the vertical convexity of the diagram given in Theoren| 1B, to obtain an improved
description of the diagram we numerically describe the upper and lower boundaries of the diagrams,
which means that we solve the following shape optimization problems:

maxnminf () j 2K? d()= doandj j=1g;

wheredg 2 [2=° 7 +1 ).

For the lower boundary, both the methods of parametrization via the Fourier coe cients of the
support function (see Sectior{ 5.1.]1) and via the discretized radial function (see Sectidn 5..3) provide
satisfying results and suggest that the optimal sets are symmetrical 2-cap bodies, that are given by
the the convex hulls of a ball and two points symmetric with respect its center (see Figur?).
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Figure 5.17: Obtained symmetrical 2-cap body.

On the other hand, the upper domains are quite surprising, since we (numerically) observe the
existence of a thresholdd , such that the solutions ford >d seem to be given by symmetric spherical
slices, that are domains de ned as the intersection of a disk with a strip of width smaller that the
disk's radius and centered at its center, see Figurg 5.18, meanwhile, wheh< d , the optimal domains
seem to be given by some kind of smoothed regular nonagons, see Fighre 5.18.

Figure 5.18: Obtained upper shapes corresponding talp = 1:18 for the smoothed nonagon and to
do = 1:33 for the symmetric slice, we used the parametrization via the Fourier coe cients of the
support function with 161 coe cient ( N = 80).

At a rst sight, it may be surprising that the optimal shapes do not ‘continuously" vary in terms of
the involved parameters, but, we should note that this phenomena has recently been observed in [71],
where the authors provide the complete description of the(d;r;j j)-diagram involving the diameter,
the inradius and the area; they prove that the one of the boundaries is given by smoothed nonagos
and symmetrical slices meanwhile the other one is given by symmetrical 2-cap bodies. This leads us
to investigate these families of shapes that also seem to be extremal shapes for dar, ;;j j)-diagram
(see Figurg 5.1p) and also for thed; h;j j)-diagram discussed in Sectiof 1.5]1 of the introduction. This
similarities may be explained by the fact that 1=r corresponds to the rst eigenvalue of the in nity-
Laplacian operator ; which may be de ned as the limit when p! +1 of the pLaplacian operator
(see [[21] and references therein), meanwhile,; and h respectively correspond to the rst eigenvalues
of the 2 and 1 Laplace operators, see [121] for more details.

At last, by the vertical convexity of the diagram stated in Theorem [L8] we are able to provide an
improved description of the (d; 1;j j)-diagram.
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Figure 5.19: The diagram(d; 1;j j) with expected extremal sets.

Figure 5.20: An improved description of the diagram(d; 1;j j).

5.2.5 Conclusion and comments

In the present chapter, we presented! di erent parametrizations that allow to solve shape optimization
problems under convexity constraint. We presented the best shapes we managed to obtain, but it would
be very interesting to perform a more deep and quantitative comparison between the methods: this
will be the main purpose of the work in progress|[89]. At this point, let us summarize the qualitative
observations made when testing each method on the several problems presented above.

156



Situation

Fourier coe cients
of the support func-
tion

Fourier coe cients
of the gauge func-
tion

Discretized radial

function

Coordinates of the
vertices

The optimal shape
is a polygon.

We obtain approx-
imations that are
not very accurate.

We obtain approx-
imations that are
not very accurate.

Provide good ap-

proximations in
some cases if the
initial  point  is

judiciously chosen

Provide very good
results when the
number of vertices
is not very large.

The optimal shape
has at parts but is

Provide acceptable
results when the

Provide very good
results even when

May provide good
results, but some-

We did not suc-
ceed to obtain re-

smooth number of Fourier | the number of | times the convexity | sults as the sides al-
coe cients is large | Fourier coecients | is lost during | ways overlap after

enough. is small. the  optimization | few iterations.

process.

The optimal shape | We obtain very | We obtain good | We obtain good | We did not suc-
is strictly convex. good results. results especially| results when the| ceed to obtain re-
when the shape do| convexity is pre- | sults as the sides al-
not have corners. served during | ways overlap after

the  optimization | few iterations.

process (but less
accurate than the
rst method).

Handling the diam-
eter constraint

This method is very
adapted as this con-
straint corresponds
to linear inequali-
ties on the Fourier
coe cients.

This method is not
very adapted, be-
cause in contrast to
the support func-
tion, there is no im-
mediate formula re-
lating the Fourier
coe cients of the
gauge function to
the diameter.

We obtain good
results when con-
vexity is not lost
during the opti-
mization  process
and when the
initial shape is
judiciously chosen.

We obtain good
results when the
number of vertices
is not very large.
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5.3 Appendix 1: Some useful shape derivatives

We consider a smooth vector eldV 2 C(R";R"). We compute the rst order directional shape
derivative of the diameter in Section[5.3.1 and the Cheeger constant in Sectiop 5.3.2 (we provide a
slight improved version of [153, Theorem 1.1]).

5.3.1 First order shape derivative of the diameter

In this section, we compute the shape derivative of the diameter functional, which we recall to be
de ned as follows:
d: R"7! d()= sup jx Vi
(xy)2 2

where is a compact subset ofR".

Theorem 19. The diameter functional d admits a directional shape derivative in the directionV, we
have:

dC v d0)

A iyi)2 ol V)= lim S

= sup .X Y V(X)) V(y) X;¥y 2 ; such thatjx yj=d()

x oyj
X1 N
= —— V(X Vv ;
X1 V1] (X1) (Y1)
where :=(1 +tV)() ,wherel :x2 R" 7! x2 R" is the identity map.

Proof. We want to prove the existence and compute the Iimitllin(’)l M
t +

Foreveryt 0  is compact: indeed, it is the image of the compact by the continuous map
| + tV). Thus sinced : (x;y) 2 R R" I'j x vyjis continuous, it is bounded from above and
there exists (X¢;y;) 2 such that d( ¢) = j(I + tV)(x¢) (I + tV)(y)j. In what follows, we denote

(x;y) = (Xo; Yo)-
We use(Xy; V) (resp. (X;y)) as test points to majorate (resp. minorate)d( ) d() :
jh+tv)(x) (+tV)()ijx yi dC o) dO) JO0+tV)(x) (T+tV)Y)i J Xe Wi
Let us begin by the lower estimate. We have:
d( o) d() jO+tv)(x) (I +tV)Y)ii]x Vi
=ix+tV(x) y V) x i
(X Y+t V() V() jx i

r

2
(x N+t VX V() x i

PR 2t vV VO ol | X i

S

. . y V(X)) V(y) . .
= jX 1+2t - - - - + ot X

X yj XY X v () j yj

, : y . V(x) V() : :
= X 1+t - - - - + ot X

X yj Xy X v (t) j yj

X 'y

ix yj:V(X) V(y) +oft):
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Thus:

liminf
t! o+

M 2TV V() ixy2 suchthatjx yj= d()

sup - -

x oy

Let us now consider the upper estimate. Let (X¢,;V¥:,) @& subsequence of (X;;y;) such that
n t

ta! 0 and Ililm M = limsup M By Bolzano-Weirstrass Theorem, we assume with-
n " tr o

out loss of generality that there exists(x; ;y; ) 2 2 such that the sequence (X, ;Y:,) converges
n

to (X1 ;Y1 ).
We havejx; yij=d() . Indeed:

