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RESUMO

Nesta tese os objetivos principais são apresentar três diferentes pesquisas que foram
desenvolvidas durante o curso de doutorado do Programa de Pós-Graduação em Matemática
da Universidade Federal Fluminense (UFF), sob orientação do professor Juan Bautista Límaco
Ferrel. O principal campo de estudo desta tese é a teoria de controle e a boa colocação de
equações diferenciais parciais, onde apresentamos três pesquisas sobre os seguintes temas:
controle insensível; controlabilidade nula local; e existência e unicidade de solução forte.

Em resumo, os principais objetivos são estabelecer:

i) A existência de controles insensitivos para o sistema de Ladyzhenskaya-Smagorinsky,
yt −∇ · ((ν0 + ν1∥∇y∥2L2)Dy) + (y · ∇) y +∇p = f + vχω in Q,

∇ · y = 0 in Q,

y = 0 on Σ,

y(0) = y0 + τ ŷ0 in Ω,

onde Dy :=
1

2
(∇y +∇T y).

ii) A controlabilidade nula local dos modelos Ladyzhenskaya-Boussinesq N-dimensionais
completos 

yt −∇ · (ν(∇y)Dy) + (y · ∇)y +∇P = vχω + ν0θeN in Q,

∇ · y = 0 in Q,

θt −∇ · (ν(∇y)∇θ) + y · ∇θ = v0χω + ν(∇y)Dy : ∇y in Q,

y(x, t) = 0, θ(x, t) = 0 on Σ,

y(x, 0) = y0(x), θ(x, 0) = θ0(x) in Ω,

onde
ν(∇y) := ν0 + ν1

∫
Ω
|∇y|2dx

e 

yt −∇ · (ν̄(∇y)Dy) + (y · ∇)y +∇P = vχω + ν0θeN in Q,

∇ · y = 0 in Q,

θt −∇ · (ν̄(∇θ)∇θ) + y · ∇θ = v0χω + ν̄(∇y)Dy : ∇y in Q,

y(x, t) = 0, θ(x, t) = 0 on Σ,

y(x, 0) = y0(x), θ(x, 0) = θ0(x) in Ω,

onde ν̄(∇ς) := ν0 + ν1∥∇ς∥2Lp , for 3 < p ≤ 6. Em ambos os sistemas

eN =

{
(0, 1) se N = 2,

(0, 0, 1) se N = 3,

e

Dy : ∇y =
N∑

i,j=1

1

2

(
∂yj
∂xi

+
∂yi
∂xj

)
∂yi
∂xj

.



iii) A existência de solução forte para a equação de Navier-Stokes em domínio não cilíndrico

u′ − ν∆u+ (u · ∇)u = f −∇p in Q̂,

∇ · u = 0 in Q̂,

u = 0 on Σ̂,

u(·, 0) = u0 in Ω0,

por meio do método penalizante.

Palavras-chave: equações diferenciais parciais, equações para fluidos viscosos incompressíveis,
teoria de controle, controlabilidade nula, controle insensibilizante, Ladyzhenskaya-Smagorinsky,
Ladyzhenskaya-Boussinesq, domínio não-cilíndrico, sistema de Navier-Stokes, soluções fortes,
método penalizante.
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ABSTRACT

In this thesis the main objectives are to present three different researches that were developed
during the doctoral course of the Graduate Program in Mathematics at the Universidade Federal
Fluminense (UFF), under the guidance of professor Juan Bautista Límaco Ferrel. The main field
of study of this thesis is control theory and the well-posedness of partial differential equations,
where we present three research studies on the following topics: insensitive control; local null
controllability; and existence and uniqueness of strong solution.

In summary, the main objectives are to establish:

i) The existence of insensitive controls for the system of the Ladyzhenskaya-Smagorinsky
yt −∇ · ((ν0 + ν1∥∇y∥2L2)Dy) + (y · ∇) y +∇p = f + vχω in Q,

∇ · y = 0 in Q,

y = 0 on Σ,

y(0) = y0 + τ ŷ0 in Ω,

where Dy :=
1

2
(∇y +∇T y).

ii) The local null controllability of complete N-dimensional Ladyzhenskaya-Boussinesq models

yt −∇ · (ν(∇y)Dy) + (y · ∇)y +∇P = vχω + ν0θeN in Q,

∇ · y = 0 in Q,

θt −∇ · (ν(∇y)∇θ) + y · ∇θ = v0χω + ν(∇y)Dy : ∇y in Q,

y(x, t) = 0, θ(x, t) = 0 on Σ,

y(x, 0) = y0(x), θ(x, 0) = θ0(x) in Ω,

where

ν(∇y) := ν0 + ν1

∫
Ω
|∇y|2dx

and 

yt −∇ · (ν̄(∇y)Dy) + (y · ∇)y +∇P = vχω + ν0θeN in Q,

∇ · y = 0 in Q,

θt −∇ · (ν̄(∇θ)∇θ) + y · ∇θ = v0χω + ν̄(∇y)Dy : ∇y in Q,

y(x, t) = 0, θ(x, t) = 0 on Σ,

y(x, 0) = y0(x), θ(x, 0) = θ0(x) in Ω,

where ν̄(∇ς) := ν0 + ν1∥∇ς∥2Lp , for 3 < p ≤ 6. In both systems

eN =

{
(0, 1) if N = 2,

(0, 0, 1) if N = 3,

and

Dy : ∇y =

N∑
i,j=1

1

2

(
∂yj
∂xi

+
∂yi
∂xj

)
∂yi
∂xj

.



iii) The existence of strong solutions for the Navier-Stokes equations in non-cylindrical domain

u′ − ν∆u+ (u · ∇)u = f −∇p in Q̂,

∇ · u = 0 in Q̂,

u = 0 on Σ̂,

u(·, 0) = u0 in Ω0,

by means the penalizing method.

Keywords: partial differential equations, equations for incompressible viscous fluids, control
theory, null controllability, insensitizing control, Ladyzhenskaya-Smagorinsky, Ladyzhenskaya-
Boussinesq, non-cylindrical domain, Navier-Stokes system, strong solutions, penalty method.
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Introduction

This thesis comprises results within the scope of control theory and the existence and uniqueness

of strong solutions for systems governed by partial differential equations (PDEs). Control theory is a

consolidated field of study in mathematical literature, engineering and related areas. It provides us with

tools to better understand, apply and manipulate mathematical equations described by (PDEs), or Ordinary

Differential Equations (ODEs), which model physical, chemical, biological and even economic behaviors.

In general, we can define a controllability problem as follows: Suppose a state system governed

by an PDE (or system of PDEs) that evolves in a time interval [0, T ], with certain initial and boundary

conditions. We can act on the system by means an appropriate control (the right side of the system) that is

taken from a set of admissible controls. Then, given a final state, we are interested in finding a control

such that the PDE solution corresponds to both the initial state at time t = 0 and the final state at time

t = T .

Of course, depending on the objective the concept of controllability can be more specific. We precisely

define certain commonly considered control problems. To establish the ideas, consider Uad the set of

admissible controls, v ∈ Uad the control, H a Banach space where the equation makes sense and denote

by yv = yv(t) the system solution associated with the control v. Assuming boundary conditions for the

equation and that y0, yd ∈ H are the states at t = 0 and t = T , respectively. We will say that the system

is exactly controllable at the time T , if it is possible to find a control v, for any y0, yd ∈ H , which "drive"

the equation from y0 to yd so that

yv(T ) = yd.

Nonetheless, if we need to relax the previous condition, we can modify it to

yv(T ) is close enough to yd

i.e.

∥yv(T )− yd∥H < ϵ, ∀ ϵ > 0.

When the previous condition is possible, we will say that the system is approximately controllable at the

time T . Thus, in the latter case, the objective is to find a control such that the solution of the system in T

is sufficiently close to the state yd in a “small” neighborhood of H . On the other hand, we will say that

the system is null controllable at time T if for all y0 ∈ H there is a control v such that yv satisfies

yv(T ) = 0.

13



Now, assuming ỹ0 ∈ H, ṽ ∈ Uad and ỹ an associated trajectory, well defined in [0, T ]. We will say

that the system is exactly controllable for trajectories at time T , if for any y0 ∈ H it is possible to obtain

yv(T ) = ỹ(T ).

The “best” among all the existing controls achieving the desired goal is frequently referred to as the

optimal control.

The search for a certain controllability will depend on the PDE, as well as its initial and boundary

conditions. There is a vast literature on this theory, we cite [LM67], [Lio88], [Rus78], [E Z05], and for a

perspective from its origins to some of its many possible applications, see, for example, [ZF03].

The concepts exposed above characterize the main ways of obtaining the existence of controls for

a given system. However, variations of these definitions are often necessary to achieve the objective

of controlling a system. For example, the notion of null controllability may be more restrictive in the

following sense: Given T > 0, we will say that the system is locally null controllable at time T, if there

exists ϵ > 0 such that for any y0 ∈ H with ∥y0∥H ≤ ϵ , it is possible to find a control v such that the

associated solution yv satisfies

yv(T ) = 0.

If it is possible to show the existence of a T > 0 large enough such that the previous condition to be valid,

then we say that the system is null controllable in large time.

We also have the concept of insensitive control which, as will be seen later, can be rewritten as a null

controllability problem. The formulation of this type of control derives from the concept of sentinel (which

comes from the French term sentinelles and can be translated as “observers”) used in studies of distributed

systems with incomplete data (systems described by EDPs) to "observe" the evolution of the system. This

was one of the important contributions made by Jacques-Louis Lions throughout the abstract and applied

theoretical development of control theory, see [Lio92] and [BF95]. The general idea of insensitive control

can be expressed as follows: Let ϕ be a differentiable functional (called sentinel functional) defined on

the solution set to which y belongs, for a problem with incomplete initial data, let us say τ ŷ0. We say that

control v insensitizes ϕ(y) if

∂ϕ(y(x, t; v, τ))

∂τ

∣∣∣∣
τ=0

= 0 ∀ ŷ0 given in a suitable Hilbert or Banach space Y with ∥ŷ0∥Y = 1, (1)

where x represents the spatial variable, t the time variable, τ an unknown small real number and ∂ϕ(y)
∂τ |τ=0

denotes the derivative of ϕ(y) with respect to τ at τ = 0. Hence, when (1) holds the functional ϕ is locally

insensitive to the perturbation τ ŷ0.

Among some of the possible applications for insensitizing controls, we have:

• Parabolic river and lake pollution problems where the initial conditions of the pollutants, or even the

boundary conditions, may be unknown or only partially known due to difficulties such as inaccessibility

in measuring contaminants, the purpose is to find a control (human action) suitable so that depollution can

be carried out even with the uncertainty of some data;

• Oceanographic and meteorological problems where there is a wide variety of possibilities regarding the

choice of the initial moment. Hence, the previous reasoning is also useful for this case.

In this thesis we address the Navier-Stokes and Ladyzhenskaya-Smagorinsky systems that govern,

under very general conditions, the flow of incompressible and viscous fluids, that is, in which the mass and

14



volume of the fluid do not change even under pressure. Furthermore, we will also study a control problem

regarding a thermally conducting fluid obtained by combining a model proposed by Ladyzhenskaya with

a nonlinear Boussinesq-like equation, the complete Ladyzhenskaya-Boussinesq model. Hence, the thesis

is structured into three chapters plus a part dedicated to additional comments and open problems on the

three previous chapters that constitute a compilation of the research we developed during the doctorate.

The research themes are: insensitive control; local null controllability; and existence and uniqueness of

strong solution.

In the chapter first, deals with N-dimensional Ladyzhenskaya-Smagorinsky kind differential turbulence

model with partially known initial data. We are interested in the existence of insensitive controls withN−1

scalar controls in an arbitrary control domain for the local L2 - norm of the solution of model, that will

be given by means of a functional. In other words, the goal is to find a control function v = (v1, .., vN ),

having one vanishing component (e.g vN ), such that some functional of the state is locally insensitive to

the perturbations of these initial data.

More precisely, we will deal with the following model of the Ladyzhenskaya-Smagorinsky kind,

which describes a model for the movement of incompressible viscous flows with incomplete data:
yt −∇ · ((ν0 + ν1∥∇y∥2L2)Dy) + (y · ∇) y +∇p = f + vχω in Q,

∇ · y = 0 in Q,

y = 0 on Σ,

y(0) = y0 + τ ŷ0 in Ω,

(2)

where y = y(x, t), p = p(x, t) represent the “average" velocity field and pressure of a turbulent fluid

whose particles in Ω are during the time interval (0, T ); v = (vj)1≤j≤N is a function which must be

viewed as a control acting on the system, f(x, t) = (fi(x, t))1≤i≤N ∈ L2(Q)N a given force, applied

externally; ν0 and ν1 are positive constants, where ν0 represents the kinematic viscosity and ν1∥∇y∥2L2

the turbulent viscosity and Dy stands for the symmetrized gradient of y: Dy = 1
2(∇y+∇T y). Moreover,

y(0) is the time average velocity t = 0 partially unknown.

In our context, the application of insensitizing controls is related to the study of fluids over an Ω region

contained, for instance, in the ocean where it is difficult to measure the initial velocity and therefore such

velocity is only partially known, see [FGO03] for insensitive controls for a linear quasi-geostrophic ocean

model. Therefore, we want to find a control located in an accessible region ω ⊂ Ω so that it provides us

with information by means the functional about the fluid and this information is not influenced by lack of

knowledge of the initial data.

In [HLC18], the local null controllability was studied for system (2) by means N − 1 scalar controls

for an arbitrary control domain. In our case, within the scope of the insensitive control problem, we will

need to define weights with behaviors different from those considered in [HLC18], which will allow us to

obtain estimates for the solution of a coupled linear system. Through these estimates we will be able to

overcome the difficulties imposed by the term ∇ · ((ν0 + ν1∥∇y∥2L2)Dy).

Notice that, the system (2) is a particular case of


yt −∇ · T(y, p) + (y · ∇)y = f in Q,

∇ · y = 0 in Q,

etc.,

(3)

15



where f is an external force field, T(y, p) := −pI + (ν0 + ν1|Dy|r−2)Dy is the stress tensor with r > 2

and

|Dy| :=

 N∑
i,j=1

1

2

(
∂yj
∂xi

+
∂yi
∂xj

)2
1/2

.

The first mathematical studies on this type of equations were introduced by O. Ladyzhenskaya in

the 1960s and can be found in [Lad66; Lad67; Lad68; Lad69]. Just as J.-L. Lions considered in his

relevant book [Lio69] the case in which Dy is replaced by ∇y, that is, when the tensor stress is of the

form T1(y, p) = −pI + (ν0 + ν1|∇y|r−2)∇y and obtained important results of existence, uniqueness

and regularity of solutions. For some regularity properties for the solutions of (3), see for instance [Vei07].

When N = r = 3 the model (3) is the classical turbulence model approached by Smagorinsky in

[Sma63].

For additional investigations within the scope of control theory on variations of the (3) model, we

recommend: [Car+22] in which analyzed the null controllability property when the stress tensor is the

same as that considered by J.-L. Lions, that is, dependent on the state gradient; E. Fernández - Cara

et al [FLM15], where the existence of local null controls was guaranteed for the case in which stress

tensor is equal to −pI + (ν0 + ν1(∥Dy∥2L2))Dy) with ν1 being a continuously differentiable function,

that is, 0 ≤ ν1 ≤ C and |ν ′1| < C. In this, the authors also provided a numerical approximation and

illustrated the behavior of the algorithm with examples. And, finally, Guerrero and Takahashi on [GT21]

that considered ∥curl(y)∥2L2 instead of |Dy|r−2 and demonstrated the controllability by trajectories. To

obtain this result, the authors needed to prove a Carleman estimate for the adjoint of a linear system

equipped with a nonlocal spatial term.

Next, we will cite some articles on insensitive controls present in the literature.

Considering the semilinear heat system with globally Lipschitz nonlinearities of class C1 and ω∩O ≠

∅, where ω ⊂ Ω is the control set and O ⊂ Ω is the observation set, Bodart and Fabre [BF95] weakened

the definition of insensitizing controls and proved the existence of ε - insensitizing controls, i.e. they

proved that, given ε > 0, there is a control v such that |∂ϕ(y)∂τ |τ=0 | ≤ ε. For the same problem, [Ter00]

extended the case by proving the existence of insensitive controls.

Still in the context of semilinear heat equations, [Ter97] and [BGP04a] proved the existence of

insensitive controls in unbounded domains and for superlinear nonlinearities with regular bounded

domains, respectively. For the case of the linear heat equation with disjoint regions of control and

observation, that is, with ω ∩ O = ∅ the authors of [MOT04] gave an example for the existence of ε -

insensitizing controls.

Moreover, in [Ter00] it was proved also for the linear heat equation that when the control does not

act everywhere in Ω we cannot expect that the insensitivity holds for all initial data. Thus, here we will

assume that ω ∩ O ̸= ∅ and y0 ≡ 0 which are classic hypotheses in insensitization problems. Also for

the heat equation, [TZ09] performed a study on the possible conditions of the initial data that can be

insensitized, for this the authors removed the condition y0 = 0 when O ⊂ ω and when O = Ω and they

concluded that if this is not the case, negative results occur. Therefore, this is a delicate issue to address.

With regard to insensitizing controls for fluid equations, the first result was obtained in [Pér04], Section

2.3, where the author established the existence of ε - insensitizing controls with one vanishing component,

that is, of the form (v1, v2, 0) for the three-dimensional Stokes system. Subsequently, also for the Stokes

system, [Gue07a] obtained the existence of insensitive controls both for the case in which the sentinel
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is given by the L2–norm of the state and the L2–norm of the curl of the state. For the Navier–Stokes

system we reference [CG14], which proves, extending the results of [Gue13], the existence of insensitive

controls having one vanishing component. We also indicate [CP23], which insensitized the rotational of

the solution using controls with one component fixed at zero.

For other studies of parabolic equations, see, for example, [Gue07b], [TK10], and [Liu12]. The first

article to establish the existence of insensitizing controls for the L2-norm of the gradient of solutions of

linear heat equations. The second paper found the existence of ε-insensitizing controls for some parabolic

equations when the control region and the observability region do not intersect, and the third proved

the existence of insensitive controls in a Hölder space, for a class of quasilinear parabolic equations

with homogeneous Dirichlet boundary conditions. In the latter, the author made use of fixed-point

techniques. We also mention [ST19], where the authors proved the existence of insensitizing controls for

the nonlinear Ginzburg-Landau equation considering a functional that depends on the gradient of the state.

We also mention [CCC16], in which a nonlinear parabolic system modeling phase field phenomena is

considered. Such a system is formed from two coupled parabolic equations, where the first one describes

the temperature of the material and the second one describes a phase field function. In addition, we

mention [BGP04b], which presents the existence of insensitizing controls for a semilinear heat equation

in a bounded domain of Rp (p ≥ 1). Such semilinearity involves the state and gradient terms with

homogeneous Dirichlet boundary conditions.

For the Boussinesq system without any control used on the temperature equation, [Car17] showed the

existence of the insensitizing controls such that the control acting on the fluid equation can be chosen to

have one vanishing component. Also about the Boussinesq system, but with controls act on both equations,

when the case is three-dimensional [CGG15] demonstrated the existence of insensitive controls with two

vanishing components, and for the two-dimensional case, the authors concluded that no control on the

velocity equation is required.

Concerning insensitive controls for hyperbolic equations, we cite [Dág06] which provides a study on

insensitizing controls for the uni-dimensional wave equation. The author of this work involves two cases:

when the control acts in an interior region, and when it acts on the boundary. They conclude that, in both

cases, the ϵ-insensitizing controllability holds when the control time is sufficiently large.

We now cite works that have been recently carried out in this area but that involve domain variations.

In [ELP22], a quadratic functional involving the solution of the linear heat equation with respect to domain

variations was insensitized. Boundary variations of the spatial domain on which the solution of the PDE is

defined at each time were considered, and three main issues were investigated: approximate insensitizing,

approximate insensitizing combined with an exact insensitizing for a finite-dimensional subspace, and

exact insensitizing, which were defined by the authors. In [LPS19], a semi-linear heat equation with

Dirichlet boundary conditions and globally Lipschitz nonlinearity was considered, posed on a bounded

domain of RN (N ∈ N∗), assumed to be an unknown perturbation of a reference domain.

For existence of insensitizing controls for a fourth-order nonlinear parabolic equation, see [YL22]

and also [BV22]. In the second reference, it was addressed the existence of insensitizing controls was

considered for a nonlinear coupled system of fourth, and second-order parabolic equations known as the

stabilized Kuramoto-Sivashinsky model.

Finally, for a numerical proposal, [BHT19] addressed an insensitizing control problem in the discrete

setting of finite-differences. The authors proved the existence of a control that insensitizes the norm of the
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observed solution of a 1-D semi-discrete parabolic equation and dealt with the problem of computing

numerical approximations of insensitizing controls, featuring numerical illustrations, for the heat equation

by using the Hilbert Uniqueness Method (HUM).

The second chapter addresses about local null controllability and large time null controllability for the

complete Ladyzhenskaya-Boussinesq-type system with distributed controls supported in small sets. We

consider the term (ν0 + ν1∥∇y∥2Lp)Dy : ∇y on the right side of the temperature equation (represented

by the variable θ), the which makes the system more realistic, difficult to analyze and control. We

treat separately the cases in which p = 2 and in which 3 < p ≤ 6. In these equations describing a

temperature-coupled differential turbulence model, we find local and nonlocal nonlinearities: the recurring

transport terms and a turbulent viscosity that depends on the global in space energy dissipated by the

mean flow. More specifically, we will study the null controllability for the nonlinear systems:
yt −∇ · (ν(∇y)Dy) + (y · ∇)y +∇P = vχω + ν0θeN , ∇ · y = 0 in Q,

θt −∇ · (ν(∇y)∇θ) + y · ∇θ = v0χω + ν(∇y)Dy : ∇y in Q,

y(x, t) = 0, θ(x, t) = 0 on Σ,

y(x, 0) = y0(x), θ(x, 0) = θ0(x) in Ω,

(4)

where

ν(∇y) := ν0 + ν1

∫
Ω
|∇y|2dx (5)

and 
yt −∇ · (ν̄(∇y)Dy) + (y · ∇)y +∇P = vχω + ν0θeN , ∇ · y = 0 in Q,

θt −∇ · (ν̄(∇θ)∇θ) + y · ∇θ = v0χω + ν̄(∇y)Dy : ∇y in Q,

y(x, t) = 0, θ(x, t) = 0 on Σ,

y(x, 0) = y0(x), θ(x, 0) = θ0(x) in Ω,

(6)

where ν̄(∇ς) := ν0 + ν1∥∇ς∥2Lp , for 3 < p ≤ 6, ω × (0, T ) is the control domain and v (force) and v0
(heat sources) represent the controls acting on the system, and in both systems

eN =

{
(0, 1) if N = 2,

(0, 0, 1) if N = 3.

As we are assuming on the right side of the heat equation the quadratic term ν(∇y)Dy : ∇y or

ν̄(∇y)Dy : ∇y which is related to the work done by viscous forces, the systems (4) and (6) can be

considered generalizations of the complete Boussinesq model (which corresponds to several conservation

laws involving momentum, mass and energy). Moreover, when ν0 = 1 and ν1 = 0 in (4), E. Fernández -

Cara et al [FLH] proved that such system is locally null controllable. And, when we remove the entire

term ν(∇y)Dy : ∇y from the right side of equation (4), Huaman et al [HLC18] demonstrated that such a

system is locally null controllable by means of N − 1 scalar controls for an arbitrary control domain.

We will now list some articles present in the literature that provided relevant controllability results for

the Boussinesq system.

On the exact local controllability of trajectories, [Gue06] dealt with the Boussinesq system with N +1

distributed scalar controls supported in small sets. In this interesting work, firstly, a Carleman inequality

was proved for a linearized version of the Boussinesq system, which leads to its null controllability at

any time T > 0. And from this, the result of exact controllability of trajectories was obtained. Still this

context we mention, [Fer+06] in which the authors proved that through some hypotheses were imposed
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on the control domain and the trajectories, the Boussinesq system is locally exactly controllable by N − 1

scalar controls at a time T > 0 to the trajectories. Moreover, removing the geometric conditions imposed

by [Fer+06], [Car12] concludes the exact local controllability to a particular class of trajectories with

internal controls having two vanishing components. Also [FI98] and [FI99] proved, respectively, the local

exact boundary controllability to the trajectories of the Boussinesq system with N + 1 scalar controls

acting over the whole boundary in a bounded domain of RN (N = 2 or 3) with C∞-boundary and the

local exact controllability to the same trajectories with N +1 scalar distributed controls, when the torus is

the domain.

Considering a generalized Boussinesq equation in a periodic domain, a unit circle in the plane, [Zha98]

showed that depending on the location of the control, whether in the entire domain or in a subdomain, and

the amplitude of the initial and terminal states it is possible conclude that the system is globally exactly

controllable.

The third chapter is dedicated to the existence and uniqueness of strong solutions for the Navier–

Stokes equations in non-cylindrical domains. To do this, we make a modification to the penalty method

introduced by Lions, J.-L. in 1964, using two penalty terms which have an elliptical relationship between

them instead of a single term used by Lions, J.-L., the decay of the solutions is also proven. This method

can also be used to obtain regular solutions in other nonlinear equations in non-cylindrical domains.

The use of the penalization method for evolution inequalities was systematically applied in [Lio68a],

[Lio68b] and [FS69] introduced studies for nonlinear evolution problems, specifically for the equation of

Navier-Stokes, in non-cylindrical open sets.

For other studies on the Navier-Stokes equation in non-cylindrical domains we cite: [Boc77] in which

the author shows that under some smoothness conditions it is possible to obtain a Kiselev-Ladyzhenskaya

type estimate in a way that takes into account the non-cylindrical nature of the domain, we also refer

to [Sal88] which shows that for dimension 3 some regularity and decay results of this equation known

in the cylindrical case are transferred in modified form to the non-cylindrical case. And, also for the

three-dimensional case, [NS98] who added a boundary condition analogous to the Neumann condition,

thus calling his problem the second boundary problem for the Navier-Stokes system and showed the

existence of a strong solution for such. In [ÔY78], the authors demonstrate the existence of solutions

using subdifferential operator theory. Specifically, the problem is transformed into an abstract equation

in an appropriate Hilbert space, which can be considered a perturbed equation resulting from a time-

dependent subdifferential operator. The desired solutions are subsequently constructed using the successive

approximation method. An alternative method, see [MT82], involves reducing the problem to a cylindrical

domain. This reduction is based on the assumption that a diffeomorphism exists, which maps the

given time-dependent domain to a cylindrical domain, and further assumes that the Jacobian of the

diffeomorphism depends solely on the time variable. In [Lím+05] we can see the Navier-Stokes equation

as a particular case of a study that shows the existence of weak solutions of equations that represent

non-homogeneous viscous incompressible fluid flows in a non-cylindrical domain in R3. And finally,

[ML97] studies the Navier-Stokes system using singular perturbation method that consists of transforming

a parabolic problem into a family of elliptic problems indexed by a parameter ε > 0. The authors solve

the problems using elliptic methods to achieve the solution of the original parabolic problem as a limit as

ε tends to zero.

A study that used the method of penalizing the Dirichlet problem for the Navier-Stokes-Fourier system
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was carried out by [Bas+22]. In this, the authors demonstrated a strong convergence of penalized solutions

to the solution of the limit problem and presented numerical simulations illustrating the robustness and

efficiency of the proposed penalization strategy in solving the system in complex domains.

Other interesting works concerning the application of the penalization method in non-cylindrical

domains are, for example, [LCM04] and [CLB08]. In the first, the authors establish existence, uniqueness

and regularity of solutions for a mixed problem associated with equations of Benjamin-Bona-Mahony

type in a domain non-cylindrical with moving boundary. The technique consists of transforming the

non-cylindrical domain into a Q cylinder using a diffeomorphism and applying the Faedo-Galerkin

method on Q to the transformed mixed problem. The uniqueness of the solutions is proved using the

energy method in the non-cylindrical domain. The second, presents results on the existence of global

solutions and an estimate of the decay rate of weak global solutions for energy associated with an initial

and boundary value problem for a beam evolution equation (which describes a small vertical flexion fully

clamped) with variable coefficients in non-cylindrical domains. Moreover, the penalty method (refer to

[AG93]) is employed for the numerical approximation of the Navier-Stokes problem in a non-cylindrical

domain.

For other subjects about the Navier-Stokes equation see for example: [Fer+04] and [Fer+06], where in

the first the authors deal with the exact local controllability of the Navier-Stokes system with distributed

controls supported in small sets. In it, they present a new Carleman inequality for the linearized Navier-

Stokes system, obtaining from this the null controllability and consequently a local result related to the

exact controllability for the trajectories of the Navier-Stokes system. And the second extends [Fer+04]

presenting some new results for the N-dimensional Navier-Stokes system.
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CHAPTER 1

Insensitizing controls with N-1
components for the N-Dimensional

Ladyzhenskaya-Smagorinsky system

1.1 Problem Formulation

Let Ω ⊂ RN (N = 2 or 3), be an open, connected, bounded non-empty set with boundary Γ = ∂Ω of

class C∞. We fix T > 0 and denote byQ the cylinderQ = Ω×(0, T ), with side boundary Σ = Γ×(0, T ).

Let us also consider ω ⊂ Ω open (small) non-empty, which is the control set, χω ∈ C∞
0 (Ω) satisfies

0 < χω ≤ 1 in ω, and χω = 0 outside ω. Let O ⊂ Ω be another open set called the observation set. The

symbol C will be used to design a generic positive constant.

We denote by (., .) and ∥.∥, respectively, the inner product and norm in L2 in Ω and Q.

Let us recall the definition of some vector spaces in the context of incompressible fluids:

V = {y ∈ H1
0 (Ω)

N : ∇ · y = 0 ∈ Ω}

and

H = {y ∈ L2(Ω)N : ∇ · y = 0 in Ω, y · n = 0 on ∂Ω},

where n is the normal vector exterior to ∂Ω, L2(Ω) is the space of square integrable functions and H1
0 (Ω)

is the closure of the space of test functions in Ω, D(Ω), in H1(Ω) the standard Hilbert space.

Consider the following model of Ladyzhenskaya-Smagorinsky type, which describes a model for

the movement of incompressible viscous flows (see, [Lad67; Lad68; Lad69] for more details), with

incomplete data:
yt −∇ · ((ν0 + ν1∥∇y∥2)Dy) + (y · ∇) y +∇p = f + vχω in Q,

∇ · y = 0 in Q,

y = 0 on Σ,

y(0) = y0 + τ ŷ0 in Ω,

(1.1)

where y = y(x, t), p = p(x, t) represent the "average" velocity field and pressure of a turbulent fluid

whose particles in Ω are during the time interval (0, T ); v = (vj)1≤j≤N is a function which must be

viewed as a control acting on the system; f(x, t) = (fi(x, t))1≤i≤N ∈ L2(Q)N a given force, applied
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externally; ν0 and ν1 are positive constants, where ν0 represents the kinematic viscosity and ν1∥∇y∥2 the

turbulent viscosity and Dy stands for the symmetrized gradient of y: Dy = 1
2(∇y +∇T y). Moreover,

y(0) is the time average velocity t = 0 partially unknown in the following sense:

• y0 ∈ V is known;

• ŷ0 ∈ V is unknown with ∥ŷ0∥H1
0 (Ω)N = 1; and

• τ is a small, unknown real number.

When τ = 0, f and vχω ∈ L2(Ω× (0, T ))N , the guarantee of exactly one strong (y, p) solution of

(1.1) in the class y ∈ L2(0, T ;D(A))∩C0([0, T ]; V), yt ∈ L2(0, T ; H) was given by [FLM15; HLC18],

where D(A) = H2(Ω)N ∩V.

Here, we are interested in proving the existence of controls that insensitize some functional that

depends on the velocity field y, following the literature [Lio92], the usual sentinel functional is given by

the square of the norm in the L2 local of state variable y, that is,

Jτ (y) =
1

2

∫∫
O×(0,T )

|y|2 dx dt. (1.2)

Then, the insensitizing control problem is to find a control v such that the influence of the unknown initial

data τ ŷ0 is imperceptible to our functional, i.e.,

∂Jτ (y)

∂τ

∣∣∣∣
τ=0

= 0 ∀ ŷ0 ∈ H1
0 (Ω)

N such that ∥ŷ0∥H1
0 (Ω)N = 1. (1.3)

When (1.3) holds, the functional Jτ is locally insensitive to the perturbation τ ŷ0 and then we say that

the control v insensitizes Jτ .

Of course, several options for the functional are possible, such as

Kτ (y) =
1
2∥∇y∥

2
L2(O×(0,T ))N

, Iτ (y) =
1
2∥∇ × y∥2

L2(O×(0,T ))N(N−1)/2 , (1.4)

and others. The choice of these functionals determines the degree of complexity of the cascade system,

some of which are open problems. This will be discussed in more detail later.

The main goal of this chapter is to obtain the existence of insensitizing controls for (1.1) having one

vanishing component, that is, vi ≡ 0 for any given i ∈ {1, . . . , N}. That said, we are interested in solving

the following theorem:

Theorem 1.1. Let i ∈ {1, . . . , N} and m ≥ 10 be a real number. Assume that ω ∩ O ≠ ∅ and y0 ≡ 0.

Then, there exist δ > 0 and C > 0, depending on ω,Ω,O, and T , such that for any f satisfying

eC/tmf, eC/tmft ∈ L2(Q)N , (eC/tmf)(0) ∈ H1
0 (Ω)

N with ∥eC/tmf∥L2(Q)N + ∥eC/tmft∥L2(Q)N +

∥(eC/tmf)(0)∥H1
0 (Ω)N < δ, there exists a control v ∈ L2(ω × (0, T ))N with vi ≡ 0, which insensitizes

the functional (1.2).

This chapter is organized as follows: In Section 1.2, we show that if the solution of the nonlinear

cascade system governed by one equation forward in time and one backwards verifies the null controlla-

bility in the variable retrograde in time, then the function v insensitizes the sentinel (1.2) in the sense of

(1.3). In other words, we reduce the insensitivity problem for (1.1) to a non-standard null controllability

problem. In Section 1.3, we established null controllability for the linearization of the cascade system.

This is done using already known Carleman estimates. Furthermore, we prove some technical lemmas

that will allow us to obtain regularity estimates that will be of great importance for the null controllability
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of the cascaded nonlinear system. In Section 1.4, we established the existence of insensitive controls for

(1.1), which will be done through the null controllability of the cascaded nonlinear system. To prove this

null controllability, we will reduce the controllability problem to an abstract equation, defining an operator

A through the equations and initial conditions of the mentioned cascade system. This abstract equation

satisfies the conditions of the Liusternik’s Inverse Mapping Theorem, and this is confirmed by the proof

of three lemmas. This guarantees the veracity of Theorem 1.1. Finally, we added Appendix A.1 which

contains the well-posedness of the nonlinear cascade system studied throughout the study.

1.2 Reduction of the insensitizing problems

In order to prove the existence of insensitizing controls (Theorem 1.1), as usual, we need to reduce

the insensibilizing problem to a nonstandard null controllability problem of a nonlinear cascade system.

As already indicated, the coupling term is linked to the derivative of the functional (1.2) with respect to τ

at τ = 0. That being said, we note the following.

Remark 1.1. First, we will denote by (yτ , pτ ) the derivatives of the solution (y, p) of (1.1) with respect

to τ . Therefore, considering the functional (1.2), we have

∂Jτ (y)

∂τ

∣∣∣∣
τ=0

=

∫ T

0

∫
O

wyτ dx dt (1.5)

where w is the solution of (1.1) when τ = 0 and (yτ , pτ ) satisfies
Lw(yτ ) +∇pτ = 0, ∇ · yτ = 0 in Q,

yτ = 0 on Σ,

yτ (0) = ŷ0 in Ω,

where the operator Lw is such that

Lw(yτ ) = yτ,t −
(
ν0 + ν1∥∇w∥2

)
∆yτ − 2ν1 (∇w,∇yτ )∆w + (yτ · ∇)w + (w · ∇)yτ .

If (w, z, p0, q) solves the system
L1(w) +∇p0 = f + vχω, ∇ · w = 0 in Q,

L∗
w(z) +∇q = wχO, ∇ · z = 0 in Q,

w = 0, z = 0 on Σ,

w(0) = 0, z(T ) = 0 in Ω,

(1.6)

where L1 is an operator such that L1(w) = wt −∇ ·
(
(ν0 + ν1∥∇w∥2)Dw

)
+ (w · ∇)w and L∗

w is the

adjoint operator of Lw, that is,

L∗
w(z) = −zt −∇ ·

(
(ν0 + ν1∥∇w∥2)Dz

)
+ 2ν1 ((∆w, z)L2 ∆w) +

(
z · ∇t

)
w − (w · ∇) z,

then it is verified due to (1.5), (1.6), and the definition of the adjoint that

∂Jτ (y)

∂τ

∣∣∣∣
τ=0

=

∫ T

0

∫
O

wyτ dx dt =

∫ T

0

∫
Ω

(L∗
w(z) +∇q) yτ dx dt

=

∫ T

0

∫
Ω

z (Lw(yτ ) +∇pτ ) dx dt+
∫
Ω

ŷ0z(0) dx =

∫
Ω

ŷ0z(0) dx.
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Therefore, so that we have ∂Jτ (y)
∂τ |τ=0 = 0, we need to solve the controllability problem (1.6) with

z(0) = 0.

In summary, when choosing the functional Jτ , condition (1.3) becomes equivalent to solving a non-

standard null controllability problem of a nonlinear coupled system governed by a forward in time

equation and another backwards.

The change in the sentinel functional would directly imply the second equation of the cascade system

(1.6). More specifically, considering the functional Kτ (resp. Iτ ), given in (1.4), we would have the

substitution of wχO in (1.6) by ∇·(∇wχO) (resp. ∇×((∇× w)χO)), that is, the coupling terms depend

on the sentinel considered. Certainly, these new terms would offer us greater difficulties in obtaining

regularities and Carleman estimates, and are therefore still open problems. For more details on the

difficulties imposed by these functionals for the Stokes, parabolic, and Ginzburg–Landau equations, we

strongly recommend reading [Gue07a], [Gue07b], and [ST19], respectively.

