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RESUMO

Nesta tese os objetivos principais sao apresentar trés diferentes pesquisas que foram
desenvolvidas durante o curso de doutorado do Programa de P6s-Graduagao em Matematica
da Universidade Federal Fluminense (UFF), sob orientacao do professor Juan Bautista Limaco
Ferrel. O principal campo de estudo desta tese € a teoria de controle e a boa colocagao de
equacdes diferenciais parciais, onde apresentamos trés pesquisas sobre os seguintes temas:
controle insensivel; controlabilidade nula local; e existéncia e unicidade de solugéo forte.

Em resumo, os principais objetivos séo estabelecer:

i) A existéncia de controles insensitivos para o sistema de Ladyzhenskaya-Smagorinsky,

ye — V- (v + | Vyl3:)Dy) + (y - V)y+Vp=f+vxe in Q,

V.y=0 in  Q,
y=0 on X,
y(0) =4+ 77° in  Q,

1
onde Dy := i(Vy + VTy).

ii) A controlabilidade nula local dos modelos Ladyzhenskaya-Boussinesq N-dimensionais

completos
ye = V- (W(Vy)Dy) + (y- V)y + VP =vxe + vofey  in Q,
V.y=0 in - Q,
0 — V- w(Vy)VO)+y-VO =vox, +v(Vy)Dy : Vy in Q,
y(x,t) =0,0(x,t) =0 on X,
y(2,0) = y°(x), 0(x,0) = 0°(2) in Q,

onde

v(Vy) :=1vp+ 11 /Q \Vy|?dx

e
y— V- (0(Vy)Dy) + (y- V)y+ VP =vx, + nbey in Q,
V-y=0 in Q,
0y — V- (2(VOVO) +y -V =v9x, +(Vy)Dy : Vy in  Q,
y(x,t) =0,0(z,t) =0 on X,

[ y(2,0) =y°(2), O(,0) = 0°() inQ,

onde (V) == 1 + v1||Vs||%,, for 3 < p < 6. Em ambos os sistemas

(0,1) se N =2,
eEN =
(0,0,1) se N =3,

N
L (0y; Oy \ Oy
Dy : = g — J .
J Vy ij12<81‘i+al'j> ij



iii) A existéncia de solucao forte para a equagao de Navier-Stokes em dominio nao cilindrico

v —vAu+ (u-V)u=f—Vp in Q,

V-u=0 in @,
u=20 on i,
u(-,0) = up in Qo,

por meio do método penalizante.

Palavras-chave: equagdes diferenciais parciais, equagdes para fluidos viscosos incompressiveis,
teoria de controle, controlabilidade nula, controle insensibilizante, Ladyzhenskaya-Smagorinsky,
Ladyzhenskaya-Boussinesq, dominio ndo-cilindrico, sistema de Navier-Stokes, solugdes fortes,
método penalizante.



ABSTRACT

In this thesis the main objectives are to present three different researches that were developed
during the doctoral course of the Graduate Program in Mathematics at the Universidade Federal
Fluminense (UFF), under the guidance of professor Juan Bautista Limaco Ferrel. The main field
of study of this thesis is control theory and the well-posedness of partial differential equations,
where we present three research studies on the following topics: insensitive control; local null
controllability; and existence and uniqueness of strong solution.

In summary, the main objectives are to establish:

i) The existence of insensitive controls for the system of the Ladyzhenskaya-Smagorinsky

ye— V- (+nlVyl)Dy) + (y- V)y+Vp=f+oxe in Q,

V-y=0 in  Q,
y=0 on X,
y(0) =¢° +77° in Q,

1
where Dy := 5(Vy +VTy).

ii) The local null controllability of complete N-dimensional Ladyzhenskaya-Boussinesq models

ye — V- ((Vy)Dy) + (y - V)y + VP = vxw + vofley  in Q,
V-y=0 in  Q,
0, —V-w(Vy)Vl) +vy-VO0 =uvox, +v(Vy)Dy : Vy in Q,
y(x,t) =0,0(x,t) =0 on X,
y(@,0) =1°(x), 0(x,0) = °(x) in Q,
where
v(Vy) :=1vp+ 11 /Q \Vy|?dx
and
ye — V- ((Vy)Dy) + (y - V)y + VP = vxy, + ey in Q,
V-y=0 in  Q,
0 — V- (@w(VOVO) +y -V =vyx, +v(Vy)Dy : Vy in  Q,
y(x,t) =0,0(z,t) =0 on X,
y(z,0) =3 (x), 0(z,0) = 6°(x) in - Q,

where (V<) := vg + 11]|Vs]||2,, for 3 < p < 6. In both systems

(0,1) if N =2,
EN = .
(0,0,1) if N =3,

and

N
1 (Oy; | Oyi\ Ovi
Dy : = = J .
4 Vy Z 2 <81‘z + al'j> ij

,j=1



iii) The existence of strong solutions for the Navier-Stokes equations in non-cylindrical domain

v —vAu+ (u-V)u=f—Vp in Q,

V-u=0 in @,
u=20 on i,
u(-,0) = up in Qo,

by means the penalizing method.

Keywords: partial differential equations, equations for incompressible viscous fluids, control
theory, null controllability, insensitizing control, Ladyzhenskaya-Smagorinsky, Ladyzhenskaya-
Boussinesq, non-cylindrical domain, Navier-Stokes system, strong solutions, penalty method.
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Introduction

This thesis comprises results within the scope of control theory and the existence and uniqueness
of strong solutions for systems governed by partial differential equations (PDEs). Control theory is a
consolidated field of study in mathematical literature, engineering and related areas. It provides us with
tools to better understand, apply and manipulate mathematical equations described by (PDEs), or Ordinary
Differential Equations (ODEs), which model physical, chemical, biological and even economic behaviors.

In general, we can define a controllability problem as follows: Suppose a state system governed
by an PDE (or system of PDEs) that evolves in a time interval [0, T'], with certain initial and boundary
conditions. We can act on the system by means an appropriate control (the right side of the system) that is
taken from a set of admissible controls. Then, given a final state, we are interested in finding a control
such that the PDE solution corresponds to both the initial state at time ¢ = 0 and the final state at time
t="1T.

Of course, depending on the objective the concept of controllability can be more specific. We precisely
define certain commonly considered control problems. To establish the ideas, consider U, the set of
admissible controls, v € U,q the control, H a Banach space where the equation makes sense and denote
by ¥, = Yy (t) the system solution associated with the control v. Assuming boundary conditions for the
equation and that yg, yq € H are the states at t = 0 and ¢t = T, respectively. We will say that the system
is exactly controllable at the time T, if it is possible to find a control v, for any yg, yq € H, which "drive"

the equation from yg to y4 so that
Yo (T) = Ya-

Nonetheless, if we need to relax the previous condition, we can modify it to
y»(T) is close enough to y4

i.e.

HyU(T) — deH <e Ve>0.
When the previous condition is possible, we will say that the system is approximately controllable at the
time 7'. Thus, in the latter case, the objective is to find a control such that the solution of the system in 7’

is sufficiently close to the state y4 in a “small” neighborhood of H. On the other hand, we will say that

the system is null controllable at time T if for all yy € H there is a control v such that y,, satisfies

yv(T) =0.

13



Now, assuming gy € H, 7 € U,q and ¢ an associated trajectory, well defined in [0, 7']. We will say
that the system is exactly controllable for trajectories at time T, if for any yg € H it is possible to obtain

yo(T) = y(T).

The “best” among all the existing controls achieving the desired goal is frequently referred to as the
optimal control.

The search for a certain controllability will depend on the PDE, as well as its initial and boundary
conditions. There is a vast literature on this theory, we cite [LM67], [L1088], [Rus78]|, [E ZO035]], and for a
perspective from its origins to some of its many possible applications, see, for example, [ZFO03].

The concepts exposed above characterize the main ways of obtaining the existence of controls for
a given system. However, variations of these definitions are often necessary to achieve the objective
of controlling a system. For example, the notion of null controllability may be more restrictive in the
following sense: Given T' > 0, we will say that the system is locally null controllable at time T, if there
exists € > 0 such that for any yp € H with ||yp||z < €, it is possible to find a control v such that the

associated solution y,, satisfies
yu(T) = 0.

If it is possible to show the existence of a 7" > 0 large enough such that the previous condition to be valid,
then we say that the system is null controllable in large time.

We also have the concept of insensitive control which, as will be seen later, can be rewritten as a null
controllability problem. The formulation of this type of control derives from the concept of sentinel (which
comes from the French term sentinelles and can be translated as “observers”) used in studies of distributed
systems with incomplete data (systems described by EDPs) to "observe" the evolution of the system. This
was one of the important contributions made by Jacques-Louis Lions throughout the abstract and applied
theoretical development of control theory, see [Li1092] and [BF95]]. The general idea of insensitive control
can be expressed as follows: Let ¢ be a differentiable functional (called sentinel functional) defined on
the solution set to which g belongs, for a problem with incomplete initial data, let us say 73°. We say that

control v insensitizes ¢(y) if

9p(y(x,t;v,7))
or 7=0

= 0V 7" given in a suitable Hilbert or Banach space Y with [|7°||y =1, (1)

where z represents the spatial variable, ¢ the time variable, 7 an unknown small real number and &g(Ty) l7=0

denotes the derivative of ¢(y) with respect to 7 at 7 = 0. Hence, when ()) holds the functional ¢ is locally
insensitive to the perturbation 77°.

Among some of the possible applications for insensitizing controls, we have:
e Parabolic river and lake pollution problems where the initial conditions of the pollutants, or even the
boundary conditions, may be unknown or only partially known due to difficulties such as inaccessibility
in measuring contaminants, the purpose is to find a control (human action) suitable so that depollution can
be carried out even with the uncertainty of some data;
e Oceanographic and meteorological problems where there is a wide variety of possibilities regarding the
choice of the initial moment. Hence, the previous reasoning is also useful for this case.

In this thesis we address the Navier-Stokes and Ladyzhenskaya-Smagorinsky systems that govern,

under very general conditions, the flow of incompressible and viscous fluids, that is, in which the mass and
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volume of the fluid do not change even under pressure. Furthermore, we will also study a control problem
regarding a thermally conducting fluid obtained by combining a model proposed by Ladyzhenskaya with
a nonlinear Boussinesq-like equation, the complete Ladyzhenskaya-Boussinesq model. Hence, the thesis
is structured into three chapters plus a part dedicated to additional comments and open problems on the
three previous chapters that constitute a compilation of the research we developed during the doctorate.
The research themes are: insensitive control; local null controllability; and existence and uniqueness of
strong solution.

In the chapter first, deals with N-dimensional Ladyzhenskaya-Smagorinsky kind differential turbulence
model with partially known initial data. We are interested in the existence of insensitive controls with N —1
scalar controls in an arbitrary control domain for the local L? - norm of the solution of model, that will
be given by means of a functional. In other words, the goal is to find a control function v = (vy, .., vN),
having one vanishing component (e.g vy), such that some functional of the state is locally insensitive to
the perturbations of these initial data.

More precisely, we will deal with the following model of the Ladyzhenskaya-Smagorinsky kind,
which describes a model for the movement of incompressible viscous flows with incomplete data:

yr — V- (o +n|Vyll3.)Dy) + (¥ - V)y+ Vp = f +vxe in @,
V-y=0 in Q,
y=0 on X,
y(0) =¢° +77° in Q,

2

where y = y(z,t), p = p(x,t) represent the “average" velocity field and pressure of a turbulent fluid
whose particles in §2 are during the time interval (0,7"); v = (vj)1<j<n is a function which must be
viewed as a control acting on the system, f(z,t) = (fi(z,t))1<i<ny € L*(Q)" a given force, applied
externally; v and v are positive constants, where 1 represents the kinematic viscosity and v || VyHQLQ
the turbulent viscosity and Dy stands for the symmetrized gradient of y: Dy = %(Vy + VTy). Moreover,
y(0) is the time average velocity ¢ = 0 partially unknown.

In our context, the application of insensitizing controls is related to the study of fluids over an €2 region
contained, for instance, in the ocean where it is difficult to measure the initial velocity and therefore such
velocity is only partially known, see [FGOO3|| for insensitive controls for a linear quasi-geostrophic ocean
model. Therefore, we want to find a control located in an accessible region w C {2 so that it provides us
with information by means the functional about the fluid and this information is not influenced by lack of
knowledge of the initial data.

In [HLCI8], the local null controllability was studied for system (2)) by means N — 1 scalar controls
for an arbitrary control domain. In our case, within the scope of the insensitive control problem, we will
need to define weights with behaviors different from those considered in [HLC18]], which will allow us to
obtain estimates for the solution of a coupled linear system. Through these estimates we will be able to
overcome the difficulties imposed by the term V - ((vg + v1[|Vyl[32)Dy).

Notice that, the system (2)) is a particular case of

y—V-Ty,p)+ @ -V)y=f in Q,
V-y=0 in Q, (3)

etc.,

15



where f is an external force field, T(y,p) := —pI + (vo + v1|Dy|"~2) Dy is the stress tensor with r > 2

and
1/2

N 2
o 1 (9y; Oy
Dyl= > 5 (8331- * amj>

t,j=1

The first mathematical studies on this type of equations were introduced by O. Ladyzhenskaya in
the 1960s and can be found in [Lad66; Lad67; Lad68; [Lad69]]. Just as J.-L. Lions considered in his
relevant book [Lio69] the case in which Dy is replaced by Vy, that is, when the tensor stress is of the
form T (y, p) = —pI + (vo + v1|Vy|"~2)Vy and obtained important results of existence, uniqueness
and regularity of solutions. For some regularity properties for the solutions of (3), see for instance [[Vei07].

When N = r = 3 the model (3)) is the classical turbulence model approached by Smagorinsky in
[Sma63|].

For additional investigations within the scope of control theory on variations of the (3) model, we
recommend: [[Car+22[ in which analyzed the null controllability property when the stress tensor is the
same as that considered by J.-L. Lions, that is, dependent on the state gradient; E. Ferndndez - Cara
et al [FLM15]], where the existence of local null controls was guaranteed for the case in which stress
tensor is equal to —pI + (v + v1(||Dyl|32)) Dy) with v being a continuously differentiable function,
that is, 0 < 14 < C and |v{| < C. In this, the authors also provided a numerical approximation and
illustrated the behavior of the algorithm with examples. And, finally, Guerrero and Takahashi on [GT21]]
that considered ||curl(y)||%, instead of | Dy|"~% and demonstrated the controllability by trajectories. To
obtain this result, the authors needed to prove a Carleman estimate for the adjoint of a linear system
equipped with a nonlocal spatial term.

Next, we will cite some articles on insensitive controls present in the literature.

Considering the semilinear heat system with globally Lipschitz nonlinearities of class C' and w N O #
@, where w C € is the control set and @ C 2 is the observation set, Bodart and Fabre [BF95]] weakened
the definition of insensitizing controls and proved the existence of € - insensitizing controls, i.e. they
proved that, given ¢ > 0, there is a control v such that \a‘g—(f) |r=0 | < e. For the same problem, [Ter00]
extended the case by proving the existence of insensitive controls.

Still in the context of semilinear heat equations, [Ter97] and [BGP0O4a] proved the existence of
insensitive controls in unbounded domains and for superlinear nonlinearities with regular bounded
domains, respectively. For the case of the linear heat equation with disjoint regions of control and
observation, that is, with w N O = () the authors of [MOTO04]] gave an example for the existence of ¢ -
insensitizing controls.

Moreover, in [TerO0] it was proved also for the linear heat equation that when the control does not
act everywhere in {2 we cannot expect that the insensitivity holds for all initial data. Thus, here we will
assume that w N O # () and y° = 0 which are classic hypotheses in insensitization problems. Also for
the heat equation, [IZ09] performed a study on the possible conditions of the initial data that can be
insensitized, for this the authors removed the condition 4 = 0 when © C w and when O = ) and they
concluded that if this is not the case, negative results occur. Therefore, this is a delicate issue to address.

With regard to insensitizing controls for fluid equations, the first result was obtained in [PérO4f], Section
2.3, where the author established the existence of ¢ - insensitizing controls with one vanishing component,
that is, of the form (v1, ve, 0) for the three-dimensional Stokes system. Subsequently, also for the Stokes

system, [[Gue(O7a]] obtained the existence of insensitive controls both for the case in which the sentinel
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is given by the L?—norm of the state and the L?—norm of the curl of the state. For the Navier—Stokes
system we reference [[CG14]], which proves, extending the results of [Guel3], the existence of insensitive
controls having one vanishing component. We also indicate [[CP23]], which insensitized the rotational of

the solution using controls with one component fixed at zero.

For other studies of parabolic equations, see, for example, [[Gue07b]], [TK10], and [Liul2|. The first
article to establish the existence of insensitizing controls for the L?-norm of the gradient of solutions of
linear heat equations. The second paper found the existence of e-insensitizing controls for some parabolic
equations when the control region and the observability region do not intersect, and the third proved
the existence of insensitive controls in a Holder space, for a class of quasilinear parabolic equations
with homogeneous Dirichlet boundary conditions. In the latter, the author made use of fixed-point
techniques. We also mention [ST19], where the authors proved the existence of insensitizing controls for
the nonlinear Ginzburg-Landau equation considering a functional that depends on the gradient of the state.
We also mention [[CCC16], in which a nonlinear parabolic system modeling phase field phenomena is
considered. Such a system is formed from two coupled parabolic equations, where the first one describes
the temperature of the material and the second one describes a phase field function. In addition, we
mention [BGP04b], which presents the existence of insensitizing controls for a semilinear heat equation
in a bounded domain of RP (p > 1). Such semilinearity involves the state and gradient terms with

homogeneous Dirichlet boundary conditions.

For the Boussinesq system without any control used on the temperature equation, [[Carl7|] showed the
existence of the insensitizing controls such that the control acting on the fluid equation can be chosen to
have one vanishing component. Also about the Boussinesq system, but with controls act on both equations,
when the case is three-dimensional [[CGG15]] demonstrated the existence of insensitive controls with two
vanishing components, and for the two-dimensional case, the authors concluded that no control on the

velocity equation is required.

Concerning insensitive controls for hyperbolic equations, we cite [Dag06|] which provides a study on
insensitizing controls for the uni-dimensional wave equation. The author of this work involves two cases:
when the control acts in an interior region, and when it acts on the boundary. They conclude that, in both

cases, the e-insensitizing controllability holds when the control time is sufficiently large.

We now cite works that have been recently carried out in this area but that involve domain variations.
In [ELP22], a quadratic functional involving the solution of the linear heat equation with respect to domain
variations was insensitized. Boundary variations of the spatial domain on which the solution of the PDE is
defined at each time were considered, and three main issues were investigated: approximate insensitizing,
approximate insensitizing combined with an exact insensitizing for a finite-dimensional subspace, and
exact insensitizing, which were defined by the authors. In [LPS19], a semi-linear heat equation with
Dirichlet boundary conditions and globally Lipschitz nonlinearity was considered, posed on a bounded
domain of RV (IV € N*), assumed to be an unknown perturbation of a reference domain.

For existence of insensitizing controls for a fourth-order nonlinear parabolic equation, see [YL22]
and also [BV22]. In the second reference, it was addressed the existence of insensitizing controls was
considered for a nonlinear coupled system of fourth, and second-order parabolic equations known as the
stabilized Kuramoto-Sivashinsky model.

Finally, for a numerical proposal, [BHT19] addressed an insensitizing control problem in the discrete

setting of finite-differences. The authors proved the existence of a control that insensitizes the norm of the
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observed solution of a 1-D semi-discrete parabolic equation and dealt with the problem of computing
numerical approximations of insensitizing controls, featuring numerical illustrations, for the heat equation
by using the Hilbert Uniqueness Method (HUM).

The second chapter addresses about local null controllability and large time null controllability for the
complete Ladyzhenskaya-Boussinesq-type system with distributed controls supported in small sets. We
consider the term (v + v1||Vy||2,) Dy : Vy on the right side of the temperature equation (represented
by the variable #), the which makes the system more realistic, difficult to analyze and control. We
treat separately the cases in which p = 2 and in which 3 < p < 6. In these equations describing a
temperature-coupled differential turbulence model, we find local and nonlocal nonlinearities: the recurring
transport terms and a turbulent viscosity that depends on the global in space energy dissipated by the

mean flow. More specifically, we will study the null controllability for the nonlinear systems:

ye — V- (v(Vy)Dy) + (v V)y + VP =vxy, + vofen, V-y=0 in Q,

0, — V- w(Vy)VO) +y-V0 =vox, +v(Vy)Dy : Vy in Q, @

y(x,t) =0,0(z,t) =0 on X,

y(z,0) = y°(z), 0(z,0) = 0°(z) in
where

/() =+ [ (Ve )

and

ye — V- ((Vy)Dy) + (v V)y + VP = vxy, + voflen, V-y=0 in Q,

0, — V- (@w(VOVO) +y -V =vyx, +v(Vy)Dy : Vy in Q, ©)

y(x,t) =0,0(z,t) =0 on X,

y(2,0) =y°(x), O(z,0) = 0°(x) in Q,

where 7(V¢) 1= vy + 11||Vs]||2,, for 3 < p < 6, w x (0,T) is the control domain and v (force) and vy
(heat sources) represent the controls acting on the system, and in both systems

(0,1) if N =2,
eEN =
(0,0,1) if N = 3.

As we are assuming on the right side of the heat equation the quadratic term v(Vy)Dy : Vy or
v(Vy)Dy : Vy which is related to the work done by viscous forces, the systems and (6] can be
considered generalizations of the complete Boussinesq model (which corresponds to several conservation
laws involving momentum, mass and energy). Moreover, when vy = 1 and 4 = 0 in (@), E. Fernandez -
Cara et al [FLH] proved that such system is locally null controllable. And, when we remove the entire
term v(Vy) Dy : Vy from the right side of equation (@), Huaman et al [HLC18] demonstrated that such a
system is locally null controllable by means of N — 1 scalar controls for an arbitrary control domain.

We will now list some articles present in the literature that provided relevant controllability results for
the Boussinesq system.

On the exact local controllability of trajectories, [Gue06] dealt with the Boussinesq system with NV 41
distributed scalar controls supported in small sets. In this interesting work, firstly, a Carleman inequality
was proved for a linearized version of the Boussinesq system, which leads to its null controllability at
any time 7' > 0. And from this, the result of exact controllability of trajectories was obtained. Still this

context we mention, [Fer+06] in which the authors proved that through some hypotheses were imposed
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on the control domain and the trajectories, the Boussinesq system is locally exactly controllable by N — 1
scalar controls at a time 7" > 0 to the trajectories. Moreover, removing the geometric conditions imposed
by [Fer+06]], [Carl12] concludes the exact local controllability to a particular class of trajectories with
internal controls having two vanishing components. Also [FI98|] and [FI99] proved, respectively, the local
exact boundary controllability to the trajectories of the Boussinesq system with N 4 1 scalar controls
acting over the whole boundary in a bounded domain of RY (N = 2or 3) with C*°-boundary and the
local exact controllability to the same trajectories with IV 4- 1 scalar distributed controls, when the torus is

the domain.

Considering a generalized Boussinesq equation in a periodic domain, a unit circle in the plane, [[£Zha98|
showed that depending on the location of the control, whether in the entire domain or in a subdomain, and
the amplitude of the initial and terminal states it is possible conclude that the system is globally exactly

controllable.

The third chapter is dedicated to the existence and uniqueness of strong solutions for the Navier—
Stokes equations in non-cylindrical domains. To do this, we make a modification to the penalty method
introduced by Lions, J.-L. in 1964, using two penalty terms which have an elliptical relationship between
them instead of a single term used by Lions, J.-L., the decay of the solutions is also proven. This method

can also be used to obtain regular solutions in other nonlinear equations in non-cylindrical domains.

The use of the penalization method for evolution inequalities was systematically applied in [Lio68al,
[Lio68b| and [FS69| introduced studies for nonlinear evolution problems, specifically for the equation of

Navier-Stokes, in non-cylindrical open sets.

For other studies on the Navier-Stokes equation in non-cylindrical domains we cite: [Boc77|] in which
the author shows that under some smoothness conditions it is possible to obtain a Kiselev-Ladyzhenskaya
type estimate in a way that takes into account the non-cylindrical nature of the domain, we also refer
to [Sal88|] which shows that for dimension 3 some regularity and decay results of this equation known
in the cylindrical case are transferred in modified form to the non-cylindrical case. And, also for the
three-dimensional case, [NS98|] who added a boundary condition analogous to the Neumann condition,
thus calling his problem the second boundary problem for the Navier-Stokes system and showed the
existence of a strong solution for such. In [OY78], the authors demonstrate the existence of solutions
using subdifferential operator theory. Specifically, the problem is transformed into an abstract equation
in an appropriate Hilbert space, which can be considered a perturbed equation resulting from a time-
dependent subdifferential operator. The desired solutions are subsequently constructed using the successive
approximation method. An alternative method, see [MT82]], involves reducing the problem to a cylindrical
domain. This reduction is based on the assumption that a diffeomorphism exists, which maps the
given time-dependent domain to a cylindrical domain, and further assumes that the Jacobian of the
diffeomorphism depends solely on the time variable. In [Lim+05]] we can see the Navier-Stokes equation
as a particular case of a study that shows the existence of weak solutions of equations that represent
non-homogeneous viscous incompressible fluid flows in a non-cylindrical domain in R3. And finally,
[MLO97] studies the Navier-Stokes system using singular perturbation method that consists of transforming
a parabolic problem into a family of elliptic problems indexed by a parameter € > 0. The authors solve
the problems using elliptic methods to achieve the solution of the original parabolic problem as a limit as

€ tends to zero.

A study that used the method of penalizing the Dirichlet problem for the Navier-Stokes-Fourier system
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was carried out by [Bas+22]. In this, the authors demonstrated a strong convergence of penalized solutions
to the solution of the limit problem and presented numerical simulations illustrating the robustness and
efficiency of the proposed penalization strategy in solving the system in complex domains.

Other interesting works concerning the application of the penalization method in non-cylindrical
domains are, for example, [LCMO04] and [CLBOS]. In the first, the authors establish existence, uniqueness
and regularity of solutions for a mixed problem associated with equations of Benjamin-Bona-Mahony
type in a domain non-cylindrical with moving boundary. The technique consists of transforming the
non-cylindrical domain into a Q cylinder using a diffeomorphism and applying the Faedo-Galerkin
method on QQ to the transformed mixed problem. The uniqueness of the solutions is proved using the
energy method in the non-cylindrical domain. The second, presents results on the existence of global
solutions and an estimate of the decay rate of weak global solutions for energy associated with an initial
and boundary value problem for a beam evolution equation (which describes a small vertical flexion fully
clamped) with variable coefficients in non-cylindrical domains. Moreover, the penalty method (refer to
[AGY3]]) is employed for the numerical approximation of the Navier-Stokes problem in a non-cylindrical
domain.

For other subjects about the Navier-Stokes equation see for example: [Fer+04] and [Fer+06], where in
the first the authors deal with the exact local controllability of the Navier-Stokes system with distributed
controls supported in small sets. In it, they present a new Carleman inequality for the linearized Navier-
Stokes system, obtaining from this the null controllability and consequently a local result related to the
exact controllability for the trajectories of the Navier-Stokes system. And the second extends [Fer+04|

presenting some new results for the N-dimensional Navier-Stokes system.
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CHAPTER 1

Insensitizing controls with N-1
components for the N-Dimensional
Ladyzhenskaya-Smagorinsky system

1.1 Problem Formulation

Let Q € RY(IN = 2 or 3), be an open, connected, bounded non-empty set with boundary I' = 92 of
class C*°. We fix T' > 0 and denote by @ the cylinder Q = €2 x (0, 7T"), with side boundary ¥ = I" x (0, T").
Let us also consider w C € open (small) non-empty, which is the control set, x,, € C§°(€2) satisfies
0 < xw < 1linw, and x,, = 0 outside w. Let O C 2 be another open set called the observation set. The
symbol C will be used to design a generic positive constant.

We denote by (.,.) and ||.||, respectively, the inner product and norm in L? in 2 and Q.

Let us recall the definition of some vector spaces in the context of incompressible fluids:
V={ycH(QY:V.-y=0¢cQ}
and
H={ye L)Y :V-y=0inQ,y-n=0ondN},

where n is the normal vector exterior to 92, L?() is the space of square integrable functions and H¢ ()
is the closure of the space of test functions in §2, D(2), in H*() the standard Hilbert space.

Consider the following model of Ladyzhenskaya-Smagorinsky type, which describes a model for
the movement of incompressible viscous flows (see, [Lad67; Lad68; |Lad69] for more details), with

incomplete data:

ye — V- (vo+n|VylI>)Dy) + (y- V)y+Vp=f+ovxe, in Q,

V.y=0 i

Yy in @, (1)
y=0 on 3,
y(0) =y +775° in Q,

where y = y(z,t), p = p(x,t) represent the "average" velocity field and pressure of a turbulent fluid
whose particles in §2 are during the time interval (0,7"); v = (vj)1<j<n is a function which must be

viewed as a control acting on the system; f(z,t) = (fi(x,t))1<i<n € L*(Q)Y a given force, applied
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externally; 1 and vy are positive constants, where 1/ represents the kinematic viscosity and v || Vy||? the
turbulent viscosity and Dy stands for the symmetrized gradient of y: Dy = %(Vy + VTy). Moreover,
y(0) is the time average velocity ¢ = 0 partially unknown in the following sense:

° yo € V is known;

e 3° € V is unknown with H@OHH(%(Q)N = 1; and

e 7 is a small, unknown real number.

