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Component-based model order reduction procedure for large scales
Thermo-Hydro-Mechanical systems

by
Giulia Sambataro
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Applied mathematics and scientific computing
University of Bordeaux, France

Abstract

The objective of the thesis is to develop a component-based model order reduction
procedure for a class of problems in nonlinear mechanics with internal variables. The
work is is motivated by applications to thermo-hydro-mechanical (THM) systems for
radioactive waste disposal (this project is funded by ANDRA, the national agency for
radioactive waste management). THM equations model the behaviour of temperature,
pore water pressure and solid displacement in the neighborhood of geological reposito-
ries, which contain radioactive waste and are responsible for a significant thermal flux
towards the Earth’s surface. From a mathematical point of view, the THM system
that we solve is a time-dependent and highly nonlinear coupled system; furthermore,
the solution to the problem depends on several parameters, which might be related to
the geometric configuration (e.g. the number of repositories, their distance or their
size) or the material properties of the medium. For example, changes in the position
and/or the number of the radioactive repositories might lead to significant changes in
the predicted quantities of interest; we would need therefore to solve the numerical
model more than once. This problem represents a multi-query problem and it requires
the application of component-based parametrized model order reduction (CB-pMOR).
First, we start from the high-fidelity finite element discretisation of the two-dimensional
THM problem, we develop a monolithic projection-based ROM and we study its per-
formance with respect to predictions. Then, we device a CB-pMOR formulation for
steady problems in nonlinear mechanics. Finally, we extend the CB formulation and
methodology to time-dependent nonlinear problems with internal variables, to tackle
the THM problem of interest.

Keywords: model order reduction, domain decomposition, nonlinear elasticity, cou-
pled problems.
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Resumé

Le travail de these a 'objectif de développer une procédure de réduction de I'ordre
des modeles basée sur les composants pour une classe de problemes en mécanique non
linéaire avec variables internes. Le travail est motivé par des applications aux systemes
thermo-hydro-mécaniques (THM) pour le stockage des déchets radioactifs (ce projet est
financé par 'ANDRA, I’agence nationale pour la gestion des déchets radioactifs). Les
équations THM modélisent le comportement de la température, de la pression de I'eau
interstitielle et du déplacement des solides dans le voisinage des dépdts géologiques, qui
contiennent des déchets radioactifs et sont responsables d’un flux thermique important
vers la surface de la Terre. D’un point de vue mathématique, le systeme THM que
nous résolvons est un systeme couplé dépendant du temps et hautement non linéaire;
en outre, la solution du probleme dépend de plusieurs parametres, qui peuvent étre liés
a la configuration géométrique (par exemple, le nombre de dépots, leur distance ou leur
taille) ou aux propriétés matérielles du milieu. Par exemple, des changements dans la
position et/ou le nombre de dépots radioactifs pourraient conduire & des changements
significatifs dans les quantités prédites d’intérét; nous aurions donc besoin de résoudre
le modele numérique plus d’une fois. Ce probléme représente un probléme multi-query
et il nécessite 'application de la réduction de 'ordre des modéles paramétrés basée
sur les composants (CB-pMOR). Tout d’abord, nous partons de la discrétisation par
éléments finis haute-fidélité du probleme THM bidimensionnel, nous développons un
modele réduit monolithique basée sur la projection de Galerkin, et nous étudions ses
performances par rapport aux prédictions. Ensuite, nous proposons une formulation
CB-pMOR pour des problémes stationnaires en élasticité non linéaire. Enfin, nous
étendons la formulation et la méthodologie CB aux probléemes non linéaires dépendant
du temps et avec des variables internes, afin de résoudre le probleme THM qui nous
intéresse.

Mots clés: réduction de ’ordre des modeles, décomposition du domaine, élasticité non
linéaire, problemes couplés.
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Resumé détaillé

L’application qui motive le présent travail est la disposition et le stockage des déchets
radioactifs de haute activité en milieu géologique. En France, de grandes quantités de
déchets radioactifs sont générées par 1200 générateurs', qui comprennent des centrales
nucléaires, mais aussi des universités, des hopitaux et des centres de recherche. Cela
représente une menace pour les générations actuelles et futures, car la santé humaine et
I’environnement peuvent étre menacés par l’émission ou la dissémination de matieres
radioactives.

L’Andra, — 1’Agence nationale pour la gestion des déchets radioactifs? crée en 1979 au
sein du Commissariat a I’énergie atomique (CEA)— a pour objectif de trouver, mettre
en uvre et garantir des solutions siires pour la gestion des déchets radioactifs en France.
L’Andra a opté pour une solution a long terme: les conteneurs de stockage des déchets
doivent isoler les matieres radioactives de ’environnement jusqu’a ce que leur radioac-
tivité ait baissé a un niveau acceptable; des conteneurs spécifiques doivent étre adaptés
a chaque type de déchets.

Les déchets sont stockés dans des dépots géologiques qui sont surveillés alors que la
radioactivité diminue dans le temps. La stireté des dépots se fonde sur trois éléments:
les packages, les structures du dépot (appelés alveoli) et le site géologique. Les colis
contiennent les déchets radioactifs et sont placés a l'intérieur des alvéoles, qui sont
situées horizontalement & une grande profondeur dans le sol (a environ 300 & 500
metres); le site géologique est constitué de la région ou se trouvent les alvéoles; la
zone qui entoure les alvéoles constitue une barriére naturelle permanente qui empéche
la propagation des déchets radioactifs. La figure 1 est une représentation schématique
du stockage des déchets dans les dépots. En raison de la température élevée des déchets

FiGURE 1: Installation en profondeur d’un stock de déchets radioactifs

radioactifs, un flux thermique est généré a l'intérieur des alvéoles: ce flux thermique
entraine ensuite la réponse mécanique et hydraulique du milieu géologique pendant
plusieurs années. Ce phénomeéne nécessite une évaluation attentive des effets a long
terme sur les zones voisines. D’un point de vue mathématique, le comportement du
systéme est décrit par des systémes d’équations aux dérivées partielles (EDP) couplés a
grande échelle et dépendants du temps, qui prennent en compte la réponse thermique,
hydraulique et mécanique du milieu géologique due a I'introduction du dépo6t de déchets
radioactifs.

Comme il est impossible de trouver une solution exacte pour ce systéme d’équations,
des simulations numériques sont adoptées pour la conception et I’évaluation. La solu-
tion du probleme dépend de plusieurs parametres, qui peuvent étre liés a la configu-
ration géométrique (par exemple, le nombre d’alvéoles, leur distance ou leur taille) ou
aux propriétés matérielles du milieu. Par exemple, des changements dans la position

1Source: "Les essentiels de I'Inventaire national, 2019"
2Site web de I’Andra: https://www.andra.fr
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et/ou le nombre d’alvéoles peuvent conduire a des changements significatifs dans les
quantités prédites d’intérét telles que le déplacement de la surface terrestre environ-
nante. Pour prendre en compte correctement l'incertitude des valeurs des parametres,
nous devons résoudre le modéle numérique pour de nombreux parametres d’intérét dif-
férents: ce probléme est généralement appelé un probleme de type many-query. De
plus, une solution numérique efficace a ce type de probleme est encore plus difficile
dans un contexte real-time, dans lequel une solution pour des parametres spécifiques
est nécessaire rapidement.

Le probléeme mathématique Thermo-Hydro-Mécanique (THM) peut étre écrit sous
forme abstraite comme dans le systéme (1). Nous considérons la variable spatiale x
dans le domaine de Lipschitz Q@ C R? avec dimension d = 2,3, et la variable tem-
porelle ¢ dans le temps (0,7t] C R, ou Tt est le temps final. Nous définissons en
outre le vecteur de parametres p dans la région compacte des parametres @ C RP.
Etant donné un paramétre w € P, nous introduisons les variables d’état (ou primaires)
Uu,: Qx (0,7;] — RP, o nous désignons par D le nombre de variables primaires;
elles peuvent étre considérées comme des variables qui représentent ’output d’un map
paramétré de solutions évaluées a un parametre donné p € P. Nous introduisons en-
suite les variables internes (ou dépendantes) W, :  x (0,7f] — RP<: on denote Dy
le nombre de variables internes dans les lois de comportement dans I’équation (1); les
variables internes peuvent étre considérées comme des variables physiques secondaires
qui contribuent a bien caractériser la dynamique physique d’un probleme d’EDP donné.
Nous introduisons le probleme paramétré qui nous intéresse en forme abstraite: étant
donné p € P, trouver U, and W, telle que

. (1)

{ QM(QW@)&QWWM) = 07 an X (O7Tf]7
W, =%U,,W,), Qx0T

avec des conditions initiales et limites appropriées. G, est un opérateur différentiel non
linéaire du second ordre dans I’espace et du premier ordre dans le temps qui est associé
aux équations d’équilibre, tandis que F, est un ensemble d’équations différentielles
ordinaires (ODE) qui est associé aux lois constitutives. Nous remarquons que le systéme
THM est hautement non-linéaire, dépendant du temps et de haute dimension; nous
remarquons également qu’il appartient a une large classe de problemes d’EDP non-
linéaires non stationnaires qui sont d’un grand intérét en mécanique des structures.
Nous considérons une approximation en dimension finie du probléme (1): en fait,
nous prenons un sous-espace de dimension finie XM < X de dimension N™. Pour
résoudre le probleme d’EDP discrétisé, nous utilisons la méthode des éléments finis
(FE). Nous utilisons un schéma de discrétisation temporelle d’Euler implicite, avec
Jmax = 100 pas de temps uniformes pour Uintervalle de temps (0,7%| ; le caractére
supérieur ()T fait référence a la nouvelle solution (au pas de temps actuel j, pour
Jj=1,..., Jmax), tandis que ()~ fait référence a la solution aux pas de temps précédents.
Nous considérons une discrétisation par éléments finis (FE) de p = 3 pour la composante
déplacement, et une discrétisation FE de p = 2 pour la pression et la température. Dans
la figure 2 des solutions en termes de pression et de température sont représentées pour
le paramétre p = g = [1.088 - 10%,0.3,21.33,0.4558]7 qui est le centroide de #. La
configuration géométrique correspond a la figure (le numéro de dépot est Q, = 2).
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FIGURE 2: Gaps temporels entre le temps final T et le temps initial 0
des solutions dimensionnelles en termes de pression et de température.

Les techniques de réduction de 'ordre du modeéle paramétrique (pMOR) sont ap-
pliquées aux problémes de la forme (1) pour construire un modele de faible dimension
nécessitant des temps de simulation courts et un faible stockage de données, tout en gar-
dant sous controle I'erreur d’approximation entre la solution reduced-order et la solution
full-order (calculée & partir d’une discrétisation haute-fidélité de 'EDP paramétrée).
Les méthodes de base réduite (RB) représentent une instance particuliere des modeles
d’ordre réduit: la solution RB est obtenue par une projection (figure 3) du probléme
haute-fidélité sur un petit sous-espace. Cette derniére est réalisée par un petit nombre
de fonctions de base globales, construites pour le probléeme spécifique a traiter, plutot
que par un nombre beaucoup plus important de fonctions de base.

Uluy)
Uluy) M= {U(p) € M : p € P}

&ﬂhf

FIGURE 3: Les snapshots sur la manifold paramétrique 771* pour un cas
stationnaire avec un seul parametre (P = 1). Adaptation de la figure
19.2 dans [Qual7].

Les méthodes RB sont utilisées dans cette theése dans le but de calculer, de manieére
peu coiiteuse, une approximation a basse dimension de la solution de 'EDP.

L’élément essentiel d’'une méthode RB est la procédure offline/online. La solution
du modele d’ordre complet est nécessaire pour quelques instances des parameétres au



cours d’une étape offline (également appelée training) exigeante en termes de calcul,
afin de construire un espace réduit de solutions de base et de construire le modele
d’ordre réduit (ROM); le modele d’ordre réduit permet une prédiction rapide du champ
de solution pour de nouvelles instances des parameétres au cours de 1’étape online (ou
prediction).

Les choix les plus courants pour la construction de la base réduite sont les algo-
rithmes proper orthogonal decomposition (POD) et greedy. A la base de la stratégie de
découplage hors ligne/en ligne, il y a la possibilité d’exploiter une décomposition affine
des EDP paramétrées, (au moins de maniere approximative). Nous disons que G, est
paramétriquement affine si elle peut étre exprimée comme la somme des coefficients
dépendant des parametres fois des formes indépendantes des parametres, c¢’est-a-dire

Q
Qﬂ(':':') = Z@#,ng('a'v') (2)
q=1

ou les coefficients ®, sont des fonctions a valeur réelle dépendant du parametre qui
peuvent étre facilement évaluées pour tout p € P, et Gy(-,-,-), pour ¢ = 1,...,Q,
sont des formes indépendantes des parameétres. En regle générale, les premiers ter-
mes doivent étre calculés pour tout parametre donné p € P, mais les derniers termes
indépendants des parametres seront calculés et stockés une fois pour toutes pendant
une étape hors ligne éventuellement cofliteuse: cela rend le calcul en ligne beaucoup
plus léger pour tout parametre de test. Nous remarquons que pour efficacité du cal-
cul, il est essentiel que () € N soit relativement petit. Malheureusement, la majorité
des problemes mathématiques d’intérét, comme dans le cas du systéme THM dans (1),
présentent une non-linéarité élevée et une dépendance paramétrique non affine, de sorte
que 'approximation des résidus non linéaires G, n’admet pas une décomposition hors
ligne/en ligne efficace (en particulier, indépendante de N hf). Dans ce cas, nous devons
introduire un niveau supplémentaire de réduction, appelé hyper-réduction. Pour le
formes faibles G, (-, -), '’évaluation des résidus nécessite une intégration sur le domaine
spatial €. L’objectif est d’éviter que la complexité de calcul de la ROM résultante ne
se mette & 1’échelle de la dimension N de la discrétisation haute-fidélité, ce qui est, en
général, prohibitif en termes de calcul. Nous aimerions obtenir un temps d’opération
qui s’échelonne avec O(N). Nous identifions deux catégories distinctes de méthodes
d’hyper-réduction. Une premiére catégorie commence par interpoler la forme résiduelle
dans G, (-, -) en utilisant des fonctions empiriques, puis elle integre les résidus interpolés;
la deuxieéme catégorie évalue directement les intégrales résiduelles dans G, (-, -) en util-
isant des regles de quadrature empiriques. La premiere catégorie comprend la méthode
d’interpolation empirique (EIM), pour laquelle nous nous référons a [Bar+404]; la sec-
onde comprend 'approche d’hyper-réduction de [Ryc05] (voir également [Fri+18]), la
methode energy-conserving mesh sampling and weighting (ECSW) de [FCA15] et la
procédure de quadrature empirique (EQP) proposée dans [YP19a], [DY22].

Comme premiere étape du travail, nous avons développé et validé numériquement
une procédure de réduction de 'ordre du modele basée sur la projection de Galerkin
pour le systéme THM introduit dans I’équation (1). Nous avons appliqué avec succes
le ROM au probléeme paramétrique THM dans un cas bidimensionnel. Nous avons
proposé un indicateur d’erreur moyenné dans le temps pour piloter le training Greedy
dans la phase offline, et une procédure de quadrature empirique pour réduire les cofits
en ligne. Les résultats démontrent la précision du ROM avec moins de 1% (pour une
dimension de l’espace réduit qui est plus de 30) sur un range de parameétres d’input
prédictifs, et un facteur d’accélération de I'ordre de 102 fourni par le ROM par rapport
aux simulations HF.
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FIGURE 4: Performance out-of-sample du probleme paramétrique ROM
obtenu & l'aide de deux algorithmes de training (POD-Greedy et Strong
POD-Greedy).

Les techniques pMOR standard reposent sur des résolutions haute-fidélité (HF) au
stade de 'apprentissage, ce qui peut étre inabordable pour les problémes a tres grande
échelle ou dans le cas ou des maillages tres fins sont nécessaires pour atteindre un bon
niveau de précision. En outre, les techniques pMOR standard reposent sur 'hypothese
que le champ de solution est défini sur un domaine indépendant des parametres ou sur
une famille de domaines difféomorphes. En fait, pour les systémes comportant de nom-
breux parameétres géométriques, la prise en compte des changements dans la topologie
du domaine nécessite des changements majeurs dans le paradigme hors ligne/en ligne
de MOR.

Pour résoudre ces problemes, plusieurs auteurs ont proposé des procédures pMOR
basées sur des composants (CB), qui combinent des techniques de décomposition de
domaine (DD) avec la réduction de l'ordre des modeles. Les procédures CB-pMOR
visent & construire des espaces réduits locaux (dans l’espace et/ou dans le temps) qui
ont un support sur une partie du domaine et a calculer une approximation globale par un
couplage approprié des espaces locaux. A partir de maintenant, nous faisons référence
aux méthodes pMOR standard dans un seul domaine comme 'approche monolithique
et nous la distinguons de I'approche CB-pMOR dans laquelle la décomposition du
domaine original en une partition de sous-domaines entre en jeu.

Dans la deuxieme partie de la these, nous avons proposé une formulation CB-pMOR
pour a) des EDP non linéaires stationnaires, b) des problémes non linéaires couplés
dépendants du temps. La formulation est basée sur 'overlapping de sous-domaines;
elle se base sur une optimisation sous contrainte qui pénalise les sauts de solutions aux
interfaces des sous-domaines. L’extension des techniques classiques de pMOR au cadre
DD est conduite par I'introduction de composants archétypes et instanciés.
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FIGURE 5: Composantes instantiées {Ql}f\;df pour une valeur donnée
du parameétre géométrique Q..

La décomposition de la solution en solutions bubble et ports et I’exploitation du
principe de static condensation constituent un point clé pour obtenir un probléeme de
minimisation non contraint de faible dimension.

Dans I'application de la procédure CB-pMOR & un probleme d’élasticité non linéaire
bidimensionnel de type neo-Hook, nous obtenons un facteur d’accélération de ’ordre de
20 par rapport a un modele FE monolithique standard, avec une erreur de prédiction
inférieure & 0.1%.

107! = T a ‘ EQ‘J,- HFQ ,l.
B o EQ + EIM I -
i —B— EQ + EQ, toleq,p = 107* || 0.4 A‘- |
—B— EQ + EQ, toleq,p = 1076 ' L&
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£ { & o3 . .
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10775 S
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FIGURE 6: hyper-réduction basée sur EIM et EQ. (a) Performance hors

échantillon de la ROM OS2 hyper-réduite pour plusieurs choix de modes

m, avec n = m. (b) Cotit de calcul maximal sur Pensemble de test. Les

résultats sont basés sur la tolérance EQ toleq = 107! pour les problemes

locaux et les tolérances toleq,p = 10~ et toleq,p = 10~% pour la fonction
objectif (pour EQ+EQ).