The formulation of the result presented in Remark 1.1 is given by the following proposition.

Proposition 1.1. Let y be the solution of (1.1) with y0 = 0. If the (w, z) of the solution of the nonlinear

cascade system:

wt −∇ ·
(
(ν0 + ν1∥∇w∥2)Dw

)
+ (w · ∇)w +∇p0 = f + vχω in Q,

∇ · w = 0 in Q,

−zt −∇ ·
(
(ν0 + ν1∥∇w∥2)Dz

)
+ 2ν1 ((∆w, z)L2 ∆w) +

(
z · ∇t

)
w

− (w · ∇) z +∇q = wχO, ∇ · z = 0 in Q,

w = 0, z = 0 on Σ,

w(0) = 0, z(T ) = 0 in Ω.

(1.7)

satisfies z(0) = 0 in Ω, then v insensitizes the functional Jτ (defined by (1.2)). We have denoted

((
z · ∇t

)
w
)
i
=

N∑
j=1

zj∂iwj , i = 1, . . . , N,

and w the solution of (1.1) when τ = 0.

Proof. To demonstrate this result it is sufficient to prove that v satisfies (1.3). Throughout the proof, we

will see that the equation of z corresponds to a formal adjoint of the equation governed by the derivative

of y with respect to τ at τ = 0. Let be any ŷ0 ∈ H1
0 (Ω)

N with ∥ŷ0∥H1
0 (Ω)N = 1 and denote by y the

solution of equation (1.1) associated to τ and v. Then,

∂Jτ (y)

∂τ

∣∣∣∣
τ=0

=
1

2
lim
τ→0

∫ T

0

∫
O

y2 − w2

τ
dx dt

=
1

2
lim
τ→0

∫ T

0

∫
O

(y + w)
y − w

τ
dx dt,

where w is the solution of (1.1) when τ = 0, that is, (w, p0) is the solution of
wt −∇ · ((ν0 + ν1∥∇w∥2)Dw) + (w · ∇)w +∇p0 = f + vχω,

∇ · w = 0 in Q,

w = 0 on Σ,

w(0) = 0 in Ω,

(1.8)
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We want convergence

y −→ w inL2(Q)N , as τ −→ 0. (1.9)

Write h = y − w. Then, h satisfies
ht −∇ · ((ν0 + ν1∥∇y∥2)Dy − (ν0 + ν1∥∇w∥2)Dw) + (y · ∇)y

−(w · ∇)w +∇p−∇p0 = 0, ∇ · h = 0 in Q,

h = 0 on Σ,

h(0) = τ ŷ0 in Ω,

(1.10)

Multiplying both sides of the first equation of (1.10) by h and integrating it in Ω, we obtain that

1

2

d

dt

∫
Ω

|h2(t)| dx+ ν0∥h∥2V +

∫
Ω

ν1∥∇y∥2|∇h|2dx ≤ ν0
2
∥h∥2V + C∥∆w∥2L2(Ω)N ∥h∥

2
H.

Multiplying by 2 and integrating from 0 to t,

∥h(t)∥2 +
∫ t

0
ν0∥h∥2V ds+ 2

∫ t

0

∫
Ω

ν1∥∇y∥2|∇h|2dx ds ≤ ∥h(0)∥2

+C

∫ t

0
∥∆w∥2∥h∥2ds

By the Gronwall’s Lemma, we have

∥h(t)∥2H +

∫ T

0
ν0∥h∥2V + 2

∫ T

0

∫
Ω

ν1∥∇y∥2|∇h|dx ds ≤ τ2∥ŷ0∥2H1
0 (Ω)N e

∫ T
0 ∥∆w∥2dt. (1.11)

Consequently, |h|C([0,T ];H) −→ 0, as τ −→ 0. This yields (1.9). Furthermore, we also obtain from (1.11)

that

|h|L2(0,T ;V) −→ 0, as τ −→ 0. (1.12)

Next, we will see that
y − w

τ
−→ yτ in L2(Q)N , as τ −→ 0. (1.13)

where yτ is the derivative of the solution y with respect to τ at τ = 0, that is, since we have y solution of

(1.1) differentiating y with respect to τ at τ = 0 we obtain (yτ , pτ ) solution of the system
yτ,t −

(
ν0 + ν1∥∇w∥2

)
∆yτ − 2ν1 (∇w,∇yτ )∆w + (yτ · ∇)w

+(w · ∇)yτ +∇pτ = 0, ∇ · yτ = 0 in Q,

yτ = 0 on Σ,

yτ (0) = ŷ0 in Ω.

(1.14)

To show (1.13), let hτ =
y − w

τ
− yτ . Then, hτ satisfies

hτ,t − ν0∆hτ − ν1

[
∥∇y∥2∆y − ∥∇w∥2∆w

τ
− ∥∇w∥2∆yτ − 2 (∇w,∇yτ )∆w

]
+

(y · ∇) y − (w · ∇)w

τ
− (yτ · ∇)w − (w · ∇) yτ +

∇p−∇p0

τ
−∇pτ = 0 in Q,

∇ · hτ = 0 in Q,

hτ = 0 on Σ,

hτ (0) = 0 in Ω.

(1.15)
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Rephrasing the first equation of the system (1.15),

hτ,t − ν0∆hτ − ν1[∥∇w∥2
(
∆y −∆w

τ
−∆yτ

)
+

(
∥∇y∥2 − ∥∇w∥2

τ

)
∆y.

−2 (∇w,∇yτ )∆w] +
((y − w) · ∇)y

τ
+ (w · ∇)

(
y − w

τ

)
− (yτ · ∇)w − (w · ∇) yτ

+
∇p−∇p0

τ
−∇pτ

= hτ,t − ν0∆hτ − ν1

[
∥∇w∥2∆hτ +

(
∥∇y∥2 − ∥∇w∥2

τ

)
∆y − 2 (∇w,∇yτ )∆w

]
+(w · ∇)hτ +

((y − w) · ∇)y

τ
− (yτ · ∇)w +

∇p−∇p0

τ
−∇pτ .

So, we can rewrite the system (1.15) as follows:



hτ,t − (ν0 + ν1∥∇w∥2)∆hτ − ν1

(
∥∇y∥2 − ∥∇w∥2

τ

)
∆y

+2ν1 (∇w,∇yτ )∆w + (w · ∇)hτ +
((y − w) · ∇)y

τ
− (yτ · ∇)w

+
∇p−∇p0

τ
−∇pτ = 0, ∇ · hτ = 0 in Q,

hτ = 0 on Σ,

hτ (0) = 0 in Ω.

(1.16)

Multiplying (1.16) by hτ and integrating it in Ω we get

1

2

d

dt
∥hτ∥2 + ν0∥∇hτ∥2 +

∫
Ω

ν1∥∇w∥2|∇hτ |2 dx

= ν1

∫
Ω

[(
∥∇y∥2 − ∥∇w∥2

τ

)
∆y hτ − 2 (∇w,∇yτ )∆w hτ

]
dx.

Notice that,

• ν1

∫
Ω

[(
∥∇y∥2 − ∥∇w∥2

τ

)
∆y hτ − 2 (∇w,∇yτ )∆w hτ

]
dx

= ν1

∫
Ω

[
(∇y,∇y)− (∇y,∇w) + (∇y,∇w)− (∇w,∇w)

τ

]
∆y dx

−ν1
∫
Ω

2(∇w,∇yτ )∆w hτ dx

= ν1

∫
Ω

[
(∇y +∇w,∇y −∇w)

τ
∆y − 2(∇w,∇yτ )∆w

]
hτ dx

= ν1

∫
Ω

(∇y,∇hτ )∆y hτ dx+ ν1

∫
Ω

(∇w,∇hτ )∆y hτ dx

+ ν1

∫
Ω

(∇h,∇yτ )∆y hτ dx+ 2ν1

∫
Ω

(∇w,∇yτ )∆hhτ dx

= K1 +K2 +K3 +K4.

(1.17)
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By the Hölder’s and Young’s inequality, for any ϵ > 0

K1 ≤ ν1∥∇y∥ ∥∇hτ∥
∫
Ω

|∆y hτ | dx ≤ ν1∥∇y∥ ∥∇hτ∥ ∥∆y∥ ∥hτ∥

≤ ν0
ϵ
∥∇hτ∥2 + Cϵ∥hτ∥2;

K2 ≤ ν1∥∇w∥ ∥∇hτ∥ ∥∆y∥ ∥hτ∥ ≤ ν0
ϵ
∥∇hτ∥2 + Cϵ∥hτ∥2;

K3 ≤ ν1∥∇h∥ ∥∇yτ∥ ∥∆y∥ ∥hτ∥ ≤ ν0
ϵ
∥∇yτ∥2 ∥∇h∥2 + Cϵ∥hτ∥2;

Also,

K4 = 2ν1

∫
Ω

(∇w,∇yτ )∆hhτ dx = −2ν1

∫
Ω

(∇w,∇yτ )∇h∇hτ dx

≤ 2ν1∥∇w∥ ∥∇yτ∥ ∥∇h∥ ∥∇hτ∥

≤ ν0
ϵ
∥∇hτ∥2 + Cϵ∥∇yτ∥2∥∇h∥2.

Therefore, from (1.17) we have

ν1

∫
Ω

(
∥∇y∥2 − ∥∇w∥2

τ

)
∆y hτ − 2 (∇w,∇yτ )∆w hτ dx

≤ 3
ν0
ϵ
∥∇hτ∥2 +

(ν0
ϵ
+ Cϵ

)
∥∇yτ∥2 ∥∇h∥2 + Cϵ∥hτ∥2.

Thus,
1

2

d

dt
∥hτ∥2 + ν0∥∇hτ∥2 +

∫
Ω

ν1∥∇w∥2|∇hτ |2 dx

≤ 3
ν0
ϵ
∥∇hτ∥2 +

(ν0
ϵ
+ Cϵ

)
∥∇yτ∥2 ∥∇h∥2 + Cϵ∥hτ∥2.

Taking, ϵ = 6,

1

2

d

dt
∥hτ∥2 +

ν0
2
∥∇hτ∥2 +

∫
Ω

ν1∥∇w∥2|∇hτ |2 dx ≤
(ν0
6

+ C
)
∥∇yτ∥2 ∥∇h∥2

+C∥hτ∥2.

So, multiplying the previous inequality by 2 and integrating from 0 to t,

∥hτ (t)∥2 +
∫ t

0
ν0∥∇hτ∥2 ds+ 2ν1

∫ t

0

∫
Ω

ν1∥∇w∥2|∇hτ |2 dx ds

≤ 2
(ν0
6

+ C
)∫ t

0
∥∇yτ∥2 ∥∇h∥2 ds+ C

∫ t

0
∥hτ∥2 ds.

Since yτ ∈ C(0, T ; V) (see Appendix A.1), we can make use of Gronwall’s Lemma and (1.12) to deduce

that

∥hτ (t)∥2 +
∫ t

0
ν0∥∇hτ∥2 ds+ 2ν1

∫ t

0

∫
Ω

ν1∥∇w∥2|∇hτ |2 dx ds

≤ C

(∫ T

0
∥h∥2V

)
e
∫ T
0 C −→ 0, as τ −→ 0.

and consequently we have the convergence

hτ −→ 0 in C(0, T ; H), as τ −→ 0.
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Then, (1.13) holds.

Combining (1.9) and (1.13), we find that

∂Jτ (y)

∂τ

∣∣∣∣
τ=0

=
1

2
lim
τ→0

∫ T

0

∫
O

(y + w)
y − w

τ
dx dt =

∫ T

0

∫
O

wyτ dx dt. (1.18)

On the other hand, multiplying the first equation of (1.14) by z, integrating it inQ and using integration

by parts, one obtains that∫∫
Q
[−zt −∇ ·

(
(ν0 + ν1∥∇w∥2)Dz

)
+ 2ν1 ((∆w, z)∆w) + (z · ∇t)w − (w · ∇)z

+∇q ] yτ dx dt = (yτ (0), z(0))− (yτ (T ), z(T )) .

Hence, since every term in brackets is equal to wχO and z(T ) = 0 we obtain∫ T

0

∫
O

w yτ dx dt =

∫
Ω

ŷ0z(0) dx ∀ ŷ0 ∈ H1
0 (Ω)

N with ∥ŷ0∥H1
0 (Ω)N = 1. (1.19)

By (1.18) and (1.19), it follows that

∂Jτ (y)

∂τ

∣∣∣∣
τ=0

= 0 if and only if z(0) = 0 inΩ.

Therefore, v insensitizes the functional Jτ , and the proof of Proposition 1.1 is complete.

Remark 1.2. Notice that it is natural to think of the turbulence model (1.7), since (1.19) is obtained from

the solution by transposition of (1.14). Indeed, a solution by transposition of (1.14) is a unique function

yτ ∈ L2(Q)N satisfying ∫∫
Q

yτ h dx dt =

∫
Ω

ŷ0z(0) dx, ∀h ∈ L2(Q)N ,

where, for each h ∈ L2(Q)N , the associated solution (z, q) satisfies the corresponding adjoint system
L∗
w(z) +∇q = h, ∇ · z = 0 in Q,

z = 0 on Σ,

z(T ) = 0 in Ω,

in which w is the solution of (1.8) and

L∗
w(z) = −zt −∇ ·

(
(ν0 + ν1∥∇w∥2)Dz

)
+ 2ν1 ((∆w, z)L2 ∆w) +

(
z · ∇t

)
w − (w · ∇) z.

Therefore, considering in particular h = wχO we acquire the system (1.7).

1.3 Preliminary results

Carleman Estimates

We will list here some global estimates of Carleman. To establish these inequalities, let us introduce

some weight functions. Let ω0 be a non-empty open subset of RN such that ω0 ⋐ ω ∩ O, and η ∈ C2(Ω)

such that

|∇η| > 0 inΩ \ ω0, η > 0 inΩ, and η ≡ 0 on ∂Ω.
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The existence of such a functions η is given in [FI96]. Also, let ℓ ∈ C∞([0, T ]) be a positive function in

(0, T ) satisfying{
ℓ(t) = t, ∀t ∈ [0, T/4], ℓ(t) = T − t, ∀t ∈ [3T/4, T ],

ℓ(t) ≤ ℓ(T/2), ∀t ∈ [0, T ].

Then, for all λ ≥ 1 and m ≥ 10, we consider the following weight functions:

α(x, t) =
e2λ∥η∥∞ − eλη(x)

ℓ(t)m
, ξ(x, t) =

eλη(x)

ℓ(t)m

α∗(t) = max
x∈Ω

α(x, t), ξ∗(t) = min
x∈Ω

ξ(x, t),

α̂(t) = min
x∈Ω

α(x, t), ξ̂(t) = max
x∈Ω

ξ(x, t).

(1.20)

Let us to introduce a Carleman estimate for the Stokes coupled system:
−φt − ν0∆φ+∇π = g0 + ψχO, ∇ · φ = 0 in Q,

ψt − ν0∆ψ +∇κ = g1, ∇ · ψ = 0 in Q,

φ = 0, ψ = 0 on Σ,

φ(T ) = 0, ψ(0) = ψ0 in Ω,

(1.21)

where g0 ∈ L2(Q)N , g1 ∈ L2(0, T ; V), and ψ0 ∈ H. The following proposition gives us the desired

inequality.

Proposition 1.2. Assume that ω ∩ O ̸= ∅. Then, there exists a constant λ0, such that for any λ ≥ λ0,

there exists a constant C > 0 depending only on λ,Ω, ω, and ℓ such that for any i ∈ {1, . . . , N}, any

g0 ∈ L2(Q)N , any g1 ∈ L2(0, T ; V), and any ψ0 ∈ H, the solution (φ,ψ) of (1.21) satisfies

s4
∫∫
Q

e−7sα∗
(ξ∗)4|φ|2dx dt+ s5

∫∫
Q

e−4sα∗
(ξ∗)5|ψ|2dx dt

≤ C

s9 ∫∫
Q

e−3sα−sα∗
ξ9|g0|2dx dt+

∫∫
Q

e−sα∗
(|g1|2 + |∇g1|2)dx dt

+ s13
N∑

j=1,j ̸=i

∫∫
ω×(0,T )

e−3sα−sα∗
ξ13|φj |2dx dt

 ,

(1.22)

for every s ≥ C.

In order to obtain Proposition 1.2, the authors in [CG14] divide the proof into three parts. First, they

estimate a general Carleman inequality for the Stokes system with local terms only in ∆(.)j , j ̸= i. In the

second part, they deduce a Calerman estimate for the ψ in (1.21). And finally, in the third part, estimate a

Carleman for φ to then obtain (1.22).

Null controllability of the linear system

Here we will comment on the already known null controllability of the linear system
L(w) +∇p0 = f0 + vχω, ∇ · w = 0 in Q,

L∗(z) +∇q = f1 + wχO, ∇ · z = 0 in Q,

w = 0, z = 0 on Σ,

w(0) = 0, z(T ) = 0 in Ω,

(1.23)
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with f0 and f1 in appropriate weighted function spaces, L(w) = wt − ν0∆w, and L∗(z) = −zt − ν0∆z,

which is the adjoint operator of L. Therefore, we want to find a control v with vi ≡ 0, for some given

i ∈ {1, . . . , N}, such that the associated solution of (1.23) satisfies z(0) = 0.

For that purpose, we need a Calerman inequality with weight functions not vanishing in t = T . We

introduce the following weight functions:

β(x, t) =
e2λ∥η∥∞ − eλη(x)

ℓ̃(t)m
, γ(x, t) =

eλη(x)

ℓ̃(t)m

β∗(t) = max
x∈Ω

β(x, t), γ∗(t) = min
x∈Ω

γ(x, t),

β̂(t) = min
x∈Ω

β(x, t), γ̂(t) = max
x∈Ω

γ(x, t),

where

ℓ̃(t) =

{
ℓ(t), 0 ≤ t ≤ T/2,

∥ℓ∥∞, T/2 < t ≤ T.

So, we have the following lemma.

Lemma 1.1. Let i ∈ {1, . . . , N} and let s and λ be like in Proposition 1.2. Then, there exists a constant

C > 0 (depending on s and λ) such that every solution (φ,ψ) of (1.21) satisfies

∫∫
Q

e−7sβ∗
(γ∗)4|φ|2dx dt+

∫∫
Q

e−4sβ∗
(γ∗)5|ψ|2dx dt

≤ C

∫∫
Q

e−3sβ̂−sβ∗
(γ̂)9|g0|2 +

∫∫
Q

e−sβ∗
(|g1|2 + |∇g1|2) dx dt

+
N∑

j=1,j ̸=i

∫∫
ω×(0,T )

e−3sβ̂−sβ∗
(γ̂)13|φj |2dx dt

 .

(1.24)

For proof of the previous Lemma, see Lemma 4.1 in [CG14].

Now, we introduce an appropriate weighted functional space that allows us to obtain a null controlla-

bility result for system (1.23). Consider the following space, for N = 2 or 3 and i ∈ {1, · · · , N}:

Ei
N = {(w, p0, z, q, v) : e3/2sβ̂+1/2sβ∗

(γ̂)−9/2w ∈ L2(Q)N , e1/2sβ
∗
z ∈ L2(0, T ;H−1(Ω)N ),

e3/2sβ̂+1/2sβ∗
(γ̂)−13/2vχω ∈ L2(Q)N , vi ≡ 0, z(T ) = 0,

e7/4sβ
∗
w ∈ L2(0, T ;H2(Ω)N ) ∩ L∞(0, T ; V),

e1/2sβ
∗
(γ∗)−2−2/mz ∈ L2(0, T ;H2(Ω)N ) ∩ L∞(0, T ; V),

p0, q ∈ L2(0, T ;H1(Ω)),
∫
Ω p

0dx =
∫
Ω qdx = 0 a.e., for f0 = L(w) +∇p0 − vχω,

f1 = L∗(z) +∇q − wχO, e
7/2sβ∗

(γ∗)−2f0 ∈ L2(Q)N , e2sβ
∗
(γ∗)−5/2f1 ∈ L2(Q)N},
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which is a Banach space with the norm.

∥(w, p0, z, q, v)∥Ei
N
:=
(
∥e3/2sβ̂+1/2sβ∗

(γ̂)−9/2w∥2
L2(Q)N

+ ∥e1/2sβ∗
z∥2

L2(0,T ;H−1(Ω)N )
+ ∥e3/2sβ̂+1/2sβ∗

(γ̂)−13/2vχω∥2L2(Q)N

+ ∥e7/4sβ∗
w∥2

L2(0,T ;H2(Ω)N )
+ ∥e7/4sβ∗

w∥2L∞(0,T ;V)

+ ∥e1/2sβ∗
(γ∗)−2−2/mz∥2

L2(0,T ;H2(Ω)N )
+ ∥e1/2sβ∗

(γ∗)−2−2/mz∥2L∞(0,T ;V)

+ ∥e7/2sβ∗
(γ∗)−2f0∥2

L2(Q)N
+ ∥e2sβ∗

(γ∗)−5/2f1∥2
L2(Q)N

)1/2
.

Therefore, the following result is obtained.

Proposition 1.3. Assume the hypothesis of Lemma 1.1 and

e7/2sβ
∗
(γ∗)−2f0 ∈ L2(Q)N and e2sβ

∗
(γ∗)−5/2f1 ∈ L2(Q)N .

Then, we can find a control v such that the associated solution (w, p0, z, q) to (1.23) satisfies

(w, p0, z, q, v) ∈ Ei
N . In particular, vi ≡ 0 and z(0) = 0.

The proof of Proposition 1.3 can be found in Proposition 4.3 of [CG14].

Additional estimates for the States Solutions

This subsection will be devoted to the proof of technical lemmas that will contain weighted energy

estimates that will be needed, in Section 1.4. More precisely, we will show in this subsection that not only

the state-control (w, p0, z, q, v) founded for equation (1.23) in Proposition 1.3 belong to weighted L2

spaces, but also wt,∇w, ∆w, ∇wt, ∆wt, wtt, vt, and ∆v belong to such spaces. Furthermore, throughout

this subsection we will consider e7/2sβ
∗
(γ∗)−2f0 ∈ L2(Q)N and e2sβ

∗
(γ∗)−5/2f1 ∈ L2(Q)N .

In order to simplify the notation, we fix λ and s and we set{
ρ0 = e7/2sβ

∗
(γ∗)−2, ρ̂0 = e2sβ

∗
(γ∗)−5/2,

ρ1 = e3/2sβ̂+1/2sβ∗
(γ̂)−9/2, ρ2 = e3/2sβ̂+1/2sβ∗

(γ̂)−13/2.

This guarantees that ρ2 ≤ Cρ1 ≤ Cρ0. That said, we have the following lemma.

Lemma 1.2. Let us define ρ3 = e3/2sβ̂+1/2sβ∗
(γ̂)−15/2 and ρ4 = e3/2sβ̂+1/2sβ∗

(γ̂)−17/2. We have

sup
[0,T ]

∫
Ω

ρ23|w|2dx

+

∫∫
Q

ρ23|∇w|2dx dt ≤ CK0(f
0, f1), (1.25)

and ∫∫
Q

ρ24(|wt|2 + |∆w|2)dx dt+ sup
[0,T ]

(∫
Ω
ρ24|∇w|2dx

)
≤ CK0(f

0, f1), (1.26)

where

K0(f
0, f1) :=

∫∫
Q

ρ20|f0|2dx dt+
∫∫
Q

ρ̂0
2|f1|2 dx dt.
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Proof. Let A : D(A) → H be the Stokes operator, and consider for each n ≥ 1, vn(t, .), f0n(t, .) and

y0n(.) as, respectively, the projections of v(t, .), f0(t, .), and y0(.) on the first n eigenfunctions, which we

will denote by λn, and we will talk about in more detail in the Appendix A.1. We define yn as the solution

corresponding to the approximate finite-dimensional Stokes system. For simplicity, during the proof of

this lemma we will omit the subscript n, and we confirm that the constants C that will appear next are

independent of n.

Multiplying ρ23w as a test function on the first line of the system (1.23), doing some integrations by

parts, it follows that

1

2

d

dt

∫
Ω

ρ23|w|2 dx

+ ν0

∫
Ω

ρ23|∇w|2 dx =

∫
ω

ρ23v w dx+

∫
Ω

ρ23f
0w dx

+
1

2

∫
Ω

d

dt
(ρ23)|w|2 dx.

(1.27)

Since, ρ3 ≤ Cρ2 ≤ Cρ1 ≤ Cρ0, then

∫
ω

ρ23v w dx ≤ C

∫
ω

ρ22|v|2 dx+

∫
Ω

ρ21|w|2 dx

 , (1.28)

and ∫
Ω

ρ23f
0w dx ≤ C

∫
Ω

ρ20|f0|2 dx+

∫
Ω

ρ21|w|2 dx

 . (1.29)

Also, of | d
dt
(ρ23)| ≤ Cρ21, ∫

Ω

d

dt
(ρ23)|w|2 dx ≤ C

∫
Ω

ρ21|w|2 dx. (1.30)

Applying (1.28), (1.29) and (1.30) in (1.27), integrating in time together with an inequality that can be

obtained in the proof of Proposition 1.3 gives us that∫∫
Q

ρ21|w|2 dx dt +
∫∫

ω×(0,T )

ρ22|v|2 dx dt < CK0(f
0, f1),

we can conclude (1.25).

Now, multiplying ρ24(wt − ν0Aw) as a test function on the first line of the system (1.23). Hence, we

get

∫
Ω

ρ24
(
|wt|2 + ν0|∆w|2

)
dx+ ν0

d

dt

∫
Ω

ρ24|∇w|2 dx

 =

∫
ω

ρ24v (wt − ν0Aw) dx

+

∫
Ω

ρ24f
0 (wt − ν0Aw) dx+ ν0

∫
Ω

d

dt
(ρ24)|∇w|2 dx.

(1.31)

For any ϵ > 0, using the fact that ρ4 ≤ Cρ2, ρ4 ≤ Cρ0 and | d
dt
(ρ24)| ≤ Cρ23 follows that

∫
ω

ρ24v (wt − ν0Aw) dx ≤ C

1
ϵ

∫
ω

ρ22|v|2 dx+ ϵ

∫
Ω

ρ24(|wt|2 + |∆w|2) dx

 , (1.32)
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∫
Ω

ρ24f
0 (wt − ν0Aw) dx ≤ C

1
ϵ

∫
Ω

ρ20|f0|2 dx+ ϵ

∫
Ω

ρ24(|wt|2 + |∆w|2) dx

 , (1.33)

∫
Ω

d

dt
(ρ24)|∇w|2 dx ≤ C

∫
Ω

ρ23|∇w|2 dx. (1.34)

Thus, for ϵ sufficiently small the terms that have w in (1.32) and (1.33) are absorbed by the left side of

(1.31). Moreover, from (1.34) and (1.25), integrating in time the third term on the right hand side of (1.31)

is bounded by CK0(f
0, f1). Hence, we can conclude (1.26) in Galerkin approximates with wn instead of

the actual solution w. So, by default arguments, when n→ ∞, we get that (1.26) is valid for w.

The next result will provide us with a regularity for the control v. This regularity will be fundamental

to obtain more estimates with other weight functions, which we will define later, so that we can show the

existence of insensitive controls for equation (1.1).

Lemma 1.3. ρ5 = e3/2sβ̂+1/2sβ∗
(γ̂)−19/2, then

ρ5v ∈ L2(0, T ; [H2(ω) ∩H1
0 (ω)]

N ) ∩ C0([0, T ];V ), (ρ5v)t ∈ L2(ω × (0, T ))N ,

with the estimate

T∫
0

∫
ω

[|(ρ5v)t|2 + |ρ5∆v|2]dx dt+ sup
[0,T ]

∥ρ5v∥2V ≤ CK0(f
0, f1).

Proof. Note that, considering only the Stokes system
L(w) +∇p0 = f0 + vχω, ∇ · w = 0 in Q,

w = 0 on Σ,

w(0) = 0 in Ω,

(1.35)

and its consequent adjoint system
L∗(φ) +∇π = g0, ∇ · φ = 0 in Q,

φ = 0 on Σ,

φ(T ) = 0 in Ω.

(1.36)

Following the ideas of Proposition 1.3 together with those contained in [Car+22] (see, Lemma 2.4), we

can define 
w = ρ−2

1 (L∗φ+∇π), in Q

vj = −ρ−2
2 φjχω, j ̸= i, vi ≡ 0 in Q,

w = ρ−2
2 φ, in Q.

(1.37)

Thus, note that,

L∗(ρ5w) = L∗(e3/2sβ̂+1/2sβ∗
(γ̂)−19/2e−3sβ̂−sβ∗

(γ̂)13φ)

= L∗(e−3/2sβ̂−1/2sβ∗
(γ̂)7/2φ)

= − d

dt
(e−3/2sβ̂−1/2sβ∗

(γ̂)7/2)φ+ e3/2sβ̂+1/2sβ∗
(γ̂)−11/2w

−e−3/2sβ̂−1/2sβ∗
(γ̂)7/2∇π.

(1.38)
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In order to apply a regularity result to Stokes systems, we will study each term of this inequality. Since,∣∣∣∣ ddt (e−3/2sβ̂−1/2sβ∗
(γ̂)7/2

)∣∣∣∣ ≤ C e(−3/2sβ̂−1/2sβ∗)(−ℓ̃(t)−m
)′ ℓ̃(t)−7/2m

+ C e(−3/2sβ̂−1/2sβ∗) 7
2 m ℓ̃(t)

−7/2m−1

≤ C e(−3/2sβ̂−1/2sβ∗) ℓ̃(t)
−9/2m−1

(1.39)

and known that e(−3/2sβ̂−1/2sβ∗) l̃(t)
−9/2m−1 −→ 0, as t → 0+ and is bounded as t → T−, we can

deduce ∣∣∣∣ ddt (e−3/2sβ̂−1/2sβ∗
(γ̂)7/2

)∣∣∣∣ ≤ C,

and as consequence we obtain

− d

dt

(
e−3/2sβ̂−1/2sβ∗

(γ̂)7/2
)
φ ∈ L2(Q)N .

Moreover,

e3/2sβ̂+1/2sβ∗
(γ̂)−11/2 ≤ C e3/2sβ̂+1/2sβ∗

(γ̂)−9/2 = C ρ1

and therefore e3/2sβ̂+1/2sβ∗
(γ̂)−11/2w ∈ L2(Q)N .

The weight of the last term is limited, i.e.

|e−3/2sβ̂−1/2sβ∗
(γ̂)7/2| ≤ C.

Therefore, defining u = ρ5w = e3/2sβ̂+1/2sβ∗
(γ̂)−19/2w and π = e−3/2sβ̂−1/2sβ∗

(γ̂)7/2π. By (1.38),

we have (u, π) as the solution of the Stokes system
L∗(u) +∇π = F, ∇ · u = 0 in Q,

u = 0 on Σ,

u(T ) = 0, in Ω.

where

F := − d

dt

(
e−3/2sβ̂−1/2sβ∗

(γ̂)7/2
)
φ+ e3/2sβ̂+1/2sβ∗

(γ̂)−11/2w ∈ L2(Q)N .

Hence, from the standard regularity for solutions of Stokes systems, we can infer from the definitions of u

and v the stated regularity for ρ5v = −uχω.

By the two previous lemmas, the subsequent lemma is feasible.

Lemma 1.4. Let us set ρ6 = e7/4sβ
∗
(γ̂)−21/2. Supposing ρ5f0t ∈ L2(Q)N , we have the following

estimates:

sup
[0,T ]

∫
Ω

ρ25|wt|2dx

+

∫∫
Q

ρ25|∇wt|2dx dt ≤ CK1(f
0, f1). (1.40)

Moreover, if (ρ6f0)(0) ∈ H1
0 (Ω)

N ,∫∫
Q

ρ26(|wtt|2 + |∆wt|2)dx dt+ sup
[0,T ]

[∫
Ω
ρ26(|∇wt|2 + |∆w|2)dx

]
≤ CK2(f

0, f1), (1.41)

where

K1(f
0, f1) := K0(f

0, f1) +

∫∫
Q

ρ25|f0t |2dx dt

and

K2(f
0, f1) := K1(f

0, f1) + ∥(ρ6f0)(0)∥2H1
0 (Ω)N .
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Proof. We establish the current estimates by proceeding in the same structure as the proof of Lemma 1.2.

Let us differentiate the first line of the system (1.23) with respect to time, and use ρ25wt as a test function:

1

2

d

dt

∫
Ω

ρ25|wt|2 dx

+ ν0

∫
Ω

ρ25|∇wt|2 dx =

∫
ω

ρ25 vtwt dx+

∫
ω

ρ25 f
0
t wt dx

+
1

2

∫
Ω

d

dt
(ρ25)|wt|2 dx.

(1.42)

Since, ∣∣∣∣ ddt(ρ25)
∣∣∣∣ ≤ Cρ24, ρ5 ≤ Cρ4 ≤ Cρ2,

then ∫
ω

ρ25vtwt dx ≤ C

∫
ω

(
|ρ2v|2 + |(ρ5v)t|2

)
dx+

∫
Ω

ρ24|wt|2dx

 , (1.43)

∫
Ω

ρ25f
0
t wt dx ≤ C

∫
Ω

ρ25|f0t |2 dx+

∫
Ω

ρ24|wt|2 dx

 (1.44)

and ∫
Ω

d

dt
(ρ25)|wt|2 dx ≤ C

∫
Ω

ρ24|wt|2 dx. (1.45)

From Lemma 1.2 and Lemma 1.3,∫∫
Q

ρ24|wt|2 dx dt+
∫ T

0

∫
ω

|(ρ5v)t|2 dx dt ≤ K0(f
0, f1).

Furthermore, note that, as | d
dt
(ρ5)| ≤ Cρ0, then

d

dt
(ρ5f

0) =
d

dt
(ρ5)f

0 + ρ5f
0
t ∈ L2(Q)N

and consequently ρ5f0 ∈ C0([0, T ];L2(Ω)N ) (see, Chapter 5, Section 9 in [Eva10]). Therefore, by first

line of the system (1.23) and Lemma 1.3 it is simple to get the estimate

ρ25(0)∥wt(0)∥2L2(Ω)N
≤ Cρ25(0)

(
∥f0(0)∥2

L2(Ω)N
+ ∥v(0)∥2

L2(ω)N

)
≤ C

(
sup
[0,T ]

∥ρ5f0∥2L2(Q)N + sup
[0,T ]

∥ρ5v∥2V

)

≤ C

(
∥ρ5f0∥2L2(Q)N

+ ∥ d
dt
(ρ5f

0)∥2
L2(Q)N

+ sup
[0,T ]

∥ρ5v∥2V

)
≤ C K1(f

0, f1).

(1.46)

Thus, using (1.43), (1.44) and (1.45) in (1.42), and integrating in time, it follows by (1.46) that

sup
[0,T ]

∫
Ω

ρ25|wt|2 dx

+

∫∫
Q

ρ25|∇wt|2 dx dt ≤ C
(
ρ25(0)∥wt(0)∥2L2(Ω)N

+K0(f
0, f1) +

∫∫
Q

ρ25|f0t |2dx dt


≤ CK1(f

0, f1),
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proving (1.40).

Next, for A : D(A) → H, the Stokes operator defined in Lemma 1.2, we use ρ26(wtt − ν0Awt) as a

test function in wtt − ν0∆wt +∇p0t = f0t − vtχω, i.e., differentiating the first line of system (1.23) with

respect to time. Then, we deduce∫
Ω

ρ26(|wtt|2 + ν0|∆wt|2) dx+ ν0
d

dt

∫
Ω

ρ26|∇wt|2 dx

=

∫
ω

ρ26 vt(wtt − ν0Aw) dx

+

∫
Ω

ρ26 f
0
t (wtt − ν0Awt) dx+ ν0

∫
Ω

d

dt
(ρ26)|∇wt|2 dx.

(1.47)

Given that | d
dt
(ρ26)| ≤ Cρ25, we get∫

Ω

d

dt
(ρ26)|∇wt|2 dx ≤ C

∫
Ω

ρ25|∇wt|2 dx. (1.48)

And from ρ6 ≤ Cρ5, for any ϵ > 0, we have∫
ω

ρ26 vt (wtt − ν0Awt) dx ≤ C

1
ϵ

∫
ω

ρ25|vt|2 dx+ ϵ

∫
Ω

ρ26(|wtt|2 + |∆wt|2) dx

 ; (1.49)

and ∫
Ω

ρ26 f
0
t (wtt − ν0Awt) dx ≤ C

1
ϵ

∫
Ω

ρ25|f0t |2 dx+ ϵ

∫
Ω

ρ26(|wtt|2 + |∆wt|2) dx

 . (1.50)

We fix ϵ small enough, the second term on the right side of (1.49) and (1.50) are absorbed by the left side

of (1.47). So, using (1.48) in (1.47), we infer∫
Ω

ρ26(|wtt|2 + |∆wt|2) dx+
d

dt

∫
Ω

ρ26|∇wt|2 dx

 ≤ C

∫
ω

ρ25|vt|2 dx

+

∫
Ω

ρ25|f0t |2 dx+

∫
Ω

ρ25|∇wt|2 dx

 . (1.51)

Integrating from 0 to t and using Lemma 1.3 and (1.40), we get∫∫
Q

ρ26(|wtt|2 + |∆wt|2) dx dt+ sup
[0,T ]

∫
Ω

ρ26|∇wt|2 dx

 ≤ C
[
K0(f

0, f1)

+K2(f
0, f1) +

∫∫
Q

ρ25|f0t |2dx dt+K1(f
0, f1)

 .
(1.52)

By the same previous reasoning,

ρ26(0)∥∇wt(0)∥2L2(Ω)N
≤ Cρ26(0)

(
∥∇v(0)∥2

L2(Ω)N
+ ∥∇f0(0)∥2

L2(Ω)N

)
≤ C

(
sup
[0,T ]

∥ρ5v∥2V + ρ26(0)∥f0(0)∥2H1
0 (Ω)N

)
≤ CK2(f

0, f1).
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Consequently,

∫∫
Q

ρ26(|wtt|2 + |∆wt|2) dx dt+ sup
[0,T ]

∫
Ω

ρ26|∇wt|2 dx

 ≤ CK2(f
0, f1). (1.53)

Finally, we use −ρ26∆wt in the first line of the system (1.23), and we obtain

∫
Ω

ρ26|∇wt|2 dx+
ν0
2

d

dt

∫
Ω

ρ26|∆w|2 dx

 = −
∫
ω

ρ26 v∆wt dx−
∫
Ω

ρ26f
0∆wt dx

+
ν0
2

∫
Ω

d

dt
(ρ26)|∆w|2 dx

≤ C

∫
ω

ρ22|v|2 dx+

∫
Ω

ρ20|f0|2 dx+

∫
Ω

ρ26|∆wt|2 dx+

∫
Ω

ρ24|∆w|2 dx

 ,
(1.54)

in which it was used, ρ6 ≤ Cρ2, ρ6 ≤ Cρ0, and | ddt(ρ
2
6)| ≤ Cρ25 ≤ Cρ24. By Lemma 1.2 and (1.53), we

achieved that

sup
[0,T ]

∫
Ω

ρ26|∆w|2 dx

 ≤ CK2(f
0, f1). (1.55)

From the estimates (1.53) and (1.55) we get (1.41). In particular, ρ6w ∈ L∞(0, T ;H2(Ω)N ).