When 7 = 0, f and vx,, € L*(Q x (0,7))", the guarantee of exactly one strong (y, p) solution of
(TT) in the class y € L*(0,T; D(A))NC°([0,T}; V), y: € L*(0,T; H) was given by [FLM15; HLC18],
where D(A) = H2(Q)N N V.

Here, we are interested in proving the existence of controls that insensitize some functional that
depends on the velocity field y, following the literature [Li092], the usual sentinel functional is given by

the square of the norm in the L? local of state variable y, that is,
1 2
Jr(y) =3 ly|® dz dt. (1.2)
Ox(0,T)

Then, the insensitizing control problem is to find a control v such that the influence of the unknown initial

data 77/° is imperceptible to our functional, i.e.,

dJ-(y)
or 7=0

=0V g € Hy() such that [[§° g2y = 1. (1.3)

When (T.3) holds, the functional .J; is locally insensitive to the perturbation 77° and then we say that
the control v insensitizes J.

Of course, several options for the functional are possible, such as

KT(y) = %HVyH%Q(OX(O’T))NaIT(y) = %HV X y”%ﬁ(@X(O’T))N(N—l)/za (14)

and others. The choice of these functionals determines the degree of complexity of the cascade system,
some of which are open problems. This will be discussed in more detail later.

The main goal of this chapter is to obtain the existence of insensitizing controls for having one
vanishing component, that is, v; = 0 for any given i € {1, ..., N}. That said, we are interested in solving

the following theorem:

Theorem 1.1. Leti € {1,..., N} and m > 10 be a real number. Assume that w N O # () and y° = 0.
Then, there exist 6 > 0 and C' > 0, depending on w,Q), O, and T, such that for any f satisfying
1O f e TAQ)N, (€17 £)(0) € HYQN with [ fll oy + €9 fill oy +
||(€C/tmf)(0)||H&(Q)N < 6, there exists a control v € L*(w x (0,T))Y with v; = 0, which insensitizes

the functional (1.2)).

This chapter is organized as follows: In Section (1.2} we show that if the solution of the nonlinear
cascade system governed by one equation forward in time and one backwards verifies the null controlla-
bility in the variable retrograde in time, then the function v insensitizes the sentinel in the sense of
(I.3). In other words, we reduce the insensitivity problem for (I.1)) to a non-standard null controllability
problem. In Section we established null controllability for the linearization of the cascade system.
This is done using already known Carleman estimates. Furthermore, we prove some technical lemmas

that will allow us to obtain regularity estimates that will be of great importance for the null controllability
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of the cascaded nonlinear system. In Section[I.4] we established the existence of insensitive controls for
(L.T)), which will be done through the null controllability of the cascaded nonlinear system. To prove this
null controllability, we will reduce the controllability problem to an abstract equation, defining an operator
A through the equations and initial conditions of the mentioned cascade system. This abstract equation
satisfies the conditions of the Liusternik’s Inverse Mapping Theorem, and this is confirmed by the proof
of three lemmas. This guarantees the veracity of Theorem[I.1] Finally, we added Appendix [A.T|which

contains the well-posedness of the nonlinear cascade system studied throughout the study.

1.2 Reduction of the insensitizing problems

In order to prove the existence of insensitizing controls (Theorem[I.T]), as usual, we need to reduce
the insensibilizing problem to a nonstandard null controllability problem of a nonlinear cascade system.
As already indicated, the coupling term is linked to the derivative of the functional (I.2)) with respect to 7

at 7 = (. That being said, we note the following.

Remark 1.1. First, we will denote by (y., p;) the derivatives of the solution (y,p) of (1.I) with respect
to 7. Therefore, considering the functional (1.2), we have

oLw| _ ["
87‘)7_:0 —/O O/wyT dx dt (15)

where w is the solution of (I.1) when 7 = 0 and (y,, p;) satisfies

[’w(yT) + va = Oa \E Yr = 0 in Q7
yr =0 on X,
yr(0) =7° in Q,

where the operator L., is such that
Lo(yr) = yrt — (W0 + 1| Vw|?) Ay, — 201 (Vw, Vy,) Aw + (yr - V) w + (w- V)y,.
If (w, z,p°, q) solves the system

Li(w)+Vp'=f+ovxe, V-w=0 in Q,

Li(2)+Vqg=wxo, V-2=0 in Q, (16)
w=0, 2=0 on X, '
w(0) =0, 2(T)=0 in €,

where Ly is an operator such that L (w) = wy — V - ((vo + 11 ||Vw||?) Dw) + (w - V) w and L3, is the
adjoint operator of L., that is,

Li(z)=—=2—V-((vo+ ulHVwHQ)Dz) +2v1 ((Aw, 2) 2 Aw) + (2- V) w — (w- V) 2

then it is verified due to (1.5), (1.6), and the definition of the adjoint that

_ :/T/w%d””dt:/OT/(EIL(zHVq)dexdt
/ / w(tr) +Vpr) dxd”/ dﬂ?—ﬂ/ﬁozm)dm.
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Therefore, so that we have
z(0) = 0.

In summary, when choosing the functional J., condition (1.3) becomes equivalent to solving a non-

%‘T:O = 0, we need to solve the controllability problem (1.6) with

standard null controllability problem of a nonlinear coupled system governed by a forward in time
equation and another backwards.

The change in the sentinel functional would directly imply the second equation of the cascade system
(1.6). More specifically, considering the functional K, (resp. I.), given in (1.4), we would have the
substitution of wx o in (1.6) by V- (Vwxo) (resp. V x ((V X w)x0)), that is, the coupling terms depend
on the sentinel considered. Certainly, these new terms would offer us greater difficulties in obtaining
regularities and Carleman estimates, and are therefore still open problems. For more details on the
difficulties imposed by these functionals for the Stokes, parabolic, and Ginzburg—Landau equations, we

strongly recommend reading [|Gue07adl|], [GueO7b|, and [|ST19], respectively.
The formulation of the result presented in Remark[I.1]is given by the following proposition.

Proposition 1.1. Let y be the solution of (1.1)) with y° = 0. If the (w, z) of the solution of the nonlinear

cascade system:

[ wi =V - ((vo + ]| Vw|) Dw) + (w- V) w+ Vp® = f + vxw in Q,
V.-w=0 in Q,
—2 = V- ((vo + 1| Vw||*) Dz) + 211 ((Aw, 2) 12 Aw) + (2 - V) w wn
—(w-V)z+Vqg=wxo, V-2=0 in Q, '
w=0, 2=0 on 3,

L w(0) =0, 2(T) =0 in Q.

satisfies z(0) = 0 in ), then v insensitizes the functional J (defined by (1.2))). We have denoted

((z Vt szaw],i: 1,..., N,

and w the solution of (1.1) when T = 0.

Proof. To demonstrate this result it is sufficient to prove that v satisfies (I.3). Throughout the proof, we
will see that the equation of z corresponds to a formal adjoint of the equation governed by the derivative
of y with respect to 7 at 7 = 0. Let be any 7o € Hg(Q)" with H/y\OHH(%(Q)N = 1 and denote by y the
solution of equation (I.1)) associated to 7 and v. Then,

0% (y) — / /y — et
=0 T~>O

or
= hm/ /y—l—w
2 7—0

where w is the solution of ([1.1)) when 7 = 0, that is, (w, p") is the solution of

dac dt,

wy — V- ((vo + v1||Vw|]?) Dw) + (w - V)w + Vp® = f + vy,

V-w=0 in @, (1.8)
w=0 on 3,
w(0) =0 in Q,
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We want convergence
y — w in L2(Q)Y, asT — 0. (1.9)

Write h = y — w. Then, h satisfies
he =V - ((vo + 11| Vy[|*) Dy — (vo + 11| Vwl[?) Dw) + (y - V)y

(- — 0 _— h = i
(w-Vw+Vp—-Vp’=0, V-h=0 in Q, (1.10)

h=0 on X,

h(0) = 77° in Q,

Multiplying both sides of the first equation of (I.I0) by & and integrating it in {2, we obtain that

1d "
5T / |R2(t)| da: + wol |l + /VlHVyHQIVhde < ZURIR + CllAw| g 11l
Q Q

Multiplying by 2 and integrating from O to ¢,
t t
()2 + / voll B3 ds + 2 / / | Vy|2IVh2dz ds < [[1(0)]?
0 0
Q

t
e / | Aw|?| A %ds
0

By the Gronwall’s Lemma, we have

T T T 5
I+ [l 2 [ [l Dl Vhldeds < 21301y gl 1
Q

Consequently, |h|c o, 7)) — 0, as 7 — 0. This yields (1.9). Furthermore, we also obtain from (L.1T)
that

|h|L2(U,T;V) — 07 as T — 0. (112)
Next, we will see that

Y% sy in LXQ)Y, as 7 — 0. (1.13)

where y, is the derivative of the solution y with respect to 7 at 7 = 0, that is, since we have y solution of
(1.1) differentiating y with respect to 7 at 7 = 0 we obtain (y,, p;) solution of the system

Y-t — (1/0 + V1HVw||2) Ay, — 211 (Vw,Vy,) Aw + (yr - V)w
+(w-V)y, +Vp, =0, V-y,=0 in Q,

1.14
yr =0 on X, (119
yr(0) =7° in Q.
Yy —w .
To show (1.13), let h, = =—— — y,. Then, h, satisfies
T
¢ 2A _ 2A
hos — vy Ahs — vy | IVUIEAY - IVelPAw G2y, — 2 (Vw, Vi) Aw
(v Vy—(w-V)w Vp — Vp' .
W Vw—(w-V)y + ——— = Vp, =0 ,
+ - (Yr - V)w = (w-V)yr + —— p in Qs
V-h:=0 in - Q,
h=0 on 3,
( h-(0) =0 in
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Rephrasing the first equation of the system (I.13),

Ay—A 2 || Vw2
et — v Ay — 1| V]2 (yT“’ - Ayf) " (”W' Vel ) Ay.

N ((y —w)-V)y

-2 (Vw, Vy,;) Aw] i

Vp — Vp?
V=V

+ (w- V) (Y- V)w—(w-V)y,
(=)

T

- VpT

2 2

((y —w) -V)y

+(w-V)h: + :
T T

So, we can rewrite the system (I.15)) as follows:

;

2 _ 2
hei — (Vo + 11 ||Vw|[?) ARy — 1y (HVyH - | Vw| > Ay
J— ‘v
+2v1 (Vw, Vy;) Aw + <w'V)hT+W - V)w
— (1.16)
—I—M_VpT:O,V.hT:O n o
T
. on 3,
A in Q.

Multiplying (1.16]) by A, and integrating it in {2 we get

Ld

5 i eI+ 0l Vel [ | TP e do

Q
2 2
) / anw |V )AyhT—Q(Vw,VyT) Ath] dz.

T

Notice that,

141

2 2
Kuv@/u |Vl )Aym_ﬂw,vwmwm] da

T

SIS

4!

[(Vy, Vy) — (Vy, Vw) + (Vy, Vw) — (Vw, Vw)

T

} Ay dz

2(Vw, Vy,)Aw h, dz

—V

b\b\b -

4!

[(Vy + Vw,Vy — Vw)

T

(Vy,Vh:)Ay h; dx + 11 /(Vw, Vh:)Ay h; dx
Q
+ul/(Vh,VyT)AyhT dz + 2u1/(Vw,VyT)Ah hy dz
Q Q
— K1 + Ko + K3 + Ku.

"
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By the Holder’s and Young’s inequality, for any € > 0

K1 <[ Vy[ [IVh|| /IAythdw < unl[Vyll[[Vhe[ [ Ayl |
Q

Vo
< ?HVhT||2+C€HhT||2;
o
Ky < ||Vl [Vh | | Ayl [|h-]| < ?HVhTHQ + Ce|lh|1%;

Vo
Kz < nil[VRHIVy- [ 1Ayl Ihell < ZIVyel* VA + Celhr 1

Also,
Ky =21 /(Vw, Vyr)Ah hy de = =21, /(Vw, Vyr) VA Vh; dz
Q Q
< 2u|[Vw[ [Vy: [ VA [Vh-|

Yo
< ?”VhTHQ + CGHVyTHQHVhHZ
Therefore, from (I.17) we have

2 2
Vl/(Hvy” [Vuw]] )AyhT—Q(Vwavy‘r) Aw h, dz

T

0] Vo
< 32|V |2 + (24 Co) Vgl [ VA2 + Cellhr

Thus,
3 el I Thel? + [ Pl {Te 2 do
Q
<32|Vhe | + (22 + C) [ Vyr | [ VI + Cellr |2
Taking, € = 6,
5 el + k2 + [Vl (TR P e < (% 4 C) [9url? ORI

Q
+C|h |,

So, multiplying the previous inequality by 2 and integrating from O to ¢,
¢ t
RO / Vol VA |2 ds + 201 / /u1||w||2|vm\2 da ds
0 0
Q

Vo ¢ 2 2 ! 2
§2<E+C> IV IV IP ds + C | gl ds.

Since y, € C(0,T;V) (see Appendix [A.1]), we can make use of Gronwall’s Lemma and (T.12)) to deduce
that

t t
||h7-(t)||2—i—/0 VOHVh‘r”2d5+2V1/O /V1|]Vw||2|VhT|2dmds
Q

T
<C </ |\h|2v> o C 50, as T — 0.
0
and consequently we have the convergence
h; — 0 in C(0,7;H), as 7 — 0.
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Then, (I.13)) holds.
Combining (1.9) and (T.13)), we find that

0J-(y) - hm/ / y+w
-0 2 T—0

or
On the other hand, multiplying the first equation of (1.14) by z, integrating it in () and using integration

—w T
dxdt:/ /wdexdt. (1.18)
0
@]

by parts, one obtains that
//Q[ —z = V- ((vo + 1| Vw|*)Dz) + 2v1 ((Aw, z) Aw) + (2 - Vw — (w - V)2
+Vaqlyr dzdt = (y-(0),2(0)) — (y-(T), 2(T)) -

Hence, since every term in brackets is equal to wxo and z(7") = 0 we obtain

/ /wyT dx dt = / 0)dz ¥V 3" € Ho(Q)NWithH:UOHHé(Q)N =1. (1.19)

By (L.I8)) and (T.19), it follows that

0J: . . .
) =0 if and only if z(0) = 0in (2.
or 7=0
Therefore, v insensitizes the functional J;, and the proof of Proposition|l.1|is complete. O

Remark 1.2. Notice that it is natural to think of the turbulence model (1.7), since (1.19)) is obtained from
the solution by transposition of (I.14). Indeed, a solution by transposition of (1.14) is a unique function

y, € L2(Q)N satisfying
// yrhdrdt = /@02(0) dz, Vh e LX(Q)Y
Q Q

where, for each'h € L?(Q)Y, the associated solution (z, q) satisfies the corresponding adjoint system

Li(z)+Vg=h, V-2=0 in Q,
z=0 on X,
2(T)=0 in €,

in which w is the solution of (1.8)) and
Li(z)=-2—-V-((vo+ 1/1]|Vw||2)Dz) +2v1 ((Aw, 2) 2 Aw) + (2- V) w — (w- V) 2

Therefore, considering in particular h = wyo we acquire the system (1.7)).

1.3 Preliminary results

Carleman Estimates

We will list here some global estimates of Carleman. To establish these inequalities, let us introduce
some weight functions. Let wp be a non-empty open subset of RY such that wy € wN O, and 1 € C(Q)
such that

V| > 0inQ\wp, 1>0inQ, and 7 =0 ond.
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The existence of such a functions 7 is given in [FI96]. Also, let £ € C*°([0,T"]) be a positive function in
(0,T) satisfying

Lt) =t, Vtel0,T/4], t)y=T—t, Vte[3T/4,T],
0t) <T/2), vtelo,T].
Then, for all A > 1 and m > 10, we consider the following weight functions:
e2Mnllee _ gAn(z) e (@)
afr,t) = O ;o &lxt) = wom
a*(t) = max oz, t), & (t) = min&(z, t), (1.20)
z€Q e
&(t) = min oz, t), £(t) = max &(x,1).
z€Q €

Let us to introduce a Carleman estimate for the Stokes coupled system:

—pr — 1A+ VT =¢"+9Yx0, V-¢=0 in Q,

Y — A +Ve=g', V-9y=0 in @ (1.21)
0=0, =0 on X,
@(T) _ O, w(o) —_ wO in Q,

where ¢ € L2(Q)V, ¢' € L?(0,T;V), and ¢° € H. The following proposition gives us the desired
inequality.

Proposition 1.2. Assume that w N O # (). Then, there exists a constant Xy, such that for any X > g,
there exists a constant C > 0 depending only on \,Q),w, and { such that for any i € {1,..., N}, any

g° € L2(Q)N, any g' € L*(0,T;V), and any )° € H, the solution (p,) of (1.21)) satisfies
g4 // ef7sa*(€*)4|(p‘2dxdt+85 // 6745&*(§*)5‘¢‘2dxdt

Q Q
<C|s // e_ssa_sa*§9|go|2dfvdt—|— // e_sa*(|91‘2 + \Vgl|2)dx dt (1.22)
Q Q
N
+813 Z 673safsa*£13|(pj‘2dxdt ’

I=LI37 4 (0,1)

for every s > C.

In order to obtain Proposition[I.2] the authors in [CG14]] divide the proof into three parts. First, they
estimate a general Carleman inequality for the Stokes system with local terms only in A(.);, j # . In the
second part, they deduce a Calerman estimate for the ¢ in (I.21)). And finally, in the third part, estimate a
Carleman for ¢ to then obtain (I.22).

Null controllability of the linear system

Here we will comment on the already known null controllability of the linear system
Lw)+Vp?=f+ovx,, V-w=0 in Q,
Lz)+Vg=f'+wxo, V-2=0 in Q,
w=0, 2=0 on X
w(0) =0, 2(T) =0 in Q,

(1.23)
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with f° and f! in appropriate weighted function spaces, £L(w) = w; — vpAw, and L*(2) = —z — 1pAz,
which is the adjoint operator of £. Therefore, we want to find a control v with v; = 0, for some given
i € {1,..., N}, such that the associated solution of (1.23)) satisfies z(0) = 0.

For that purpose, we need a Calerman inequality with weight functions not vanishing in ¢ = T". We

introduce the following weight functions:

e2Mnlles — eAn(z) e (@)
B*(t) = max B(z,t), v*(t) = miny(z, 1),
e €N
B(t) = min f(,1), () = maxy(z,1),
e e

where

; (t), 0<t<T)/2,
[€llos, T/2<t<T.

So, we have the following lemma.

Lemma 1.1. Leti € {1,..., N} and let s and X be like in Proposition Then, there exists a constant
C > 0 (depending on s and \) such that every solution (¢, ) of (L.21)) satisfies

[ onopades [[[ et 6ylopas

Q Q
<C eI @ P + [ [ e (Ig' P + V') da dt
(1.24)
Q Q
N ~
+ ) e 3878 (3)13) ) 2 d dt

j:17j7éiw>< (0,T)

For proof of the previous Lemma, see Lemma 4.1 in [CG14].

Now, we introduce an appropriate weighted functional space that allows us to obtain a null controlla-
bility result for system (1.23). Consider the following space, for N = 2or3 andi € {1,--- ,N}:

Biy = {(w,p",2,q,0) : /55125 (59020 € LAQ)N, /37 € (0,73 H-H(@)Y),
o3/28B+1/2s3* @)—13/2va e L2(Q)N, v; =0, 2(T) =0,
e"/48%w e L2(0,T; H2(Q)N) N L>®(0,T; V),
el/298" () 722my € L2(0,T; H2(Q)N) N L>®(0, T3 V),
P’ q € L*(0,T; H(Y)), [ pdz = [, qdz = Oa.e., for fO = L(w) + Vp® — vy,
fl=Lr(2) + Vg —wxo, €72 ()20 € LX(Q)N, e¥F (v*) 52 f1 € L*(Q)M},
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which is a Banach space with the norm.

w,8%, 2,0y, 5= (11e3/25017255° (3)=9 2|2,
+ H€1/25,8

R (N
2320 a1y + €222 ) T ux 13 oon
+ H€7/4sﬁ wHL2 OIS (@) + “67/4sﬁ*w||200(0,T;V)

_~_Hel/256*(,},*)7272/m 1/23,8*( ) 2— 2/mZH2

ZHLQ (0,T;H2(Q)N) +He (0,T;V)

* %\ — * *\ — 1/2
11T/ () 2 POl g+ 1635 ()2 200 )
Therefore, the following result is obtained.
Proposition 1.3. Assume the hypothesis of Lemmall. 1 and
67/2$ﬁ* (7*)—2]00 c LQ(Q)N and 258" (7*)—5/2]01 e L2(Q)N

Then, we can find a control v such that the associated solution (w,po, z,q) to (1.23) satisfies
(w,p°, 2,q,v) € EY. In particular, v; = 0 and z(0) = 0.

The proof of Proposition[I.3|can be found in Proposition 4.3 of [CG14].

Additional estimates for the States Solutions

This subsection will be devoted to the proof of technical lemmas that will contain weighted energy
estimates that will be needed, in Section [I.4] More precisely, we will show in this subsection that not only
the state-control (w, p°, z, ¢, v) founded for equation (T.23)) in Proposition belong to weighted L?
spaces, but also w, Vw, Aw, Vws, Awy, wy, v, and Av belong to such spaces. Furthermore, throughout
this subsection we will consider ¢7/25%" (v*)=2 f9 € L2(Q)" and 238" (y*)~%/2f1 € L2(Q)N

In order to simplify the notation, we fix A and s and we set

{ po = 67/256* (7*)_ /5\ 258" (7*)_5/27
prL = e3/25ﬁ+1/25,8*( ) 9/2 pa = e3/258+1/2s8* @)—13/2'

This guarantees that po < C'p; < Cpg. That said, we have the following lemma.

Lemma 1.2. Let us define ps = e3/255+1/258" (3)=15/2 qud p, = ¢3/255+1/258" (3)=17/2. We have

sup /p§|wl2d$ +//p§\Vw|2d:Edt < CKo(f° Y, (1.25)
(0,71
Q Q
and
[ s+ 18wPydzat + sup ( / pirw|2d:c> < CKo(f0, 1), (1.26)
Q
o) (0,17
where

//,00|f0 2dxdt+// 21 Y2 d dt.
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Proof. Let A : D(A) — H be the Stokes operator, and consider for each n > 1, v,(t,.), fO(¢,.) and
y2(.) as, respectively, the projections of v(t,.), f°(¢,.), and y°(.) on the first n eigenfunctions, which we
will denote by A, and we will talk about in more detail in the Appendix [A.T] We define y,, as the solution
corresponding to the approximate finite-dimensional Stokes system. For simplicity, during the proof of
this lemma we will omit the subscript n, and we confirm that the constants C' that will appear next are
independent of n.

Multiplying p%w as a test function on the first line of the system , doing some integrations by
parts, it follows that

1d
2dt /P§|w\2d:c +Vo/p§|vw2d$ - /P%UWdiUﬂL/pg,fowd:r
) N v Q (1.27)
1 d )
+ dt(Pg)‘w’ dz.
Q

Since, p3 < Cp2 < Cp1 < Cpo, then

/pngd:vSC’ /p%]v\z dw—l—/p?wﬁdm ) (1.28)
w w Q
and
/pgfowdazSC /p3|f0\2dx+/p%]w|2dx . (1.29)
Q Q Q
d
Also, of |- (p3)| < Cpf,
d
/dt(p;;)]w\gdx < c/p1|w\2dx (130)
Q

Applying (1.28), (1.29) and (1.30) in (1.27), integrating in time together with an inequality that can be
obtained in the proof of Proposition[I.3] gives us that

//p1|w|2dxdt + // p3lof? dz dt < CKo(f°, f1),

wx(0,T)

we can conclude (I.25).
Now, multiplying p3(w: — vgAw) as a test function on the first line of the system (1.23)). Hence, we
get

d
/pi (‘wt‘2+V0’Aw|2) dm—}—y()& /pi|vw‘2d$ = /PZU (wy — voAw) dx
“ Q p (1.31)
+/p4f0 (wy — vy Aw) dx—l—uo/d p2)|Vwl|? de.
Q Q

d
For any € > 0, using the fact that py < C\pg, ps < Cpg and \£(pi)\ < Cp3 follows that

1
/piv (wr — vpAw) dx < C 6/p%]v|2d:c+e/pi(|wt|2+|Aw\2)da: , (1.32)

w w Q
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1
/pifo (wy — vpAw) dx < C e/pglfo\Q dx+e/pi(\wt\2+\Aw2) dr |, (1.33)
Q Q Q

/i(piﬂVw\de < C’/p§|Vw\2da:. (1.34)
Q Q

Thus, for e sufficiently small the terms that have w in (1.32)) and (1.33) are absorbed by the left side of
(I.31). Moreover, from (1.34) and (T.25), integrating in time the third term on the right hand side of (I.31)
is bounded by C'Ko(f, f1). Hence, we can conclude in Galerkin approximates with w,, instead of
the actual solution w. So, by default arguments, when n — oo, we get that (I.26)) is valid for w. O

The next result will provide us with a regularity for the control v. This regularity will be fundamental
to obtain more estimates with other weight functions, which we will define later, so that we can show the

existence of insensitive controls for equation (L.
Lemma 1.3. p5 = ¢3/255+1/255° (3)~19/2, then
psv € L*(0,T; [H?(w) N Hy(w)]V) N C([0,T]; V), (psv)s € L*(w x (0,T))",

with the estimate

T
u//hmwmﬁ+wmAmﬂ¢uh+Egn%vmmzCde%fH.
0 w ’

Proof. Note that, considering only the Stokes system

Lw)+Vp" =f'+vxe, V-w=0 in Q,
w =20 on X, (1.35)

=0 on X, (1.36)

Following the ideas of Proposition [I.3]together with those contained in [Car+22] (see, Lemma 2.4), we

can define
w = p *(L*o + V), in Q
v = —pQ_QQDij, J 75 i, v; =0 in Q, (1.37)
W = py 2, in Q.
Thus, note that,
L(ps) = L(H2P/25 (5)719/2 730007 ()1
— ,C*(e_3/255_1/25'8* (3)7/2()0)
d (1.38)

_ —3(6*3/255*1/255*(ﬁ)7/2)<p+e3/233+1/255*(§)*11/2w
t
*6_3/28’8_1/255*(ﬁ)7/2V7T.
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In order to apply a regularity result to Stokes systems, we will study each term of this inequality. Since,
d
dt

—m

(—3/255 1/256" (5 )7/2> < Ce(—3/2s,§—1/2sﬁ*)(_g<t) ) B(t)=T/2m

+ C e(=3/2B-1/258") Ty iy A (1.39)
< 06(73/%,@71/235*)g(t)—9/2m—1

and known that e(~3/255-1/258") l~(7t)79/2m71 — 0,as ¢t — 0T and is bounded as t — T, we can
deduce p
—3/2sB—1/2sB* 7/2) < C
4 e <
and as consequence we obtain
d

—3/25B—1/2s8* (27\7/2 2/ M\N
— (e (3)772) ¢ € Q)

Moreover,
o3/28B+1/28" (?)_11/2 < C £3/25B+1/258* @)—9/2 —Cp

and therefore ¢3/255+1/2s8" (3)=11/2, ¢ [2(Q)N
The weight of the last term is limited, i.e.
’6—3/283—1/255* (3)7/2| <C.
Therefore, defining u = ps@ = €3/250+1/255" (3)=19/2 75 and 7¥ = ¢~3/256-1/255" (3)7/2r. By (I38),

we have (u, ) as the solution of the Stokes system

Lu)+VT=F V-u=0 in Q,

u=20 on X,
u(T) =0, in Q.
where ~
Fo— _ Z ( —3/2sB— 1/255*( )7/2> 804_63/236—&—1/256* ﬁ)—n/zw c L2(Q)N.

Hence, from the standard regularity for solutions of Stokes systems, we can infer from the definitions of u

and v the stated regularity for psv = —uy,,. O
By the two previous lemmas, the subsequent lemma is feasible.

Lemma 1.4. Let us set ps = €/*%"(3)=21/2. Supposing psf € L*(Q)N, we have the following

estimates:
sup /pgwt2d:c +//p§\th\2dxdtSClCl(fO,fl). (1.40)
[0,7]
Q Q
Moreover, if (p6 f°)(0) € HA ()Y,
J[ At + 13w Ptz e+ sy [ AT suPyis| < ot s
1] e
where
a7 57) = Kol 1 //p5\ft P dt
and

Ka(f%, £1) = K12, 1) + o6 f*) (0) 17 -
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Proof. We establish the current estimates by proceeding in the same structure as the proof of Lemma [I.2}

Let us differentiate the first line of the system (1.23)) with respect to time, and use p2w; as a test function:

1d
s | [Auwitds) vw [Eveld = [Ruwdss [ 210w
Q Q w w (1.42)
R
Q
Since,
d o 2
2 (P3)| < Cpi ps < Cpa < Cpa,
then
/pgvtwtdx <C / 1p2v]2 + | (p5v)e]?) dx—i—/pi\wt\zdx , (1.43)
w w Q
/péf?wtdxgc /pglf?\Qd:H/pi!wt!Qd:r (1.44)
Q Q Q
and J
[ @ <o / 2 . (145)
Q

From Lemma|I.2)and Lemma([I.3]
T
[ o azar s [ [ ozl dede < Kas”. £
0
Q w

d
Furthermore, note that, as | 7 (ps)| < Cpo, then

L (0s%) = Lps) O+ psf? € (@)Y

and consequently ps f° € C’O([O, T1; L2(Q)N) (see, Chapter 5, Section 9 in [Eval0]). Therefore, by first
line of the system (I.23)) and Lemma [I.3]it is simple to get the estimate

RO 2y < Co2O) (I790) 2y + 1000 Bagyv )

< C (SUP ||p5f0||%2(Q)N + sup HPBU‘K/)

[0,1] (0,17 (1.46)
< <||P5f0”L2(Q vt H (P5f0)” 2N T ﬁ)ujl% HPSUH%)
< CKi(f° ).