8(v;iw) 2 % (I + taV)(Xe,) (I + taV)(Ye,)i § (I + taV)(V) (1 + taV)(W)j;
which is equivalent to
8(Viw) 2 2 Xy, Vi, tthV(X,) thiV(W)i vV wWHtV(V)  thV (W)
Finally:

d( «,) d() jO+tV)(x,) I+ V)Y )i | X, Yol
= thn + tn:V(X[n) ytn tnv(ytn )] ] th ytnj

Xt, Y )+ thl V(Xe,) V(¥,) ] Xt, Yt

;
2
= (Xt, Yt,)* th V(X,) V() J Xty Yto]
r 5 D E
= X, Y, *f2t X, Y, V(X)) V(%) +0(tn) ] Xt, Vi)
s

Xto Y, V(X)) V) | o(tn) | Xt, VY.l
" n n n

= jx i: 1+2t - - -
Pta - Yoo "Xt Yol Xt Yl

S

+0(1) +o(th) | X, Vial

X1 Y1 V(Xt) V(y1)
Xt oy X1 oy

X1 y1 . V(Xx1) V(y1)
X1 yij' o jxa Y1
X1 y1 V(x1) V(y1)

X1 yij o jxa Y1

= X,  WYi.)0 1+2ty
S

+0(th) | Xty Yol

= jXt, Wi, )0 1+2t,

+0(th) ] X, Vi)

= jxtn ytnj: 1+ tn

X1 Y1
=ty ———; V(X \ + o(t
n X1 Vi ] (x1) (y1) (tn)
Thus: & d)
. X1 Y1
lim su ! : V(X v
tl o+p t X1 Y1) (x2) va)
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By combining the liminf and lim sup inequalities, we obtain:

iminf 3040 o0 X Y yg vy jxiy2  :otels quejx  vj= d()
t! 0* t Xy
X1 Y1
—— V(X \%
X1 V1 (X1) (y1)
lim sup dCo dO
tr o t
t! 0+ t
Finally, we deduce that the diameter admits a directional shape derivative in the directionV and:
9x1;y1)2 % lim a0y d0) =sup 2V V() xy2 ;telquejx yj=d()
tr o t X oyj
X1 Y1
= — V(X \%
X1 V1] (X1) (Y1)

5.3.2 First order shape derivative of the Cheeger constant

In this section, is a bounded open un ouvert subset oR" with Lipschitz boundary. for every t 0,
we denote ¢ =(1 +tV)() andh;:=h( {)andg:t7! h;.
We recall that the Cheeger constant of a Lipschitz set can be de ned by:

iDuj(R") .
u2BV () nfog jjujjz

h() :=

where BV () is the space of functions of bounded variations on and
z
jDuj() =sup udiv' © 2 Ci(; R"):jiTiin 1

is the total variation in  of the function u2 L() .

In order to prove the di erentiability of g in 0O, the authors of [153] assume the unigueness of the
Cheeger set of , they give a counterexample where di erentiability fails when the Cheeger set is
non-unique (in which case one hag%0*) 6 g%0 )). Nevertheless, they do not study the "directional”
di erentiability of the function g in 0* (or 0 ). In the following Theorem @ we provide a slightly
improved version of [153, Theorem 1.1] where we prove the directional di erentiability ofg (in 0*)
without assuming the uniqueness of the Cheeger set of.

Theorem 20. ([153, Theorem 1] revisited)
The shape derivative

ho( 7V) = |im M
! 0* t
exists and there existaug 2 X (0) ;= fu2 BV () jkuk; =1 h()= jDuj(R™)g, such that:
Z Z
hy ;Vv)= divw h ;DV i djDupj h ugdivVv
Rz z
= inf divwv h ;DV i djDuj h udivv

u2 X (0) RN
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Proof. We recall that any measure can be decomposed as = | j, where is a measurable function
such asj (x)j =1 almost everywhere, this is known as the polar decomposition of the measure.

Continuity of gin O:

Let u2 BV() a positive eigenfunctign (for the 1-Laplace operator (see|[121]) associated to the
Cheeger constanth() such that kuk, :=  jujdx = 1. We use the functionw; = u G; 2 BV( ) as
a test function in the variational de nition of h( ) and use a change of variable formula for functions
of bounded variations (see|[98, Lemma 10.1]):

R
iDWH(R") _ e IDG{ (Gh + tV)(y)) j:jdetD(l + tV)(y)jdiDuj _ 1+ 0(1))1'Dﬂ(§”);

h R
t Wi u(y)idetD (I + tV )(y)jdy
thus:
limsuphy h:
th 0

Now, let u; 2 BV () a positive function such that kuk, = 1 and jDuj(R") = h;. We take
vi=u (I +tV)2BV() , we have:

Z
jiDV{j(R") = D( +tV)T G((x) :jdetDG(x)jdiDvyj
Rn
= hy + 0o(1)
h + o(1);
thus:
limsuphy h
tt o
and Z 4
v (x)dx = ujdetD(I + tV) Yjdx =1+ o(1)
Le sequence(vy)s o is bounded in BV (R") and every v; is vanishing outside , thus, one can
extract a subsequenceg(v;, ) such that there exists a functionv 2 BV (R") satisfying v, n‘! oV in

LL.(R"). Up to an extraction, we can assume thatv;, n!! oV almost everywhere onR".

We havev =0 in R"n , moreover:
Z Z

viy)dy = lim v, (y)dy =1;
thus by semicontinuity:
h j Dvj(R") Iimlinijvtnj(R”) limsupjDv{j(R") h
n: tl 0
On the other hand, we have:
iDRiRY iDRI(RM)
liminf DV j(R™) = liminf 2RIy —iming PRI 04 01))  h
th o th o Vi th o Vi
thus:
tI!mOjthj(R"): h:

(Because:jDvj(R") = h + t!00(1)).

We nally conclude that g : t 7! h; is continuous in 0 and v 2 BV () is an eigenfunction
corresponding to the eigenvaluen() .
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Di erentiability of g in 0*:

Upper estimate:
By taking w; = u G as a test function in the variational characterization of h( ), we have:

R
iDWi(R") _ g JDG{ (g + tV)(y))j;jdetD(l + tV)(y)jdjDu;
Wi u(y)jdetD(l + tV)(y)jdy

he h h (5.2)

t

We have:
jdetD(l + tV)(y)j =1+ t:divV(y)+ o(t) (uniformly in y), (5.3)
and:
h iT h iT
DG (I +tV)(y) : (¥) DGt y+tV(y) :(y)

h i

I, tDV y+tV(y) Ty o(t):ln = (y)

(y) tDV (' (y)+ oft)

r

(y) DV )T ¢)+ oft)

r B =

i iz 2t (y);DV(y) (y) +ot)
D E
1 t (y;DV(y) (y) +o(t) (uniformlyin vy).