Dans la troisieme partie de la theése, nous avons étendu notre formulation CB-pMOR
(pour les EDP non linéaires) pour traiter le THM d’intérét. Nous avons également
exploré la performance des ROMs dans les cas out-of-sample. Nous avons doté les
ROMs locales de I’hyper-réduction. Le solutions haute-fidélité sont recréées avec une
erreur de prédiction de l'ordre de 0.3% ; quant & l'efficacité, notre méthode hyper-
réduite réalise un bon gain en cotit de calcul (de 'ordre de 13 — 22) par rapport & une
résolution monolithique pour les mémes configurations de test out-of-sample. Nous
envisageons que une implémentation basée sur la parallélisation, et une procédure EQ
basée sur des points de quadrature au lieu d’éléments, peuvent apporter des facteurs
d’accélération encore plus élevés.
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Chapter 1

Introduction

1.1 Motivation

The application that motivates the present work is the disposal and storage of high-level
radioactive waste materials in geological media. In France, large amounts of radioactive
waste are generated by 1200 generators', which include nuclear power plants, but also
universities, hospitals and research centers. This represents a concern for both present
and future generations since human health and the environment may be menaced by
emission or disseminaition of radioactive material.

Andra, — the French National Agency for Ra-
dioactive Waste Management? created in 1979
within the French Atomic Energy Commision
(CEA)—has the objective of finding, implement-
ing and guaranteeing safe solutions to radioactive
waste management in France.

Andra has opted for a long-term solution: waste
disposal containers must isolate radioactive mate-
rials from the environment until their radioactivity
has decayed to an acceptable level; specific con- FIGURE 1.1: Multi-barrier design for
tainers should be adapted to each particular type a surface facility

of waste.

Waste is disposed in geological repositories that are monitored while radioactivity
decreases in time. Repository safety is based on three components: the packages, the
repository structures (dubbed alveoli) and the geological site. The packages contain
the radioactive waste and are placed inside the alveoli, which are located horizontally
deep underground (at approximately 300 to 500 meters); the geological site consists
in the region where the arrays of the alveoli are located; the area that surrounds the
alveoli provides a permanent natural barrier that prevents the spread of radioactive
waste. Figure 1.2 is a schematic representation of waste disposal in the repositories.

FIGURE 1.2: Multi-barrier disposal concept

LSource: "Les essentiels de Inventaire national, 2019"
2 Andra website: https://www.andra.fr
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Due to the large temperature of the radioactive waste, a thermal flux is generated
inside the alveoli: the thermal flux then drives the mechanical and hydraulic response
of the geological medium over the course of several years. This phenomenon requires a
careful assessment of the long-term effects on neighboring areas. From a mathematical
viewpoint, the system behaviour is described by time-dependent large scale coupled
systems of partial differential equations (PDEs), which take into account the thermal,
hydraulic and mechanical response of the geological medium due to the introduction of
radioactive waste repository.

Since an exact solution for this system of equations is impossible to find, numer-
ical simulations are adopted for design and assessment. The solution to the problem
depends on several parameters, which might be related to the geometric configuration
(e.g. the number of alveoli, their distance or their size) or to the material proper-
ties of the medium. For example, changes in the position and/or in the number of
alveoli might lead to significant changes in the predicted quantities of interest such
as the displacement of the surrounding Earth surface. To properly take into account
uncertainty in the parameters values, we need to solve the numerical model for many
different parameters of interest: this problem is usually referred to as a many-query
problem. Furthermore, an efficient numerical solution to this type of problem is even
more challenging in a real-time context, in which a solution for specific parameters is
needed rapidly.

Standard computational methods often require prohibitively large computational
costs to achieve sufficiently accurate numerical solutions for real-time, many-query ap-
plications. This is mainly due to two reasons: the high number of degrees of freedom
(and of field variables) to achieve a satisfactory accuracy, and the strong coupling among
nonlinear equations. The purpose of this thesis is to overcome these computational ob-
stacles by the application of model order reduction (MOR) methods, which during the
last few decades, have proved to be successful in providing low-complexity high-fidelity
surrogate models that allow rapid and accurate simulations under parameter variation.

1.2 Methodology overview

The mathematical Thermo-Hydro-Mechanical (THM) problem can be written in ab-
stract form as in system (1.1). We consider the spatial variable z in the Lipschitz
domain Q c R? with dimension d = 2,3, and the time variable ¢ in the time internal
(0,Tt] C R, where T} is the final time. We further define the vector of parameters p
in the compact parameter region ® C R”. Given a parameter u € P, we introduce
the state (or primary) variables U, : @ x (0,7f] — RP, where we denote as D the
number of primary variables; they can be thought of as variables that represent the
output of a parametrized solution map evaluated at a given parameter p € #. We
then introduce internal (or dependent) variables W, :  x (0,7¢] — RP<, where we
denote as D) the number of internal variables in the constitutive laws in equation (1.1);
internal variables can be thought of as secondary physical variables that contribute to
well characterise the physical dynamics of a given PDE problem. We introduce the
parameterised problem of interest: given y € #, find U, and W, such that

(1.1)

{ Gu(U,,8:U,,W,) =0, inQx (0,1,
Eu = gﬂ(glpwu)’ an X (O>Tf]7

with suitable initial and boundary conditions.
Here, ¢, is a nonlinear second-order in space, first-order in time differential operator
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that is associated with the equilibrium equations, while %, is a set of ordinary dif-
ferential equations (ODEs) that is associated with the constitutive laws: we specify
the operators G, and F, for the problem of interest in chapter 3. We remark that
the THM system is highly nonlinear, time-dependent and high-dimensional; also, we
remark that it belongs to a large class of nonlinear unsteady PDE problems which is
of broad interest in structural mechanics.

We consider a finite dimensional approximation of problem (1.1): indeed, we take a
finite dimensional subspace X' € X of dimension N™. We refer to this approximation
as high-fidelity discretization; to solve the discretized PDE problem we employ the
finite-element (FE) method, which is the most popular discretization technique for
structural engineering design and analysis.

Parametric model order reduction (pMOR) techniques are applied to problems of
form (1.1) to construct a model of low dimension requiring short simulation times and
low data storage, but still keeping the approximation error between the reduced-order
solution and the so called full-order one (computed from a high-fidelity discretization
of the parametrized PDE) under control. Reduced basis (RB) methods represent a
particular instance of reduced order models: the RB solution is obtained through a
projection of the high-fidelity problem onto a small subspace. This latter is made by
a small number of global basis functions, constructed for the specific problem at hand,
rather than by a much larger number of basis functions. RB methods are used overall
this thesis with the aim of computing, in a cheap way, a low-dimensional approxima-
tion of the PDE solution. Many works are associated with projection-based model
order reduction: we cite, without any purpose of completeness, [HRS+16; QMN15]
and [RHPO0S].

The essential constituent of a RB method is the offline/online procedure. The so-
lution to the full-order model is needed for a few instances of the parameters during a
computationally demanding offline stage (also called training stage), in order to con-
struct a reduced space of basis solutions and to build the reduced order model (ROM);
the constructed ROM enables rapid predictions of the solution field for new instances
of the parameters during the online (or prediction) stage. Figure 1.3 schematically
illustrates the use of ROMSs to run faster reduced-order simulations for new parameters
with respect to the use of full-order models.

-
time
Up) Uw) — Upy) - o
Offline phase Online phase
1 mn
Oy, ... Ou,) time

Ficure 1.3: Comparison between simulations time with a full-
dimensional model (at the top) and a reduced model (at the bottom).

The most common choices for the construction of the reduced basis are the proper
orthogonal decomposition (POD) and the greedy algorithms. POD is also popular in
multivariate statistical analysis, where it is called principal component analysis, or in
the theory of stochastic processes under the name of Karhunen-Loéve decomposition,
see e.g., [LK10; GWZ14]; we refer also to [Aub91; BHL93] for the first applications
of POD in scientific computing, in particular in the simulation of turbulent flows, and
to [BBI09; Volll] for more recent works. The Greedy method, which was originally
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introduced in [Pru+02; Ver+03], is based on the idea of constructing the reduced basis
space in an offline iterative procedure which requires at each step a maximization of the
current error over the parameter space. For the purpose of numerical computation, this
maximization is performed over a finite training set obtained through a discretization
of the parameter set. In chapter 2 we explain the construction of a RB approximation
by both POD and greedy methods. Also, in chapter 2 we explain all the features that
better characterize RB methods; as a starting point, the high-fidelity discretization of
the parametrized PDE, then the Galerkin projection and the derivation of a priori/a
posteriori error bounds for the error between the solution obtained by a full-order model
and a reduced-order model.

At the foundation of the offline/online decoupling strategy there is the possibility
to exploit an affine decomposition of parametrized PDEs, (at least in an approximate
way). We say that ¢, is parametrically affine if it can be expressed as the sum of
parameter-dependent coefficients times parameter-independent forms, i.e.

Q
Gur) =Y OpaGales-s), (1.2)
q=1

where coefficients ®,, are parameter-dependent real-valued functions that can be read-
ily evaluated for any p € @, and G,(-,-,-), for ¢ =1,...,Q, are parameter-independent
forms. As a general principle, former terms have to be computed for any given param-
eter u € P, but the latter parameter-independent terms will be computed and stored
once and for all during a possibly expensive offline stage: this makes online computa-
tion much lighter for any test parameter. We notice that for computational efficiency
it is critical that @@ € N is relatively small. The decomposition (1.2) is possible, for
example in the case of elliptic PDEs that are at most quadratically nonlinear in the
solution U,: the computational cost for the online stage depends on the dimension of
the reduced-basis space, which is typically small, and on @, but it is independent of
the dimension N™ of the underlying high-fidelity finite element approximation. Unfor-
tunately, the majority of mathematical problems of interest, as in the case of the THM
system in (1.1), feature a high nonlinearity and a nonaffine parametric dependence, so
that the approximation of nonlinear residuals G, does not admit an efficient (in partic-
ular, a N"-independent) offline/online decomposition. In this case we must introduce
a further level of reduction, called hyper-reduction. In chapter 2, we provide a detailed
description of two hyper-reduction techniques.

As just mentioned, standard pMOR techniques rely on high-fidelity (HF) solves at
the training stage, which might be unaffordable for very large-scale problems or in the
case where very fine meshes are needed to reach a good level of accuracy. Furthermore,
standard pMOR techniques rely on the assumption that the solution field is defined
over a parameter-independent domain or over a family of diffeomorphic domains. In
fact, for systems with many geometric parameters, dealing with changes in domain
topology requires major changes to the offline/online paradigm of MOR.

To provide a concrete example, let us consider a PDE problem as in form (1.1)
to be solved in a domain as the one in figure 1.4, in which the red boundaries model
the presence of radioactive waste repositories and are associated with a certain type of
boundary condition in problem (1.1).
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Fr‘/]- FT:QFL

m—
= = 000

FIGURE 1.4: Domain Q and boundaries I'; 1, ...,I'; q, that can vary in
number and position.

Despite its simplicity, if the position and/or the number of the repositories —
which we denote as @), — change, the solution to problem (1.1) becomes prohibitive
for the standard ROMs introduced so far: if the number of repositories is sufficiently
large, we would indeed end-up with a very high-dimensional parametrization, which
would require several full-order solves. Furthermore, solutions for different numbers
of repositories are defined over different meshes and satisfy different sets of boundary
conditions: therefore, they cannot be considered into a single reduced space. Figure
1.5 shows two example of domains defined by two different geometric configurations.

F1GURE 1.5: Two computational domains defined by two different values
of geometric parameter Q.

To address these issues, several authors have proposed component-based (CB)
pMOR procedures, which combine domain decomposition (DD) techniques with model
order reduction. CB-pMOR procedures aim to construct local (in space and /or in time)
reduced spaces that have support on a portion of the domain and compute a global
approximation by suitable coupling of the local spaces. From now on, we refer to the
standard pMOR methods in a single domain as the monolithic approach and we dis-
tinguish it from the CB-pMOR approach in which the decomposition of the original
domain into a partition of subdomains comes into play.

CB-pMOR strategies consist of two distinct building blocks: (i) a rapid and reli-
able DD strategy for online global predictions, and (ii) a localized training strategy
exclusively based on local solves for the construction of the local reduced bases. In
this work, in particular in chapters 5 and 6, we focus exclusively on the first area of
research (i). We refer to [BP22; ST22] and [HCC21, section 8.1.7] for recent works on
localized training for nonlinear elliptic PDEs. We propose in chapter 5 and chapter 6 a
general component-based pMOR, procedure for steady and unsteady problems, respec-
tively. In this work, the domain decomposition is based on overlapping subdomains: as
we show in chapter 5, overlapping domain decomposition methods feature a simplified
imposition of the continuity conditions of solutions at the interface boundaries among
subdomains. Therefore, it is desirable in the case of non-linear problems requiring
demanding implementations.
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The adoption of a component-based reduction method requires a suitable adapta-

tion of the offline/online decomposition introduced so far, since the MOR methodology
has to be extended to a component-based framework. The key point of the CB-pMOR
approach we use in this work is the concept of archetype and instantiated domains.
Archetype components are reference components which are built for a certain user-
defined fixed value of geometric parameters. The instantiated components are the
actual components which are created for each parameter of interest; they are con-
nected through predefined interface boundaries (or faces) named ports to form a global
synthesized system. We could also think of the concept of archetype and instantiated
components by using an analogy with the principle of object-oriented programming:
archetype components would play the role of classes, user-defined data types that act
as the blueprint for individual objects (which represent the instantiated components).
Using this analogy, we could say that the components that form a global system are
instances (of archetype components, designed as classes) created with specifically de-
fined geometric data.
Considering the global system in figure 1.4, we identify two archetype components,
depicted in figure 1.6: the first component in 1.6(a) refers to a generic region close
to a repository, while component in 1.6(b) can be interpreted as a generic portion of
the interior of the domain or of the boundary without the repository boundary. Port
boundaries are depicted in purple for each archetype component and denoted as I'?

int
a
and I'2 ;.

a
Fa QeXt
2
e = h — 4

dext - Qrefd -0

(a) "internal" archetype compo-(b) "external" archetype compo-
nent nent

FIGURE 1.6: Example of archetype components for the global system
in figure 1.4.

Given a library of archetype components and given a new system configuration (in
our case determined by the geometric parameter @,), we can generate the full system by
creating instantiations of the archetype components. In figure 1.7 the global domain 2
is decomposed into an overlapping partition {Ql}fvzdf for a given value of the geometric
parameter (Q,; next to the instantiated subdomains, the corresponding "internal" and
the "external" archetype components are depicted.
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FIGURE 1.7: Instantiated components {Q;}N% for a given value of ge-
ometric parameter Q.

The offline/online MOR subdivision which was introduced in the case of monolithic
ROM would be substantially adapted as follows.

1. During the offline stage, a library of archetype components is defined and local
reduced-order bases (ROBs) and local ROMs are built; this stage requires HF
solves and may thus be relatively expensive, but it is carried out only once as a
library preprocessing step.

2. During the online stage, local components are instantiated to form the global
system and the global solution is estimated by coupling local ROMs. In this
stage, the user may instantiate any of the archetype components and assign to
each component instantiation the desired parameter values; this phase is supposed
to be much less expensive.

In chapter 5 we explain the development of the CB-pMOR procedure proposed in this
work: we describe the component-based formulation of a preliminary PDE problem
and we show how the identification of port edges in the instantiated components plays
a key role in enabling the decomposition of solutions and in guaranteeing the efficiency
of the whole CB-pMOR method.

1.3 Objectives of this work

The aim of this thesis work is the development of a CB-pMOR procedure for THM
systems. The application of a CB-pMOR approach to problems of the form (1.1)
requires a significant effort in terms of choice and adaptation of methods and in terms
of numerical implementation. To proceed while keeping the degree of difficulty under
control, this work is divided into three main phases in the following way.

1. First, a projection-based monolithic MOR technique is developed for problems of
the form (1.1) with particular emphasis on THM systems that are fully described
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in chapter 3. The approach is characterised by an offline/online splitting to reduce
the marginal cost (that is the cost in the limit of many queries), and it relies on
Galerkin projection to devise a reduced-order model (ROM), which is built by
an adaptive sampling to reduce offline training costs; furthermore, we rely on
hyper-reduction to speed up the assembly of the ROM during the online stage.

II. Second, we design a CB-pMOR formulation for parametrized nonlinear ellip-
tic PDEs based on overlapping subdomains. To validate the methodology, a
preliminary test case is used: all the numerical investigations are made for a
two-dimensional neo-Hookean nonlinear mechanics problem that shares the same
geometric configuration (depicted in figure 1.6) with the THM problem studied
in the first part of the work.

III. Third, the CB-pMOR methodology proposed in the second part is extended to
the THM system, which is fully described in chapter 3. This part of the work
requires the adaptation of the techniques presented in the second part to the case
of coupled, non-stationary problems with internal variables of the form (1.1).
Also in this part all the methods are validated by numerical investigations.

1.4 Contributions of the thesis

The contributions of the present thesis are summarized as follows:

e the development of a POD-Greedy technique for coupled problems with internal
variables, in the context of projection-based MOR. In particular, we develop a
time-average a posteriori error indicator, a greedy sampling (based on the pro-
posed indicator) and a hyper-reduction technique based on an element-wise em-
pirical quadrature procedure;

e the development of a new CB-pMOR, formulation for parametrized PDEs based
on overlapping subdomains; this part is completed by the theoretical discussion
of the well-posedness of the CB mathematical formulation and the a priori error
analysis for linear coercive problems;

« the adaptation of the proposed CB formulation to unsteady coupled problems
with internal variables.

1.5 Structure of the thesis

In addition to the introductory and concluding chapters, this manuscript consists of
five main chapters organized as follows.

1. Chapter 2 provides an overview of the model order reduction framework that
is later employed and further developed in the remainder of the thesis for the
construction of ROMs. In particular, we introduce the POD, the greedy method
for stationary problems (and the POD-greedy); we also present the Galerkin
projection method used during the training and prediction stages, respectively. In
addition, we present hyper-reduction techniques to deal with nonlinear problems
and a rapid and reliable error indicator to be used in the training phase.

2. In chapter 3 we present in more details the THM problem: we describe the phys-
ical assumptions that are used to derive the model; we present the mathematical
formulation and its numerical finite-element discretization; we also show the so-
lution field for a fixed parametric configuration.
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The first contribution of this thesis is presented in chapter 4, where we develop a
projection-based monolithic MOR, procedure for the THM system.

In chapter 5 the second contribution of the thesis is presented: a general CB-
PMOR procedure for steady PDEs based on overlapping subdomains.

In chapter 6 the component-based approach presented in chapter 5 is extended
to problems of the form (1.1). This represents the last contribution of this thesis.
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Chapter 2

Model order reduction methods

In this chapter we present in a self-contained way the main features of model order
reduction methods that are applied in this thesis; methodology sections in chapters 4,
5 and 6 show the careful adaptation of this general methodology to handle challenging
applications in different contexts: in chapter 4, to handle coupled problems with internal
variables, and in chapters 5 and 6 in a CB setting.

2.1 Galerkin ROMs for unsteady PDEs

2.1.1 Problem formulation

We introduced the physical domain 2 and the temporal interval (0, T¢] at the beginning
of section 1.2. We denote as (X, || -||) a suitable Hilbert space defined in ; we consider
H(Q) ¢ X c HY). By (w,v), we denote the inner product in X for all w,v € X,
and by |lw| = y/(w,w) its induced norm for all w € X. We denote by X’ the dual
space of X.