Thus, using (T.43)), (I.44) and (T.43) in (T.42)), and integrating in time, it follows by (I.46) that
sup /p§|wt|2d$ +//p§|th|2dq:dt < C(p%(O)Hwt(O)H%Q(Q)N
Q Q

(0,7]

Ko/, 1) //p5ft| da dt

< Clcl(foafl)v
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proving (T.40).

Next, for A : D(A) — H, the Stokes operator defined in Lemma we use p2(wy — vpAwy) as a
test function in wy; — voAwg + Vpg = ftO — UtXw> 1.€., differentiating the first line of system (T.23)) with
respect to time. Then, we deduce

d
/p§(|wtt|2 + vyl Awy)?) dz + Yoy /p%|th|2d:1: = /pg vi(wy — voAw) dx
2 & o (1.47)

d
+ /pg ftO (wy — voAwy) dx + 1y / %(pg)\th\g dx.
Q Q

d
Given that \a(pg)\ < Cp3, we get

d
/ dt(pG)\th\Q dx < C/p5|th|2dx (1.48)
Q
And from pg < Cps, for any € > 0, we have

1
/pg vy (wy — voAwy) de < C - /p?)]vt\Q dx + e/pg(\wtt|2 + |Awt]2) dr| ; (1.49)
w w Q
and
1
/,0% ft0 (wy — voAwy) de < C - /p§|ff|2 dx + e/p%(|wtt|2 + |Awt|2) dx| . (1.50)
Q Q Q

We fix € small enough, the second term on the right side of (T.49) and (1.50) are absorbed by the left side

of (T.47). So, using (T.48) in (.47), we infer

d
[ s + dwfy o+ | [ divulas | <c | [ ol
Q Q w (1.51)
v [ e [ Avoean
Q Q

Integrating from 0 to ¢ and using Lemma [I.3]and (T.40), we get

/] gl + | ) de i+ sup [ v | < o)
0,7
@ “ (1.52)

(0, f //p5|ft 2 dt + K (f, 1)

By the same previous reasoning,

RO)Vwr0)lZay < Co0) (IF0(0)]2:0) + IV0) 205 )
< C <sup lpsolld + p%<o>uf°<o>uz5(mzv)
(0,71
< CRa(f% ).
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Consequently,
//p6 lwie? + | Awy|? )dazdt—l—sup /pg|Vw,g|2 dz | < CKa(f°, fY). (1.53)
Q

Finally, we use —pZAuwy in the first line of the system (T.23)), and we obtain

d
/p§|th|2dx+20dt /pg|Aw|2dx :—/p%UAwtdx—/p%fkotdx
Q Q w Q
d 2
+ 2 - (P6)| Aw[* da (1.54)
Q

<c /P%\U2dm+/Pg’fo\deJr/Pg’Athder/PﬂAw\zdx ,
w Q Q Q

in which it was used, pg < Cp2, ps < Cpg, and |%(p%)| < Cp? < Cp2. By Lemmaand (1.53), we

achieved that

[sup} /p%Aw[de < CKo(f°, fY). (1.55)
0,7
Q

From the estimates (1.53) and (1.55) we get ( - In particular, pgw € L>(0,T; H2(Q)N). O

1.4 Insensitizing controls for Equation (1.1

In this section, we will prove the existence of insensitizing controls for (I.1)), which will be a
consequence of the null local controllability of the cascade system (1.7). Notice that, in this definition,
V - ((vo + 11]|Vw||?) Dw) can be rewritten, using V - w = 0, in the form (v + v1||Vw||?) Aw. This is,

V- (o + nllVul)Dw) =V - (w0 +m | Vol (Vw + T7w))
= (vo + v1||Vw||?)V - (Vw) + (v + v1||Vw|?)V - (VTw)
= (vo + v1||Vw|]?)Aw + (v + v1||Vw|]?)V(V - w)
= (vo + v1||Vwl||?)Aw

Thus, cascade system ((I.7) can be rewritten as follows

L(w) — v ||[Vol?!Aw + (w - V)w + Vp® = f + vxw, V-w =0 in  Q,

L*(z) — || Vw|?*Az + 21 (Aw, 2) 2 Aw) + (2 - V) w — (w- V) 2

Vg =wyo, V-2 =0 in 0, (1.56)
w=0 2=0 on X,

w(0) =0, 2(T) =0 in Q.

Therefore, we want to find a control v, with v; = 0, such that z(0) = 0. For this, we introduce the space
functional, for N =2or3andi € {1,--- , N}, given by

FLN = {(w,po,z,q,v) s (w,p°, 2,q,v) € EY, (psv),, psAv € L*(w x 0, 7)Y
(p6f°)(0) € Ho()N, psfP € L*(Q)N},
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which is a Banach space with the norm:
0 2 . 0 2 0 2
(0,8 200,02, = 0,80, 20, 0) B+ 11065 (0) gy oy
+||p5ft0||%2(Q)N + ” (p5v)t Hi2(w><(0,T))N + HIOSAUH%%UJX(O,T))N-
Furthermore, in view of Lemmas[I.2]and [1.4} one also has
2 2 0 2
||p3wHLoo(07T;H)mL2(()7T;V) + Hp4w||Loo(()7T;V)mL2(07T;D(A)) < Ol[(w, p° 2, Q7U)||F§v>
Hp6w‘|%°°(O,T;D(A)) < CH(vaoa Z,4, U) "%3\7

Remark 1.3. In particular, an element (w,p°, z, q,v) oijV satisfies z(0) = 0 and v; = 0. Moreover, of
Proposition[1.3|and Lemma(L.4) we have that

po(w - V)w € L*(Q)V,
pollVwlFa v Aw € L2(Q)Y,
po(z - Vhw e LH(Q)V,
po(w - V)z € L*(Q)V,
pollVwllz gy Az € LHQ)Y,
po(Aw, 2) 2 yv Aw € L (Q)N.

We are interested in apply the Mapping Inverse Theorem in infinite dimensional spaces, which can be
found in [[ATF87|] (Chapter 2, Section 2.3.4), and is given below:

Theorem 1.2 (Liusternik’s Inverse Mapping Theorem). Let By and By Banach spaces and let A : By —
By satisfy A € C(By; Bs). Assume that by € By, A(b1) = b and that A'(by) : By — By is surjective.
Then, there exists § > 0 such that, for every b' € By satisfying ||b' — ba|| < §, there exists a solution of

the equation
A(b) = b/, be B.

The Setup. Let us set

Bi = Ey (1.57)
Zn = {f e L2(@QN :pof, psfi € L2(Q)N, (psf)(0) € HF ()N},
with
1F 1% = lpof I Z2iqyy + o5 fellZ2igyn + 1(p6.f) (0)]I1 - (1.58)

Then, we define
By = Zn x L* (" Q)",
where the natural product topology is also a Banach space.

Finally, we define the mapping A : By — Bs by

A(w, p?, z,q,v) = (E(w) — 1 ||[Vw|?Aw + (w - V) w + Vp° — vy,
L*(2) — 1| Vw?*Az + 2v1 ((Aw, 2) 2 Aw) + (2 - V) w (1.59)
—(w-V)z+ Vg—wxo).

In order that Theorem [2.4]can be applied in this setting, we will prove three lemmas.
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Lemma 1.5. The mapping A : By — By is well-defined, and is continuous around the origin.

Proof. We want to show that A(w, p°, z, q,v) € B, for every (w,p, z,q,v) € B.
First, let us denote by .A; the components of A for i = 1, 2 so that

A(w)poa Z,4, U) = (Al (w7p07 <, 4, U)? AQ(wapou Z,4, ’U))

where
Ar(w, p°, 2, q,v) := L(w) — v1||Vw||?Aw + (w - V) w + Vp® — vxw;
Ao (w,p¥, 2, q,v) = L*(2) — || Vw||?Az + 2v1 ((Aw, 2) ;2 Aw) (1.60)
+(Z-Vt)w—(w-V)z+Vq—on,

for every (w,p°, z,q,v) € By. In this way, we have A;(w,p°, z,q,v) € Zx and Az(w,p?, z,q,v) €
L? ([)52; YN for every (w, p°, z,q,v) € By. Indeed, analyzing .A; and Aj separately, one has:
Analysis of A;.

Let (w,p°, z,q,v) € By and write A; as follows:

Al(w7poa ZvQ7v) = al(w7p07 Z,4, U) + a?(wapov Z, q,'U) + a3(w7p07 Z, (LU)v
where

a1(w,p%, z,¢,v) := L(w) + Vp® — vy, = [
a2(w7poaz’q>v) = _Vl”vaQAwa

ag(w,po,z,q,v) = (’U) ' V)'U}
We will show that for each j = {1, 2, 3},

laj(w, 2% 2,4, 0)|| 2 < Cll(w,p°, 2,¢,0) ||,
and consequently we will have A; (w, p°, z,q,v) € Zy. In effect, by the definition of the Z, we have
a1 (w,p, 2,4, 0)lIZ < ll(w,0° 2,0, 0)|3, - (1.61)

For as, note that:

las(w, 10, 2,4, v)[2,, = / / (P2l — |V Ao

Bl (o [ Vwl2Aw)[2) di dt -+ (<[ Vol 2Aw) (0) 2 (162
=0+ 1+ 1.
Let us show that each term of a9 is bounded. In fact,
L = e () VP Awlf7a gyn < Clle™ P |[Vwl]* Awlf? 5 o)
= C/T|e7/4sﬁ* vw\|||vw\;2/167/455*Aw|2dmdt
0 (1.63)
< Cllwllfe o le”* w3 e OTV)He”‘*Sﬁ*wHLQOTHQ(Q))

S C‘|(w7p07Z7Q7U)HB17
since (7*)~2 is bounded and €7/**#"w € L2(0,T; H*(Q)N) N L>(0,T; V).
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Also, since

(—V1||VwH2Aw)t = (—11(Vw,Vw): Aw) — v1(Vw, Vw) Aw;
= =21 (Vw, Vw)Aw — v1(Vw, Vw) Awy

we get,

b= [ AVl av) P
Q

= // p2| — 2v1(Vw, V) Aw — vy (Vw, Vw) Aw|2dx dt
(1.64)

IN

Q
o [[ 19 wlVuaw P + o [[ A1Vl du P i
Q Q

= 21/1E + I/lﬁg.

So we need to check that M; and M, are bounded. Well, by Lemma and using the fact that
3s8-5/256" ()19 < Op2, we arrive at

o< [ IvullVedac i =c [ [ #IVel?|VeP|aekded
Q Q

T
= ¢ [RIVulPITu? | [ 15ufds | di
0 Q

IN

T
Cllwlmry, | IVwl? | [ 15uPdr | a (165)
Q

T
< C’HwH%m(O’T;V) E)uil“)] /p§|Aw|2dx /0 /p§|th|2p62dxdt
’ Q Q

< CHw||%00(07T;V)||p6AwH%OO(0’T;L2(Q)N)||p5th‘|%2(()’T;L2(Q)N)
< COl(w,p% 2,q,0)|%,-
And,
L < C//p§|]VwH2\Awt|2dxdt
Q
= O [[ T Rl Au s d
Q
_ C//67/2s,3*va”263855/25/3*(%19’Awt‘2dxdt
Q
< C'//e”zsﬁ*HVw||2pg|Awt|2da:dt (1.66)
Q
< Csup </ 67/236*]Vw|2d9:) //pg|Awt|2d$dt
0,77 \Jo s
< C|’e7/4sﬁ*w”%°°(o,:r;v)”PGAth%z’(O,T;LQ(Q)N)
< Of(w,p° 2,4,0)|3,
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By (1.63) and (1.66)) in (1.64)), we have

I < C||(w,p° z,q,0) B, + Cll(w,p°, z,¢,v)[|,- (1.67)

Furthermore, given that w(0) = 0, we get

Iy = |[(~21p6 [ V02 Aw)(0) [y v = 0. (1.68)

Then, from (T.63), (I.67), and (T.68) in (T.62)), we have

llaz (w, p° 2, 4. 0) (1%, < Cll(w,p°, 2,q,0)||, (1 + [I(w,p%, 2,4, 0)[3,) - (1.69)

Now, we need to show that the same occurs for az(w, p°, z, ¢, v). Observe that,

|as(w,p", 2, q,v

Since I3 = || (pg(w - V)w) (0)

I3 = // Al )l + [ V), ) d
(1.70)

+|| (po(w - V)w) O3 v = L1 + Lo + I,

12 HI@N = 0, we just check the other terms. By the definition of By,

e"?Fw e L2(0,T; H*(Q)N) N L®(0,T; V)

and we then used the continuous immersions H?(€2) < L>°(Q2), of N < 3, and one has

458w e L2(0,T; L (Q)N) and V(745 w) e L=(0,T; L2 ()N *M).

Consequently,

IN

IN

IN

€725 (44)2(w - V)wlZagpn
0”67/28/6* (w ’ v)wH%Q(Q)N
C”(€;/485 w - V)e7/4sﬂ wH%Q(Q)N
C’/ /\67/4Sﬁ*w|2]V(e7/455*w)\2dxdt
0 (1.71)
T * *
C’/ sup |e7/455" w2 /]V(e7/435 w)|*dx | dt
Q

ClleT 7 wlFa o ooy 16747 0l 0 1oy

CH(U},]) azvq’v)HBl?
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since (7*) 2 bounded. Analogously, from Lemma|l.2|and Lemma

-/ / o2 (- V) + (w0 - V) da

<2//p5\ wy - V)w| dwdt+2//p5|w V)wy|?dz dt

<2//p5p3 p3lwe|? | Vw| d:vdt+2// 2e7/25" o= T/25" |4y |2 | W wy |2 daz dt

T
<C sup/p%lwtl2 //p%Vdewdt (1.72)
0

.71 Q Q

T
+C sup/e7/285*|w2dx / /p?]thdedt
0
Q

(0,7] 3

S C pr’th%w(O,T;LQ(Q)N) Hp3vw”%2(0’T;L2(Q)N)
+C ||€7/4Sﬂ*w”%00(07T;V)||p5th‘|%2(07T;L2(Q)N)

<Cll(w,1°, 2,¢,9)|,

Thus, from (I.71)) and (T.72)) in (T.70)), we get

lasg(w, %, 2, ¢,0)||Z, < Cll(w,p°,2,¢,)|B,- (1.73)

Therefore, by (1.61)), (1.69), and (1.73),

AL (w, % 2, q,0)1Z, < C 1+ [[(w,p° 20,0, + lI(w,2° 2,q,0)lI,)

(1.74)
[(w, %, 2, ¢,0)||%,

and consequently A; (w, p°, 2, q,v) € Zy, for any (w,p°, 2, q,v) € By.

Analysis of As.
Following in a similar way to what was done for Ay, let (w, pY, z, ¢,v) € By and decompose A; as
follows:
Az(w,p°, 2, q,v) = a1 (w,p’, 2,q,v) + az(w,p°, 2, q,v),
where

ar(w,p°, z,q,v) = L*(2) + Vg — wxo = 1
az(w,p°, z,q,v) = —n||[Vw|[*Az + 211 ((Aw, 2) 2 Aw) + (2 - V) w
—(w-V)z=hL+ I+ I3+ I,
We will show that, for each I = {1, 2},

"El(wap07 2,4, U)HLQ(ﬁBQ;Q)N S H(vaoa Z,4, v)HBl

and consequently, we get Ay (w,p°, z,¢,v) € L2(po%; Q). First, it is clear that
r 12 0 2
“a(w7p0aZ7Q7,U)HQL2(EB;Q)N _A /|P0f ’ dx dt S H(wap 7z7q7v)HB1' (175)
)
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So, we need to show that each I;, i = {1,2,3,4} is bounded to conclude that @ is bounded. Note that, I,

satisfies

a2 g < .2, 2,0, 0) 4, (176
Indeed, consider the weight function %/458" (y*)=2-2/™_Since 9/4 > 2 and —2 — 2/m > —5/2, then
po = €287 (%) 75/2 < /458" (4%)=2-2/m_Thys,

Hall 2 zzpn = Moo(w - V)2l pagyn < 17457 (v*) 7272 (w - V)2 2 g)v
|| (67/456*w . V) 61/235* (7*)7272/771

2l 2@y~

7/4s8* 1/2sB*(v*)—2—2/m

e wHLZ(o,T;Loo(Q)N)He ZHLOO(O,T;V)

<
< lw,p° 2,¢,0)|3,,

since e!/258" (y*)=2=2/m 5 ¢ L2(0,T; H*(Q)N) N L>(0, T, V), proving (T.78).

The reasoning used with the e9/4sB” (v*)~22 /m

I;, with i = {1,2, 3}. Effectively, for I3, notice that

weight will be useful for us to study the other terms

1slZ,a g = 800z - T0wla gy < €745 () 272/ (2 - 1Yo o gy

— H (61/255* (,}/*)—2—2/m2 . vt) e7/4sﬂ*wHL2(Q)N

(1.77)
< let/28 (7*)_2_2/7”2”L?(o,T;Loo(Q)N)||€7/4SB wl| Lo (0,7
< l(w,p% 2,4, 0) |5,
Also, by the same arguments,
111172 5. 0pw < N€274557 (7) 7272 |Vl 72 Az L2y
< Nwll oo o, €725 W]l oo 0 vy €725 (7)) 7272 M 2 L2012 vy (1.78)

< COll(w,p°,2,¢,0)|%,

Finally, by the previous regularities plus the regularity obtained in Lemma pew € L>¥(0,T; H2(Q)N),

we have
IIIzHLQ SN = 190(2v1 (Aw, 2) Aw)||7

< (|95 () 2-2/m (A, 2) Ao 22 v

< (12450 () 22 el Al 2 Aw 5 v

T
- / / €T/ /258 () =22/ |1 A 2 APl
0

T
= [ e oy g suls [ 1awPdodt (179
Q
T
:/0 eT/258 38" () =A=4/m | 112 | A |2, || Aw] |2t

T
:/0 eS8 (7)™ 2|2, p2 || Aw]|2 2 p3]| Aw]|2 e 7T/ 28 (7)42

< ¢ (||61/286* (,7*)—2—2/m2||L2 (0,T;L2(Q)N) HpﬁwHLoo (0,T;H2(Q)N)

||P6w||2Loo(0,T;H2(Q)N))

< C[(w,p°, 2,q,0)[%B,-
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From (T.78) — (T79). we get

||@(wap07 z? q7 U)H%Z(EBQ;Q)N

(1.80)
< C(l(w,p° 2.0, 0) 1B, + (w,p% 2,0, )5 (w, p% 2, ¢, v)| 5,
Consequently, from (1.73) and (1.80),
0 2
HAg(w,p 7Z7Q7'U)HL2(7,32;Q)N (1.81)

<O (1+ (w0, 2,0,0)%, + (w0’ 2,¢,0)]%,) (w,p% 2 4, 0)I3,

and Ay (w,p°, 2, q,v) € L*(po*; Q)N for any (w, p°, 2, q,v) € By.
Therefore, from (1.74) and ((1.81)), we have that A(w, p*, z, q,v) € Ba, for every (w,p’, z,q,v) €
By, with

[ A(w,p°, 2, q,0) I,
< C(1+ 1w, 0% 2, q,0) 3, + 1w, 2% 2,4, 0)[5,) (w0, 2, 2,0, 0) I3, -
and this concludes that A : B; — By is well defined.
Using similar arguments it, is easy to check that .4 is continuous around the origin. O

Lemma 1.6. The mapping A : By — Bs is continuously differentiable.

Proof. We will the proof for N = 3. The proof for the case N = 2 is similar.

Let us first prove that A is Gateaux-differentiable for all (w, p°, z, ¢,v) € Eé and let us compute the
G-derivative A'(w, p, z, q,v).

Let us fix (w, p°, 2, q,v) € Eg and let us take (w’,p°’, 2/, ¢/, v') € Eg and o > 0. By the decomposi-
tion made at the beginning of the Lemma A = (A1, As), we have:

1

;[Al ((wypo, Z, Q7/U) + U(w/7p0/7 Zla quvl)> - Al(wapoa q, Z)U)]

=w, — (o + 1 ||V(w + ow')||?) Aw’ — % (||V(w + ow')||? - HVwHQ) Aw
+VpY — V' + (W' - Vw4 (w- V' 4 o(w - V)uw'

and
"1 (0,20, 2,,0) o (w5 2 0)) — Ao, 2,0,0)] = Ao + Ao,
where
Ase = —2) — (v + 11|V (w + ow')||?) Az — %(HV(U) +ow)||? - ||[Vw||?)Az
1YY —wxo — (w- V) — (uf - V) — ow’ - V)
and

Ay = (z- VO + (2 - Vw4 o(2 - VW' + 2u1 [(Aw, 2') Aw
+(Aw, z)Aw' + o(Aw, 2" ) Aw' + (Aw', 2) Aw + o (Aw', 2") Aw
+ o(Aw', 2) Aw' + o (Aw, 2/ ) Aw'] .
Let us introduce the linear mapping

DA:Ey — Z3 x L* (50;Q)°
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with DA(w, p*, z,q,v) = DA = (DA, DA3), where:

DAL (W', p” 2 ¢ W) = wj— (v +n|Vu|?)Aw —2v (Vw, V') Aw

o , , , (1.82)
+Vp? —v'xw + (W' - V)w + (w- V)w

and

DAy(w',p” 2 ¢ W) = —z — (o 4 11| Vw|[2)AZ — 20 (Vw, V') Az
+2u1 [(Aw, 2" ) Aw + (Aw, 2)Aw’ + (Aw', 2)Aw] + (2 - VHw' + (2" - VHw (1.83)
—(w' - V)z+ (w- V)2 + V¢ —w'xo,

for all (w’,p", 2, ¢, v') € Eg
From the definition of the spaces Ej, Z3 x L*(pp?; Q)? and (1.82)-(T.83), it becomes that DA €
L(Ey, Z3 x L*(po*; Q)*). Moreover,

1 /
7“4 (’U), Ovza y U +Uw/7 O)Z,) ,avl)_A w, 0727 y U
M (w07, 2, q,0) +o(w', p7, 2 ¢, ) 1(w, p%, 2, ¢, v)] (1.84)
— DA, (w’,pol, 2/, ¢, V') strong in Z3, asoc — 0,
and
1 /
7“4 (’U), 0727 y U +O"LU/, O)Z,) lavl)_A w, 07Z7 y U
M ((w,p7, 2,q,0) +o(w',p7, 2, ¢, ) 2(w,p”, 2,4, 0)] (185)

— DAg(w’,pO/, 2, ¢, v') strong in L?(5% Q)3 aso — 0.

Let us demonstrate that (1.84)) is true. Indeed,

||§[A1 ((wmo, 2.0,0) +o(w,p”, 2, q’,v’)) - Ai(w,p%,q,2,v)]
~DA(w, ", 2" d )z,

<l (IV(w + ow)|? = [Vw|]?) Aw'llz, + [lo(w" - V)| z,
12 (IV (w + 0w |2 = [Ve|?) Aw = 20 (Vew, V) Az,

— Ly + Lo+ Ls.

We will see that for all ¢ € {1,2,3}, L; — 0, as 0 — 0. In effect, using Lebesgue’s Theorem,
= / / ARV (w + ou)|* — [Vl |2 A/ |Pde dt
Q

12 / / RV (w + o)) 2 — [Vw|®) A, Pde de
Q

Hrps[(IV (w + ow') |2 = [ Vew|[*) Aw'](0) s — 0,

2
)

and
2 _ 2
Ly = o' V)w/Hzg,

= [ [Wlotw’ - V) + loui V) + ot Vyuiflddi
Q

Hlpso(w’ - V) ()3 s — 0,

as 0 —» 0, since the integrals are bounded as we prove in (I.69) and (I.73), respectively.
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Now, writing L3, one has

2= // AV (w + 0w | = [Vwl?)Aw = 20 (Veo, V') Avwld de
Q
2 Y1 INTP 2 / 2
b [ [ AT 0w+ 0w P = [FwlP)dw - 2 (T, Vo' s P di
Q

1%
+lpe— [(IV(w + ow') [ = [Vw[[?) Aw = 201 (Vew, V') Aw](0)[ %1 5
(o Ho(Q)
= N7 + No + Nj.

Observe each Nj, j = {1,2,3}:

e N7 —> 0,as 0 — 0, since

1
lim = (||V (w + ow)||2 — [|Vw|?)Aw = 2(Vw, V') Aw.

c—0 0

Before we analyze N», let’s rewrite it. To do this, we start by looking at the first term of the sum on

the right-hand side:

IV (w + 0w — [Vl Awls

= [(Vw + oVu',Vw + o V') Aw — (Vw, Vw) Aw],

=2(Vw + oVu', Vwy + oVwy) Aw + (Vw + o V', Vw + o V') Aw,
—2(Vw, Vwy) Aw — (Vw, Vw) Aw,

= 2(Vw,oVw))Aw + [20(Vw', V) + 20(Vu', Vw,)] Aw + [o(Vw, V')
+o(Vw', Vw) + o?(Vuw', V') Aw

and the second term of the sum,

—2v1[(Vw, V') Aw], = [-2v1(Vwy, V') — 2v1(Vw, Vw)) | Aw
—2v1 (Vw, Vu') Awy.

Therefore, simplifying some terms, we obtain

o Ny = // P 2001 (V' Vw)) Aw + 110(V, Vw’)Awt|2 dz — 0
Q

as 0 —» 0, since the integrals are bounded as we prove in (L.67). Moreover, N3 = 0 given that w(0) = 0.
Therefore,
L —0,as0 — 0.

This yields (1.84) and that A; is Gateaux-differentiable.
For the proof of (1.85)), take in (1.83)

DA2 (wlap0/7 2/7 q/7 U/) = DAQ(w,7p0/7 2/7 q/7 U/) + Dﬁ?(w,upgla Zlv q/7 UI)7

where ~
DAy(w',p” 2 ¢ W) = —z — (v + || Vw|[2) Az — 20 (Vw, V') Az

+V4' —w'xo — (W' V)z + (w- V)2,
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and
D.,Zl\g(w’,pol, 2 = (2 VH' + (2 VHw + 2u[(Aw, 2") Aw

+ (Aw, z) Aw' + (Aw', z) Aw].

Arguing similarly to A;, we have
Ase — DAy (W', p”', ', ¢, v') strongin L2(5% Q)3, (1.86)
as o — 0. And, since

Az — DA, 0, 2, oty
< |[2nio[(Aw, 2 ) Aw' + (Aw', 2") Aw + (Aw', 2) Aw' + o (Aw', 2") Aw'] | 12 552,00
+ [lo(z" - Vt)w/Hp(m?;Q)m

we can conclude that
Aoy —s DAY (W', p, 2/, ¢, v') strongin L2(50%; Q)3, (1.87)

aso — 0.

Thus, from (1.86) and (1.87)), (1.85)) holds and A, is Gateaux-differentiable.

Therefore, A = (Aj, Az) is Gateaux-differentiable at any (w,p°, 2, q,v) € Fg, with a G-derivative
A'(w,p°, z,q,v) = DA.

Now, in view of the classical results, we will prove that 4 is not only Gateaux-differentiable, but also

Fréchet-differentiable. Hence, we will have
Aec! (F§ Z3 x LQ(/TOQ;Q)?’) with A'(w,p°, z,¢,v) = DA(w,p°, z,q,v),
1.e.
1. -0 VA L A A AN 0 A\ L Y A
A(w,p”, z,q,v)(w',p", 2',¢',v") = DA(w,p", z,q,v)(w', p", 2, ¢, v'),
for all (w',p®, 2/, ¢, V') € Eé, where

DA(w, p°, z,q,v)(w/,pol, 2 q ) = (wg — (vo + 1 ||Vw|?) Aw'’

—2u (Vw, V') Aw + (v’ - V)w + (w - V)w' + VY —v'x,, —2)

—(vo + 11 ||Vw||?) A2 — 2v1 (Vw, V') Az + 2v1[(Aw, ') Aw + (Aw, 2) Aw'
+(Aw', 2)Aw] — (W' - V)z 4+ (w- V)" + (z- VY’ + (2 - VH)w + V¢’ — w'x0) .