We then deduce that inequality (5.2) becomes:

R
h+ g (divV h ;DV i)djDuj+ oft)
1+t  uwdivV + oft)

ht

R R
t L (divv h ;DV _i)djDuj h udivV + o(1)
R N
1+t  udivV + oft) ’

Since this estimate holds for anyu 2 X (0), we write:

R R
h: h ro (diVV h DV pi)deuj h  udivV + o(1)

8u 2 X (0); t 1+t  wdivV + o(t)
Thus: hoh Z Z
8u2 X (0); limsup ! n [divV h ;DV ildjiDuj h udivV
tl 0+ R"
Finally: z z
lim sup h._h inf [divV h ;DV ildjDuj h wdivV (5.4)
t1 o+ t u2X (0) RN

We consider a subsequencf,) of elements ofR* which decreases td), such as:

fim Mo Ny h2R[flg

n! +1 th n! +1 t

Le computations performed above for the continuity show that up to extracting a subsequence, we
can assume that(v;, ) converges tou 2 BV () \ X (0):

1im jDvy, j(R") = jDuj(R")
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Thus by [7, Proposition 3.13]: . .

8 2 C.(R"); :d jDvyj = :d jDuj
RH er
Lower estimate:
Now, we usev;, as a test function for h() :
z z T
h,, h= djDu¢,j h (DGy,) (I +tV) , :jdetD(l + t,V)jdiDvy, |
Rr\ Rn

where , is taken such that: Du;, = ¢, jDuy,]j.

Similarly to the case above, we have:

z z R
dj
h,, h diDvy,j + t, [divV h ¢ ;DV i]djDvy,] 4217 + o(ty):
R" R"
We observe that: 7 7
v, =1 ug, :divV + o(t,) =1 t, u:divV + o(t);
R" R"
thus, by using the fact that jDv;, j(R") = h+ o(1), we obtain:
R 4 Z Z
roeiDVt, | : . : : .
KRR "= diDvy, j + tq djDvy, j udivv  + o(t,)
Vi, RN RN
Z z
= diDvy,j+ taoh  uwdivV + o(tn):
Rn
Thus: Z 4
hy, h ty (divV h ¢,;DV ¢, i)diDve,j h uwdivV :
Rn

By (6.5) (we took = div%/ 2 C¢(RM)), we ha§e:

divV dDvy,j = divV dDuj+ o(1):
R" R"

By Reshetnyak's The%rem (cf[7, Treoeme 2.39]), Wg have:

h¢ ;DV ¢, i)diDvy,j ! h;DV i)djDuj:
RN nll RN
Finally:
9up 2 X (0); liminf . = jim Mo N
t! ot t 11 th 7
divV h ;DV i djDuj h udivV:
Rn
Thus:
h z Z
9ug 2 X(0); liminf ! inf divV h ;DV i djDuj h udivV
tr 0* u2X (0) RN

At last, by (5.4] and (5.6) we dedu%e thatg:t 7! h is dierentiable ig 0" and:

9up 2 X (0); hY%0*) = divV h ;DV i djDugj h ugdivV
RI‘I
z z
= inf divV h ;DV i djDuj h udivV
uz2 X (0) Rn

which ends the proof.
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5.4 Appendix 2: Validation of Parini's conjecture [152]

To validate Parini's conjecture that states that the square minimizes the functional J, : 7! hf§7)2

we randomly generated10® convex polygons (whose numbers of sides are randomly chosen between
3 and 30) and computed their Cheeger constants (by using the code found in [30]) and their rst
Dirichlet eigenvalues (by Matlab's PDEtool). We did not succeed to nd a shape that is better than
the square. This can be observed in a Blaschke-Santab diagram: let us consider the one involving the
Cheeger constant, the rst Dirichlet eigenvalue and the area:

D:= h(); 1) j 2K?andj j=1
The conjecture Jo() J, (0;1)? is then equivalent to the inclusion:
D (xy)iy J2 (01 x*;

which is observed in Figure[5.2]L.

Figure 5.21: Validation of Parini's conjecture.
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Part Il

Optimal placement of an obstacle
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Chapter 6

Where to place a spherical obstacle so
as to maximize the rst Steklov
eigenvalue ?

This chapter is a reprint of the submitted paperWhere to place a spherical obstacle so as to
maximize the rst Steklov eigenvalue ? [91].

Abstract

We prove that among all doubly connected domains ofR" of the form B.nB,, where B; and B, are
open balls of xed radii such that B, B, the rst non-trivial Steklov eigenvalue achieves its maximal
value uniguely when the balls are concentric. Furthermore, we show that the ideas of our proof also
apply to a mixed boundary conditions eigenvalue problem found in literature.

6.1 Introduction

6.1.1 Optimization of the Steklov eigenvalue

Let R", be a bounded, open set with Lipschitz boundary. In this paper we consider the following
Steklov eigenvalue problem for the Laplace operator:

u=0 in
Gu=u on@, (6.1)

where @u=@1is the outer normal derivative of u on @ . It is well-know that the Steklov spectrum is
discrete as long as the trace operatoH() ! L?(@) is compact, which is the case when the domain
has Lipschitz boundary; in other words, in our framework the values of for which the problem (6.1))
admits non-trivial solutions form an increasing sequence of eigenvalued= o() < 1() 2()

% +1 , known as the Steklov spectrum of .

We are interested in the rst non-trivial Steklov eigenvalue, which can be given by a Rayleigh
quotient:

o z
r uj2dx

O=inf RETZE 42 W) nfogsuchthat  ud =0
@ u2d @

where the in mum is attained for the corresponding eigenfunctions.
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Among classical questions in spectral geometry, there are the problems of minimizing (or maximiz-
ing) the Laplace eigenvalues with various boundary conditions and di erent geometrical and topological
constraints. The constraint of volume has been extensively studied in the last years. For example there
is the celebrated Faber-Krahn inequality |78, 126], which states that the ball minimizes the rst eigen-
value of the Laplacian with Dirichlet boundary condition among domains of xed volume. There is a
similar result for the maximization of the rst non-trivial eigenvalue of the Laplacian with Neumann
boundary known as the Szego-Weinberger inequality [169, 174]. For the Steklov problem, Brock proved
in [46] that the rst non-trivial eigenvalue of a lipschitz domain is less than the eigenvalue of the ball
with the same volume.

The perimeter constraint is very interesting to study, especially in the case of Steklov eigenvalues.
One early result is due to Weinstock |[175], who used conformal mapping techniques to prove the
following inequality for simply connected planar sets:

P(O) 1) P(B) 1(B);

where P() stands for the perimeter of and B a unit ball.

Recently, A. Fraser and R. Schoen proved in|[83] that the ball does not maximize the rst nonzero
Steklov eigenvalue among all contractible domains of xed boundary measure iR" forn 3. The
proof was inspired from the following formula for the annulus:

1

P(Bn'B)™T (Bn'B)= P(B)" T ,(B)+ ﬁ"“ L+ o(" Y)>P(B)T T 1(B);

where"B = f"x j x 2 Bg.
Note that by studying the variations of the function " 2 [0;1] 7! P(B n"B)nl T 1(Bn"B) one can
prove that there exists a unique", 2 (0; 1) such that:

8" 2[0;1); P(Bn'B)™ 1 ((Bn"B) P(Bn"',B)" 1 1(Bn",B)

This motivates to look at the problem of maximizing ; among domains with holes and wondering
if the spherical shellBn",B maximizes 3 under perimeter constraint among some class of perforated
domains, for example the doubly connected ones. Not long ago, L. R. Quinones used shape derivatives
to prove that the annulus Bn",B is a critical shape of the rst non-trivial Steklov eigenvalue among
planar doubly connected domains with xed perimeter (see|[159]).