1.4 Insensitizing controls for Equation (1.1)

In this section, we will prove the existence of insensitizing controls for (1.1), which will be a

consequence of the null local controllability of the cascade system (1.7). Notice that, in this definition,

∇ · ((ν0 + ν1∥∇w∥2)Dw) can be rewritten, using ∇ · w = 0, in the form (ν0 + ν1∥∇w∥2)∆w. This is,

∇ ·
(
(ν0 + ν1∥∇w∥2)Dw

)
= ∇ ·

(
(ν0 + ν1∥∇w∥2)(∇w +∇Tw)

)
= (ν0 + ν1∥∇w∥2)∇ · (∇w) + (ν0 + ν1∥∇w∥2)∇ · (∇Tw)

= (ν0 + ν1∥∇w∥2)∆w + (ν0 + ν1∥∇w∥2)∇(∇ · w)
= (ν0 + ν1∥∇w∥2)∆w.

Thus, cascade system (1.7) can be rewritten as follows

L(w)− ν1∥∇w∥2∆w + (w · ∇)w +∇p0 = f + vχω, ∇ · w = 0 in Q,

L∗(z)− ν1∥∇w∥2∆z + 2ν1 ((∆w, z)L2 ∆w) +
(
z · ∇t

)
w − (w · ∇) z

+∇q = wχO, ∇ · z = 0 in Q,

w = 0, z = 0 on Σ,

w(0) = 0, z(T ) = 0 in Ω.

(1.56)

Therefore, we want to find a control v, with vi ≡ 0, such that z(0) = 0. For this, we introduce the space

functional, for N = 2 or 3 and i ∈ {1, · · · , N}, given by

E
i
N :=

{
(w, p0, z, q, v) : (w, p0, z, q, v) ∈ Ei

N , (ρ5v)t , ρ5∆v ∈ L2(ω × (0, T ))N ,

(ρ6f
0)(0) ∈ H1

0 (Ω)
N , ρ5f

0
t ∈ L2(Q)N

}
,
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which is a Banach space with the norm:

∥(w, p0, z, q, v)∥2
E

i
N

:= ∥(w, p0, z, q, v)∥2
Ei

N
+ ∥(ρ6f0)(0)∥2H1

0 (Ω)N

+∥ρ5f0t ∥2L2(Q)N
+ ∥ (ρ5v)t ∥2L2(ω×(0,T ))N

+ ∥ρ5∆v∥2L2(ω×(0,T ))N
.

Furthermore, in view of Lemmas 1.2 and 1.4, one also has

∥ρ3w∥2L∞(0,T ;H)∩L2(0,T ;V ) + ∥ρ4w∥2L∞(0,T ;V )∩L2(0,T ;D(A)) ≤ C∥(w, p0, z, q, v)∥2
E

i
N

,

∥ρ6w∥2L∞(0,T ;D(A)) ≤ C∥(w, p0, z, q, v)∥2
E

i
N

.

Remark 1.3. In particular, an element (w, p0, z, q, v) of Ei
N satisfies z(0) = 0 and vi ≡ 0. Moreover, of

Proposition 1.3 and Lemma 1.4, we have that

ρ0(w · ∇)w ∈ L2(Q)N ,

ρ0∥∇w∥2L2(Ω)N
∆w ∈ L2(Q)N ,

ρ̂0(z · ∇t)w ∈ L2(Q)N ,

ρ̂0(w · ∇)z ∈ L2(Q)N ,

ρ̂0∥∇w∥2L2(Ω)N
∆z ∈ L2(Q)N ,

ρ̂0(∆w, z)L2(Ω)N∆w ∈ L2(Q)N .

We are interested in apply the Mapping Inverse Theorem in infinite dimensional spaces, which can be

found in [ATF87] (Chapter 2, Section 2.3.4), and is given below:

Theorem 1.2 (Liusternik’s Inverse Mapping Theorem). Let B1 and B2 Banach spaces and let A : B1 →
B2 satisfy A ∈ C1(B1;B2). Assume that b1 ∈ B1, A(b1) = b2 and that A′(b1) : B1 → B2 is surjective.

Then, there exists δ > 0 such that, for every b′ ∈ B2 satisfying ∥b′ − b2∥ < δ, there exists a solution of

the equation

A(b) = b′, b ∈ B1.

The Setup. Let us set

B1 = E
i
N

ZN = {f ∈ L2(Q)N : ρ0f, ρ5ft ∈ L2(Q)N , (ρ6f)(0) ∈ H1
0 (Ω)

N},
(1.57)

with

∥f∥2ZN
= ∥ρ0f∥2L2(Q)N + ∥ρ5ft∥2L2(Q)N + ∥(ρ6f)(0)∥2H1

0 (Ω)N . (1.58)

Then, we define

B2 = ZN × L2(ρ̂0
2;Q)N ,

where the natural product topology is also a Banach space.

Finally, we define the mapping A : B1 −→ B2 by

A(w, p0, z, q, v) =
(
L(w)− ν1∥∇w∥2∆w + (w · ∇)w +∇p0 − vχω,

L∗(z)− ν1∥∇w∥2∆z + 2ν1 ((∆w, z)L2 ∆w) +
(
z · ∇t

)
w

− (w · ∇) z + ∇q − wχO) .

(1.59)

In order that Theorem 2.4 can be applied in this setting, we will prove three lemmas.
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Lemma 1.5. The mapping A : B1 −→ B2 is well-defined, and is continuous around the origin.

Proof. We want to show that A(w, p0, z, q, v) ∈ B2, for every (w, p0, z, q, v) ∈ B1.

First, let us denote by Ai the components of A for i = 1, 2 so that

A(w, p0, z, q, v) :=
(
A1(w, p

0, z, q, v),A2(w, p
0, z, q, v)

)
where 

A1(w, p
0, z, q, v) := L(w)− ν1∥∇w∥2∆w + (w · ∇)w +∇p0 − vχω;

A2(w, p
0, z, q, v) := L∗(z)− ν1∥∇w∥2∆z + 2ν1 ((∆w, z)L2 ∆w)

+
(
z · ∇t

)
w − (w · ∇) z +∇q − wχO,

(1.60)

for every (w, p0, z, q, v) ∈ B1. In this way, we have A1(w, p
0, z, q, v) ∈ ZN and A2(w, p

0, z, q, v) ∈
L2(ρ̂0

2;Q)N for every (w, p0, z, q, v) ∈ B1. Indeed, analyzing A1 and A2 separately, one has:

Analysis of A1.
Let (w, p0, z, q, v) ∈ B1 and write A1 as follows:

A1(w, p
0, z, q, v) = a1(w, p

0, z, q, v) + a2(w, p
0, z, q, v) + a3(w, p

0, z, q, v),

where 
a1(w, p

0, z, q, v) := L(w) +∇p0 − vχω = f0;

a2(w, p
0, z, q, v) := −ν1∥∇w∥2∆w;

a3(w, p
0, z, q, v) := (w · ∇)w.

We will show that for each j = {1, 2, 3},

∥aj(w, p0, z, q, v)∥ZN
≤ C∥(w, p0, z, q, v)∥B1

and consequently we will have A1(w, p
0, z, q, v) ∈ ZN . In effect, by the definition of the ZN , we have

∥a1(w, p0, z, q, v)∥2ZN
≤ ∥(w, p0, z, q, v)∥2B1

. (1.61)

For a2, note that:

∥a2(w, p0, z, q, v)∥2ZN
=

∫∫
Q

(
ρ20| − ν1∥∇w∥2∆w|2

+ρ25|(−ν1∥∇w∥2∆w)t|2
)
dx dt+ ∥(−ν1ρ6∥∇w∥2∆w)(0)∥2H1

0 (Ω)N

= I1 + I2 + I3.

(1.62)

Let us show that each term of a2 is bounded. In fact,

I1 = ∥e7/2sβ∗
(γ∗)−2∥∇w∥2∆w∥2

L2(Q)N
≤ C∥e7/2sβ∗∥∇w∥2∆w∥2

L2(Q)N

= C

∫ T

0
|e7/4sβ∗∥∇w∥∥∇w∥|2

∫
Ω

|e7/4sβ∗
∆w|2dx dt

≤ C∥w∥2L∞(0,T ;V)∥e
7/4sβ∗

w∥2L∞(0,T ;V)∥e
7/4sβ∗

w∥2
L2(0,T ;H2(Ω)N )

≤ C∥(w, p0, z, q, v)∥6B1
,

(1.63)

since (γ∗)−2 is bounded and e7/4sβ
∗
w ∈ L2(0, T ;H2(Ω)N ) ∩ L∞(0, T ; V).
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Also, since (
−ν1∥∇w∥2∆w

)
t

= (−ν1(∇w,∇w)t∆w)− ν1(∇w,∇w)∆wt

= −2ν1(∇w,∇wt)∆w − ν1(∇w,∇w)∆wt

we get,

I2 =

∫∫
Q

ρ25|(−ν1∥∇w∥2∆w)t|2d dt

=

∫∫
Q

ρ25| − 2ν1(∇w,∇wt)∆w − ν1(∇w,∇w)∆wt|2dx dt

≤ 2ν1

∫∫
Q

ρ25| ∥∇w∥∥∇wt∥∆w |2 + ν1

∫∫
Q

ρ25| ∥∇w∥2∆wt |2dx dt

= 2ν1M1 + ν1M2.

(1.64)

So we need to check that M1 and M2 are bounded. Well, by Lemma 1.4 and using the fact that

e3sβ̂−5/2sβ∗
(γ̂)−19 ≤ Cρ26, we arrive at

M1 ≤ C

∫∫
Q

ρ25| ∥∇w∥∥∇wt∥∆w |2dx dt = C

∫∫
Q

ρ25∥∇w∥2∥∇wt∥2|∆w|2dx dt

= C

T∫
0

ρ25∥∇w∥2∥∇wt∥2
∫

Ω

|∆w|2dx

 dt

≤ C ∥w∥2L∞(0,T ;V)

∫ T

0
ρ25∥∇wt∥2

∫
Ω

|∆w|2dx

 dt

≤ C ∥w∥2L∞(0,T ;V) sup
[0,T ]

∫
Ω

ρ26|∆w|2dx

∫ T

0

∫
Ω

ρ25|∇wt|2ρ−2
6 dx dt


≤ C ∥w∥2L∞(0,T ;V)∥ρ6∆w∥

2
L∞(0,T ;L2(Ω)N )

∥ρ5∇wt∥2L2(0,T ;L2(Ω)N )

≤ C ∥(w, p0, z, q, v)∥6B1
.

(1.65)

And,

M2 ≤ C

∫∫
Q

ρ25∥∇w∥2|∆wt|2dx dt

= C

∫∫
Q

e7/2sβ
∗
e−7/2sβ∗

ρ25∥∇w∥2|∆wt|2dx dt

= C

∫∫
Q

e7/2sβ
∗∥∇w∥2 e3sβ̂−5/2sβ∗

(γ̂)−19|∆wt|2dx dt

≤ C

∫∫
Q

e7/2sβ
∗∥∇w∥2ρ26|∆wt|2dx dt

≤ C sup
[0,T ]

(∫
Ω
e7/2sβ

∗ |∇w|2dx
)∫∫

Q

ρ26|∆wt|2dx dt


≤ C∥e7/4sβ∗

w∥2L∞(0,T ;V)∥ρ6∆wt∥2L2(0,T ;L2(Ω)N )

≤ C∥(w, p0, z, q, v)∥4B1

(1.66)
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By (1.65) and (1.66) in (1.64), we have

I2 ≤ C∥(w, p0, z, q, v)∥4B1
+ C∥(w, p0, z, q, v)∥6B1

. (1.67)

Furthermore, given that w(0) = 0, we get

I3 = ∥(−ν1ρ6∥∇w∥2∆w)(0)∥2H1
0 (Ω)N = 0. (1.68)

Then, from (1.63), (1.67), and (1.68) in (1.62), we have

∥a2(w, p0, z, q, v)∥2ZN
≤ C∥(w, p0, z, q, v)∥4B1

(
1 + ∥(w, p0, z, q, v)∥2B1

)
. (1.69)

Now, we need to show that the same occurs for a3(w, p0, z, q, v). Observe that,

∥a3(w, p0, z, q, v)∥2ZN
=

∫∫
Q

(
ρ20|(w · ∇)w|2 + ρ25| [(w · ∇)w]t |

2
)
dx dt

+ ∥ (ρ6(w · ∇)w) (0)∥2
H1

0 (Ω)N
= Ĩ1 + Ĩ2 + Ĩ3.

(1.70)

Since Ĩ3 = ∥ (ρ6(w · ∇)w) (0)∥2
H1

0 (Ω)N
= 0, we just check the other terms. By the definition of B1,

e7/2sβ
∗
w ∈ L2(0, T ;H2(Ω)N ) ∩ L∞(0, T ; V)

and we then used the continuous immersions H2(Ω) ↪→ L∞(Ω), of N ≤ 3, and one has

e7/4sβ
∗
w ∈ L2(0, T ;L∞(Ω)N ) and∇(e7/4sβ

∗
w) ∈ L∞(0, T ;L2(Ω)N×N ).

Consequently,

Ĩ1 = ∥e7/2sβ∗
(γ∗)−2(w · ∇)w∥2

L2(Q)N

≤ C∥e7/2sβ∗
(w · ∇)w∥2

L2(Q)N

= C∥(e7/4sβ∗
w · ∇)e7/4sβ

∗
w∥2

L2(Q)N

= C

∫ T

0

∫
Ω

|e7/4sβ∗
w|2 |∇(e7/4sβ

∗
w)|2dx dt

≤ C

∫ T

0
sup
Ω

|e7/4sβ∗
w|2

∫
Ω

|∇(e7/4sβ
∗
w)|2dx

 dt

≤ C∥e7/4sβ∗
w∥2

L2(0,T ;L∞(Ω)N )
∥e7/4sβ∗

w∥2L∞(0,T ;V)

≤ C∥(w, p0, z, q, v)∥4B1
,

(1.71)
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since (γ∗)−2 bounded. Analogously, from Lemma 1.2 and Lemma 1.4,

Ĩ2 =

∫∫
Q
ρ25|(wt · ∇)w + (w · ∇)wt|2dx dt

≤2

∫∫
Q

ρ25|(wt · ∇)w|2dx dt+ 2

∫∫
Q

ρ25|(w · ∇)wt|2dx dt

≤2

∫∫
Q

ρ25ρ
−2
3 ρ23|wt|2|∇w|2dx dt+ 2

∫∫
Q

ρ25e
7/2sβ∗

e−7/2sβ∗ |w|2|∇wt|2dx dt

≤C

sup
[0,T ]

∫
Ω

ρ25|wt|2
∫ T

0

∫
Ω

ρ23|∇w|2dx dt

+C

sup
[0,T ]

∫
Ω

e7/2sβ
∗ |w|2dx

∫ T

0

∫
Ω

ρ25|∇wt|2dx dt

≤C ∥ρ5wt∥2L∞(0,T ;L2(Ω)N )
∥ρ3∇w∥2L2(0,T ;L2(Ω)N )

+C ∥e7/4sβ∗
w∥2L∞(0,T ;V)∥ρ5∇wt∥2L2(0,T ;L2(Ω)N )

≤C∥(w, p0, z, q, v)∥4B1
.

(1.72)

Thus, from (1.71) and (1.72) in (1.70), we get

∥a3(w, p0, z, q, v)∥2ZN
≤ C∥(w, p0, z, q, v)∥4B1

. (1.73)

Therefore, by (1.61), (1.69), and (1.73),

∥A1(w, p
0, z, q, v)∥2ZN

≤ C
(
1 + ∥(w, p0, z, q, v)∥2B1

+ ∥(w, p0, z, q, v)∥4B1

)
∥(w, p0, z, q, v)∥2B1

(1.74)

and consequently A1(w, p
0, z, q, v) ∈ ZN , for any (w, p0, z, q, v) ∈ B1.

Analysis of A2.
Following in a similar way to what was done for A1, let (w, p0, z, q, v) ∈ B1 and decompose A2 as

follows:

A2(w, p
0, z, q, v) = a1(w, p

0, z, q, v) + a2(w, p
0, z, q, v),

where 
a1(w, p

0, z, q, v) = L∗(z) +∇q − wχO = f1;

a2(w, p
0, z, q, v) = −ν1∥∇w∥2∆z + 2ν1 ((∆w, z)L2∆w) +

(
z · ∇t

)
w

− (w · ∇) z = Ī1 + Ī2 + Ī3 + Ī4.

We will show that, for each l = {1, 2},

∥al(w, p0, z, q, v)∥L2(ρ̂0
2;Q)N ≤ ∥(w, p0, z, q, v)∥B1

and consequently, we get A2(w, p
0, z, q, v) ∈ L2(ρ̂0

2;Q)N . First, it is clear that

∥a1(w, p0, z, q, v)∥2L2(ρ̂0;Q)N
=

∫ T

0

∫
Ω

|ρ̂0f1|2dx dt ≤ ∥(w, p0, z, q, v)∥2B1
. (1.75)
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So, we need to show that each Īi, i = {1, 2, 3, 4} is bounded to conclude that a2 is bounded. Note that, Ī4
satisfies

∥Ī4∥2L2(ρ̂0
2;Q)N

≤ ∥(w, p0, z, q, v)∥4B1
. (1.76)

Indeed, consider the weight function e9/4sβ
∗
(γ∗)−2−2/m. Since 9/4 > 2 and −2− 2/m > −5/2, then

ρ̂0 = e2sβ
∗
(γ∗)−5/2 ≤ e9/4sβ

∗
(γ∗)−2−2/m. Thus,

∥Ī4∥L2(ρ̂0
2;Q)N = ∥ρ̂0(w · ∇)z∥L2(Q)N ≤ ∥e9/4sβ∗

(γ∗)−2−2/m(w · ∇)z∥L2(Q)N

= ∥
(
e7/4sβ

∗
w · ∇

)
e1/2sβ

∗
(γ∗)−2−2/mz∥L2(Q)N

≤ ∥e7/4sβ∗
w∥L2(0,T ;L∞(Ω)N )∥e1/2sβ

∗(γ∗)−2−2/mz∥L∞(0,T ;V)

≤ ∥(w, p0, z, q, v)∥2B1
,

since e1/2sβ
∗
(γ∗)−2−2/mz ∈ L2(0, T ;H2(Ω)N ) ∩ L∞(0, T,V), proving (1.76).

The reasoning used with the e9/4sβ
∗
(γ∗)−2−2/m weight will be useful for us to study the other terms

Īi, with i = {1, 2, 3}. Effectively, for Ī3, notice that

∥Ī3∥2L2(ρ̂0
2;Q)N

= ∥ρ̂0(z · ∇t)w∥2
L2(Q)N

≤ ∥e9/4sβ∗
(γ)−2−2/m(z · ∇t)w∥L2(Q)N

= ∥
(
e1/2sβ

∗
(γ∗)−2−2/mz · ∇t

)
e7/4sβ

∗
w∥L2(Q)N

≤ ∥e1/2sβ∗
(γ∗)−2−2/mz∥L2(0,T ;L∞(Ω)N )∥e7/4sβ

∗
w∥L∞(0,T ;V)

≤ ∥(w, p0, z, q, v)∥4B1
.

(1.77)

Also, by the same arguments,

∥Ī1∥2L2(ρ̂0;Q)N
≤ ∥e9/4sβ∗

(γ∗)−2−2/m∥∇w∥2L2∆z∥L2(Q)N

≤ ∥w∥L∞(0,T ;V)∥e7/4sβ
∗
w∥L∞(0,T ;V)∥e1/2sβ

∗
(γ∗)−2−2/mz∥L2(0,T ;H2(Ω)N )

≤ C∥(w, p0, z, q, v)∥6B1

(1.78)

Finally, by the previous regularities plus the regularity obtained in Lemma 1.4, ρ6w ∈ L∞(0, T ;H2(Ω)N ),

we have
∥Ī2∥2L2(ρ̂0

2;Q)N
= ∥ρ̂0(2ν1(∆w, z)∆w)∥2L2(Q)N

≤ ∥e9/4sβ∗
(γ∗)−2−2/m(∆w, z)∆w∥2

L2(Q)N

≤ ∥e9/4sβ∗
(γ∗)−2−2/m∥z∥L2∥∆w∥L2∆w∥2

L2(Q)N

=

∫ T

0

∫
Ω

|e7/4sβ∗
e1/2sβ

∗
(γ∗)−2−2/m∥z∥L2∥∆w∥L2∆w|2dx dt

=

∫ T

0
e7/2sβ

∗
esβ

∗
(γ∗)−4−4/m∥z∥2L2∥∆w∥2L2

∫
Ω

|∆w|2dx dt

=

∫ T

0
e7/2sβ

∗
esβ

∗
(γ∗)−4−4/m∥z∥2L2∥∆w∥2L2∥∆w∥2L2dt

=

∫ T

0
esβ

∗
(γ∗)−4−4/m∥z∥2L2ρ

2
6∥∆w∥2L2ρ

2
6∥∆w∥2L2e

−7/2sβ∗
(γ̂)42

≤ C
(
∥e1/2sβ∗

(γ∗)−2−2/mz∥2
L2(0,T ;L2(Ω)N )

∥ρ6w∥2L∞(0,T ;H2(Ω)N )

∥ρ6w∥2L∞(0,T ;H2(Ω)N )

)
≤ C ∥(w, p0, z, q, v)∥6B1

.

(1.79)
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From (1.76)− (1.79), we get

∥a2(w, p0, z, q, v)∥2L2(ρ̂0
2;Q)N

≤ C(∥(w, p0, z, q, v)∥2B1
+ ∥(w, p0, z, q, v)∥4B1

)∥(w, p0, z, q, v)∥2B1
.

(1.80)

Consequently, from (1.75) and (1.80),

∥A2(w, p
0, z, q, v)∥2

L2(ρ̂0
2;Q)N

≤ C
(
1 + ∥(w, p0, z, q, v)∥2B1

+ ∥(w, p0, z, q, v)∥4B1

)
∥(w, p0, z, q, v)∥2B1

(1.81)

and A2(w, p
0, z, q, v) ∈ L2(ρ̂0

2;Q)N , for any (w, p0, z, q, v) ∈ B1.

Therefore, from (1.74) and (1.81), we have that A(w, p0, z, q, v) ∈ B2, for every (w, p0, z, q, v) ∈
B1, with

∥A(w, p0, z, q, v)∥2B2

≤ C
(
1 + ∥(w, p0, z, q, v)∥2B1

+ ∥(w, p0, z, q, v)∥4B1

)
∥(w, p0, z, q, v)∥2B1

.

and this concludes that A : B1 −→ B2 is well defined.

Using similar arguments it, is easy to check that A is continuous around the origin.

Lemma 1.6. The mapping A : B1 −→ B2 is continuously differentiable.

Proof. We will the proof for N = 3. The proof for the case N = 2 is similar.

Let us first prove that A is Gâteaux-differentiable for all (w, p0, z, q, v) ∈ E
i
3 and let us compute the

G-derivative A′(w, p0, z, q, v).

Let us fix (w, p0, z, q, v) ∈ E
i
3 and let us take (w′, p0

′
, z′, q′, v′) ∈ E

i
3 and σ > 0. By the decomposi-

tion made at the beginning of the Lemma 1.5, A = (A1,A2), we have:

1

σ
[A1

(
(w, p0, z, q, v) + σ(w′, p0

′
, z′, q′, v′)

)
−A1(w, p

0, q, z, v)]

= w′
t − (ν0 + ν1∥∇(w + σw′)∥2)∆w′ − ν1

σ

(
∥∇(w + σw′)∥2 − ∥∇w∥2

)
∆w

+∇p0′ − v′χω + (w′ · ∇)w + (w · ∇)w′ + σ(w′ · ∇)w′

and
1

σ
[A2

(
(w, p0, z, q, v) + σ(w′, p0

′
, z′, q′, v′)

)
−A2(w, p

0, z, q, v)] = Ã2σ + Â2σ,

where

Ã2σ = −z′t − (ν0 + ν1∥∇(w + σw′)∥2)∆z′ − ν1
σ
(∥∇(w + σw′)∥2 − ∥∇w∥2)∆z

+∇q′ − w′χO − (w · ∇)z′ − (w′ · ∇)z − σ(w′ · ∇)z′

and
Â2σ = (z · ∇t)w′ + (z′ · ∇t)w + σ(z′ · ∇t)w′ + 2ν1 [(∆w, z

′)∆w

+(∆w, z)∆w′ + σ(∆w, z′)∆w′ + (∆w′, z)∆w + σ(∆w′, z′)∆w

+ σ(∆w′, z)∆w′ + σ2(∆w′, z′)∆w′] .
Let us introduce the linear mapping

DA : E
i
3 −→ Z3 × L2 (ρ̂0;Q)3 ,
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with DA(w, p0, z, q, v) = DA = (DA1, DA2), where:

DA1(w
′, p0

′
, z′, q′, v′) = w′

t − (ν0 + ν1∥∇w∥2)∆w′ − 2ν1 (∇w,∇w′)∆w

+∇p0′ − v′χω + (w′ · ∇)w + (w · ∇)w′ (1.82)

and

DA2(w
′, p0

′
, z′, q′, v′) = −z′t − (ν0 + ν1∥∇w∥2)∆z′ − 2ν1(∇w,∇w′)∆z

+2ν1[(∆w, z
′)∆w + (∆w, z)∆w′ + (∆w′, z)∆w] + (z · ∇t)w′ + (z′ · ∇t)w

−(w′ · ∇)z + (w · ∇)z′ +∇q′ − w′χO,

(1.83)

for all (w′, p0
′
, z′, q′, v′) ∈ E

i
3.

From the definition of the spaces Ei
3, Z3 × L2(ρ̂0

2;Q)3 and (1.82)-(1.83), it becomes that DA ∈
L(Ei

3, Z3 × L2(ρ̂0
2;Q)3). Moreover,

1

σ
[A1

(
(w, p0, z, q, v) + σ(w′, p0

′
, z′, q′, v′)

)
−A1(w, p

0, z, q, v)]

−→ DA1(w
′, p0

′
, z′, q′, v′) strong in Z3, asσ −→ 0,

(1.84)

and
1

σ
[A2

(
(w, p0, z, q, v) + σ(w′, p0

′
, z′, q′, v′)

)
−A2(w, p

0, z, q, v)]

−→ DA2(w
′, p0

′
, z′, q′, v′) strong in L2(ρ̂0

2;Q)3, asσ −→ 0.
(1.85)

Let us demonstrate that (1.84) is true. Indeed,

∥ 1
σ
[A1

(
(w, p0, z, q, v) + σ(w′, p0

′
, z′, q′, v′)

)
−A1(w, p

0, q, z, v)]

−DA1(w
′, p0

′
, z′, q′, v′)∥Z3

≤ ∥ν1
(
∥∇(w + σw′)∥2 − ∥∇w∥2

)
∆w′∥Z3 + ∥σ(w′ · ∇)w′∥Z3

+∥ν1
σ

(
∥∇(w + σw′)∥2 − ∥∇w∥2

)
∆w − 2ν1(∇w,∇w′)∆w∥Z3

= L1 + L2 + L3.

We will see that for all i ∈ {1, 2, 3}, Li −→ 0, as σ −→ 0. In effect, using Lebesgue’s Theorem,

L2
1 = ν21

∫∫
Q

ρ20| ∥∇(w + σw′)∥2 − ∥∇w∥2 |2|∆w′|2dx dt

+ν21

∫∫
Q

ρ25| [(∥∇(w + σw′)∥2 − ∥∇w∥2)∆w′]t |2dx dt

+∥ν1ρ6[(∥∇(w + σw′)∥2 − ∥∇w∥2)∆w′](0)∥2
H1

0 (Ω)3
−→ 0,

and
L2
2 = ∥σ(w′ · ∇)w′∥2Z3

=

∫∫
Q

[ρ20|σ(w′ · ∇)w′|2 + ρ25|σ(w′
t · ∇)w′ + σ(w′ · ∇)w′

t|2]dx dt

+∥ρ6σ(w′ · ∇)w′(0)∥2
H1

0 (Ω)N
−→ 0,

as σ −→ 0, since the integrals are bounded as we prove in (1.69) and (1.73), respectively.
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Now, writing L3, one has

L2
3 =

∫∫
Q

ρ20|
ν1
σ
(∥∇(w + σw′)∥2 − ∥∇w∥2)∆w − 2ν1(∇w,∇w′)∆w|2dx dt

+

∫∫
Q

ρ25| [
ν1
σ
(∥∇(w + σw′)∥2 − ∥∇w∥2)∆w − 2ν1(∇w,∇w′)∆w]t |2dx dt

+ ∥ρ6
ν1
σ
[(∥∇(w + σw′)∥2 − ∥∇w∥2)∆w − 2ν1(∇w,∇w′)∆w](0)∥2

H1
0 (Ω)3

= N1 +N2 +N3.

Observe each Nj , j = {1, 2, 3}:

• N1 −→ 0, as σ −→ 0, since

lim
σ→0

1

σ
(∥∇(w + σw′)∥2 − ∥∇w∥2)∆w = 2(∇w,∇w′)∆w.

Before we analyze N2, let’s rewrite it. To do this, we start by looking at the first term of the sum on

the right-hand side:

[(∥∇(w + σw′)∥2 − ∥∇w∥2)∆w]t
= [(∇w + σ∇w′,∇w + σ∇w′)∆w − (∇w,∇w)∆w]t
= 2(∇w + σ∇w′,∇wt + σ∇w′

t)∆w + (∇w + σ∇w′,∇w + σ∇w′)∆wt

−2(∇w,∇wt)∆w − (∇w,∇w)∆wt

= 2(∇w, σ∇w′
t)∆w +

[
2σ(∇w′,∇wt) + 2σ2(∇w′,∇w′

t)
]
∆w + [σ(∇w,∇w′)

+σ(∇w′,∇w) + σ2(∇w′,∇w′)
]
∆wt

and the second term of the sum,

−2ν1[(∇w,∇w′)∆w]t = [−2ν1(∇wt,∇w′)− 2ν1(∇w,∇w′
t)]∆w

−2ν1(∇w,∇w′)∆wt.

Therefore, simplifying some terms, we obtain

• N2 =

∫∫
Q

ρ25
∣∣2σν1(∇w′,∇w′

t)∆w + ν1σ(∇w′,∇w′)∆wt

∣∣2 dx −→ 0

as σ −→ 0, since the integrals are bounded as we prove in (1.67). Moreover, N3 = 0 given that w(0) = 0.

Therefore,

L2
3 −→ 0, asσ −→ 0.

This yields (1.84) and that A1 is Gâteaux-differentiable.

For the proof of (1.85), take in (1.83)

DA2(w
′, p0

′
, z′, q′, v′) = DÃ2(w

′, p0
′
, z′, q′, v′) +DÂ2(w

′, p0
′
, z′, q′, v′),

where
DÃ2(w

′, p0
′
, z′, q′, v′) = −z′t − (ν0 + ν1∥∇w∥2)∆z′ − 2ν1(∇w,∇w′)∆z

+∇q′ − w′χO − (w′ · ∇)z + (w · ∇)z′,
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and
DÂ2(w

′, p0
′
, z′, q′, v′) = (z · ∇t)w′ + (z′ · ∇t)w + 2ν1[(∆w, z

′)∆w

+(∆w, z)∆w′ + (∆w′, z)∆w].

Arguing similarly to A1, we have

Ã2σ −→ DÃ2(w
′, p0

′
, z′, q′, v′) strong inL2(ρ̂0

2;Q)3, (1.86)

as σ −→ 0. And, since

∥Â2σ −DÂ2(w
′, p0

′
, z′, q′, v′)∥L2(ρ̂0

2;Q)3

≤ ∥2ν1σ[(∆w, z′)∆w′ + (∆w′, z′)∆w + (∆w′, z)∆w′ + σ(∆w′, z′)∆w′]∥L2(ρ̂0
2;Q)3

+ ∥σ(z′ · ∇t)w′∥L2(ρ̂0
2;Q)3 ,

we can conclude that

Â2σ −→ DÂ2(w
′, p0

′
, z′, q′, v′) strong inL2(ρ̂0

2;Q)3, (1.87)

as σ −→ 0.

Thus, from (1.86) and (1.87), (1.85) holds and A2 is Gâteaux-differentiable.

Therefore, A = (A1,A2) is Gâteaux-differentiable at any (w, p0, z, q, v) ∈ E
i
3, with a G-derivative

A′(w, p0, z, q, v) = DA.

Now, in view of the classical results, we will prove that A is not only Gâteaux-differentiable, but also

Fréchet-differentiable. Hence, we will have

A ∈ C1
(
E

i
3, Z3 × L2(ρ̂0

2;Q)3
)

with A′(w, p0, z, q, v) = DA(w, p0, z, q, v),

i.e.

A′(w, p0, z, q, v)(w′, p0
′
, z′, q′, v′) = DA(w, p0, z, q, v)(w′, p0

′
, z′, q′, v′),

for all (w′, p0
′
, z′, q′, v′) ∈ E

i
3, where

DA(w, p0, z, q, v)(w′, p0
′
, z′, q′, v′) =

(
w′
t − (ν0 + ν1∥∇w∥2)∆w′

−2ν1 (∇w,∇w′)∆w + (w′ · ∇)w + (w · ∇)w′ +∇p0′ − v′χω,−z′t
−(ν0 + ν1∥∇w∥2)∆z′ − 2ν1(∇w,∇w′)∆z + 2ν1[(∆w, z

′)∆w + (∆w, z)∆w′

+(∆w′, z)∆w]− (w′ · ∇)z + (w · ∇)z′ + (z · ∇t)w′ + (z′ · ∇t)w +∇q′ − w′χO
)
.

For this purpose, just prove that for

(wn, p
0
n, zn, qn, vn) −→ (w, p0, z, q, v) inEi

3

there is ϵn(w, p0, z, q, v) such that

∥
(
DA(wn, p

0
n, zn, qn, vn)−DA(w, p0, z, q, v)

)
(w′, p0

′
, z′, q′, v′)∥2

Z3×L2(ρ̂02;Q)
3

≤ ϵn∥(w′, p0
′
, z′, q′, v′)∥2

E
i
3

,
(1.88)

for all (w′, p0
′
, z′, q′, v′) ∈ E

i
3 and lim

n→∞
ϵn = 0.
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Let us prove (1.88). Note that, for DA1, from (1.82),

DA1(w, p
0, z, q, v)(w′, p0

′
, z′, q′, v′) = w′

t − (ν0 + ν1∥∇w∥2)∆w′

−2ν1 (∇w,∇w′)∆w + (w′ · ∇)w + (w · ∇)w′ +∇p0′ − v′χω;

DA1(wn, p
0
n, zn, qn, vn)(w

′, p0
′
, z′, q′, v′) = w′

t − (ν0 + ν1∥∇wn∥2)∆w′

−2ν1 (∇wn,∇w′)∆wn + (w′ · ∇)wn + (wn · ∇)w′ +∇p0′ − v′χω,

for all (w′, p0
′
, z′, q′, v′) ∈ E

i
3. Then, we have

(
DA1(wn, p

0
n, zn, qn, vn)−DA1(w, p

0, z, q, v)
)
(w′, p0

′
, z′, q′, v′)

= ν1(∥∇w∥2 − ∥∇wn∥2)∆w′ − 2ν1(∇wn,∇w′)∆wn + 2ν1(∇w,∇w′)∆w

+(w′ · ∇)wn − (w′ · ∇)w + (wn · ∇)w′ − (w · ∇)w′,

and

∥
(
DA1(wn, p

0
n, zn, qn, vn)−DA1(w, p

0, z, q, v)
)
(w′, p0

′
, z′, q′, v′)∥2Z3

≤ 3∥(ν1∥∇w∥2 − ν1∥∇wn∥2)∆w′∥2Z3

+3∥ − 2ν1(∇wn,∇w′)∆wn + 2ν1(∇w,∇w′)∆w∥2Z3

+3∥(w′ · ∇)(wn − w) + (wn − w) · ∇w′∥2Z3

= 3D1,n + 12D2,n + 3D3,n.

(1.89)

We need to analyze these terms. Using what has already been done for (1.62), we obtain

D1,n ≤ C
(
∥∥∇(w − wn)∥∥∇w∥∆w′∥2Z3

+ ∥∥∇(w − wn)∥∥∇wn∥∆w′∥2Z3

)
≤ ϵ1,n∥(w′, p0

′
, z′, q′, v′)∥2

E
i
3

.
(1.90)

where

ϵ1,n = C∥(wn, p
0
n, zn, qn, vn)− (w, p0, z, q, v)∥2

E
i
3

(
∥(w, p0, z, q, v)∥2

E
i
3

+∥(wn, p
0
n, zn, qn, vn)∥2Ei

3

)
.