For this purpose, just prove that for
(wnvpga Zns 4n, 'Un) — (vaoa Z,4, U) II’IE;
there is en(w,po, z,q,v) such that

| (DA(wn, Y, 20, Gns vn) — DA(w,p°, 2, q,v)) (w',p”, 2, ¢, 012,
Z3x L2 (p0%5Q) (1.88)
< enll(w', 9" 2 V)12
3
for all (w’,pol, 2 q ) e Eg and lim e, = 0.
n—o0
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Let us prove (I.88)). Note that, for D.A;, from (1.82),

DA (w,p° z,¢,0)(w',p”, 2, ¢/, v) = wi = (vo + ||V |*) A/
—2u; (Vw, V') Aw + (w' - V)w + (w - V)w' + Vp® — o'y
/

DAl(wnapgw Zn,sQqn, Un)(wl7p0,7 Zlv qu,U/) = wllf - (VO + VIHVUJnH2>Aw
—20) (Vwn, V') Awy, + (W' - V)wy + (wn - V' 4+ Vp® — v/ xe,

for all (w’,p", 2, ¢, v') € Eg Then, we have

(DAl(wnvpgu Zny Qnavn) - DAl(UJ,pO, Z7Q7U)) (wlapO/v 2/7 qlavl)
= v1(|Vw|]? = [|[Vw,||?) Aw’ — 2v1 (Vwy,, V') Aw, + 2v1 (Vw, V') Aw
+(w' - Vw, — (W' - V)w + (wy, - V)’ — (w- V)u',

and
| (DA (wn, 5, 20, s vn) = DAL (w, p°, 2, q,0)) (W', ", 2, ¢, o) I,
< 3] ([ Vwl? — n[|Vw,|?) Aw'||Z,
+3|| = 201 (Vwy, V') Aw, + 21 (Vw, V') Awl|Z, (1.89)
+3||(w - V) (wy, — w) + (w, — w) - Vw’||2Z3
— 3Dy, + 12Dy, + 3Ds .

We need to analyze these terms. Using what has already been done for ((1.62]), we obtain

Din C (V@ = wa)llIVwllAw'|Z, + IV (w = wn) [[[Vewn]| Aw'||Z,)

1.
el (@, " 2 o) (1.90)

<
< [
B

where
€l,n = CH(wnvp?wZnaQna'Un) - (vaoaza(bv)H%i <||(w,p0,z,q,v)||éi
3 3

+||(wn7p9w Zns dn, Un)”i?z) .
3

For D j, let us first see the following:

[(Vwn, V') Aw, |3, = / / (pbl (Vwn, V') Awy,[?
Q

+ p3|[(Vwn, V') Awyli|?) dz dt + [|[p6(Vwn, V') Aw,](0)
= X7+ X9+ X3.

2
HOE

Observe that

X1 = //pg\(an,Vw/)Awanmdt
Q (1.91)

< Cllw oz 167 wnll oo o ) 167 Wl gz ayey < +00-
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From Lemma[T.4}

Xy = //pg\[(an,Vw’)Awn]thxdt

< //p5y ant,Vw)AwnPda:dt—k?)//pg) (Vwn, Vw,) Aw,|*dz dt
+3//p5| Vwy, V') Aw, 4| *dx dt

< (Hw 12w 0750 1068013 7512005125 V0t B0 2y
| wn 13 s (0,700 196 AWRI12 e 712 00y 195 V0L 20 2y
I o1 / [ 150 [ PS5 3 it

<

(Hw ||200 © TV)HpGAwnHLoo 0,T;L2(Q)N ||p5vwnt”L2(0 T;L2(Q)N)
+Hw”HL°°(0,T;V)HpﬁAwﬂH2°°(07T;L2(Q)N)Hp5th”L2(0,T;L2(Q)N)

+||w,||%oo(o,T;V)||67/255*

(Q)N)) < +o0,

(1.92)

And, X3 = 0. Thus, adding and subtracting v1 (Vw,, Vw')Aw in Do, follows, from the calculations

made for (T.91)) and (1.92), such that

Dy, = || — vi(Vwy, VW' )A(wy, — w) — v1(V(w, —w), Vw’)Aw||2Z3
<C (H — v1(Vwy, V') A(w, — fw)HQZS + || = vi(V(w, — w),Vw’)AwH%S)
S 62,n||(w/7 of Z q v )H*@?

3

where

€2.n = C H(wnapg>zn7Qnyvn) - (w7p0’z’q7 U)H (H(wmpnaZanavn)HE
3

+H(w7pov %, 4, U) H%z )
3
And similarly, we obtain

Dsp = (' V)(wp —w) + (wn — w)Ve'|Z,

< el 0%, 2 V)2
3

(1.93)

(1.94)

where €35, = C||(wn, PY, 21, @y vn) — (w,P°, 2, q, v)”% From (T.90), (T.93), and (1.94) in (T.89), we
3

have
/
|| (DAl(wnapg’ZTan?Un) - DAl(w pO < Q7v)) (wlvpo 7zl7q,avl)||2Z3
<ejull (W', p”, 2 q )||—“

with lim €;,, =0, forall j € {1,2,3}.
n—oo

(1.95)
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In the same way, we will study D.A;. Remembering that, for (I.83)

for all (v,

D As(w, %, 2,0, 0) (!, 5 2, 0') =~ — (v0 + 11 [Vl ) A2’

=211 (Vw, Vu') Az + 2v1[(Aw, 2" ) Aw + (Aw, 2) Aw’ + (Aw’, 2) Aw]

+(z - VO + (- VOYw = (W' - V)2 + (w- V)2' + V' — w'xo;

DA(wn, Y,z s vn) (@', 9 2, ¢/ V) = =2 = (0 + 1|V |[2) A2

—2v1 (Vwy, V') Az, + 201 [(Awn, 2) Awy, + (Awy, 2,) Aw’ + (AW, z,) Aw,]
+zn - VO + (2 Vwn — (W' V)zn + (wn - V)2' + V' — w'xo,

.2 g ) e Eg Then, we get

(DA (wns ° s 205 Gy Un) — D A2 (w,p°, 2, q,0)) (W', %, 2", ¢’ ')

= v1([|[Vw||? = || Vw,||?) Az — 2v1 (Vw,, V') Az, + 201 (Vw, V') Az
—(w' - V)zn + (wy, - V) + (W' - V)z — (w- V)2 + (2, - V' + (2 - V)wy,
—(z- V' — (2" - VHw + 2v1[(Awy, 2") Awy, + (Awy, 2,) Aw’
+H(AW, zp) Awy) — 201 [(Aw, 2') Aw + (Aw, 2)Aw’ + (Aw', z) Aw].

After some simple calculations

|| (-DA2(wn7p0nuznuqn7/Un) - DA2(w7pouz>Q)U)) (/w,7p0/7Zlvq/7vl)”%/2(f)62;Q)3
< C [Vl - | Tw|?) A2

L2(po*:Q)°
+| = 21 (Vwy, V') Az, + 2v1 (Vw, V') Az||?

+ (W' V) (20 = 2) + (wn = w) - V)27, 2
HII(" - V) (wn = w) + (20 = 2) - VO |75 0 (1.96)
+ 1201 (A(wy, — w), 2")Awy, + 21 (Aw, 2") A(w, — w)

+2u1 (Awp, 2, — 2) Aw' + 201 (A(w, — w), 2) Aw'’

+2u1 (AW, 2y, — 2)Awy, + 201 (AW, 2) A(w, —w

L2 /\2 Q)d

2
iz
=C [ﬁl,n + ﬁz}n + EB,n + ﬁ4,n + E5,71] .

Analyze the previous terms, as was done before for (I.78):

where
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D1y = (V] = [[Vwn[*) A7,

2(55%;Q)3
= [r([[Vw|| = [|[Vw|))([Vwl|| + IIanII)Az’IIL2( 50)%)
< (Il —w) | [Vull A2, 2 s (197)

_ /
19 (0 = wa) [ Vo]l A2, )

IN

gL’rLH (w/7 p0/7 Zl? q/a UI) HQE

€1 = Cll(wn, %0, 20y Gy vn) = (w, 9, 2,4, 0) 12, (H(w,po, 2, ¢,v)|12,
3 3

0 )
3



Similar to the reasoning used for (I.93), we arrive at

o/

Dz < Ell(w’,p", 2, )15 (1.98)
where
- 0 0 2 0 2
€2n = CH (’U)n,p ns #ns dn, Un) - (va y 2,4, IU)HES ||(wnvp ns *Ans dn fUn)HES
Also
= _ !/
Ds, < rsg,n||(w’,p0 2, U’)||2Eg (1.99)
where
- 0 . 0 2
63,” - ||(w7l>p nvznaqnavn) (va 7ZaQ7U)”E§'
Just like was done for (T.77),
Dy < eyl p", 2, ¢, )IE (1.100)
where
@ =C 0 _ 0 2
64,” - Hw'fbp mzm%uvn) (w7p y %5 4, U)HE;
Finally, note that some terms of D5 ,, are bounded by
C s = a0,z (21 )
3 3
||(wn7p0m Zns Qn, Un) ||]251>
3
or by
C H (wnapona Zna Qna Un) - (w7p07 Z7 Q7 ’U)H%,L <‘ (w7p07 Zv Q7 U)H%z
3 3
w', Ol,z', iy 2¢> .
(N R
Thus,
Dsn < esall(w,p”, 2, ¢, 2, (1.101)
where
E5,'n = C H (wn,pona ZnsQqn, U'n) - <w7p07 z,q, ’U)H%z (H(wnaponv ZnyQn, vn)H%z
3 3
+ H(wapov Z? q7 U) H%w > .
3
From (1.97)-(T.101) in (T.96), we have
” (DAQ(wn,pOn, ZnsQn, Un) - DAQ(w,pO, Z,4, U)) (w/’p0’7 Zl: q,’ U/) Hiz(/\Q 3
0°;Q) (1.102)
S gj,n” (wlapO/v 2/7 qla UI) ||2Ez 9
3

with lim €;, = 0, forall j € {1,2,3,4,5}. Therefore, from (1.95)) and (1.102), (I.88) is holds and
n—oo
A€ C By Zs x L3(5% Q)° ) with A (w, 0, 2,,0) = DA(w,°, 2,4,0). =

Lemma 1.7. Let A be the mapping defined by (1.59). Then A'(0,0,0,0,0) is onto.

51



Proof. Let (f°, f!) € Bs, from Proposition|1.3|we know that there exists (w, p*, z, ¢, v) satisfying

L(w)+Vp®=f"+uvx,, V-w=0 in Q,
L)+ Vg=fl4+wxo, V-2=0 in Q,

w=0, 2=0 on X,
w(0) =0, 2(T)=0 in Q,
remembering that £(w) = w; — vpAw and L*(z) = —z; — vpAz, where L* is the adjoint operator of L.

By the estimates proved in the Lemmas |1.2H1.4}, the membership (w, p°, 2, ¢, v) € By is valid. Moreover,

A'(0,0,0,0,0)(w,p% z,q,v) = (L(w)+ Vp® —vxw, L*(2) + Vg —wxo)
(SO, f1).
Hence, A’(0,0, 0,0, 0) is onto. O

The Proof of Theorem [1.1 According to the previous Lemmas it is legitimate to apply
Theorem [I.2] Then, in Theorem[1.2] consider b; = (0,0,0,0,0) and by = (0,0). In particular, this
gives the existence of a positive number § > 0 such that, if [|e</!" f| 2N + 1eC/t" £ tllLeQn +
H(ec/tmf)(())HH&(Q)N < 4, for some C' > 0, then we can find a control v, with v; = 0, such that the
associated solution (w, p’, z, ¢) to cascade system satisfies z(0) = 0.

By Proposition [I.1] the proof of Theorem [I.T]is completed.
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CHAPTER 2

Local null controllability of the
complete N-Dimensional
Ladyzhenskaya-Boussinesq model

2.1 Problem Formulation

Here we are interested in studying a system that models viscous flows, where viscosity is in function
of the velocity gradient, in which thermal effects are taken into account. We will consider Q ¢ RY
(N = 2or N = 3) be a non-empty bounded connected open set, with regular boundary 02 and let 7" > 0
be given. We will us denote by @ the cylinder 2 x (0,7") with side boundary ¥ = 9 x (0,T).

Let w C €2 be a (small) non-empty open set. We denote by (.,.) and ||.|| respectively the L? scalar
product and norm in €. We will use C' to denote a generic positive constant. Thus, we will study the local

null controllability for the nonlinear systems:

ye — V- (w(Vy)Dy) + (y-V)y + VP =vx, +rpbey, V-y=0 in Q,

0, — V- (w(Vy)VO) +vy- VO =vox, + v(Vy)Dy : Vy in Q, @1
y(x,t) =0, O(x,t) =0 on X,
y(2,0) = y°(x), 0(x,0) = 0°() in 0,
where
v(Vy) =1+ 11 / \Vy|2da (2.2)
Q
and
Yy — V- (0(Vy)Dy) + (y- V)y + VP =vx, + vofen, V-y=0 in Q,
0y — V- (2(VO)VO) +y -V =vyx, +(Vy)Dy : Vy in Q, 23)
y(x,t) =0, 0(x,t) =0 on X,
y(@,0) = y°(x), 0(x,0) = 0°() in Q,

where 7(Vs) := vy + 11]|Vs]|,, for 3 < p < 6, and in both systems

(0,1) if N =2,
eEN = .
(0,0,1) if N = 3.
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In (2Z.1) and 2.3)), y = y(x, t) stands the “averaged” velocity field, = 6(z,t) and P = P(z,t) represent,
respectively, temperature and pressure of a fluid whose particles are in €2 during the time interval (0, T');
Vg and v are positive constants representing the kinematic viscosity and turbulent viscosity, respectively.

(y°,6°) are the initial states, that is to say, the states at time t = 0; y,, € C§°(Q2) such that 0 < y,, < 1in
1
w and x,, = 0 outside w; Dy stands for the symmetrized gradient of y: Dy = §(Vy + V7Ty) and

N
1 j i i
<0y] + %y ) Oy (2.4)

Dy :Vy:= ”22:1 2\ 02, " 0z, ) 02,

Furthermore, w x (0,7") is the control domain and v (force) and vy (heat sources) represent the
controls acting on the system.

The proof of local null controllability is based on well-known arguments: Carleman estimates and
Liusternik’s Inverse Mapping Theorem. However, some difficulties arise due to the nonlinear terms added
to both the velocity equation and the temperature equation. Furthermore, we will prove a result, only for
the case p = 2, of null controllability in large time. The proof consists of evolving the system in question
without its controls and demonstrating that the system’s solutions have an asymptotic behavior so that we
can then use the first result of local null controllability.

The following vector spaces, frequently used in the context of incompressible fluids, which will be

used throughout the text:

H:={uec L)Y :V-u=0inQ,u-n=00nd0}
and
VP = {ue WyP(Q)N : V-u=0inQ},

where 7 is the normal vector exterior to 9€2 and VVO1 P(Q2) is the closure of the space of test functions in €2,
D(£2), in W1P(Q)(the standard Sobolev space). In particular, when p = 2 we will denote V' = V7.
When (y°,0°) € V' x H}(£2), [HLC18] proved that (21)) is locally null controllable by means N — 1
scalar controls for an arbitrary control domain.
For N =2,4°¢V,0" ¢ Wol’s/z(Q), andany v € L?(wx (0,T))V,vp € L?(wx (0,T)) sufficiently
small in their respective spaces, possesses exactly a strong solution (y, p, ) with

(2.5)

y e L*(0,T; H*(QN nV)nC°([0,T}; V), y: € L*(0,T; H)
0 € L*(0,T; W>3/2(Q)), 6; € L*(0,T; L3/%(2)).

And, for N = 3 this is true if yO, 69, v and v are sufficiently small in their respective spaces, that is, there
exists £ > 0 such that

11172 0.y + Iv0ll720x 0y + 19° 1V + HQOHWOLB/z(Q) <R.

The proof of these statements can be seen later in the Appendix and will be used opportunely to

achieve a result of null controllability in a long time, as stated in Theorem [2.3]

Definition 2.1. Let any non-empty open set w C ). It will be said that 2.1)) (resp. (2.3)) is locally
null-controllable at time T > 0 if there exists § > 0 such that, for every (y°,0°) € V x VVO1 3/ 2(Q) (resp.
(10, 6°) € VP x W, P(2)) with

16 g2y < 8 (resp 1%, 0%y < O)
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there exists controls v € L*(w x (0,T))N, vg € L*(w x (0,T)) and associated solutions (y,p,0)

satisfying
y(x,T) =0 and 0(x,T) =0 in Q. (2.6)

Thus, the main results are given by the following:
Theorem 2.1. The nonlinear system [2.1)) is locally null-controllable at any T > 0.
Theorem 2.2. The nonlinear system ([2.3) is locally null-controllable at any T > 0.

In order to prove Theorems [2.1and [2.2] we will first see a result of null controllability for the linear
system associated with (2.1)) and (2.3)

Liy+ VP =vx,+vobeny+Fi, V-y=0 in Q,

0= w+ F i ,
Lo VoXw + F2 in @ @7
y(z,t) =0, O(x,t) =0 on X,
y(z,0) =3°(z), 0(z,0)=0"(x) in Q,

where, L1y := y: — oAy and L96 := 0; — g A6.
Once the null controllability of (2.7) has been proven, we will define a Banach space that will contain

a remodeling of the null controllability problem. In other words, we rewrite the null controllability
property of (2.1)) and (2.3))), separately, as abstract equations (see (2.40) and (2.56)) in well chosen spaces
of “admissible” state-controls; see (2.36) and (2.39) for (2.1) and (2.54) and (2.55)) for (2.3). In particular,

through the definitions applied to the equations and “admissible” spaces, it is possible to show that such
applications are well defined and C' and, also its derivatives analyzed at zero are surjective. This will
allow us to achieve the null controllability of the systems in question.

Furthermore, when N = 2 we also show that for certain conditions in the initial data it is possible to
obtain a result of null controllability in a large time for the solutions of the system (2.1). To do this, we
will show that such solutions have asymptotic behavior when ¢ — co. Therefore, we have the following

theorem:

Theorem 2.3. [Large time null-controllability] For N = 2, let (y°,0°) € V x H}(Q) andr > 0 a

positive constant given by Theorem (see Appendix such that || (y°,0%) ||y « Hi(q) < T then there
exists a sufficiently large time T > 0 such that the nonlinear system ([2.1) is null-controllable at T

This chapter is organized as follows: In Section [2.2] we will talk about some already known results for
parabolic problems and Stokes systems and also Carleman estimates, which will be extremely important
for the null controllability of the system (2.7). In Section@], based on [[Gue06|, we will obtain the null
controllability of and prove estimates, in Banach spaces with weights, for the solutions of the system
linear as well as for the controls v and v that will be useful (in Section [2.4) to achieve the null
controllability of the systems and (2.3)). In Section[2.4] we establish the null controllability for the
systems (2.1)) and (2.3)) which will be done, as previously described, through Liusternik’s Inverse Mapping
Theorem. And, in Section [2.5]the proof of the Theorem [2.3| which will be carried out through a lemma
that guarantees that under certain conditions imposed on the initial data the solution of the system (2.1)
without controls v and vg have asymptotic behavior as ¢ — oc. Finally, still on this chapter, we added an
Appendix [B.T| that contains results of existence and uniqueness of solution for the system (2.1 and the

proof of the Lemma stated in Section [2.5]
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2.2 Some previous results

Our goal in the present section is to present well-posedness results for parabolic problems and Stokes

systems, as well as Carleman estimates for the adjoint system of (2.7) which is given by

lp+Vr=Gy, V-p=0 in Q,
‘ngl} = peN + GQ in Q7 (28)
o(z,t) =0, Y(x,t)=0 on X,
90($7T) = @T($)7 LZ)({L’,T) = ?l)T(JE) in
where Lip = —p; — vgAg, L3 = —by — 1oAY, o7 € H, T € L*(Q), G € L*(Q)" and

Gy € L2(Q).

Well-posedness results

The results of this subsection will be applied when we study the null controllability of system (2.7)
(Section , since once we have the appropriate regularity for #° and 4 the results described here can be

applied to equation formed by (2.7); and (2.7),.
The first lemma we mention here is applied to parabolic equations in LP — L9 spaces and its verification

can be based on [DHPO7|:

Lemma 2.1. Let 1 < r, s < oo and suppose that 3° € W15(Q) and h € L"(0,T; L*(SY)). Then the

problem
oy —Ap=h in Q,
¢=0 on X,
$0)=¢° in Q

admits a unique solution
¢ € WH(0,T; L5(Q2)) N L™ (0, T; W»5(9)),
Furthermore, there exist a constant C > 0 such that
6ell 20,1525 () + 1Al Lro.L5(0)) < CUIS  Nwrs(y + 1Bl Lr0,1525(02)))- (2.9)

Remark 2.1. Remembering that the Sobolev space W' (0,T; X), where X denote a real Banach space

x, consists of all functions u € L"(0,T; X) such that u' = uy exists in the weak sense and
belongs to L"(0,T; X). Furthermore,

with norm ||.|

1/r

T
UO (lu(®)ll% + lu' (Bl )dt (1<r<oo)

esssup ry(Ju(®)x + [/(8)]1x)  (r = 00).

HUHWM(O,T;X) =

More details about this space can be found at [Eval()].

The second result is valid for Stokes systems with homogeneous Dirichlet boundary conditions and

can be found in [[Tem97]):
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Lemma 2.2. For every T > 0, v’ € V and f € L*(Q)Y, there exists a unique solution (u,q) €
(L2(0,T; HX ()N nV) N L0, T; V) x L*(0,T; H'(Q)) to the Stokes system

u—Au+Vg=f, V-u=0 in Q,

u=20 on X,

u(0) = u° in .

The next result concerns the regularity of solutions of the Stokes system in L” — L9 spaces, it was
proven in [[GS91]], and complemented by [Gue06|] where the author comments on the application of

Helmotz’s decomposition to have it in the following form:
Lemma 2.3. Let 1 < py, pa < 0o and suppose that u® € WHP2(Q)N and f € LP*(0,T; LP?(2)). Then,
the weak solution u € L*(0,T; V) N L*(0,T; H) of system
u—Au+Vg=f, V-u=0 in Q,
u=20 on X,
u(0) = u® in Q
actually verifies, together with a pressure q, that
(u, Vq) € (LP*(0, T; WP2()N) n Whwr (0, T; LP2(Q)N)) x LP1(0,T; LP2(Q)™).

Moreover, there exists a positive constant C just depending on §) such that

l[wll o1 (0,022 (@) My AWt en (0,722 )) + IV | Lo1 (0,75202 () N)
< O£l o1 (o,75002 ()N + HUOHWLPQ(Q)N)-

Carleman estimates

We dedicate this subsection to Carleman estimate, which will be fundamental to achieving the null
controllability of (2.7).
Let’s introduce a new non-empty open set wy € w. Due to Fursikov and Imanuvilov [FI96] we have

the following result:
Lemma 2.4. There exists a function n° € C%(Q) satisfying
n°(z) > 0, Vo € Q,
n°(z) = 0, Vo € 09,
Vn?(z)| >0, VoeQ\wo.
Let us introduce the function ¢ € C*°([0,T7]) such that
IQ

(=4 41’
HT —t), T/2<t<T.

0<t<T/2,

Thus, for all A > 0 and m > 4, we consider the following weight functions:

eB/m[n° e _ A(mIn°lloo+n° () eAmIn°lloo+n° ()
Oé(fﬂ,t) = 6('”4 ) £(x7t) = E(t)4 )
a*(t) = max oz, t), £*(t) = ming(z,t),
e e
a(t) = mina(z,t), £(t) = maxé(z,t).
e €N
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The constant m will be chosen large enough, in particular such that
18a > 17a* in (0,7). (2.10)
We will present a Carleman estimate given by the following lemma:

Lemma 2.5. For any sufficiently large s and ), there exists a positive constant C' (depending on T, s and
\) such that, for all o7 € H and " € L?(Q) and any G1 € L*(Q)"N and Gy € L?*(Q), the solution to

(2.8) verifies
ol )2 + (02 + / / 25 (2 4 [[2) + £Vl + V|2 dr e
Q

<C // 6—88d+6sa*516(|¢|2 + |1,Z)|2)dSL‘ dt @11
wx(0,T)
+ // 6_4S&+28a*él5/2(’G1’2 + ’GQ’Q)de'dt
Q
Proof. See, Lemma 2 in [Gue06]. O]

2.3 Null controllability of linear system

This section is dedicated to the null controllability of the linear system (2.7). We emphasize that
two null controllability results will be obtained, since we will consider different cases for the initial data
19, 0" and the functions F, F,. More precisely, in the first case we will consider more common spaces in
control theory, such as H} () and L?(Q) while in the second case we will work with spaces less usual
ones, like W&’p(Q) and L9(0,T; LP(Q2)),for3 <p < 6andp < g < oc.

Let us set

p= 65&5—3/27 pL = erd—sa*é—lE)/Zl po = 645&—35&*5—87 p3 = eso* (5*)—1/2’

— 6830277504*5715, Uy = 685&77501*{717’ (212)

_ _8s&a—Tsa* {—16
=€ ‘f ’

%1 M2

K = era—Bsa 5—177

so that the values of s and A satisfy the Lemma[2.5] By inequality (2.10), we can see that

{ k< Cuz < Cup < Cpa < Cpz < Cpi, 2.13)

o) < Cpr, |papse] < Cpd and Ky < Cpg in (0,7T).

With Lemma[2.5]we will be able to obtain a null controllability result for (2.7), in which the right-hand
side F and F; decay sufficiently fast to zero as t — T'. In other words, the following propositions are

valid:
Proposition 2.1. Let us assume that
e if N=2:940c H, 60 € L*(Q), psF1 € L*(Q)? and psFy € L*(0,T; L*/?(Q)).
« if N=3:90c HN LY Q)3 6° € L2(Q), p3F1 € L*(Q)? and p3Fy € L*(0,T; L3/2(Q)).
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Then, we can find state-controls (y, P, 0, v, vq) for such that

// sl + 0P)dzde [ [ (ol + oo o e

wx (0,T) 2.14)
< C (18213 + 16°1 + 10 Fs 2oy + 93P 0 gz )
In particular, one has y(x,T) = 0 and 0(x,T) = 0. Moreover, if (y°,0°) € V x I/V1 3/Q(Q) then
y € L2(0,T; V)N C[0,T); H) and 6 € L*>(0,T; W23/2(Q)) n C°([0, T]; L3/%(Q)).

Proof. Itis enough to observe thatif N = 2, by Sobolev embedding, we have p3F; € L2(0,T; H=1(Q)?),
psFy € L2(0,T; H~1(2)?) and if N = 3, we have p3Fy € L2(0,T; W=16(Q)3), psF» € L*(0,T; H-1(Q)?).
Hence, we can obtain the proof by following the ideas of Proposition 2 in [[Gue06].

Indeed, let us introduce some notation:

« Bo={(p,4,9) € C®@QNTHEV -9 =0inQ, ¢ s = s :0,/7%(;,;,75)613::0};

w

a((¢,m,¥), (&, 7,1)) // Yo+ V) (LEp + Vit dadt

+ / / pTA(LE — on) (L5 — G)ddt + / / Xeo 0320 + Wi)dadt, ¥ (¢, 7,4) € Po;
Q Q

* P is the completion of P for the norm associated to a(., .). Hence, it is possible to conclude that

a(.,.) is a continuous and coercive bilinear form in P;

T T B
C (e = [ E@.e@)+ [ (0G0 60+ [0
0 0 J J
Thus, due to Carleman inequality (2.1T)), we have

160, 0) 2 + 1. O + / / 216 + [9) + p3 2 2V + [Vo|?)da e
(2.15)
S Ca((<7077r’w)) ((paﬁ-v&))v V(@vﬁ'ﬂ/;) S PO

from which it is possible to conclude, using the density of Fy in P, that [ is a bounded linear form on P.

Therefore, applying Lax-Milgram’s lemma, there exists one and only one (¢, 7, 1) € P satisfying

a((o:m, ), (9, 7,9)) = (L, (&, 7, 9)), ¥ (8, 7,) € P. (2.16)
According, we can write

y=p2(Lip+Vm), V-o=0 in Q,
0 = p; (L3 — pen) in Q, (2.17)
v=—py oXws 0= —py Uxe in Q,

where (i, m, ) is the unique solution of (2.16).

Next, just use the Sobolev embedding mentioned above and apply the arguments of [[Gue06] to
obtain the existence of controls (v,vg) € L?(w x (0,7))N*+! and associated solutions to (2.7) satisfying
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(2.14) and consequently (2.6). The regularity of the € solution is justified by the maximum regularity for
parabolic systems in spaces LP — L9, see Lemma [2.1] and consequently by the standard results for Stokes

systems (Lemma([2.2) we obtain the regularity of y. O

Proposition 2.2. Consider 3 < p < 6 and p < q < oco. Let us assume that the functions Fy, F5 in
satisfy psFy € L1(0,T; LP(Q)N), p3Fy € L4(0,T; LP(Q)) and (y°,0°) € VP x Wol’p(Q). Then is
null-controllable, and its control-state satisfy (v,vo) € L?(w x (0, T))N*, y € L0, T; W2P(Q)N) N
CO([0,T); LP(Q)N) and 0 € LI(0,T; W2P(Q)) N C°([0, T]; LP(Q)).

Proof. Indeed, since V? x W, P(Q) < H N LN x L2(Q) and L(0,T; LP(Q)) — L*(Q) <
L?(0,T; L3/2(Q)) then the Proposition [2.1|is verified and consequently (2.7)) is null-controllable. The
regularities of 6 and y follow respectively from the Lemma[2.T)and the Lemma [2.3] 0

Estimates for the states solutions

In this subsection we will show estimates for the solutions associated with (2.7), that is, for both the
velocity variable and the temperature variable. We will obtain estimates not only for y and 6, but also for
Vy, Ay, VO, A6 and the controls v and vg. The results obtained in this subsection will be fundamental to
obtain the null controllability of the nonlinear systems (2.1)) and (2.3).