To present the pMOR methodology that is considered in this work, we focus on a
parabolic problem in variational form. We denote as X the test set such that Xy =
{v e X :v|r, =0}, where I'gi; denotes the portion of the boundary associated with
Dirichlet boundary conditions and gg;, € HY 2(Tgi); we denote the time derivative as
Oy, = 94 € L2(0,Tr; Xy t).

We consider problems of the form: find u, € C°(0,Tt; L*(Q)) N L?(0,T3; X) s.t.

(8tuM,U)L2(Q) + Gu (uy,v) =0 Yo € Xy, (2.1)

with suitable initial and boundary conditions: u,(z,0) = ug for (x, ) € Q x P, and
Touy = gdir- Here, Ty : X — Hl/Q(Fdir) is the trace operator such that Tov = v|r,,
for all v € X’ N C°(Q); to simplify the presentation, we consider a parameter and time
independent Dirichlet datum. We recall that the parameter p belongs to a compact
parameter region # C RP, with P > 1, as introduced in section 1.2. Here, G :
X x X x P — R is a linear or nonlinear parametrized variational form, which we
suppose to be time-invariant: the definition of ¢, for the THM system is specified in
the following chapter 3.

2.1.2 High-fidelity discretization

We introduce the time grid 0 = t©) < t() < .. < t(/max) = T} such that t0) = jAL.
Given the domain Q € R4, we define the triangulation {Dk}gil, where N, denotes the

total number of elements, the nodes {x?f}jv:h{ and the connectivity matrix T € NVe:p

such that Ty; € {1,..., N"} is the index of the i-th node of the k-th element of the
mesh and ny, is the number of degrees of freedom in each element. The high-fidelity
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space X is defined in the following way:
b= span{(;e; i = 1,...,NM 5= 1,...,D}

where {(Z}f\;hlf is the continuous Lagrangian FE basis. Given v € XM, we denote by
v the corresponding FE vector. We remark that XM is a finite dimensional space, al-
though high-dimensional: the solution in X' obtained by a high-fidelity discretization
of (2.1) is assumed to be a sufficiently accurate approximation to u, € X solving (2.1).
We consider the simplest case in which the number D of state variables is equal to one;
in chapters 3 and 4 we extend the definitions to the case D > 1 which corresponds to
vector-valued state variables. The elemental restriction operator Ej : RY " R s
defined as

(Ekufj))i = uP(@ ), i=1,...mp k=1, N (2.2a)
Furthermore, we introduce the quadrature points {x?f,;q}%k C €, such that x;lf,;q is the
g-th quadrature point of the k-th element of the mesh, with ¢ = 1,...,nq, and the
operators Ezd : RN™ 5 Rma and E%d’v : RN™ 5 Rnad guch that

d..(j ")/ hf, A,V (j 9 (), nf,
(E2 u/(f)> - ul(tj)(xq,kq)’ <EZ uf(ﬁ)) ) ~ug)(xq,kq>’ (2.2b)
q qt T
whereg=1,...,nq,k=1,...,Neand i =1,...,d.
We denote by {uff)}}]’:“i" the high-fidelity solution trajectory for the parameter y €

P; uff) is an approximation of the true solution at time t() and for w € P. Notice
that script hf is neglected in the solution for a matter of simplicity in the notation. If
we resort to an implicit Euler time scheme, the high-fidelity discretization of problem
(2.1) can be written as follows: for j =1,... Jyax find

() _ =1 ;
<u“] Al;“J ,v) +Gu (u,(f),v) =0 Vv e X,
L2(Q)

. , 2.3
uEL]) (Idir7 t(])) = 8dir ( )
uy(-,0) = uy,

where gqi, € R4l is the Dirichlet datum, Ig, C {1,..., N"} are the indices associated

with Dirichlet boundary I'gi; and X = {v € XM : v(Ig;,) = 0}. Notice that the
discussion can be trivially extended to other time discretization schemes; nevertheless,
in this work, we exclusively consider the implicit Euler method for time discretization.
Once introduced the high-fidelity discretization of problem (2.1), we can define the
solution manifold as the set of high-fidelity solutions for all values of the parameter u
in the parameter domain #:

M= {uf exXx™: pep jef{l,. . Juun}}c XM (2.4)

We can possibly restrict the solution trajectories to the set of sampling times that we
denote as Is. The definition presented in (2.4) is an important concept since the ROMs
aim at finding reduced solutions that approximate the high-fidelity solution manifold
defined in (2.4). The high-fidelity solutions found for a suitably chosen finite sample
of parameters Erain = {f41, - - - ; ngpy, + a0d times in I are called snapshots: they form
the set

Mirain = {uf) € XM 1 1 € Eprain, j € To C {1, ., Jnax }} (2.5)
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and they are used to generate an N-dimensional reduced basis. We remark that the
solution of the high-fidelity discretization (2.3) might be potentially very expensive
since a large number of degrees of freedom N™ might be needed to achieve a sufficiently
accurate approximation of the continuous solution of (2.1). This ends up in a large
computational cost if the solution needs to be estimated for many parameter values.
The reduced basis method seeks to speed up computations in the limit of many queries
without sacrificing the accuracy with respect to the high-fidelity solution.

2.1.3 Reduced Basis method

As pointed out in the introduction section in chapter 1, the reduced basis (RB) method
is adopted in this work to accurately and efficiently generate an approximate solution
to a parametrized PDE as the one in (2.1). That reduced solution is typically obtained
in a subspace that approximates the solution manifold 71. A low number N < Nf
of problem-dependent basis functions {g‘n}ﬁ’:l is generated from a suitable set of snap-
shots. The associated reduced basis space is given by Zy = span{(1,...,(n} C X hf,
For now, we consider the reduced basis space Zx as given; in section 2.2, we describe
different techniques commonly used for its costruction during the offline stage, and in
2.3 how to efficiently recover the reduced basis solution during the online stage. To
simplify notation, we now denote as u, = {u,gj)}j;“i‘x the trajectories associated with the
high-fidelity snapshots at all time steps for a given parameter p € #. The approximate

solution at computation times j = 1,..., Jynax is denoted by ¢, = {ﬂ,(f)};]’zni‘x C ZnN-
For each parameter y € & and each time index j =1, ..., Jnax, the ansatz of problem

(2.1) has the following form:

N
i) = Zya = 3" (o) G (2.6)

n=1

The summation is done over N < N the real-valued time and parameter-dependent
coefficients {a,(f)}jel are called reduced solutions, with a,(f) : P — RN,

We notice that operator Zy : RY — Zy = span{(,}_, is linear; indeed, in
this work, we restrict ourselves to linear approzimation methods. In order to establish
whether the manifold 771 can be accurately approximated using a low-dimensional linear
space Zy, we need to introduce the notion of Kolmogorov n-width d,,(11).

The Kolmogorov n-width measures the reconstruction performance of the optimal
n-dimensional linear space Z,, C X'f: it measures the best achievable accuracy in the
XM norm when all possible elements are approximated by elements in a n-dimensional

subspace Z,, € XM, it is defined in the following way:

dim(Zy,)=n

The faster the decay in the Kolmogorov n—width with n, the better is the approx-
imability of a solution manifold in a n-dimensional linear space. For a wide range of
parameterized elliptic and parabolic problems, the Kolmogorov n— width often decays
exponentially, allowing for (acceptably) low-dimensional and accurate linear approxi-
mations. In the numerical applications in this work we rely on linear compressibility
of the solution manifold. We observe that theoretical considerations on the behaviour
of the Kolmogorov n-width are limited to some types of parametrized solution map-
pings, in particular analytic or nonlinear olomorphic mappings (we refer to [QMN15]
and [CD16]).
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There is an alternative class of methods, called nonlinear approximation methods,
which rely on approximations that do not come from linear spaces but rather from
nonlinear manifolds (the application of these methods is beyond the scope of this thesis;
we cite [IL14], [LC20] and [Tad20]).

The offline/online decomposition presented in algorithm 1 aims at reducing the
marginal (in the sense of many queries) cost associated with the solution to (2.3).
Several issues should be addressed. First, we should discuss how to choose training

Algorithm 1 The RB method: offline/online decomposition

Offline stage:
1: compute uy,, ... Uy,  using a FE solver;
2: construct the reduced space Zy = span{(,}2_;;
3: compute and store online structures;
Online stage: for a given g € &
4: compute @i; by solving a suitable ROM;

5: estimate the error between u; and €.

parameters in Sgain = {ft1, - s g} € P, and build the reduced space Zy based
on the snapshots sets {uy,,...uy, _ }. Second, we should discuss how to efficiently
compute the solution @, for a given p € %. Third, we should discuss how to rapidly
and accurately estimate the error. In the numerical simulations, we consider the error
metric L%(0, T; M), which we define as follows:

5ol =l

(2.8)
HU’INHJ
where
Jmax ‘
vy = | S (@ — tG=0) @ |2, Wy = {v@)}max,
j=1
Note that || - || 7 is an approximation of the norm L?(0,T;; X™). The just mentioned

three issues, which could be referred to as "reduced space construction", "reduced for-
mulation" and "a posteriori error estimation", are discussed in sections 2.2, 2.3 and 2.4,
respectively.

2.2 Construction of the reduced space

In this section we should address the issue of i) sampling the parametric space # in
order to select suitable training parameters; ii) constructing the reduced basis from
a given set of snapshots. A greedy approach explained in section 2.2.1 is often used
for point i), while among data compression techniques we use proper orthogonal de-
composition (POD) method, illustrated in section 2.2.2. The time-dependent nature
of problems (2.3) requires some adaptations of the methods that are used to tackle
both parameters selection and data compression. Indeed, application of POD to time-
parameter manifolds might end up in very high-dimensional data structures; moreover,
to obtain the snapshots for a fixed parameter p, a complete time-trajectory needs to be
computed and suitable time instants need to be selected. A convenient approach con-
sists in suitably combining the greedy method with POD in the so-called POD-greedy
procedure; we provide details about the POD-greedy in section 2.2.3.
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2.2.1 Greedy algorithm

For time-dependent PDEs, the underlying idea of the greedy procedure is the selection
of a set of parameters {Ml, .., N} and timesteps I* so to compute corresponding
high-fidelity solutions {{u“1 Yiers, oo, {u(] ) }jer+} that could adequately represent the
parametrically induced manifold m. The first version of the greedy algorithm is the
strong greedy: here, retained parameters selection is based on the best-fit (bf) error:

EPE () _ Hu(j

N HzNufﬁu, (2.9)

where the projection operator 11z, : X' hf . Zn is such that

Iz, (uff)) = arg m1n Hu — UH foreachj =1,..., Jnax-
veEL
For each iteration n. = 1,..., Neount Of a greedy algorithm, we should have to
compute parameter p* and time step j* in order to construct a suitable reduced basis.
For a time-dependent problem, selection of parameter u* can be made by fixing a time
step j = Jmax, as done in [GP05]:

w —arguénatmx Ebf(‘]m‘”‘) (2.10)

On the contrary, selection of a new timestep is done over all computational times,
computing the best fit error for the currently selected parameter p*:

= arg _ max (EZE(?Q — EE?(,Z;D) . (2.11)

The strong greedy search iterations at (2.10) and (2.11) require the computation
of the best fit error E'Of . at iteration ne for each parameter in the training set Erain:
therefore, the evaluatmn of the best-fit error requires (many) expensive evaluations of
the high-fidelity solutions, even in the case in which the parametric set Et;qai, has a low
cardinality |Z¢rain| = Mtrain. A further simplification is adopted in the weak greedy: the
best-fit error defined in (2.9) is replaced by an inexpensive a posteriori error indicator
A, such that

up — Mz, O, < Ay Vo€ 2, (2.12)
where @, = {&E)};]’:“ix and ﬂ,(g) = Hzncug) foreach j =1,..., Jmax-

We observe that, to be efficient, a greedy algorithm must be supported by an error
indicator that provides an estimate of the error induced by replacing the high-fidelity
space XM with the reduced basis space Z,,, i.e. (2.12) holds. If the error indicator
A, can be evaluated efficiently, the computation of ;* can be significantly accelerated
since no high-fidelity solution is required at this step and the evaluation of the error
indicator is embarassingly parallelizable. In section 2.4 we discuss the choice of the
error indicator.

We also note that the convergence results for the greedy approximation have been
established in [Bin+11] and [Buf+12]. In these works, the authors analyze the a priori
convergence of the greedy algorithm; in particular, they show that if the underlying
problem allows an exponentially small Kolmogorov n—width, then the greedy reduced
basis approximation converges exponentially fast to the high-fidelity approximation. In
[Haal3] the study on a priori convergence rates of [Bin+11] and [Buf+12] is extended
to time-dependent problems, which are typically approximated by the POD-Greedy
algorithm, as mentioned at the beginning of section 2.2.
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2.2.2 Proper Orthogonal Decomposition

We present here the POD procedure based on the method of snapshots ([Sir87]). The
POD technique takes the set of snapshots, which are computed by high-fidelity solves
for given parameters in a parametric training set Ziain, and it generates a set of un-
correlated variables called POD modes. The first modes retain most of the infor-
mation content (that we precise in the following) present in all the given snapshots.
Given the high-fidelity snapshots {u,,,...,ux}, we can define the snapshots matrix
S=T[u,...,u,,.] € RV Mmin where ngain = JumaxK. We suppose that the number
of degrees of freedom associated with the high-fidelity discretization is much bigger than
the number of training parameters, thus N™ > ng..i,; this assumption characterizes
the method of snapshots. Given the snapshots database S, the reduced space is defined
as the subspace of rank N which minimizes, in the least squares sense, the difference
between the snapshots and their orthogonal projections onto this subspace:

Ntrain
min E((,...Cn up — Uy
Zn=span{(1,...,(N } ( ntraln Z H H (213)

subject to (Cl, C]) = (51'7]' \V/’L,j = 1, cee ,N

where u(J) HZNu,(Cj) for j=1,...,Jmax, K =1,..., K. The minimization problem in
(2.13) can be cast in matrix form as follows

min E = ||S — ZNZLXS|%,
Zn (2.14)
subject to Z%XZN =1y

where 1y denotes the N x N identity matrix and ||AH%X = Tr(ATXA) denotes
the Frobenius norm associated with the previously introduced inner product in X
and the induced norm matrix X s.t. (u,u) = u?Xu. Since matrix X is symmet-
ric positive definite (SPD), the Cholesky decomposition can be employed to factor-
ize X = X/2(X'/2)T. By considering the change of variables S = (X!/2)T'S and
Zyn = (X'/?)TZy, the minimization problem in (2.14) can be written as

min E = ||S — ZyZS| %
Zn o (2.15)
subject to Z%ZN =1y

where ||A||2 = Tr(ATA) is the Frobenius norm. The POD based on the method of
snapshots relies on a singular value decomposition (SVD) of STS e R"“am’"tram and on
application of Schmidt-Eckart-Young- Mzrsky theorem on S: having S € RN train , We
can identify orthogonal matrices U € RN™N™ and V € RPwainsMnain and a diagonal ma-
trix with non-negative real numbers on the diagonal that we denote as 3 € RY " nirain
Matrix 3 is uniquely determined by S if the singular values (i.e. the numbers on the
diagonal of 3) are listed in descending order. Now the metod of snapshots consideres
the SPD correlation matrix

STs = (uzvhHT(uzv?) = ve2ivT,
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where V and ¥ are obtained from the SVD of STS € R%rainurain and U = SVE~L

the basis functions can be thus constructed as
-1
Via Vin o1 0

Zy =S

Vntrainyl Vntrain N 0 ON

where N < nygpain. F in (2.15) is also referred to as POD energy; it is also equivalent to
the sum of squares of the singular values that correspond to the neglected POD modes:

Ntrain

E= Y od. (2.16)

i=N+1

Therefore we can select the maximum dimension N of the reduced basis Zy such that
the POD energy is below a user-defined threshold, that is

FE < epop, (2.17)
with epop € (0,1). By using definition (2.16) and by diving both left and right hand
Ntrain
side terms in (2.17) by the sum of all the squared singular values Z 0%, we obtain
k=1
that the desidered N is the minimum dimension such that
Ntrain N
> k=D
k=1 k=1 €POD
Ntrain S Ntrain = tOlpOd7 (218)
> i D> ok
k=1 k=1
that can be written in the following way:
N
>
I(N) = 7= > 1 — tolpod. (2.19)

D o
k=1

Here, I(N) is the Relative Information Content (RIC): it represents the energy retained
by the first N POD modes, while the energy associated with neglected ones is equal to
tolpoa, which is desiderable to be small.

As stated in (2.13), the POD allows the construction of a reduced basis that is opti-
mal in a [2-sense over the parameter space. However, its main limitation lies in the large
computational cost: the construction of the reduced basis requires the computation of
a potentially large number ni,i, of high-fidelity solutions to ensure a satisfactory accu-
racy. A proper choice of IV is not known or predictable for a general problem: this lack
of information could result in a substantial computational overhead associated with
the fact that a large number of high-fidelity solves is required but the majority of the
resulting solutions do not contribute to the construction of the reduced basis. This fact
motivates the attempt to build the reduced basis by the use of an iterative approach.
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2.2.3 POD-Greedy algorithm

The POD-Greedy algorithm was introduced in [HO08] and analysed in [Haal3]: the
approach combines proper orthogonal decomposition (POD [BHL93; BBI09; Volll])
to compress temporal trajectories with a greedy search driven by an error indicator to
explore the parameter domain. In this work, similarly to Ref. [Fic+18], we rely on
a time-averaged error indicator to drive the greedy search; furthermore, we test two
different compression strategies to update the POD basis at each greedy iteration.
The POD-greedy sampling procedure requires the set of training parameters Eiyain,
an error tolerance toljoop, a POD tolerance tol,oq and the maximum number of iter-
ations Neount,max- At each iteration we search the currently worst-resolved parameter
[* € Etrain using an error indicator A, that is specified in section 2.4; following [HO08],
POD with respect to time is performed to compress the error trajectory and the POD
modes (retained based on tolerance tol,oq) are added to the current basis Z. At each it-
eration we need to perform a data compression step. Indeed, greedy and POD methods
described in sections 2.2 explore the set of training parameters, Zi iy Whose cardinality
is denoted as Nirain-

The computation of the high-fidelity snapshots in a possibly high-dimensional pa-
rameteric set may end-up in storing big data structures and may therefore cause mem-
ory issues. Data compression techniques, explained in section 2.2.4, are used to solve
this issue. We summarize the data compression routine by the following expression

[Z/, X] = data-compression (Z, A, uys, (+,-),t0lped) s

which takes as input the current ROB and the POD eigenvalues A = [A1,...,An]7,
and returns the updated ROB Z’ and the updated eigenvalues X'.

Algorithm 2 POD-Greedy
Require: Eipan = {N(k)}ZZalma t0l100p7 tOlpoda Ncount,max-
1 Z=0,A=0, p*=pm.

2: for neount = 1,. .., Ncount,max do
3: Compute HF snapshots .