At last, we mention that in contrast with the result in [83]] it was recently proven in [51] that the
Weinstock inequality is true in higher dimensions in the case of convex sets. Namely, the authors show
that for every bounded convex set R" one has:

P() T 1() P(B)™T y(B):

A natural question arises: can we remove the topological constraints (convexity or simple connect-
edness in the plane) as for the Laplacian eigenvalues with other boundary conditions ? Does there exist
a domain which maximizes ; under perimeter constraint ? If not can we determine the supremum of

1 on Lipschitz open sets ? In fact, all these questions are still open and the techniques used to deal
with other eigenvalues problems don't apply for Steklov framework, this pushes to seek new methods
and makes the problem very challenging.

6.1.2 Perforated domains: state of the art

The optimization of the placement of obstacles has interested many authors in the last decades. We
brie y point out some classical and recent works in the topic.

Some early results, due to Payne and Weinberger [154] on the one hand and Hersch [114] on the
other, are that for some extremum eigenvalue problems with mixed boundary conditions a certain
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annulus is the optimal set among multi-connected planar domains, i.e. whose boundary admits more
than one component (see also [18]). The main ideas consist in constructing judicious test functions by
using the notion of web-functions (see|[60] for more details on web functions). These ideas were very
recently used and adapted for other similar problems (se€ [10, 150]). A classical family of obstacle
problems that attracted a lot of attention was to nd the best emplacement of a spherical hole inside a
ball that optimizes the value of a given spectral functional (see|[16], section (9)). An early result in this
direction is that the rst Dirichlet eigenvalue is maximal when the spherical obstacle is in the center of
the larger ball. The proof is based on shape derivatives (see [106, Theorem 2.5.1]) and on a re ection
and domain monotonicity arguments, followed by the use of the boundary maximum principle. These
arguments have been applied in greater generality by many authors: in [160] Ramm and Shivakumar
proved this result in dimension 2, in [123] Kesavan gave a generalization to higher dimensions and
showed a similar result for the Dirichlet energy, then Harrell, Kreger, and Kurata managed in [105] to
replace the exterior ball by a convex set which is symetric with respect to a given hyperplane. In the
same spirit, El Sou and Kiwan proved in [[75] that the second Dirichlet eigenvalue is also maximal when
the balls are concentric. Furthermore, many authors considered mixed boundary conditions problems,
for instance in [2], while studying the internal stabilizability for a reaction{di usion problem modeling

a predator{prey system, the authors are led to consider an obstacle shape optimization problem for
the rst laplacian eigenvalue with mixed Dirichlet-Neumann boundary conditions. Another interesting
work in the same direction is due to Bonder, Groisman and Rossi, who studied the so called Sobolev
trace inequality (see [27,| 76]), thus they were interested in the optimization of the rst nontrivial
eigenvalue of an elliptic operator with mixed Steklov-Dirichlet boundary conditions among perforated
domains: the existence and regularity of an optimal hole are proved in [80, 81], and by using shape
derivatives it is shown that annulus is a critical but not an optimum shape (see([80]). At last, we point
out the recent paper [172], where the author considers the rst eigenvalue of the Laplace operator with
mixed Steklov-Dirichlet boundary conditions.

Many examples stated in the last paragraph deal with linear operators eigenvalues in the special case
of doubly connected domains with spherical outer and inner boundaries. The question we are treating
in this paper belongs to this family of problems. Yet, it is also natural to seek for generalizations and
the literature is quite rich of works treating more general cases: for results on linear operators with
more general shapes of the domain and the obstacle in the euclidean case we refer/tg [73, 74, 96| 109,
125], on the other hand, many results for manifolds were obtained by Anisa and Aithal [8] in the setting
of space-forms (complete simply connected Riemannian manifolds of constant sectional curvature), by
Anisa and Vemuri [57] in the setting of rank 1 symmetric spaces of non-compact type and by Aithal
and Raut [3] in the case of punctured regular polygons in two dimensional space forms. As for the
case of non-linear operators we refer to the interesting progress made for theLaplace operator (see
[9, 5€]).

6.1.3 Results of the paper

In this paper, we are interested in nding the optimal placement of a spherical obstacle in a given ball
so that the rst non-trivial Steklov eigenvalue is maximal.

Our main result is stated as follows:

Theorem 21. Among all doubly connected domains oR" (n  2) of the form BinB,, where B; and
B, are open balls of xed radii such thatB, B4, the rst non-trivial Steklov eigenvalue achieves its
maximal value uniquely when the balls are concentric.

In [172], the authors consider a mixed Steklov-Dirichlet eigenvalue problem. They prove that the
rst non-trivial eigenvalue is maximal when the balls are concentric in dimensions larger or equal than
3 (cf. Theorem 1 [172]) and remark that the planar case remains open (cf. Remark 2). We show that
the ideas developed in this paper allow us to give an alternative and simpler proof of Theorem 1 [1]72].
Then we extend this result to the planar case.
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Theorem 22. Among all doubly connecteidomains oR" (n 2) of the form B1nB,, where B, and
B, are open balls of xed radii such thatB, Bj, the rst non-trivial eigenvalue of the problem

8 _
> u=0 in B1nBo>,
. u=0 on @B,
'~ Gn= U on @8,

achieves its maximal value uniquely when the balls are concentric.

This paper is organized in 3 parts. First, we give the proof of Theoren]{ 1. Then we use the
ideas developed in sectioff 6|2 to give a new proof of [172, Theorem 1] and tackle the planar case
which was up to our knowledge still open. Finally, the Appendix is devoted to the computation of
the Steklov eigenvalues and eigenfunctions of the spherical shell and the determination of the rst
non-trivial Steklov eigenvalue (Theorem[23) via a monotonicity result (Lemmal[1]).

6.2 Proof of Theorem[Z21

By invariance with respect to rotations and translations and scaling properties of ;, we can reformulate
the problem as follows:

We assume that the obstacleB; is the open ball of radiusa 2 (0; 1) centred at the origin 0 and
B1 = yq + B, whereB is the unit ball centred in 0, yq :=(0;::;;0;d) 2 R" andd2 [0;1 a). What is
the value of d such that 1(B1nB») is maximal ?

Foreveryd2 [0;1 a), we denote 4 := (yg+ B)naB (see Figure[6.1).
It is su cient to prove that:

8d2 (0;1 a); 1( 0)> a( o)
The proof is based on the following Proposition:
Proposition 18. There exists a functionf,, 2 H(R"nB) satisfying:

1. f, is an eigenfunction associated to 1( o) and can be used as a test function in the variational
de nition of 1( ¢).

R R . - .
2. jr faj?dx L ir fnj?dx, with equality if and only if d=0.
R
@ @
Using Proposition[1§, we conclude as follows:

3. f2d ,f2d , with equality if and only if d=0.

R R .
njrfnj dx njl‘fnj dx
f2d f2d

d 0

8d2 (0;1 d); 1( q) = 1( o)

@ @

This proves Theorem[2].

6.2.1 Proof of the rst assertion of Proposition [L8]

The rst eigenvalue of the spherical shell o is computed in Theorem[23. It is also proven that its
multiplicity is equal to n and the corresponding eigenfunctions are:

R" ! R
X=(x1;  Xp) 7V X 1+

i
Up

in
xjn
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Wherei 2 JI;nKand ., = 1 1(0)

no = W-
Take i 2 J1;n 1K Since 4 is symmetrical to the hyperplane fx; = 0g, we have:
z Z z
ud = uld + uid;
@ 4 Z@ a\f x; Og Z@ J\f x;i Og
= ul d ul d (becauseu!, (x1; ; Xi; Xn)=  ub (X
@ 4\f xi Og @ 4\ xi Og
= 0:

Thus, every eigenfunctionu!, (wherei 2 J1;n 1K can be taken as a test function in the variational
de nition of 1( g4) (note that this is not the case for u}}). This proves the rst assertion of Proposition
8.