Proposition 2.3. Let the assumptions in Proposition[2.1|be satisfied. Let the state-control (y, P, 0,v,vg)
satisfy (2.7) and (2.14). Then, the following estimate holds:

sup /u?\ylzdwr//u?wlzdxdt
te[O,T}Q G

(2.18)
<c |1l + //p3|F1P+pl<\y|2+re\ Nawde+ [[ ol o
wx(0,T)
Furthemore, if (y°,0") € V x Wol’g/Q(Q), one also has
sup /u%!Vy\deJr//u%(\yt\“rIAy\Q)dwdt
te[O,T]Q
(2.19)
<o |1l + //p3\F112+p1<ry|2+|0\ Nawdt+ [ ol dzar
wx(0,T)
and
LTI Ty 2
/Oﬂ2||9t||L3/2(Q)dt+/0 H2||A9‘|L3/2(Q)dt
(2.20)

< C {1, 000m // P16 du di + // pBlvol? der dt + / p3Fel2s/2 0

wx(0,T)

Proof. The proofs of (2.18) and (2.19) can be obtained as in [FLMI5] (just use the same arguments with
the weights defined in (2.12)).
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Let us prove (2.20)). Denote by = w26, Then, by (2.7), we have
0; — yAO = h in @,
é(x,t) =0 on X (2.21)
0(x,0) = p2(0)6°(z) in Q,

where h = 1200 Xw + poFo + o 40.
Note that, by (2.13) and (2.14) we have povoX., poFo € L*(0,T; L3/?(Q)) and also

4/3

T
C/ /\p19|3/2 dx dt
0 (2.22)

= Clpf?

IN

”MZtHHiZ(O’T;LB/z(Q))

12(0,1503/2(0)) < TO°

Then, h € L?(0,T; L*/?(Q)). Therefore, from (2.9) we have

T T
/()N%HetH%?»/Z(Q)dt—F/O P11 A0 T2yt

< C (IR0 rogrzqeyy + 1120001210725y )

and consequently

T T
[ 10y e+ [ 31801 g

<C I, om0y + // gl avars ([ Bl v [ psEile dt |

wx(0,T)

achieving the desired inequality. 0
Proposition 2.4. Let the assumptions in Proposition|[2.2] be satisfied. Then, the controls verifies

kv € L2(0,T; [H?*(w) N HE ()N) N ([0, T); V), (kv)s € L (w x (0,T)N. (2.23)

Kkvo € L2(0,T; H*(w)) N C°([0, T); H' (w)), (kvo): € L2 (w x (0,T)). (2.24)

with the estimate

T
/ / [[(50)e)* + [(Kvo)e|* + [KAV[* + [KAvg|?] dadt + sup ||kv|}
0 (0,7

2 012 02 2
+ SUP] H"WOHHI(M) <C (Hy 17> + 116 HWOI”’(Q) + ”p3F1HLq(07T;LP(Q)N)

+ ”P3F2H%Q(O,T;L”(Q))> :

Furthermore, the associated states satisfy

/ [ idubdsat +suw [ 3wy + / [ i3isvPazat +sup [ dlyPda
[0, ]Q [0, ]Q
2.25
//uzrvm drdi < C | 1s°)2 + //p (161 + |y[?) da dt + // Alofdrar &)

wx(0,T)

JrHP3F1HLq(0,T;LP(Q)N))
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and

//,u3|¢9t| dxdtJrsup/,u3|Vc9|2da:+//u3|A9\2dxdt+Sup/,u%|9|2dx
0,7 [0,7]
2.2
//u2|ve| drdt < O [ 10100, //plwﬁdmw [ Awpaza @2

wx(0,T)
+Hp3F2HLq(o,T;LP(Q))> '

Proof. The first part of the proof will be dedicated to concluding (2.23) and (2.24).
Letus setu = py 2. Hence by the definition given in (2.17) we have, after some computations,

Li(ku) = (kp3*)Lie — (kP32 527
-2 2 —2 —2 (2.27)
= (kpy 1)y — (Kpy ")V — (Kp3 " )iep-
We notice that,
k3 2p3] < Cpu, |kp3?| < C, |(kp3 2)epp™ | < Cp . (2.28)

And, from the Carleman estimate (2.11]) and again 2.17)), we get:

// (o2 + %) d:vdt<//p1 (Jy® + |0)?)dxdt + // P3([v]? + Jvo|?)dzdt < +oc. (229)

wx(0,T)

Therefore, by (2.27), (2.28) and (2.29) we obtain (@, 7) := (ku, kpy 21) solution of the Stokes system

W+ Vai=f, V-a=0 in Q,
u =0 on X,
a(.,T) =0 in

with f = (kp5 2p1)pry — (kpy 2)epp~ Lo € LA(Q)N
By the standard regularity for solutions of Stokes systems, we can infer the regularity (2.23)) for
KU = —UXw-

Similarly, define w = —py 24 and note that vg = w,,. Then,

Ly(kw) = —(rkpy )L+ (rkpy )t
= —(rpy P10 — (kpy*)pen + (rkpy )t (2.30)
= Nj+ Ns+ Ns.

Analyzing each N;, i = {1, 2, 3}, we obtain
|Nq| < 350350 ¢=19/45,0 |Ny| < Cesd50" 1 p~lpen, |N3| < Cesd=se"gT/4p=1y,

Thus, from (2:29), we deduce that Ny + No + N3 € L?(Q). Therefore, taking into consideration the
PDE satisfied by kw and the fact that (kw)(.,T") = 0, we concluded that

rw € L?(0,T; HX(Q)) N C°([0,T]; HX(Q)), (kw); € L*(Q).

In particular, (2:24) holds.
Now, let’s establish the second part of the proposition, that is, (2.23) and (2.26)):
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Firstly, multiplying the linear system (2.7); by 3y (as a test function), integrating in €2, we have that

1d
oo [ BluPdr + v / BIVylPde < C / 62 + [y]?)dz + / pRlofdz
Q Q ) w
+/p§!F1|2d$
Q

thanks to |papus| < Cp2, u3 < Cp?, u3 < Cp3 and p3 < Cp3. Then, integrating from 0 to ¢ we find
that

sup / W3ly[2dz + // BIVyPdedt < C |50 + // R0 + yl?) du dt
0 Q Q

// p2’U’2dxdt+//p3‘F1’ dx dt

wx(0,T)

(2.31)

Next, using i3y, as a test function in (2.7);, integrating in {2 and taking into account that 3 < Cp3 <

2. we obtain

d
e / iivyPds < | [ AP+ [diRPd+ [ o

Q w Q Q

+/u§|Vy\2dx
Q

Hence, integrating from 0 to ¢ and making use of (2.31)), we deduce that

//ugm 2dxdt+[sup]/us|w| do< C {1+ [[ s3loP dode
Q

wx(0,T)

" / [ 0P + P o e + / [ AiFPas

Finally, multiplying (2.7), by ,u3Ay and followed in a similar way to the previous estimates, we

(2.32)

arrive at

sup / 12 Vy 2+ / / B AyPdrdt < © | 1407 + / / (0 + ly[?) de dt
Q

// p2]v\2dxdt+//p5F1\ dx dt

wx(0,T)
Therefore, from (2.31)-(2-33)) and by Sobolev’s immersions V? < V and LI(0, T; LP(2)) — L?(0,T; L*(2)),
we see that (2.25)) holds.
The estimate (2.26)) is obtained by multiplying 136, 136; and —p3 A0 one after the other in (2.7), and

(2.33)

using the same arguments as before.
O]
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The next result is a proposition from [Man+23| and will be of great importance for us to conclude our

main theorems. For this section to be complete, we will give here the proof provided by [Man+23]].

Proposition 2.5. If u € L1(0,T; W?*P(Q)), u; € L9(0,T; LP(Q)) then u € C°([0, T); WP(Q)), p > 2
andp < q < o0.

Proof. Consider u a regular function with compact support contained in €2, so we have

d
dt/ Vuldz / 4 1vup)bdz /p((|vu2)5—1) (VuVu)de
Q Q
= p/ |VulP~2VuVudx
Q

= —p/ V(| VulP~2Vu)usdz —i—/ p|VulP2Vu - uy - 7dl
Q onN
= /(p(p — 2)|VulP VY (ug, ), + p|VulP 2 Au)udx
Q

< c/(p(p—Q)yvu|P2yD2u| + pIVulP~2| Auf) .
Q

1 1 1
Smcef—k -l-——lthen
—2
/|Vupdx < C(/(|Vu|p o= 2dx = /D2u|pd:c % / |ut|pd:v%
Q
<

c /Q IVl dz) 7 |l el 2o ey

1 1 1 —2
integrating in [0, 7], like —~ + — + —— = 1, and using that q(p2) < q there is,
q —2 q—

q—2

T pP=2 _4q_ KB
[wutpas < o ([ (] wury T i) " oo o
+ [ [Vu©Pds()
< Cllulfagrawin aplullzarwze@) luell Lo rizr@) + 1410 -
The result follows by density. O

The following proposition will be fundamental to guarantee the null controllability of the system (2.3))

and its proof will be acquired from the previous results of this section.

Proposition 2.6. Let the assumptions in Proposition be satisfied. Then, the following estimates are

valid
1050 ell oo 77 2) + 1501l Loz () + 1KOcoorawr o) 234
< C (I8l + 18l 0y + 1231 oo oy + 1952l ago riaocon) o
and
1(ky)ell Lo, Lo @)™y + 159l Lagor e @)n) + 15yl oo, r e @)n) (2.35)

< C (I8°llvs + 101y + 193 F3 | o iz + 103 Fell ooy
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Proof. Define 7 = k6. Then, by (2.7), we have

e — VAT = b in Q,

T(z,t) =0 on X,

7(z,0) = k(0)0°(x) in €,
where b = kvgxw + KFo + k. Thus, as consequence of [2.13)), (2.24) and (2.26) together with the fact
that C°(0,T; H*(Q)) < L(0,T; LP(£2)) we have b € LI(0,T; LP(£2)). Then, applying the Lemma

and Proposition[2.5] we get (2.34).
Now, notice that, (-, P) = (ky, xP) solve the Stokes equation

Y — 1Ay +VP=b, V-v=0 in Q,
v(z,t) =0 on X,
Y(z,0) = K(0)y°(x) in €,

where b = KUXw + Kty + vorben + kFy. Hence, applying 2.13), (2.23), (2.23) and (2.34) we have
b€ L0, T; LP(Q)N). Then, from the Lemma 2.3|and again by Proposition 2.5 (Z.33) is acquired. [J

2.4 Proofs of the main theorems

In this section we will prove Theorems [2.T]and[2.2]

Proof of Theorem

Here, we will proved the local null controllability for the system (2.1)). Let us consider the Stokes
operator A : D(A) — H, where D(A) := V N H*(Q)N, Aw = P(—Aw) for all w € D(A) and
P : L*(Q)N — H is the orthogonal projector.

Let £y be (for N = 2 or N = 3) the following space:

En = {(y, P,0,v,00) : pry, p2vxw € LH(Q)N,y € L*(0,T; D(A)), P € L*(0,T; H'(2)),
P16, p2voXe € L2(Q),0 € L2(0,T; W23/2(Q)), for Fy := L1y + VP — vofen — vxw
and Fy := L90 — voXa, p3F1 € L2(Q)N, p3Fy € L2(0,T; L*/%(Q)),
Voy=0,y(,0) € V.0(.,0) € Wy (@), 0]s= 0},

(2.36)

emphasizing that L1y = y; — 1pAy and L20 = 6, — 19 Af. Thus, it’s clear that £y is a Banach space for
the norm ||. [, , where
I(y,p,0,v UO)HSN H?JHL2 (0,7;D(A) + ”HHiz (0,T;W23/2(Q))
+ ||PlyH 2(Q)N + HP1‘9||L2(Q + ||pHL2 (0,7;H () + ||p2/UH%2(w><(O’T))N
+ ||P2U0HL2(WX(0,T ) + [|p3(L1y + Vp — vpflen — Ulw)‘|%2(Q)N
+lo3(£26 — voL >||L20TL3/2(Q) 100021
Due to Proposition [2.3]and linear system (2.7) we get:
1yl oo o, ;2 )y + Iyl L2 0,050 vy + 1129l oo 0,755 () )
+ 2yl 20,752 () + l2yell 20,22~y + 120t 120 751872 ) (2.37)
+ HM29HL2(0,T;W2,3/2(Q)) < C|(y:p,0,v,v0)le-
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Furthermore, if (y,p,0,v,v9) € En, then v, € L?(Q)"N, whence y : [0,T] — V is continuous (see,
[EvalO])) and we have y(.,0) € V, with

ly(,0)llv < Cll(y,p,0,v,v0)lley (2.38)
Now, let us introduce the Banach Space
Zyn = L2(p2: Q)N x V x L2(p2(0,T); L¥2()) x W/ (q), (2.39)

where L?(p3(0,T); L*/?(Q)) be the Hilbert space formed by the measurable functions u = u(z; ) such
that psu € L?(0,T; L3/?(Q)), i.e.,

T
lllZ2 a2 0,7y:22)) = /0 P3lIw(®) T2 gy Bt < +o00.

Replacing L?/2(Q) by L*(Q2) in L?(p2(0,T); L3/%(2)), we get L?(p%; Q).
Finally, consider also the mapping F : £y — Zy, such that

F(:U?p?HavaO) = (]:17;27;37;4)(?/71779’UaUO) (240)

where

Fi( )=y

Faly,p.6,0.10) = y(..0) oa)
Fs(y,p,0,v,v9) =0, —v(Vy)A0 +y - VO —v(Vy)Dy : Vy — vpl,,,
Fu(y,p,0,v,v9) := 6(.,0).

Note that, in (2.41); we used the definition of V - (v(Vy)Dy) to rewrite in the form v(Vy)Ay, since
V.-y=0.
We are interested in apply the Mapping Inverse Theorem in infinite dimensional spaces, that can be

found in [ATF87]], and is given below, where B,.(0) and B;((p) are open ball, respectively of radius r and
J.

Theorem 2.4 (Liusternik’s Inverse Mapping Theorem). Let £ and Z be Banach spaces and let F :
B,.(0) C & — Z be a C* mapping. Let as assume that F'(0) is onto and let us set F(0) = (o. Then,
there exist § > 0, a mapping W : Bs((o) C Z — & and a constant K > 0 such that

W(z) € B,(0), F(W(2)) =z and |W(z)|le < K|z — F(0)||z Vz € Bs(p)-
In particular, W is a local inverse-to-the-right of F.

Thus, we will prove that we can apply this Theorem 2.4 to the mapping F in (2.40)-(2.41), through

the following three lemmas:

Lemma 2.6. Let F : Ey — Zy be given by (2.40)-(2.41). Then, F is well defined, and is continuous

around the origin.

Proof. We will do the proof for the N = 3 case, the N = 2 case is similar.
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We want to show that F(y, p, 0, v,vy) belongs to Zs, for every (y, p, 0, v,v9) € Es. To do this, we
will show that each F;(y,p,0,v,v0), with i = {1,2,3,4}, defined in (2.41) belongs to its respective
space. Note that,

||]:1(y7p7 97”7”0)”%2(p§;@)3 S 3||p3(£1y + vp - I/[)HSN - UlUJ)H%? )3
+3[l03(y- V)9 320y + 3lloari | VYIPAyl32 )5

By the definition of £5 we have that
lp3(L1y + Vb — voflen — 1) (1220 < C ll(y, v,60,v,v0) 3, (2.42)

Also, from (2.13)), in view of (2.37) and by continuous immersion H?(£2) < L°°(£2) we have

c / / 1By PV yPde dt
Q

T
C | sup / p3|Vyl* dx (/O u%\\y!!%mm)sdt) (2.43)

(0,7] 5

IN

o3 (y- V)9l 72 s

IN

IN

C ||M2y”%oo(07T;H1 (2)3) ||lu2y||%2(0,T;H2 (©)3)

IN

C H(y7 v, 67 v, ’UO)Hég'

And, since ,u2_1 <,

IN

Il VoSl < € [ il / oyl

IN

C (E)ugu§|!Vyll2> / luoAy|dz (2.44)
’ Q

A

< C ||:U’2yH%00(07T;H1 (©)3) HMQyHQLQ(O’T;[_p(Q)s)

IN

C ||(y,p7 97 v, UO)”gg,'

Therefore, by (2:42), 2.43) and (2.44) we get Fi(y,p, 0,v,v0) € L?(p%; Q)3. From the inequality
(2.38) it follows that F5(y, p, 6, v,v) € V.

Now, for F3(y, p, 0, v, vg) note the following:

|73y, p, 97”7”0)”%2 p2(0,T);L3/2()) <C <Hp3([’20 - UOlW)H%Q(O,T;LWQ(Q))
+ Hp3y VHHLQ OTL3/2 + Hp3l/1Hvy||2A9||L2 0TL3/2(Q)) (245)
+ ||p3(1/0 + Vl”v?/H )Dy : VyHLz(O,T;Ls/Q(Q))) = 025:1 Xs.

Let’s analyze each X, s = {1,2,3,4}:
o X; < C|(y,p,0,v,v0)|3,
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Using the continuous embedding W3/2(Q) < L3(Q),

. 1/2 1/274/3
e Xo S/ p3 /!y\?’dx /\V@\?’dac dt
0 Q Q
L. 2 Ty 2 2
:/0 P3||CUHL3(Q)3||V9||L3(Q)3 dtSC/O Ha[|Vyll HV‘9||W1,3/2(Q)3 dt

T
<C /0 K2Vl 1012/ e dt

< C||/L2y||%oo(07T;H1(Q)3)||/L20”i2(07T;W2,3/2(Q))
< C H (y7p7 97 v, 'UO)H%B;

4/3
T
o X3 < o/ (/M%V93A93/2d$> di
0 Q
. 2 » 4/3
c [ ustivult | [ ua0pca |

Q

IN

4/3

2
T
< C(supAL%!VyHQ)/ [0z an | ar
0,77 0

Q

IN

C HM23/||4 0 (0,T;H(Q)3) ”:UJQQH%Q (0,T;W23/2())

IN

CH(yapveav7v0)Hgg;
4/3
c / /ug vo+ [V 2y de |t

4/3
T

¢ [ o+ nlvyP? ( / uéw?’dx) dt
0

Q

s
N

IN

4/3

T
c / 202 + 12Tyl / VyPdr | dt
0 Q
4/3 4/3

T
< C/ L/@WwWw ﬁ+QAuf£WMW /@WWWw dt
Q

IN

= (K1+K2)

First let’s analyze K. Since V(u2y) belongs to L°(0,T; L2(9)?) N L2(0, T; H'(2)?) then using the

Lemma 6.7, in Chapter 1, from [L1069], which ensures continuous embedding
L0, T; L2(2)%) N L0, T; HY(Q)?) — LY0,T; L*(Q)?), (2.46)
we have V(u2y) € L*(0,T; L3(Q)?). Even more,

IV (o)l a0z 0y < CIV (a2 02y IV (29 it 1 2y
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Thereat,

=
AN

C[V(p2y) ”%oo(o,T;p(Q)S) IV (12y) "%2(071“;[{1((2)3)'

N

< Clinzyl i o,rsm oy 12913207209
< CH(y7p7 97”7?}0)”%3-

And again using the fact that i, L <, we get

2 , 4/3
K, < C sup/u%!Vylzdx / /u%lVy?’dw dt
[0,T] 0
Q Q
< C||(y>p797v7?-]0)||§3'
Thus,
o X4 < C(L+ [|(yp, 0,0, 00) [ 4) | (0, 2, 0,0, 00) 1, (2.47)

and consequently, from what we saw for each X, s = {1, 2, 3,4}, we obtain by (2.43) that
Fs(y,p,0,0,v0) € L*(p3(0,T); L*/(Q)).

Finally, without difficulties, we can see that F4(y, p, 0, v,vg) € VVO1 3/ 2(Q) This prove that F is well
defined.
The verification that F is continuous around the origin is done in a similar way. With this, we have

the proof of the lemma. O
Lemma 2.7. The mapping F : Ex — Zn is continuously differentiable.

Proof. We will the proof for N = 3 (the case N = 2 is similar). Let us first prove that F is Gateaux-
differentiable at any (y, p, 8, v, vy) € £3 and let us compute the G-derivative F'(y, p, 6, v, vp).

Let us fix (y,p, 0,v,v9) € E3 and let us take (v, p’,0',v',v() € & and o > 0. Also, by the decom-
position made in (2.41)), we introduce the linear mapping DF : & — Z3 with DF (y,p,0,v,v9) =
DF = (DF1,DF2,DFs, DF,) where

DF(y 9,00, vp) = y; — (vo + 1| Vy[I*) Ay’ — 201(Vy, Vi) Ay + V!
+ W - Vy+(y-V)y' —wmbes — 'Ly,
DFa(y,p, 0", v vy) :==y'(.,0),
DF3(y,p, 0,0, vp) = 0 — (vo + 1| Vyl[?)AG — 21 (Vy, Vy') AG (2.48)
+y VO +y -V —vjl, — (o + 11| Vy||>) Dy : Vy/
— [0 + 1| Vy|>) Dy + 2v1(Vy, Vi) Dy] : Vy,
DF4(y,p, 0,0 v) :==0'(.,0).

From the definition of the spaces €3, Z3 and (2.48), it becomes clear that DF € L(&3, Z3). Further-

more, for each j = {1, 2, 3,4} we have

1
—|Fj ; ,G,U,U +o ,7 /70/’1/7’0/ —F;j ; ,G,U,U
S (yp 0) +o(y',p 0) — Fi(y,p 0)] (2.49)

converges to DF;(y/, p', &', v', vp) strong in Z3, asg — 0.
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Let us show that (2.49) is true. Firstly, we state that,

1
7~F 9 797 ) /a /70/7 /7 0 _J_.' ) 79> 9
P ((y,p,0,0,00) + oy, 0, 0,0, 0p)) = Fily, p. 6.0, 00)] 2.50)
converges to DF1 (', p', 0, ', v}) strong in L?(p3; Q)3, aso — 0.
Indeed,
1
Hg[fl ((,%I% 971)7 UO) + U(y/7p/7 0/71)/7 1)6)) - fl(yvpv 07”7”0)}
—DF1(y, 0, 0", 0", v0)l| 2 p2:095 < oW V)Y | 22008
vy
+— IV +a)I? = IVylI*) Ay = 2v1(Vy, VY ) Ayl 122,03
e (IV(y + o)1 = IVYIP)AY |l L2 2,0 = Hi + Ha + Hs.
Note that, as proved in the Lemma [2.6]
HY < Col|(y,p,6',v, 0p)II2,

and we see that, H; —> 0, as ¢ — 0.

Also,as 0 — 0,

1
13 =2 [[ 12 (I + o) = [991P) Ay — 21(Vy, Vo)) Ay Pdadt — 0
Q

and
HE = 2 / / RV + o) 2 — [Vl 12| Ay Pddt — 0.
Q

Thus, (2.30) holds.

Now, that the difference quotient

1

E[E ((yapa 07 v, UO) + J(ylvp/7 9,7 Ul: ’U(l))) - ‘F](yapa 07 v, UO)] (251)
converges to DF;(y',p’,0',v',vy) strong for j = 2 and j = 4, respectively, in V and Wol’S/Z(Q), as
o — 0, is immediate.

Finally, let’s see that

Z1Fs (0,20, 0,00) + 04/, 000, 18) — Foly, .6, 0,v0)] o)
converges to DF3(y/, p', 0,0, v}) strong in L2(p3(0, T); L*/?(Q)), aso — 0.
For simplicity, we omit the notation of inequality norms below but let it be clear that they are all
norms in L?(p2(0, T); L3/%(12)). More precisely,
2175 (.2, 0,0,00) + 0/, 1,0,/ 04)) — Fly,p, 0,0, v0)]
—DF3(y, 0, 0,0 w)| < ally”- VO
+oll(vo + 11|V (y + oy 1) Dy’ : VY|
12 (I + o) 2 = [ Vy]) A6 = 201(Ty, Vi) A9
v (IV(y + oyl = [VylI?) A
+||% IV + o) = IVylI?) Dy : Vy — 201(Vy, Vi) Dy : Vy|
Hir(IV (y + o)1 = [VylI?) Dy - Vi/|

7
H(IV(y + o)1 = [Vyl2) Dy - Vyll = > 1.
j=1
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By the same arguments from the proof of Lemma [2.6|(see, X2, X3 and X}) together with those used

in (2.50), we have
5
le—>0, as o — 0.
j=1
Also, since
4/3
F<c/ (20| VYIIVY| + 0?1 VY|P)? l/vwﬂwmwm: dt

< Co? (Hy||2oo(Q,T;H1(Q)3)Hyl”QOO(O,T;Hl(Q)3) + 02||y HLOO(07T§H1(Q)3))
127 4/3

- 1/2
/ I /IVyISd:v /IVy’\3dw dt
0 o A
= 00'2 (Hy”Zoo(mT;Hl(Q)B)Hy/HQOO(O’T;Hl(Q):;) + 0'2‘|y/H%oo(07T;H1(Q)3)>
T
<A @mwMSJWVymsfmg
< €02 (I~ oizsen o 1V om0y + 02 iz )

;(/TIIV(uzy)IILs sdt+/T||V(u2y)||L3 Sdt)

=Co? (H?JH2oo 0,T;H( )B)H?J HQoo(o,T;Hl(Q)B) + ‘72“3//“400(07@}11(9)3))

(I a3 0750y + IV (2 ) 0 50y )

and from continuous embedding (2.46)), we have that Is is bounded and therefore /s — 0, as ¢ — 0.

By the same arguments we also have I — 0, as 0 — 0. Consequently, (2.52)) is hold.

Therefore, from ([2.50), (2.51) and (2.52) we have (2.49) and F is Gateaux-differentiable at any

(y,p,0,v,v0) € &, with G-derivative F'(y,p, 0,v,v9) = DF(y, p,0,v,vp).

Now, let us prove that (y, p, 6, v,v9) — F'(y,p,0,v,v0) is a continuous mapping. Thus, we will

prove that F is not only Gateaux-differentiable, but also Fréchet-differentiable and C'. For that, suppose

that

(ymapmaemavﬂwUOm) — (y7p79avvv0) in 53

and we will prove the existence of ,,,(y, p, 0, v, vg) such that

H (‘F/(ymapma emvarthm) - ]:/(yapvea UaUU)) (y,aplv 9’,’0’,’[}6)”223
S EmH(y/>p/79I>UI7U6)||%3>

forall (v/,p/,0',v',v) € E3and lim &, = 0.
m—0oQ0

In order to simplify the notation, we will consider

Dj,m = 'F.j/‘(ymvpm76m7vmavom) - f;(y7p7077)71)0)‘

(2.53)
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So, notice that
i HDLm(y,?pl? 9,7 Ul? UE}) "%2 p%:Q)3
<3l (VY2 = IVyml®) AY[72,2.0)5
+ 31201 (Vy, VY ) Ay — 201 (VYm, VY ) Ayml|? 2, 2.8
L (p31Q)
+30(" - V) (m = 9) + (gm = v) - V)Y 722,000
= 3K1 + 12K2 + 3K3
Since,
2
K1 < C (1190 = 9l V5IAY 22,0
+ IV = g IV AY 122,20
then, using the same arguments as (2.44)), we conclude that

Kl S El,m”(y,vp/7 H/a UI7 U(’))Hé

where

€1,m = CH(ymapmvemaUmaUOm) - (y,p, 9)”7”0)”%3 (||(y,p,9,v,vo)||§3

+H (ym7p’m7 07717 Um, UOm)H%’g) .
For K let’s first see the following, adding and subtracing v1(Vy,,, Vy')Ay in Ko, we have
Ky = || - Vl(v(ym - y)7 Vy/)Ay - Vl(vynu vy/)A(ym - y)”QLQ(p%;Q)s
<C (HVl(v(ym - ) vy’ )AyHL2 (02;Q)3 + Hyl(vynu Vy/>A(ym - y)”%2(p§;Q)3>
S 827m||(ylap/7 9,5 v 7/1)(])”537

where
€2.m = CH(ymapmaemaUvaOm) - (yapv 9)“7”0)”?):; (H(y’pae?UaUO)”g‘:s

+ 1 (Wms P, Oy Vs vom)[12,) -
And, by the same reasoning as @),
Ky < C (10 D) Wm = 022,000 + 10@m = 1) - V)5 ag2.00)
< esmll (¥, 0, 00", v) 12,
with
e3m = Cll(Ym: Pms O, Vm, vom) = (4, 2, 6,0, v0) 12,
It is easy to check that D;,,, for j = 2 and j = 4 satisfy similar inequalities.

Again, all inequality norms below are norms in L?(p2(0, T); L3/%(£2)), we will omit them for sim-

plicity. For D3 ,,, after some calculations we get the following:
o [ Dsm(y’ 0, 0,0, 00) | < C IV (ym — )| [ Vyll A0"||?
HV G = DIV ym A0 12 + 1 (Vi V')A (O — 0) |7
Hv1(V(ym = 9), VYA + [[(vo + 1[I Vym ) D(ym — y) : VY[
Ha(IVyml? = IVyl*) Dy : VY12 + (o + w1 [ Vym[*) Dy = V (ym — y)II?
Hr(IVyml? = IVyl2) Dy VY12 + 121 (Vym, VYY) Dym = V (ym — y)II?
Hr(VYm = ), VY ) Dym = Vyl? + [1(Vy, Vi) D(ym — y) : Vyl°

Hy - V(O = O* + l[(ym —y) - VO|?] = C Y K.
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Let’s check some terms,
4/3
Ki<C / / WV m — P2y P2100 P 2o |

< O p2(ym — Z/)HLoo(QT;Hl(Q)S)||/1«2yH%oo(0,T;H1(Q)3)HNQQ,‘|%2(07T;W2,3/2(Q))

< eamll(y 0, 0,0 vp) 13,

where
eam = Cll(Ym» P, O Vs vom) — (U, 9, 0,0, v0) |2 1| (v, , 0, v, 00) |2, -
Also,
4/3
Ky<C / / 300+ 0 IV DIV (g — )20/ P |t
<C ( + \|M23/m||Loo(o,T;H1(Q)3)) |||V(M2y/)|2”L?(o,T;L?r/?(Q))
1V (2(ym = Y) Pl 20,7132 (00
<egmll (Y0, 0,0, )13,
where

€8m — C(l + H(yrmpma 0m70m700m)”§3)u(ym7pma Hm,vm,vom) - (y,p,G, v, UO)H?}&‘

And,
Kis < e1oml (v 0, 0,0, v0) I3,
where
£16,m = Cll(Yms Dy Oms Vs V0m) — (4, 0,6, 0, 00) ||, -

The other terms follow analogously.
Thus, we have lim &5, = 0forall s € {1,...,16} and consequently follows (2.53). This ends the

m—r0o0

proof. O
Lemma 2.8. Let F be the mapping in (2.40)- . Then, '(0,0,0,0,0) is onto.