4: [Z A] = data-compression(Z, X, uyx, (-, "), tolpod)- > section 2.2.4.
5: Construct the ROM with error indicator. > section 2.3, 2.4
6: for j = k : Ngrain do

7 Solve the ROM for p = %) and compute Ay

8: end for

9: W= argmax,e=,,... Au- > Greedy search
10: if A+ <toligep then, > Termination condition
11: break,

12: end if.

13: end for

return ROB Zy and the ROM coefficients p € # +— {&Z(j)}}];‘i“‘.

Notice that at line 9 selection of parameter p* relies on an error indicator for each
parameter in the training set and it does not require the computation of the best fit
error (2.9).

For a time dependent problem as (2.1), the greedy search should be made over selected
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time steps as well as over the parametric set Z¢ain. At line 4 information about high-
fidelity solutions in time is compressed so we do not have to explicitly compute selected
time steps as in a classical greedy method, as presented in (2.11).

We also observe that a considerable reduction in the computational cost of the reduced
basis construction is given by the fact that only ncount high-fidelity solutions are com-
puted in the POD-Greedy approach, in contrast to the nt.j, solutions needed for the
classical POD basis generation (in almost all cases ngain => Neount,max > Nc)-

2.2.4 Data compression methods

The POD method introduced in section 2.2.2 is widely used for the construction of
low-dimensional approximation spaces from the high-dimensional set of snapshots. For
large-scale applications and an increasing number of snapshots, however, the compu-
tation of the POD basis often becomes prohibitively expensive. Indeed, all snapshots
vectors have to be computed and stored before starting the POD computation. For
large problems, this might be impossible due to insufficient memory. This issue mo-
tivates the use on incremental versions of the POD. We consider two different data
compression strategies: a hierarchical POD (H-POD) and a hierarchical approximate
POD (HAPOD). Both techniques have been considered in several previous works: we
refer to Ref.[Haal7, section 3.5] for H-POD and to [HLR18] for HAPOD; HAPOD is
also related to incremental singular value decomposition in linear algebra [Bra03]. Here,
we review the two approaches for completeness. We introduce notation

[Z’ A] = POD ({lUk}Zt:rTn, ('a ')7 tOlPOd)

to refer to the application of POD to the snapshot set {uy};5™, with inner product
(-,-), and tolerance tolyoq (cf. (2.18)), with Z = [¢y,...,{y], and Z'XZ = l; we also
have that XA = [Ar,...,Ax]T = [0%,...,0]2\,]T, and A\; > Xa... > Ay. Given Z and the
snapshots v, H-POD considers the update:

Z/ = (Z,Z""], Z" =POD (Ilz ups, (), tolpod) (2.20a)

Note that the approach does not require to input the POD eigenvalues A from the
previous iterations. We observe that the approach leads to a sequence of nested spaces
— that is, the updated ROB contains the ROB of the previous iteration — and it
returns an orthonormal basis of the reduced space. In our experience, the choice of the
tolerance tolp,oq is extremely challenging: since (2.18) depends on the relative energy
content of the snapshot set, the update (2.20a) with fixed tolerance tol,,q might lead

to an excessively large (resp., small) number of modes when max; ||u,(f) - HzNuff) || is

small (resp., large). For this reason, we propose to choose the number of new modes
NV using the criterion:

H 7 (M Z7new Lu(J;c)
NV := min ¢ M : max | (ZGBZA?)) a | < tolpod, ZR§Y = span{¢iviM_,
T

(2.20b)
Note that this choice enforces that the in-sample relative projection error is below a
certain threshold for all snapshots computed during the greedy iterations.
HAPOD considers the update

[Zl? A/] = POD ({ul(j*)}JEIs U {\/XTLCn g:la ('7 ')7 t0lP0d> : (221)
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Note that in (2.21) we have to use v/A,, which correspond to the square roots of eivgen-
values of the correlation matrix C = STXS. Note that the approach (2.21) does not in
general lead to hierarchical (nested) spaces. As discussed in Ref. [HLR18, section 3.3],
which refers to (2.21) as to distributed HAPOD, it is possible to relate the performance
of the reduced space obtained using HAPOD to the performance of the POD space
associated with the snapshot set {u,(f,z :n=1,..., Neount,max, j € Is}: we refer to the
above-mentioned paper for a thorough discussion.

2.3 Reduced formulation

2.3.1 Galerkin projection

Given a parameter p € &, the estimation of ¢, is done by projection of the discretized
PDE (2.3) into a suitable reduced space. We denote by R,, the residual associated with
(2.3), that is,

() |
(Ru(u/(f),ul(f* ),v) =\ —®x v + Qu(ul(f),v).
L2()

Given the N-dimensional space £y, the reduced basis approximation is sought as
follows: for any given u € P, we seek @, € C°(0,T¢; L*(Q)) N L*(0,T¢; Zn) s.t.

a) —af ™ }
N + Q#(u,(f),v) =0VYv € Zy, (2.22)
L2(2)
with <€L,§O), v) @ = (u0,v)r2(0) Yv € Zn and with Tod, = gqir- Expression in
(2.22) correspond to the enforcement of the orthogonality between the residual and the
reduced subspace Zp. In algebraic form, for each time index 7 = 1,..., Jnax, We can

write the residual vector Rﬁf € RN and Jacobian matrix J l}f e RV:N.

<1f{zf(ﬁ/(f))>n =R (ﬁ;(f), Cn) forn=1,...,N (2.23)
e O e
(@), = o (RE@E), fornan = 1,0, (2.24)
for each time index j = 1,..., Jmax, where span{(1,...,(n} = Zn and {a/(lj)}jas are

defined in section 2.1.3. From the algebraic expressions of residual and Jacobian in
(2.23) and (2.24) it is possible to notice that the Galerkin projection stated in (2.22)
leads to a system of N equations, where N < NP,

We remark also that the assembling of the NV x N system associated with the ROM
(2.22) requires the integration over the whole FE mesh and thus its computational cost
scales with the total number of elements N,.

We also observe that, for the (solid mechanics) problems considered in this work, the
Galerkin projection preserves the numerical stability properties of the discrete system to
which it is applied, (and if the time integrator is energy conserving, it is guaranteed to be
unconditionally stable), as shown in [FCA15]. Therefore, no instability or deterioration
in accuracy are expected to appear over time. For certain types of hyperbolic systems
of equations, as in the compressible flows applications in [IKA12], the numerical stability
of the ROM (based on the Galerkin method) is not guaranteed, as a consequence of the
fact that the Hamiltonian structure in the projection-based ROM is no more preserved.
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This topic is beyond the scope of the present thesis; we remind to [BR06], [HPR21],
[GWW17] and [BGH21] for a thorough discussion.

2.3.2 Hyper-reduction techniques

As mentioned in chapter 1, in the context of projection-based MOR, hyper-reduction
methods are employed to reduce the online assembling cost of variational forms that are
nonaffine in the parameters and nonlinear in the unknown variable. For weak forms
Gu(+,-), the evaluation of residuals requires the integration over the spatial domain
Q). The aim is to prevent the computational complexity of the resulting ROM from
scaling with the dimension N™ of the high-fidelity discretization, which is, in general,
computationally prohibitive. We would like to achieve an operation time that scales
with O(N). In general, when the solution cost of ROM for a test parameter p € @ is
independent of the dimension of the FOM, we say that the ROM is online efficient.

We identify two distinct categories of hyper-reduction methods. A first category
first intepolates the residual form in G, (-, -) using empirical functions, then it integrates
the interpolated residuals; the second category directly evaluates the residual integrals
in G,(-,-) by using empirical quadrature rules. The first category includes Empirical
Interpolation Method (EIM), for which we refer to [Bar+04]; the second includes the
hyper-reduction approach in [Ryc05] (see also [Fri+18]), the energy-conserving mesh
sampling and weighting (ECSW) approach in [FCA15] and the empirical quadrature
procedure (EQP) proposed in [YP19a], [DY22].

Empirical interpolation method

The EIM method is employed to recover online N™-independence even in the case where
the variational form G, (-,-) does not admit an efficient offline/online decomposition.
To do that, we introduce the interpolation operator Jg : C'(2) — Wy associated with
a Q-dimensional linear space Wy = span{wq}qul C C(Q):

Jolv](zq) = v(zg) forg=1,...,Q (2.25)

for all v € C'(2) and points {xq}?zl C Q. The objective of EIM is to determine an ap-

proximation space /g and @ points {azq}?zl such that Jg[u,]| accurately approximates
u,, for all u, € 1. Algorithm 3 summarizes the EIM procedure: the algorithm takes

as input snapshots {ug } 4™ of the manifold 771 and returns the functions {wq}ff:l, the

interpolation points {mq}?zl and the matrix B € R?® such that B, , = Yq(zy). We
have that for all v € C(Q)
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Algorithm 3 Empirical interpolation method
Inputs: {ug}piran C X0
Outputs:{q/}q}(?:l, B € RYQ, {xq}§=1

1: Build the POD space (1, ..., (g based on the snapshots {u,(cj)} for k=1,..., Ntrain,
7=1,..., Jmax

. - _ 1 _

2 xp 1= argg?%\ﬁ(@h 1= g Bl =1

3: forg=2,...,Q do

rg = Cq = Yg-1Gq
5: Tq := argmax |rq(z)|
e )
Define 1, := ro(en e and update (B)g.q = tq(zq)
7: end for

We observe that Algorithm 3 can be applied to the nonaffine terms of the PDE
(see [Gre407], Lemmas 2.1 — 2.3) or to the discrete FE residual vector (cf. [CS10b],
[CS10al]). In algorithm 10 in chapter 5 we discuss the extension of EIM procedure
to vector-values fields emerging from PDEs to solve for a number D > 1 of unknown
variables.

Empirical quadrature method

In order to reduce assembly costs, we aim at preventing integration over the whole do-

main: we define the indices associated with the “sampled elements” Ioq C {1,..., Nc}.
In view of the introduction of EQ technique, we write the residual as the sum of local
(elementwise) contributions, for each time index j =1,..., Jyax:
. Ne
R <u§j), ) =3 (Ekufj), Emp) (2.26)
k=1

and we denote it with the acronym hf to indicate that a high-fidelity quadrature rule
has been employed. In algebraic form we have that (2.23) holds.
We define the EQ residual:

5 (o) = 32 o (B 1) o)

k€Ieq

where p®1 = [p{%, ..., p(;\(i]T is a sparse vector of positive weights such that p* = 0 if

k ¢ I.q. The algebraic form of the EQ residual is the following:

<f{fﬁ(ﬁf]>)> — R, ) forn = 1,..., N. (2.28)

n

The residuals ﬁﬂf() defined in (2.23) and REY(-) in (2.28) satisfy
S hf _ hf D e o e

where G € RY:Ne can be explicitly derived using the same approach as in [TZ21] and
hf _ [1 1]T
P AU
As in [YP19a], we reformulate the problem of finding the sparse weights p°d € R™Ve
as the problem of finding a vector p®! such that:
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1. the number of nonzero entries in p®l, which we denote by ||p®l[o, is as small as
possible;

2. the entries of p®? are non-negative;

3. (constant-function constraint) the constant function is integrated accurately:

<1 (2.30)

Ne
> ook — 19
k=1

4. (manifold accuracy constraint) the empirical and high-fidelity quadrature residu-
als are close at operating conditions:

, 1 /. , . ,
f f e
(33 (o)) (R () R (o)), <1, 2
for j € I and for suitable choices of {ag;in}j that have to be discussed.

We observe that a similar problem was already introduced in Refs. [FCA15; Far+14].
Compared to these works, we here add the constant-function constraint that is found
to improve the accuracy of the weights when the integrals are close to zero due to
the cancellation of the function to be integrated in different parts of the domain (cf.
[YP19al).

Note that the constant accuracy constraint is also important to bound the ¢! norm
of the empirical weigths, we have indeed

Ne Ne Ne N

hf hf
DD < D0 = ADIDR]| + D pl 1Dkl = | Y o Dxl = 19| + 1.
k=1 k=1 k=1 k=1

Exploiting (B.6), we can restate the previous requirements as a sparse representation
problem:

>0
find p®? € arg min ||p||o s-t. p= (2.32)
peRN: ICp—bl. <4,
for a suitable choice of the matrix C, the vector b, the norm || - ||+, and the tolerance

0. Since the optimization problem (2.32) is NP-hard, several authors have proposed
computational methods to find approximate solutions to (2.32) in polynomial time. To
provide concrete references, [YP19a] considers a ' relaxation of (2.32) with ||-||x = |-
|l¢oo, and resorts to linear programming to find an approximate solution; here, following
Farhat et al. [FCA15], we approximate the solution to (2.32) by solving the inexact
non-negative least squares (NNLS) problem

min [[Cp — blfz2s.t.p > 0. (2.33)
pERNe

A thorough comparison between the reduced quadrature approaches in [FCA15] and
[YP19a] is beyond the scope of this work we refer to [SH11] for a detailed analysis of the
performance of NNLS and a comparison with LP for a stochastic sparse representation
problem with Gaussian disturbances.

In this work, we rely on the Matlab function 1sqnonneg that implements the Greedy
algorithm proposed in [LH74] and takes as input the matrix C, the vector b, and a
tolerance toleg:

p°! = 1sqnonneg(C, b, tole).
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The same algorithm to find the sparse weights p®? given the matrices C,b has been
first considered in [FCA15]: for large-scale problems, a parallelised extension of the
algorithm was introduced and successfully applied to hyper-reduction in [Cha+17].

We conclude this section on hyper-reduction by the following observation: as ex-
plained in [FCA15], the ECSW approach is able to preserve the numerical stability of
the time integrator chosen for the solution of the reduced order problem. In [HPR21],
the discrete EIM method is shown to result in a loss of the Hamiltonian structure of
parametric time-dependent Hamiltonian systems: as a consequence, long-time accuracy
and stability of the reduced-order solutions may be affected and suitable conditions on
the reduced basis matrix are required to ensure the preservation of the Hamiltonian
structure.

2.4 A posteriori error estimation

Due to the absence of sharp a priori estimates of the error between the ROM solution
and the high-fidelity solution, we need a rapid and reliable error indicator to i) assess
the accuracy of the ROM during the online stage (and thus it is called a posteriori
because it is computed after having computed the prediction), as shown at line 5 of
the offline/online decomposition algorithm 1; ii) use the indicator to guide parameters
selection in the training phase by an adaptive algorithm (cf. algorithm 2). In particular,
we exploit the connection between the solution error and the residual error and consider
a residual-based indicator that can be used in the POD-greedy procedure proposed at
line 9 to select training parameters. Given a parameter-dependent solution trajectory
Uy, we define the time-average residual:

J, max

me}:\fg,u (u,v) = E (t(j) — t(j_l)) mﬂf (ufﬁ,v) , Ywevy, (2.34)

j=1
where Y = I&lf. We give a first definition for the error indicator:

RAE (u,v)
hf _ avg, i ?
Au (U = sup —=2——.

2.35
AT (2.35)

Indicator (2.35) is expensive to evaluate since it relies on HF quadrature and it requires
the computation of the supremum over all elements of I’élf: following [Tad19], we
consider the hyper-reduced error indicator

@eq,r N
Ay(U) = sup TAVeHM AT (G,v)

, (2.36)
e\ {0} o]

where Uy is an M-dimensional empirical test space, while Rivg ;. is defined by replacing
fREf in (2.35) with a suitable sparse weighted residual of the form (2.27), defined over
the elements Iy, C {1,...,Ne}. Notice that the empirical quadrature employed for
the error indicator (2.36) may be in general different from the quadrature rule used to
evaluate (2.27) in order to solve the ROM.
Given the ROM solution Uy, the test space Uy should guarantee that

sup mg\fzg,u (GM? ?)) ~ sup mg\fg,u (alﬂ ’U)
O T Rt O M
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which implies that Yy should be an approximation of the space of Riesz elements
Mest := {2y : p € P} with

(&J\H, v) = ﬁg\fg,# (U, v), YoeXxdh (2.38)

On the other hand, the empirical quadrature rule should ensure that

REAT @thm) ~ R, @), YpEP, m=1,..., M, (2.39)

where 1, ...,%s is an orthonormal basis of Uy.
Several authors (e.g., [HO08]) have considered the time-discrete L?(0,Tt;Y’) resid-
ual indicator

T bl G 2

Aﬁf’2(u) = Z (t0) — ¢(=1)) ( sup W) . (2.40)
st vey\{0} [v]ly

We observe that we could apply the same ideas considered in section 2.3.2 to devise a
hyper-reduced counterpart of the residual indicator (2.40). However, we find that the
test space Yy and the empirical quadrature rule should be accurate for all parameters
and for all time steps: as a result, the resulting test space Yjs might be significantly
higher dimensional and the quadrature rule might be significantly less sparse, for the
desired accuracy. For this reason, in chapter 4, we investigate the effectivity of a time-
averaged error indicator extended from (2.36) to take into account vector state variables
(D > 1) and problems with internal variables.
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Chapter 3

The Thermo-Hydro-Mechanical
problem

In this chapter we extensively describe the THM system that is considered in this work.
In section 3.2 we introduce relevant notation and definitions and in section 3.3 we intro-
duce the geometrical configuration; in section 3.4 we present the equilibrium equations
and the constitutive laws together with the initial conditions and the description of all
the parameters of interest. In section 3.5 we describe the numerical discretization and
finally in section 3.5.1 the problem parametrization.

3.1 Physical assumptions

Porous materials are characterized by an internal structure and closed and open pores,
filled with one or more fluids. The geomaterial can be represented by soil, rock or
concrete, and the fluid by water, water vapour and dry air. The solid and fluid phases
interact between the constituents of the porous medium. Porous media theory has
been of interest of research for a considerable time (see, e.g., [De 96]). The model we
consider in this work is an adaptation of the one discussed in [Gra09a] and [Gra09b].
The fundamental hypothesis is that the porous medium is fully-saturated-in-liquid: this
means that we do not have to take into account heat convection, but only heat con-
duction in the physical description of the model. Furthermore, the solid is deformable,
resulting in a coupling of fluid, solid and thermal fields. The second assumption is
that the solid undergoes small displacements. We remark that in this work the porous
medium is seen at a macroscopic scale and thus the constituents are assumed to be
chemically non-reacting: this means that temperatures of all the constituents at a
point in the medium are equal; although, temperature is not supposed to be uni-
form throughout the medium. We resort to a Lagrangian formulation of the solid.
In this case, the computed stress and deformation

state are referred to the material configuration rather

than to the current position in space; information 5

about the straining and deformation of the mate-

rial are contained in the deformation gradient ten-

sor (which is presented in the mechanical equilibrium y

laws in (3.4)). We resort to an Eulerian formulation %

for the liquid: liquid-related variables are represented 'z

by functions depending on space variable and time.  poyre 3.1 geometric three-
The resulting mathematical model is of the form in- dimensional sketch.
troduced in (1.1); the radioactive waste repositories

are located at the bottom of the domain, as shown in the drawing 1.2 and in figure
3.1, which is equipped with spatial axes. The numerical discretization of THM system
throughout the thesis refers to a two-dimensional domain: we employ a plane strain
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simplification. The repository’s length along the z axis is considered exceedingly large
with respect to the other two dimensions along x and y; applied forces act in the z-y
plane and do not vary along the z direction (this is a typical situation for tunnels as
well as bars that are compressed along one of their lengths).