6.2.2 Spherical coordinates and preliminary computations

Since the shapes considered are described by spheres, it is more convenient to work with the spherical
coordinates instead of the Cartesian ones.

We set: 8 ] . ) ]
X1 =rsin gsin p:::sin y 28in 5 1
% Xpo = rsin 1sin 1:::sin b 2€C0S 1
% Xn 1= TrSin 1C€OS 5
Xn = I COS
where (r; 1; in 1)2RYOO;] s [0 1 [0;2 ]

Since, every eigenfunctioru!, (wherei 2 J1;n 1K can be used as a test function in the variational
de nition of  1( g), we chose to takef, = ufl ! (see RemarK 1}).

Using spherical coordinates, we write:

fo + Ry [0;2] ! R
(r, 1) 7! sin g r+ -
and forn 3
fn © R: [0 ] o 1 [0;2] ! R
n 1 aa) 7! sin jcos p r+ 5tr

Remark 14. The choice of the test functionf, = ul! * between allu}, (i 2 J1;n 1K is motivated by the
will to have less variables to deal with while computing the gradient (see sectipn 6]2.3). Nevertheless,
one should note that all these functions satisfy the three assertions of Propositi¢n]18.

The following Figure [6.2.2 shows the perforated domains o and g, the angle ; and the radius
Rq( 1) which plays an important role in the upcoming computations.
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Figure 6.1: The domains 4 and o
Let M 2 @yq + B), by using Al-Kashi's formula on the triangle Oy4M , we have:
12=d?+ R3( 1) 2dRg4( 1)cos 1

p
By solving the equation of second degree satis ed biR4( 1) we get two rootsdcos ; 1 d?sin® ;.
The lower one being negative due to the fact thatd 2 [0; 1), we deduce that:

p__
Rg( 1)=dcos 1+ 1 d?sin® i:

We compute the rst derivative of Ry, which appears in the area element when integrating or@ ¢
(more precisely on@yqy + B)).

d?sin 1 cos dsin
0 _ . 1 1 1
Rg(1)= dsin, p = P

p_
p dcos 1+ 1 d?sin? 5 :
1 d?sin® ; 1 d?sin® ;

With straightforward computations, we get the important equalities:
q

docos Ra( 1)
Ri( )+ RP(1)=1+ p —— = P ——
1 d?sin® 1 d?sin®

(6.2)

6.2.3 Proof of the second assertion of Proposition 18

We compute the gradient off,, in the spherical coordinates and calculate thel 2-norm of its gradient
on g.

For n = 2, we have: " #

sin 1 1 2

rfz(l’, 1)_ 1 cos i 1+ r:r;

=

o8l
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then:
z Zy ZRy(y)

L, 2 .
jr foj2dx = sin 1 1 2 +sin? ;1 2 rdrd g
d 1=0 r=a r r
Z2 ZRy(a)
= r+2 ., cog 1 sin 1 S+ =5~ drd g
1=0 r=a r r
2 2 2 2
= —_ 2 ) cos 1 Sin® 1 In Rd( ]_) — a2
1=0 2 2 R3( 1) a2
In the same spirit, for n 3, we have:
’ & ° 2sin cos, 1 (D
1Bt 1292 r
1@ COS 1€0S 2 1+ <7
in 1@z sin ; 1+ ——
rfa(n 1505 0 1) = o] 1 @y = 2 r

rsin ;sin , @s 0

1 @f 0

rsin ;:isin p 2 @n 1

For p2 N, we introducel, :=
integrals satisfy the essential recursive property:

d

sinP tdt, which is the double of the classical Wallis integral. These

+1
82 N; lpus = E? o 6.3)
We compute:
Z
Al(d) = [r fo]2dx
@B
Z z Z ru( ) n oD 2 o 2 _
=2 o sin® ;co¥ , 1 rinn rn1 sin" ' drd ;nd g 1
1=0 n 170 r=a i=1
4o Z Z Z Ry( 1) 2 1 n 12 2
=2 I cog ,sin" 2 od s, sin” rnl M 1) + ( nzl N
k=0 | 2=0 1=0 r=a r r
4
=2 Ik (In 3 In 1)
, k=0 !
. RY(,) a" Ra( 1) (n 1)% 2 1 1
sin” —dar 2 = 2n 1) 4 In : — d
1=0 ! n ( ) a n Ri(1) a" '
|
2 Y3
= Ik
i n 1 k=0 |
_ RM an R n 1) 2 1 1
sin . q(1) 20 1) . In a( 1) ( )° h i L
1=0 n a n Ri( 1) a"
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where we used|(6.8) for the last equality.

Z
Az(d) = [r fnJ5dx;
@8 |
4o
=2 Ik (In 3 In 1)
k=0 |
z 2 1 1
, Ri(1) a Ra( 1) -
n 2 d +2 n el .
o cog ;sin | 1 . o In - - RI() o dq;
2 Y3
= Ik
n 1 - '
z (1) a Ra(1) 1
R
ion 2 n d\ 1 + dal 1 n .
- (sin 1 sin" ) - 2 ql a o RI() & d1;
then:
Z
A3(d) = [r fJ5dx
@By |
4o
=2 Ik In 1
k=0 |
z 2 1 1
- Ri(1) @ Ra( 1) n
n 2 d +2 | ) = .
o sin 1 I n In a , RI(D) & d g
2(n 2) “/3| '
" n 1 k
k=0 I
g ] " 2 1 1
sin" 2 RiCy) & +2 4 ln Ra( 1) N . — duq
1=0 n a n Ri(1) &
We decompose the integral in three parts:
Z , ws ! ) !
jr fj2dx = Aj(d)+ A5 (d)+ A5(d) = — e (0 LW (d)+2 1 W (d) r']" Wg'(d)
d k=0
(6.4)
where:
8 R
% W)= ,sin" 2 1 Rj(1) a"d;
R Ro( 1) - - n o2
Wld)= , n(1)In =2 dy; with: ,(1)= nsin” ;+(n 1)sin" < 4
: s

W)=, n(1) ﬁ - dg; withh o(1)=n(n 2)sin" ;+(n 1sin" 25 0

Note that the equality (6.4} applies also for the planar case. From now on, we taken 2.
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In the following Lemma, we study W, (d) for eachk 2 f 1;2; 3g.
Lemma 9. For everyn 2 and everyd2 [0;1 a]:

1. WP(d) = W] (0).
2. Wh(d)=0.

3. Wi(d) W (0), with equality if and only of d=0.

Proof. 1. The idea is to see that the quantities W' (0) and W{ (d) can be interpreted (up to a
multiplicative constant) as volumes of the unit balls B and yg + B in R". Then, since the

measure is invariant by translations, we get the equality.