Proof. Let (Fy,y", F,,0°) € Zx. From Proposition Proposition [2.3|and the regularity indicated in
(2.5) we know that there exist (y, p, 0, v, vp) solution of

yr — Ay +Vp=vl, +vybey + F1, V-y=0 in Q,

0; — Al = vgl, + Fo in Q,
y(x,t) =0, O(x,t) =0 on X,
y(a,0) = y°(x), 0(z,0)=0"(x) in Q.

satisfying the definition of £y. Therefore, (y,p,0,v,v9) € Ex and
]:/(Oa Oa Oa 07 0)(yapa 65 v, /UO) — (Flv y07 F27 90)
Consequently, Lemma (2:8) holds. O
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Proof of Theorem 2.1 We conclude from Lemmas [2.6}2.8]that the Inverse Mapping Theorem (Theorem
[2.4) can be applied to the spaces £y and Zy together with the mapping F introduced at the beginning
of this Section. Thus, there exists § > 0 such that, for every (y°,6°) € V x VV1 372 () satisfying
(v°, HO)HVXW()1,3/2 < 4, there exists controls v € L?(w x (0,7))" and vy € L?(w x (0,T)) and
associated solutions (y, p, #) to (2.1) such that y(z,T) = 0 and f(z,T) = 0 in .

This proves that, the nonlinear system (2.1)) is locally null-controllable at time 7" > 0.

Proof of Theorem 2.2

Let

Un = (y, P,0,v,v0) : pry € L2(Q)N, pav, (kv)s € L(w x (0,T))N,y € L9(0,T; W2P(Q)N),
P € L9(0,T; LP(Q)), p16 € L*(Q), pavo, (kvo): € L*(w x (0,T)),0 € L4(0,T; W?P(Q)),
for Fy := L1y + VP — voflen — vxwand Fy := L2 — voxw, p3F1 € LI(0,T; LP(Q)N),
psFy € L9(0,T; LP(Q)),V -y = 0,9(.,0) € VP, 6(.,0) € W, P(),
ylx=10,0|n=0,where3 < p < 6andp < g < oo},

(2.54)
It’s clear that Uy is a Banach space for the norm ||. ||z, , with
l(y, P, 0,v UO)”[,{N = HyHLq (0,T;W2:p(Q)N) + HGH%q(O’T;WQ,P(Q)) + lequL2(Q)N
+ ||P10||L2(Q + ”PHLq(o T;LP(Q)) + HPQUH%2 (wx (0,T))N + ||P2U0||qL2(wX(0,T))
01 oy + 18DV oy + 1000061 %2 oy
+||“AUO||L2 (wx(©,1) T ||p3F1||Lq(O’T;Lp(Q)N) + ||PBF2||Lq(0,T;Lp(Q))
q
O + 106,010
Now, let us introduce the Banach space
Ry = Lq(pg(O,T);Lp(Q)N) x VP x LY(pl(0,T); LP(2)) x Wol’p(Q), (2.55)
and the mapping 7 : Uy — Ry, such that
I(ya P7 67 v, UO) = (11712)1:371—4)(y7 P7 6) v, UO) (256)
where
Il(y7 P7 0) v, UO) =Yt — E(vy)Ay + (y V)y +VP - V09€N VXw,
IZ(y7P7‘97vuvU) = y(uo)v (2 57)
Zs(y, P,0,v,v9) := 0, — v(VO)AO +y - VO — v(Vy)Dy : Vy — voXw,
I4(y7 P7 07 v, /UU) = 6(7 0)

To simplify the notation, in the norms of LP(Q)" we will just write LP(€). That said, we have the

following results:

Lemma 2.9. Let T : Un — Ry be given by (2.56)-(2.57). Then, T is well defined, and is continuous

around the origin.
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Proof. Let’s prove that, for each (y, P,0,v,vy) € Un we have Z(y, P,0,v,v9) € Ry.
That Z5 and Z, are well defined follows immediately from the definition of U . So let’s find out Z;
and Z3.
Analysis of 7;:
i ||p3F1||%q(07T;LP(Q)) <C|(y, P, 9>U7U0)||13N-
Taking into account (Z.10) we have p3x~2 < C. Moreover, using the fact that W1 (Q) < L>(Q) (since
p > N) and the estimate (2.33)) from the Proposition [2.6] we obtain

a/p
®|lps(y- V)yHLq(OTLp( Q) = / </ pplyIPIVy|pdx> dt

q/p
= KPPy |P|V pdx> dt
I ([ tupivn) .
T qa/p
<0 [ Mol ([ 1)
0 0
< CHRquOO(QT;Wl,P(Q))H’%quLq([)VT;WLP(Q)) < CH(%R&UWO)H%\,-

In a similar way

T
— 2
Y N2 TS o R el S Y S o5
3
< C”’WHLm (0,1 WL ( ))Hﬁy|’%q(07T;W2,P(Q)) < CH(%P,H;U,UO)HM%

Hence, 7, (ya P 0,0, UO) S Lq(Pg(Oa T), LP(Q))
Analysis of Z3:
i ||p3F2||%q(07T;LP(Q)) S C”(y’ Pa 9) v, UO)HZq,{N'

Using the same previous arguments together with the estimates (2.34) and (2.33)) from the Proposition

[2.6] we get
T qa/p
100 Ty < C [ 1500y ([ 1o ) e

T
<C /0 15012 1 591 8t < ClRYIL 0 w6 1500 2

S CH(ya P7 971)7'00)”1/{]\];

T
L A o A e L N [
< CH"wHLoo (0,1 W1 ( ))H"w”Lq(oj;wzz](Q)) < CH(?/:RH;UWO)HMN;
and, using that pgm_4 < (C,
e ||p30(Vy)Dy : VyHLq 0,7;LP () < C”ﬁyH%OO(O,T;WI,p(Q))H’%yH%Q(O,T;WQ,p(Q))
"‘CH”?JHLoo 0,T;W1p(Q)) H"@yHLq(o,T;W'A),p(Q)) < C”(%RQWWO)H%\,-

Consequently we have Z3(y, P, 0, v,vo) € L9(p3(0,T); LP(Q)).
Using similar arguments it is easy to check the Z is continuous around the origin. This proves the

Lemma. u

Lemma 2.10. The mapping T : Uy — Ry is continuously differentiable.
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Proof. Let us first prove that Z is Gateaux-differentiable at any (y, P, 6, v, vg) € Uy and let us compute
the G-derivative T'(y, P, 6, v, vp).

Let us fix (y, P,0,v,v0) € Uy and let us take (y/, P/, 0',v',v)) € Uy and o > 0. Also, by the de-
composition made in (2.57)), we introduce the linear mapping Z : Uy — Ry with DZ(y, P,0,v,vg) =
DI = (DI, DI, DI3, DI,) where

;

DIy(y', P, 0,0 vp) i= yp — 0(Vy) Ay’ — <2V1||Vy\lipp/ \Vyl”‘2VyVy’dm> Ay
Q
+VP + (- Vy+ (y-V)y —wmbes — v xw,
DIQ(ylv Pla 9,7 Ul) U(I)) = y/('7 0)7

DIs(y', P00 vp) := 0, — o(VO)AG — (muveﬁ;i’ /Q Veyp—2vev9’dx> Af
+y - VO+y- -V —vyx, — (Vy)Dy : Vy/
- [V(Vy)Dy’+ (2V1HVyH%Zp /Q \Vy”VyVy’d:c> Dy] : Vy,

| DZ4(y', P, 0", v, ) == 0(.,0).

(2.60)
From the definition of the spaces Uy, Ry and (2.60), it becomes clear that DZ € L(Un,Rny).

Furthermore, for each j = {1,2,3,4} we have

1
—|Z; 7P707 ) + I7P/a0/> /a 0)) —Zj >Pa97 )
a[ i ((y v,v0) + oy v, vp)) i(y v, 0)] 2.61)

converges to DZ;(y’, P!, ¢',v', v}) strong in R, aso — 0.
Firstly, notice that,

1
”;[Il ((y,P’ 0>U7U0) + o'(y/7P/70,,U/7U6)) _Il(%P»eaUa'UO)]

-DIi(y', P, ¢, U/vv(,))HLq(pg(O,T);LP(Q)) <oall(y - v)y,HLq(pg(O,T);LP(Q))
V1
+I1= IV + o)z = [Vylis) Ay

- (21/1||VyH%pp/Q ]Vy|p_2VyVy’dx> AZ/||Lc1(pg(0,T);Lp(Q))

(VY + o)1 = IVYI17) AV | Lages 0.1y Le()) = Hi + Ha + Hs.

That H; — 0, as o — 0, is immediate. Let’s analyze H3, using first order Taylor expansion and discarding

terms of higher order than o, we have

2/p 2/p
([Iv6+oipae) = ([ 1wyraesa [ pvir2vywyic)
Q Q Q
2p 9, (2-p)/p
= (/ ]Vy]pd:c> + — (/ ]Vy\pda:) /pVy[p_2VyVy’dx
Q P \Ja Q

=HV:L/H%p+20HVylli;p/QIVy!”‘2VyVy’d:v-
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Then,

tim (195 + o33 — [V9l%) Ay
— tin (1913 + 20Vl [ (9P 299y/de - V01, ) o

= lim o <2HVyH%;p/ |Vy\p2VyVy'dx> Ay’ = 0.
oc—0 Q

Therefore, by the arguments used in the analysis of Z; in Lemma [2.9) and by Lebesgue’s dominated

convergence theorem we obtain H3 — 0as o — 0. In a similar way, Hy - 0aso — 0.
For j = 2 and j = 3 the convergence (2.61) is prompt.

Finally, let’s see that

1
—|Z ,P,H, 9 + /7P170/7 I: 0 -7 7P797 )
S5 ((y v,v0) +0o(y v'vp)) — Is(y v, o) 2.62)

converges to DZ3(y’, P', 6, v, v}) strong in L(p(0,T); LP(2)), aso — 0.

Here, for simplicity, we will also omit the notation of norms but make it clear that they are all norms
in L1(p3(0,T); LP(€2)). Therefore,

1225 (5, P, 6,0, w0) + 00/, P, 0,0/, 0h) — Taly, P, v, v0)]

—DI;(y", P, 0", v, vp)l| < oy - VE'||

oo+ 9y + o) 3) Dy = VY|

12 (IV 0+ 003, = V0113, 20 (wveui;p i rvmﬂveve’dx) A9
(16 + 0013, — [V6]3,)A0'|

12 IV + 0912 — [ 9yl3,) Dy : Vy

- <2V1HV:L/H2L?’ /Q IVyI”_QVyVy’dx> Dy : Vy|

Ha(IV(y + o)l — IVylize) Dy : VY|

7
(1Y (y + oy = IVyllz) Dy = vyl =D 1.
j=1

By the same arguments from the proof of Lemma[2.6|together with Lebesgue’s dominated convergence

theorem, we have

5
ij—>0, as o — 0.
j=1
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Also, using Holder’s inequality for p and =5 and WLP(Q) — L>®(Q),

- T q/p
Ig<c /0 </Q p§<||v<y+o—y'>||%p—\|Vy||%p>P|Vy|PrVy'rPdw) dt

T q a/p
<o o (HVyHi;” /| vm“ww’dx) ( / p’grvmp\Vy’pda:) it
0 Q
T q(2—-p) 1 / afp
<car [C1vuiy) ([ morevias) ([ gvapoypas)

(2-p) T ) q/p
B B T T
< Co (ﬁf}?]” yHLp(Q)> (V18 IV 1000y) ( [ 51919y Pde (2.63)

q/p
2 1
< ol Aoy I Ve gy [ 1999 ([ iwvpas)
T
< Caq”“yHLoo(()Tvvlp Q))H’WJ HLoo(()Tvvl 2(Q)) / ||/€Vy ||W1,p(Q ||/€VquLp Q dt

< Co-q”ﬂyHLoo(OTWIP )HK’y HLoo 0,T7;W1 p(Q) / ”HVy ||W1p(Q dt
< an”ﬁyHLoo(o’T;Wl,p(Q))”Hy quo(oj;wl,p(g))uﬁy ||Lq(o,T;W2,p(Q))‘

From which we can conclude that Is — 0, as 0 — 0. By the same arguments we also have I; — 0,
as 0 — 0. Consequently, (2.62)) is true.

Then we can conclude that (2.61) holds and Z is Gateaux-differentiable at any (y, p, 0, v,vo) € Un,
with G-derivative T'(y, p, 0,v,v9) = DIZ(y, p,0,v,vp).

Now, we will show that (y, P, 0, v, vg) — Z'(y, P, 0, v, vg) is continuous from Uy into L(Un, Rx)
and as consequently, in view of classical results, we will have that T is Fréchet-differentiable and C'.
Thus, suppose that

(Yms Py Oy Uy Vo) — (y, P, 0,v,v0) in Uy

and let us check that

H (I/(ymu Pm: 6m7vm7 UOm) - I/(yv P7 977)700)) (y/7pla 0/7 Ulav(l))HRN

(2.64)
< Xmll(¥'s P’ 0", 0", 00) lua
forall (v, P',0',v',v})) € Uy, for some lim x,, = 0.
m—0o0
In order to simplify the notation, we will consider
Dj,m = I],‘(yma P, Oy U, 'U(Jm) - I}(y,p, 0, v, 'UO)'
So, notice that
o [[Drm(y's P00, v0) | Lagt0,7):L0 ()
< C (InUI920) = 1V9m30(0) A a0 mser@)
29— _
(29l [ 1902V ) sy
Q (2.65)

- <2V1\Vym’%;p/g !Vym!p_2VymVy/dx> Ayml| La(pl (0,110 ()

1 V)@ = 9) + (= 9) - D9 | a0mrem(@))
:C(K1+I~{2+f{3)
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Since,

K1 < C (VG = ym) |1V 9ll 20 A o o)
HIV (= g 120199l 0 AY | gt 0775070

then, using the same arguments as (2.59), we conclude that
Kl S Xl,m”(yla P/7 6/7 'l)/, 'Ué)) HZ/{N

where

Xl,m = CH(ymv-Pmaemavm7U0m) - (y7P707U7U0)HZ/{N (H(wa)g?vaUO)HMN
JrH(ymvPM79maUmaU0m)HL{N) .

Now, adding and subtracing (21/1 HVyH%;p Jo \Vy|p_2VyVy’da:> Ay, in Ko, we have

Ko< <2u1uvm|i;p /Q Wy|p2va'dx> Alym - )l

+[1201 (HVymHZJ” /Q VY|PV ym Vy'da — || Vy| 7" /Q \Vy!pzvyVy’dw) Aym|
= Kg,l + f{272.

Using arguments similar to those applied in (2.63), we have

(2-p) T q/p
- —1
(Ky1)? < C ([SOu?I")} HVyH%p(Q)> /0 (HVyH%(f(Q)>Hvy/H%p(Q)) (/Q AN —y)\pd:c> dt
< CllEyll T oo 159 170 0. rowro @ 15Wm = W Za0 maw2e ()
S C (”(y’VTZJ P’ma 6m7 Um, U[)m) - (y7 P7 67 v, UO)”Z{N H (y/7 P/J 0,7 Ula U(,))HZ{N

H(y7 P7 97 v, UO)HZ{N) .

(2.66)
And, adding and subtracing 2v; [, dgzr:g Vym VY dzAy,, in K- 2.2, We get
P
_ V p—2 v p—2
Kso = 214 / VY| i | y|p_2 VymVy'dz | Ay
@ \[[Vymllz,"  [IVyllZs
VP2 (2.67)
+ 121 ‘yi’p_zv(ym —y)Vy'dz | Ayn||
Q HvyHLP
= K3, + K3,
Let’s analyze the integrals of (2.67) separately. First, denote by z,, = ||$Zi’:ﬁ|m and z = ||$Z|3|/|Lp.

Applying in order Holder’s inequality for 7’1.%2 + % + % = 1, the Mean Value Theorem and again Holder
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(p—2)/p

< ( - zp—2>f’/<p—2>dm) 19yl V5 2o
Q

] (»—2)/p

< /Q (0 = 2)(12] + |2m )3 2m — 21)" P77 da IVl 2o [ VY[ o

(p—3)p (r—2)/p
<C </(!z + lzml) 772 |zm — le/(p_z)dJU) IVymll o [VY' || v
Q

®=3) 1/(p—2) (r—2)/p
c ( / <|z|+|zm|>pd:c) ( / |zm—zrpdx) 195 o1V 2o
(9] (9]
(p—3)
<o [+ fenlyas)
Q

1/p
( / rzm—z\pdx> 199 21V 120

< C(llzlee + lzmliLp)? 2 ll2m — 2l e Vym L2 VY [ 2
< 27 zm — 2l Lo Vyml Lo VY v

V| [Vy| Vy| Vy|
<C — 4 _
< HVymHLp IVymllr VYl
[ (‘ IIVymIILp

V Vyllze — [[VymllL b e
| y| || y” P || Y || P) > dl‘:| HvymH pHVyIH v
<C <|| ; ym )HLP H ;yHLPH v (ym - y)HLP

IV ymlle VY Lo
Vymllre VY’
IV ym | o IV ymll 2o [V yll o ) IVymll 2o lIVyl| e
< CIV (Ym — Y lzeIVY |

IN

D 1/p
d:v) IVl 2o 19| o

Therefore,

- T q/p
(K34)7 < C/O IV (Ym = DI IVY T (/Q pé”\Aym”dz>

< CH”(ym y) ”%OO(O’T;WLP(Q)) H’iy/Hq 0 (0,T;W1Lr(Q)) ||’{ym||%q(0,T;W2,p(Q)) (2.68)

< C (11 gms Povs O Vs vom) — (31 P, 0,0, 00) [, s P, 67,0, o)y

I Ws P Bons o vom) Iy, ) -

And, again using Holder’s inequality for ;;1.%2 + % + ]l) =1

|v?/|p_2 /
o [ ——=V(ym —y)Vydx
/ﬂHVyH” ?

0(/ Yyl d)(p_Q)/pnw Iy
< Ym — Y)|| 2 || VY || Lr
o TVylE

< CIVYm = lLe VY| e

Then,

(}?2272)[1 <C (H(:’-/mypmaemavmﬂ}Om) - (yv P,@,’U,’U(])HZNH(y/,P/,QI,v/,v(l))”Z{N

(2.69)
1, P00, 00) Iy ) -
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From (2.68)) and (2.69) in (2.67)), we conclude that

K2 < C (|(yms Py Oms v 00m) — (45 Py 0,0,00)leay [ (4, P, 0,0, 0) [ty

H(ym7 va 07717 Um,y UOm)”L{N) .

And as a consequence of (2.66) and (2.70)

(2.70)

KQ S X27mH(y/7P/’QI”U/,’Ué)HUN,
with
X2,m = C||(ym7Pm70m7UM7U0m) - (y’ P7 97U)UO)HZ/{NH(y’n%Pm)emavmvv()m)HUN'

Moreover, by the same reasoning as (2.38)),

Ky < C (10 V)Wm = Wllsomwr@) + 1(@m =1 - DY a0
< xsmll(y', P00 ) luy
with
X3m = Cll(Ym, P, Oms Vm, vom) — (¥, P, 0,0,00) |luay -
It is easy to check that ID; ,,, for j = 2 and j = 4 satisfy similar inequalities.
Again, all inequality norms below are norms in L?(p4(0,T'); LP(€2)), we will omit them for simplicity.
For D3 ,,, after some manipulations we get the following:
o [D3m(y’, P/, 0,0 vo) | < CUHV (ym — 9)llze [ Vyllze A0 ||
IV~ )0 [V0all oA [+ 1| (200 V037 foy V0P 2V6VHdz) AOy, — 0)]
+l2m (Hvemni;p Joy N0 |P=250,, V0 d: — ||V0]2,7 [, ]V9|p_2V9V9’dx) Ay
HI(@Z(Vym) D(ym — ) = VY| + 1 (Vyml Zo — I VylZo) Dy = V||
HE(Vym) Dy = V(ym — )l + [ (IVymllZe = IVyllZ.) Dy’ : V|
1 (201199357 S [V 9mlP =2V V' d) Dy ¥ = )]
H1 (21199l fo IV lP~ 2V Vy/da) Dlym — y) : Ty
-Huu1@vwmu&pknv%uﬂﬂvmeywx—HVym;pLAVMpQVyvyd@)Dy:Vyu

+lly" -V (Om = O + [|(ym — ) - VO'||] = CZK

Applying arguments similar to those used in Lemma and in (Z.63) we can conclude that K < xs.n
for k = {4,5,...,16}. Indeed, let us evaluate K4, from the calculations performed for we have

- T q/p
(119 < C [ 1~ LIV I ([ A1 )
< Cllk(ym )quo (0,1;WLp(Q ))||’<éy/”qLoo(0,T;W1,p(Q))||’iy||qLoo(0,T;W1,p(Q))||’€y||%q(0’T;W2,p(Q))
<C (H(ym,Pmaemavmvan) - (yapaeaU:'UO)HZ{N”(?/’Pl?‘glvv/?UE))HZ{N 1y, Pjevvav(J)sz/g\,) .
Thus
f(14 < XlS,m”(y/vP/ae/aU/7U6)||UN7
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with
X14,m = C”(yma Pma 0m7 Um, UUm) - (ya P7 67 v, UO)”UN H (y7 P7 07 v, UO)HZ%{N'
Thus, we have li_r>n Xs,m = 0forall s € {1,...,16} and consequently (2.64) is obtained. This ends
m (o)
the proof. 0
Lemma 2.11. Let T be the mapping in (2.56)-(2.57). Then, 7'(0, 0,0, 0, 0) is onto.

Proof. Let (Fy,y°, F5,60°) € Ry. From Proposition we know there exists (y, P,0,v,vg) satis-
fying 2.7) and (2.14). Furthermore, we have y € L7(0,T; W*P(Q)N) n C°([0, T]; LP(Q)") and
0 € L0, T; W2P(Q)) N C°([0, T]; LP(£2)). Consequently, (y, P,0,v,vy) € Uy and

Z/(Oa0707070)(3/:]379;“7@0) - (F17y07F2700)'
]

Proof of Theorem According to Lemmas 2.92.T1] we can apply the Inverse Mapping Theorem
(Theorem , then, there exists 0 > 0 and a mapping W : Bs(0) C Ry — Uy such that

W(z) € B5(0) and Z(W (z)) = z, Vz € Bs(0).
Taking (0,%°,0,6°) € Bs(0) and (y, P,0,v,v0) = W(0,4°,0,6°) € Uy, we have
I(y, P, 0, v,v0) = (0,4°,0,6°).

Thus, we conclude that (2.3)) is locally null controllable at time 7" > 0.

2.5 Large time null-controllability

This section is devoted to the proof of Theorem@ Following the ideas of [Car+23}; [Le 20]], we will
make the system evolve without control and certify an asymptotic behavior according to t — oo
of its solutions, when N = 2. That is, we will deal with the energy decay of the solutions of the system
complete Ladyzhenskaya-Boussinesq. Having verified this analysis, we will take a time 7 > 0 such that
the solutions y(7*, .) and 6(T*, ) related to the null local controllability of (2-T)) (Theorem 2.1). Thus, by
setting y(7*,.) and (T, .) as the initial data in (2:T), Theorem [2.1] gives us the v and vy controls that
drive the solutions to zero in some sufficiently large time.

Accordingly we state the following lemma, which will be fundamental for the demonstration of
Theorem 2.3

Lemma 2.12. For N =2, any T > 0 and (y°,0°) € V x H}(Q), if there is positive constant v > 0 such
that
Iy v+ 116°] g <

and (y, p,0) is a solution of 2.1)) with v = vy = 0, so this solution has asymptotic behavior as t — .
More precisely, for
E(t) = | Vy(t, )P +1l0( )II° + IV, )|

there are positive constants C1, Cq such that
E(t) < Coe“1'E(0)a.ein(0,T). (2.71)
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For the convenience, we will give the proof for inequality (2.71)) in Lemma [2.12]in Appendix [B.1]
Proof of Theorem First, let’s fix Ty > 0. Applying the Theorem there exists & > 0 such that
the system (2.1, with any initial data (3°,0°) € V' x VVO1 3/ 2((2) satisfying [|(7°, 6°)
locally null controllable at 7.

Determine (y°,6°) € V x H}(Q2) and consider Cy, Co > 0 as defined in the statement of Lemma
Let then 7™ be a positive time satisfying

||V><W1‘3/2 < 4,is
0

T > -1 < 0 )
— 1n
(O] Co([[VYOl2 + [|09]12 + [ V6°]]?)

2.72)

and consider a solution (y, p, ) of the system @2.1)), with T = T* + Ty, v = vg = 0 and (3°, 6°) as the
initial data.

From (2.71) and (2.72), y(.,T™), 6(.,T*) are such that
Iy T7), 00, T My g2 < Ca e (VYO P +116°)1 + V°)1%) < 6.

Consequently, by Theorem [2.1] (2.T)) is locally null controllable at 7 + Tj.
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CHAPTER 3

Strong solution of the Navier-Stokes
equations in non-cylindrical domains

3.1 Problem Formulation

Let us denote by W an open, bounded, and nonempty subset of RY x R;, with N < 3. Suppose also
Qs = W N {t=s;s € R} are open, bounded, and nonempty sets with boundaries I's. We fix the interval
[0, ] of R, and consider Q = Uo<s<r €25 x {s} the non-cylindrical domain contained in RY x R, with
lateral boundary defined by & = Uop<ser I's X {s} and its boundary by 0Q = Qo U UQy in these

conditions, we are concerned with the existence of solutions for the Navier-Stokes equations

W —vAu+ (u-V)u=f—Vp in @,
cu=0 in O
V-u in ?, 3.1
u=20 on X,
u(+,0) = ug in Q.

The methodology we will employ to solve the problem consist in transforming it into a cylindrical
problem by means of a perturbation of equation (3.1)) adding two singular terms, depending on a parameter
€ > 0 which is destined tend to zero. This method was idealized by Lions (see, for example [[L1069])
adding a singular term and is called by him a penalty method. To apply the Lions’ method, some restrictive
hypotheses on @ are necessary. In fact we suppose @ C @ with Qp C Q where Q = 2 x [0, 7). Moreover,
we consider hypotheses about geometry and regularity of @ .

(H1) (Geometry of @) If t; < to then proj|,_ Qi C projl,_y Q. It means, the family {§; }o<i<7 is

increasing.

(H2) (Regularity of @) If v € HJ*(Q2) and DBy =0o0nQ\ Q foralmost all t € [0,T) and |8] < m — 1
then v € H{" ().

(H3) (Bounded data) There is p > 0 such that
k(fyuo) = ”f”iQ(o,T;Lz(Qt)N) + HfH%Q(QT;V(Qt)) + HUOHV(QO) + ‘AU0’%2(QO)N
v? v \?
< min{ —, | —- =p,
" 4C4 <4Cl> g
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where C1, C1, V() and V (€) will be justified throughout the text.

Many real-world problems involve partial differential equations where the domain of interest changes
with time. For example, in fluid dynamics, PDEs are employed to describe the flow and evolution of fluid
interfaces, such as free surface flows, multiphase flows, or droplet dynamics, see [GPW22[], [SKR22].

We organize this chapter as follows: in Section we introduce the notations and definitions that
formed the Penalized problem and the declaration of results. In Section [3.3| we demonstrate the main
results, on the existence and uniqueness of strong solutions. Section [3.4]is dedicated to the proof of a

decay result for the solution of the system (3.1).

3.2 Penalized problem and statement of results

This section is dedicated to presenting the formulation of the penalized problem, as well as enunciating
the main results of this work about the existence and uniqueness of a strong solution, for the (3.1)) problem,
and also stating a theorem that under some conditions guarantees us energy decay for the solution found.

Let 8 : @ — R be a function defined by

1 in Q\Q\U(QOX{O})a

T, t) = ~ 3.2
Bz 1) 0 in QU (Q x {0}). ©-2)
Consider &(z, t) solution to the problem
—Ada(z,t)=1 in Q\ Q,
(3.3)

a(z,t) =0 in 9(Q\ Q) =00 UIQ,
have up for almost every ¢ in [0, ], then &(-, ) € H*(Q\ Q)N HE(2\ Q) and the principle of maximum
gives us, &(+, ) > 0in Q — .
Let o : Q — R be a function defined by

a(z,t) in Q\Q,

a(x,t) =
(,?) 0 in

(3.4)

o

From the above definitions, we can conclude that o(z,t) = &(x,t)f(x,t) in Q \ @ and —Aa«(x,t) =
B(z,t)in Q.