3.2 Fundamental definitions

We consider the spatial variable x in the Lipschitz domain Q ¢ R? with d = 2 and the
time variable ¢ in the time interval (0,7¢), where Tt is the final time.

We first introduce the state variables and the internal variables. The state variables,
denoted as U = [gT, Dw, T ]T, represent solid displacement, water pressure and temper-
ature and are reported in Table 1; the internal variables W = [py, ¢, hy, Q, M. va my| T
represent dependent physical quantities and are illustrated in Table 2, together with
the corresponding SI units.

SI unit description

u m solid displacement
pw Pa water pressure
T K temperature

TABLE 3.1: primary variables

SI unit label
pw kg -m™3 water density
¥ % Eulerian porosity
he J-Kg=! mass enthalpy of water
Q Pa non-convected heat
M, kg-m=2.5s7! mass flux

3

my kg-m™ mass input

TABLE 3.2: dependent variables

We denote the Cauchy stress tensor by g[Pa], and we define the volumetric deforma-
tion ey = tr(g) where ¢ is the strain tensor: ¢ = Viu = % (Vy + VgT) . We also provide
in Table 3.3 the characteristic parameters that we use for the non-dimensionalisation.

ST unit value

t s 3.15 - 107
H m 77.3

oo Pa 11.3- 10
po  kg-m™3 2450

T+ K 297.5
AT K 30

TABLE 3.3: characteristic constants

Due to the plane-strain assumption, we have that the components of the strain

e . €ox €
tensor € related to strain in direction z are equal to 0: we can write e = | “* Y| and
- - €zy Cyy
€xz = €yz = €5, = 0.
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3.3 Geometry configuration

A schematic representation of the domain is shown in Figure 3.2(a). The geological
repositories, modelled as boundary conditions, are depicted in red at the bottom of the
domain, in the case of two activated alveoli. In the vertical (y) direction, the domain is
split into three layers: a clay layer denoted as UA ("unité argilleuse"), a transition layer
UT ("unité de transition") and a silt-carbonate layer USC ("unité silto-carbonatée").
Layers UA, UT and USC are associated with different material properties, thus the
physical parameters in the THM system are expected to assume different values in the
domain in Figure 3.2(a): in table 3.4 their dimensional values are specified. The non-
dimensional widths of the layers UA, UT and USC are, respectively, 0.4127, 0.1979,
0.3894. In Figure 3.2(b) a finite element grid is shown and denoted as 7;: the number
of degrees of freedom for the first state component (solid displacement) is N" = 40430,
while for water pressure and temperature is NP = Nt = 9045.

0.8
'x 0.6

UT Y . .

UA T—> T O % 0z 04 06 08 1

(a) (b)

FIGURE 3.2: geometric configuration: (a) the non-dimensional domain,
(b): the mesh 7;. The size of each alveoulus is equal to lg = 3.09 [m],
while the distance between consecutive alveoli is equal to [ = 6.18 [m].

The grid is refined in the proximity of the alveoli to better capture the relevant
features of the solution.

3.4 Mathematical problem

3.4.1 Equilibrium equations

Local equilibrium of the thermo-dhynamics is assumed and macroscopic balance equa-
tions are considered to derive governing equations: the superscripts (-)™, (-),(-)* refer
to quantities associated with the mechanical, hydraulic and thermal behaviours, respec-
tively. Then, we present the constitutive laws that are considered, which link material
properties to displacement, pressure and temperature, and finally we present the bound-
ary conditions. To clarify the presentation, we report in Table 3.4 the parameters that
enter in the constitutive laws.

Mechanics We denote by F,, = —%QQ (where v = p‘;—og) the mechanical force with
g defined in Table 3.4 and we specify that n (resp. t) is the unitary outward normal
(resp. tangential) vector in the domain depicted in Figure 3.2(a). Linear elasticity is
assumed for the deformation process in porous media. The linear momentum balance
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equation can be written in terms of stress tensor as
g =d + 0,1, (3.1)

where ¢’ is the effective stress tensor of the porous medium and 1 is the identity tensor;
opl is the generalized stress. The decomposition in (3.1) is due to the fact that stresses
applied to a saturated porous medium are partly distributed to the solid skeleton and
partly to the pore fluid. The former stresses are responsible for skeletal (i.e. solid)
deformations: for this reason, they are called effective; the latter are associated with
the fluid flows, they are thus called generalized. The effective stress tensor is defined
as follows:

o =2p'e + Atr(e)1 — (2 + 3X)as AT1 (32)
=2u'Vsu+ AV -u — (2u+ 3\)a;AT) 1, '

where ag is the thermal expansion coefficient of the solid and AT = T — T,¢. Notice
that the stress g it is linked to the primary and internal variables by the linear law
(3.2). Lamé constants p/, \ satisfy

,  E
P =50+
Ev

A:(L+mu—2m’

and F and v are introduced in Table 3.4. The generalized stress tensor is given by

op = —bpy, (3.3)

known as Biot-Terzaghi relation; we notice from (3.3) that the solid is assumed to be
isotropic. We thus introduce the equilibrium of mechanical forces:

where I'y is depicted in Figure 3.2(a). The Neumann datum g is given by g =
—ey. To solve equation (3.4) we shall also define the homogenized density p = p® +
My, where p¥ is the initial homogenized density and m,, is the input mass, which is
introduced below: this definition exploits the fact that the porous medium’s density is
composed by two phases, liquid and solid. Using plane-strain assumption, stress tensor

. 011 012
can be written as g = ’ '

} where each component is given by relation (3.2).
= |oi2 o022

Hydraulics We state the mass conservation of water as follows

Oy + V-M, =0 inQ
(3.5a)

M, n=0 on 0f)
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Water mass is coupled to solid displacement through the following constitutive law:

my = pu(l +ev) o — pug’.

Volumetric change of pore pressure due to change in the stress field is represented by
0; my, in equation (3.5a). We assume the flow can be represented by Darcy law: thus
the muss flux M, is given by

My == (Vpw = pwly). (3.5b)
and t 1808.5
t .
_ 00_2 exp <_ 09 > (3.5¢)
0w ,0 H Tref +ATT
where Ky, is the intrinsic permeability of the porous medium and j1yy = 1w 0€xp ( %)
is the dynamic viscosity.
Heat transfer Finally we consider the energy balance:
{hwﬁtmw+8tQ+V~(thw—i—q)—MW~Fm:6 inQ 560
B 3.6a
(hwM,, + q) 1= geN on 99

where @ is the non-convective heat, ¢ is the thermal flux and is given by the Fick law
q=—AVT, (3.6b)

with A = diag(A1, A2). If we denote by I';, C 92 the region associated with the alveoli,
g¢,N is equal to

Ptncf

- meXP(—t/T)ﬂFr :C’alexp(—t/r)]lpr, (3.7)

gt,.N
where n. [%] is the density of the radioactive waste stock in each alveolus (equal to 45
anisters), P, = 31.4[W] is the unitary termic power at the initial time, Ig = 3.09 [m] is
the size of each alveolus, oo, H,t are introduced in Table 3.3 and 7 =
characteristic decay time.

t .
Tog(0.112) [s] is a

3.4.2 Constitutive laws

We introduce the evolution equation for the water density

dpyw dpw
Ww _ P 3, dT
Pw Ky s

where ay, = ayw(T') is the thermal expansion coefficient of water and it is reported in
table 3.4; Ky, is the bulk modulus of water. We state the evolution equation for the
eulerian porosity
dyp dpw
b— K’
where b and g have been introduced and K is the bulk modulus of the solid, that is
K= ﬁ We then introduce the evolution equation for enthalpy

= dey — 3asdT +

dpw

P

dhy = CdT + (8 — 3ayT)
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where C% is the heat capacity at constant pressure. Finally, we introduce the evolution
equation for the non-convective heat

0Q = (85 +3asKo T) dey — (ﬁg + 3aw,mT) dpy + COdT,

where K is the drained bulk modulus (which is the bulk modulus that is measured at
constant pore fluid pressure). Notice that 0Q) is an inexact differential (i.e., it depends
on the path). We resume all the constitutive relations in the following system:

dpw  dp
p"#w = KLW — 3andT, (3.8a)
d dpw
— _‘PSO = dev — 30sdT + I]?s : (3.8b)
p dpw
dhy = CLdT + (B — 3awT)—, (3.8¢)
6Q = (B + 30 Ko T) dev — (85 + 3awmT) dpy + CdT,  (3.84)
My = pu(l+ev) o — pug’. (3.8e)

Here, we have 55 =1 — 3awTret, ﬁé = 3as Ko Tref, ﬁg = 3w, m L yef-
The parameters in (3.8a)-(3.8¢) are defined in Table 3.4. We remind that layers UA,
UT, USC are depicted in Figure 3.2(a).

3.4.3 Initial conditions

To set the initial conditions, we consider the case of deactivated repositories: therefore,
we set thermal flux equal to zero and we set a constant temperature Ty = Trer in €,
where the reference temperature is defined in Table 3.3. We aim at finding the initial
values of the primary variables u and py that correspond to the equilibium solutions of
a preliminary problem: here, the Neumann boundary condition for the energy equation
is zero, that is, g x = 0, and temperature is costant and equal to the reference value
Tiet (in Table 3.3).

We then seek ug, pw,o such that the initial solution vector U, = [gg, Dw,0, TO]T satisfies
the equilibrium equations (3.4), (3.5a) and (3.6a) with thermal flux g, equal to 0 on
the domain boundary 9€2. Towards this end, we first observe that (3.8a) reduces to

dpw _ dpy

e Ku (39)

that brings to py = p—_oco €Xp (%W(pw — p_oo)>. If we assume that py = p—oo = pw,0,
we find py = p_oo; furthermore, by substituting these assumptions into the hydraulic
equilibrium equation we find

pw,()(mv y) = Pw,top T Pw,Og(l - y) (3'10)

where py top is a datum for water pressure that is defined at the top boundary of the
domain (0, 1) x{1}. Finally, we search for u, as the solution to the equilibrium equation
of mechanical forces:

/ 21/ Vsuy + Vv + )\(V-uo)(v-v)—bpw,ov-v—pOFm-vd:E:/ g, vz, (3.11)
Q ry °

for all v € X", such that v - n|po\ry = 0.
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SI unit description reference value  formula
g m-s—2 gravity acceleration 9.81
11.4-10° UA
E Pa Young’s modulus 12.3-10° UT
20 - 10° USC
v % Poisson’s ratio 0.3
w Pa Lamé parameter, @
A Pa Lamé parameter m
b % Biot coefficient 0.6
Qg K1 solid thermal expansion coefficient 1.28 1075
o K1 expansion coefficient 1.28-1075
Kw m?2 intrinsic permeability of porous medium  10—21
Lw MPa - s dynamic viscosity Hw = fw,0 exp(&Ts'E’)
Hw,0 MPa - s dynamic viscosity coefficient 2.1-10712
K Pa bulk modulus of the solid Ks = S(TE%)
Ky Pa bulk modulus of water 2.109
cy J-kg=!-K~! heat capacity at constant pressure 4180
Ko Pa drained bulk modulus Ko=(1-b)Ks
Oy K-t thermal expansion coefficient of water aw = 9.52-107° log(T —273) —2.19 - 104
Qw,m dilation coefficient
537 UA
Cs Jkg=!-K specific heat at constant stress 603 UT
640 USC
2450 UA
p° Kg-m™3 porous medium initial density 2450 UT
2500 USC
% Kg-m™3 initial water density 103
0.25 UA
@0 % initial Eulerian porosity 0.21UT
0.19 USC
h, m? .52 initial water enthalpy hY = w
o_ & o
Ps Kg-m™3 density ratio ps = %
c? Pa- K1 specific heat at constant deformation C? = (1 - )psCs + ppuCE — 9T Koa?
A thermic conductivity tensor A = diag(A1, A2)
1.5 UA
A1 Wm—1K~! thermic conductivity component 1.5 UT
1.3 USC
1 UA
A2 Wm—1K~! thermic conductivity component 1 uT
1.3 USC
S Pa-s~! volumetric heat sources

TABLE 3.4: parameters of the constitutive laws.

3.5 Numerical discretization

We resort to an implicit Euler time discretization scheme, with Jy.x = 100 uniform
time steps for the non-dimensional time interval (0,¢¢], with ¢ = 1; the superscript
()" refers to the new solution (at the current time step j, for j = 1, ..., Jmax), while
(+)~ refers to the solution at the previous time steps. We notice that we cannot use an
explicit time scheme since the solid mechanics equilibrium law (3.4) is steady: indeed,
a singular mass matrix would be associated with the coupled system (composed of the
equilibrium equations in section 3.4.1 and the constitutive laws in section 3.4.2). We
also observe that the adopted implicit scheme does not require limitations to the time
discretization step At to ensure numerical stability.

State variables are defined in the nodes of the mesh, while the internal variables are
defined in the quadrature points. We denote by X and ¥/ suitable Hilbert spaces in
Q for U and W. We denote by XM = Jhfn x xhfp » bt the high-fidelity space
associated with the state variable U = [QT,pW,T]T and W a suitable high-fidelity
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space for the internal variables W. From now on we omit the superscript hf from the
high-fidelity spaces. We aim at finding U € X’ and W € W such that

_ + )
= / IonV dx;
'y

mV_V) v+ 7+ (vat - p$£m) -Vipdr = 0;

/Q 1

1
At
/Q(’X;( )+ @ @) R )&
(=P (VP = puF) + ¢7) - VE

/@+§dx—/ nggda;;
\ a0 )

(3.12)

t

for all v € X" such that v - nfso\ry =0, P € XP, £ € X, where

Py — Py,
P = Py €XD <WW — 3o (TT — T)) ;
Ky

_ _ _ 1 _
et =b— (b—¢ )exp <(€$—6v)+3ao(T+—T ) —K(pvt—pw)>;
BE—30¢WT+

hi=h, + C2(TT-T7) + —
Pw

(p —py):

+OT (T —T7);

my = ph(L+ ) ot = ¢’

(3.13)
We remark that integrals in system (3.12)-(3.13) depend on internal variables at the
current times t¢) and at the previous times V=1, for j=1,..., Jmax- We consider ap =
3 Finite Element (FE) discretization for the displacement component, and a p =2 FE
discretization for both pressure and temperature. Indeed, as discussed in Ref. [Gra09b],
to prevent numerical instabilities, we firstly choose a continuous piecewise polynomial
of higher degree to approximate the displacement and a lower degree approximation
for pressure and temperature; this implementative choise is empirically proven not to
be strictly necessary, (in chapter 6 the same degree p = 2 is also used for all the state
variables and no instabilities appear in the solutions during the computational time
steps).
We equip the FE space X with the weighted inner product

2
1 1
u.u) = TZ QT3 (Pws Pi ) E1 () + " (T ) () (3.14)
=1

u P

where the coefficients A, A\p, A are the largest eigenvalues of the Gramian matrices C",
CP, C' associated to displacement, pressure and temperature, respectively. Similarly
o [TZ21], the inner product (3.14) is motivated by the need for properly taking into
account the contributions of displacement, pressure and temperature, which are charac-
terised by different magnitudes. Notice that all the variables are non-dimensionalized.

QT =Q + (/322 +3a, Ko %(T+ + T)) (€ —ev) - (65 + 3oc;né<ff+ + T)) (p

/ 20/ Veut 1 Vou + (AV-ut — 20/ +3N) asTT —bpl) Vv — (00 +mi) F, - vda
Q

Jr —_
w — Pw

)
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3.5.1 Parameterization

We consider a vector of four non-dimensional parameters: the Young’s modulus £ and
the Poisson’s ratio v in the region UA, the thermic factor 7 and the constant Cy in (3.7).
For all parameters, we define the non-dimensional parameter domain & by considering
variations of +15% with respect to the nominal values reported in Table 3.4 that are
non-dimensionalized; (we omit the the non-dimensionalizations of the state equations
and constitutive laws: non-dimensional state, internal variables and parameters can be
computed by using the characteristic constants in table 3.3).

3.6 Solution fields

In figure 3.3 the solutions to problem (3.12), (3.13) are depicted for p = 1 = [1.088 -
103,0.3,21.33,0.4558]7 that is the centroid of the parametric set #. The geometric
configuration corresponds to figure 3.2(b) (the number of repositories is @, = 2). For
completeness of results, the time evolution of dimensional pressure and temperature
is evaluated at different points in mesh 7; (cf. figure 3.2(b)) that correspond to three
points at * = Z = 0.46 (which is the center of a repository) and y; = 0.0, y2 = 0.2,
Yz = 1.0.

1 *
0.8
0.6 !
> s
0.4+
0.2+ °

0 -

0 0.5 1
x

(a) geometry and selected slice

T T T ——y=0.0
315 |-
gl | /
< 310} ¢
S )
s & 305 |
= 6f ey =001
——y =02 300
——y =10
| | | ‘ ‘ ‘ | | | | | |
0 20 40 60 &80 100 0 20 40 60 80 100
tly] tly]
(b) water pressure (c) temperature

FIGURE 3.4: Time evolution of (b): water pressure, (c): temperature
at three different points in a vertical slice (a).

Time evolution of water pressure and temperature is an interesting phenomenon
to be observed: as already described in chapter 1, the inclusion of radioactive storage
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FIGURE 3.3: Time gaps of dimensional solutions.
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at the bottom of the domain directly causes a thermal flow in the repository area
(compare figure 3.2(b) and equation (3.6a)), which leads to an increase in pressure and
temperature in time. The temperature is then expected to decrease until it returns to
the starting value over a very long period of time.

In figure 3.5 we depict the solutions slices at points s.t. 0 <z <1, y =y = 0.2 and
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at the final time step j = Jnax: these solutions are computed by solving the discretized
problem (3.12),(3.13) in mesh 7, with p = 3 FE polynomial order for displacement and
p = 2 order for pressure and temperature. In addition, solutions at the same spatial
points and at the same time step are also computed by using a coarser mesh, which we
denote 95 to distinguish it from J;. Mesh 5 is characterized by N" = 2076 degrees of
freedom for displacement and NP = N' = 1488 for water pressure and temperature,
and it is associated with p = 2 FE discretization for displacement component and p = 1
discretization for both pressure and temperature.
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F1GURE 3.5: Dimensional solutions at final time at points depicted in
figure 3.5(a).
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State variables associated with different space discretizations are coincident. In the
following, we refer to mesh 77 for numerical investigations.