For D2,n let us first see the following:

∥(∇wn,∇w′)∆wn∥2Z3
=

∫∫
Q

(
ρ20|(∇wn,∇w′)∆wn|2

+ ρ25|[(∇wn,∇w′)∆wn]t|2
)
dx dt+ ∥[ρ6(∇wn,∇w′)∆wn](0)∥2H1

0 (Ω)3

= X1 +X2 +X3.

Observe that

X1 =

∫∫
Q

ρ20|(∇wn,∇w′)∆wn|2dx dt

≤ C∥w′∥2L∞(0,T ;V)∥e
7/4sβ∗

wn∥2L∞(0,T ;V)∥e
7/4sβ∗

wn∥2L2(0,T ;H2(Ω)3) < +∞.

(1.91)

48



From Lemma 1.4,

X2 =

∫∫
Q

ρ25|[(∇wn,∇w′)∆wn]t|2dx dt

≤ 3

∫∫
Q

ρ25|(∇wn,t,∇w′)∆wn|2dx dt+ 3

∫∫
Q

ρ25|(∇wn,∇w′
t)∆wn|2dx dt

+3

∫∫
Q

ρ25|(∇wn,∇w′)∆wn,t|2dx dt

≤ C
(
∥w′∥2L∞(0,T ;V)∥ρ6∆wn∥2L∞(0,T ;L2(Ω)N )

∥ρ5∇wn,t∥2L2(0,T ;L2(Ω)N )

+∥wn∥2L∞(0,T ;V)∥ρ6∆wn∥2L∞(0,T ;L2(Ω)N )
∥ρ5∇w′

t∥2L2(0,T ;L2(Ω)N )

+∥w′∥2L∞(0,T ;V)

∫∫
Q

e7/2sβ
∗∥∇wn∥2e3sβ̂−5/2sβ∗

(γ̂)−19|∆wn,t|2dx dt


≤ C

(
∥w′∥2L∞(0,T ;V)∥ρ6∆wn∥2L∞(0,T ;L2(Ω)N )

∥ρ5∇wn,t∥2L2(0,T ;L2(Ω)N )

+∥wn∥2L∞(0,T ;V)∥ρ6∆wn∥2L∞(0,T ;L2(Ω)N )
∥ρ5∇w′

t∥2L2(0,T ;L2(Ω)N )

+∥w′∥2L∞(0,T ;V)∥e
7/2sβ∗

wn∥2L∞(0,T ;V)∥ρ6∆wn,t∥2L2(0,T ;L2(Ω)N )

)
< +∞,

(1.92)

And, X3 = 0. Thus, adding and subtracting ν1(∇wn,∇w′)∆w in D2,n follows, from the calculations

made for (1.91) and (1.92), such that

D2,n = ∥ − ν1(∇wn,∇w′)∆(wn − w)− ν1(∇(wn − w),∇w′)∆w∥2Z3

≤ C
(
∥ − ν1(∇wn,∇w′)∆(wn − w)∥2Z3

+ ∥ − ν1(∇(wn − w),∇w′)∆w∥2Z3

)
≤ ϵ2,n∥(w′, p0

′
, z′, q′, v′)∥2

E
i
3

,

(1.93)

where

ϵ2,n = C ∥(wn, p
0
n, zn, qn, vn)− (w, p0, z, q, v)∥2

E
i
3

(∥(wn, p
0
n, zn, qn, vn)∥2Ei

3

+∥(w, p0, z, q, v)∥2
E

i
3

).

And similarly, we obtain

D3,n = ∥(w′ · ∇)(wn − w) + (wn − w)∇w′∥2Z3

≤ ϵ3,n∥(w′, p0
′
, z′, q′, v′)∥2

E
i
3

,
(1.94)

where ϵ3,n = C∥(wn, p
0
n, zn, qn, vn)− (w, p0, z, q, v)∥2

E
i
3

. From (1.90), (1.93), and (1.94) in (1.89), we

have

∥
(
DA1(wn, p

0
n, zn, qn, vn)−DA1(w, p

0, z, q, v)
)
(w′, p0

′
, z′, q′, v′)∥2Z3

≤ ϵj,n∥(w′, p0
′
, z′, q′, v′)∥2

E
i
3

,
(1.95)

with lim
n→∞

ϵj,n = 0, for all j ∈ {1, 2, 3}.

49



In the same way, we will study DA2. Remembering that, for (1.83)

DA2(w, p
0, z, q, v)(w′, p0

′
, z′, q′, v′) = −z′t − (ν0 + ν1∥∇w∥2)∆z′

−2ν1(∇w,∇w′)∆z + 2ν1[(∆w, z
′)∆w + (∆w, z)∆w′ + (∆w′, z)∆w]

+(z · ∇t)w′ + (z′ · ∇t)w − (w′ · ∇)z + (w · ∇)z′ +∇q′ − w′χO;

DA2(wn, p
0
n, zn, qn, vn)(w

′, p0
′
, z′, q′, v′) = −z′t − (ν0 + ν1∥∇wn∥2)∆z′

−2ν1(∇wn,∇w′)∆zn + 2ν1[(∆wn, z
′)∆wn + (∆wn, zn)∆w

′ + (∆w′, zn)∆wn]

+(zn · ∇t)w′ + (z′ · ∇t)wn − (w′ · ∇)zn + (wn · ∇)z′ +∇q′ − w′χO,

for all (w′, p0
′
, z′, q′, v′) ∈ E

i
3. Then, we get(

DA2(wn, p
0
n, zn, qn, vn)−DA2(w, p

0, z, q, v)
)
(w′, p0

′
, z′, q′, v′)

= ν1(∥∇w∥2 − ∥∇wn∥2)∆z′ − 2ν1(∇wn,∇w′)∆zn + 2ν1(∇w,∇w′)∆z

−(w′ · ∇)zn + (wn · ∇)z′ + (w′ · ∇)z − (w · ∇)z′ + (zn · ∇t)w′ + (z′ · ∇t)wn

−(z · ∇t)w′ − (z′ · ∇t)w + 2ν1[(∆wn, z
′)∆wn + (∆wn, zn)∆w

′

+(∆w′, zn)∆wn]− 2ν1[(∆w, z
′)∆w + (∆w, z)∆w′ + (∆w′, z)∆w].

After some simple calculations

∥
(
DA2(wn, p

0
n, zn, qn, vn)−DA2(w, p

0, z, q, v)
)
(w′, p0

′
, z′, q′, v′)∥2

L2(ρ̂0
2;Q)3

≤ C
[
∥(ν1∥∇w∥2 − ν1∥∇wn∥2)∆z′∥2L2(ρ̂0

2;Q)3

+ ∥ − 2ν1(∇wn,∇w′)∆zn + 2ν1(∇w,∇w′)∆z∥2
L2(ρ̂0

2;Q)3

+ ∥(w′ · ∇)(zn − z) + ((wn − w) · ∇)z′∥2
L2(ρ̂0

2;Q)3

+ ∥(z′ · ∇t)(wn − w) + ((zn − z) · ∇t)w′∥2
L2(ρ̂0

2;Q)3

+ ∥2ν1(∆(wn − w), z′)∆wn + 2ν1(∆w, z
′)∆(wn − w)

+2ν1(∆wn, zn − z)∆w′ + 2ν1(∆(wn − w), z)∆w′

+2ν1(∆w
′, zn − z)∆wn + 2ν1(∆w

′, z)∆(wn − w)∥2
L2(ρ̂0

2;Q)3

]
= C

[
D1,n +D2,n +D3,n +D4,n +D5,n

]
.

(1.96)

Analyze the previous terms, as was done before for (1.78):

D1,n = ∥ν1(∥∇w∥2 − ∥∇wn∥2)∆z′∥2L2(ρ̂0
2;Q)3

= ∥ν1(∥∇w∥ − ∥∇wn∥)(∥∇w∥+ ∥∇wn∥)∆z′∥2L2((ρ̂0
2;Q)3)

≤ C
(
∥ν1∥∇(w − wn)∥ ∥∇w∥∆z′∥2L2(ρ̂0

2;Q)3

+ ∥ν1∥∇(w − wn)∥ ∥∇wn∥∆z′∥2L2(ρ̂0
2;Q)3

)
≤ ϵ1,n∥(w′, p0

′
, z′, q′, v′)∥2

E
i
3

,

(1.97)

where

ϵ1,n = C ∥(wn, p
0
n, zn, qn, vn)− (w, p0, z, q, v)∥2

E
i
3

(
∥(w, p0, z, q, v)∥2

E
i
3

+∥(wn, p
0
n, zn, qn, vn)∥2Ei

3

)
.
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Similar to the reasoning used for (1.93), we arrive at

D2,n ≤ ϵ2,n∥(w′, p0
′
, z′, q′, v′)∥2

E
i
3

(1.98)

where

ϵ2,n = C∥(wn, p
0
n, zn, qn, vn)− (w, p0, z, q, v)∥2

E
i
3

∥(wn, p
0
n, zn, qn, vn)∥2Ei

3

.

Also

D3,n ≤ ϵ3,n∥(w′, p0
′
, z′, q′, v′)∥2

E
i
3

(1.99)

where

ϵ3,n = ∥(wn, p
0
n, zn, qn, vn)− (w, p0, z, q, v)∥2

E
i
3

.

Just like was done for (1.77),

D4,n ≤ ϵ4,n∥(w′, p0
′
, z′, q′, v′)∥2

E
i
3

(1.100)

where

ϵ4,n = C ∥wn, p
0
n, zn, qn, vn)− (w, p0, z, q, v)∥2

E
i
3

.

Finally, note that some terms of D5,n are bounded by

C ∥(wn, p
0
n, zn, qn, vn)− (w, p0, z, q, v)∥2

E
i
3

(
∥(w′, p0

′
, z′, q′, v′)∥2

E
i
3

∥(wn, p
0
n, zn, qn, vn)∥2Ei

3

)
or by

C ∥(wn, p
0
n, zn, qn, vn)− (w, p0, z, q, v)∥2

E
i
3

(
∥(w, p0 , z, q, v)∥2

E
i
3

∥(w′, p0
′
, z′, q′, v′)∥2

E
i
3

)
.

Thus,
D5,n ≤ ϵ5,n∥(w′, p0

′
, z′, q′, v′)∥2

E
i
3

(1.101)

where

ϵ5,n = C ∥(wn, p
0
n, zn, qn, vn)− (w, p0, z, q, v)∥2

E
i
3

(
∥(wn, p

0
n, zn, qn, vn)∥2Ei

3

+ ∥(w, p0, z, q, v)∥2
E

i
3

)
.

From (1.97)-(1.101) in (1.96), we have

∥
(
DA2(wn, p

0
n, zn, qn, vn)−DA2(w, p

0, z, q, v)
)
(w′, p0

′
, z′, q′, v′)∥2

L2(ρ̂0
2;Q)3

≤ ϵj,n∥(w′, p0
′
, z′, q′, v′)∥2

E
i
3

,
(1.102)

with lim
n→∞

ϵj,n = 0, for all j ∈ {1, 2, 3, 4, 5}. Therefore, from (1.95) and (1.102), (1.88) is holds and

A ∈ C1
(
E

i
3, Z3 × L2(ρ̂0

2;Q)3
)

with A′(w, p0, z, q, v) = DA(w, p0, z, q, v).

Lemma 1.7. Let A be the mapping defined by (1.59). Then A′(0, 0, 0, 0, 0) is onto.
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Proof. Let (f0, f1) ∈ B2, from Proposition 1.3 we know that there exists (w, p0, z, q, v) satisfying
L(w) +∇p0 = f0 + vχω, ∇ · w = 0 in Q,

L∗(z) +∇q = f1 + wχO, ∇ · z = 0 in Q,

w = 0, z = 0 on Σ,

w(0) = 0, z(T ) = 0 in Ω,

remembering that L(w) = wt − ν0∆w and L∗(z) = −zt − ν0∆z, where L∗ is the adjoint operator of L.

By the estimates proved in the Lemmas 1.2–1.4, the membership (w, p0, z, q, v) ∈ B1 is valid. Moreover,

A′(0, 0, 0, 0, 0)(w, p0, z, q, v) = (L(w) +∇p0 − vχω, L∗(z) +∇q − wχO)

= (f0, f1).

Hence, A′(0, 0, 0, 0, 0) is onto.

The Proof of Theorem 1.1 According to the previous Lemmas 1.5–1.7, it is legitimate to apply

Theorem 1.2. Then, in Theorem 1.2, consider b1 = (0, 0, 0, 0, 0) and b2 = (0, 0). In particular, this

gives the existence of a positive number δ > 0 such that, if ∥eC/tmf∥L2(Q)N + ∥eC/tmft∥L2(Q)N +

∥(eC/tmf)(0)∥H1
0 (Ω)N < δ, for some C > 0, then we can find a control v, with vi ≡ 0, such that the

associated solution (w, p0, z, q) to cascade system (1.56) satisfies z(0) = 0.

By Proposition 1.1, the proof of Theorem 1.1 is completed.
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CHAPTER 2

Local null controllability of the
complete N-Dimensional

Ladyzhenskaya-Boussinesq model

2.1 Problem Formulation

Here we are interested in studying a system that models viscous flows, where viscosity is in function

of the velocity gradient, in which thermal effects are taken into account. We will consider Ω ⊂ RN

(N = 2 or N = 3) be a non-empty bounded connected open set, with regular boundary ∂Ω and let T > 0

be given. We will us denote by Q the cylinder Ω× (0, T ) with side boundary Σ = ∂Ω× (0, T ).

Let ω ⊂ Ω be a (small) non-empty open set. We denote by (., .) and ∥.∥ respectively the L2 scalar

product and norm in Ω. We will use C to denote a generic positive constant. Thus, we will study the local

null controllability for the nonlinear systems:
yt −∇ · (ν(∇y)Dy) + (y · ∇)y +∇P = vχω + ν0θeN , ∇ · y = 0 in Q,

θt −∇ · (ν(∇y)∇θ) + y · ∇θ = v0χω + ν(∇y)Dy : ∇y in Q,

y(x, t) = 0, θ(x, t) = 0 on Σ,

y(x, 0) = y0(x), θ(x, 0) = θ0(x) in Ω,

(2.1)

where

ν(∇y) := ν0 + ν1

∫
Ω

|∇y|2dx (2.2)

and 
yt −∇ · (ν̄(∇y)Dy) + (y · ∇)y +∇P = vχω + ν0θeN , ∇ · y = 0 in Q,

θt −∇ · (ν̄(∇θ)∇θ) + y · ∇θ = v0χω + ν̄(∇y)Dy : ∇y in Q,

y(x, t) = 0, θ(x, t) = 0 on Σ,

y(x, 0) = y0(x), θ(x, 0) = θ0(x) in Ω,

(2.3)

where ν̄(∇ς) := ν0 + ν1∥∇ς∥2Lp , for 3 < p ≤ 6, and in both systems

eN =

{
(0, 1) if N = 2,

(0, 0, 1) if N = 3.
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In (2.1) and (2.3), y = y(x, t) stands the “averaged” velocity field, θ = θ(x, t) and P = P (x, t) represent,

respectively, temperature and pressure of a fluid whose particles are in Ω during the time interval (0, T );

ν0 and ν1 are positive constants representing the kinematic viscosity and turbulent viscosity, respectively.

(y0, θ0) are the initial states, that is to say, the states at time t = 0; χω ∈ C∞
0 (Ω) such that 0 < χω ≤ 1 in

ω and χω = 0 outside ω; Dy stands for the symmetrized gradient of y: Dy =
1

2
(∇y +∇T y) and

Dy : ∇y :=

N∑
i,j=1

1

2

(
∂yj
∂xi

+
∂yi
∂xj

)
∂yi
∂xj

. (2.4)

Furthermore, ω × (0, T ) is the control domain and v (force) and v0 (heat sources) represent the

controls acting on the system.

The proof of local null controllability is based on well-known arguments: Carleman estimates and

Liusternik’s Inverse Mapping Theorem. However, some difficulties arise due to the nonlinear terms added

to both the velocity equation and the temperature equation. Furthermore, we will prove a result, only for

the case p = 2, of null controllability in large time. The proof consists of evolving the system in question

without its controls and demonstrating that the system’s solutions have an asymptotic behavior so that we

can then use the first result of local null controllability.

The following vector spaces, frequently used in the context of incompressible fluids, which will be

used throughout the text:

H := {u ∈ L2(Ω)N : ∇ · u = 0 inΩ, u · η = 0 on ∂Ω}

and

V p := {u ∈W 1,p
0 (Ω)N : ∇ · u = 0 inΩ},

where η is the normal vector exterior to ∂Ω and W 1,p
0 (Ω) is the closure of the space of test functions in Ω,

D(Ω), in W 1,p(Ω)(the standard Sobolev space). In particular, when p = 2 we will denote V = V p.

When (y0, θ0) ∈ V ×H1
0 (Ω), [HLC18] proved that (2.1) is locally null controllable by means N − 1

scalar controls for an arbitrary control domain.

ForN = 2, y0 ∈ V , θ0 ∈W
1,3/2
0 (Ω), and any v ∈ L2(ω×(0, T ))N , v0 ∈ L2(ω×(0, T )) sufficiently

small in their respective spaces, (2.1) possesses exactly a strong solution (y, p, θ) with{
y ∈ L2(0, T ;H2(Ω)N ∩ V ) ∩ C0([0, T ];V ), yt ∈ L2(0, T ;H)

θ ∈ L2(0, T ;W 2,3/2(Ω)), θt ∈ L2(0, T ;L3/2(Ω)).
(2.5)

And, for N = 3 this is true if y0, θ0, v and v0 are sufficiently small in their respective spaces, that is, there

exists R > 0 such that

∥v∥2L2(ω×(0,T ))N + ∥v0∥2L2(ω×(0,T )) + ∥y0∥V + ∥θ0∥
W

1,3/2
0 (Ω)

< R.

The proof of these statements can be seen later in the Appendix B.1 and will be used opportunely to

achieve a result of null controllability in a long time, as stated in Theorem 2.3.

Definition 2.1. Let any non-empty open set ω ⊂ Ω. It will be said that (2.1) (resp. (2.3)) is locally

null-controllable at time T > 0 if there exists δ > 0 such that, for every (y0, θ0) ∈ V ×W
1,3/2
0 (Ω) (resp.

(y0, θ0) ∈ V p ×W 1,p
0 (Ω)) with

∥(y0, θ0)∥
V×W

1,3/2
0 (Ω)

< δ (resp. ∥(y0, θ0)∥
V p×W 1,p

0 (Ω)
< δ),
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there exists controls v ∈ L2(ω × (0, T ))N , v0 ∈ L2(ω × (0, T )) and associated solutions (y, p, θ)

satisfying

y(x, T ) = 0 and θ(x, T ) = 0 in Ω. (2.6)

Thus, the main results are given by the following:

Theorem 2.1. The nonlinear system (2.1) is locally null-controllable at any T > 0.

Theorem 2.2. The nonlinear system (2.3) is locally null-controllable at any T > 0.

In order to prove Theorems 2.1 and 2.2, we will first see a result of null controllability for the linear

system associated with (2.1) and (2.3)
L1y +∇P = vχω + ν0θeN + F1, ∇ · y = 0 in Q,

L2θ = v0χω + F2 in Q,

y(x, t) = 0, θ(x, t) = 0 on Σ,

y(x, 0) = y0(x), θ(x, 0) = θ0(x) in Ω,

(2.7)

where, L1y := yt − ν0∆y and L2θ := θt − ν0∆θ.

Once the null controllability of (2.7) has been proven, we will define a Banach space that will contain

a remodeling of the null controllability problem. In other words, we rewrite the null controllability

property of (2.1) and (2.3)), separately, as abstract equations (see (2.40) and (2.56)) in well chosen spaces

of “admissible” state-controls; see (2.36) and (2.39) for (2.1) and (2.54) and (2.55) for (2.3). In particular,

through the definitions applied to the equations and “admissible” spaces, it is possible to show that such

applications are well defined and C1 and, also its derivatives analyzed at zero are surjective. This will

allow us to achieve the null controllability of the systems in question.

Furthermore, when N = 2 we also show that for certain conditions in the initial data it is possible to

obtain a result of null controllability in a large time for the solutions of the system (2.1). To do this, we

will show that such solutions have asymptotic behavior when t→ ∞. Therefore, we have the following

theorem:

Theorem 2.3. [Large time null-controllability] For N = 2, let (y0, θ0) ∈ V × H1
0 (Ω) and r > 0 a

positive constant given by Theorem B.1 (see Appendix B.1) such that ∥(y0, θ0)∥V×H1
0 (Ω) < r, then there

exists a sufficiently large time T > 0 such that the nonlinear system (2.1) is null-controllable at T .

This chapter is organized as follows: In Section 2.2 we will talk about some already known results for

parabolic problems and Stokes systems and also Carleman estimates, which will be extremely important

for the null controllability of the system (2.7). In Section 2.3, based on [Gue06], we will obtain the null

controllability of (2.7) and prove estimates, in Banach spaces with weights, for the solutions of the system

linear (2.7) as well as for the controls v and v0 that will be useful (in Section 2.4) to achieve the null

controllability of the systems (2.1) and (2.3). In Section 2.4 we establish the null controllability for the

systems (2.1) and (2.3) which will be done, as previously described, through Liusternik’s Inverse Mapping

Theorem. And, in Section 2.5 the proof of the Theorem 2.3 which will be carried out through a lemma

that guarantees that under certain conditions imposed on the initial data the solution of the system (2.1)

without controls v and v0 have asymptotic behavior as t→ ∞. Finally, still on this chapter, we added an

Appendix B.1 that contains results of existence and uniqueness of solution for the system (2.1) and the

proof of the Lemma stated in Section 2.5.
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2.2 Some previous results

Our goal in the present section is to present well-posedness results for parabolic problems and Stokes

systems, as well as Carleman estimates for the adjoint system of (2.7) which is given by
L∗
1φ+∇π = G1, ∇ · φ = 0 in Q,

L∗
2ψ = φeN +G2 in Q,

φ(x, t) = 0, ψ(x, t) = 0 on Σ,

φ(x, T ) = φT (x), ψ(x, T ) = ψT (x) in Ω,

(2.8)

where L∗
1φ := −φt − ν0∆φ, L∗

2ψ := −ψt − ν0∆ψ, φT ∈ H , ψT ∈ L2(Ω), G1 ∈ L2(Q)N and

G2 ∈ L2(Q).

Well-posedness results

The results of this subsection will be applied when we study the null controllability of system (2.7)

(Section 2.3), since once we have the appropriate regularity for θ0 and y0 the results described here can be

applied to equation formed by (2.7)1 and (2.7)2.

The first lemma we mention here is applied to parabolic equations in Lp−Lq spaces and its verification

can be based on [DHP07]:

Lemma 2.1. Let 1 < r, s < ∞ and suppose that ϕ0 ∈ W 1,s(Ω) and h ∈ Lr(0, T ;Ls(Ω)). Then the

problem 
ϕt −∆ϕ = h in Q,

ϕ = 0 on Σ,

ϕ(0) = ϕ0 in Ω

admits a unique solution

ϕ ∈W 1,r(0, T ;Ls(Ω)) ∩ Lr(0, T ;W 2,s(Ω)),

Furthermore, there exist a constant C > 0 such that

∥ϕt∥Lr(0,T ;Ls(Ω)) + ∥∆ϕ∥Lr(0,T ;Ls(Ω)) ≤ C(∥ϕ0∥W 1,s(Ω) + ∥h∥Lr(0,T ;Ls(Ω))). (2.9)

Remark 2.1. Remembering that the Sobolev space W 1,r(0, T ;X), where X denote a real Banach space

with norm ∥.∥X , consists of all functions u ∈ Lr(0, T ;X) such that u′ = ut exists in the weak sense and

belongs to Lr(0, T ;X). Furthermore,

∥u∥W 1,r(0,T ;X) :=


[∫ T

0
(∥u(t)∥rX + ∥u′(t)∥rX)dt

]1/r
(1 ≤ r <∞)

ess sup[0,T ](∥u(t)∥X + ∥u′(t)∥X) (r = ∞).

More details about this space can be found at [Eva10].

The second result is valid for Stokes systems with homogeneous Dirichlet boundary conditions and

can be found in [Tem97]:
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Lemma 2.2. For every T > 0, u0 ∈ V and f ∈ L2(Q)N , there exists a unique solution (u, q) ∈(
L2(0, T ;H2(Ω)N ∩ V ) ∩ L∞(0, T ;V )× L2(0, T ;H1(Ω)

)
to the Stokes system

ut −∆u+∇q = f, ∇ · u = 0 in Q,

u = 0 on Σ,

u(0) = u0 in Ω.

The next result concerns the regularity of solutions of the Stokes system in Lp − Lq spaces, it was

proven in [GS91], and complemented by [Gue06] where the author comments on the application of

Helmotz’s decomposition to have it in the following form:

Lemma 2.3. Let 1 < p1, p2 <∞ and suppose that u0 ∈W 1,p2(Ω)N and f ∈ Lp1(0, T ;Lp2(Ω)). Then,

the weak solution u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) of system
ut −∆u+∇q = f, ∇ · u = 0 in Q,

u = 0 on Σ,

u(0) = u0 in Ω

actually verifies, together with a pressure q, that

(u,∇q) ∈
(
Lp1(0, T ;W 2,p2(Ω)N ) ∩W 1,p1(0, T ;Lp2(Ω)N )

)
× Lp1(0, T ;Lp2(Ω)N ).

Moreover, there exists a positive constant C just depending on Ω such that

∥u∥Lp1 (0,T ;W 2,p2 (Ω)N )∩W 1,p1 (0,T ;Lp2 (Ω)N ) + ∥∇q∥Lp1 (0,T ;Lp2 (Ω)N )

≤ C(∥f∥Lp1 (0,T ;Lp2 (Ω)N ) + ∥u0∥W 1,p2 (Ω)N ).

Carleman estimates

We dedicate this subsection to Carleman estimate, which will be fundamental to achieving the null

controllability of (2.7).

Let’s introduce a new non-empty open set ω0 ⋐ ω. Due to Fursikov and Imanuvilov [FI96] we have

the following result:

Lemma 2.4. There exists a function η0 ∈ C2(Ω) satisfying
η0(x) > 0, ∀x ∈ Ω,

η0(x) = 0, ∀x ∈ ∂Ω,

|∇η0(x)| > 0, ∀x ∈ Ω \ ω0.

Let us introduce the function ℓ ∈ C∞([0, T ]) such that

ℓ(t) =


T 2

4
, 0 ≤ t ≤ T/2,

t(T − t), T/2 < t ≤ T.

Thus, for all λ > 0 and m > 4, we consider the following weight functions:

α(x, t) =
e5/4λm∥η0∥∞ − eλ(m∥η0∥∞+η0(x))

ℓ(t)4
, ξ(x, t) =

eλ(m∥η0∥∞+η0(x))

ℓ(t)4
,

α∗(t) = max
x∈Ω

α(x, t), ξ∗(t) = min
x∈Ω

ξ(x, t),

α̂(t) = min
x∈Ω

α(x, t), ξ̂(t) = max
x∈Ω

ξ(x, t).
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The constant m will be chosen large enough, in particular such that

18α̂ > 17α∗ in (0, T ). (2.10)

We will present a Carleman estimate given by the following lemma:

Lemma 2.5. For any sufficiently large s and λ, there exists a positive constant C (depending on T , s and

λ) such that, for all φT ∈ H and ψT ∈ L2(Ω) and any G1 ∈ L2(Q)N and G2 ∈ L2(Q), the solution to

(2.8) verifies

∥φ(., 0)∥2 + ∥ψ(., 0)∥2 +
∫∫
Q

e−2sα[ξ3(|φ|2 + |ψ|2) + ξ(|∇φ|2 + |∇ψ|2)]dx dt

≤ C

 ∫∫
ω×(0,T )

e−8sα̂+6sα∗
ξ̂16(|φ|2 + |ψ|2)dx dt

+

∫∫
Q

e−4sα̂+2sα∗
ξ̂15/2(|G1|2 + |G2|2)dx dt

 .

(2.11)

Proof. See, Lemma 2 in [Gue06].

2.3 Null controllability of linear system (2.7)

This section is dedicated to the null controllability of the linear system (2.7). We emphasize that

two null controllability results will be obtained, since we will consider different cases for the initial data

y0, θ0 and the functions F1, F2. More precisely, in the first case we will consider more common spaces in

control theory, such as H1
0 (Ω) and L2(Q) while in the second case we will work with spaces less usual

ones, like W 1,p
0 (Ω) and Lq(0, T ;Lp(Ω)), for 3 < p ≤ 6 and p < q <∞.

Let us set
ρ = esαξ−3/2, ρ1 = e2sα̂−sα∗ξ̂−15/4 ρ2 = e4sα̂−3sα∗

ξ̂−8, ρ3 = esα
∗
(ξ∗)−1/2,

µ1 = e8sα̂−7sα∗
ξ̂−15, µ2 = e8sα̂−7sα∗

ξ̂−16, µ3 = e8sα̂−7sα∗
ξ̂−17,

κ = e9sα̂−8sα∗
ξ̂−17,

(2.12)

so that the values of s and λ satisfy the Lemma 2.5. By inequality (2.10), we can see that{
κ ≤ Cµ3 ≤ Cµ2 ≤ Cρ2 ≤ Cρ3 ≤ Cµ22,

|µ2,t| ≤ Cρ1, |µ3µ3,t| ≤ Cµ22 and κt ≤ Cµ3 in (0, T ).
(2.13)

With Lemma 2.5 we will be able to obtain a null controllability result for (2.7), in which the right-hand

side F1 and F2 decay sufficiently fast to zero as t → T . In other words, the following propositions are

valid:

Proposition 2.1. Let us assume that

• if N = 2: y0 ∈ H , θ0 ∈ L2(Ω), ρ3F1 ∈ L2(Q)2 and ρ3F2 ∈ L2(0, T ;L3/2(Ω)).

• if N = 3: y0 ∈ H ∩ L4(Ω)3, θ0 ∈ L2(Ω), ρ3F1 ∈ L2(Q)3 and ρ3F2 ∈ L2(0, T ;L3/2(Ω)).
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Then, we can find state-controls (y, P, θ, v, v0) for (2.7) such that∫∫
Q

ρ21(|y|2 + |θ|2)dx dt+
∫∫

ω×(0,T )

ρ22(|v|2 + |v0|2)dx dt

≤ C
(
∥y0∥2H + ∥θ0∥2 + ∥ρ3F1∥2L2(Q)N

+ ∥ρ3F2∥2L2(0,T ;L3/2(Ω))

)
.

(2.14)

In particular, one has y(x, T ) = 0 and θ(x, T ) = 0. Moreover, if (y0, θ0) ∈ V × W
1,3/2
0 (Ω) then

y ∈ L2(0, T ;V ) ∩ C0([0, T ];H) and θ ∈ L2(0, T ;W 2,3/2(Ω)) ∩ C0([0, T ];L3/2(Ω)).

Proof. It is enough to observe that ifN = 2, by Sobolev embedding, we have ρ3F1 ∈ L2(0, T ;H−1(Ω)2),

ρ3F2 ∈ L2(0, T ;H−1(Ω)2) and ifN = 3, we have ρ3F1 ∈ L2(0, T ;W−1,6(Ω)3), ρ3F2 ∈ L2(0, T ;H−1(Ω)3).

Hence, we can obtain the proof by following the ideas of Proposition 2 in [Gue06].

Indeed, let us introduce some notation:

• P0 = {(φ̂, π̂, ψ̂) ∈ C∞(Q)N+2;∇ · φ̂ = 0 inQ, φ̂ |Σ = ψ̂ |Σ = 0,

∫
ω

π̂(x, t)dx = 0};

• a((φ, π, ψ), (φ̂, π̂, ψ̂)) =
∫∫
Q

ρ−2
1 (L∗

1φ+∇π)(L∗
1φ̂+∇π̂)dxdt

+

∫∫
Q

ρ−2
1 (L∗

2ψ − φN )(L∗
2ψ̂ − φ̂N )dxdt+

∫∫
Q

χω ρ
−2
2 (φφ̂+ ψψ̂)dxdt, ∀ (φ̂, π̂, ψ̂) ∈ P0;

• P is the completion of P0 for the norm associated to a(., .). Hence, it is possible to conclude that

a(., .) is a continuous and coercive bilinear form in P ;

• ⟨l, (φ̂, π̂, ψ̂)⟩ =
∫ T

0
⟨F1(t), φ̂(t)⟩dt+

∫ T

0
⟨F2(t), ψ̂(t)⟩dt+

∫
Ω

y0φ̂(0)dx+

∫
Ω

θ0ψ̃(0)dxdt.

Thus, due to Carleman inequality (2.11), we have

∥φ̂(., 0)∥2 + ∥ψ̂(., 0)∥2 +
∫∫
Q

ρ−2
3 (|φ̂|2 + |ψ̂|2) + ρ−2

3 ξ−2(|∇φ̂|2 + |∇ψ̂|2)dx dt

≤ C a((φ̂, π̂, ψ̂), (φ̂, π̂, ψ̂)), ∀ (φ̂, π̂, ψ̂) ∈ P0

(2.15)

from which it is possible to conclude, using the density of P0 in P , that l is a bounded linear form on P .

Therefore, applying Lax-Milgram’s lemma, there exists one and only one (φ, π, ψ) ∈ P satisfying

a((φ, π, ψ), (φ̂, π̂, ψ̂)) = ⟨l, (φ̂, π̂, ψ̂)⟩, ∀ (φ̂, π̂, ψ̂) ∈ P. (2.16)

According, we can write 
y = ρ−2

1 (L∗
1φ+∇π), ∇ · φ = 0 in Q,

θ = ρ−2
1 (L∗

2ψ − φeN ) in Q,

v = −ρ−2
2 φχω, v0 = −ρ−2

2 ψχω in Q,

(2.17)

where (φ, π, ψ) is the unique solution of (2.16).

Next, just use the Sobolev embedding mentioned above and apply the arguments of [Gue06] to

obtain the existence of controls (v, v0) ∈ L2(ω × (0, T ))N+1 and associated solutions to (2.7) satisfying
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(2.14) and consequently (2.6). The regularity of the θ solution is justified by the maximum regularity for

parabolic systems in spaces Lp − Lq, see Lemma 2.1, and consequently by the standard results for Stokes

systems (Lemma 2.2) we obtain the regularity of y.

Proposition 2.2. Consider 3 < p ≤ 6 and p < q <∞. Let us assume that the functions F1, F2 in (2.7)

satisfy ρ3F1 ∈ Lq(0, T ;Lp(Ω)N ), ρ3F2 ∈ Lq(0, T ;Lp(Ω)) and (y0, θ0) ∈ V p ×W 1,p
0 (Ω). Then (2.7) is

null-controllable, and its control-state satisfy (v, v0) ∈ L2(ω × (0, T ))N+1, y ∈ Lq(0, T ;W 2,p(Ω)N ) ∩
C0([0, T ];Lp(Ω)N ) and θ ∈ Lq(0, T ;W 2,p(Ω)) ∩ C0([0, T ];Lp(Ω)).

Proof. Indeed, since V p × W 1,p
0 (Ω) ↪→ H ∩ L4(Ω)N × L2(Ω) and Lq(0, T ;Lp(Ω)) ↪→ L2(Q) ↪→

L2(0, T ;L3/2(Ω)) then the Proposition 2.1 is verified and consequently (2.7) is null-controllable. The

regularities of θ and y follow respectively from the Lemma 2.1 and the Lemma 2.3.

Estimates for the states solutions

In this subsection we will show estimates for the solutions associated with (2.7), that is, for both the

velocity variable and the temperature variable. We will obtain estimates not only for y and θ, but also for

∇y,∆y,∇θ,∆θ and the controls v and v0. The results obtained in this subsection will be fundamental to

obtain the null controllability of the nonlinear systems (2.1) and (2.3).

Proposition 2.3. Let the assumptions in Proposition 2.1 be satisfied. Let the state-control (y, P, θ, v, v0)

satisfy (2.7) and (2.14). Then, the following estimate holds:

sup
t∈[0,T ]

∫
Ω

µ21|y|2 dx+

∫∫
Q

µ21|∇y|2 dx dt

≤ C

∥y0∥2H +

∫∫
Q

[ρ23|F1|2 + ρ21(|y|2 + |θ|2)] dx dt+
∫∫

ω×(0,T )

ρ22|v|2 dx dt

 .

(2.18)

Furthemore, if (y0, θ0) ∈ V ×W
1,3/2
0 (Ω), one also has

sup
t∈[0,T ]

∫
Ω

µ22|∇y|2 dx+

∫∫
Q

µ22(|yt|2 + |∆y|2) dx dt

≤ C

∥y0∥2V +

∫∫
Q

[ρ23|F1|2 + ρ21(|y|2 + |θ|2)] dx dt+
∫∫

ω×(0,T )

ρ22|v|2 dx dt

 (2.19)

and∫ T

0
µ22∥θt∥2L3/2(Ω)

dt+

∫ T

0
µ22∥∆θ∥2L3/2(Ω)

dt

≤ C

∥θ0∥2
W

1,3/2
0 (Ω)

+

∫∫
Q

ρ21|θ|2 dx dt+
∫∫

ω×(0,T )

ρ22|v0|2 dx dt+
∫ T

0
∥ρ3F2∥2L3/2(Ω)

dt

 .

(2.20)

Proof. The proofs of (2.18) and (2.19) can be obtained as in [FLM15] (just use the same arguments with

the weights defined in (2.12)).
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Let us prove (2.20). Denote by θ̃ = µ2θ. Then, by (2.7), we have
θ̃t − ν0∆θ̃ = h̃ in Q,

θ̃(x, t) = 0 on Σ

θ̃(x, 0) = µ2(0)θ
0(x) in Ω,

(2.21)

where h̃ = µ2v0χω + µ2F2 + µ2,tθ.

Note that, by (2.13) and (2.14) we have µ2v0χω, µ2F2 ∈ L2(0, T ;L3/2(Ω)) and also

∥µ2,tθ∥2L2(0,T ;L3/2(Ω))
≤ C

∫ T

0

∫
Ω

|ρ1θ|3/2 dx

4/3

dt

= C ∥ρ1θ∥2L2(0,T ;L3/2(Ω))
< +∞.