Denoting by @i the extension of ug to €2 defined zero in Q \ Qg it implies @y € V() N (H2(Q))N
and f € L2(0,T;V(Q)) the extension of f to Q defined zero in Q \ Q, where V() will be defined
below. For € > 0 consider the problem penalized

ul — vAue + (ue - V)ue + La(z, t)ul — 18(z, t)Aul = f—Vp in Q,

€

V-u =0 i ,
U in Q (3.5)
ue =0 on 00 x[0,7),
uE(‘v 0) - 17«0 in Q
Let Qy = Q x {t},if v/ = 0in Q \ Q; and the domain is increasing then
t
u(z,t) —u(z,0) = / v (x,0)do =0, (3.6)
0
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and
u(z,t) = u(z,0) = a(x,0) = 0. 3.7)

Thus, u = 0in @ \ @t.
Now, let us recall the definition of some vector spaces in the context of incompressible fluids. For
O c R, consider

V() = {peDO)N :V-p=0in0};

- 72 N
H(O) = V(O)L(O) :{SDGLQ(O)NZV'SOZOinO,QO'TLZOOn@Q};
={pe HYOWN :V-p=0in0},

1( )N

vo) = voy

s0 to O = € there are spaces LP(0,T; V(€2)), LP(0, T; V() N H2(Q)N), 1 < p < oco. Since Q =
Uo<cser Qs x {5} C Q2 x [0,T) we define the following LP spaces:

LP(0,T;V () = {ueLP(0,T;V(Q)): ae. t€[0,T],u(t) € V()};
LP(0,T; H(Y)) = {uelLP(0,T;H(Q)): ae. te0,T],ult)e H(Y)};
LP0,T; H* Q)N NV () = {ue PO, T; H* QN NV(Q): ae. t € [0,T], (3.8)
u(t) € H*(Q)N nvV(Q)};
1
Q) = {ue @) aet e D.T) s /Q w(@)dz = 0},

where med(€2;) means the measure of €2;.

Definition 3.1. A strong solution for is a function u : @ — R in the class
we L®0,T; HH(Q)N NV (), v € L*0,T; V(%))

satisfying the integral identity

/A (v — vAu +uVu) pdrdt = /A fodrdt, Yo € L0, T; H(S)). (3.9)
Q Q
Moreover, u verifies the initial condition u(.,0) = uo.

That said, we are in a position to present the main results of this part on the existence and uniqueness

of a strong solution, according to the definition [3.1] for the problem (3.I). And assuming a condition

under the 2; domain, a decay result for such a solution. We state these theorems as follows:

Theorem 3.1. Suppose ug € V(Q) N H?(Q0)Y, f € L?(0, T,V (Q)) such that (H1), (H2) and (H3)
hold. Then, the problem (B.1) admits a strong solution in the class v € L>(0,T; H*(Q)N NV (),
u' € L2(0,T; V(%)) and p € L0, T; H () N L2(0,T; LE(Q)).

Theorem 3.2. Assuming the same hypotheses as the Theorem 3.1} the solution to (3.1)) is unique.

Theorem 3.3. Let u be the system solution (3.1) for f = 0. Then u has asymptotic behavior as t — co.
In other words,

[u(®) 72 inn < €M o720 v (3.10)

where M = L.
c1
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3.3 Proof of main results

This section is dedicated to demonstrating the main results of this problem which are about the

existence and uniqueness of strong solutions.

Proof for Theorem [3.1]

In order to obtain Theorem 3.1 we will now prove a Lemma that will contribute to this goal.

Lemma 3.1. Let e > 0, Gig € V(Q) N H2(Q)N, f € L2(0,T; V() exist uc € L>®(0,T; H*(Q)N N
V()), u. € L?(0,T;V(Q)) solution to problem .

Proof of Lemma Let (w;) be the eigenfunctions of the Stokes operator such that they are orthonormal
in H(2) and orthogonal in V(2) and let A; be their respective eigenvalues. For every m > 1, whether

Epm = span{wi, - - - Wy, }, we look for the tem, = Y ;v geim (t)w; solution of

(ul,,s wi) + v(Vuem, Vw;) + ((tem - V)tem, w;) + %(oz(x, tyul,,, w;)

—L(B(z, t) Aul,,, w;) = (f,w;)inQ, (3.11)
Uern (-, 0) = uom — o in V() N HZ(Q)N.

By Carathéodory’s theorem, the equation (3.11)) has a local solution, and by the a priori estimate I,

one can extend the solution to interval [0, T’] for all 7' > 0.

Estimate I. Multiplying (3.11) by A;g.;,,,(¢) and adding from ¢ = 1 to m, we get

(u/en’w _Au/em) + V(Vuerm V(_Au/em)) + ((uﬁm ’ V)uﬁma —A’LL/ ) +

€em

1 1 -
7(04("1"’ t)u;mv _Au;m) - 7(B(IE7 t)Auém’ —AU, ) = (fa _Au,
€ €

€em em)

also using the fact that for N < 3, H?(Q) < L>®(Q), HY(Q) — L5(), i.e. there are Oy, Cy, C3
dependent on €2 such that

2| () < Chlzlm2i)s |2l08) < Col2lmi)y |2l03) < Csl2lm(a)-

We also have that in H} (2) N H?(9), 2|52 () and |Az[12(q) are equivalent norms, so we can calculate
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the following inequalities:

Oty Ol
em * em —Au] == emiﬂ i d
o [((tem Vot~ )| | R e
< <auemz 8uemj 8u/emj ¥ Ui 82uemj 8u/emj> da:—/ Uemiauemj 8uémj dr
<C Qe Qe 8uém
Oz, LS(Q)N Ox; L3(Q)N Ozy, L2(Q)N
+ ltern e Dl (3.12)
Uemi | [,00
L (Q)N axzal'k LQ(Q) awk LQ(Q)N
ey e
< emsi emyj o
+C [temil 2w [tems| 2oy ’ “'emj”v @
< C|Auem|i2(Q)NHulemHV( *HusmHV + é’l’Auem’iz(Q)N

Since —Aa(z,t) = f(x,t) in Q,

1 1
o —(a(x,t)uem, —Aul,,) = /a(x,t)u'm(—Auém)dx
€ €JQ
1 1
— /V a(z, t)ul,,)Vul,, dr — / a(z, t)ul,, Vul,,dl
€ Jo [219]
1 1
= /Voz(w t) 6mVuemdazc+/04(38,75)|Vulem|2alﬂ?
61 (¢} € 19 (313)
_ /w (2.)V >2>dx+/a<m,t>\w;m2dm
Q
> o [ et e+ o [ Vate i, P
€
/B x,t)| Em|2al:v
- - 1 =
o |(f, —Aug,)| < [ fllvio Huem”\/(Q) < ZHu/emH%/(Q) + ||f||%/(sz)' (.14)
From (3.12), (3.13) and (3.14) in (3.11)) we have
2
ulem +7/ Auem + - /,8 x,t u;m 2dl‘+/ﬁ $,t Au/em 2d(1§‘
eI () | L2 SIS ¢ Jo Lo DlAen (3.15)

< él‘Auem‘iz(Q)N + Hf”%/(g)

Before we get the next estimate, we claim that for any z that satisfies the assumptions of this lemma

t t
/ / |2(z, 8)[2dz ds < T2/ / |2/ (x, s)|*dx ds. (3.16)
0 Ja\o, 0 Jo\q,

Indeed, since z(x,0) = 0in 2\ € for any ¢ € R then

we have

z(x,t) — 2(x,0) = /0 2 (z, 8)ds

(2, 8)| < </ 1ds>1/2 (/ (2, 5)] ds)

SO
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Integrating in Q2 \ Q5 x [0,¢), with ¢ € [0, 7], we have

t t t
// |z(z, 0)|?dx do /t / /|z'(x,5)|2dsdac do
0o Jaa, 0 Q\Q, Jo
T t
/ T // |2/ (x, 5)|*dz ds | do
0 0 JO\Qs
t
< TQ// |2/ (x, s)|*dzx ds.
0o Ja\a,

Estimate I1. Multiplying (3.11) by A;gim, (¢) and adding from i=1 to m, we get

IN

IN

1d 1
2dt||uemHV + V|Au6m|L2(Q ((wem * V)Uem, —Alem) + 6( o, t)u, Uy, — AUy 3.17)
1 _ .
+E(B(x7 t)A Uepn Auﬁm) = (f> _Auem)-
Using the same arguments as Estimate I, we compute
’((uem . v)”emv _Auem)’ < Cl”uemHV(ﬂ)’Auem’%Q(Q)N (318)

By the ideas of [NN78] (see too, [Rab94]), we have

1
2€

1 t
/0 (B(w, 5) A, Atigrn)ds > 715( ) At (1) 22

€

1B0)Auen(0)[T2iqyns  (3:19)
and from definitions of i and 5(z, t), we easily get that

1B(O)Augm(O) = 1B(O)Auom — 1B(O)Aﬁo = 0 strongly in L*(Q)" as m — oc.
€ € €

2 2
Thus, consider o; > 0 such that x(uo, f) + o1 < mm{ <42 ) } and

1
E\B(O)Augm(O)]%Q(Q)N < a1, foreach m > mg(e,01). (3.20)

Furthermore, since a(z, t) = a(z, t)3(x,t) in Q \ Q we have

€

2 2
(et~ < = [ 0, 106Dl B0 Wl [Buenl d - 321
t

and, by definition, « satisfies problem then [Aalm2\0,) < [1]r2(0\0,) < med(2\ ) < med(Q).
Since N < 3 we have the embedding continuous H2(£2 \ €;) < L>(Q\ €), from which we can
conclude that

lo(z,t)] oo () < C(), with C independent of ¢. (3.22)

Hence, as a consequence of (3.16), we obtain for (3.21)) that

t
2/ (a(m, s)ul,,, —Atem)ds
0

€

1 ! / 2 / 2
< TC < /0 /me,smuem(s)\ + | Aul, ()] >dxds>
(3.23)

And,
[(f, —Augn)| < IAuemle |f|L2 (3.24)

Then, from (3.18) and (3.24) in (3.17) we get
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d v v
@Huemn%/(g) + 7‘Au€m‘i2(Q)N + |Au5m|%2(Q)N <§ - ClHUemHV(Q))

) | L (3.25)
+€( o, )y, —Atem) + E(B(x,t)A Ugys Allern) < ;‘f&z Q)N
Thus, from (3.13)) and (3:23),
d v
= (laem 2 ) + V1A 20y ) + sl ) + 51 A0t 2y
2 1 1
20l ~Bttn) + (BB, Bter) + [ BB i
€ € € Jo (3.26)
2 y i .
-Qlf@ﬁm%ﬁw-Hmm@@NQ—QMmM@—QAM%mw)
< 171y + 1oy
By hypothesis (H3) and (3:20),
~ =~ ~ ~ 14
Cillollv(@) + CrlAdo[72 v = Cilluollviay) + CrlAuolLa gy < 35
ol ey + vIAul2 g v + I IZ2 0 22020 %) 117200,y 3.27)

v? v \?
+ 01 < min ? (4C1> .
Thus,
~ v
Culttenn(0) v ) + CrlAttern (0) 2w < Cullutolly (@) + CalAuofF2 v < 5

That said, for continuity we make the following claim:

Claim 1. For each ¢ > 0 fixed and m > mg = mg(e, 01) given in (3.20), we have
B(t) := Cilluem () llvo) + C1| At (t )\LQ(Q <v/2,Vte€|0,tp], where0 < t,,, < Tp.
We shall prove by contradiction. Suppose that there exists ¢, minimum such that

B(t)<§m0<t<t*

m

and B(t%,) = g (3.28)

Integrating (3.26) from 0 to ¢, and using (3.19), (3:20) and (3.23) for ¢}, with ¢, < t,, < ToCy < 1/2
we calculate that

1
Huem( )” V() + V‘Auem(t* ) LZ(Q)N + |ﬁ(t:n)Auem(t:n) %Q(Q)N

*

tr, tx,
+/!W(NW s+ [ (5 gy

/ /ﬁ z,t)|ul,, (s)2dx ds + / /ﬁ z,t)|Aul,,(s)|*dz ds
(3.29)

< luem (0 )HV(Q) + V[ At (0 )’L2(Q)N + £|B( ) At (0 )‘LQ(Q)N
t*
1 -
+/<wmm 1 F(3) 2y )ds
0 1%
2 T 2 1 2
< lluollf ) + VAU [T 200w + ; (LF ) + 1 ($)n2 (v )ds + o1
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Therefore, from (3.27) and (3:29) we have

hence, comparing with (3.28)), we have a contradiction.
As a result of (3.19), (3:23) and of claim 1 in (3.26)), for each € > 0 fixed and m > my(e, 01), we
compute

To

(1 e+ 71800 () gy + [ (5 s+ 58T Mt ()

oy 2 I / 2
+ ; o [Attem (8)[2ig)nds + o ; Qﬁ<x7t)|uem(s)| dx ds

3 [T
5/ / Bl )| Al (5)2da ds (3.30)

€

1
< HUOH2 +V|AUO|L2(QO Nt 5 % |B(O)Au6m(0)|%2(Q)N
2 1 2

+ ; (Hf(s)HV(Qt)+;‘f(3)’L2(Qt)N)dS'

Applying Aubin-Lions Theorem (see, Chapter 1, Theorem 5.1 in [Lio69]) in (3.30) we can extract a
subsequence of {ue, } denoted equal such that making m — oo, we have

ul,, — ul weakin  L2(0,Ty; V(Q)),
Uern — Ue weak* in  L>(0,Tp; H2(Q)N NV (Q)),
1 1
Eﬁ(x,t)u’em — Eﬂ(ac,t)u’6 weakin  L2(Q x (0,Tp))",
1 1
Efs(;zc,t)Au’em — Eﬁ(w,t)Au’E weakin  L2(Q x (0,Tp))", (3.31)
Uem — Ue strong in  L2(0, Ty; H(Q)),
Uemi — Ue; a.e. in Q x (0,Tp),

8u5mj 8’U,Ej
—

8@ (9:61'
Thus, UepiOUemj/0x; — ueiOucj/0x; ae. in Q x (0,Tp). And, since N < 3,

Sl

1,7=1

a.e. in Q x (0,Tp).

OUem;j
Em’L

< C|uem’H2 |Uem|v(Q

Oz

Consequently, by the Lions Lemma, we obtain

7 weakin L2(Q x (0,Tp)). (3.32)

Uemsi O Uej al'
i i

Therefore, applying the same reasoning when considering u(.,7Tp) = wg, in §2 as initial data, we
conclude (3.31) and (3:32) in 2 x [Ty, 2Tp). Thus, repeating the process recursively until nTy > T, for

n € N, we have (3.31)) and (3:32) in Q x [0, T)).

In this way, we can pass to the limit at (3.11)) and then
/ 1 / 1 !/
(ue — vAue + ueVue + Ea(w, t)u, — Eﬁ(w, t)Aug)p dxdt
Q

— / fodrdt, Vo e L*(0,T; H(Q)),
Q
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proving that . is a solution to the problem (3.5) such that u, € L°(0,T; H*(Q)N NV ()), ul €
L2(0,T; V(). 0

Proof of Theorem[3.1) From Lemma 3.1]and the definitions of « and /3 given by (3.4) and (3.2)), respec-

tively, we have

/A (u, — vAUc + uVue) pdrdt = /A fodrdt, Yo € L*(0,T; H()). (3.33)
Q Q

Furthermore, by weak convergence property of (3.30) and (3.31)) we can deduce that

t t
14
e (®)1 ) + V1 Aue (1) Bz gy + /0 ()13 oyl + /O 2 1Au(s) s ds

T ) (3.34)
< o2 g + 10 23 0+ /0 (F I @) + 1)y )ds + .
and by arguments analogous to those applied to obtain (3.31)) and (3.32)), we have
u, — weakin  L2(0,Tp; V()),
Ue — U weak® in  L>(0,Tp; H2(Q)N NV (Q)),
Ue — U strong in  L2(0, Tp; H(R?)), (3.35)
Ouej ou;
ueiaL; — Uy 8?:2 weakin  L2(Q x (0,Tp)),
as € — 0. Therefore, we can pass the limit in (3.33) as ¢ — 0 and then
/A (v — vAu+uVu) pdzdt = /A fodrdt, Yo € L*(0,T; H(SY)), (3.36)
Q Q

i.e., u is a strong solution to the problem (3.1) in the class u € L>®(0,T; H*(Q)N NV ()), v’ €
L(0,T; V().

Finally, we will show that it is possible to recover the pressure term. In fact, by the Du Bois-Reymond
lemma ([MM19], Proposition 1.4) in (3.36) we get

u' — vAu+uVu — f =0in L*(0,T; H(S%)),
consequently, for almost ever s € [0, 71,
' —vAu+uVu — f=0in H(£;).

By duality,
(v —vAu+uVu — f) =0V € V(Qy)

and from Rham’s theorem ([BF13]], Theorem IV.2.3) there exists a unique p(s) € L3(£2s)" such that
' —vAu+uVu — f = —Vp(s). (3.37)

So, Vp(s) € L?(Qs)Y and consequently p(s) € H*(Q,)V.

Therefore, let ¢ € D(Q) such that

(' — vAu+uVu+ Vp(s) — f, o(z, s))LQ(Qs)NxLQ(QS)N =0.
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Then,
T
//(u'—uAu—l—uVu+Vp—f)g0dxdt:0
0 s

thus implying the Navier-Stokes equation
W — vAu+uVu+ Vp— f =0in L*(Q),

with p € L2(0,T; H' () N L?(0,T; LZ(Q:)). Concluding the proof of the Theorem [3.1 O

Proof for Theorem [3.2]

Proof of Theorem[3.2] Let u; and usy be two solutions of Theorem [3.1] then u = u; — uy satisfy

uw —vAu=1us-Vus —u; -Vuy in Q,

Vou=0 in Q
“ n ? (3.38)
u=20 on X,
u(-,0) =0 in Q.
Multiplying by ¢ = u, integrating over @t we have
/A w'udxdt — /A vAuu dxdt = /A (ug - Vug — uq - Vug)u dzdt (3.39)
t t t
So, we use the Gauss-Green theorem, and since u vanishes on ..
/ 1 d 2 1 ; 2
_vudrdt = - | —|ul"drdt = - [ div(0,0,u”) dxdt
: 2 /g, dt 2JQ,
1
= /A (0,0,u?) - ndT
2 Joq
1
= / (0,0, u?)(0,0,1)dl’ +/ (0,0,u%) - ndl’ (3.40)
2 Qt 2t
+/ (0,0,%%)(0,0, —1)dl
Qo
1
= o |ufdz
2 Ja,
and
— [ Auudzdt = /A [—div(g ) (Vuu,0) + |Vu|?] dzdt
Qt Q
= —/A (Vuu,0) -ndI‘dt—i—/A \Vu|? dedt (3.41)
0Q¢ t
= [ |Vu|? dzdt;
Qt
therefore, from (3.40) and (3.41)) we have
1
/ lu|? dx + /A |Vu|? dedt = /A (ug - Vug — uy - Vug )u dzdt
2 Q Qt t
= — /A (ug - Vuu + u - Vugu) dedt (3.42)
t

= J1+ Jo;
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then

J1 = Z/ qu@ u]da:dt Z/ 218 d:pdt

,)= 1 1,]J=— 1
1 3
, 2
= 2/@ dZ'U(I.’t)('UQ(ZUj),O) dxdt
7j=1
3
2)
= = U9 u’ -ndldt = 0.
/aQt ]Zl !
If N = 2, we have |2|4(q,)v < C]z\lL/QQ(Q ~|Vz ] N> Wegettoe >0
t
5 < /0 il ey [V | (e [t gy dis
t
< CA |U|L2(Qt)N|VU|L2(Qt)N|VU1|L2(Qt)NdS
t t
< 6/0 |VU%2(Qt)N+C(€)/O |vu1|%2(9t)N|u|%2(Qt)NdS,

1/2

1/2
LQ(QéV)’VZ‘L2(Qt)N’ we can get

orif N = 3, we have [2[3q,)v < Oz

J2 < /0|U’L3(Qt)N\VU1!L2(Qt)N\U|L6(Qt)NdS
< O [ Wl 1900 Vsl v ds
< C'/Ot|u|1/2 o VU3t v V|2, ds
< 6/0t|Vu%2(Qt)N +C(e) /Ot|vu1|§2(m)N|u|§2mt)N ds.

Now, replacing (3.43)), (3.44) and (3.43) in (3.42)), we obtain

1
2/Qt lul dm+/Q \Vul?dzdt < C(e / m( WL?(Qt)N ds,
where
‘VUII%Q(Qt)N, if N = 2,
m(s) =

Vi [bqvs if N =3.

Using Gronwall’s inequality in (3.46), we have v = 0 and consequently u; = us.

3.4 Decay of solutions

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

In this section we shall consider the decay of solutions. We will assume that €2; tends to a bounded

domain 2, as t — co. Thus, the constant in the Poincaré inequality can be considered independent of ¢,

which we will denote by c;. For more details, see [[Sal88].

Proof of Theorem Multiplying the first line of the system (3.1) by v and integrating in {2, we have

d
E|’U/(7—)|%2(QT)N + ’vu(T)’%Q(QT)N S 0,

(3.48)
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in this account we are using the fact that

3 ou; 3 1 0
. _ Rda P _ § : . 2
/ (u-Vuudr = E /TuZ iujda:— /T 2uZ i(u])dm

" =1 =1
1 : 1 &

= 2/ div(x)u(z u?) = 2/ U(Z u?) -ndl' = 0.
Qr j=1 I 5=

Then by the Poincaré inequality, ||u||
s <t,

2 2 . .
QN 2 c1ful72q )~ and integrating (3:48) from s to t, for

t
uOB s+ [ fulr)agg,wdr < uls)
S
Hence, applying Theorema 8.1 of [Kom94| with M = -,
[z < €M uolizap -

Proving that (3.10) holds. O
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Some additional comments and open questions

In the context of the result obtained in this thesis, we will give some comments on the systems studied

and we will also expose some problems in the context addressed here that, as far as we know, are open.
About Chapter 1:

ey

2

3)

System (I.1)) with fewer controls acting. Note that, when N = 2, it immediately follows from
Theorem that only a scalar control insensitizes the functional (I.2)). However, when N = 3, to
follow the same techniques used here we would need a Carleman estimate of type (1.24) with only
one ¢; on the right side, and this is a more complex assignment. A Carleman estimate for just one
scalar control was proved in [CL14], where the authors proved a local null controllability result for

the three-dimensional Navier—Stokes system which has two vanishing components.

Ladyzhenskaya-Boussinesq system. An important observation is that, following the techniques
of this work, it is possible to prove the existence of insensitizing control for the Ladyzhenskaya—

Boussinesq system, described by

g — V- (o + [ VylI?)Dy) + (y-V)y +Vp = f +ox, +ey in Q,
vy =0 in Q,
0, — V- ((vo +nl|Vyl)VO) +y - VO = fo + voxw in Q, (349
y(z,t) =0, 6(x,t) =0 on X,
y(2,0) =10+ 775°, 6(x,0) = 6° + 76° in Q.

where
B (0,1) if N =2,
N { (0,0,1) if N = 3.

More accurately, such techniques would lead us to obtain regularities similar to those established in
Lemmas for the velocity variable y and for the temperature variable 6 of the corresponding
linearized system of (3.49). For this, the starting point would be to consider the linearized system of
[CGG15], in which the weights considered for the velocity variable are different from the weights
defined here.

Extending equation (3.49)), the same can be done for the complete Ladyzhenskaya—Boussinesq
system (2.1)) since Vy is L* in time.

Problems with the K. and I, functionals. As indicated in Section[I.2] it would be interesting to
verify whether it is possible to prove the existence of insensitizing control for (I.I) considering a

functional that depends on the state gradient, that is, considering the sentinel functional given by
1 2
Kr(y) =5 Vyl” da dt
Ox(0,7)
or by the L? norm of its curl(V x g). In other words,
1 2
I(y) = B |V x y|* dx dt.
Ox(0,T)
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(4) Problems with boundary controls. The other relevant point to considered is the case in which
the boundary data is partially unknown. For example, for simplicity, assume vy = 1 and 1 = 0 in
(L.T) and consider

y—Ay+(y-V)y+Vp=f+uvx,, V-y=0 in Q,
y=g9g+ 79 on X,
y(0) =0 in Q,

where g, § € L2(X)" with ||g]| r2(x)v = 1 and 7y is a real and small number. In this case, § and 7

are unknown. Defining the sentinel functional as

®r(y) = HyH%2(O><(O,T))N’
we obtain by the same arguments applied in Section[I.2]that

0% . . 0
0%+, () = 0 if and only if & —0ae on X,

0Ty ov

71=0

where 7 corresponds to a formal adjoint of the equation governed by the derivative of i with respect
to 7 at 74 = 0 and 8% denotes the outward normal derivation. In other words, the insensitizing
control condition is equivalent to % = 0 a.e. on X. For a better understanding of this case, see

[BF95]] in which such a study is carried out for a semilinear heat equation.

As far as we know, results related to the existence (or non-existence) of insensitive boundary
controls for fluid equations are still unknown. Note that, considering our system (I.1)), it does not

seem clear that there are controls that insensitize the energy in an open O of the system

Yy — V- (o +nlVyl»Dy) + (y-V)y+Vp=f in Q,

V.oy=0 i

y inQ, (3.50)
Y = UX~ on X,
y(0) ="+ 77° in Q,

where v € L2(X)" is the control to be determined acting on y C 952, an open non-empty on the

boundary. However, an interesting open question is the existence of controls that insensitize the

i%(y)Z% //)'gi

I'x(0,T

functional @, given by
2

do dt,

where y is the solution of (3.50) associated with 7 and v, and I" C 02 is a new open (non-empty)
boundary such that v N T" # (), see [Pér04] for more information about this functional. The difficulty
of this problem lies in analyzing the possibility of obtaining an appropriate Carleman inequality
for a coupled adjoint system of parabolic equations with boundary control, and this is still an open

question.

About Chapter 2:

Initially, note that can be solved with the same techniques by taking 7(V<) := v + v1||V<|[3,.
Furthermore, for our systems (2.1)) and (2.3)) it is also possible to obtain the local null controllability with
control at the border I'g x (0,7"), where Iy C 0€2. Indeed, just construct a domain Q with boundary
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o0 sufficiently regular via a subset U of R such that Q=QUUandUn (092 —Ty) = . So, taking
w C € — Q and keeping in mind the controllability result for distributed controls, the control at the
boundary is obtained by considering the constraint trace in 2 x (0, T") of the state of the distributed control

system. That is, since z(z, t) is the solution in € x (0, T)) of the distributed control system then

v(z) in Ty,

u=y(z |Q><(O,T)) = { 0 in 90T,

is the control on the desired boundary, where v : H'(Q) — HY2(99).

Now, we comment on some open questions that arise naturally in the context of our results.

i) Is it possible the local exact controllability to the trajectories for the systems (2.1)) and (2.3))? The

main difficulty for this problem is finding a suitable Carleman estimate.

ii) Is it possible the local exact controllability to (2.1) when N > 4? This is a very difficult question,
because in the proof of Lemma we use the immersion H2(Q) — L°°(2) and this is only valid
when N < 3.

iii) Can we obtain controllability results for (2.3) when 2 < p < 3? Note that in our case the fact that p

is greater than the dimension (p > 3) allowed us to use immersion W1P(Q) — L*°(Q).

iv) Finally, can we deduce the null controllability of (2.1) and (2.3)) in N dimensions, with N — 1

controls?

About Chapter 3:
Firstly, note that it is possible to apply the same arguments here present in the Boussinesq system.

More specifically, representing the temperature variable by 6, we have the well-known Boussinesq system

v —vAu+ (u-V)u=6exy+ f—Vp in @,
0 —AO+u-V0=f in Q,
V-u=0 in @, (3.51)
u=20,0=0 on f],
. u(,O) = Uup, 9(,0) = 90 in Qo.
Hence, using (3.2) and (3.4), we obtain for e > 0 the following problem penalized
u, — vAue + (ue - V)ue + Loz, tyul — 18(z, t)Aul = 0 en + f—Vp in Q,
96/ - Aee, + ue/ : veel + %Ox(l’, t)ee/ - % (xv t)A9€/ = fl in Q,
V- -ue=0 in Q, (3.52)
ue=0,0=0 on 90 x[0,T),
ue(+,0) = o, 0e(.,0) = by in Q.

Therefore, it is feasible to prove a result for (3.52) similar to Lemma [3.T] and consequently obtain the
existence and uniqueness of strong solutions for (3.57)).

Now, we will indicate here some that, as far as we know, are open.
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The Ladyzhenskaya-Smagorinsky kind differential turbulence model, where 1 and pi; are positive

constants that represent the kinematic viscosity and turbulent viscosity, respectively.

( —~
WV (ot [ [VUP)Va)+ (V== Vp in @
Q
Vou=0 in Q, (3.53)
u=0 on i],
L u(+,0) =ug in Q.

Certainly some specific difficulties, due to the occurrence of non-local nonlinear terms, will be encountered

in this problem. For a broader perspective on this model, one can refer to [M CO1]]. In light of this, we can

contemplate:
u — a(/Q IVul>)Au+ (u-V)u=f—Vp in Q,
V-u=0 in @, (3.54)
u=20 on f],
L u(+,0) =ug in Q.

where a € C1(R) and 0 < m < a(r) < M, forall 7 € R.
Furthermore, akin to [DG91], the subsequent model involving the gradient of v in R"V warrants

consideration:

u’—V-(a(\Vu|%N)Vu)+(u~V)u: f—Vp in Q,

cu=0 in O
V-u in E), (3.55)
u =0 on X,

with a satisfying the same conditions as before.
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APPENDIX A

Appendix to Chapter 1

A.1 Regqularity for the nonlinear cascade system (1.7)

Here we prove the existence and uniqueness of, solution for ((1.7).