3.7 Conclusions

In this chapter we presented the THM coupled problem in a geothermal porous medium:
we introduced in section 3.4 the mathematical formulation as well as in section 3.5
its FE discretization; in section 3.6 FE solutions are computed for fixed parametric
configuration i € % and the evolution of state variables (cf. table 3.1) and total
stress (cf. equation (3.1)) is depicted in space and time. In chapter 4, a monolithic
projection-based ROM is built for the THM problem: to do that, we apply (and extend
when required) the methods described for a general time-dependent parabolic PDE in
chapter 2.
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Chapter 4

A monolithic model reduction
method for the THM problem

In this chapter we develop a projection-based monolithic model order reduction tech-
nique for the THM system introduced in chapter 3. The proposed methodology is
an extension of the RB technique for parabolic problems introduced in chapter 2 to
problems with internal variables. The outline of this chapter is the following. First, in
section 4.1, we provide a survey on MOR. works on nonlinear problems in mechanics; in
section 4.2 we introduce the numerical discretization of the THM system, introduced
in chapter 3 in a compact form. In section 4.3, we illustrate the application of MOR
techniques (cf. chapter 2) to a general class of nonlinear problems with internal vari-
ables; the proposed methodology can be applied to a broad class of structural mechanics
problems with internal variables. To simplify the presentation, we first discuss the so-
lution reproduction problem and then we extend the approach to the parametric case;
finally, in section 4.4 we show numerical results for a two-dimensional THM system to
illustrate and validate the proposed methodology.

4.1 Relation with previous works

Our methodology is characterised by an offline/online splitting to reduce the marginal
cost, and relies on Galerkin projection to devise a ROM for the solution coefficients.
We rely on hyper-reduction (cfr. section 2.3.2) to speed up the assembly of the ROM
during the online stage, and we rely on adaptive sampling to reduce the offline training
costs. In this chapter we adopt a POD-Greedy technique (cf. section 2.2) for THM
systems; we emphasize that our method can be applied to a broad class of coupled
problems with internal variables. In section 4.3.2 we extend the time-average a posteri-
ort error indicator introduced in section 2.4 to problems with internal variables and we
compare the latter with a more standard discrete L?(0, T¢; X”) dual residual in terms of
computational and memory costs and effectivity. This is crucial for the efficiency of the
adaptive method. Second, we apply a greedy sampling (based on the proposed error
indicator) to effectively explore the parameter domain. Third, we introduce in this
framework a hyper-reduction technique based on an element-wise empirical quadrature
procedure, which generalizes the technique introduced in section 2.3.2. The key feature
of EQ is to recast the problem of hyper-reduction as a sparse representation problem
and then resort to state-of-the-art techniques in machine learning and signal processing
to estimate the solution to the resulting optimisation problem and ultimately determine
a sparse quadrature rule. Here, we rely on the approach employed in [TZ21], which
combines the methods in [FCA15; Yan19] and relies on non-negative least-squares to
estimate the solution to the sparse representation problem. As discussed in section 4.3
in chapter 4, the presence of internal variables requires several changes to the EQ ap-
proach in [TZ21]. Our approach relies on a different treatment of primary and internal
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variables compared to the works in [Far+14; ZAF17], as explained in section 4.3.2. In
section 4.3 we clarify to what extent the management of internal variables requires a
careful adaptation of the MOR technique illustrated in [TZ21] and we briefly compare
our treatment of internal variables with [Far+414; ZAF17].

We emphasise that several other hyper-reduction techniques have been proposed
in the literature including the empirical interpolation method (EIM [Bar+04]) and its
discrete variant [CS10b], the approach in [Ryc09], and Gappy-POD [Car+13; Wil06].
We also refer to [Cas+20; HCF17] for further empirical (or reduced) quadrature proce-
dures for problems in nonlinear mechanics. A thorough comparison of state-of-the-art
hyper-reduction techniques is beyond the scope of this work.

The POD-Greedy algorithm was explained in section 2.2: the approach combines
POD to compress temporal trajectories with a greedy search driven by an error indica-
tor to explore the parameter domain. Similarly to [Fic+18], we rely on a time-averaged
error indicator as the one introduced in section 2.4 to drive the greedy search; further-
more, we test two different compression strategies to update the POD basis at each
greedy iteration.

We further observe that the development of online-efficient adaptive ROMs for
problems of the form (1.1) is extremely limited in the literature. Relevant examples
include the works in [Ryc09; MRC13; LF17], which, however, do not consider adaptive
sampling. As regards the application of MOR to THM systems, we recall the recent
contributions by Larion et al. [Lar+20] and [Lar+22]: note, however, that the two cited
works deal with a linearized THM model without internal variables. For completeness,
we also refer to [FG20] and [Nas+22] for reduced basis applications to (thermo)-hydro-
mechanical problems; we notice that in [FG20] a linear elasticity problem is used for
the numerical investigations. The work in [Nas+22] makes some fundamental physical
simplifications and the constitutive laws introduced in section 3.4.2 are not consid-
ered in the hydro-mechanical system; furthermore, no hyper-reduction techniques are
employed.

4.2 Formulation

4.2.1 Notation

The theoretical setting is introduced at the beginning of section 1.2. We recall that D
is the number of state variables in the generalized formulation (1.1). Given U € X,
we denote by U € RY "D the corresponding matrix of coefficients such that (U);, =
(Q(x?ﬁ)é forj=1,...,N™and ¢ =1,..., D; notation U(:, £) refers to the ¢! column
of the matrix U. As in chapter 2, to simplify notation, we neglect hf index from
solution notation. Notice that in principle we should write U to indicate the finite
element vector corresponding to vector state variables U € I, but, for a matter of
simplicity in the notation, we prefer writing it as U.

For the THM problem described in chapter 3, the state solution vector U contains
the displacement u, the water pressure py, and the temperature T'; we thus have that
D =2+ d holds for the total number of state variables.

4.2.2 Finite element discretization

We denote by {U g)}j;“ix c XM the FE approximation of the state variables at all

Eth

times, that is, the /** column of Ug) is the approximation of the state variable at

time ¢tU). On the other hand, we denote by Wff) € RraNe:Del the tensor associated
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with the evaluation of the internal variables at time tU) in the quadrature points:
j i)/ hf,
(W}P)W - (Mﬁ(xq,kq))g, g=1,....;nq k=1,...,Ne, {=1,..., Dq.

Given ¢ € {1,..., D}, we extend the definition of Dirichlet nodes and boundary condi-
tions introduced for a generic PDE in equation (2.3) in the case D = 1: we denote by

1%, C {1,..., N™} the indices associated with Dirichlet boundary conditions (if any)

(J)

of the Kth state component, and we denote by ggj.-, € RI%l the vector that contains

the value of the /" state component at each D1r1chlet node at time tU).
The FE discretisation of the THM system (3.13) can be written in a compact fashion

as follows: for 7 =1,2,..., find UL), W(j) such that

hf j j—1 j i—1 hf,
Ry (UG, UG, Wi, Wi, V) =0, vV e Xt

(4.1)

(8,0t (B700), » (), (W), )

g=1,....,ng,k=1,...,Ne,d =1,...,Dg.

where X .= {V € XM . V(Iﬁir,é) =0,¢=1,...,D} is the test space for all state
equations. Note that (R/}jf and F 2f are the discrete counterparts of the operators G,
and &, in (1.1), for p € &.

Note that the constitutive laws are stated in the quadrature points of the mesh and
the internal fields should be computed in the quadrature points of the mesh. Dirichlet
boundary conditions are imposed via a lifting; Neumann boundary conditions are intro-
duced in the weak formulation associated to the first equation in system (4.1) via the
Greens formula. We refer to equations (3.12), (3.13) for the particular form of problem
(4.1) associated to the THM system of interest.

Remark 1. As discussed in section 3.5, to avoid instabilities, it might be necessary to
use polynomials of degree k for displacement and k — 1 for pressure and temperature:
as a result, we should introduce separate restriction operators (introduced in (2.2)) and
separate FE spaces for the different components of the state {U,(L }i: We choose to
not explicitly address this issue to simplify notation: we remark that the extension to
k-(k—1) discretisations is computationally tedious but methodologically straightforward.

The underlying problem in (4.1) is second-order in space and first-order in time.
At each time step, following [Gra09b], we solve (4.1) for U); @) using a Newton’s method
with line search; the method requires the computation of the Jacobian associated with
R and the solution to a coupled linear system of size N . D.

In view of the introduction of the MOR methodology, in particular the hyper-
reduction procedure, we write the residual R as the sum of local contributions: ex-
tension of expression (2.26) for the THM system reads

hf i —1 ] —1
R" (Um, Uy, Wi, i, V) —

1 i
Ne (4.2)
Z hf <EkU( 7) EkUg_l), (Wff)) s (W}(Lj_l))‘ E EkV> .
k=1 o o

As explained in section 2.3.2, this decomposition provides the foundation of our hyper-
reduction procedure.
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4.3 Methodology

We propose a time-marching Galerkin ROM based on linear approximations: we refer
to section 2.1.3 for an introduction to the reduced basis method. More precisely, we
consider approximations of the form (2.6) where the reduced solution is denoted as U Lj)
for each time index j =1,..., Jyax-

In presence of non-homogeneous Dirichlet conditions, it is convenient to consider affine

approximations of the form Q Lj) = H g(j) + Z &Ef), where H is a suitable lifting op-
erator (see, e.g., [TZ21]) and Z C Xj: since in this work we consider homogeneous
Dirichlet conditions, we do not address the treatment of non-homogeneous conditions.
We consider a single reduced basis Z for all state variables in {Q,(f)}fm
the inner product is discussed in section 3.5 (cf. Eq. (3.14)).

As explained in section 2.3 for a general unsteady PDE, the Galerkin ROM is ob-
tained by projecting (4.1) onto the reduced space Z: this leads to a nonlinear system
of N equations at each time step. To reduce assembly costs, it is important to avoid
integration over the whole integration domain. Towards this end, we define the in-
dices associated with the “sampled elements” Ioq C {1,..., N} and we define the EQ

residual:

; the choice of

e
RE (ng, Uy, Wi, Wi, V) -

TQ
Nad?

) L (W(j—1)> o E, VY

ELZN RLZ)

. . 4.3a
S it (m0p By, (w )
k’Equ
]T is a sparse vector of positive weights such that pzq =0 if
k ¢ Ioq. In conclusion, the Galerkin ROM reads as follows: for j =1,2,..., find (QEL]),
ﬁfj)) such that

eq _ [,ed eq
where p = [p1", ..., py.

®ea (TP, TY=H, W, Wi, v) =0, vV ez

u B
(\/7\\7/8‘7'))%“:5;%((Ezd’*ﬁl(j)) L (eop ) ("A"g_”)q,k.)’ (4:3)

g=1,...,nq,k €I, =1,...,Dq.

Note that the internal variables need to be computed only in the sampled elements.
Furthermore, computation of (4.3b) only requires the storage of the ROB in the sampled
elements, {Ex(, : n = 1,..., N,k € Iq}: provided that |Ioq| < N, this leads to
significant savings in terms of online assembly costs and also in terms of online memory
costs.

In the remainder of this section, the methodology introduced in chapter 2 is adopted
for the construction of the ROB Z (data compression), the empirical quadrature rule
p°Y (hyper-reduction) and also the error indicator. To simplify the presentation, in
section 4.3.1 we focus on the solution reproduction problem, while in section 4.3.2 we
discuss the extension to the parametric problem.

4.3.1 Solution reproduction problem

The solution reproduction problem refers to the task of reproducing the results ob-
tained for a fixed value of the parameter . It is of little practical interest; however,
it represents the first step towards the implementation of an effective ROM for the
parametric problem. Algorithm 4 summarises the procedure: during the offline stage,
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Algorithm 4 Solution reproduction problem: offline/online decomposition

Offline stage:
1: compute {Ul(ij)}jels’ Is C {1,..., Jmax};
2: construct the ROB Z;
3: construct the weights p®d.

Online stage:
4: compute {af{)}j:;* by solving the ROM (4.3).

we compute the HF solution to (4.1) for a given parameter and we store snapshots of
the state variables at select time steps Is C {1,..., Jmax}; then, we use this piece of
information to build a ROM for the state; then, during the online stage, we query the
ROM for the same value of the parameter considered in the offline stage. Note that
during the offline stage we store the state variables in a subset of the time steps and we
do not store internal variables: this choice is motivated by the fact that for practical
problems memory constraints might prevent the storage of all snapshots; in addition,
internal variables might not be computed explicitly by available HF codes.
Construction of the ROB Z at line 2 by POD is described in section 2.2.2; we
remark that the POD modes depend on the choice of the inner product in XM, that
is discussed in section 3.5 for the THM problem. As for the computation of empirical
quadrature weights at line 3, the algorithm to find the sparse weigths p®? is described in
section 2.3.2; in the following we specify its use in the occurrence of internal variables.

Hyper-reduction

Following expressions (2.23) and (2.28), we specify the algebraic form of the algebraic
reduced residuals associated with the HF and empirical quadrature rules:

(ﬁgf (o B,W’))n =R (Za, ZB, WS, W, (), n=1,...,N,
(ﬁ;;q (a;,@,W’))n =R (Za, ZB, Wi, W', ¢,), n=1,...,N,

where a, B € RV, W’ € RmaVe:Del and Wi =W (a, 3; W) is obtained by substitut-
ing in (4.1)3. We further introduce the Jacobians sz(-),.]zq(-) such that

0 ~
(eswn) o=y (R (1),
9 /-~
(T3 B, W),, = o (B3 (s 8.W))
for n,n’ = 1,...,N. We observe that the computation of the Jacobian involves the

derivatives with respect to the constitutive laws in F 2f.

Remark 2. The presence of internal variables complexifies the application of EQ pro-
cedures (cf. section 2.3.2). Indeed, the general problem formulation in Equation (4.1)
(and Equations (3.12)-(3.13) for the specific problem of interest) shows the dependence
of the residual on state and internal variables both at the current time and at the pre-
vious time step. Therefore, in order to compute the entries of C,b associated with

(2.31), we should prescribe the triplets {(a(j) (1) W(jfl))} : knowledge of
Jjels

train’ Xtrain train



44 Chapter 4. A monolithic model reduction method for the THM problem

the primary and internal variables at time j and j — 1 for j € Is is thus necessary to
construct residuals at each time step.

A first option, which was considered in Ref. [Far+1/], is to store state and internal
variables {Qﬁ{),gﬁ’l),wﬁ’”} at all select time steps j € I,. This choice might lead
to very large offline memory costs — which scale with (nquDcl + 2Nth) |Is| — and
might require modifications to the HF solver, but it does not require the solution to the
ROM with HF quadrature.

An alternative approach, which is considered in this work, is to use HF data to
build the ROB for the state variables, solve the ROM (4.3) with HF quadrature to

obtain {&l(ljf)yu,vf\\/'}(ljf?u}j, and then set aéi;m = &fjgu and ngm = Wl(l]f)u This choice
contributes to reduce offline memory costs and might also avoid modifications to the
HF solver; however, it increases offline computational costs. In the section dedicated
to numerical results, in particular in Table 4.1, we report computational costs of ROM
solves based on HF and empirical quadrature.

We emphasize that the other pieces of our approach — Galerkin projection, POD-
Greedy algorithm, time-averaged residual indicator — can cope with both strategies. The
decision should thus be based on the particular software architecture considered and on

the design constraints.

4.3.2 Parametric problem

In order to extend our methodology to parametric problems, we should address two
challenges. First, we should explore the parameter domain % in an efficient way;
second, we should devise a compression strategy to combine information from different
parameters.

We choose to adopt the adaptive strategy — the so called POD-Greedy method—
which is described in section 2.2.3 (cf. Algorithm 2). The POD-Greedy algorithm takes
as input a discretisation of & denoted as Eirain, a tolerance toljoop, for the outer greedy
loop, a tolerance tol,,q for the data compression step, and the maximum number of
greedy iterations Ncount,max — We here prescribe the termination condition based on
the error indicator; we refer to the pMOR literature for other termination conditions.

We observe that the high-fidelity snapshots computation at line 3 can be summa-
rized by the following building block:

(U} jex, | = FE-so1ve(u)

that represents the FE solver for the high-fidelity discretization in (4.1); it takes as input
the vector of parameters and returns the snapshot set associated with the sampling
times Ig C {1,..., Jmax} (without saving internal variables, as pointed out in remark 2).
Line 4, corresponding to a data compression step, can be rewritten in the following way,
in the occurence of internal variables:

[Z', X'] = data-compression (Z, A, {U/(f;)}jels, (), tolpod) :

it takes as input the current ROB and the POD eigenvalues A = [Aq,...,Ay]7, and
returns the updated ROB Z’ and the updated eigenvalues X’. Finally, we observe that
construction of the ROM comprises both the construction of the Galerkin ROM and
of the error indicator. In the remainder of this section, we discuss each element of the
procedure.

We remark that the presence of internal variables requires further modifications
of the ROM also in the implementation of an adaptive strategy. Ref. [Far+14] is an
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example of a POD setting: the training parameters are choosen a priori and for these
selected configurations the primary and the internal variables are stored; then, a POD
is performed over the primary snapshots. In the present work, the chosen adaptive
strategy requires the computation of error indicators. In mode detail, the computation
of the dual residual requires either the knowledge of internal and primary variables at
each computational time step, or the solution of a ROM.

Time-averaged error indicator

Once having defined trajectories U, = {U flj)}j‘:“fi" and W, = {ﬂ&j)}f;‘ix, for a given
parameter ;1 € P, time-averaged residual (2.34) can be extended as follows

ave,p n

Jma,x
Rhf ([UWWIMK) — Z (t(j)—t(j_l)) mﬁf (Qg)’gg—l)’ﬂg)’w(j—l)7z> . YVe xélf.
j=1

(4.4)
Error indicator in (2.35)(based on high-fidelity quadrature) now depends on both state
and internal trajectories:

R (U, W,V
A}ﬁf (Ups W) = sup avg’u( o Y, V)
vexpi\{o} 1]

(4.5)

In an analogous form, error indicator (2.36) based hyper-reduction can be written as
follows:

Revgn (U, Wy, V.
Ap(Up,Wy) = sup g { ‘;L w¥) 5 (4.6)
Ve \{o} IV

where Yy € X is an M-dimensional empirical test space, while Raug . is defined

by replacing (Rﬂf in (4.4) with a suitable sparse weighted residual of the form (4.3a),
defined over the elements Ioq, C {1,...,Nc}. In our implementation, we compute
the error indicator during the time iterations — as opposed to after having computed
the whole solution trajectory. Algorithm 5 provides the complete online solution and
residual indicator computations. We find that computation of A, requires to compute
the internal variables WA\/“ in the elements Ioq U Ieqr at each time iteration (cf. (4.3b)),
and it requires to store the trial ROB Z in {Dy : k € I¢q U Ieqr} and the test basis

Y = [y, ] in {Dy b € Tegy).

Algorithm 5 Online solution and residual computations

1: Initial state and internal variables; set ﬁzvg =0.
2: for j=1,..., Jmax do
3: Compute &Ef) by solving (4.3b).

4: Compute <\/7\\/'ff)) . for all k € Ieq, using (4.3b)a.

5: Assemble l?tff) € RM such that (ﬁl(f) ) " =
Ry <ﬁg), Qgil), Eﬁj), Eg_l), ¢m> form=1,..., M.

6: Update f{zvg = l?{zvg + (t0) — t(j_l))f{,(f).