We have:
Z
W) = sinf" 2 ; RI( 1) a"d;
0
n z Z Z Ra( 1) ny 2 )
= 05— 2 1t sin" P odd gid g g
k=0 Ik 1=0 n 1=0 r=a i=1
. n . o . n o .
= Qr 3~ ] d=Q5y3— (yatBjjaB)=Q;5— (iBj] aBj)
k=0 I k=0 Ik K=0 Ik
n z z z ! n 1“(2 son 1
= Q35— 2 ::: 1 r sin idrd 1::d 5 1
k=0 Ik 1=0 n 1=0 r=a i=1
= W/ (0):
2. We remark that for every ; 2 (0; ) one has ,( 1) = n( 1), thus:
Z Z
z R R
Wod) = a(oin R g ym Rala) g
0 a - | a
Z p— Z p—
z dcos 1+ 1 d?sin? 7 dcos 1+ 1 d?sin?
= a( 1) : Lodag+ a( 1) - -
0 a 0 al
p— p—
Z 5 dcos 1+ 1 d?sin® ; dcos 1+ 1 d?sin? ;
= a(om > dy
Z Z
1 d? z 1 d? z . .
=In —— n()d: = In —— ( nsin" 1+(n 1)sin" 2 )d
a 0 a 0
1 1 d?
= 5 — nlp+(n DIy 2 =0 (by 6:3))
3. We have:
I
Z H
1 1
Ws(d) = (1) p———— — d
=0 dcos | + "1 @ Isin2 . oan
Z H
() ————+ = d1=06(d) G(0)= W)
o Y Tdeos,+1 " an e 3
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Inequality G(d) G(0) is a consequence of the monotonicity of the functionG and equality
occurs if and only if d=0. Indeed for everyd 2 (0;1 a):

VA
cos
GYd) = n n( 1) ——rd 1
0 dcos 1 +1
Z 5 cos z cos
1 1
= n n( 1) di+ n n( 1) di
0 " dcos ; +1 " 1= " dcos ; +1 "
Z
= n : ( 1)cos 1 1 d
T, M ' (@ dcos ;)"  (1+ dcos ;)"*1 !
> 0 (because8 ;2 (0; =2); n(1)cos 1>0 and (1+ dcos )" > (1 dcos 1)"*)
O
Using the results of Lemma[9, we get:
z Y ! ) !
jr fjfdx = —7 e (0 W) +2 ,n Wi(d) ——W5(d)
2 Y3 2
= e (0 YWI@+2 o WO Wi = fidx;
k=0 0
with equality if and only if d =0. This proves the second assertion of Propositiof 18.
6.2.4 Proof of the third assertion of Proposition [18
Take n 2, we have:
z z z z v 2 q
f2d =2 > f2(n 105 0 1) RY 2(q)  sin™ P R3( 1)+ RY*( 1) d 1::d p
@yq+B) 1=0 n 2=0 o 1=0 i=1
|
1o z . 2 q 5
= 2 I Ra( 1)+ = 1T—~ R 2( 1)sin" 4 R3( 1)+ R3°( 1)d 1
k=2, 0 Ry (1) |
1 o Z 2 ’ q
= 2 Iy RI(1)+2 o + =" sin" ;1 R3( 1)+ RY*(1)d;
- 0 R3( 1)
vi o
= 2 I VI +2 o (In+ V() + 2, V4'(d)
k=2
where: ) q

R inn 2 02
% Vi (d) = ,sin® 1R§( 1) R3( 1)+ R3°( 1)d 1
R
Vi(d)= , sin" p2<=r_d; (by using (6.2)

1 d2sin2

n

R . |
Vs'(d) = O Ry X 1)5‘Iﬁ 1 1d2 sin2 1d 1 (by using ))
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Let us prove the following Lemma:
Lemma 10. For everyn 1 and everyd2 [0;1 a]:
1. V' (d) = V" (0).

2. V(d)=0.

3. V3'(d) V3'(0), with equality if and only of d =0.
Proof. 1. Take B the unit ball of R"*2 centredin0Oandyy = (0; ;0;d) 2 R"*?,

In the same spirit of the proof of the assertion 1 of Lemma, the idea is to see that the quantities
V"(0) and V{"(d) can be interpreted (up to a multiplicative constant) as perimeters of B and
yq¢ + B. Then, since the perimeter is invariant by translations we get the equality.

We have:
Vi'(d) = sin 1RG( 1) R3( 1)+ R3°( 1)d 1
0
1 z z g YR
= Zﬁnillk 2 . . 1 RG(1) R3( 1)+ RY(1) sin™ ' idqidna
k=0 1= n+1 = i=1
1 1
= 0Qy17— PW+B)= ;71— P(B)= V(0
2 = Ik 2 = Ik
2. We compute:
Z Z
7 d . d
V)'(d) = sin" 4 _deos1 1+ sin" _deos 1
0 1 d?sin® ; > 1 d?sin? ;
Z? . dcos 1 Z? . dcost
= S|nn _‘]_‘p:d 1 S|nnt ————
0 1 d?sin? ; 0 1 d?sin?t
=0
3. We have:
z sin"
Zo dcos 1+ 1 d?sin® ; 1 d?2sin® 4
sin" 4

—d 1= H(d) H(0)= V3'(0):
o dcos+1
Inequality H(d) H(0) follows from the monotonicity of H and is an equality if and only if

d = 0. This can be proven with the same method used folG in the previous section.

O
Using the results of Lemma[ 1D, we get:
Z ny 1 ! Z
f2d = 2 Iy VR(A)+2 o (In+ V() + 2, V() + f2d
@4 k=2 @aB)
LV Z
2 VIO +2 o (In+ V2 O)+ 2, Va(0) + f2d
k=2 @aB)
4
= f2d:
@ o

which proofs the third assertion of Proposition[18.
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6.3 The Dirichlet-Steklov problem

In this section, we show that the ideas of our proof in sectiofi 6]2 also apply to the problem considered
in [172]. Thus, we give an alternative proof of Theorem 1/[172] which deals witlm 3 and tackle the
planar case which was to our knowledge still open (Remark 2 [172]).

Letn 2andB; be an open ball inR" and B, be an open ball contained inB;. We are interested
in the eigenvalue problem 8

< u=0 inBinBy,
u=0 on @B,
gu=u on@8,

The rst eigenvalue of B1nB, is given by the following Rayleigh quotient:

(R o )
. B g5 )N UiZdX . )
1 BinB, =inf jiuzd u2 H*() nfOg such thatu=0 on @B

@B

As stated in Theorem[22, the eigenvalue ; is maximal when the balls are concentric. As for the case
of pure Steklov boundary condition, we can assume without loss of generality that the obstacl®, is
the open ball of radiusa 2 (0;1) centred at the origin 0 and B; = yq + B, where B is the unit ball
centred in 0. We use the notations introduced in sectiol 6.P.

Using separation of variables S. Verma and G. Santhanam proved that the rst eigenfunctiong, of
the spherical shell ¢ is given by:

G (r 1o _ Inr Ina ifn=2
7 Lyeeny 1) — .
" " i 2 ifn 3

6.3.1 A key Proposition

Here also, Theoren{ 2P is an immediate consequence of the following Proposition:
Proposition 19. Let n 2, we have:

1. g, can be used as a test function in the variational de nition of 1( ¢).

R R
2. jr gnj?dx L gnj?dx.

R

R
@yt B) g2d @Bgﬁd , with equality if and only if d=0.

3.

Proof. This Proposition has been proved in|[172] for the case 3.