(2.22)

Then, h̃ ∈ L2(0, T ;L3/2(Ω)). Therefore, from (2.9) we have∫ T

0
µ22∥θt∥2L3/2(Ω)

dt+

∫ T

0
µ22∥∆θ∥2L3/2(Ω)

dt

≤ C
(
∥h̃(t)∥2

L2(0,T ;L3/2(Ω))
+ ∥µ2(0)θ0∥2W 1,3/2(Ω)

)
and consequently∫ T

0
µ22∥θt∥2L3/2(Ω)

dt+

∫ T

0
µ22∥∆θ∥2L3/2(Ω)

dt

≤ C

∥θ0∥2
W

1,3/2
0 (Ω)

+

∫∫
Q

ρ21|θ|2 dx dt+
∫∫

ω×(0,T )

ρ22|v0|2 dx dt+
∫ T

0
∥ρ3F2∥2L3/2(Ω)

dt

 ,

achieving the desired inequality.

Proposition 2.4. Let the assumptions in Proposition 2.2 be satisfied. Then, the controls verifies

κv ∈ L2(0, T ; [H2(ω) ∩H1
0 (ω)]

N ) ∩ C0([0, T ];V ), (κv)t ∈ L2(ω × (0, T ))N . (2.23)

κv0 ∈ L2(0, T ;H2(ω)) ∩ C0([0, T ];H1(ω)), (κv0)t ∈ L2(ω × (0, T )). (2.24)

with the estimate∫ T

0

∫
ω

[
|(κv)t|2 + |(κv0)t|2 + |κ∆v|2 + |κ∆v0|2

]
dxdt+ sup

[0,T ]
∥κv∥2V

+ sup
[0,T ]

∥κv0∥2H1(ω) ≤ C
(
∥y0∥2V p + ∥θ0∥2

W 1,p
0 (Ω)

+ ∥ρ3F1∥2Lq(0,T ;Lp(Ω)N )

+ ∥ρ3F2∥2Lq(0,T ;Lp(Ω))

)
.

Furthermore, the associated states satisfy∫∫
Q

µ23|yt|2dx dt+ sup
[0,T ]

∫
Ω

µ23|∇y|2dx+

∫∫
Q

µ23|∆y|2dx dt+ sup
[0,T ]

∫
Ω

µ22|y|2dx

+

∫∫
Q

µ22|∇y|2dx dt ≤ C

∥y0∥2V p +

∫∫
Q

ρ21(|θ|2 + |y|2) dx dt+
∫∫

ω×(0,T )

ρ22|v|2 dx dt

+∥ρ3F1∥2Lq(0,T ;Lp(Ω)N )

)
(2.25)
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and ∫∫
Q

µ23|θt|2dx dt+ sup
[0,T ]

∫
Ω

µ23|∇θ|2dx+

∫∫
Q

µ23|∆θ|2dx dt+ sup
[0,T ]

∫
Ω

µ22|θ|2dx

+

∫∫
Q

µ22|∇θ|2dx dt ≤ C

∥θ0∥2
W 1,p

0 (Ω)
+

∫∫
Q

ρ21|θ|2 dx dt+
∫∫

ω×(0,T )

ρ22|v0|2 dx dt

+∥ρ3F2∥2Lq(0,T ;Lp(Ω))

)
.

(2.26)

Proof. The first part of the proof will be dedicated to concluding (2.23) and (2.24).

Let us set u = ρ−2
2 φ. Hence by the definition given in (2.17) we have, after some computations,

L∗
1(κu) = (κρ−2

2 )L∗
1φ− (κρ−2

2 )tφ

= (κρ−2
2 ρ21)y − (κρ−2

2 )∇π − (κρ−2
2 )tφ.

(2.27)

We notice that,

|κρ−2
2 ρ21| ≤ Cρ1, |κρ−2

2 | ≤ C, |(κρ−2
2 )tρρ

−1| ≤ Cρ−1. (2.28)

And, from the Carleman estimate (2.11) and again (2.17), we get:∫∫
Q

ρ−2(|φ|2 + |ψ|2)dxdt ≤
∫∫
Q

ρ21(|y|2 + |θ|2)dxdt+
∫∫

ω×(0,T )

ρ22(|v|2 + |v0|2)dxdt < +∞. (2.29)

Therefore, by (2.27), (2.28) and (2.29) we obtain (ũ, π̃) := (κu, κρ−2
2 π) solution of the Stokes system

L∗
1ũ+∇π̃ = f̃ , ∇ · ũ = 0 in Q,

ũ = 0 on Σ,

ũ(., T ) = 0 in Ω,

with f̃ = (κρ−2
2 ρ1)ρ1y − (κρ−2

2 )tρρ
−1φ ∈ L2(Q)N .

By the standard regularity for solutions of Stokes systems, we can infer the regularity (2.23) for

κv = −ũχω.

Similarly, define w = −ρ−2
2 ψ and note that v0 = wχω. Then,

L∗
2(κw) = −(κρ−2

2 )L∗
2ψ + (κρ−2

2 )tψ

= −(κρ−2
2 ρ21)θ − (κρ−2

2 )φeN + (κρ−2
2 )tψ

= N1 +N2 +N3.

(2.30)

Analyzing each Ni, i = {1, 2, 3}, we obtain

|N1| ≤ e3sα̂−3sα∗
ξ̂−19/4ρ1θ, |N2| ≤ Cesα̂−sα∗

ξ̂−1ρ−1φeN , |N3| ≤ Cesα̂−sα∗
ξ̂7/4ρ−1ψ.

Thus, from (2.29), we deduce that N1 +N2 +N3 ∈ L2(Q). Therefore, taking into consideration the

PDE satisfied by κw and the fact that (κw)(., T ) = 0, we concluded that

κw ∈ L2(0, T ;H2(Ω)) ∩ C0([0, T ];H1(Ω)), (κw)t ∈ L2(Q).

In particular, (2.24) holds.

Now, let’s establish the second part of the proposition, that is, (2.25) and (2.26):
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Firstly, multiplying the linear system (2.7)1 by µ22y (as a test function), integrating in Ω, we have that

1

2

d

dt

∫
Ω

µ22|y|2dx+ ν0

∫
Ω

µ22|∇y|2dx ≤ C

∫
Ω

ρ21(|θ|2 + |y|2)dx+

∫
ω

ρ22|v|2dx

+

∫
Ω

ρ23|F1|2dx


thanks to |µ2µ2,t| ≤ Cρ21, µ22 ≤ Cρ21, µ22 ≤ Cρ22 and µ22 ≤ Cρ23. Then, integrating from 0 to t we find

that

sup
[0,T ]

∫
Ω

µ22|y|2dx+

∫∫
Q

µ22|∇y|2dx dt ≤ C

∥y0∥2H +

∫∫
Q

ρ21(|θ|2 + |y|2) dx dt

+

∫∫
ω×(0,T )

ρ22|v|2 dx dt+
∫∫
Q

ρ23|F1|2dx dt

 .

(2.31)

Next, using µ23yt as a test function in (2.7)1, integrating in Ω and taking into account that µ23 ≤ Cρ22 ≤
Cρ23 and |µ3µ3,t| ≤ Cµ22, we obtain∫

Ω

µ23|yt|2dx+ ν0
d

dt

∫
Ω

µ23|∇y|2dx ≤ C

∫
ω

ρ22|v|2 +
∫
Ω

ρ23|F1|2dx+

∫
Ω

ρ21|θ|2dx

+

∫
Ω

µ22|∇y|2dx

 .

Hence, integrating from 0 to t and making use of (2.31), we deduce that∫∫
Q

µ23|yt|2dx dt+ sup
[0,T ]

∫
Ω

µ23|∇y|2dx ≤ C

∥y0∥2V +

∫∫
ω×(0,T )

ρ22|v|2 dx dt

+

∫∫
Q

ρ21(|θ|2 + |y|2) dx dt+
∫∫
Q

ρ23|F1|2dx dt

 .

(2.32)

Finally, multiplying (2.7)1 by −µ23∆y and followed in a similar way to the previous estimates, we

arrive at

sup
[0,T ]

∫
Ω

µ23|∇y|2dx+

∫∫
Q

µ23|∆y|2dx dt ≤ C

∥y0∥2V +

∫∫
Q

ρ21(|θ|2 + |y|2) dx dt

+

∫∫
ω×(0,T )

ρ22|v|2 dx dt+
∫∫
Q

ρ23|F1|2dx dt

 .

(2.33)

Therefore, from (2.31)-(2.33) and by Sobolev’s immersions V p ↪→ V andLq(0, T ;Lp(Ω)) ↪→ L2(0, T ;L2(Ω)),

we see that (2.25) holds.

The estimate (2.26) is obtained by multiplying µ22θ, µ23θt and −µ23∆θ one after the other in (2.7)2 and

using the same arguments as before.

63



The next result is a proposition from [Man+23] and will be of great importance for us to conclude our

main theorems. For this section to be complete, we will give here the proof provided by [Man+23].

Proposition 2.5. If u ∈ Lq(0, T ;W 2,p(Ω)), ut ∈ Lq(0, T ;Lp(Ω)) then u ∈ C0([0, T ];W 1,p(Ω)), p > 2

and p < q <∞.

Proof. Consider u a regular function with compact support contained in Ω, so we have

d

dt

∫
Ω
|∇u|pdx =

∫
Ω

d

dt
(|∇u|2)

p
2 dx =

∫
Ω
p
(
(|∇u|2)

p
2
−1
)
(∇u∇ut)dx

= p

∫
Ω
|∇u|p−2∇u∇utdx

= −p
∫
Ω
∇(|∇u|p−2∇u)utdx+

∫
∂Ω
p|∇u|p−2∇u · ut ·

→
η dΓ

=

∫
Ω
(p(p− 2)|∇u|p−4∇u∇(uxi)uxi + p|∇u|p−2∆u)utdx

≤ C

∫
Ω
(p(p− 2)|∇u|p−2|D2u|+ p|∇u|p−2|∆u|)|ut|dx.

Since
1

p
+

1

p
+

1
p

p−2

= 1 then

d

dt

∫
Ω
|∇u|pdx ≤ C(

∫
Ω
(|∇u|p−2)

p
p−2dx)

p−2
p (

∫
Ω
|D2u|pdx)

1
p (

∫
Ω
|ut|pdx)

1
p

≤ C(

∫
Ω
|∇u|pdx)

p−2
p ∥u∥W 2,p(Ω)∥ut∥Lp(Ω)

integrating in [0, t], like
1

q
+

1

q
+

1
q

q−2

= 1, and using that
q(p− 2)

q − 2
< q there is,

∫
Ω
|∇u(t)|pdx ≤ C

(∫ T

0
(

∫
Ω
|∇u|p)

p−2
p

q
q−2dxdt

) q−2
q

∥u∥Lq(0,T ;W 2,p(Ω))∥ut∥Lq(0,T ;Lp

+

∫
Ω
|∇u(0)|pdx(Ω))

≤ C∥u∥q−2
Lq(0,T ;W 1,p(Ω))

∥u∥Lq(0,T ;W 2,p(Ω))∥ut∥Lq(0,T ;Lp(Ω)) + ∥u0∥p
W 1,p

0 (Ω)
.

The result follows by density.

The following proposition will be fundamental to guarantee the null controllability of the system (2.3)

and its proof will be acquired from the previous results of this section.

Proposition 2.6. Let the assumptions in Proposition 2.4 be satisfied. Then, the following estimates are

valid

∥(κθ)t∥Lq(0,T ;Lp(Ω)) + ∥κθ∥Lq(0,T ;W 2,p(Ω)) + ∥κθ∥C0(0,T ;W 1,p(Ω))

≤ C
(
∥y0∥V p + ∥θ0∥

W 1,p
0 (Ω)

+ ∥ρ3F1∥Lq(0,T ;Lp(Ω)N )
+ ∥ρ3F2∥Lq(0,T ;Lp(Ω))

) (2.34)

and

∥(κy)t∥Lq(0,T ;Lp(Ω)N ) + ∥κy∥Lq(0,T ;W 2,p(Ω)N ) + ∥κy∥C0(0,T ;W 1,p(Ω)N )

≤ C
(
∥y0∥V p + ∥θ0∥

W 1,p
0 (Ω)

+ ∥ρ3F1∥Lq(0,T ;Lp(Ω)N )
+ ∥ρ3F2∥Lq(0,T ;Lp(Ω))

) (2.35)
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Proof. Define τ = κθ. Then, by (2.7), we have
τt − ν0∆τ = b in Q,

τ(x, t) = 0 on Σ,

τ(x, 0) = κ(0)θ0(x) in Ω,

where b = κv0χω + κF2 + κtθ. Thus, as consequence of (2.13), (2.24) and (2.26) together with the fact

that C0(0, T ;H1(Ω)) ↪→ Lq(0, T ;Lp(Ω)) we have b ∈ Lq(0, T ;Lp(Ω)). Then, applying the Lemma 2.1

and Proposition 2.5, we get (2.34).

Now, notice that, (γ, P̄ ) = (κy, κP ) solve the Stokes equation
γt − ν0∆γ +∇P̄ = b̄, ∇ · γ = 0 in Q,

γ(x, t) = 0 on Σ,

γ(x, 0) = κ(0)y0(x) in Ω,

where b̄ = κvχω + κty + ν0κθeN + κF1. Hence, applying (2.13), (2.23), (2.25) and (2.34) we have

b̄ ∈ Lq(0, T ;Lp(Ω)N ). Then, from the Lemma 2.3 and again by Proposition 2.5, (2.35) is acquired.

2.4 Proofs of the main theorems

In this section we will prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1

Here, we will proved the local null controllability for the system (2.1). Let us consider the Stokes

operator A : D(A) → H , where D(A) := V ∩ H2(Ω)N , Aw = P (−∆w) for all w ∈ D(A) and

P : L2(Ω)N → H is the orthogonal projector.

Let EN be (for N = 2 or N = 3) the following space:

EN = {(y, P, θ, v, v0) : ρ1y, ρ2vχω ∈ L2(Q)N , y ∈ L2(0, T ;D(A)), P ∈ L2(0, T ;H1(Ω)),

ρ1θ, ρ2v0χω ∈ L2(Q), θ ∈ L2(0, T ;W 2,3/2(Ω)), forF1 := L1y +∇P − ν0θeN − vχω

andF2 := L2θ − v0χω, ρ3F1 ∈ L2(Q)N , ρ3F2 ∈ L2(0, T ;L3/2(Ω)),

∇ · y ≡ 0, y(., 0) ∈ V, θ(., 0) ∈W
1,3/2
0 (Ω), θ|Σ= 0},

(2.36)

emphasizing that L1y = yt − ν0∆y and L2θ = θt − ν0∆θ. Thus, it’s clear that EN is a Banach space for

the norm ∥.∥EN , where

∥(y, p, θ, v, v0)∥2EN := ∥y∥2L2(0,T ;D(A)) + ∥θ∥2
L2(0,T ;W 2,3/2(Ω))

+ ∥ρ1y∥2L2(Q)N
+ ∥ρ1θ∥2L2(Q) + ∥p∥2L2(0,T ;H1(Ω)) + ∥ρ2v∥2L2(ω×(0,T ))N

+ ∥ρ2v0∥2L2(ω×(0,T )) + ∥ρ3(L1y +∇p− ν0θeN − v1ω)∥2L2(Q)N

+ ∥ρ3(L2θ − v01ω)∥2L2(0,T ;L3/2(Ω))
+ ∥θ(., 0)∥2

W 1,3/2(Ω)
.

Due to Proposition 2.3 and linear system (2.7) we get:

∥µ1y∥L∞(0,T ;L2(Ω)N ) + ∥µ1y∥L2(0,T ;H1(Ω)N ) + ∥µ2y∥L∞(0,T ;H1(Ω)N )

+ ∥µ2y∥L2(0,T ;H2(Ω)N ) + ∥µ2yt∥L2(0,T ;L2(Ω)N ) + ∥µ2θt∥L2(0,T ;L3/2(Ω))

+ ∥µ2θ∥L2(0,T ;W 2,3/2(Ω)) ≤ C∥(y, p, θ, v, v0)∥EN .

(2.37)
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Furthermore, if (y, p, θ, v, v0) ∈ EN , then yt ∈ L2(Q)N , whence y : [0, T ] → V is continuous (see,

[Eva10]) and we have y(., 0) ∈ V , with

∥y(., 0)∥V ≤ C∥(y, p, θ, v, v0)∥EN , (2.38)

Now, let us introduce the Banach Space

ZN = L2(ρ23;Q)N × V × L2(ρ23(0, T );L
3/2(Ω))×W

1,3/2
0 (Ω), (2.39)

where L2(ρ23(0, T );L
3/2(Ω)) be the Hilbert space formed by the measurable functions u = u(x; t) such

that ρ3u ∈ L2(0, T ;L3/2(Ω)), i.e.,

∥u∥2
L2(ρ23(0,T );L3/2(Ω))

=

∫ T

0
ρ23∥u(t)∥2L3/2(Ω)

dt < +∞.

Replacing L3/2(Ω) by L2(Ω) in L2(ρ23(0, T );L
3/2(Ω)), we get L2(ρ23;Q).

Finally, consider also the mapping F : EN → ZN , such that

F(y, p, θ, v, v0) = (F1,F2,F3,F4)(y, p, θ, v, v0) (2.40)

where 
F1(y, p, θ, v, v0) := yt − ν(∇y)∆y + (y · ∇)y +∇p− ν0θeN − v1ω,

F2(y, p, θ, v, v0) := y(., 0),

F3(y, p, θ, v, v0) := θt − ν(∇y)∆θ + y · ∇θ − ν(∇y)Dy : ∇y − v01ω,

F4(y, p, θ, v, v0) := θ(., 0).

(2.41)

Note that, in (2.41)1 we used the definition of ∇ · (ν(∇y)Dy) to rewrite in the form ν(∇y)∆y, since

∇ · y = 0.

We are interested in apply the Mapping Inverse Theorem in infinite dimensional spaces, that can be

found in [ATF87], and is given below, where Br(0) and Bδ(ζ0) are open ball, respectively of radius r and

δ.

Theorem 2.4 (Liusternik’s Inverse Mapping Theorem). Let E and Z be Banach spaces and let F :

Br(0) ⊂ E → Z be a C1 mapping. Let as assume that F ′(0) is onto and let us set F(0) = ζ0. Then,

there exist δ > 0, a mapping W : Bδ(ζ0) ⊂ Z → E and a constant K > 0 such that

W (z) ∈ Br(0), F(W (z)) = z and ∥W (z)∥E ≤ K∥z −F(0)∥Z ∀ z ∈ Bδ(ζ0).

In particular, W is a local inverse-to-the-right of F .

Thus, we will prove that we can apply this Theorem 2.4 to the mapping F in (2.40)-(2.41), through

the following three lemmas:

Lemma 2.6. Let F : EN → ZN be given by (2.40)-(2.41). Then, F is well defined, and is continuous

around the origin.

Proof. We will do the proof for the N = 3 case, the N = 2 case is similar.
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We want to show that F(y, p, θ, v, v0) belongs to Z3, for every (y, p, θ, v, v0) ∈ E3. To do this, we

will show that each Fi(y, p, θ, v, v0), with i = {1, 2, 3, 4}, defined in (2.41) belongs to its respective

space. Note that,

∥F1(y, p, θ, v, v0)∥2L2(ρ23;Q)3
≤ 3∥ρ3(L1y +∇p− ν0θeN − v1ω)∥2L2(Q)3

+3∥ρ3(y.∇)y)∥2L2(Q)3 + 3∥ρ3ν1∥∇y∥2∆y∥2L2(Q)3 .

By the definition of E3 we have that

∥ρ3(L1y +∇p− ν0θeN − v1ω)∥2L2(Q)3 ≤ C ∥(y, v, θ, v, v0)∥2E3 . (2.42)

Also, from (2.13), in view of (2.37) and by continuous immersion H2(Ω) ↪→ L∞(Ω) we have

∥ρ3(y.∇)y)∥2L2(Q)3 ≤ C

∫∫
Q

µ42|y|2|∇y|2dx dt

≤ C

sup
[0,T ]

∫
Ω

µ22|∇y|2 dx

(∫ T

0
µ22∥y∥2L∞(Ω)3dt

)
≤ C ∥µ2y∥2L∞(0,T ;H1(Ω)3)∥µ2y∥

2
L2(0,T ;H2(Ω)3)

≤ C ∥(y, v, θ, v, v0)∥4E3 .

(2.43)

And, since µ−1
2 ≤ C,

∥ρ3ν1∥∇y∥2∆y∥2L2(Q)3 ≤ C

∫ T

0
µ−2
2 µ42∥∇y∥4

∫
Ω

|µ2∆y|2dx dt

≤ C

(
sup
[0,T ]

µ22∥∇y∥2
)2 ∫

Ω

|µ2∆y|2dx

≤ C ∥µ2y∥4L∞(0,T ;H1(Ω)3)∥µ2y∥
2
L2(0,T ;H2(Ω)3)

≤ C ∥(y, p, θ, v, v0)∥6E3 .

(2.44)

Therefore, by (2.42), (2.43) and (2.44) we get F1(y, p, θ, v, v0) ∈ L2(ρ23;Q)3. From the inequality

(2.38) it follows that F2(y, p, θ, v, v0) ∈ V .

Now, for F3(y, p, θ, v, v0) note the following:

∥F3(y, p, θ, v, v0)∥2L2(ρ23(0,T );L3/2(Ω))
≤ C

(
∥ρ3(L2θ − v01ω)∥2L2(0,T ;L3/2(Ω))

+ ∥ρ3y · ∇θ∥2L2(0,T ;L3/2(Ω))
+ ∥ρ3ν1∥∇y∥2∆θ∥2L2(0,T ;L3/2(Ω))

+ ∥ρ3(ν0 + ν1∥∇y∥2)Dy : ∇y∥2
L2(0,T ;L3/2(Ω))

)
= C

∑4
s=1Xs.

(2.45)

Let’s analyze each Xs, s = {1, 2, 3, 4}:

• X1 ≤ C ∥(y, p, θ, v, v0)∥2E3 ;
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Using the continuous embedding W 1,3/2(Ω) ↪→ L3(Ω),

• X2 ≤
∫ T

0
ρ23


∫

Ω

|y|3 dx

1/2∫
Ω

|∇θ|3 dx

1/2

4/3

dt

=

∫ T

0
ρ23∥y∥2L3(Ω)3∥∇θ∥

2
L3(Ω)3 dt ≤ C

∫ T

0
µ42∥∇y∥2∥∇θ∥2W 1,3/2(Ω)3

dt

≤ C

∫ T

0
µ42∥∇y∥2∥θ∥2W 2,3/2(Ω)3

dt

≤ C∥µ2y∥2L∞(0,T ;H1(Ω)3)∥µ2θ∥
2
L2(0,T ;W 2,3/2(Ω))

≤ C ∥(y, p, θ, v, v0)∥4E3 ;

• X3 ≤ C

∫ T

0

∫
Ω

µ32∥∇y∥3|∆θ|3/2dx

4/3

dt

≤ C

∫ T

0
µ42µ

−2
2 ∥∇y∥4

∫
Ω

µ
3/2
2 |∆θ|3/2dx

4/3

dt

≤ C

(
sup
[0,T ]

µ22∥∇y∥2
)2 ∫ T

0

∫
Ω

µ
3/2
2 |∆θ|3/2 dx

4/3

dt

≤ C ∥µ2y∥4L∞(0,T ;H1(Ω)3)∥µ2θ∥
2
L2(0,T ;W 2,3/2(Ω))

≤ C ∥(y, p, θ, v, v0)∥6E3 ;

• X4 ≤ C

∫ T

0

∫
Ω

µ32(ν0 + ν1∥∇y∥2)3/2|∇y|3 dx

4/3

dt

≤ C

∫ T

0
(ν0 + ν1∥∇y∥2)2

∫
Ω

µ32|∇y|3dx

4/3

dt

≤ C

∫ T

0
2(ν20 + ν21∥∇y∥4)

∫
Ω

µ32|∇y|3dx

4/3

dt

≤ C

∫ T

0

∫
Ω

µ32|∇y|3 dx

4/3

dt+ C

∫ T

0
µ−4
2 µ42∥∇y∥4

∫
Ω

µ32|∇y|3 dx

4/3

dt

= C (K̃1 + K̃2).

First let’s analyze K̃1. Since ∇(µ2y) belongs to L∞(0, T ;L2(Ω)3) ∩ L2(0, T ;H1(Ω)3) then using the

Lemma 6.7, in Chapter 1, from [Lio69], which ensures continuous embedding

L∞(0, T ;L2(Ω)3) ∩ L2(0, T ;H1(Ω)3) ↪→ L4(0, T ;L3(Ω)3), (2.46)

we have ∇(µ2y) ∈ L4(0, T ;L3(Ω)3). Even more,

∥∇(µ2y)∥L4(0,T ;L3(Ω)3) ≤ C∥∇(µ2y)∥1/2L∞(0,T ;L2(Ω)3)
∥∇(µ2y)∥1/2L2(0,T ;H1(Ω)3)

.
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Thereat,
K̃1 ≤ C ∥∇(µ2y)∥2L∞(0,T ;L2(Ω)3)∥∇(µ2y)∥2L2(0,T ;H1(Ω)3).

≤ C ∥µ2y∥2L∞(0,T ;H1(Ω)3)∥µ2y∥
2
L2(0,T ;H2(Ω)3)

≤ C∥(y, p, θ, v, v0)∥4E3 .

And again using the fact that µ−1
2 ≤ C, we get

K̃2 ≤ C

sup
[0,T ]

∫
Ω

µ22|∇y|2 dx

2 ∫ T

0

∫
Ω

µ32|∇y|3 dx

4/3

dt

≤ C ∥(y, p, θ, v, v0)∥8E3 .

Thus,

•X4 ≤ C(1 + ∥(y, p, θ, v, v0)∥4E3)∥(y, p, θ, v, v0)∥
4
E3 (2.47)

and consequently, from what we saw for each Xs, s = {1, 2, 3, 4}, we obtain by (2.45) that

F3(y, p, θ, v, v0) ∈ L2(ρ23(0, T );L
3/2(Ω)).

Finally, without difficulties, we can see that F4(y, p, θ, v, v0) ∈W
1,3/2
0 (Ω). This prove that F is well

defined.

The verification that F is continuous around the origin is done in a similar way. With this, we have

the proof of the lemma.

Lemma 2.7. The mapping F : EN −→ ZN is continuously differentiable.

Proof. We will the proof for N = 3 (the case N = 2 is similar). Let us first prove that F is Gâteaux-

differentiable at any (y, p, θ, v, v0) ∈ E3 and let us compute the G-derivative F ′(y, p, θ, v, v0).

Let us fix (y, p, θ, v, v0) ∈ E3 and let us take (y′, p′, θ′, v′, v′0) ∈ E3 and σ > 0. Also, by the decom-

position made in (2.41), we introduce the linear mapping DF : E3 −→ Z3 with DF(y, p, θ, v, v0) =

DF = (DF1,DF2,DF3,DF4) where

DF1(y
′, p′, θ′, v′, v′0) := y′t − (ν0 + ν1∥∇y∥2)∆y′ − 2ν1(∇y,∇y′)∆y +∇p′

+(y′ · ∇)y + (y · ∇)y′ − ν0θ
′e3 − v′1ω,

DF2(y
′, p′, θ′, v′, v′0) := y′(., 0),

DF3(y
′, p′, θ′, v′, v′0) := θ′t − (ν0 + ν1∥∇y∥2)∆θ′ − 2ν1(∇y,∇y′)∆θ

+ y′ · ∇θ + y · ∇θ′ − v′01ω − (ν0 + ν1∥∇y∥2)Dy : ∇y′

−
[
(ν0 + ν1∥∇y∥2)Dy′ + 2ν1(∇y,∇y′)Dy

]
: ∇y,

DF4(y
′, p′, θ′, v′, v′0) := θ′(., 0).

(2.48)

From the definition of the spaces E3,Z3 and (2.48), it becomes clear that DF ∈ L(E3,Z3). Further-

more, for each j = {1, 2, 3, 4} we have

1

σ
[Fj ((y, p, θ, v, v0) + σ(y′, p′, θ′, v′, v′0))−Fj(y, p, θ, v, v0)]

converges toDF j(y
′, p′, θ′, v′, v′0) strong inZ3, asσ −→ 0.

(2.49)

69



Let us show that (2.49) is true. Firstly, we state that,
1

σ
[F1 ((y, p, θ, v, v0) + σ(y′, p′, θ′, v′, v′0))−F1(y, p, θ, v, v0)]

converges toDF1(y
′, p′, θ′, v′, v′0) strong inL2(ρ23;Q)3, asσ −→ 0.

(2.50)

Indeed,

∥ 1
σ
[F1 ((y, p, θ, v, v0) + σ(y′, p′, θ′, v′, v′0))−F1(y, p, θ, v, v0)]

−DF1(y
′, p′, θ′, v′, v′0)∥L2(ρ23;Q)3 ≤ σ∥(y′ · ∇)y′∥L2(ρ23;Q)3

+ ∥ν1
σ

(
∥∇(y + σy′)∥2 − ∥∇y∥2

)
∆y − 2ν1(∇y,∇y′)∆y∥L2(ρ23;Q)3

+ ∥ν1(∥∇(y + σy′)∥2 − ∥∇y∥2)∆y′∥L2(ρ23;Q)3 = H1 +H2 +H3.

Note that, as proved in the Lemma 2.6,

H2
1 ≤ Cσ∥(y′, p′, θ′, v′, v′0)∥4E3

and we see that, H1 −→ 0, as σ −→ 0.

Also, as σ −→ 0,

H2
2 = ν21

∫∫
Q

ρ23|
1

σ

(
∥∇(y + σy′)∥2 − ∥∇y∥2

)
∆y − 2ν1(∇y,∇y′)∆y|2dxdt −→ 0

and

H2
3 = ν21

∫∫
Q

ρ23| ∥∇(y + σy′)∥2 − ∥∇y∥2 |2|∆y′|2dxdt −→ 0.

Thus, (2.50) holds.

Now, that the difference quotient
1

σ
[Fj

(
(y, p, θ, v, v0) + σ(y′, p′, θ′, v′, v′0)

)
−Fj(y, p, θ, v, v0)] (2.51)

converges to DF j(y
′, p′, θ′, v′, v′0) strong for j = 2 and j = 4, respectively, in V and W 1,3/2

0 (Ω), as

σ −→ 0, is immediate.

Finally, let’s see that
1

σ
[F3 ((y, p, θ, v, v0) + σ(y′, p′, θ′, v′, v′0))−F3(y, p, θ, v, v0)]

converges toDF3(y
′, p′, θ′, v′, v′0) strong inL2(ρ23(0, T );L

3/2(Ω)), asσ −→ 0.
(2.52)

For simplicity, we omit the notation of inequality norms below but let it be clear that they are all

norms in L2(ρ23(0, T );L
3/2(Ω)). More precisely,

∥ 1
σ
[F3 ((y, p, θ, v, v0) + σ(y′, p′, θ′, v′, v′0))−F3(y, p, θ, v, v0)]

−DF3(y
′, p′, θ′, v′, v′0)∥ ≤ σ∥y′ · ∇θ′∥

+σ∥(ν0 + ν1∥∇(y + σy′)∥2)Dy′ : ∇y′∥

+∥ν1
σ

(
∥∇(y + σy′)∥2 − ∥∇y∥2

)
∆θ − 2ν1(∇y,∇y′)∆θ∥

+∥ν1(∥∇(y + σy′)∥2 − ∥∇y∥2)∆θ′∥

+∥ν1
σ

(
∥∇(y + σy′)∥2 − ∥∇y∥2

)
Dy : ∇y − 2ν1(∇y,∇y′)Dy : ∇y∥

+∥ν1(∥∇(y + σy′)∥2 − ∥∇y∥2)Dy : ∇y′∥

+∥ν1(∥∇(y + σy′)∥2 − ∥∇y∥2)Dy′ : ∇y∥ =

7∑
j=1

Ij .
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By the same arguments from the proof of Lemma 2.6 (see, X2, X3 and X4) together with those used

in (2.50), we have
5∑

j=1

Ij −→ 0, as σ −→ 0.

Also, since

I26 ≤ C

∫ T

0

(
2σ∥∇y∥∥∇y′∥+ σ2∥∇y′∥2

)2
µ42

∫
Ω

|∇y|3/2|∇y′|3/2dx

4/3

dt

≤ C σ2
(
∥y∥2L∞(0,T ;H1(Ω)3)∥y

′∥2L∞(0,T ;H1(Ω)3) + σ2∥y′∥4L∞(0,T ;H1(Ω)3)

)
∫ T

0
µ42


∫

Ω

|∇y|3dx

1/2∫
Ω

|∇y′|3dx

1/2

4/3

dt

= C σ2
(
∥y∥2L∞(0,T ;H1(Ω)3)∥y

′∥2L∞(0,T ;H1(Ω)3) + σ2∥y′∥4L∞(0,T ;H1(Ω)3)

)
(∫ T

0
µ42∥∇y∥2L3(Ω)N ∥∇y

′∥2L3(Ω)Ndt

)
≤ C σ2

(
∥y∥2L∞(0,T ;H1(Ω)3)∥y

′∥2L∞(0,T ;H1(Ω)3) + σ2∥y′∥4L∞(0,T ;H1(Ω)3)

)
1

2

(∫ T

0
∥∇(µ2y)∥4L3(Ω)3dt+

∫ T

0
∥∇(µ2y

′)∥4L3(Ω)3dt

)
= C σ2

(
∥y∥2L∞(0,T ;H1(Ω)3)∥y

′∥2L∞(0,T ;H1(Ω)3) + σ2∥y′∥4L∞(0,T ;H1(Ω)3)

)
(
∥∇(µ2y)∥4L4(0,T ;L3(Ω)3) + ∥∇(µ2y

′)∥4L4(0,T ;L3(Ω)3)

)
and from continuous embedding (2.46), we have that I6 is bounded and therefore I6 −→ 0, as σ −→ 0.

By the same arguments we also have I7 −→ 0, as σ −→ 0. Consequently, (2.52) is hold.

Therefore, from (2.50), (2.51) and (2.52) we have (2.49) and F is Gâteaux-differentiable at any

(y, p, θ, v, v0) ∈ E3, with G-derivative F ′(y, p, θ, v, v0) = DF(y, p, θ, v, v0).

Now, let us prove that (y, p, θ, v, v0) 7−→ F ′(y, p, θ, v, v0) is a continuous mapping. Thus, we will

prove that F is not only Gâteaux-differentiable, but also Fréchet-differentiable and C1. For that, suppose

that

(ym, pm, θm, vm, v0m) −→ (y, p, θ, v, v0) in E3

and we will prove the existence of εm(y, p, θ, v, v0) such that

∥ (F ′(ym, pm, θm, vm, v0m)−F ′(y, p, θ, v, v0)) (y
′, p′, θ′, v′, v′0)∥2Z3

≤ εm∥(y′, p′, θ′, v′, v′0)∥2E3 ,
(2.53)

for all (y′, p′, θ′, v′, v′0) ∈ E3 and lim
m→∞

εm = 0.

In order to simplify the notation, we will consider

Dj,m := F ′
j(ym, pm, θm, vm, v0m)−F ′

j(y, p, θ, v, v0).
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So, notice that
• ∥D1,m(y′, p′, θ′, v′, v′0)∥2L2(ρ23;Q)3

≤ 3∥ν1
(
∥∇y∥2 − ∥∇ym∥2

)
∆y′∥2

L2(ρ23;Q)3

+3∥2ν1(∇y,∇y′)∆y − 2ν1(∇ym,∇y′)∆ym∥2
L2(ρ23;Q)3

+3∥(y′ · ∇)(ym − y) + ((ym − y) · ∇)y′∥2
L2(ρ23;Q)3

= 3K1 + 12K2 + 3K3.

Since,
K1 ≤ C

(
∥∥∇(y − ym)∥∥∇y∥∆y′∥2

L2(ρ23;Q)3

+ ∥∥∇(y − ym)∥∥∇ym∥∆y′∥2
L2(ρ23;Q)3

)
then, using the same arguments as (2.44), we conclude that

K1 ≤ ε1,m∥(y′, p′, θ′, v′, v′0)∥2E3
where

ε1,m = C∥(ym, pm, θm, vm, v0m)− (y, p, θ, v, v0)∥2E3
(
∥(y, p, θ, v, v0)∥2E3

+∥(ym, pm, θm, vm, v0m)∥2E3
)
.

For K2 let’s first see the following, adding and subtracing ν1(∇ym,∇y′)∆y in K2, we have

K2 = ∥ − ν1(∇(ym − y),∇y′)∆y − ν1(∇ym,∇y′)∆(ym − y)∥2
L2(ρ23;Q)3

≤ C
(
∥ν1(∇(ym − y),∇y′)∆y∥2

L2(ρ23;Q)3
+ ∥ν1(∇ym,∇y′)∆(ym − y)∥2

L2(ρ23;Q)3

)
≤ ε2,m∥(y′, p′, θ′, v′, v′0)∥2E3 ,

where
ε2,m = C∥(ym, pm, θm, vm, v0m)− (y, p, θ, v, v0)∥2E3

(
∥(y, p, θ, v, v0)∥2E3

+ ∥(ym, pm, θm, vm, v0m)∥2E3
)
.

And, by the same reasoning as (2.43),

K3 ≤ C
(
∥(y′ · ∇)(ym − y)∥2

L2(ρ23;Q)3
+ ∥((ym − y) · ∇)y′∥2

L2(ρ23;Q)3

)
≤ ε3,m∥(y′, p′, θ′, v′, v′0)∥2E3 ,

with

ε3,m = C∥(ym, pm, θm, vm, v0m)− (y, p, θ, v, v0)∥2E3 .

It is easy to check that Dj,m for j = 2 and j = 4 satisfy similar inequalities.