7: end for ' N
return {&Ej)}j and A, = [|RL®||2.
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ROM construction

In order to devise an actionable ROM, we should discuss (i) the choice of the EQ rule
p°4, (ii) the choice of the test space Y and of the EQ rule p°®" in (4.6). In view of
the presentation of the computational procedure, we define the ROM solution with
HF quadrature ([D}/f, W/\\/Ef); we denote by C,, € RE"N:Ne the EQ matrix associated with
the manifold accuracy constraints in (2.31) for u € ®; we further define the vector
¢ =[D1],...,|Dn.|] associated with the constant function accuracy constraint. Given
the test reduced basis 91,...,9n, we define G}, € RM:Ne such that

avg,u

(GlLpy), = R (tugf,\wgf, %)7 VueP, m=1,..., M. (4.7)

We further define the unassembled average residual Rj,"®"™ € Rmp:Ne:Dea; we observe
that R;,"®"™ might be employed to build the FE residual and ultimately compute the
Riesz representers 12# in (2.38), and also, given Y, to compute G,

We focus on the construction of the ROM at the nc-th iteration of the POD
Greedy algorithm. We define =% = {ﬁ(j)}?;"f‘ = {p~O}e U {ﬂ(j)}?gi“’eq, where
p* M po(e) are the parameters sampled by the greedy algorithm and gV, . .. fi("train.ca)
are independent identically distributed samples from the uniform distribution over &.
Algorithm 6 summarises the computational procedure as implemented in our code: the
test space Y is built using POD as in Ref. [Tadl9], while the EQ weights p,, , are
obtained using the non-negative least-squares method.

Algorithm 6 Construction of the ROM
1. for 4 € = do
2: Solve the ROM with HF quadrature and compute C,, and Rj,"®"".
3: end for

C,z(l)

4: Assemble C = C € RE-Nmwom:Ne  and  set p°d =
ii(nrom)

7

c
1sqnonneg(C, CpM, toleq).

5: Compute the Riesz representers {@u}ueg* using (2.38).

6: Define the empirical test space Y = span{gm}%zl as [{gm}%zl] =
POD <{gu}u65*7 ('7 ')7 tozpod,res) .
G0
7. Assemble G = : € RMmomNe and  set ptt =
G,Ipl(nrom)
c

1sqnonneg(G, Gp", toley.,)-
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4.4 Numerical results

We measure performance of the ROM using the following discrete L2(0, Tt; XM) relative
error; (see also (2.8)).

Jix(t(z‘) _ t(J‘*”) lu -2, |
Eu _ j:lJ (4.8)
max ( ) N ( —1) ( ) ’
jz; (t J tV ) HQ“J H

for any pu € &. Similarly, we denote by E}}, Ej; and E}, the discrete relative L%(0, Ty; ch)
errors associated with the estimate of displacement, pressure and temperature, respec-
tively.

In all the numerical tests, for both the in-sample and out-of-sample predictions, we
consider a constant time increment At = 0.01 and a total number of 100 computa-
tional times; the time increments for solutions storage and for solution computation
are equal, i.e. Aty = At = 0.01.

4.4.1 Solution reproduction problem

We first present numerical results for a fixed configuration of parameters g € P to
validate the ROM described in section 4.3. We consider i equal to the centroid of .
Notice that the solution fields corresponding to the physical configuration associated
with parameter i are depicted in section 3.6. We perform data compression based on
the whole set of snapshots, i.e. |Is| = Jpax = 100.

Data compression: POD

In Figure 4.1 we compare performance of the global POD based on the weighted inner
product (+,-) (introduced in formula (3.14)) with the performance of the component-
wise POD. More precisely, we define Z such that

[Zv A] = POD <{Q§_Lj)}j€fs7 (‘7 ')7 tOZPOd) ) (4'9)

and we then extract reduced basis associated to the single state variables of interest,
that is, we extract the displacement, pressure and temperature components Z“, ZP,
AR

Then, we denote the "optimal" (in a discrete L? sense) spaces

207 X5 = PoD ({u}jer,, () Folpoa) (4.10)
(277, X0o2] = oD ({p }yex, (- s tolpoa ) : (4.11)
[ZT,opt’ AT,opt] — POD ({7}9)}],6157 (.7 ')Hl , tOlpod) , (4.12)

that are found through D¢y — 1 PODs over displacement, pressure and temperature.
In Figure 4.1(a) we show the behaviour of the POD eigenvalues in (4.9); in Figure
4.1(b), (c), (d) we compare the relative projection errors associated with Z" and Z™°P*,
ZP, ZP°Pt and Z' and Z'°P'. We observe that the projection errors are nearly the
same for all the three state variables: this observation suggests to consider a single
reduced space to approximate the solution field. For this reason, the predictive errors
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FIGURE 4.1: solution reproduction problem. (a): exponential decay

of POD eigenvalues. (b), (c¢), (d): projection errors computed through

(4.9) (in black) and (4.10)-(4.12)(in red) for increasing numbers of POD
modes.

are computed over the whole vector of solutions (rather than on the single solutions
components) by the weighted norm that is associated with the weighted inner product
n (3.14).

Hyper-reduction

In Figure 4.2(a) we show the performance of the Galerkin ROM with and without
hyper-reduction. We distinguish between the high-fidelity quadrature rule, abbreviated
as HFQ, and the empirical quadrature rule for several tolerances toleq. We also add as
a reference, the relative projection error. Figure 4.2(b) shows the percentage of selected
elements NQ x 100% for the same choices of the tolerance tole,. We observe that the
empirical quadrature procedure is able to significantly reduce the size of the mesh used
for online calculations without compromising accuracy. The plateau for N 2> 14 is due
to the tolerance of the Newton iterative solver.

In Figure 4.3, we show the selected grid elements for two choices of the EQ tolerance
value toleq and for N = 12. We observe that the sampled elements are distributed over
the whole domain with a slight prevalence of elements in the proximity of the alveoli.

We report in Table 4.1 the computational costs associated to the solution of system
(3.12)-(3.13) through the high-fidelity solver and the ROM with high-fidelity quadra-
ture and empirical quadrature, for the solution reproduction problem. We consider a
reduced space of size N = 12; we also set toleq = 10~'. The values in Table 4.1 are
the computational speedup, that is, speedup = % where HF cost is the computa-
tional time of solving the high-fidelity solver and ROM cost is the computational time

associated to the ROM (we specify in different rows if with HFQ or EQ). The speedup
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FIGURE 4.2: solution reproduction problem. (a): errors associated to

projection error (proj), Galerkin with high-fidelity quadrature (HFQ)

and Galerkin with empirical quadrature for several choices of tol,q with

respect to the ROM dimension N. (b): percentage of selected elements
for several toleg.
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FIGURE 4.3: solution reproduction problem. Reduced mesh for two
choices of the empirical quadrature tolerance.

associated to the ROM with high-fidelity quadrature is almost 2 and is more than 50
times lower than the speedup of the hyper-reduced ROM. For this model problem, the
cost associated with ROM with HFQ is comparable with the cost of the HF solver.
As discussed in Remark 2, the choice of solving a ROM with high-fidelity quadrature
significantly increases the offline computation costs.

4.4.2 Parametric problem

We present results for the parametric case. We denote by Ziain C P the training set
used to build the ROM and by ZEtest C P the test set used to assess performance. Both
sets consist of independent identically distributed samples of a uniform distribution in
P, With |Zgrain] = Ntrain = 50 and |[Egest| = ntest = 10. We also set tolpoq = 1077 in
(2.18) and in (2.20b) for data compression, and we set tolpodres = 107° in algorithm 6
for the construction of the empirical test space. We consider niraineq additional EQ
parameters for the construction of the ROM and the computation of the error indicator,
as described in section 4.3.2; we set Nrain,eq = -
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speedup
HF 1
ROM with HFQ 1.87

ROM with EQ 104.60

TABLE 4.1: solution reproduction problem: relative computational costs
of the ROM with high-fidelity quadrature and empirical quadrature.

We set the same EQ tolerance for both the construction of the trial and test spaces:
toleq = toleqr = 10712, The corresponding selected elements are denoted as Q and Q.
We set Iy C {1,..., Jmax} with |[I5] = 20. EQ rules are depicted using the tolerance
toleq = 10712 (cf . Algorithm 6).

Error estimation

In Figure 4.4 we compare the dual residual and several EQ errors for each parameter
i in the training set Zip., and for different dimensions of the reduced space that is
progressively updated during the execution of the POD-Greedy algorithm. In partic-
ular, we show results in two cases: the hierarchical POD-Greedy (H-POD) and the
hierarchical approximate POD-Greedy (denoted as HA-POD). Figures 4.4a and 4.4b
show for both H-POD and HA-POD to what extent the residual-based error indicator
defined in (4.6) is correlated with the relative error (4.8). We observe that for values
of the indicators that are larger than 1073, correlation is very high, while for smaller
values correlation is much weaker.
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(a) H-POD (b) HA-POD

FIGURE 4.4: parametric problem: correlation between the time-average
residual indicator (4.6) and true relative errors (4.8).

To provide a a concrete reference, in Figure 4.5 we investigate the correlation be-
tween the relative error (4.8) and the time-discrete L2(O,Tf;l’}’lf70) residual indicator
defined in (2.40): we observe that the indicator in (2.40) is significantly more accurate,
particularly for small values of the error. As stated in section 4.3, the residual indica-
tor (2.40) is considerably more expensive in terms of both memory and computational
costs.
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FIGURE 4.5: parametric problem: correlation between residual indicator
(2.40) and true relative errors 4.8.

POD-Greedy sampling

In Figures 4.6 and 4.7 we show the POD-Greedy algorithm convergence history, for
both the hierarchical and approximate hierarchical PODs. At each iteration of the al-
gorithm, until convergence, the error indicator A, is illustrated with respect to training
parameter indices Jiain = {1, ..., |Etrain|} . At each iteration the selected parameter p*
is marked in red, while the previously selected parameters are marked in green. We
also report the dimension of the updated reduced space and the number of sampled
elements.
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(c) Tteration it = 3; N = 35, @ = 155,(d) Iteration it = 4; N = 43, Q = 169,
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FIGURE 4.6: parametric problem: POD-Greedy algorithm convergence
history in the H-POD case.
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FIGURE 4.7: parametric problem: POD-Greedy algorithm convergence
history in the HA-POD case.

Prediction tests

In Figure 4.8, we assess out-of-sample performance of the proposed method. More
precisely, we show the behaviour of the maximum relative error (4.8) over the test set
max F, for both H-POD Greedy and HA-POD Greedy. To provide a relevant bench-

MEEtest

mark, we compare results with the H-POD Greedy and HA-POD Greedy algorithms
based on the exact errors (strong POD-Greedy). For this particular example, we ob-
serve that the proposed method is effective to generate accurate ROMs: in particular,
the Greedy procedures based on the time-averaged error indicator are comparable in
terms of performance with the corresponding strong POD-Greedy algorithms.

4.5 Conclusions

In this chapter we developed and numerically validated a Galerkin projection-based
model order reduction procedure for the THM system introduced in equation (1.1) and
fully described in chapter 3. We remark that this approach may be extended to other
problems of the form (1.1), to demonstrate its generality and its relevance for continuum
mechanics applications. We successfully applied the underlying ROM to the parametric
THM problem in a two-dimensional case. We proposed a time-averaged error indicator
to drive the offline Greedy sampling, and an empirical quadrature procedure to reduce
online costs.

The approach discussed in this chapter relies on the assumption that the compu-
tational domain is parameter-independent — monolithic MOR. Therefore, it cannot
handle parameter-induced topology changes: in particular, it cannot handle changes of
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FIGURE 4.8: parametric problem:out-of-sample performance of the
ROM parametric problem obtained using the POD-Greedy algorithm.
Comparison with strong POD Greedy.

the number @, of repositories (cf. figure 3.2). In the remainder of this thesis, we de-
velop a component-based extension of the present method to deal with these important
scenarios.
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Chapter 5

A one-shot overlapping Schwarz
method for component-based
model reduction: application to
nonlinear elasticity

In this chapter we develop a CB-pMOR formulation for nonlinear PDEs: in particu-
lar, we consider a nonlinear elasticity problem. This chapter is organised as follows:
in section 5.1 we introduce the domain-decomposition formulation in a simplified case
and we describe the link between a classical overlapping DD method and the proposed
method; in section 5.2 we present the formulation for general nonlinear PDEs in ar-
bitrary geometries and we introduce the model problem; in section 5.3 we discuss the
construction of local approximation spaces, hyper-reduction of the local models and of
the objective function; in section 5.5 we investigate performance of our method for a
nonlinear elasticity problem.

5.1 Omne-shot overlapping Schwarz method

5.1.1 The foundations of the method

We first introduce the formulation in the simplified case of two instantiated components
Q1,, depicted in figure 5.1. We consider a steady problem of the type

findu e X' : Gu(uy,v) =0 Yo e Y, (5.1)

with (or without) Dirichlet boundary conditions on a portion of the domain I'g;; C 9f.
If X' = H', the test space Y is set equal to H%dmo.

Q Qs ()

Iy || Iy

FIGURE 5.1: configuration considered for illustration in section 5.1 and
for the analysis of the linear coercive problem in section 5.4.

We start presenting the component-based formulation of a given PDE problem of the
form of (5.1) without any level of reduction. To simplify notation, we do not distinguish
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between archetype and instantiated components introduced in chapter 1, that is, we
only consider a given geometric configuration and local instantiated components to
form a global system {2 depicted in black in figure 5.1. In section 5.2, we present the
formulation in the general setting: there we distinguish between archetype components
(in which local ROBs and local ROMs are built) and instantiated components in which
we actually solve the PDE problem by coupling local ROMs.

We denote by X; C H'(;) a suitable Hilbert space in ;. We introduce the concept
of port spaces and bubble spaces for each instantiated component ¢ = 1,2. A port space
is the space of traces of a local solution on port (or interior boundaries), which are
introduced in chapter 1 and depicted in figure 1.7 for a given geometric configuration.
A bubble space is the space of functions of X that vanish at port boundaries. We depict
in Figure 5.2 a schematic sketch of the bubble and port nodes of a representative FE
mesh for the instantiated components considered in this simplified case.

(a) bubble and port in £, (b) bubble and port in Q2

FIGURE 5.2: Sketch of bubble and port nodes associated with (a):X7 o,
Fl and (b):xg,o, FQ.

This solution decomposition is important, as we explain in section 5.3, since it
enables the dimensionality reduction of local problems and it enables effective par-
allelization of the online solver. The bubble space X and the port space U; are
respectively defined as follows: X0 = {v € X : v|r, = 0} and U; = {v|p, : v € X},
fori=1,2.

Then, we introduce the overlapping Schwarz (OS) iterations as

k k k k-1
find ug bex Ql(ug ),v) =0 Yo e X, ug )|F1 = ug ),
{ u(lk) (5.2)

find ugk) e Xy : gQ(ng),'U) =0 Vv e Xy, ng)|p2 =9 e
uq

for kK = 1,2,.... Here, ugk) denotes the state estimate at the k-th iteration in the
i-th subdomain, while ¢, G2 are the variational forms associated with the PDE of
interest in 1, . The first method that was developed by Schwarz is characterized
by the condition ugk) = ugk) on I'y in (5.2): with this choice, the algorithm is named
multiplicative Schwarz or also Gauss-Seidel Schwarz method, to point out the natural
connection of this method with the classical Gauss-Seidel iterative method for solving
linear systems. More than a century later, starting in the mid 1980’s, the potential
of Schwarz’s idea for parallelizing numerical solvers for boundary value problems was
recognized: the algorithm that implements statement (5.2) can be generalized to many
subdomains and involves the solution of subproblems of smaller sizes. However, to
make it a parallel algorithm that is easily extensible to many subdomains, the boundary
condition uék) = ugk_l) has to be choosen in (5.3): this is the additive Schwarz method,
also referred to as Jacobi-Schwarz method.
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It can be proven that if the global problem (cf. (5.1)) is well-posed and the over-
lap region is non empty, the Schwarz method applied to problem of the form (5.1)
converges, at least for linear coercive problems. We refer to some books on the con-
vergence properties of the classical Schwarz method (both in the multiplicative and
additive variants): [QV99], [Smi97], [TWO04]. When the convergence of the algorithm
is guaranteed, the convergence rate increases if the measure of the overlapping region
|21 NQs] increases. The convergence of the OS iterations to a limit state (uf, u3) implies
that [|u] — u5/2(r,ur,) = 0. We thus propose to consider the formulation

ule;gl,iugel'g ||’LL1 — u2||L2(F1Up2) s.t. gl(uz,vz) =0 Vuy; € Iiyo, 1 =1,2. (5.3)

Formulation (5.3) is a constrained optimization statement that penalizes the jump at
the components’ interfaces I'; and I'g, subject to the approximate (in a sense to be
defined) satisfaction of the PDE in each instantiated component €y and Qs.
We note that a penalization on the port boundaries, rather that on the whole overlap
region, is considered in the formulation (5.3): we conjecture and empirically verify in
the numerical tests that the penalization over the ports is sufficient to ensure stability.
In the remainder we further comment on the choice of the formulation in view of the
introduction of hyper-reduction techniques.

Clearly, the pair (uj,u3) is a solution to (5.3); in section 5.4, we show that the
solution to (5.3) is unique and depends continuously on the data for linear coercive
problems. Note that for linear problems the solution to (5.3) can be computed directly
without the need for an iterative scheme: we thus refer to our approach as the one-shot
(0S) overlapping Schwarz (OS) method and we use the abbreviation 0S2!

In order to recast (5.3) into an unconstrained problem, we denote by u}, ub the port
solutions, that is the restrictions of u; and ue to the corresponding ports I'y and I'o;

Port solutions can be extended over the whole local domains by means of extension
operators E; : U; — X;.

For a differential equation that admits a unique solution, the knowledge of the so-
lution at the ports suffices to uniquely characterize the solution in €. Indeed, local,
distinct and well-defined boundary value problems would need to be solved: the diffi-
culty level of this task would only be related to the difficulty of solving the localized
problems. This consideration suggests the idea of representing bubble solutions as the
evaluation of a local map, which we call a port-to-bubble solution map, at the port
solution: the key idea is that each local port-to-bubble map F; : U; — X0, for i = 1,2,
is uniquely determined by the corresponding port solution. It follows that given a local
port solution w € U;, we can rewrite each local variational form as follows:

Qi(Fi(w) + Ei’LU,’Ui) =0 Vuv; € xi,o, (5.4)
Then, we obtain the unconstrained OS2 statement:

up@r{niﬁ)eu ful, ub) == ||F1(u}) + Equl — Fa(u)) — E2u5||%2(F1UF2)' (5.5)
1 1,Uy L2

The present derivation can be viewed as a static condensation of bubble degrees of
freedom and is similar in scope to the approach in [HKP13]. Following taxonomy from

the optimization literature, we might view our approach as black-boxr — as opposed to
all-at-once [HK10, section 1.1].