The rst assertion is obvious sinceg,(a; 1; in 1)=0. R R

As for the second, it has been remarked i) [172] page 13, the inequality _ jr Onj2dx L gnj2dx
is a straightforward consequence of the monotonicity of 7! %. Unfortunately, this is not the case

for the inequality on the boundary (assertion 3) for which the author needs more computations (see
[172] section 2.2).

First, we show that Lemmal[1Q allows us to give an alternative and simpler proof of the last inequality
in the casen 3, then we prove it in the planar casen = 2.

177



0 1
gd = @ |;A T RG 2()sin" 2 1 R3( 1)+ RY(1)d 1
@ya+B) i=2 o @ Ry “(1)
0 1
y 3 1 2
=@ A VD gt etV A VA
j=2
o' 1
'y 3 1 2 z
@ 1A VI 20) 5l 2+ V2 20) +V3 %0) = did

azn 471 an 2 @B

Now take n = 2. We use the following parameterization of the shifted sphere:
Ya+ @B= fM (t) = (sin t;d +cost) jt2[0;2 )g:
Note that: jM (t)j =1+ d? + 2dcost. We have:

z z,
gd = In 1+ d?+2dcost Ina dt
B 0
@yq+B) 22 22
= In> 1+ d®+2dcost dt 2Ina In 1+ d?+2dcost dt+2 In%a
0 Z 0
2 Ina = 02d;
@B
because: 7, z,
In> 1+ d®>+2dcost dt 0O and In 1+ d®+2dcost dt=0:
0 0

Indeed, on the one hand the inequality is obvious and is an equality if and only ifd = 0, on the other
hand the second assertion is a special case of a classical Lemma in complex analysis used in the proof
of the so called Jensen formula (see for example 4.3.1. [176]).

This ends the proof of the third assertion and the demonstration of Proposition[ 19.

6.3.2 Proof of Theorem[22

Finally, we conclude as before:

R . R .

b o 17 Ghj%dx " Gni%dx _
@yd+B)gr21d @s%d

with equality if and only if d =0. This ends the proof of Theoren{ 2p.

1( a)

1( 0);

6.4 Appendix

In this appendix we compute the Steklov eigenvalues of the spherical shello = BnaB  R", where
a2 (0;1). We then prove a monotonicity result on these eigenvalues, which allows us to give the exact
value of 1( ) and its corresponding eigenfunctions.

Theorem 23. Letn 2. The rst non-trivial Steklov eigenvalue of the spherical shell o = BnaB R"
is:

q
(n+a" +a"+a+n 1 (n+1)a"*1 + a"+ a+n 1)2 4n a1 a”)2
2a(1 a")

1( 0)=
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It is of multiplicity n and the corresponding eigenfunctions are:

ul, R" ! R
X =(Xa; iXn) 7! Xi 1+ﬁ :

1 1( o)

wherei 2 J1;nKand ., = n+ 1( o) 1°

Remark 15. Theorem has already been proved for the planar case by B. Dittmar [72] (see also
[101]). For higher dimensions, A. Fraser and R. Schoen|[83] gave asymptotic formula for the lowest
eigenvalues of spherical shells when the hole is vanishing. In this case, it is easy to identify the rst
eigenvalues (in particular the rst one). Unfortunately, this is no longer the case when the hole is not

vanishing as explained in section§ 6.4]1 and 6.4].2.

6.4.1 Computation of the eigenvalues via classical separation of variables technique

Finding the eigenvalues and eigenfunctions of the Laplacian on special domains (balls, rectangles,
annulus...) is a classical problem (see for example [99] Section 3). The standard method is to look
for eigenfunctions via separation of variables and then prove that they form a complete basis of a
convenient function space, this combined with orthogonality properties of the eigenfunctions shows
that we didn't miss any.

Take k 2 N, let us search harmonic functionshy of the form

he : Re [0 ] o1 [062] ! R
(AT 7! k() k(1 50 1)

where | 2 H}? is a spherical harmonic of orderk and H}? is the set of restrictions of homogeneous
harmonic polynomial of degreek with n variables on the unit sphere @B (for an introduction to
harmonic polynomials we refer to [17] Chapter 5). It is well-known that the setH? corresponds to the
eigenspace of the Laplace-Beltrami operator  gg associated to the eigenvaluk(k + n  1).

We have:
n 1 n o1 k(k+n 1
hg = g;+ . @@r+ r 2 @ hk = E((r)+ . (k)(r) % OGS S 1)

The condition hy =0 implies that  must satisfy the di erential equation:

n 1, k(k+n 1)

fN+ ——= 0 ——5— «(n=0:

By standard methods of solving ODEs, the solutions of the last equation are given by:

Po2 + GpzInr ifn=2

r)=
0( ) Po:n + rqno;n2 if n 3’

and fork 1

- k .
k(r) = Pn 1"+ rk+n 27

where py.n and g¢n are constants.
It remains to look for all possible values ¢ such that: @r -\ h, on @o. This equality is
equivalent to (
)=« k(@)

R@ =« «(@):
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As explained in the proof of Proposition 3 of [83], those equalities imply that the possible eigenvalues
k are solutions of equations of second order.

When k = 0, we nd two eigenvalues: 0 that corresponds to constant eigenfunctions and o that
corresponds to a (non-constant) radial one.

1 H —
aln+1a:a ifn=2
0 = n 1
oo (n 2+ ) i
The corresponding (radial) eigenfunction is given by:
1+ olInr ifn=2

ho(r; 15 = .
ol 1 n 1) 2 n 0+ w2 ifn 3.

On the other hand, as mentioned in [83], whenk 1, one nds two eigenvalues |((l) < |((2)
corresponding to the solutions of the following equation:

Ay 2+ Bx + Ck=0; (65)
where: 8
> Ak: a a2k+n 1;
Bk= (k+n 2)a%'" 14 ka*" 24+ ka+k+n 2;

>
" Ck=(k+n 2k@ a%*n 2):

We compute the determinant , and use the fact thata 2 (0; 1) to check that ¢ > 0
k = BZ 4A( Cy

h i
(k+n 2a**" T+ ka** " 2+ katk+n 2 (k+n 2kal a*" ?)?

(k+n 22 (k+n 2kal a**" 2% (becausea 0)

(k+n 2)(k+n 2) k (because0 a1l a**" 2% 1)
(k+n 2)(n 2)>0:

Then, the equation (6.5) admits two di erent positive solutions

p— p—
@ ._ Bk K Bk + K _. .
K= < K -

2Ak 2A« -

By straightforward computations, the corresponding eigenfunctions are given by:
!

kK 0 1
n+ |(<i)+ k 2 rk+n 2

h(ki)(l’; . S 1) = rk + Yiij (15 v ono1); (6.6)

whereY,; 2 H{ denotes thej-th (j 2 J1;dim HZK spherical harmonic of orderk and i 2 f 1; 2g.
Thus, the multiplicity of (" is equal to
n+k 1 n+k 3

dim H) = N1 -

At last, by using expansions results for harmonic functions on annuli (see 9.17 [17] far = 2 and
10.1 [17] forn  3), we deduce that the eigenfunctions we found form a complete basis of the space of
harmonic functions on the annulus . .

It remains to determine the lowest eigenvalue betweeny and the ,((') fork 2 N andi 2f1;2g.
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6.4.2 A monotonicity result

We state and prove the following key lemma, which combined with results of sectiof 6.4]1 gives an
immediate proof of Theorem[Z3.