Again, all inequality norms below are norms in L2(ρ23(0, T );L
3/2(Ω)), we will omit them for sim-

plicity. For D3,m after some calculations we get the following:

• ∥D3,m(y′, p′, θ′, v′, v′0)∥2 ≤ C
[
∥ ∥∇(ym − y)∥ ∥∇y∥∆θ′ ∥2

+∥ ∥∇(ym − y)∥ ∥∇ym∥∆θ′ ∥2 + ∥ν1(∇ym,∇y′)∆(θm − θ)∥2

+∥ν1(∇(ym − y),∇y′)∆θ∥2 + ∥(ν0 + ν1∥∇ym∥2)D(ym − y) : ∇y′∥2

+∥ν1(∥∇ym∥2 − ∥∇y∥2)Dy : ∇y′∥2 + ∥(ν0 + ν1∥∇ym∥2)Dy′ : ∇(ym − y)∥2

+∥ν1(∥∇ym∥2 − ∥∇y∥2)Dy′ : ∇y∥2 + ∥ν1(∇ym,∇y′)Dym : ∇(ym − y)∥2

+∥ν1(∇(ym − y),∇y′)Dym : ∇y∥2 + ∥ν1(∇y,∇y′)D(ym − y) : ∇y∥2

+∥y′ · ∇(θm − θ)∥2 + ∥(ym − y) · ∇θ′∥2
]
= C

16∑
s=4

Ks.
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Let’s check some terms,

K4 ≤ C

∫ T

0

∫
Ω

µ32∥∇(ym − y)∥3/2∥∇y∥3/2|∆θ′|3/2dx

4/3

dt

≤ C∥µ2(ym − y)∥2L∞(0,T ;H1(Ω)3)∥µ2y∥
2
L∞(0,T ;H1(Ω)3)∥µ2θ

′∥2
L2(0,T ;W 2,3/2(Ω))

≤ ε4,m∥(y′, p′, θ′, v′, v′0)∥2E3 ,

where

ε4,m = C∥(ym, pm, θm, vm, v0m)− (y, p, θ, v, v0)∥2E3∥(y, p, θ, v, v0)∥
2
E3 .

Also,

K8 ≤ C

∫ T

0

∫
Ω

µ32|(ν0 + ν1∥∇ym∥2)|3/2|∇(ym − y)|3/2|∇y′|2dx

4/3

dt

≤ C
(
1 + ∥µ2ym∥4L∞(0,T ;H1(Ω)3)

)
∥|∇(µ2y

′)|2∥L2(0,T ;L3/2(Ω))

∥|∇(µ2(ym − y))|2∥L2(0,T ;L3/2(Ω))

≤ ε8,m∥(y′, p′, θ′, v′, v′0)∥2E3 ,

where

ε8,m = C(1 + ∥(ym, pm, θm, vm, v0m)∥4E3)∥(ym, pm, θm, vm, v0m)− (y, p, θ, v, v0)∥2E3 .

And,

K16 ≤ ε16,m∥(y′, p′, θ′, v′, v′0)∥2E3 ,

where

ε16,m = C∥(ym, pm, θm, vm, v0m)− (y, p, θ, v, v0)∥2E3 .

The other terms follow analogously.

Thus, we have lim
m→∞

εs,m = 0 for all s ∈ {1, ..., 16} and consequently follows (2.53). This ends the

proof.

Lemma 2.8. Let F be the mapping in (2.40)-(2.41). Then, F ′(0, 0, 0, 0, 0) is onto.

Proof. Let (F1, y
0, F2, θ

0) ∈ ZN . From Proposition 2.1, Proposition 2.3 and the regularity indicated in

(2.5) we know that there exist (y, p, θ, v, v0) solution of
yt − ν0∆y +∇p = v1ω + ν0θeN + F1, ∇ · y = 0 in Q,

θt − ν0∆θ = v01ω + F2 in Q,

y(x, t) = 0, θ(x, t) = 0 on Σ,

y(x, 0) = y0(x), θ(x, 0) = θ0(x) in Ω.

satisfying the definition of EN . Therefore, (y, p, θ, v, v0) ∈ EN and

F ′(0, 0, 0, 0, 0)(y, p, θ, v, v0) = (F1, y
0, F2, θ

0).

Consequently, Lemma (2.8) holds.
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Proof of Theorem 2.1 We conclude from Lemmas 2.6-2.8 that the Inverse Mapping Theorem (Theorem

2.4) can be applied to the spaces EN and ZN together with the mapping F introduced at the beginning

of this Section. Thus, there exists δ > 0 such that, for every (y0, θ0) ∈ V × W
1,3/2
0 (Ω) satisfying

∥(y0, θ0)∥
V×W

1,3/2
0

< δ, there exists controls v ∈ L2(ω × (0, T ))N and v0 ∈ L2(ω × (0, T )) and

associated solutions (y, p, θ) to (2.1) such that y(x, T ) = 0 and θ(x, T ) = 0 in Ω.

This proves that, the nonlinear system (2.1) is locally null-controllable at time T > 0.

Proof of Theorem 2.2

Let

UN = (y, P, θ, v, v0) : ρ1y ∈ L2(Q)N , ρ2v, (κv)t ∈ L2(ω × (0, T ))N , y ∈ Lq(0, T ;W 2,p(Ω)N ),

P ∈ Lq(0, T ;Lp(Ω)), ρ1θ ∈ L2(Q), ρ2v0, (κv0)t ∈ L2(ω × (0, T )), θ ∈ Lq(0, T ;W 2,p(Ω)),

forF1 := L1y +∇P − ν0θeN − vχω andF2 := L2θ − v0χω, ρ3F1 ∈ Lq(0, T ;Lp(Ω)N ),

ρ3F2 ∈ Lq(0, T ;Lp(Ω)),∇ · y ≡ 0, y(., 0) ∈ V p, θ(., 0) ∈W 1,p
0 (Ω),

y|Σ= 0, θ|Σ= 0,where 3 < p ≤ 6 and p < q <∞},
(2.54)

It’s clear that UN is a Banach space for the norm ∥.∥UN
, with

∥(y, P, θ, v, v0)∥qUN
:= ∥y∥q

Lq(0,T ;W 2,p(Ω)N )
+ ∥θ∥q

Lq(0,T ;W 2,p(Ω))
+ ∥ρ1y∥qL2(Q)N

+ ∥ρ1θ∥qL2(Q)
+ ∥P∥qLq(0,T ;Lp(Ω)) + ∥ρ2v∥qL2(ω×(0,T ))N

+ ∥ρ2v0∥qL2(ω×(0,T ))

+∥(κv)t∥qL2(ω×(0,T ))N
+ ∥κ∆v∥q

L2(ω×(0,T ))N
+ ∥(κv0)t∥qL2(ω×(0,T ))

+∥κ∆v0∥qL2(ω×(0,T ))
+ ∥ρ3F1∥qLq(0,T ;Lp(Ω)N )

+ ∥ρ3F2∥qLq(0,T ;Lp(Ω))

+ ∥y(., 0)∥qV p + ∥θ(., 0)∥q
W 1,p

0 (Ω)
.

Now, let us introduce the Banach space

RN := Lq(ρq3(0, T );L
p(Ω)N )× V p × Lq(ρq3(0, T );L

p(Ω))×W 1,p
0 (Ω), (2.55)

and the mapping I : UN → RN , such that

I(y, P, θ, v, v0) = (I1, I2, I3, I4)(y, P, θ, v, v0) (2.56)

where 
I1(y, P, θ, v, v0) := yt − ν̄(∇y)∆y + (y · ∇)y +∇P − ν0θeN − vχω,

I2(y, P, θ, v, v0) := y(., 0),

I3(y, P, θ, v, v0) := θt − ν̄(∇θ)∆θ + y · ∇θ − ν̄(∇y)Dy : ∇y − v0χω,

I4(y, P, θ, v, v0) := θ(., 0).

(2.57)

To simplify the notation, in the norms of Lp(Ω)N we will just write Lp(Ω). That said, we have the

following results:

Lemma 2.9. Let I : UN → RN be given by (2.56)-(2.57). Then, I is well defined, and is continuous

around the origin.
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Proof. Let’s prove that, for each (y, P, θ, v, v0) ∈ UN we have I(y, P, θ, v, v0) ∈ RN .

That I2 and I4 are well defined follows immediately from the definition of UN . So let’s find out I1
and I3.

Analysis of I1:
• ∥ρ3F1∥qLq(0,T ;Lp(Ω)) ≤ C∥(y, P, θ, v, v0)∥qUN

.

Taking into account (2.10) we have ρ3κ−2 ≤ C. Moreover, using the fact that W 1,p(Ω) ↪→ L∞(Ω) (since

p > N ) and the estimate (2.35) from the Proposition 2.6, we obtain

• ∥ρ3(y · ∇)y∥qLq(0,T ;Lp(Ω)) ≤
∫ T

0

(∫
Ω
ρp3|y|

p|∇y|pdx
)q/p

dt

=

∫ T

0

(∫
Ω
ρp3κ

−2pκ2p|y|p|∇y|pdx
)q/p

dt

≤ C

∫ T

0
∥κy∥qL∞(Ω)

(∫
Ω
|κ∇y|pdx

)q/p

dt

≤ C∥κy∥q
L∞(0,T ;W 1,p(Ω))

∥κy∥q
Lq(0,T ;W 1,p(Ω))

≤ C∥(y, P, θ, v, v0)∥2qUN
.

(2.58)

In a similar way

• ∥ρ3ν1∥∇y∥2Lp∆y∥qLq(0,T ;Lp(Ω)) ≤ C

∫ T

0
ρq3κ

−3q∥κ∇y∥2qLp(Ω)∥κ∆y∥
q
Lp(Ω)

≤ C∥κy∥2q
L∞(0,T ;W 1,p(Ω))

∥κy∥q
Lq(0,T ;W 2,p(Ω))

≤ C∥(y, P, θ, v, v0)∥3qUN
.

(2.59)

Hence, I1(y, P, θ, v, v0) ∈ Lq(ρq3(0, T );L
p(Ω)).

Analysis of I3:
• ∥ρ3F2∥qLq(0,T ;Lp(Ω)) ≤ C∥(y, P, θ, v, v0)∥qUN

.

Using the same previous arguments together with the estimates (2.34) and (2.35) from the Proposition

2.6, we get

• ∥ρ3y · ∇θ∥qLq(0,T ;Lp(Ω)) ≤ C

∫ T

0
∥κ∇θ∥qL∞(Ω)

(∫
Ω
|κy|pdx

)q/p

dt

≤ C

∫ T

0
∥κ∇θ∥q

W 1,p(Ω)
∥κy∥qLp(Ω)dt ≤ C∥κy∥q

L∞(0,T ;W 1,p(Ω))
∥κθ∥q

Lq(0,T ;W 2,p(Ω))

≤ C∥(y, P, θ, v, v0)∥2qUN
;

• ∥ρ3ν1∥∇θ∥2Lp∆θ∥qLq(0,T ;Lp(Ω)) ≤ C

∫ T

0
ρq3κ

−3q∥κ∇θ∥2qLp(Ω)∥κ∆θ∥
q
Lp(Ω)dt

≤ C∥κθ∥2q
L∞(0,T ;W 1,p(Ω))

∥κθ∥q
Lq(0,T ;W 2,p(Ω))

≤ C∥(y, P, θ, v, v0)∥3qUN
;

and, using that ρ3κ−4 ≤ C,

• ∥ρ3ν̄(∇y)Dy : ∇y∥qLq(0,T ;Lp(Ω)) ≤ C∥κy∥q
L∞(0,T ;W 1,p(Ω))

∥κy∥q
Lq(0,T ;W 2,p(Ω))

+C∥κy∥3q
L∞(0,T ;W 1,p(Ω))

∥κy∥q
Lq(0,T ;W 2,p(Ω))

≤ C∥(y, P, θ, v, v0)∥4qUN
.

Consequently we have I3(y, P, θ, v, v0) ∈ Lq(ρq3(0, T );L
p(Ω)).

Using similar arguments it is easy to check the I is continuous around the origin. This proves the

Lemma.

Lemma 2.10. The mapping I : UN −→ RN is continuously differentiable.
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Proof. Let us first prove that I is Gâteaux-differentiable at any (y, P, θ, v, v0) ∈ UN and let us compute

the G-derivative I ′(y, P, θ, v, v0).

Let us fix (y, P, θ, v, v0) ∈ UN and let us take (y′, P ′, θ′, v′, v′0) ∈ UN and σ > 0. Also, by the de-

composition made in (2.57), we introduce the linear mapping I : UN −→ RN with DI(y, P, θ, v, v0) =
DI = (DI1,DI2,DI3,DI4) where



DI1(y
′, P ′, θ′, v′, v′0) := y′t − ν̄(∇y)∆y′ −

(
2ν1∥∇y∥2−p

Lp

∫
Ω
|∇y|p−2∇y∇y′dx

)
∆y

+∇P ′ + (y′ · ∇)y + (y · ∇)y′ − ν0θ
′e3 − v′χω,

DI2(y
′, P ′, θ′, v′, v′0) := y′(., 0),

DI3(y
′, P ′, θ′, v′, v′0) := θ′t − ν̄(∇θ)∆θ′ −

(
2ν1∥∇θ∥2−p

Lp

∫
Ω
|∇θ|p−2∇θ∇θ′dx

)
∆θ

+ y′ · ∇θ + y · ∇θ′ − v′0χω − ν̄(∇y)Dy : ∇y′

−
[
ν̄(∇y)Dy′ +

(
2ν1∥∇y∥2−p

Lp

∫
Ω
|∇y|p−2∇y∇y′dx

)
Dy

]
: ∇y,

DI4(y
′, P ′, θ′, v′, v′0) := θ′(., 0).

(2.60)

From the definition of the spaces UN ,RN and (2.60), it becomes clear that DI ∈ L(UN ,RN ).

Furthermore, for each j = {1, 2, 3, 4} we have

1

σ
[Ij ((y, P, θ, v, v0) + σ(y′, P ′, θ′, v′, v′0))− Ij(y, P, θ, v, v0)]

converges toDIj(y
′, P ′, θ′, v′, v′0) strong inRN , asσ −→ 0.

(2.61)

Firstly, notice that,

∥ 1
σ
[I1 ((y, P, θ, v, v0) + σ(y′, P ′, θ′, v′, v′0))− I1(y, P, θ, v, v0)]

−DI1(y
′, P ′, θ′, v′, v′0)∥Lq(ρq3(0,T );Lp(Ω)) ≤ σ∥(y′ · ∇)y′∥Lq(ρq3(0,T );Lp(Ω))

+ ∥ν1
σ

(
∥∇(y + σy′)∥2Lp − ∥∇y∥2Lp

)
∆y

−
(
2ν1∥∇y∥2−p

Lp

∫
Ω
|∇y|p−2∇y∇y′dx

)
∆y∥Lq(ρq3(0,T );Lp(Ω))

+ ∥ν1(∥∇(y + σy′)∥2Lp − ∥∇y∥2Lp)∆y′∥Lq(ρq3(0,T );Lp(Ω)) = H̃1 + H̃2 + H̃3.

That H̃1 → 0, as σ → 0, is immediate. Let’s analyze H̃3, using first order Taylor expansion and discarding

terms of higher order than σ, we have

(∫
Ω
|∇(y + σy′)|pdx

)2/p

=

(∫
Ω
|∇y|pdx+ σ

∫
Ω
p|∇y|p−2∇y∇y′dx

)2/p

=

(∫
Ω
|∇y|pdx

)2/p

+
2σ

p

(∫
Ω
|∇y|pdx

)(2−p)/p ∫
Ω
p|∇y|p−2∇y∇y′dx

= ∥∇y∥2Lp + 2σ∥∇y∥2−p
Lp

∫
Ω
|∇y|p−2∇y∇y′dx.
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Then,

lim
σ→0

(
∥∇(y + σy′)∥2Lp − ∥∇y∥2Lp

)
∆y′

= lim
σ→0

(
∥∇y∥2Lp + 2σ∥∇y∥2−p

Lp

∫
Ω
|∇y|p−2∇y∇y′dx− ∥∇y∥2Lp

)
∆y′

= lim
σ→0

σ

(
2∥∇y∥2−p

Lp

∫
Ω
|∇y|p−2∇y∇y′dx

)
∆y′ = 0.

Therefore, by the arguments used in the analysis of I1 in Lemma 2.9 and by Lebesgue’s dominated

convergence theorem we obtain H̃3 → 0 as σ → 0. In a similar way, H̃2 → 0 as σ → 0.

For j = 2 and j = 3 the convergence (2.61) is prompt.

Finally, let’s see that

1

σ
[I3 ((y, P, θ, v, v0) + σ(y′, P ′, θ′, v′, v′0))− I3(y, P, θ, v, v0)]

converges toDI3(y
′, P ′, θ′, v′, v′0) strong inLq(ρq3(0, T );L

p(Ω)), asσ −→ 0.
(2.62)

Here, for simplicity, we will also omit the notation of norms but make it clear that they are all norms

in Lq(ρq3(0, T );L
p(Ω)). Therefore,

∥ 1
σ
[I3 ((y, P, θ, v, v0) + σ(y′, P ′, θ′, v′, v′0))− I3(y, P, θ, v, v0)]

−DI3(y
′, P ′, θ′, v′, v′0)∥ ≤ σ∥y′ · ∇θ′∥

+σ∥(ν0 + ν1∥∇(y + σy′)∥2Lp)Dy′ : ∇y′∥

+∥ν1
σ

(
∥∇(θ + σθ′)∥2Lp − ∥∇θ∥2Lp

)
∆θ −

(
2ν1∥∇θ∥2−p

Lp

∫
Ω
|∇θ|p−2∇θ∇θ′dx

)
∆θ∥

+∥ν1(∥∇(θ + σθ′)∥2Lp − ∥∇θ∥2Lp)∆θ′∥

+∥ν1
σ

(
∥∇(y + σy′)∥2Lp − ∥∇y∥2Lp

)
Dy : ∇y

−
(
2ν1∥∇y∥2−p

Lp

∫
Ω
|∇y|p−2∇y∇y′dx

)
Dy : ∇y∥

+∥ν1(∥∇(y + σy′)∥2Lp − ∥∇y∥2Lp)Dy : ∇y′∥

+∥ν1(∥∇(y + σy′)∥2Lp − ∥∇y∥2Lp)Dy′ : ∇y∥ =

7∑
j=1

Ĩj .

By the same arguments from the proof of Lemma 2.6 together with Lebesgue’s dominated convergence

theorem, we have

5∑
j=1

Ĩj −→ 0, as σ −→ 0.
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Also, using Hölder’s inequality for p and p
p−1 and W 1,p(Ω) ↪→ L∞(Ω),

Ĩq6 ≤ C

∫ T

0

(∫
Ω
ρp3(∥∇(y + σy′)∥2Lp − ∥∇y∥2Lp)p|∇y|p|∇y′|pdx

)q/p

dt

≤ C

∫ T

0
σq
(
∥∇y∥2−p

Lp

∫
Ω
|∇y|p−2∇y∇y′dx

)q (∫
Ω
ρp3|∇y|

p|∇y′|pdx
)q/p

dt

≤ C σq
∫ T

0
∥∇y∥q(2−p)

Lp(Ω)

(∫
Ω
|∇y|p−1|∇y′|dx

)q (∫
Ω
ρp3|∇y|

p|∇y′|pdx
)q/p

dt

≤ Cσq

(
sup
[0,T ]

∥∇y∥qLp(Ω)

)(2−p) ∫ T

0

(
∥∇y∥q(p−1)

Lp(Ω) ∥∇y
′∥qLp(Ω)

)(∫
Ω
ρp3|∇y|

p|∇y′|pdx
)q/p

dt

≤ Cσq∥κy∥q(2−p)+q(p−1)
L∞(0,T ;W 1,p(Ω))

∥κy′∥q
L∞(0,T ;W 1,p(Ω))

∫ T

0
∥κ∇y′∥qL∞(Ω)

(∫
Ω
|κ∇y|pdx

)q/p

dt

≤ Cσq∥κy∥q
L∞(0,T ;W 1,p(Ω))

∥κy′∥q
L∞(0,T ;W 1,p(Ω))

∫ T

0
∥κ∇y′∥q

W 1,p(Ω)
∥κ∇y∥qLp(Ω)dt

≤ Cσq∥κy∥2q
L∞(0,T ;W 1,p(Ω))

∥κy′∥q
L∞(0,T ;W 1,p(Ω))

∫ T

0
∥κ∇y′∥q

W 1,p(Ω)
dt

≤ Cσq∥κy∥2q
L∞(0,T ;W 1,p(Ω))

∥κy′∥q
L∞(0,T ;W 1,p(Ω))

∥κy′∥q
Lq(0,T ;W 2,p(Ω))

.

(2.63)

From which we can conclude that Ĩ6 −→ 0, as σ −→ 0. By the same arguments we also have Ĩ7 −→ 0,

as σ −→ 0. Consequently, (2.62) is true.

Then we can conclude that (2.61) holds and I is Gâteaux-differentiable at any (y, p, θ, v, v0) ∈ UN ,

with G-derivative I ′(y, p, θ, v, v0) = DI(y, p, θ, v, v0).
Now, we will show that (y, P, θ, v, v0) 7−→ I ′(y, P, θ, v, v0) is continuous from UN into L(UN ,RN )

and as consequently, in view of classical results, we will have that I is Fréchet-differentiable and C1.

Thus, suppose that

(ym, Pm, θm, vm, v0m) −→ (y, P, θ, v, v0) in UN

and let us check that

∥ (I ′(ym, Pm, θm, vm, v0m)− I ′(y, P, θ, v, v0)) (y
′, P ′, θ′, v′, v′0)∥RN

≤ χm∥(y′, P ′, θ′, v′, v′0)∥UN
,

(2.64)

for all (y′, P ′, θ′, v′, v′0) ∈ UN , for some lim
m→∞

χm = 0.

In order to simplify the notation, we will consider

Dj,m := I ′
j(ym, Pm, θm, vm, v0m)− I ′

j(y, p, θ, v, v0).

So, notice that

• ∥D1,m(y′, P ′, θ′, v′, v′0)∥Lq(ρq3(0,T );Lp(Ω))

≤ C
(
∥ν1(∥∇y∥2Lp(Ω) − ∥∇ym∥2Lp(Ω))∆y

′∥Lq(ρq3(0,T );Lp(Ω))

+ ∥
(
2ν1∥∇y∥2−p

Lp

∫
Ω
|∇y|p−2∇y∇y′dx

)
∆y

−
(
2ν1∥∇ym∥2−p

Lp

∫
Ω
|∇ym|p−2∇ym∇y′dx

)
∆ym∥Lq(ρq3(0,T );Lp(Ω))

+ ∥(y′ · ∇)(ym − y) + ((ym − y) · ∇)y′∥Lq(ρq3(0,T );Lp(Ω))

)
= C(K̃1 + K̃2 + K̃3).

(2.65)
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Since,

K̃1 ≤ C
(
∥∥∇(y − ym)∥Lp∥∇y∥Lp∆y′∥Lq(ρq3(0,T );Lp(Ω))

+∥∥∇(y − ym)∥Lp∥∇ym∥Lp∆y′∥Lq(ρq3(0,T );Lp(Ω))

)
then, using the same arguments as (2.59), we conclude that

K̃1 ≤ χ1,m∥(y′, P ′, θ′, v′, v′0)∥UN

where

χ1,m = C∥(ym, Pm, θm, vm, v0m)− (y, P, θ, v, v0)∥UN
(∥(y, P, θ, v, v0)∥UN

+∥(ym, Pm, θm, vm, v0m)∥UN
) .

Now, adding and subtracing
(
2ν1∥∇y∥2−p

Lp

∫
Ω |∇y|p−2∇y∇y′dx

)
∆ym in K̃2, we have

K̃2 ≤ ∥
(
2ν1∥∇y∥2−p

Lp

∫
Ω
|∇y|p−2∇y∇y′dx

)
∆(ym − y)∥

+∥2ν1
(
∥∇ym∥2−p

Lp

∫
Ω
|∇ym|p−2∇ym∇y′dx− ∥∇y∥2−p

Lp

∫
Ω
|∇y|p−2∇y∇y′dx

)
∆ym∥

= K̃2,1 + K̃2,2.

Using arguments similar to those applied in (2.63), we have

(K̃2,1)
q ≤ C

(
sup
[0,T ]

∥∇y∥qLp(Ω)

)(2−p)∫ T

0

(
∥∇y∥q(p−1)

Lp(Ω) ∥∇y
′∥qLp(Ω)

)(∫
Ω
ρp3|∆(ym − y)|pdx

)q/p

dt

≤ C∥κy∥q
L∞(0,T ;W 1,p(Ω))

∥κy′∥q
L∞(0,T ;W 1,p(Ω))

∥κ(ym − y)∥q
Lq(0,T ;W 2,p(Ω))

≤ C
(
∥(ym, Pm, θm, vm, v0m)− (y, P, θ, v, v0)∥qUN

∥(y′, P ′, θ′, v′, v′0)∥
q
UN

∥(y, P, θ, v, v0)∥qUN

)
.

(2.66)

And, adding and subtracing 2ν1
∫
Ω

|∇y|p−2

∥∇y∥p−2
Lp

∇ym∇y′dx∆ym in K̃2,2, we get

K̃2,2 = ∥2ν1

[∫
Ω

(
|∇ym|p−2

∥∇ym∥p−2
Lp

− |∇y|p−2

∥∇y∥p−2
Lp

)
∇ym∇y′dx

]
∆ym∥

+ ∥2ν1

(∫
Ω

|∇y|p−2

∥∇y∥p−2
Lp

∇(ym − y)∇y′dx

)
∆ym∥

= K̃1
2,2 + K̃2

2,2.

(2.67)

Let’s analyze the integrals of (2.67) separately. First, denote by zm = |∇ym|
∥∇ym∥Lp

and z = |∇y|
∥∇y∥Lp

.

Applying in order Holder’s inequality for p−2
p + 1

p + 1
p = 1, the Mean Value Theorem and again Hölder
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for 1
p−2 + p−3

p−2 = 1, we obtain

•
∫
Ω
(zp−2

m − zp−2)∇ym∇y′dx

≤
(∫

Ω
(zp−2

m − zp−2)p/(p−2)dx

)(p−2)/p

∥∇ym∥Lp∥∇y′∥Lp

≤
[∫

Ω

(
(p− 2)(|z|+ |zm|)p−3|zm − z|

)p/(p−2)
dx

](p−2)/p

∥∇ym∥Lp∥∇y′∥Lp

≤ C

(∫
Ω
(|z|+ |zm|)

(p−3)p
p−2 |zm − z|p/(p−2)dx

)(p−2)/p

∥∇ym∥Lp∥∇y′∥Lp

≤ C

(∫
Ω
(|z|+ |zm|)pdx

) (p−3)
p−2

(∫
Ω
|zm − z|pdx

)1/(p−2)
(p−2)/p

∥∇ym∥Lp∥∇y′∥Lp

≤ C

(∫
Ω
(|z|+ |zm|)pdx

) (p−3)
p
(∫

Ω
|zm − z|pdx

)1/p

∥∇ym∥Lp∥∇y′∥Lp

≤ C(∥z∥Lp + ∥zm∥Lp)p−3∥zm − z∥Lp∥∇ym∥Lp∥∇y′∥Lp

≤ C 2p−3∥zm − z∥Lp∥∇ym∥Lp∥∇y′∥Lp

≤ C

(∫
Ω

∣∣∣∣ |∇ym|
∥∇ym∥Lp

− |∇y|
∥∇ym∥Lp

+
|∇y|

∥∇ym∥Lp
− |∇y|

∥∇y∥Lp

∣∣∣∣p dx)1/p

∥∇ym∥Lp∥∇y′∥Lp

≤ C

[∫
Ω

(∣∣∣∣∇(ym − y)

∥∇ym∥Lp

∣∣∣∣+ ∣∣∣∣ |∇y|(∥∇y∥Lp − ∥∇ym∥Lp)

∥∇ym∥Lp∥∇y∥Lp

∣∣∣∣)p

dx

]1/p
∥∇ym∥Lp∥∇y′∥Lp

≤ C

(
∥∇(ym − y)∥Lp

∥∇ym∥Lp
+

∥∇y∥Lp∥∇(ym − y)∥Lp

∥∇ym∥Lp∥∇y∥Lp

)
∥∇ym∥Lp∥∇y′∥Lp

≤ C∥∇(ym − y)∥Lp∥∇y′∥Lp .

Therefore,

(K̃1
2,2)

q ≤ C

∫ T

0
∥∇(ym − y)∥qLp∥∇y′∥qLp

(∫
Ω
ρp3|∆ym|pdx

)q/p

≤ C∥κ(ym − y)∥q
L∞(0,T ;W 1,p(Ω))

∥κy′∥q
L∞(0,T ;W 1,p(Ω))

∥κym∥q
Lq(0,T ;W 2,p(Ω))

≤ C
(
∥(ym, Pm, θm, vm, v0m)− (y, P, θ, v, v0)∥qUN

∥(y′, P ′, θ′, v′, v′0)∥
q
UN

∥(ym, Pm, θm, vm, v0m)∥qUN

)
.

(2.68)

And, again using Holder’s inequality for p−2
p + 1

p + 1
p = 1

•
∫
Ω

|∇y|p−2

∥∇y∥p−2
Lp

∇(ym − y)∇y′dx

≤ C

(∫
Ω

|∇y|p
∥∇y∥pLp

dx

)(p−2)/p

∥∇(ym − y)∥Lp∥∇y′∥Lp

≤ C∥∇(ym − y)∥Lp∥∇y′∥Lp .

Then,

(K̃2
2,2)

q ≤ C
(
∥(ym, Pm, θm, vm, v0m)− (y, P, θ, v, v0)∥qUN

∥(y′, P ′, θ′, v′, v′0)∥
q
UN

∥(y, P, θ, v, v0)∥qUN

)
.

(2.69)
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From (2.68) and (2.69) in (2.67), we conclude that

K̃2,2 ≤ C (∥(ym, Pm, θm, vm, v0m)− (y, P, θ, v, v0)∥UN
∥(y′, P ′, θ′, v′, v′0)∥UN

∥(ym, Pm, θm, vm, v0m)∥UN
) .

(2.70)

And as a consequence of (2.66) and (2.70)

K̃2 ≤ χ2,m∥(y′, P ′, θ′, v′, v′0)∥UN
,

with

χ2,m = C∥(ym, Pm, θm, vm, v0m)− (y, P, θ, v, v0)∥UN
∥(ym, Pm, θm, vm, v0m)∥UN

.

Moreover, by the same reasoning as (2.58),

K̃3 ≤ C
(
∥(y′ · ∇)(ym − y)∥Lq(ρq3(0,T );Lp(Ω)) + ∥((ym − y) · ∇)y′∥Lq(ρq3(0,T );Lp(Ω))

)
≤ χ3,m∥(y′, P ′, θ′, v′, v′0)∥UN

,

with

χ3,m = C∥(ym, Pm, θm, vm, v0m)− (y, P, θ, v, v0)∥UN
.

It is easy to check that Dj,m for j = 2 and j = 4 satisfy similar inequalities.

Again, all inequality norms below are norms in Lq(ρq3(0, T );L
p(Ω)), we will omit them for simplicity.

For D3,m after some manipulations we get the following:

• ∥D3,m(y′, P ′, θ′, v′, v′0)∥ ≤ C [∥ ∥∇(ym − y)∥Lp ∥∇y∥Lp ∆θ′ ∥

+∥ ∥∇(ym − y)∥Lp ∥∇ym∥Lp∆θ′ ∥+ ∥
(
2ν1∥∇θ∥2−p

Lp

∫
Ω |∇θ|p−2∇θ∇θ′dx

)
∆(θm − θ)∥

+∥2ν1
(
∥∇θm∥2−p

Lp

∫
Ω |∇θm|p−2∇θm∇θ′dx− ∥∇θ∥2−p

Lp

∫
Ω |∇θ|p−2∇θ∇θ′dx

)
∆θm∥

+∥(ν̄(∇ym)D(ym − y) : ∇y′∥+ ∥ν1(∥∇ym∥2Lp − ∥∇y∥2Lp)Dy : ∇y′∥

+∥ν̄(∇ym)Dy′ : ∇(ym − y)∥ + ∥ν1(∥∇ym∥2Lp − ∥∇y∥2Lp)Dy′ : ∇y∥

+∥
(
2ν1∥∇ym∥2−p

Lp

∫
Ω |∇ym|p−2∇ym∇y′dx

)
Dym : ∇(ym − y)∥

+∥
(
2ν1∥∇ym∥2−p

Lp

∫
Ω |∇ym|p−2∇ym∇y′dx

)
D(ym − y) : ∇y∥

+∥2ν1
(
∥∇ym∥2−p

Lp

∫
Ω |∇ym|p−2∇ym∇y′dx− ∥∇y∥2−p

Lp

∫
Ω |∇y|p−2∇y∇y′dx

)
Dy : ∇y∥

+∥y′ · ∇(θm − θ)∥+ ∥(ym − y) · ∇θ′∥] = C
16∑
s=4

K̃s.

Applying arguments similar to those used in Lemma 2.9 and in (2.65) we can conclude that K̃s ≤ χs,m

for k = {4, 5, . . . , 16}. Indeed, let us evaluate K̃14, from the calculations performed for (2.67) we have

(K̃14)
q ≤ C

∫ T

0
∥∇(ym − y)∥qLp∥∇y′∥qLp

(∫
Ω
ρp3|∇y|

2pdx

)q/p

≤ C∥κ(ym − y)∥q
L∞(0,T ;W 1,p(Ω))

∥κy′∥q
L∞(0,T ;W 1,p(Ω))

∥κy∥q
L∞(0,T ;W 1,p(Ω))

∥κy∥q
Lq(0,T ;W 2,p(Ω))

≤ C
(
∥(ym, Pm, θm, vm, v0m)− (y, P, θ, v, v0)∥qUN

∥(y′, P ′, θ′, v′, v′0)∥
q
UN

∥(y, P, θ, v, v0)∥2qUN

)
.

Thus

K̃14 ≤ χ15,m∥(y′, P ′, θ′, v′, v′0)∥UN
,
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with

χ14,m = C∥(ym, Pm, θm, vm, v0m)− (y, P, θ, v, v0)∥UN
∥(y, P, θ, v, v0)∥2UN

.

Thus, we have lim
m→∞

χs,m = 0 for all s ∈ {1, ..., 16} and consequently (2.64) is obtained. This ends

the proof.

Lemma 2.11. Let I be the mapping in (2.56)-(2.57). Then, I ′(0, 0, 0, 0, 0) is onto.

Proof. Let (F1, y
0, F2, θ

0) ∈ RN . From Proposition 2.2 we know there exists (y, P, θ, v, v0) satis-

fying (2.7) and (2.14). Furthermore, we have y ∈ Lq(0, T ;W 2,p(Ω)N ) ∩ C0([0, T ];Lp(Ω)N ) and

θ ∈ Lq(0, T ;W 2,p(Ω)) ∩ C0([0, T ];Lp(Ω)). Consequently, (y, P, θ, v, v0) ∈ UN and

I ′(0, 0, 0, 0, 0)(y, P, θ, v, v0) = (F1, y
0, F2, θ

0).

Proof of Theorem 2.2. According to Lemmas 2.9-2.11, we can apply the Inverse Mapping Theorem

(Theorem 2.4), then, there exists δ > 0 and a mapping W : Bδ(0) ⊂ RN → UN such that

W (z) ∈ Bδ(0) and I(W (z)) = z, ∀z ∈ Bδ(0).

Taking (0, y0, 0, θ0) ∈ Bδ(0) and (y, P, θ, v, v0) =W (0, y0, 0, θ0) ∈ UN , we have

I(y, P, θ, v, v0) = (0, y0, 0, θ0).

Thus, we conclude that (2.3) is locally null controllable at time T > 0.

2.5 Large time null-controllability

This section is devoted to the proof of Theorem 2.3. Following the ideas of [Car+23; Le 20], we will

make the system (2.1) evolve without control and certify an asymptotic behavior according to t → ∞
of its solutions, when N = 2. That is, we will deal with the energy decay of the solutions of the system

complete Ladyzhenskaya-Boussinesq. Having verified this analysis, we will take a time T ∗ > 0 such that

the solutions y(T ∗, .) and θ(T ∗, .) related to the null local controllability of (2.1) (Theorem 2.1). Thus, by

setting y(T ∗, .) and θ(T ∗, .) as the initial data in (2.1), Theorem 2.1 gives us the v and v0 controls that

drive the solutions to zero in some sufficiently large time.

Accordingly we state the following lemma, which will be fundamental for the demonstration of

Theorem 2.3.

Lemma 2.12. For N = 2, any T > 0 and (y0, θ0) ∈ V ×H1
0 (Ω), if there is positive constant r > 0 such

that

∥y0∥V + ∥θ0∥H1
0
< r

and (y, p, θ) is a solution of (2.1) with v ≡ v0 ≡ 0, so this solution has asymptotic behavior as t→ ∞.

More precisely, for

E(t) := ∥∇y(t, .)∥2 + ∥θ(t, .)∥2 + ∥∇θ(t., )∥2

there are positive constants C1,C2 such that

E(t) ≤ C2 e
−C1tE(0) a.e in (0, T ). (2.71)
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For the convenience, we will give the proof for inequality (2.71) in Lemma 2.12 in Appendix B.1.

Proof of Theorem 2.3 First, let’s fix T0 > 0. Applying the Theorem 2.1 there exists δ > 0 such that

the system (2.1), with any initial data (ȳ0, θ̄0) ∈ V ×W
1,3/2
0 (Ω) satisfying ∥(ȳ0, θ̄0)∥

V×W
1,3/2
0

< δ, is

locally null controllable at T0.

Determine (y0, θ0) ∈ V ×H1
0 (Ω) and consider C1,C2 > 0 as defined in the statement of Lemma

2.12. Let then T ∗ be a positive time satisfying

T ∗ >
−1

C1
ln

(
δ

C2(∥∇y0∥2 + ∥θ0∥2 + ∥∇θ0∥2)

)
(2.72)

and consider a solution (y, p, θ) of the system (2.1), with T = T ∗ + T0, v ≡ v0 ≡ 0 and (y0, θ0) as the

initial data.