We know from [FLM15] and [HLC18] that, when N = 2, for any yo € Vand any v € L2 (w x

(0,7)), f € L*(Q)", the system

wy =V - ((vo + || Vw|?) Dw) + (w - V) w + Vp® = f + vxu,

V-w=0 in ,

Q (A.1)
w=20 on ,
w(0) =0 in Q.

possesses exactly one strong solution (w, p®), with

w e L*(0,T; D(A) nC®(0,T); V), ws € L*(0,T; H),
where A : D(A) — H, the Stokes operator. By definition, one has

D(A) = H*(Q)N NV, A(w) = P(—Aw) Yw € D(A),

with P : L?(Q)"V — H denoting the usual orthogonal projector. And, when N = 3, this is

are sufficiently small.

true if v and f

Therefore, we need regularity for the variable z. Defining, Z(x,t) = z(x, T — t) in (1.7)2 we get

z — (vo + || Vu|?) Az + 2v1 ((Aw, 2) 2 Aw) + (2 V) w

—(w-V)z+Vqg=wxp, V-2=0 in Q,
z=0 on X,
2(0) =0 in Q.

For simplicity we will do the calculations with z instead of Z.

We introduce the eigenfunctions of the Stokes operator, i.e. the solutions to
AT 4+ VAd = Nk in
k=0 on 01,
1K) =1, Aj = +oo,

(A2)
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Also, consider the spaces V,, := span{k',...,k™} and the following associated Galerkin approxima-

tions
(21, k) + (vo + v1||Vw||?)(Vzm, VE) + 201 ((Aw, 2 ) Aw, k)

+ ((zm - VhHw, k) — ((w-V)zm, k) = (wxo, k), Yk € Vpy, (A.3)
Zm [0, T] = Vi, 2(0) =0,
By the classical theory of ODE, we can state that the existence and uniqueness of solutions (local in
time) for (A.3)) is assured. The uniform estimates that we will obtain next will allow us to define such
solutions for all time t.

Estimate I: Taking k£ = z,,, we deduce that

1d
5 g Pl + o+l [V ) [Vzn* + 201 ((Aw, 2n) Aw, 2m) Ad)

+ ((zm -VHw, zm) — ((w-V)zm, 2m) = (WXO, 2m)-
Note that, by Lemma 6.1 in Chapter 1 of [Lio69],

b:VxVxV — R

defines a continuous trilinear form such that b(u,v,v) = 0. Thus, in (A.4), (w-V)zm,2m) =

é/(u-V)vwdmdt: é/(w-vt)vudxdt

then let’s deal with ((zm, - V)w, 2m) = b(2m, w, zp,) instead of ((zm - VF)w, 2.
If N = 2, taking into account that ||z, || £1(q) < Cllzm|M2 |V 2m |2,

b(w, zm, zm) = 0.

Furthermore, since

[b(zm, w, 2m)| - < Cllzm|l Ll Vwlll|zm | 4
< OllzmlV21V 2 |21V w]| 20012V 20 |/
<

C 140
oy Nm PVl + V2

If N =3, since Hj(Q) — LO(Q) and [|[Vw||3(0) < C||Vw||?|| Aw| '/,

IN

Cllzm| s @) I Vwl| 3@ [2m |l
C||V 2 ||| V]| V/2 ]| Aw|[ /2] 2|
ClIVwl|Vzm|* + CllAw|| || zm |-

‘b(Zm, w, Z’m)’

IN

IN

Also, forboth N =2 and N = 3,

21 ((Aw, 2m)Aw, z) | < 211 / VwVzy, dz / Awzy, dx
Q Q
< 20 |[Vwll[Vam | Aw] || zm |
<

14!
5 IVl Vzn|? + Cllzm ]| Awl]]*.
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Then, for N = 2 in (A4),
1d
2dt

141
+5HVU)HQHVZmH2 + CllzmlPllAw|]* + Cllzm|* + C/ |w|? dz,
O

C Y
zm 12 + (0 + 1[IV [V zm 12 < 5[ Vw2 2ml|? + 5V 2]
21 2

thus 1d
140} 1%}
5 gl + Szl + S 1Vewllzml}

C
< [uPdo+ (04 ool + Claul? ) fonlf
@

Integrating from 0 to ¢ and using the Gronwall’s Lemma, since w € L2(0,T; D(A) N'V) N C°([0,T]; V)

and o
C+ —|lw|? + Cl|Aw|* € L*(0,T),
21/0

we get
|2m oo 0,:1) + 12m|L200,1v) < +00. (A.5)

And, if N = 3 in (A4),
1%
5 7 llzmll? + (vo + vi [ Vwl?) [V zm|? < EIIIVw!PIIVZmII2 + Cllzml?]| Aw]|?

+CIVw[[[Vam|* + ClAwl|[[zm]* + Cllzm|® + C/ wl? da.
@]

Using the same arguments as above, we have
|2m| Lo (0,:80) + |2m| £2(0,73v) < 00 (A.6)
Estimate II: Noticing that Az,,(t) € V}, and taking k = Az,,(t) in (A3), we see that
((zm - VOw, Az = ((Azim - V)W, 2m) = b(Azp, 0, 2m) = —b(Azpy, 2, ),

since b(u, v,w) = —b(u, w,v).
When N = 2, one has

b(Azm, zm, w)| < CllAzm[[[VamllLallwll s
40
< ClIVanlPIVwl* + 2l Az
| (W V)zm, Azm) | = [b(w,, 2m, Azm)| < CllAzn|[[Vam| La o) [wllzao)
40
< ClIVanlPIVwl* + 2l Az
Therefore,
ld 2, 1 2 2 4 2 2 2
57IVaml® + 5o+ mlVelP)[Azal* < C(IVoll* + [Aw]?) [Vzn]* + C [ |w] dz.
(A7)
Consequently, by Gronwall’s Lemma,
|Zm|Loo(07T;V) + |Zm‘L2(0,T;D(A)) < Ho00. (A.8)
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Now, when NV = 3, the nonlinear term can be bounded as follows:
0(Azm, 2, w)| < CHU’”LG(Q)||vzm||L3(Q)||A2mH
ClIVw |||V 2|V Az |2 | Az |
CIIVw[[|V 2 | /2]| Az |32
Y
ClIVw|[*[Vzml? + Z 1Az

IN

IN

| (w - V)zm, Azm) | = |b(w, zm, Azp)|

IN

Cllwll o)l Vzmll L3 @) [[Azm|
0
C[Vw|*|Vzm|* + g||AZmH2~

IN

Thus, we have an estimate analogous to (A.7) and therefore
|2m| Loo (0,73v) + |2m| 220,73 D(4)) < +00. (A9)
Estimate III: Taking k& = 2], in (A.3),

Iz ” = (0 + 1 [ Vw]*) (Azim, 27,) + (wX0, 21n)

(A.10)
=211 ((Aw, zm) Aw, 2,) — b(zh,, w, zm) + b(w, 2m, 25,).

Note that the third term on the right-hand side can be bounded as follows:
1
201 (Aw, 2) Aw, z,) | < C| Vw2V [*| Aw][* + 75 1271

Therefore, when N = 2, using the continuous embedding H{ (Q2) — L*(Q), we can compute that

b(2p, 0, 2m)| < C”Z;nHvaHL‘l(Q)HzmHL‘l(Q)
1
< CIIAwIIQHVzmHQ+1—0llz£n||2;
and
b(w, 2m, 2m)| < Cllwllpa@) IVamll La@)llzm|
< OVl Vaml Y21 Azm 2] 2,
1
< CIVelPIVznlllAzn] + 521"
1
< CIVelPIVznl® + ClIVw P Azn|* + 751200
Thus,

1
slaml® < o+l Vul?)? + CIVwlP] [|Aznl* + C ([ Vwl*| Aw|?

AW+ [Vl V2l + / fwl? d
(@)

which, integrating from 0 to ¢ and using the regularity of w and Estimate II, we obtain

|Z;n|L2(O,T;L2(Q)2) < +o00. (All)
Now, if N = 3, note that
0(2p, 0, 2m)| < Cllzm|l Loyl Vwll s @) 1zl 22 @)

< OVl Vwl|Y2] Al 212, |
1
< CIVulllaw]Vaml? + ol
1
< Cllwllda IVaml? + 75 12l
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and

b(w, 2m, z1,)] < Cllwll Loyl Vamll @l zmll 2
< CIVwll[IVzm] 2| Azl Y| 2, |
1
< OVl Vel Azl + EH%HQ
1 /112
< CIVulPllzmlpay + TO”ZWH :

Therefore,
1
slzmll® < (o +nlVel?)[Aza|? + IVl [ Awl? + [[w][ 5 ) V2]l
+CvaH2||ZmH2D(A)'
Whence can we conclude, by regularity of w and Estimate II, that
|Z;n|L2(O,T;L2(Q)3) < +00. (AIZ)

The uniform bounds Estimate I - Estimate ITI, allow us to take limits in (A.3), at least for a subsequence,

as m — oo. In other words, we have

{ Zm — 2 weakin L2(0,T; D(A)NV), (A.13)

! — 2z weakin L?(Q)",

with (z, ¢) soution of (A.2)). Indeed, let’s look at some terms:

For simplicity we will omit the summation in

al 0z
b(w, zm, k) = Z /wj ( a;j) ki dzx.
Then, for the first convergence of (A.13), for all k € L(0,T;V)

r T 0Zmi
/Ob(w,zm,k:) = /0 /wj ((9%) k; dx
Q
T 0
= — - wki Zmidl’dt
/ Q/ k)

T Ok;
= - (V- wk; zimi +wj—=—2zm;) de dt
/0 Q/ ]a$]’

T )
= —/ /wjaklzmidxdt.
0 Oz;
Q
So

T T Ok T T
o/ b(w, zm, k) — —/ /wjlzi dedt = —/ b(w, k, z) dt:/ b(w, z, k) dt,
0 0 J O 0 0

as m — 0o. Analogously, we have

T
./o ((zm . Vt)w,k:) dt =

T
((k-V)w, zp,) dt

T T
b(k,w, zp,) dt —>/ b(k,w, z) dt :/ ((z- VOw, k) dt,
0 0

[
A
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as m — oQ.

Now, notice the following:

T T
/((Aw,zm)Aw,k)dt = / (Vw, Vz,)Vw, V) dt
0 0

T
< / /Vszm /Vkadxdt
0 Q Q
T (A.14)
< /0 10|V 22| Va0 [Vt
T
< c / IV 2 || VB
0

< Clamlpe (o)l kL2 0,mv) < +oo.

We know from the Aubin-Lions Lemma (see, Theorem 5.1 Chap. 1 in [Lio69]) that the following

immersion is compact
W = {u; ue L*(0,T; Hy()), u € L*(0,T; H~'(Q))} — L*(0,T; L*(2)).

Therefore, since | 2m| 2,7, g1 (o)v) < C and 2| L2(0,7;1-1(0)Vy < C we have, at least one subsequence,
that

Zm —> z  strongin L2 N,
g (Q) ALS)
Zm — 2 aein Q.
Fixing w € L?(0,T; V), it is easily obtained that the map
Gy :L*0,T;V) — R
T
z — Gu(z) = / (Vw, Vz)dt
0
is continuous. Then, (Vw, Vz,,) — (Vw, Vz) a.e. in () and consequently
((Aw, zim)Aw, k) — ((Aw, 2)Aw, k) a.ein(@. (A.16)

Thus, from (A.14) and (A.16) we can apply the Lions Lemma (see, Lemma 1.3, Chap. 1 in [Li069]),

(Aw, ) Aw, k) — ((Aw, 2)Aw, k) weak in L?(Q)N.
The other terms follow in a standard way. This shows us that (z, q) satisfies

T
/0 (2, k) + (vo + 1 ||Vw||*)(Vz, VE) + 2v1 ((Aw, 2)Aw, k) + b(k, w, 2)

T N ‘ (A.17)
—b(w, z, k)] dt = / (wxo,k)dt, ¥ k=" hik', h; € L*(0,T)
0 -
J=1

which is dense in L?(0,T;V), i.e., holds for all k € L%(0,T; V) and consequently (2, q) is strong
solution of (A.2)), with

2z € L*0,T; D(A)NV)NC°([0,T); V), and z € L*(0,T;H).
This ends the existence of a solution for (1.7)).
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The uniqueness of the strong solution to (I.7) can be proved in a standard way. Indeed, we know

that (T.7) has a unique solution. Suppose then that (A-2)) has two solutions, i.e., (2!, ¢!) and (22, ¢?) are

1

strong solutions and we set z = z' — 22. Therefore, z satisfies

(2, k) — (vo + 1| Vw|*)(Az, k) + 2v1 ((Aw, 2)Aw, k) + ((z' - VH)w, k)
—((z* - VYw, k) = ((w- V)21 k) + ((w- V)22, k) =0, in D'(0,T), Vk € V.
Taking kK = —Az in the previous equality, we find that

Ld

5 V2|12 + (vo + v1||[Vw|?)|Az]]? = -2 (Aw, 2)Aw, —Az)

+ ((w-V)z,—Az) — ((z- VHw, —Az) .
Arguing in the same way as for the existence, we get

Ld

1
5 IV + 50+l Vel Az]® < O ([lw]® + [|Aw]?) V2]

Integrating from 0 to ¢, using Gronwall’s Lemma and the fact that z(0) = 0 in 2, we conclude that
|z||v = 0 implying z' = 22 in Q,

proving the uniqueness.
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APPENDIX B

Appendix to Chapter 2

B.1 Existence and uniqueness of solution for (2.1)

The following theorem will show the existence and uniqueness of strong solutions for (2.1)). In sequel,

unless otherwise specified, the symbol C represents a generic positive constant.

Theorem B.1. There exists R > 0 such that if,

112 o,y + Iv0ll720x 0y + 19° 11V + HQOHWOLW(Q) <R.
then there exists a unique (y, p, 0) strong solution of in the class

y e L20,T; HX Q)N nV)nC(0,T;V), y; € L*(0,T; H)
6 € L?(0,T; W?3/2(Q)), 6, € L*(0,T; L3?(Q)).

Proof. Existence: We will apply Faedo-Galerkin method to obtain the proof, be orthonormal eigenfunc-

tions of the Stokes operator, i.e, the solutions to

—AUp + VD = Ay, in - €,
Uy =0 on 0f,

and {w,, } men the basis formed by the eigenfunctions of the Dirichlet Laplacian in €. Consider, for
m € N, Uy, = span{uy,us, ..., uy} and V;;, = span{wy,ws, ..., w,}. Let us introduce the finite
dimensional Galerkin approximations as follows: find ¥, 0., With y,,,(t) € U,, and 0,,(t) € V,, for all
t, associated with the initial data (y°, 6°), such that

(Y ) + (0 + 1] VY 12) VY, V) + (Y - V)ym, u) = (vobmen, u)
+(vly,u),Vu € Up,

(0! w) + (o + 1] Vyml|?) VOm, V) + (Ym - VO, w) = (voly, w) (B.1)
+((vo + v1||IVYm||2) Dy = Viym, w),Yw € Vi,

Ym(0) =98 — 4% in V, 6,,(0) =09 — 6° in L%(Q).

The classical ODE theory gives us the existence and uniqueness of a solution for (B.I), in local time. By
means of the uniform estimates that we will obtain below, we will be able to define such solutions for all

time ¢.
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Estimate I: Multiplying the first row of (B.I)) by A1, taking u = — Ay, (¢) and w = 6,,,(¢) in the first

and second equation of (B.T) and knowing that ||.|| ;s < C|.||[/2||.||}/2

s We have

A
© M1 (U —Aym> = 2L |7y
o (0 Om) = 5 [0

2dt
o ((vo+ ’/l”vymH )V O, V) = (vo + VIHVZ/mHQ)HVGmHQS

o M (10 + 1| VYm[®) Vs V(= Aym)) = M (vo + 1| Vym|[?) | Aym |
= M0 Aym? + A1 Vym P | Aym 1%
o )\1|(V0‘9m€Na _Aym)| < )\1V0||9m€N||||Aym||

)\ Vi
2 (10m]1 + [ Aymll?)

/\11/0

IN

| /\

EHVGmHQ 1Ayl (117 < /A V-1%)

All/()

o Ml(vle, =Aym)| < Mil[vlu || Aymll < Crvo, Aol 1AYmlI*; (€ = vo/4)

® [(volw, Om)| < [lvolw[[[fmll < Clluolol[[[VOm|
< CQ(Q, VO)HUOH%Q(M) + %|’v9m”27 ab < 6@2 =+ (1/46)[)2; (e = V()/S)

® M ((Um - V)Ym, —AYm)|

IN

MCNymll 261V yml| s | Ayl

MV Y Iy |21 Ay |12 | A |
MOV Y ¥ Ayl (VY| < C| Aymll)
C5(2, ) | Vg | A |1

IN A

IN

and

/Q (00 + 11V |2) Vg ||

< 0+ Vo) [ (920 ) " ([ 16nfas) P eps-n

= (0 + 1V ) [V 25118l .

< C0 + IV y )| Va1 A1 18121960 /2(10ral] < 1/3/A ]Vl

< Ot + 1 V931V | Agi | [0

< OV A1 | 1901 + Coa [V 2V 95| A | 1V ]

< Ca(2 0, M) |Vl 21 A9 2 + 22 V82 + C (2 10,01, M) V9| Ay 2 + T2 1V

Then,
1d Vo
5 OlIVyll? + 1m2) + 220l + 1 F i V61
)\1VO A1 A
21 VY P 1Ay 12 + = || Ay ||? + [ — C5(2, A1) |Vym
11 V]| Ay | 1AYm " + | =5 3(2, M) Vyml| B2)

—Ca(92, 40, M) [V — c5<9,uo,m,m>uwmu6} |Aym?
< Co(Q,v0)[[voll3 2,y + él(VoaAl)HUH%a( )N
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For simplicity of notation, we will omit the dependencies of the constants already known. Hence, the

following statement is valid:

Affirmation 1.

>\10

A(t) = C3|Vym®)| + Call Vym @O + G5 Vym@)|° < ==, ¥t € [0, Tn]. (B.3)

Indeed, assuming by contradiction that (B.3)) is false then there exist ¢1,,, such that

AV
A(t)<1?0 VO<t<tim

and \
. Y
A(tim) = 180. (B.4)
By hypothesis, there is pg > 0 such that
2 2 0 0 ~
12 wxomyn + 1v0llz2x o)) + 171V + 167112 o) < o
Then, we have
72N N A )\ 14
Vo0l + Call VIl + G5 Vo€ < =2,
. 1
ClllvHLz @x@.r)N T Cz\lvolliz(wx(o,T)) + §(A1\|Vy°|!2 +116°]1%) (B.5)
A 2 2 1/3
< mind 20 3 () g3 () |
48Cy 24204 192C5
Integrating (B.2) from O to t1,,, we obtain
1 Vi tim AV
= (MUY (1) 12 + 110 (b1 I12) + = / V6,02t + 222 [ | Ay 2t
2 4 Jo 8 (B.6)

N N 1
< Cullol sy + ColloolZagunioimy + 5PV + 16°)2).

Then from and we arrive at A(t1,,) < A1vp/8, which contradicts (B-4). Therefore, (B:3)
holds and we obtain that

LT OIP + [ ®)]2) + 2 / V0 (s)]%ds + 220 / 1Ay (5)|Pds

2 (B.7)
< Cullolauoimyyy + CollolZagomy + 5O IVHRI2 + 10012) V1 € 0, T

As the term on the right side of is independent of m, we can extend the solution (Y, 0,,) to the
entire interval [0, 7] and in the same way we can estimate (B.7) for ¢ € [0, T']. More precisely,

HZ/mHLoo (0,7:V) + HemHLoo (0,T;L2()) + HymHLz (0,T;H2(Q)NAV) + HemHLz (0,T;HE(2))

(B.8)
< O + 1612 + 1012 oz + 100022 0.1

Estimate II: Taking u = ¥/, in the first equation of (B.1), we obtain after some calculations
I %0 V1
3 | Ton(s) 1P + 1012 + 510

t t
SC/O IIAym(s)IIQIVym(s)IIQdS+C/0 10m ()12 ds + 10117 2 o 0,7
140} 141
+5 VP12 + VeIl
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therefore, using Estimate I and the Gronwall’s Lemma, we arrive at

”@/t,muiz(oj;}[) + ||ymH%oo(o,T;v)

(B.9)
< U1 + 1711 + 16°12 + 10122 0 0.0y + 00202
Estimate III: Since the 6,, are the eigenfunctions of —A in H}(£2), we have from Estimate I,
Hgt,mué(o,T;Hfl(Q) < C(Ily° 115 + 116°)1* + HUHQL%JX(O,T))N + HUOH%Q((UX(O,T)))' (B.10)

From estimates (B.3), and we can extract subsequences of {y,,} and {6,,} denoted
equal, so that taking the limit m — oo in the equation (B.I)), v, and 6,,, converge to a solution (weak) of
(2.1)). Indeed, to obtain the a.e. convergence of nonlocal terms, just use the fact that the sequence vy, is
pre-compact in L2(0,T; V).

This solution must satisfy

y e L20,T; HX Q)N nV)nC(0,T;V), y; € L*(0,T; H)
0 € L?(0,T; H}(2)) N L>(0,T; L*(Q)), 6; € L*(0,T; H-1())

where y strong solution in first equation in (2.1)) and 6 weak solution in second equation in (2.1).
Furthermore, since (vo + v1||Vy||?)Dy : Vy + vol, € L*(0,T; L3?(Q))(see @&7)) and ° €
WO1 3/ 2(Q) from LP — L9 regularity for parabolic equation (see, [DHPO7])), we have 6 solution of

0, —V-w(Vy)DO)+vy-VO =uvyl, +v(Vy)Dy : Vy in Q,
O(z,t) =0 on X, (B.11)
0(x,0) = 6°(x) in Q.

in class 6 € L2(0, T; W23/2(Q)), 6, € L*(0,T; L*>/?(Q)).

This yields (2.3).

Uniqueness: Let (u,q,w) = (y*,p*,0%) — (y2,p?, 62), where (y',p',0') and (y2, p2, §?) are solu-
tions of problem (2.1). Then, we got

up — volAu — v |[Vy'[PAy" + v |V PAy? + (u- V)y' + (y* - V)u

+Vq=1rywen, V-u=0 in Q,
wy — voAw — v (||[VyL|2) AT — ||[Vy2[|2A02) +u- VO + % Vw

= vyDy' : Vy' —vgDy? : Vy? +v1||VyY|2Dyt - Vy! — || V?|?Dy? : Vy? in Q,
u(z,t) =0,w(z,t) =0 on X,
u(z,0) =0, w(z,0) =0 in Q.

‘Which we can rewrite as follows

w — vAu — v [[|[Vy [PAu+ (VY + [V IDIVY | = VY [) Ay?]
+(u-VyH) + (y? - V)u + Vq = vowen, V-u =0 in Q,

we — wlAw — vi[|Vy PAw + ([Vy' | + V2D UIVYH = VY2 A6?]

+u - VO +y? - Vw = vo(Du : Vy' + Dy? : Vu) + 11[||Vy||?Du : Vy! (B.12)
VY IV DAV = VY2 ) Dy? : Val in Q,

u(z,t) = 0,w(z,t) =0 on X,

u(z,0) =0, w(z,0) =0 in Q.
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Multiplying by —Aw and w in first and second line of (B.12), respectively, and integrating in £2, we obtain

1d
S IVl + l?) + (o + 95 2) (| A2 + [ Vuol2)
- / UV + 192DV = V52 ) Ay Au + / (u- Vy")Au
(9] Q
(2 - Vu)Au] - /Q wesAu + / (V9 + 192D 95 = IV ) V62V
(9]

— /u - VO'w + /Vo[(Du : VyHw + (Dy? - Vu)w)

Q Q
7
+/(||Vy1|| + IV DUV = IVy2[) Dy : Vuw = L.
Q =1

Notice that,
L] < / CUIVy ]+ 9521Vl | A2 A
Q

1
< CUVY I + IV IVullPll Ay + - Aull?;

Since N < 3, by continuous embedding H?(Q2) — L>°(Q), H' () — L*(2) and inequality | || zr2(q) <
C||Af| toany f € H?(2) N H} (), we achieved
|Lo| < Cllull oy VY [ agy [ Aull + Clly? oo | Vel [| Aull
< CIVullll Ayt | Aull + ClAY [ Vul || Aull
1
< —Aul? + CIAY1Z + [Ay? [P Vull;

1
|Ls] < —[|Aull® + Cllw]*;
|Lal < CUIVYH + V2D IV ull? + CI VO 2| Vul?;

L5 < Clulocl 76" 1]
< Cl|aal Vo' ]
1
< [l Au|? + 76 )

Lol < ClIVull @l VYl o lwll + ClIVY2 | pao IVl oy 1wl

1
< —Aull? + CAY I + [Ay?[*) wl

Finally,
1Lz < CUIVYHT+ IVEIDIVYHTV Y o IVl ooy 1wl
+C (VY I+ IV DIV VY Lo IVl oy lwl]
1
< —lAull? +C (VYT + IV D2 UVY I + vy 1)1 Ay )12 flewl.
113



Consequently,

(IVul? + l[wl?) + (vo + v I VY IP) (| Aull® + || Vew]]?)

w2+ C [(I75 ]+ V21222 + 1) + [ V822
FIAPE 4 A2 [Vl + C [1+ [ V02 + Ay 2 + [ Ay?)?
9+ 9522095 + 9521 Ag2)2] o]

= w2 + CLs|| Tull? + CLoJu]?

(B.13)

where
Ls = (|Vy' | + IV D2 UAY I + 1) + [VO*1° + [ Ayt > + [|Ay?|?

and
Lo =1+ [[VO' >+ Ay 2 + 1AY 1P + (V' + V2D UIVYH P + 1IV2 1) 1 Ay?| 2.
Taking € = 12/1 and integrating from 0 to ¢,
¢
[Vu(t)||? + llw(t) | +/0 (vo + 1[IV 1P (|JAu(s)|I” + [[Vw(s)|[*)ds
¢
<0+ [ O+ La)(IFu)? + ) ).
0

Hence, applying Gronwall’s Lemma, we obtain u(t) = 0 and w(t) = 0, for all ¢ € [0, T']. Consequently,
(y*, pt, 0%) = (v, p?, 6?) confirming the uniqueness of the solution. O

Proof of Lemma [2.12] Continuing as in the proof of the existence of solution, we will make an
additional estimate for the temperature term. More accurately, taking w = —A6,,(¢) in the second
equation of (B.T)), using the inequalities ||.||;3 < C’H||1/2HH%12, e < C’H||1/2H||}1{12 and we

deduce

1d v
= (Ml Vyml? + [|0m]* + VO ]%) + ZO(IIVHmII2 + | A0, %)

2 dt
A1 VY P A0]17 4 Mval| Vym I Aym| 1 + S [ Ay ?
(B.14)

— G| Vym|

A1

~ )\1V()
(11 = CollVuml?) IV P90+ |

—~Co[[Vyml2 = Cuol[ Vym 1] 11A9m|I? < 0,

where Cy = max{d;, 07} and Cyg = max{é'5, és} with (7 and Cy constants coming from the estimate
of —A6,,(t). Remembering that Cj, i = {1,...,10} are constants that may depend on €, vy, v; and A;.

In a similar way to what was done for we can obtain that all terms on the left side of (B.14)) are
positive. Just as was done for (B.3)), we can obtain that the last term on the left side of (B.14) is positive.

Therefore, we just need to prove the following statement:

Affirmation 2.
B(t) = Cs||Vym®)|? < v1, Vit € [0,T}]. (B.15)
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Indeed, suppose by contradiction that (B-13) is false then there exist ¢}, such that

Bt)<w,Vo<t<t,

m

and
B(tr) = . (B.16)

Since there is » > 0 such that
15° v+ 110° () < 7

we have,
)\1 1/1
IVy°]1? < oF (B.17)
6
Integrating (B.14) from 0 to ¢}, we obtain

*

3 OUIZ9 DI + 100 (I + 190 e3)12) + 52 [ 190, 2

tm tm
42 [ P+ 2 [ a0 Pt (B.18)
0 0

8
1
< SlVYOIZ +16°17 + 1V 6°)1%)

and consequently B(t%,) < v, contradicting (B.16).
Therefore, (B.13) holds and we conclude that

1d

5 S O T (I + [0 (O + V8 ]?) + 22V (1)

A
+ 2 Ay I < 0.t € [0,7]

which we will rewrite in the form

qa
dt

>\10

uut) + VO[> + 2 Ay < 0, (B.19)

where ©,,,(t) = A1 || Vym||? + [|0m > + || VO ||. Note that,

B(t) < 020, 2+ S0

A0
|Ayml? < € (uvem\\? rAymrP)

where C1,Cy > 0 and C = max{é’l, éz} Thus, from (B.19),

d

1
—&,, =®,,(t) <
GO0+ (1) 0

which results in )
®,,(t) < VP, (0).
Then
MYyt )2+ 106 I + VO, )7 < lim inf &y, (2)
YOOI + 602 + [ V6°]|2),

IN

and consequently one can deduce (2.71). O
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