Lemma 11. We have:

1. The sequence S)

2. 1( 0) < o
Proof. The casen =2 had been considered in [72, 101]. Let 3.

« 1 Is strictly increasing.

1. We have:

@ _ _2C ~ 2(k+n 2k@ an ? .
k B+ BZ 4A, G B+ BZ 4(k+n 2kal ax+n 2)Z

The idea of proof is to write f(l) = Px=Qk, where (Px)k (resp. (Qk)k) is a positive increasing
(resp. decreasing) sequence. Indeed, we can write:

a _ Zp (k+n 2)k(@1 g2k+n 2)
K= S .
By By 2k+n 2)2
p—(k+n 2)k+ {;1—7(“n T 4a(l @ )

The sequences 2p (k+n 2k(1 a%*n 2 ) and a(l a%*" 2) are strictly increasing.

It remains to prove that the (positive) sequence pﬁ 1 is strictly decreasing.
We have:

. By _ (k+n 2@%*n" 1+ kat" 2+ kat+ k+n 2

"k+n 2k "kK k+n 2

(k+n 2) a2k+n 1+1 +kaa2k+n 3+l
. "K k+n 2r
k+n 2

k

- 2k+n 1

= — a +1 +a ———
k k+n 2

a.2k+n 3+1 .

Let us introduce the function:

han @ [L,+1] ! R

t+n 2 2t+n 1 t 2t+n 3 .
t 7! tn 2 g +1 +a i a +1:

we prove that h,., is strictly decreasing. To do so, we compute the derivativehg;n and prove
that it is negative on [1;+1 [.
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We have for everyt 1:

n 2 ,n+2t 1 _h 2 _ n+2t 3
7 a +1 L (e 2)22 a +1

hg;n(t) = T =
2 t 2 n+t 2
r r T3
t n+t
+ 2In(a) ———a""?' 2+2In(a) ——=—a"*?t !
(a) n+t 2 (a)
n_2 n+2t 1 _n 2 __ n+2t 3
h_< 4 +1 a a +1
< 2 g + (n+t 974 (becauseln(a) < 0).
2 n+t 2 2 t
t n+t 2
r—
B 2(n  2) t a ant2t 341 L 2
t(n+t 2)(a"*?t l+1)r n+t 2 ant2t 141 t
2(n 2) t a2t 341 t+n 2
becausea 2 (0; 1)).
tn+t 2)(@*2t 1+1) n+t 2 a2t 1+1 t ( ©:1)
We have:
at2t 341 t+n 2 t+n 2 ot 1 .ne2t 3. N 2
azi iy ¢ 0 ¢ @ a0

Now, lett 1andn 3. Consider the function:

On : (0;1) ! R
a 7! n+tt 2 an+2t 1 an+2t 3+ nt2

We compute the derivative of g, , for every a 2 (0; 1):

gt‘?n(a):%z (n+2t 1) a2t 4 @ t n+2t 3

& hFt 2 n+2t 1

We deduce that g, is decreasing on(0;a:., ) and increasing on(ag, ; 1), which implies that it
attains its minimum in ag, , where:

_ t n+2t 3,
n T 0¥t 2 n+2t 1
We have:
Oin (3) On (Agn )
_n+t 2 t ML p+2t 3 ME t M2 p+2t 3 ME2
- t n+t 2 n+2t 1 n+t 2 n+2t 1
_ t n+22t 3 n + 2t 3 n+221 3 2 . n 2
B n+t 2 n+2t 1 n+2t 1 t
1 n 2 n 1

1
t+

We deduce that for allt 1. h, (t) < 0, which implies that hy, is strictly decreasing on

[1;+1 [. In particular, the sequence pﬁ 1 is strictly decreasing and so is
0 v , 1
u T2
%) B t p% 4a(l aZ+n 2)2 %
(k+n 2k (k+n 2k
k 1
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2. Take :x2 R" 7! x; an eigenfunction corresponding to the rst nontrivial Steklov eigenvalue
of the unit ball B centred in 0. This function can be used as a test function in the variational
de nition of ;(BnaB).

We write:
R
. ( nag JF Uj2dx z )
1(BnaB) = inf ﬁiz u2 H() nfOg such that ud =0
@BnaB) usd @
jroj2dx jir - j2dx
RE a8 7d R/ 2Jd = 1(B) = 1 (see[97] Example 1.3.2 for the last equality )
@B @aB) @B
1+a" !
< 2)————- = o
(n )a(l an 2) 0
O
6.4.3 Proof of Theorem[23
We have gl) < f) and by Lemma:
(
gk 2 P W< O
1( o)< o
This implies that 51) is the lowest non-trivial Steklov eigenvalue of ¢, which writes 1( o) = 9).

It is of multiplicity n and the corresponding eigenfunctions are given by (6]6) as follows:

uh o R" ! R

—_ . . vi ; X — ) ;
X =(Xq; 1 Xn) 7! IX]+ jxj”n T g o X 1+ J'XTn

wherei 2 JI;nKand ., = ni%(of)l
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Resune

La pesente tlese est une contribution au domaine des calculs de variations et plus peciement la
discipline d'optimisation de forme. Nous nous ineressons dans la majeure partie de ce travaila letude
d'iregalies optimales reliant dierentes quanties geonetriques et spectrales sur plusieurs classes
d'ensembles, ceci passe par letude de diagrammes dits de Blaschke-Santab qui permettent de vi-
sualiser les iregalies possibles reliant 3 fonctionnelles de forme donrees. Nous ceveloppons dierentes
technigues qui permettent de cemontrer des esultats qualitatifs sur ces diagrammes et proposons une
approche nunerique pour en fournir une approximation optimale. Nous nous ineressons aussia letude
de l'iregalie de Cheeger, qui est une iregalie classique reliant la premere valeur propre du Laplacien
avec condition Dirichlet au bord et la constante de Cheeger, pour les domaines convexes. En n, nous
nous penchons sur le probeme de trouver I'emplacement optimal d'un obstacle sphrerique contenu dans
une boule qui permet de maximiser la premere valeur propre du Laplacien avec conditions aux bord
de type Steklov.

Mots-ckes: Optimisation de forme, Analyse convexe, Diagrammes de Blaschke-Santab, Analyse
nurrerique, Placement optimal d'un obstacle, Treorie spectrale.

Abstract

The present thesis is a contribution to the eld of calculus of variations and more precisely the discipline
of shape optimization. We are interested in the major part of this work in the study of sharp inequalities
relating di erent geometric and spectral quantities for various classes of sets, this is tightly related to the
study of the so called Blaschke-Santab diagrams that allow to visualise the possible inqualities relating
3 given shape functionals. We develop di erent techniques that allow to prove qualitative results on
these diagrams and propose a numerical approach in order to provide optimal approximations of them.
We are also interested by the study of the Cheeger inequality, that relates the Cheeger constant and
the rst eigenvalue of the Laplace operator with Dirichlet boundary condition, for convex domains.
At last, we focus on the problem of nding the optimal placement of a spherical obstacle so as to
maximize the rst Laplace eigenvalue with Steklov boundary conditions.

Keywords: Shape optimization, Convex analysis, Blaschke-Santab diagrams, Numerical analysis,
Optimal placement of an obstacle, Spectral theory.
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