From (2.71) and (2.72), y(., T ∗), θ(., T ∗) are such that

∥ (y(., T ∗), θ(., T ∗)) ∥
V×W

1,3/2
0

≤ C2 e
−C1T ∗

(∥∇y0∥2 + ∥θ0∥2 + ∥∇θ0∥2) < δ.

Consequently, by Theorem 2.1, (2.1) is locally null controllable at T ∗ + T0.
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CHAPTER 3

Strong solution of the Navier-Stokes
equations in non-cylindrical domains

3.1 Problem Formulation

Let us denote by W an open, bounded, and nonempty subset of RN
x × Rt, with N ≤ 3. Suppose also

Ωs =W ∩ {t = s; s ∈ R} are open, bounded, and nonempty sets with boundaries Γs. We fix the interval

[0, T ] of Rt and consider Q̂ =
⋃

0<s<T Ωs × {s} the non-cylindrical domain contained in RN
x × Rt with

lateral boundary defined by Σ̂ =
⋃

0<s<T Γs × {s} and its boundary by ∂Q̂ = Ω0 ∪ Σ̂ ∪ ΩT in these

conditions, we are concerned with the existence of solutions for the Navier-Stokes equations

u′ − ν∆u+ (u · ∇)u = f −∇p in Q̂,

∇ · u = 0 in Q̂,

u = 0 on Σ̂,

u(·, 0) = u0 in Ω0.

(3.1)

The methodology we will employ to solve the problem (3.1) consist in transforming it into a cylindrical

problem by means of a perturbation of equation (3.1) adding two singular terms, depending on a parameter

ϵ > 0 which is destined tend to zero. This method was idealized by Lions (see, for example [Lio69])

adding a singular term and is called by him a penalty method. To apply the Lions’ method, some restrictive

hypotheses on Q̂ are necessary. In fact we suppose Q̂ ⊂ Q with Ω0 ⊂ Ω whereQ = Ω× [0, T ). Moreover,

we consider hypotheses about geometry and regularity of Q̂.

(H1) (Geometry of Q̂) If t1 ≤ t2 then proj|t=0Ωt1 ⊂ proj|t=0Ωt2 . It means, the family {Ωt}0≤t≤T is

increasing.

(H2) (Regularity of Q̂) If v ∈ Hm
0 (Ω) and Dβv = 0 on Ω \Ωt for almost all t ∈ [0, T ) and |β| ≤ m− 1

then v ∈ Hm
0 (Ωt).

(H3) (Bounded data) There is ρ > 0 such that

κ(f, u0) = ∥f∥2
L2(0,T ;L2(Ωt)N )

+ ∥f∥2L2(0,T ;V (Ωt))
+ ∥u0∥V (Ω0) + |∆u0|2L2(Ω0)N

< min

{
ν2

4C̃1

,

(
ν

4C1

)2
}

= ρ,
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where C1, C̃1, V (Ωt) and V (Ω0) will be justified throughout the text.

Many real-world problems involve partial differential equations where the domain of interest changes

with time. For example, in fluid dynamics, PDEs are employed to describe the flow and evolution of fluid

interfaces, such as free surface flows, multiphase flows, or droplet dynamics, see [GPW22], [SKR22].

We organize this chapter as follows: in Section 3.2, we introduce the notations and definitions that

formed the Penalized problem and the declaration of results. In Section 3.3 we demonstrate the main

results, on the existence and uniqueness of strong solutions. Section 3.4 is dedicated to the proof of a

decay result for the solution of the system (3.1).

3.2 Penalized problem and statement of results

This section is dedicated to presenting the formulation of the penalized problem, as well as enunciating

the main results of this work about the existence and uniqueness of a strong solution, for the (3.1) problem,

and also stating a theorem that under some conditions guarantees us energy decay for the solution found.

Let β : Q→ R be a function defined by

β(x, t) =

 1 in Q \ Q̂ ∪ (Ω0 × {0}),

0 in Q̂ ∪ (Ω0 × {0}).
(3.2)

Consider α̃(x, t) solution to the problem −∆α̃(x, t) = 1 in Ω \ Ωt,

α̃(x, t) = 0 in ∂(Ω \ Ωt) = ∂Ωt ∪ ∂Ω,
(3.3)

have up for almost every t in [0, T ], then α̃(·, t) ∈ H2(Ω\Ωt)∩H1
0 (Ω\Ωt) and the principle of maximum

gives us, α̃(·, t) ≥ 0 in Ω− Ω̄t.

Let α : Q→ R be a function defined by

α(x, t) =

 α̃(x, t) in Q \ Q̂,

0 in Q̂.
(3.4)

From the above definitions, we can conclude that α(x, t) = α̃(x, t)β(x, t) in Q \ Q̂ and −∆α(x, t) =

β(x, t) in Q.

Denoting by ũ0 the extension of u0 to Ω defined zero in Ω \ Ω0 it implies ũ0 ∈ V (Ω) ∩ (H2(Ω))N

and f̃ ∈ L2(0, T ;V (Ω)) the extension of f to Q defined zero in Q \ Q̂, where V (Ω) will be defined

below. For ϵ > 0 consider the problem penalized

u′ϵ − ν∆uϵ + (uϵ · ∇)uϵ +
1
ϵα(x, t)u

′
ϵ − 1

ϵβ(x, t)∆u
′
ϵ = f̃ −∇pϵ in Q,

∇ · uϵ = 0 in Q,

uϵ = 0 on ∂Ω× [0, T ),

uϵ(·, 0) = ũ0 in Ω.

(3.5)

Let Q̂t = Ωt × {t}, if u′ = 0 in Q \ Q̂t and the domain is increasing then

u(x, t)− u(x, 0) =

∫ t

0
u′(x, σ) dσ = 0, (3.6)
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and

u(x, t) = u(x, 0) = ũ(x, 0) = 0. (3.7)

Thus, u = 0 in Q \ Q̂t.

Now, let us recall the definition of some vector spaces in the context of incompressible fluids. For

O ⊂ RN , consider

V(O) = {φ ∈ D(O)N : ∇ · φ = 0 in O};

H(O) = V(O)
L2(O)N

= {φ ∈ L2(O)N : ∇ · φ = 0 in O, φ · n = 0 on ∂Ω};

V (O) = V(O)
H1(O)N

= {φ ∈ H1
0 (O)N : ∇ · φ = 0 in O},

so to O = Ω there are spaces Lp(0, T ;V (Ω)), Lp(0, T ;V (Ω) ∩ H2(Ω)N ), 1 ≤ p ≤ ∞. Since Q̂ =⋃
0<s<T Ωs × {s} ⊂ Ω× [0, T ) we define the following Lp spaces:

Lp(0, T ;V (Ωt)) = {u ∈ Lp(0, T ;V (Ω)) : a.e. t ∈ [0, T ], u(t) ∈ V (Ωt)};

Lp(0, T ;H(Ωt)) = {u ∈ Lp(0, T ;H(Ω)) : a.e. t ∈ [0, T ], u(t) ∈ H(Ωt)};

Lp(0, T ;H2(Ωt)
N ∩ V (Ωt)) = {u ∈ Lp(0, T ;H2(Ω)N ∩ V (Ω)) : a.e. t ∈ [0, T ], (3.8)

u(t) ∈ H2(Ωt)
N ∩ V (Ωt)};

L2
0(Ωt) = {u ∈ L2(Ω) : a.e. t ∈ [0, T ],

1

med(Ωt)

∫
Ωt

u(x)dx = 0},

where med(Ωt) means the measure of Ωt.

Definition 3.1. A strong solution for (3.1) is a function u : Q̂→ R in the class

u ∈ L∞(0, T ;H2(Ωt)
N ∩ V (Ωt)), u

′ ∈ L2(0, T ;V (Ωt))

satisfying the integral identity∫
Q̂

(
u′ − ν∆u+ u∇u

)
φdx dt =

∫
Q̂
fφ dx dt, ∀φ ∈ L2(0, T ;H(Ωt)). (3.9)

Moreover, u verifies the initial condition u(., 0) = u0.

That said, we are in a position to present the main results of this part on the existence and uniqueness

of a strong solution, according to the definition 3.1, for the problem (3.1). And assuming a condition

under the Ωt domain, a decay result for such a solution. We state these theorems as follows:

Theorem 3.1. Suppose u0 ∈ V (Ω0) ∩H2(Ω0)
N , f ∈ L2(0, T, V (Ωt)) such that (H1), (H2) and (H3)

hold. Then, the problem (3.1) admits a strong solution in the class u ∈ L∞(0, T ;H2(Ωt)
N ∩ V (Ωt)),

u′ ∈ L2(0, T ;V (Ωt)) and p ∈ L2(0, T ;H1(Ωt)) ∩ L2(0, T ;L2
0(Ωt)).

Theorem 3.2. Assuming the same hypotheses as the Theorem 3.1, the solution to (3.1) is unique.

Theorem 3.3. Let u be the system solution (3.1) for f = 0. Then u has asymptotic behavior as t→ ∞.

In other words,

|u(t)|2L2(Ωt)N
≤ e1−t/M |u0|2L2(Ω0)N

, (3.10)

where M = 1
c1

.
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3.3 Proof of main results

This section is dedicated to demonstrating the main results of this problem which are about the

existence and uniqueness of strong solutions.

Proof for Theorem 3.1

In order to obtain Theorem 3.1, we will now prove a Lemma that will contribute to this goal.

Lemma 3.1. Let ϵ > 0, ũ0 ∈ V (Ω) ∩H2(Ω)N , f̃ ∈ L2(0, T ;V (Ω)) exist uϵ ∈ L∞(0, T ;H2(Ω)N ∩
V (Ω)), u′ϵ ∈ L2(0, T ;V (Ω)) solution to problem (3.5).

Proof of Lemma 3.1. Let (wi) be the eigenfunctions of the Stokes operator such that they are orthonormal

in H(Ω) and orthogonal in V (Ω) and let λi be their respective eigenvalues. For every m ≥ 1, whether

Em = span{w1, · · ·wm}, we look for the uϵm =
∑m

i=1 gϵim(t)wi solution of


(u′ϵm, wi) + ν(∇uϵm,∇wi) + ((uϵm · ∇)uϵm, wi) +

1
ϵ (α(x, t)u

′
ϵm, wi)

−1
ϵ (β(x, t)∆u

′
ϵm, wi) = (f̃ , wi) inQ,

uϵm(·, 0) = u0m → ũ0 inV (Ω) ∩H2(Ω)N .

(3.11)

By Carathéodory’s theorem, the equation (3.11) has a local solution, and by the a priori estimate I,

one can extend the solution to interval [0, T ] for all T > 0.

Estimate I. Multiplying (3.11) by λig′ϵim(t) and adding from i = 1 to m, we get

(u′ϵm,−∆u′ϵm) + ν(∇uϵm,∇(−∆u′ϵm)) + ((uϵm · ∇)uϵm,−∆u′ϵm) +

1

ϵ
(α(x, t)u′ϵm,−∆u′ϵm)− 1

ϵ
(β(x, t)∆u′ϵm,−∆u′ϵm) = (f̃ ,−∆u′ϵm)

also using the fact that for N ≤ 3, H2(Ω) ↪→ L∞(Ω), H1(Ω) ↪→ L6(Ω), i.e. there are C1, C2, C3

dependent on Ω such that

|z|L∞(Ω) ≤ C1|z|H2(Ω), |z|L6(Ω) ≤ C2|z|H1(Ω), |z|L3(Ω) ≤ C3|z|H1(Ω).

We also have that in H1
0 (Ω) ∩H2(Ω), |z|H2(Ω) and |∆z|L2(Ω) are equivalent norms, so we can calculate
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the following inequalities:

• |((uϵm · ∇)uϵm,−∆u′ϵm)| =

∣∣∣∣∣−
∫
Ω
uϵmi

∂uϵmj

∂xi

∂2u′ϵmj

∂x2k
dx

∣∣∣∣∣
≤
∣∣∣∣∫

Ω

(
∂uϵmi

∂xk

∂uϵmj

∂xi

∂u′ϵmj

∂xk
+ uϵmi

∂2uϵmj

∂xi∂xk

∂u′ϵmj

∂xk

)
dx−

∫
∂Ω
uϵmi

∂uϵmj

∂xi

∂u′ϵmj

∂xk
dΓ

∣∣∣∣
≤ C

(∣∣∣∣∂uϵmi

∂xk

∣∣∣∣
L6(Ω)N

∣∣∣∣∂uϵmj

∂xi

∣∣∣∣
L3(Ω)N

∣∣∣∣∂u′ϵm∂xk

∣∣∣∣
L2(Ω)N

+ |uϵmi|L∞(Ω)N

∣∣∣∣ ∂2uϵmj

∂xi∂xk

∣∣∣∣
L2(Ω)N

∣∣∣∣∂u′ϵmj

∂xk

∣∣∣∣
L2(Ω)N

)

≤
∣∣∣∣∂uϵmi

∂xk

∣∣∣∣
H1(Ω)N

∣∣∣∣∂uϵmj

∂xi

∣∣∣∣
H1(Ω)N

∥u′ϵm∥V (Ω)

+C |uϵmi|H2(Ω)N |uϵmj |H2(Ω)N

∥∥∥u′ϵmj

∥∥∥
V (Ω)

≤ C|∆uϵm|2
L2(Ω)N

∥u′ϵm∥V (Ω) ≤
1

4
∥u′ϵm∥2V (Ω) + C̃1|∆uϵm|4

L2(Ω)N
;

(3.12)

Since −∆α(x, t) = β(x, t) in Q,

• 1

ϵ
(α(x, t)uϵm,−∆u′ϵm) =

1

ϵ

∫
Ω
α(x, t)u′ϵm(−∆u′ϵm) dx

=
1

ϵ

∫
Ω
∇(α(x, t)u′ϵm)∇u′ϵm dx− 1

ϵ

∫
∂Ω
α(x, t)u′ϵm∇u′ϵmdΓ

=
1

ϵ

∫
Ω
∇α(x, t)u′ϵm∇u′ϵm dx+

1

ϵ

∫
Ω
α(x, t)|∇u′ϵm|2 dx

=
1

2ϵ

∫
Ω
∇α(x, t)∇((u′ϵm)2) dx+

1

ϵ

∫
Ω
α(x, t)|∇u′ϵm|2 dx

≥ 1

2ϵ

∫
Ω
−∆α(x, t)(u′ϵm)2 dx+

1

2ϵ

∫
∂Ω

∇α(x, t)|u′ϵm|2dΓ

≥ 1

2ϵ

∫
Ω
β(x, t)|u′ϵm|2 dx;

(3.13)

• |(f̃ ,−∆u′ϵm)| ≤ ∥f̃∥V (Ω)∥u′ϵm∥2V (Ω) ≤
1

4
∥u′ϵm∥2V (Ω) + ∥f̃∥2V (Ω). (3.14)

From (3.12), (3.13) and (3.14) in (3.11) we have

∥u′ϵm∥2V (Ω) + ν
d

dt
|∆uϵm|2

L2(Ω)N
+

1

ϵ

∫
Ω
β(x, t)|u′ϵm|2dx+

2

ϵ

∫
Ω
β(x, t)|∆u′ϵm|2dx

≤ C̃1|∆uϵm|4
L2(Ω)N

+ ∥f̃∥2V (Ω).

(3.15)

Before we get the next estimate, we claim that for any z that satisfies the assumptions of this lemma

we have ∫ t

0

∫
Ω\Ωs

|z(x, s)|2dx ds ≤ T 2

∫ t

0

∫
Ω\Ωs

|z′(x, s)|2dx ds. (3.16)

Indeed, since z(x, 0) = 0 in Ω \ Ωt for any t ∈ R then

z(x, t)− z(x, 0) =

∫ t

0
z′(x, s)ds

so

|z(x, t)| ≤
(∫ t

0
1 ds

)1/2(∫ t

0
|z′(x, s)|2ds

)1/2

.
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Integrating in Ω \ Ωs × [0, t), with t ∈ [0, T ], we have∫ t

0

∫
Ω\Ωs

|z(x, σ)|2dx dσ ≤
∫ t

0
t

(∫
Ω\Ωs

∫ t

0
|z′(x, s)|2ds dx

)
dσ

≤
∫ T

0
T

(∫ t

0

∫
Ω\Ωs

|z′(x, s)|2dx ds

)
dσ

≤ T 2

∫ t

0

∫
Ω\Ωs

|z′(x, s)|2dx ds.

Estimate II. Multiplying (3.11) by λigim(t) and adding from i=1 to m, we get

1

2

d

dt
∥uϵm∥2V (Ω) + ν|∆uϵm|2L2(Ω) + ((uϵm · ∇)uϵm,−∆uϵm) +

1

ϵ
(α(x, t)u′ϵm,−∆uϵm)

+
1

ϵ
(β(x, t)∆u′ϵm,∆uϵm) = (f̃ ,−∆uϵm).

(3.17)

Using the same arguments as Estimate I, we compute

|((uϵm · ∇)uϵm,−∆uϵm)| ≤ C1∥uϵm∥V (Ω)|∆uϵm|2L2(Ω)N . (3.18)

By the ideas of [NN78] (see too, [Rab94]), we have

1

ϵ

∫ t

0
(β(x, s)∆u′ϵm,∆uϵm)ds ≥ 1

2ϵ
|β(t)∆uϵm(t)|2L2(Ω)N − 1

2ϵ
|β(0)∆uϵm(0)|2L2(Ω)N , (3.19)

and from definitions of ũ0 and β(x, t), we easily get that

1

ϵ
β(0)∆uϵm(0) =

1

ϵ
β(0)∆u0m −→ 1

ϵ
β(0)∆ũ0 = 0 strongly in L2(Ω)N as m→ ∞.

Thus, consider σ1 > 0 such that κ(u0, f) + σ1 < min{ ν
2

4C̃1

,

(
ν

4C1

)2

} and

1

ϵ
|β(0)∆uϵm(0)|2L2(Ω)N ≤ σ1, for each m ≥ m0(ϵ, σ1). (3.20)

Furthermore, since α(x, t) = α̃(x, t)β(x, t) in Q \ Q̂ we have

2

ϵ
(α(x, t)u′ϵm,−∆uϵm) ≤ 2

ϵ

∫
Ω\Ωt

|α(x, t)|L∞(Ω)N β(x, t) |u′ϵm| |∆uϵm| dx (3.21)

and, by definition, α satisfies problem (3.3) then |∆α|H2(Ω\Ωt) ≤ |1|L2(Ω\Ωt) ≤ med(Ω \Ωt) ≤ med(Ω).

Since N ≤ 3 we have the embedding continuous H2(Ω \ Ωt) ↪→ L∞(Ω \ Ωt), from which we can

conclude that

|α(x, t)|L∞(Ω\Ωt)N ≤ C(Ω), with C independent of t. (3.22)

Hence, as a consequence of (3.16), we obtain for (3.21) that∣∣∣∣2ϵ
∫ t

0
(α(x, s)u′ϵm,−∆uϵm)ds

∣∣∣∣ ≤ TC1

(
1

ϵ

∫ t

0

∫
Ω
β(x, s)(|u′ϵm(s)|2 + |∆u′ϵm(s)|2)dx ds

)
.

(3.23)

And,

|(f̃ ,−∆uϵm)| ≤ ν

2
|∆uϵm|2L2(Ω)N +

1

2ν
|f̃ |2L2(Ω)N . (3.24)

Then, from (3.18) and (3.24) in (3.17) we get
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d

dt
∥uϵm∥2V (Ω) +

ν

2
|∆uϵm|2

L2(Ω)N
+ |∆uϵm|2

L2(Ω)N

(ν
2
− C1∥uϵm∥V (Ω)

)
+
2

ϵ
(α(x, t)u′ϵm,−∆uϵm) +

1

ϵ
(β(x, t)∆u′ϵm,∆uϵm) ≤ 1

ν
|f̃ |2

L2(Ω)N
.

(3.25)

Thus, from (3.15) and (3.25),

d

dt

(
∥uϵm∥2V (Ω) + ν|∆uϵm|2

L2(Ω)N

)
+ ∥u′ϵm∥2V (Ω) +

ν

2
|∆uϵm|2

L2(Ω)N

+
2

ϵ
(α(x, t)u′ϵm,−∆uϵm) +

1

ϵ
(β(x, t)∆u′ϵm,∆uϵm) +

1

ϵ

∫
Ω
β(x, t)|u′ϵm|2dx

+
2

ϵ

∫
Ω
β(x, t)|∆u′ϵm|2dx + |∆uϵm|2L2(Ω)N

(ν
2
− C1∥uϵm∥V (Ω) − C̃1|∆uϵm|2L2(Ω)N

)
≤ ∥f̃∥2V (Ω) +

1

ν
|f̃ |2

L2(Ω)N
.

(3.26)

By hypothesis (H3) and (3.20),

C1∥ũ0∥V (Ω) + C̃1|∆ũ0|2L2(Ω)N
= C1∥u0∥V (Ω0) + C̃1|∆u0|2L2(Ω0)N

<
ν

2
,

∥u0∥2V (Ω0)
+ ν|∆u0|2L2(Ω0)N

+ ∥f∥2
L2(0,T ;L2(Ωt)N )

+ ∥f∥2L2(0,T ;V (Ωt))

+σ1 < min

{
ν2

4C̃1

,

(
ν

4C1

)2
}
.

(3.27)

Thus,

C1∥uϵm(0)∥V (Ω) + C̃1|∆uϵm(0)|2L2(Ω)N ≤ C1∥u0∥V (Ω0) + C̃1|∆u0|2L2(Ω0)N
<
ν

2
.

That said, for continuity we make the following claim:

Claim 1. For each ϵ > 0 fixed and m ≥ m0 = m0(ϵ, σ1) given in (3.20), we have

B(t) := C1∥uϵm(t)∥V (Ω) + C̃1|∆uϵm(t)|2L2(Ω)N < ν/2, ∀ t ∈ [0, tm], where 0 < tm ≤ T0.

We shall prove by contradiction. Suppose that there exists t∗m minimum such that

B(t) <
ν

2
in 0 ≤ t < t∗m, and B(t∗m) =

ν

2
. (3.28)

Integrating (3.26) from 0 to t∗m and using (3.19), (3.20) and (3.23) for t∗m, with t∗m < tm < T0C1 < 1/2

we calculate that

∥uϵm(t∗m)∥2V (Ω) + ν|∆uϵm(t∗m)|2
L2(Ω)N

+
1

2ϵ
|β(t∗m)∆uϵm(t∗m)|2

L2(Ω)N

+

∫ t∗m

0
∥u′ϵm(s)∥2V (Ω)ds +

∫ t∗m

0

ν

2
|∆uϵm(s)|2L2(Ω)Nds

+
1

2ϵ

∫ t∗m

0

∫
Ω
β(x, t)|u′ϵm(s)|2dx ds+ 3

2ϵ

∫ t∗m

0

∫
Ω
β(x, t)|∆u′ϵm(s)|2dx ds

≤ ∥uϵm(0)∥2V (Ω) + ν|∆uϵm(0)|2
L2(Ω)N

+
1

2ϵ
|β(0)∆uϵm(0)|2

L2(Ω)N

+

∫ t∗m

0
(∥f̃(s)∥2V (Ω) +

1

ν
|f̃(s)|2L2(Ω)N )ds

≤ ∥u0∥2V (Ω0)
+ ν|∆u0|2L2(Ω0)N

+

∫ T0

0
(∥f(s)∥2V (Ωt)

+
1

ν
|f(s)|2L2(Ωt)N

)ds+ σ1.

(3.29)
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Therefore, from (3.27) and (3.29) we have

B(t∗m) <
ν

2
.

hence, comparing with (3.28), we have a contradiction.

As a result of (3.19), (3.23) and of claim 1 in (3.26), for each ϵ > 0 fixed and m ≥ m0(ϵ, σ1), we

compute

∥uϵm(t)∥2V (Ω) + ν|∆uϵm(t)|2
L2(Ω)N

+

∫ T0

0
∥u′ϵm(s)∥2V (Ω)ds+

1

2ϵ
|β(T 0)∆uϵm(T 0)|2L2(Ω)N

+

∫ T0

0

ν

2
|∆uϵm(s)|2L2(Ω)Nds+

1

2ϵ

∫ T0

0

∫
Ω
β(x, t)|u′ϵm(s)|2dx ds

+
3

2ϵ

∫ T0

0

∫
Ω
β(x, t)|∆u′ϵm(s)|2dx ds

≤ ∥u0∥2V (Ω0)
+ ν|∆u0|2L2(Ω0)N

+
1

2ϵ
|β(0)∆uϵm(0)|2

L2(Ω)N

+

∫ T0

0
(∥f(s)∥2V (Ωt)

+
1

ν
|f(s)|2L2(Ωt)N

)ds.

(3.30)

Applying Aubin-Lions Theorem (see, Chapter 1, Theorem 5.1 in [Lio69]) in (3.30) we can extract a

subsequence of {uϵm} denoted equal such that making m→ ∞, we have

u′ϵm −→ u′ϵ weak in L2(0, T0;V (Ω)),

uϵm −→ uϵ weak∗ in L∞(0, T0;H
2(Ω)N ∩ V (Ω)),

1

ϵ
β(x, t)u′ϵm −→ 1

ϵ
β(x, t)u′ϵ weak in L2(Ω× (0, T0))

N ,

1

ϵ
β(x, t)∆u′ϵm −→ 1

ϵ
β(x, t)∆u′ϵ weak in L2(Ω× (0, T0))

N ,

uϵm −→ uϵ strong in L2(0, T0;H(Ω)),

uϵmi −→ uϵi a.e. in Ω× (0, T0),

∂uϵmj

∂xi
−→ ∂uϵj

∂xi
a.e. in Ω× (0, T0).

(3.31)

Thus, uϵmi∂uϵmj/∂xi −→ uϵi∂uϵj/∂xi a.e. in Ω× (0, T0). And, since N ≤ 3,

N∑
i,j=1

∫
Ω

∣∣∣∣uϵmi
∂uϵmj

∂xi

∣∣∣∣2 ≤ C|uϵm|2H2(Ω)|uϵm|2V (Ω).

Consequently, by the Lions Lemma, we obtain

uϵmi
∂uϵmj

∂xi
−→ uϵi

∂uϵj
∂xi

weak in L2(Ω× (0, T0)). (3.32)

Therefore, applying the same reasoning when considering u(., T0) = uT0 in Ω as initial data, we

conclude (3.31) and (3.32) in Ω× [T0, 2T0). Thus, repeating the process recursively until nT0 > T , for

n ∈ N, we have (3.31) and (3.32) in Ω× [0, T ).

In this way, we can pass to the limit at (3.11) and then∫
Q
(u′ϵ − ν∆uϵ + uϵ∇uϵ +

1

ϵ
α(x, t)u′ϵ −

1

ϵ
β(x, t)∆u′ϵ)φdx dt

=

∫
Q
f̃φ dx dt, ∀φ ∈ L2(0, T ;H(Ω)),
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proving that uϵ is a solution to the problem (3.5) such that uϵ ∈ L∞(0, T ;H2(Ω)N ∩ V (Ω)), u′ϵ ∈
L2(0, T ;V (Ω)).

Proof of Theorem 3.1. From Lemma 3.1 and the definitions of α and β given by (3.4) and (3.2), respec-

tively, we have∫
Q̂

(
u′ϵ − ν∆uϵ + uϵ∇uϵ

)
φdx dt =

∫
Q̂
fφ dx dt, ∀φ ∈ L2(0, T ;H(Ωt)). (3.33)

Furthermore, by weak convergence property of (3.30) and (3.31) we can deduce that

∥uϵ(t)∥2V (Ω) + ν|∆uϵ(t)|2L2(Ω)N
+

∫ t

0
∥u′ϵ(s)∥2V (Ω)ds+

∫ t

0

ν

2
|∆uϵ(s)|2L2(Ω)Nds

≤ ∥u0∥2V (Ω0)
+ ν|∆u0|2L2(Ω0)N

+

∫ T

0
(∥f(s)∥2V (Ωt)

+
1

ν
|f(s)|2L2(Ωt)N

)ds+ σ1.

(3.34)

and by arguments analogous to those applied to obtain (3.31) and (3.32), we have

u′ϵ −→ u′ weak in L2(0, T0;V (Ω)),

uϵ −→ u weak∗ in L∞(0, T0;H
2(Ω)N ∩ V (Ω)),

uϵ −→ u strong in L2(0, T0;H(Ω)),

uϵi
∂uϵj
∂xi

−→ ui
∂uj
∂xi

weak in L2(Ω× (0, T0)),

(3.35)

as ϵ→ 0. Therefore, we can pass the limit in (3.33) as ϵ→ 0 and then∫
Q̂

(
u′ − ν∆u+ u∇u

)
φdx dt =

∫
Q̂
fφ dx dt, ∀φ ∈ L2(0, T ;H(Ωt)), (3.36)

i.e., u is a strong solution to the problem (3.1) in the class u ∈ L∞(0, T ;H2(Ωt)
N ∩ V (Ωt)), u′ ∈

L2(0, T ;V (Ωt)).

Finally, we will show that it is possible to recover the pressure term. In fact, by the Du Bois-Reymond

lemma ([MM19], Proposition 1.4) in (3.36) we get

u′ − ν∆u+ u∇u− f = 0 in L2(0, T ;H(Ωt)),

consequently, for almost ever s ∈ [0, T ],

u′ − ν∆u+ u∇u− f = 0 in H(Ωs).

By duality,

⟨u′ − ν∆u+ u∇u− f, ψ⟩ = 0 ∀ ψ ∈ V (Ωs)

and from Rham’s theorem ([BF13], Theorem IV.2.3) there exists a unique p(s) ∈ L2
0(Ωs)

N such that

u′ − ν∆u+ u∇u− f = −∇p(s). (3.37)

So, ∇p(s) ∈ L2(Ωs)
N and consequently p(s) ∈ H1(Ωs)

N .

Therefore, let φ ∈ D(Q̂) such that(
u′ − ν∆u+ u∇u+∇p(s)− f, φ(x, s)

)
L2(Ωs)N×L2(Ωs)N

= 0.
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Then, ∫ T

0

∫
Ωs

(u′ − ν∆u+ u∇u+∇p− f)φdx dt = 0

thus implying the Navier-Stokes equation

u′ − ν∆u+ u∇u+∇p− f = 0 in L2(Q̂),

with p ∈ L2(0, T ;H1(Ωt)) ∩ L2(0, T ;L2
0(Ωt)). Concluding the proof of the Theorem 3.1.

Proof for Theorem 3.2

Proof of Theorem 3.2. Let u1 and u2 be two solutions of Theorem 3.1, then u = u1 − u2 satisfy

u′ − ν∆u = u2 · ∇u2 − u1 · ∇u1 in Q̂,

∇ · u = 0 in Q̂,

u = 0 on Σ̂,

u(·, 0) = 0 in Ω0.

(3.38)

Multiplying by φ = u, integrating over Q̂t we have∫
Q̂t

u′u dxdt−
∫
Q̂t

ν∆uu dxdt =

∫
Q̂t

(u2 · ∇u2 − u1 · ∇u1)u dxdt (3.39)

So, we use the Gauss-Green theorem, and since u vanishes on Σ̂.∫
Q̂t

u′u dxdt =
1

2

∫
Q̂t

d

dt
|u|2 dxdt = 1

2

∫
Q̂t

div(0, 0, u2) dxdt

=
1

2

∫
∂Q̂t

(0, 0, u2) · ndΓ

=
1

2

∫
Ωt

(0, 0, u2)(0, 0, 1)dΓ +

∫
Σt

(0, 0, u2) · ndΓ

+

∫
Ω0

(0, 0, u2)(0, 0,−1)dΓ

=
1

2

∫
Ωt

|u|2 dx;

(3.40)

and
−
∫
Q̂t

∆uu dxdt =

∫
Q̂t

[−div(x,t)(∇uu, 0) + |∇u|2] dxdt

= −
∫
∂Q̂t

(∇uu, 0) · ndΓdt+
∫
Q̂t

|∇u|2 dxdt

=

∫
Q̂t

|∇u|2 dxdt;

(3.41)

therefore, from (3.40) and (3.41) we have

1

2

∫
Ωt

|u|2 dx+

∫
Q̂t

|∇u|2 dxdt =

∫
Q̂t

(u2 · ∇u2 − u1 · ∇u1)u dxdt

= −
∫
Q̂t

(u2 · ∇uu+ u · ∇u1u) dxdt

= J1 + J2;

(3.42)
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then

J1 =

3∑
i,j=1

∫
Q̂t

u2i
∂uj
∂xi

uj dxdt =

3∑
i,j=1

∫
Q̂t

1

2
u2i

∂

∂xi
(u2j ) dxdt

=
1

2

∫
Q̂t

div(x,t)(u2(
3∑

j=1

u2j ), 0) dxdt

=
1

2

∫
∂Q̂t

(u2(
3∑

j=1

u2j ), 0) · ndΓdt = 0.

(3.43)

If N = 2, we have |z|L4(Ωt)N ≤ C|z|1/2
L2(Ωt)N

|∇z|1/2
L2(Ωt)N

, we get to ϵ > 0

J2 ≤
∫ t

0
|u|L4(Ωt)N |∇u1|L2(Ωt)N |u|L4(Ωt)N ds

≤ C

∫ t

0
|u|L2(Ωt)N |∇u|L2(Ωt)N |∇u1|L2(Ωt)N ds

≤ ϵ

∫ t

0
|∇u|2L2(Ωt)N

+ C(ϵ)

∫ t

0
|∇u1|2L2(Ωt)N

|u|2L2(Ωt)N
ds,

(3.44)

or if N = 3, we have |z|L3(Ωt)N ≤ C|z|1/2
L2(ΩN

t )
|∇z|1/2

L2(Ωt)N
, we can get

J2 ≤
∫ t

0
|u|L3(Ωt)N |∇u1|L2(Ωt)N |u|L6(Ωt)N ds

≤ C

∫ t

0
|u|1/2

L2(Ωt)N
|∇u|1/2

L2(Ωt)N
|∇u1|L2(Ωt)N |u|H1(Ωt)N ds

≤ C

∫ t

0
|u|1/2

L2(Ωt)N
|∇u|3/2

L2(Ωt)N
|∇u1|L2(Ωt)N ds

≤ ϵ

∫ t

0
|∇u|2L2(Ωt)N

+ C(ϵ)

∫ t

0
|∇u1|4L2(Ωt)N

|u|2L2(Ωt)N
ds.

(3.45)

Now, replacing (3.43), (3.44) and (3.45) in (3.42), we obtain

1

2

∫
Ωt

|u|2dx+

∫
Q̂t

|∇u|2dxdt ≤ C(ϵ)

∫ t

0
m(s)|u|2L2(Ωt)N

ds, (3.46)

where

m(s) =


|∇u1|2L2(Ωt)N

, if N = 2,

|∇u1|4L2(Ωt)N
, if N = 3.

(3.47)

Using Grönwall’s inequality in (3.46), we have u = 0 and consequently u1 = u2.

3.4 Decay of solutions

In this section we shall consider the decay of solutions. We will assume that Ωt tends to a bounded

domain Ω̃, as t→ ∞. Thus, the constant in the Poincaré inequality can be considered independent of t,

which we will denote by c1. For more details, see [Sal88].

Proof of Theorem 3.3. Multiplying the first line of the system (3.1) by u and integrating in Ωτ we have

d

dτ
|u(τ)|2L2(Ωτ )N

+ |∇u(τ)|2L2(Ωτ )N
≤ 0, (3.48)
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in this account we are using the fact that∫
Ωτ

(u · ∇)uu dx =

3∑
i,j=1

∫
Ωτ

ui
∂uj
∂xi

uj dx =

3∑
i,j=1

∫
Ωτ

1

2
ui

∂

∂xi
(u2j ) dx

=
1

2

∫
Ωτ

div(x)u(
3∑

j=1

u2j ) =
1

2

∫
Γτ

u(
3∑

j=1

u2j ) · ndΓ = 0.

Then by the Poincaré inequality, ∥u∥2
H1

0 (Ωτ )N
≥ c1|u|2L2(Ωτ )N

, and integrating (3.48) from s to t, for

s < t,

|u(t)|2L2(Ωt)N
+ c1

∫ t

s
|u(τ)|2L2(Ωτ )N

dτ ≤ |u(s)|2L2(Ωs)N

Hence, applying Theorema 8.1 of [Kom94] with M = 1
c1

,

|u(t)|2L2(Ωt)N
≤ e1−t/M |u0|2L2(Ω0)N

.

Proving that (3.10) holds.
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Some additional comments and open questions

In the context of the result obtained in this thesis, we will give some comments on the systems studied

and we will also expose some problems in the context addressed here that, as far as we know, are open.

About Chapter 1:

(1) System (1.1) with fewer controls acting. Note that, when N = 2, it immediately follows from

Theorem 1.1 that only a scalar control insensitizes the functional (1.2). However, when N = 3, to

follow the same techniques used here we would need a Carleman estimate of type (1.24) with only

one φj on the right side, and this is a more complex assignment. A Carleman estimate for just one

scalar control was proved in [CL14], where the authors proved a local null controllability result for

the three-dimensional Navier–Stokes system which has two vanishing components.

(2) Ladyzhenskaya–Boussinesq system. An important observation is that, following the techniques

of this work, it is possible to prove the existence of insensitizing control for the Ladyzhenskaya–

Boussinesq system, described by

yt −∇ ·
(
(ν0 + ν1∥∇y∥2)Dy

)
+ (y · ∇)y +∇p = f + vχω + θeN in Q,

∇ · y = 0 in Q,

θt −∇ ·
(
(ν0 + ν1∥∇y∥2)∇θ

)
+ y · ∇θ = f0 + v0χω in Q,

y(x, t) = 0, θ(x, t) = 0 on Σ,

y(x, 0) = y0 + τ ŷ0, θ(x, 0) = θ0 + τ θ̂0 in Ω.

(3.49)

where

eN =

{
(0, 1) if N = 2,

(0, 0, 1) if N = 3.