!More rigorously, we should consider the acronym OSOS or (0S)?; however, we opted for OS2 to
simplify the notation.
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5.1.2 Relation with previous works

The literature on CB-pMOR and reduced-order model/full-order model (ROM-FOM)
coupling is extremely vast: CB-pMOR strategies have been presented in [KOHI1;
HKP13; HCC21; IQR16; MC21; Peg+21] and also recently reviewed in [Buh-+20];
ROM/FOM coupling strategies have been proposed for a broad range of applications
including compressible flows [CDV11; LA03; Luc+01; Rif+21] incompressible flows
[BCI13; Ber+18; WST09], and structural mechanics [CDM15; Ker+13; RR14] — these
methods do not distinguish between archetype and instantiated components and do not
necessarily involve the training of a library of local ROMs. Recently, several authors
have proposed to couple iterative Schwarz DD strategies with local non-intrusive ROMs
based on neural network approximations [Che+21a; Li+19].

The OS2 statement presented in (5.3) shares several features with the minimiza-

tion formulation first proposed in [DH79] in the domain decomposition literature, for
coercive linear elliptic PDEs. We recognise some similarities also with [Cas+22] and
[BTM22], which are focused on the coupling of projection-based MOR models and high-
fidelity models in non-overlapping and overlapping partitions. Rather than [Cas+22]
and [BTM22], the present work is characterized by the introduction of static condensa-
tion and the use of archetype components for the definition of configuration-independent
ROBs.
The OS2 statement presented in (5.3) is also tightly linked to the method proposed
in [DB15] for the coupling of local and nonlocal diffusion models (see also [BR09]): as
in [DB15], we interpret the OS2 statement as a control problem; while in [DB15] the
controls are the nonlocal volume constraint and the local boundary condition, in this
work the controls are the local solutions at ports. We also observe that the authors of
[DB15] do not exploit the nonlinear least-square structure of the problem and rely on a
quasi-Newton scheme to approximate the solution. We show that the choice of using the
port solutions as control variables enables the definition of configuration-independent
archetype components and is thus key for CB-pMOR.

Our approach is related to the Galerkin-free approach proposed in [BTI09] and
further developed in [Ber+18]. The authors consider a HF model in the region of
interest and rely on a low-dimensional expansion for the far-field; instead of project-
ing the equations in the far-field onto a low-dimensional test space, they simply rely
on the objective function to compute the far-field solution coefficients (Galerkin-free).
Exploiting notation introduced in the previous section, we can state the methods in
[BTI09; Ber+18] as:

u1€1({1’1w112€2;2 Hu1 — UQHLQ(QIQQQ) S.t. gl(ul,vl) =0Vu € xl,(),

where X7 denotes the HF space in 21 and Z9 denotes the reduced-order space in 5.
The approach presented in this work is more general, more robust and also leads to
more efficient online calculations, at the price of a much more involved implementation.

Our approach is linked to the minimum residual formulation in [HCC21]: the au-
thors consider a minimization statement in which continuity of solution and fluxes is
enforced as a constraint in the formulation, while the global dual residual enters di-
rectly in the objective function. The imposition of continuity in the objective function
removes compatibility requirements at ports and allows the use of independent spaces in
each archetype component; in particular, the use of an overlapping partition allows us
to neither explicitly enforce continuity of the solution at ports nor to enforce continuity
of normal fluxes. For highly-nonlinear PDEs, we found that this feature remarkably
simplifies the implementation of our method and ultimately increases its flexibility.
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Finally, the OS2 approach can be interpreted as an alternative to the partition-of-
unity method (PUM, [BM97]) considered in [ST22]. Given local approximation spaces,
PUM relies on the introduction of a partition of unity to define a global approximation
space, and on Galerkin projection to devise the ROM for the deployed system. PUM
has strong theoretical guarantees both in terms of approximation and in terms of quasi-
optimality properties. Similarly to OS2, PUM requires efficient mesh interpolation to
achieve online efficiency. The major difference between OS2 and PUM is that PUM
relies on a global variational formulation based on a single model: on the other hand,
since in OS2 local models are independent of each other, OS2 can be used to couple
different models in different regions of the domain.

5.2 Formulation

5.2.1 Preliminary definitions

We use the superscript (+)? to indicate quantities and spaces defined for a given archetype
component; we further denote by £ a generic element of the library £ of archetype
components. We define the archetype components {Q3},c, C R?% we denote by F?’dlr
the open subset of 9€}} where we impose Dirichlet boundary conditions, and we de-
note by I'} the portion of 00} that lies inside the computational domain (“port”).
For each archetype component ¢ € L, we define the local discrete high-fidelity fi-
nite element space X' C [HS Fa,dir(Qi})]D where we recall that D denotes the num-
ber of state variables. Each z’n"echetype component is endowed with a bubble space
g ={v € X : vlrs = 0}, and a port space Uy = {v[r; : v € X'} C [HY2(T3)P.
We endow X} with the inner product (-, -); and the induced norm | - ||, = m and
we define N}' = dim (XJ).

To define port solutions over the whole local (archetype) domains and enable the
solution decomposition into bubble and port contributions, we adopt the continuous

extension operator Ej : U7 — X' such that

(Bjuw,v), =0 Yue Xy Euw

Py = w, Vw e Up; (5.6)

in this way E?y? € X'. We consider the standard H Uinner product, that is (w,v), =
fQ?Vw-Vy—i—m-ydx.

We define the vector of local parameters p, in the parameter region %, which
include geometric and material parameters that identify the physical model in any
instantiated component of type /.

5.2.2 Problem formulation

We define the variational form G7 : X7 x Xy X Py — R such that

Ny
Q?(w,v;uz)ZZ/ 1y (w, v; pug) doe +/ et (w, v pie) da (5.7)
k=1 YDtk

8D47k

where Ny is the number of mesh elements, {Df,k}]kvzl denote the elements of the FE
mesh for the archetype component €23 and the element and facet forms n?’e and n?’f
encode the dependence on the problem of interest: we provide their definition for the
problem considered in the numerical examples in (5.11). Furthermore, for any ¢ € [,
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we define the parametric mapping ®7 : Q} x %y — R¢ that describes the deformation
of the archetype component ¢ for the parameter value u, € %y.

A physical system with Ngq components is uniquely described by a function L :
{1,..., Ngqq} — L that associates to each instantiated component i € {1,..., Ngq} the
corresponding archetype component L; € L, and the set of Ngq labels {Li}z]»v:df C L,
and the set of parameters p := (p1,..., 1N, ) € P = ®Ndd &Pr,. Given p € P, we
define

(i) the mappings {@i}fv:df such that ®; = ®f (5 ;) for i = 1,..., Nqq;

(ii) the instantiated overlapping partition {€2; = @;(€2, )}fv 4, the global open domain

Q C R? such that Q = |J; Q;, the ports I'; = &;(I'¢ .) and the Dirichlet boundaries
rdir = @,(0™), for i = 1,..., Naa;

(iii) the deployed FE full, bubble, and port spaces X; = {v o ®; L.ve X}, Lo =
{vod; Lioye Iri-,o}7 and U; = {v|r, : v e X}, for i = 1,...,Ndd;

(iv) the extension operators E; : U; — JX; such that Ejw = Ef. (wod;) o <I>;1 for
iZl,...,Ndd;

(v) the deployed variational forms ¢; : X; X X0 — R such that

Gi(w,v) = G (wo @i, v 0Py ;). (5.8)

Given i = 1,..., Nqq, we further define the set of neighboring elements Neigh;, = {j :
QNQ; # 0,5 # i}, and the partition of I'; {I';; = I N Q; : j € Neigh;}. Note
that, exploiting the previous definitions, the condition x € I';; N I';; implies that
z € 9Q; N Q;: since ; is an open open sets, 9 N Q; = 0 and thus I'; ;N T;; = 0 for
any 4,5 =1,..., Nqq-

Given the archetype mesh 7,* = ({x? o s Tg) with nodes {xe ' jv 1, connectivity

matrix T, and elements {DM}QZ 1» we denote by u a generic element of Xy and we
denote by u € RPN¢ the corresponding FE vector associated with the Lagrangian basis
of 7,*, for all £ € L. Following [T721], we pursue a discretize-then-map treatment of
parameterized geometries: given the mesh 7%, we state the local variational problems

in the deformed mesh ®; (7%) = ({@ ( )} = 1;TL1)' In section 5.3.2, we discuss

the hyper-reduced formulation of the local problems. Note that if (7%, u) is associated
with the element u € X, then (®;(7,*), u) approximates uo ®~1.

We observe that the parametric mapping is supposed to be bijective in 27 and bi-
lipschitz. In this work, the deformation of archetype components (cf. figure 1.7) is
described by piecewise linear maps that retain the structured features of the archetype
components to the instantiated ones. A nonlinear mapping could be considered as well:
we observe that in that case i) a more computationally demanding mesh interpolation
would derive from unstructured instantiated grids; ii) in a discretize-then-map context,
the computation of variational operators in the instantiated meshes would not require
the computation of mapping derivatives.

5.2.3 Model problem

We illustrate the many elements of the formulation for the two-dimensional (plane
stress) nonlinear (neo-Hookean) elasticity problem considered in the numerical exper-
iments in section 5.5. The problem shares the same geometric configuration with the
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THM problem that we describe in chapter 3 and we solve in chapter 4 for a monolithic
configuration. We can consider the neo-Hookean study case as a preliminary model
problem for the study of CB-pMOR techniques; we extend the methodology to un-
steady coupled systems in chapter 6. Notice that in this chapter we consider a different
model from the elasticity law for the solid in the THM system (cf. the equilibrium of
mechanical forces in section 3.4.1). We remark that the numerical methods presented
in this chapter are as well applicable to different types of constituive laws, for example
to solid-mechanics models with time-dependency and plasticity.
We consider the constitutive law for the first Piola Kirchhoff stress tensor

P(u) = X (F(u) ~ F(w)™T) + Alog (det(Fw)) Fw) ™. (5.99)

Here, F(u) = 1 + Vu is the deformation gradient associated with the displacement wu,
A1, Ao are the Lamé constants given by

FEv E

Alzmy )\2:m7

(5.9b)

where E is the Young’s modulus, and v is the Poisson’s ratio. We consider the domain
Q = (0,1)? depicted in Figure 5.3; we set v = 0.3 and we consider £ = E}, in wy, for
k =1,2,3. We prescribe normal homogeneous Dirichlet conditions on the left and right
boundaries; homogeneous Dirichlet conditions on the bottom boundary I'yy,, and the
Neumann conditions:

0 0
P(g)n\rtop = Gyop [ g (1 — 1) } , Pwn|p, =g, =5 [ 1 ] ,oq=1,...,Q,
(5.9¢)
with s > 0.
1—wtop

ws ()

W2

Wi

I FIA a
1—wbtm
FIGURE 5.3: global system. I'top and I'y 1,..., Iy g, are associated with

the stress conditions; the regions {I'; 4}, are of equal size ¢, > 0, and the
distance between consecutive regions is constant and equal to ¢ > ¢,.
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The system of equations below summarizes the problem: we seek the solution w :
Q — R? to the system

—V-P(u)=0 inQ

u-n=0 on {0,1} x (0,1)
Plu)n =g, on I} (5.10)
P(u)n = Yiop O Ciop

( u=0 on 'y = (0,1) x {0} \ I}

where I', = UqQ:‘*1 I'y 4. Our goal is to estimate the solution to (5.10) for any choice of the
Young’s moduli (F1, Es, E3) associated with the regions wy, ws,ws in [25,30] x [10, 20,
any value of s € [0.4,1] in (5.9¢), and any Q, € {2,...,7}. Note that variations
of @), induce topological changes that prevent the application of standard monolithic
techniques.

We introduce the library of components Q2 and €, ; depicted in Figure 1.6; in Fig-
ure 5.4 we show examples of instantiated components and we identify the corresponding
ports. We denote by 6 > 0 the size of the overlap. The mapping ®%,, associated with
the internal component is a simple horizontal shift, while the mapping ®%, associ-
ated with the external component consists in a piecewise-linear map in the horizontal
direction and the identity map in the vertical direction. The internal component is
uniquely described by the vector of parameters pine = [E1, S, Tshitt] where xghiee denotes
the magnitude of the horizontal shift; the external component is described by the vec-
tor of parameters piext = [E1, Fa, B3, dext| With dexy = Qad — 6. We then introduce the
variational forms:

f
G (w, vs fing) = / . ni (W, v; ping) dz + /F ooy (W, U3 fing) de,

Dt : . (5.11a)
Gt (W, 03 prext) = [ Mg (W, V5 prext) dav + / N (W, U fext) da.
ext top

Explicit expressions of 77" and n?’f can be obtained by resorting to change-of-variable
formulas: given the mapping ®, we denote by Vo = V® TV the corresponding
“mapped” gradient and we define Vg o = %(ch + Vg) and i{b = 1+ Vg. Then,
we have (we omit dependence on the parameter to shorten notation)

M (W, 0) = N (w, v) = P(Fp(w)) : Vs ovdet(VO),
~ ~ (5.11b)
et (w,v) = v- (gr ° <I>) IV®tl2, 13k (w.v) =2 (ﬂtop o ©> |V ®t]2,

where t denotes the tangent vector to the surface.
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Fl,Ndd QNdd

Q) Q) j
Ll I'Ngq1

{

Fr,i Fnj Fr,l
(a) instantiated 'internal (b) instantiated 'internal' and ‘"external
components components

FIGURE 5.4: geometrical configuration. Examples of deployed compo-
nents. (a): 4,7 =1,...,Qa, (b): i =1, j = Nga = Qa + 1. The overlap
area is marked in yellow.

5.2.4 Hybridized statement
High-dimensional formulation

We generalize below the OS2 statement introduced in section 5.1. Given the set of
parameters ft = (f1,...,UNy) € P = ®Z\£f Py;, we propose the CB full-order model:

(2
find u = (u}f) ... ,yljl\fdd) e X = ®ZN:df X; to minimize

Naa

min %Z S =B,y S Gilugu) =0 Yo, € Xig, i = 1,..., Nua.
= i=1 jeNeigh,
(5.12)
Note that (5.12) reduces to (5.3) for the case of two overlapping components.
To derive the hybridized formulation, we define the port-to-bubble maps F; : U; —

X0 such that, given w € U;,
gi (FZ(M) + E;w, y) =0 Vove ILO. (5.13&)

Note that (5.13a) corresponds to the FE solution to a localized PDE problem with
datum w on I';. Then, we rewrite (5.12) as the unconstrained least-square problem:

ﬁnd @hf’p = (u?f7p7 cee 7glfl\ff:1§) = Uu:= ®£V:d{1 uz to minimize
Naa
1 )
el 2 Z Z i’ — Ejuf — Fi(ui)llz2r, ) (5.13b)
N i=1 jeNeigh,

Minimization problem (5.13b) reads as a nonlinear least-square problem; in the fol-
lowing we devise a low-dimensional reduced-order approximation of (5.13b) based on
Galerkin projection of the port-to-bubble maps.

Reduced-order formulation

For all ¢ € JL, we introduce the low-dimensional archetype bubble and port spaces
Z;’b C X, Zf;’p C Uy and the extended port spaces Wea’p ={E(:(C¢€ Z?’p} C Xy;
we denote by n and m the dimensions of the bubble and port spaces, respectively; for
simplicity, we assume that the dimension of the spaces is the same for all archetype
components. We also define the archetype ROBs Z?’b (R — Z?’b and w?’b :R™ —
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Wa’b Given the deployed system, we introduce the instantiated (or deployed) bubble
and port spaces ZP = {Co @' : (€ Zab} and WP = {Co®; ' : ¢ € WP} with ROBs

= [gbl,...,gb ] R — zsb and WP = [Pyl ] R = wf’, respectively.
Then we define the ansatz:

@i(aiagi) = Zba; +W?§z’, t=1,...,Ngq. (5.14)

We observe that @? = Z?@i should approximate the bubble field u|q, — E;i(u|r,), while
ur = E?Bz is an approximation of the (extended) port field E;(u|r;): we refer to @1-’, ay
as to the bubble and port estimates of the solution field in the i-th component.

To obtain the low-dimensional formulation, we introduce the local residuals® (cf.

(5.7), (5.8) and (5.11))
RV . R" x R™ 5 R" st (ﬁ?f (ai,,ﬁi)) =G <@Z~(ai,,6i) , gj) , (5.152)
; ,

fori=1,...,Naq, j =1,...,n, and the approximate port-to-bubble maps f?f :R™ —
R™ such that ﬁ?f (f?f (B;), 61-) = 0. Computation of the port-to-bubble maps {f?f}i
is expensive due to the need to integrate over the whole computational mesh. We
thus replace the residuals {RM}; with the empirical quadrature (EQ) approximations
{f{fq}i and we define the hyper-reduced port-to-bubble maps F; ' : R™ — R” such that

Ry (F;" (8,).8;) = 0. (5.15b)
We discuss in section 5.3.2 the hyper-reduction strategy employed to construct the
approximate residuals R °4: here, we observe that the gradient of the port-to-bubble
map can be obtained by dlﬂ’erenuatmg (5.15Db):
~ -1 ~
VE(8) = — (0 RSY) 0 R

)

(ei.8;) = (F;"(8:),8:) (8:15¢)
We remark that the existence and well-posedness of the port-to-bubble maps (5.15b) is
conditioned to the existence of solutions to the nonlinear systems of equations f{?f =0
and to the fact that 8aif{?f is non-singular at the optimum. It thus depends on the
particular problem of interest, and might also depend on the overlapping partition
considered and on the reduced-order approximation spaces.

We now focus on the objective function. We observe that

Ndd

5. X [ ln@ - @B

1=1 j&€Neigh; Lij

Ndd
- / Jis(2) - @y (@)I3 | do
jGNelgh Q)
1 Ndd 2 bnd
=3 ) > 4;(@i(7)) — u;(@i(2))|3 | /7" (T)dz
i=1 YTL, \ jeNeigh,:®; (7)€,

where JP = || det(V®;)V®; "nf |2 and n? is the outward normal to I'Y. Note that
in the last identity we used the Narson formula; furthermore, to shorten notation, we

omitted dependence of u;, u; on bubble and port coefficients (cf. (5.14)). We introduce

2The superscript " encodes the fact that the local residuals are computed using the HF mesh.
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NP
the HF quadrature rules {(:cgq, pﬁq) q:él on the archetype ports I'} for £ € .L'; then, we
have

Ndd Ndd
32 X les) e )i = 3> ok nlled)  (Gi6e)
i=1 j€Neigh,
where a = [a1,...,an,,] € RY with N := nNgq, B8 = 81, B8N, € RM with

M = mNdd, and
np (@af,)i o B)
n; (e, B) = | : (5.16b)
77? (éi(sz;);aaﬁ)

with

n (z;0,8) = S i e By) — Gyl ay, B3 | (@ (@), (5.16¢)

j€Neigh,;:x€Q;

for ¢ = 17'--7Ndd-

We notice that the reduced (and hyper-reduced) formulations of the objective func-
tion introduced in (5.16a) heavily rely on the formulation (5.3), which is based on a
penalization over the port boundaries. Such a formulation cannot be easily extended to
the case in which a penalization is done over the whole overlapping subdomain. This
consideration motivates the proposed formulation (5.3),