More accurately, such techniques would lead us to obtain regularities similar to those established in

Lemmas 1.2–1.4 for the velocity variable y and for the temperature variable θ of the corresponding

linearized system of (3.49). For this, the starting point would be to consider the linearized system of

[CGG15], in which the weights considered for the velocity variable are different from the weights

defined here.

Extending equation (3.49), the same can be done for the complete Ladyzhenskaya–Boussinesq

system (2.1) since ∇y is L4 in time.

(3) Problems with the Kτ and Iτ functionals. As indicated in Section 1.2, it would be interesting to

verify whether it is possible to prove the existence of insensitizing control for (1.1) considering a

functional that depends on the state gradient, that is, considering the sentinel functional given by

Kτ (y) =
1

2

∫∫
O×(0,T )

|∇y|2 dx dt

or by the L2 norm of its curl(∇× y). In other words,

Iτ (y) =
1

2

∫∫
O×(0,T )

|∇ × y|2 dx dt.
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(4) Problems with boundary controls. The other relevant point to considered is the case in which

the boundary data is partially unknown. For example, for simplicity, assume ν0 = 1 and ν1 = 0 in

(1.1) and consider
yt −∆y + (y · ∇) y +∇p = f + vχω, ∇ · y = 0 in Q,

y = g + τ1ĝ on Σ,

y(0) = 0 in Ω,

where g, ĝ ∈ L2(Σ)N with ∥ĝ∥L2(Σ)N = 1 and τ1 is a real and small number. In this case, ĝ and τ1
are unknown. Defining the sentinel functional as

Φτ1(y) = ∥y∥2L2(O×(0,T ))N ,

we obtain by the same arguments applied in Section 1.2 that

∂Φτ1(y)

∂τ1

∣∣∣∣
τ1=0

= 0 if and only if
∂r

∂ν
= 0 a.e. on Σ,

where r corresponds to a formal adjoint of the equation governed by the derivative of y with respect

to τ1 at τ1 = 0 and ∂
∂ν denotes the outward normal derivation. In other words, the insensitizing

control condition is equivalent to ∂r
∂ν = 0 a.e. on Σ. For a better understanding of this case, see

[BF95] in which such a study is carried out for a semilinear heat equation.

As far as we know, results related to the existence (or non-existence) of insensitive boundary

controls for fluid equations are still unknown. Note that, considering our system (1.1), it does not

seem clear that there are controls that insensitize the energy in an open O of the system
yt −∇ · ((ν0 + ν1∥∇y∥2)Dy) + (y · ∇) y +∇p = f in Q,

∇ · y = 0 in Q,

y = vχγ on Σ,

y(0) = y0 + τ ŷ0 in Ω,

(3.50)

where v ∈ L2(Σ)N is the control to be determined acting on γ ⊂ ∂Ω, an open non-empty on the

boundary. However, an interesting open question is the existence of controls that insensitize the

functional Φ̃τ given by

Φ̃τ (y) =
1

2

∫∫
Γ×(0,T )

∣∣∣∣∂y∂ν
∣∣∣∣2 dσ dt,

where y is the solution of (3.50) associated with τ and v, and Γ ⊂ ∂Ω is a new open (non-empty)

boundary such that γ∩Γ ̸= ∅, see [Pér04] for more information about this functional. The difficulty

of this problem lies in analyzing the possibility of obtaining an appropriate Carleman inequality

for a coupled adjoint system of parabolic equations with boundary control, and this is still an open

question.

About Chapter 2:
Initially, note that (2.3) can be solved with the same techniques by taking ν̄(∇ς) := ν0 + ν1∥∇ς∥2L2 .

Furthermore, for our systems (2.1) and (2.3) it is also possible to obtain the local null controllability with

control at the border Γ0 × (0, T ), where Γ0 ⊂ ∂Ω. Indeed, just construct a domain Ω̂ with boundary
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∂Ω̂ sufficiently regular via a subset U of RN such that Ω̂ = Ω ∪U and Ū ∩ (∂Ω− Γ0) = ∅. So, taking

ω ⊂ Ω̂ − Ω̄ and keeping in mind the controllability result for distributed controls, the control at the

boundary is obtained by considering the constraint trace in Ω× (0, T ) of the state of the distributed control

system. That is, since z(x, t) is the solution in Ω̂× (0, T ) of the distributed control system then

u = γ(z |Ω×(0,T )) =

{
γ(z) in Γ0,

0 in ∂Ω− Γ0

is the control on the desired boundary, where γ : H1(Ω) −→ H1/2(∂Ω).

Now, we comment on some open questions that arise naturally in the context of our results.

i) Is it possible the local exact controllability to the trajectories for the systems (2.1) and (2.3)? The

main difficulty for this problem is finding a suitable Carleman estimate.

ii) Is it possible the local exact controllability to (2.1) when N ≥ 4? This is a very difficult question,

because in the proof of Lemma 2.6 we use the immersion H2(Ω) ↪→ L∞(Ω) and this is only valid

when N ≤ 3.

iii) Can we obtain controllability results for (2.3) when 2 < p < 3? Note that in our case the fact that p

is greater than the dimension (p > 3) allowed us to use immersion W 1,p(Ω) ↪→ L∞(Ω).

iv) Finally, can we deduce the null controllability of (2.1) and (2.3) in N dimensions, with N − 1

controls?

About Chapter 3:
Firstly, note that it is possible to apply the same arguments here present in the Boussinesq system.

More specifically, representing the temperature variable by θ, we have the well-known Boussinesq system

u′ − ν∆u+ (u · ∇)u = θeN + f −∇p in Q̂,

θ′ −∆θ + u · ∇θ = f1 in Q̂,

∇ · u = 0 in Q̂,

u = 0, θ = 0 on Σ̂,

u(·, 0) = u0, θ(., 0) = θ0 in Ω0.

(3.51)

Hence, using (3.2) and (3.4), we obtain for ϵ > 0 the following problem penalized

u′ϵ − ν∆uϵ + (uϵ · ∇)uϵ +
1
ϵα(x, t)u

′
ϵ − 1

ϵβ(x, t)∆u
′
ϵ = θϵ

′eN + f̃ −∇pϵ in Q,

θϵ
′ −∆θϵ

′ + uϵ
′ · ∇θϵ′ + 1

ϵα(x, t)θϵ
′ − 1

ϵβ(x, t)∆θϵ
′ = f̃1 in Q,

∇ · uϵ = 0 in Q,

uϵ = 0, θϵ = 0 on ∂Ω× [0, T ),

uϵ(·, 0) = ũ0, θϵ(., 0) = θ̃0 in Ω0.

(3.52)

Therefore, it is feasible to prove a result for (3.52) similar to Lemma 3.1 and consequently obtain the

existence and uniqueness of strong solutions for (3.51).

Now, we will indicate here some that, as far as we know, are open.
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The Ladyzhenskaya-Smagorinsky kind differential turbulence model, where µ0 and µ1 are positive

constants that represent the kinematic viscosity and turbulent viscosity, respectively.

u′ −∇ · ((µ0 + µ1

∫
Ω
|∇u|2)∇u) + (u · ∇)u = f −∇p in Q̂,

∇ · u = 0 in Q̂,

u = 0 on Σ̂,

u(·, 0) = u0 in Ω0.

(3.53)

Certainly some specific difficulties, due to the occurrence of non-local nonlinear terms, will be encountered

in this problem. For a broader perspective on this model, one can refer to [M C01]. In light of this, we can

contemplate: 

u′ − a(

∫
Ω
|∇u|2)∆u+ (u · ∇)u = f −∇p in Q̂,

∇ · u = 0 in Q̂,

u = 0 on Σ̂,

u(·, 0) = u0 in Ω0.

(3.54)

where a ∈ C1(R) and 0 < m ≤ a(r) ≤M , for all r ∈ R.

Furthermore, akin to [DG91], the subsequent model involving the gradient of u in RN warrants

consideration: 

u′ −∇ · (a(|∇u|2RN )∇u) + (u · ∇)u = f −∇p in Q̂,

∇ · u = 0 in Q̂,

u = 0 on Σ̂,

u(·, 0) = u0 in Ω0.

(3.55)

with a satisfying the same conditions as before.
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APPENDIX A

Appendix to Chapter 1

A.1 Regularity for the nonlinear cascade system (1.7)

Here we prove the existence and uniqueness of, solution for (1.7).

We know from [FLM15] and [HLC18] that, when N = 2, for any y0 ∈ V and any v ∈ L2(ω ×
(0, T )), f ∈ L2(Q)N , the system

wt −∇ ·
(
(ν0 + ν1∥∇w∥2)Dw

)
+ (w · ∇)w +∇p0 = f + vχω,

∇ · w = 0 in Q,

w = 0 on Σ,

w(0) = 0 in Ω.

(A.1)

possesses exactly one strong solution (w, p0), with

w ∈ L2(0, T ;D(A)) ∩ C0([0, T ]; V), wt ∈ L2(0, T ; H),

where A : D(A) → H, the Stokes operator. By definition, one has

D(A) = H2(Ω)N ∩V, A(w) = P (−∆w) ∀w ∈ D(A),

with P : L2(Ω)N → H denoting the usual orthogonal projector. And, when N = 3, this is true if v and f

are sufficiently small.

Therefore, we need regularity for the variable z. Defining, z̄(x, t) = z(x, T − t) in (1.7)2 we get
z̄t − (ν0 + ν1∥∇w∥2)∆z̄ + 2ν1 ((∆w, z̄)L2∆w) +

(
z̄ · ∇t

)
w

−(w · ∇)z̄ +∇q = wχO, ∇ · z̄ = 0 in Q,

z̄ = 0 on Σ,

z̄(0) = 0 in Ω.

(A.2)

For simplicity we will do the calculations with z instead of z̄.

We introduce the eigenfunctions of the Stokes operator, i.e. the solutions to
∆kj +∇γj = λjk

j in Ω,

kj = 0 on ∂Ω,

∥kj∥ = 1, λj → +∞,
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Also, consider the spaces Vm := span{k1, . . . , km} and the following associated Galerkin approxima-

tions 
(z′m, k) + (ν0 + ν1∥∇w∥2)(∇zm,∇k) + 2ν1 ((∆w, zm)∆w, k)

+
(
(zm · ∇t)w, k

)
− ((w · ∇)zm, k) = (wχO, k), ∀k ∈ Vm,

zm : [0, T ] → Vm, z(0) = 0,

(A.3)

By the classical theory of ODE, we can state that the existence and uniqueness of solutions (local in

time) for (A.3) is assured. The uniform estimates that we will obtain next will allow us to define such

solutions for all time t.

Estimate I: Taking k = zm, we deduce that

1

2

d

dt
∥zm∥2 + (ν0 + ν1∥∇w∥2)∥∇zm∥2 + 2ν1 ((∆w, zm)∆w, zm)

+
(
(zm · ∇t)w, zm

)
− ((w · ∇)zm, zm) = (wχO, zm).

(A.4)

Note that, by Lemma 6.1 in Chapter 1 of [Lio69],

b : V ×V ×V −→ R

(u, v, w) 7−→ b(u, v, w) =
N∑

i,k=1

∫
Ω

uk

(
∂vi
∂xk

)
wi dx

defines a continuous trilinear form such that b(u, v, v) = 0. Thus, in (A.4), ((w · ∇)zm, zm) =

b(w, zm, zm) = 0.

Furthermore, since ∫∫
Q

(u · ∇)v w dxdt =

∫∫
Q

(w · ∇t)v u dxdt

then let’s deal with ((zm · ∇)w, zm) = b(zm, w, zm) instead of
(
(zm · ∇t)w, zm

)
.

If N = 2, taking into account that ∥zm∥L4(Ω) ≤ C∥zm∥1/2∥∇zm∥1/2,

|b(zm, w, zm)| ≤ C∥zm∥L4∥∇w∥∥zm∥L4

≤ C∥zm∥1/2∥∇zm∥1/2∥∇w∥∥zm∥1/2∥∇zm∥1/2

≤ C

2ν0
∥zm∥2∥∇w∥2 + ν0

2
∥∇zm∥2.

If N = 3, since H1
0 (Ω) ↪→ L6(Ω) and ∥∇w∥L3(Ω) ≤ C∥∇w∥1/2∥∆w∥1/2,

|b(zm, w, zm)| ≤ C∥zm∥L6(Ω)∥∇w∥L3(Ω)∥zm∥

≤ C∥∇zm∥∥∇w∥1/2∥∆w∥1/2∥zm∥

≤ C∥∇w∥∥∇zm∥2 + C∥∆w∥∥zm∥2.

Also, for both N = 2 and N = 3,

|2ν1 ((∆w, zm)∆w, zm) | ≤ 2ν1

∫
Ω

∇w∇zm dx

∫
Ω

∆wzm dx


≤ 2ν1∥∇w∥∥∇zm∥∥∆w∥∥zm∥

≤ ν1
2
∥∇w∥2∥∇zm∥2 + C∥zm∥2∥∆w∥2.
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Then, for N = 2 in (A.4),

1

2

d

dt
∥zm∥2 + (ν0 + ν1∥∇w∥2)∥∇zm∥2 ≤ C

2ν0
∥∇w∥2∥zm∥2 + ν0

2
∥∇zm∥2

+
ν1
2
∥∇w∥2∥∇zm∥2 + C∥zm∥2∥∆w∥2 + C∥zm∥2 + C

∫
O

|w|2 dx,

thus
1

2

d

dt
∥zm∥2H +

ν0
2
∥zm∥2V +

ν1
2
∥∇w∥2∥zm∥2V

≤ C

∫
O

|w|2 dx+

(
C +

C

2ν0
∥w∥2V + C∥∆w∥2

)
∥zm∥2H.

Integrating from 0 to t and using the Gronwall’s Lemma, since w ∈ L2(0, T ;D(A) ∩V) ∩ C0([0, T ]; V)

and

C +
C

2ν0
∥w∥2v + C∥∆w∥2 ∈ L1(0, T ),

we get

|zm|L∞(0,T ;H) + |zm|L2(0,T ;V) < +∞. (A.5)

And, if N = 3 in (A.4),

1

2

d

dt
∥zm∥2 + (ν0 + ν1∥∇w∥2)∥∇zm∥2 ≤ ν1

2
∥∇w∥2∥∇zm∥2 + C∥zm∥2∥∆w∥2

+C∥∇w∥∥∇zm∥2 + C∥∆w∥∥zm∥2 + C∥zm∥2 + C

∫
O

|w|2 dx.

Using the same arguments as above, we have

|zm|L∞(0,T ;H) + |zm|L2(0,T ;V) < +∞. (A.6)

Estimate II: Noticing that Azm(t) ∈ Vm and taking k = Azm(t) in (A.3), we see that(
(zm · ∇t)w,Azm

)
= ((Azm · ∇)w, zm) = b(Azm, w, zm) = −b(Azm, zm, w),

since b(u, v, w) = −b(u,w, v).
When N = 2, one has

|b(Azm, zm, w)| ≤ C∥Azm∥∥∇zm∥L4(Ω)∥w∥L4(Ω)

≤ C∥∇zm∥2∥∇w∥4 + ν0
6
∥Azm∥2;

| ((w · ∇)zm, Azm) | = |b(w, , zm, Azm)| ≤ C∥Azm∥∥∇zm∥L4(Ω)∥w∥L4(Ω)

≤ C∥∇zm∥2∥∇w∥4 + ν0
6
∥Azm∥2.

Therefore,

1

2

d

dt
∥∇zm∥2 + 1

2
(ν0 + ν1∥∇w∥2)∥∆zm∥2 ≤ C

(
∥∇w∥4 + ∥∆w∥2

)
∥∇zm∥2 + C

∫
O

|w|2 dx.

(A.7)

Consequently, by Gronwall’s Lemma,

|zm|L∞(0,T ;V) + |zm|L2(0,T ;D(A)) < +∞. (A.8)
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Now, when N = 3, the nonlinear term can be bounded as follows:

|b(Azm, zm, w)| ≤ C∥w∥L6(Ω)∥∇zm∥L3(Ω)∥Azm∥

≤ C∥∇w∥∥∇zm∥1/2∥∆zm∥1/2∥∆zm∥

= C∥∇w∥∥∇zm∥1/2∥∆zm∥3/2

≤ C∥∇w∥4∥∇zm∥2 + ν0
6
∥∆zm∥2;

| ((w · ∇)zm, Azm) | = |b(w, zm, Azm)| ≤ C∥w∥L6(Ω)∥∇zm∥L3(Ω)∥Azm∥

≤ C∥∇w∥4∥∇zm∥2 + ν0
6
∥Azm∥2.

Thus, we have an estimate analogous to (A.7) and therefore

|zm|L∞(0,T ;V) + |zm|L2(0,T ;D(A)) < +∞. (A.9)

Estimate III: Taking k = z′m in (A.3),

∥z′m∥2 = (ν0 + ν1∥∇w∥2)(∆zm, z′m) + (wχO, z
′
m)

−2ν1 ((∆w, zm)∆w, z′m)− b(z′m, w, zm) + b(w, zm, z
′
m).

(A.10)

Note that the third term on the right-hand side can be bounded as follows:

|2ν1 ((∆w, zm)∆w, z′m) | ≤ C∥∇w∥2∥∇zm∥2∥∆w∥2 + 1

10
∥z′m∥2.

Therefore, when N = 2, using the continuous embedding H1
0 (Ω) ↪→ L4(Ω), we can compute that

|b(z′m, w, zm)| ≤ C∥z′m∥∥∇w∥L4(Ω)∥zm∥L4(Ω)

≤ C∥∆w∥2∥∇zm∥2 + 1

10
∥z′m∥2;

and
|b(w, zm, z′m)| ≤ C∥w∥L4(Ω)∥∇zm∥L4(Ω)∥z′m∥

≤ C∥∇w∥∥∇zm∥1/2∥∆zm∥1/2∥z′m∥

≤ C∥∇w∥2∥∇zm∥∥∆zm∥+ 1

10
∥z′m∥2

≤ C∥∇w∥2∥∇zm∥2 + C∥∇w∥2∥∆zm∥2 + 1

10
∥z′m∥2;

Thus,
1

2
∥z′m∥2 ≤

[
(ν0 + ν1∥∇w∥2)2 + C∥∇w∥2

]
∥∆zm∥2 + C

(
∥∇w∥2∥∆w∥2

+ ∥∆w∥2 + ∥∇w∥2
)
∥∇zm∥2 +

∫
O

|w|2 dx

which, integrating from 0 to t and using the regularity of w and Estimate II, we obtain

|z′m|L2(0,T ;L2(Ω)2) < +∞. (A.11)

Now, if N = 3, note that

|b(z′m, w, zm)| ≤ C∥zm∥L6(Ω)∥∇w∥L3(Ω)∥z′m∥L2(Ω)

≤ C∥∇zm∥∥∇w∥1/2∥∆w∥1/2∥z′m∥

≤ C∥∇w∥∥∆w∥∥∇zm∥2 + 1

10
∥z′m∥2

≤ C∥w∥2D(A)∥∇zm∥2 + 1

10
∥z′m∥2;
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and
|b(w, zm, z′m)| ≤ C∥w∥L6(Ω)∥∇zm∥L3(Ω)∥z′m∥L2(Ω)

≤ C∥∇w∥∥∇zm∥1/2∥∆zm∥1/2∥z′m∥

≤ C∥∇w∥2∥∇zm∥∥∆zm∥+ 1

10
∥z′m∥2

≤ C∥∇w∥2∥zm∥2D(A) +
1

10
∥z′m∥2.

Therefore,

1

2
∥z′m∥2 ≤ (ν0 + ν1∥∇w∥2)2∥∆zm∥2 + C(∥∇w∥2∥∆w∥2 + ∥w∥2D(A))∥∇zm∥2

+C∥∇w∥2∥zm∥2D(A).

Whence can we conclude, by regularity of w and Estimate II, that

|z′m|L2(0,T ;L2(Ω)3) < +∞. (A.12)

The uniform bounds Estimate I - Estimate III, allow us to take limits in (A.3), at least for a subsequence,

as m→ ∞. In other words, we have{
zm −→ z weak in L2(0, T ;D(A) ∩V),

z′m −→ z weak in L2(Q)N ,
(A.13)

with (z, q) soution of (A.2). Indeed, let’s look at some terms:

For simplicity we will omit the summation in

b(w, zm, k) =

N∑
i,j=1

∫
Ω

wj

(
∂zmi

∂xj

)
ki dx.

Then, for the first convergence of (A.13), for all k ∈ L2(0, T ; V)∫ T

0
b(w, zm, k) =

∫ T

0

∫
Ω

wj

(
∂zmi

∂xj

)
ki dx

= −
∫ T

0

∫
Ω

∂

∂xj
(wjki)zmi dx dt

= −
∫ T

0

∫
Ω

(∇ · w ki zmi + wj
∂ki
∂xj

zmi) dx dt

= −
∫ T

0

∫
Ω

wj
∂ki
∂xj

zmi dx dt.

So

•
∫ T

0
b(w, zm, k) −→ −

∫ T

0

∫
Ω

wj
∂ki
∂xj

zi dx dt = −
∫ T

0
b(w, k, z) dt =

∫ T

0
b(w, z, k) dt,

as m→ ∞. Analogously, we have

•
∫ T

0

(
(zm · ∇t)w, k

)
dt =

∫ T

0
((k · ∇)w, zm) dt

=

∫ T

0
b(k,w, zm) dt −→

∫ T

0
b(k,w, z) dt =

∫ T

0

(
(z · ∇t)w, k

)
dt,
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as m→ ∞.

Now, notice the following:∫ T

0
((∆w, zm)∆w, k) dt =

∫ T

0
((∇w,∇zm)∇w,∇k) dt

≤
∫ T

0

∫
Ω

∇w∇zm

∫
Ω

∇w∇k dx dt

≤
∫ T

0
∥∇w∥∥∇zm∥∥∇w∥∥∇k∥dt

≤ C

∫ T

0
∥∇zm∥∥∇k∥ dt

≤ C|zm|L∞(0,T ;V)|k|L2(0,T ;V) < +∞.

(A.14)

We know from the Aubin-Lions Lemma (see, Theorem 5.1 Chap. 1 in [Lio69]) that the following

immersion is compact

W = {u; u ∈ L2(0, T ;H1
0 (Ω)), ut ∈ L2(0, T ;H−1(Ω))} ↪→ L2(0, T ;L2(Ω)).

Therefore, since |zm|L2(0,T ;H1
0 (Ω)N ) ≤ C and |z′m|L2(0,T ;H−1(Ω)N ) ≤ C we have, at least one subsequence,

that {
zm −→ z strong in L2(Q)N .

zm −→ z a.e in Q.
(A.15)

Fixing w ∈ L2(0, T ; V), it is easily obtained that the map

Gw : L2(0, T ; V) −→ R

z 7−→ Gw(z) =

∫ T

0
(∇w,∇z) dt

is continuous. Then, (∇w,∇zm) −→ (∇w,∇z) a.e. inQ and consequently

((∆w, zm)∆w, k) −→ ((∆w, z)∆w, k) a.e inQ. (A.16)

Thus, from (A.14) and (A.16) we can apply the Lions Lemma (see, Lemma 1.3, Chap. 1 in [Lio69]),

((∆w, zm)∆w, k) −→ ((∆w, z)∆w, k) weak inL2(Q)N .

The other terms follow in a standard way. This shows us that (z, q) satisfies∫ T

0

[
(z′, k) + (ν0 + ν1∥∇w∥2)(∇z,∇k) + 2ν1 ((∆w, z)∆w, k) + b(k,w, z)

− b(w, z, k)] dt =

∫ T

0
(wχO, k) dt, ∀ k =

N∑
j=1

hjk
i, hj ∈ L2(0, T )

(A.17)

which is dense in L2(0, T ; V), i.e., (A.17) holds for all k ∈ L2(0, T ; V) and consequently (z, q) is strong

solution of (A.2), with

z ∈ L2(0, T ;D(A) ∩V) ∩ C0([0, T ]; V), and zt ∈ L2(0, T ; H).

This ends the existence of a solution for (1.7).
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The uniqueness of the strong solution to (1.7) can be proved in a standard way. Indeed, we know

that (1.7)1 has a unique solution. Suppose then that (A.2) has two solutions, i.e., (z1, q1) and (z2, q2) are

strong solutions and we set z = z1 − z2. Therefore, z satisfies{
(zt, k)− (ν0 + ν1∥∇w∥2)(∆z, k) + 2ν1 ((∆w, z)∆w, k) +

(
(z1 · ∇t)w, k

)
−
(
(z2 · ∇t)w, k

)
−
(
(w · ∇)z1, k

)
+
(
(w · ∇)z2, k

)
= 0, in D′(0, T ), ∀k ∈ V.

Taking k = −∆z in the previous equality, we find that

1

2

d

dt
∥∇z∥2 + (ν0 + ν1∥∇w∥2)∥∆z∥2 = −2ν1 ((∆w, z)∆w,−∆z)

+ ((w · ∇)z,−∆z)−
(
(z · ∇t)w,−∆z

)
.

Arguing in the same way as for the existence, we get

1

2

d

dt
∥∇z∥2 + 1

2
(ν0 + ν1∥∇w∥2)∥∆z∥2 ≤ C

(
∥w∥2 + ∥∆w∥2

)
∥∇z∥2.

Integrating from 0 to t, using Gronwall’s Lemma and the fact that z(0) = 0 in Ω, we conclude that

∥z∥V = 0 implying z1 = z2 in Ω,

proving the uniqueness.
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APPENDIX B

Appendix to Chapter 2

B.1 Existence and uniqueness of solution for (2.1)

The following theorem will show the existence and uniqueness of strong solutions for (2.1). In sequel,

unless otherwise specified, the symbol C represents a generic positive constant.

Theorem B.1. There exists R > 0 such that if,

∥v∥2L2(ω×(0,T ))N + ∥v0∥2L2(ω×(0,T )) + ∥y0∥V + ∥θ0∥
W

1,3/2
0 (Ω)

< R.

then there exists a unique (y, p, θ) strong solution of (2.1) in the class{
y ∈ L2(0, T ;H2(Ω)N ∩ V ) ∩ C(0, T ;V ), yt ∈ L2(0, T ;H)

θ ∈ L2(0, T ;W 2,3/2(Ω)), θt ∈ L2(0, T ;L3/2(Ω)).

Proof. Existence: We will apply Faedo-Galerkin method to obtain the proof, be orthonormal eigenfunc-

tions of the Stokes operator, i.e, the solutions to{
−∆um +∇pm = λmum in Ω,

um = 0 on ∂Ω,

and {wm}m∈N the basis formed by the eigenfunctions of the Dirichlet Laplacian in Ω. Consider, for

m ∈ N, Um = span{u1, u2, . . . , um} and Vm = span{w1, w2, . . . , wm}. Let us introduce the finite

dimensional Galerkin approximations as follows: find ym, θm, with ym(t) ∈ Um and θm(t) ∈ Vm for all

t, associated with the initial data (y0, θ0), such that

(y′m, u) + ((ν0 + ν1∥∇ym∥2)∇ym,∇u) + ((ym · ∇)ym, u) = (ν0θmeN , u)

+(v1ω, u),∀u ∈ Um,

(θ′m, w) + ((ν0 + ν1∥∇ym∥2)∇θm,∇w) + (ym · ∇θm, w) = (v01ω, w)

+((ν0 + ν1∥∇ym∥2)Dym : ∇ym, w),∀w ∈ Vm,

ym(0) = y0m → y0 in V, θm(0) = θ0m → θ0 in L2(Ω).

(B.1)

The classical ODE theory gives us the existence and uniqueness of a solution for (B.1), in local time. By

means of the uniform estimates that we will obtain below, we will be able to define such solutions for all

time t.
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Estimate I: Multiplying the first row of (B.1) by λ1, taking u = −∆ym(t) and w = θm(t) in the first

and second equation of (B.1) and knowing that ∥.∥L3 ≤ C∥.∥1/2∥.∥1/2
H1 , we have

• λ1(y′m,−∆ym) =
λ1
2

d

dt
∥∇ym∥2;

• (θ′m, θm) =
1

2

d

dt
∥θm∥2;

• ((ν0 + ν1∥∇ym∥2)∇θm,∇θm) = (ν0 + ν1∥∇ym∥2)∥∇θm∥2;

• λ1((ν0 + ν1∥∇ym∥2)∇ym,∇(−∆ym)) = λ1(ν0 + ν1∥∇ym∥2)∥∆ym∥2

= λ1ν0∥∆ym∥2 + λ1ν1∥∇ym∥2∥∆ym∥2;

• λ1|(ν0θmeN ,−∆ym)| ≤ λ1ν0∥θmeN∥∥∆ym∥

≤ λ1ν0
2

(
∥θm∥2 + ∥∆ym∥2

)
≤ ν0

2
∥∇θm∥2 + λ1ν0

2
∥∆ym∥2; (∥.∥2 ≤ 1/λ1∥∇.∥2)

• λ1|(v1ω,−∆ym)| ≤ λ1∥v1ω∥∥∆ym∥ ≤ Ĉ1(ν0, λ1)∥v∥2L2(ω)N
+
λ1ν0
4

∥∆ym∥2; (ϵ = ν0/4)

• |(v01ω, θm)| ≤ ∥v01ω∥∥θm∥ ≤ C∥v01ω∥∥∇θm∥

≤ Ĉ2(Ω, ν0)∥v0∥2L2(ω) +
ν0
8
∥∇θm∥2; ab < ϵa2 + (1/4ϵ)b2; (ϵ = ν0/8)

• λ1|((ym · ∇)ym,−∆ym)| ≤ λ1C∥ym∥L6∥∇ym∥L3∥∆ym∥

≤ λ1C∥∇ym∥∥∇ym∥1/2∥∆ym∥1/2∥∆ym∥

≤ λ1C∥∇ym∥3/2∥∆ym∥3/2(∥∇ym∥ ≤ C∥∆ym∥)

≤ Ĉ3(Ω, λ1)∥∇ym∥∥∆ym∥2;

and

•
∣∣∣∣∫

Ω
(ν0 + ν1∥∇ym∥2)|∇ym|2|θm|dx

∣∣∣∣
≤ (ν0 + ν1∥∇ym∥2)

(∫
Ω
(|∇ym|2)3/2dx

)2/3(∫
Ω
|θm|3dx

)1/3

(2/3 + 1/3 = 1)

= (ν0 + ν1∥∇ym∥2)∥∇ym∥2L3∥θm∥L3

≤ C(ν0 + ν1∥∇ym∥2)∥∇ym∥∥∆ym∥∥θm∥1/2∥∇θm∥1/2(∥θm∥ ≤ 1/
√
λ1∥∇θm∥)

≤ C(ν0 + ν1∥∇ym∥2)∥∇ym∥∥∆ym∥ ∥∇θm∥

≤ Cν0∥∇ym∥∥∆ym∥ ∥∇θm∥+ Cν1∥∇ym∥2∥∇ym∥∥∆ym∥ ∥∇θm∥

≤ Ĉ4(Ω, ν0, λ1)∥∇ym∥2∥∆ym∥2 + ν0
16

∥∇θm∥2 + Ĉ5(Ω, ν0, ν1, λ1)∥∇ym∥6∥∆ym∥2 + ν0
16

∥∇θm∥2.

Then,
1

2

d

dt
(λ1∥∇ym∥2 + ∥θm∥2) + ν0

4
∥∇θm∥2 + ν1∥∇ym∥2∥∇θm∥2

+λ1ν1∥∇ym∥2∥∆ym∥2 + λ1ν0
8

∥∆ym∥2 +
[
λ1ν0
8

− Ĉ3(Ω, λ1)∥∇ym∥

−Ĉ4(Ω, ν0, λ1)∥∇ym∥2 − Ĉ5(Ω, ν0, ν1, λ1)∥∇ym∥6
]
∥∆ym∥2

≤ Ĉ2(Ω, ν0)∥v0∥2L2(ω) + Ĉ1(ν0, λ1)∥v∥2L2(ω)N
,

(B.2)
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For simplicity of notation, we will omit the dependencies of the constants already known. Hence, the

following statement is valid:

Affirmation 1.

Ā(t) = Ĉ3∥∇ym(t)∥+ Ĉ4∥∇ym(t)∥2 + Ĉ5∥∇ym(t)∥6 < λ1ν0
8

, ∀ t ∈ [0, Tm]. (B.3)

Indeed, assuming by contradiction that (B.3) is false then there exist t1m such that

Ā(t) <
λ1ν0
8

, ∀ 0 ≤ t < t1m

and

Ā(t1m) =
λ1ν0
8

. (B.4)

By hypothesis, there is ρ̃0 > 0 such that

∥v∥2L2(ω×(0,T ))N + ∥v0∥2L2(ω×(0,T )) + ∥y0∥V + ∥θ0∥
W

1,3/2
0 (Ω)

< ρ̃0.

Then, we have 

Ĉ3∥∇y0∥+ Ĉ4∥∇y0∥2 + Ĉ5∥∇y0∥6 <
λ1ν0
8

,

Ĉ1∥v∥2L2(ω×(0,T ))N
+ Ĉ2∥v0∥2L2(ω×(0,T )) +

1

2
(λ1∥∇y0∥2 + ∥θ0∥2)

< min

{
λ1

2ν0

48Ĉ4

, λ1
3

(
ν0

24
√
2Ĉ3

)2

, λ1
4/3

(
ν0

192Ĉ5

)1/3
}
.

(B.5)

Integrating (B.2) from 0 to t1m, we obtain

1

2

(
λ1∥∇ym(t1m)∥2 + ∥θm(t1m)∥2

)
+
ν0
4

∫ t1m

0
∥∇θm∥2dt+ λ1ν0

8

∫ t1m

0
∥∆ym∥2dt

≤ Ĉ1∥v∥2L2(ω×(0,T ))N
+ Ĉ2∥v0∥2L2(ω×(0,T )) +

1

2
(λ1∥∇y0∥2 + ∥θ0∥2).

(B.6)

Then from (B.5) and (B.6) we arrive at Ā(t1m) < λ1ν0/8, which contradicts (B.4). Therefore, (B.3)

holds and we obtain that

1

2

(
λ1∥∇ym(t)∥2 + ∥θm(t)∥2

)
+
ν0
4

∫ t

0
∥∇θm(s)∥2ds+ λ1ν0

8

∫ t

0
∥∆ym(s)∥2ds

≤ Ĉ1∥v∥2L2(ω×(0,T ))N
+ Ĉ2∥v0∥2L2(ω×(0,T )) +

1

2
(λ1∥∇y0∥2 + ∥θ0∥2)∀ t ∈ [0, Tm].

(B.7)

As the term on the right side of (B.7) is independent of m, we can extend the solution (ym, θm) to the

entire interval [0, T ] and in the same way we can estimate (B.7) for t ∈ [0, T ]. More precisely,

∥ym∥2L∞(0,T ;V ) + ∥θm∥2L∞(0,T ;L2(Ω)) + ∥ym∥2
L2(0,T ;H2(Ω)N∩V )

+ ∥θm∥2
L2(0,T ;H1

0 (Ω))

≤ C(∥y0∥2V + ∥θ0∥2 + ∥v∥2
L2(ω×(0,T ))N

+ ∥v0∥2L2(ω×(0,T ))).
(B.8)

Estimate II: Taking u = y′m in the first equation of (B.1), we obtain after some calculations

1

2

∫ t

0
∥yt,m(s)∥2ds+ ν0

2
∥∇ym(t)∥2 + ν1

4
∥∇ym(t)∥4

≤ C

∫ t

0
∥∆ym(s)∥2∥∇ym(s)∥2ds+ C

∫ t

0
∥θm(s)∥2ds+ ∥v∥2L2(ω×(0,T ))N

+
ν0
2
∥∇y0∥2 + ν1

4
∥∇y0∥4,
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therefore, using Estimate I and the Gronwall’s Lemma, we arrive at

∥yt,m∥2L2(0,T ;H) + ∥ym∥2L∞(0,T ;V )

≤ C(∥y0∥2V + ∥y0∥4V + ∥θ0∥2 + ∥v∥2
L2(ω×(0,T ))N

+ ∥v0∥2L2(ω×(0,T ))).
(B.9)

Estimate III: Since the θm are the eigenfunctions of −∆ in H1
0 (Ω), we have from Estimate I,

∥θt,m∥2L2(0,T ;H−1(Ω)) ≤ C(∥y0∥2V + ∥θ0∥2 + ∥v∥2L2(ω×(0,T ))N + ∥v0∥2L2(ω×(0,T ))). (B.10)

From estimates (B.8), (B.9) and (B.10) we can extract subsequences of {ym} and {θm} denoted

equal, so that taking the limit m→ ∞ in the equation (B.1), ym and θm converge to a solution (weak) of

(2.1). Indeed, to obtain the a.e. convergence of nonlocal terms, just use the fact that the sequence ym is

pre-compact in L2(0, T ;V ).

This solution must satisfy{
y ∈ L2(0, T ;H2(Ω)N ∩ V ) ∩ C(0, T ;V ), yt ∈ L2(0, T ;H)

θ ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)), θt ∈ L2(0, T ;H−1(Ω))

where y strong solution in first equation in (2.1) and θ weak solution in second equation in (2.1).

Furthermore, since (ν0 + ν1∥∇y∥2)Dy : ∇y + v01ω ∈ L2(0, T ;L3/2(Ω))(see (2.47)) and θ0 ∈
W

1,3/2
0 (Ω), from Lp − Lq regularity for parabolic equation (see, [DHP07]), we have θ solution of

θt −∇ · (ν(∇y)Dθ) + y · ∇θ = v01ω + ν(∇y)Dy : ∇y in Q,

θ(x, t) = 0 on Σ,

θ(x, 0) = θ0(x) in Ω.

(B.11)

in class θ ∈ L2(0, T ;W 2,3/2(Ω)), θt ∈ L2(0, T ;L3/2(Ω)).

This yields (2.5).

Uniqueness: Let (u, q, w) = (y1, p1, θ1)− (y2, p2, θ2), where (y1, p1, θ1) and (y2, p2, θ2) are solu-

tions of problem (2.1). Then, we got

ut − ν0∆u− ν1∥∇y1∥2∆y1 + ν1∥∇y2∥2∆y2 + (u · ∇)y1 + (y2 · ∇)u

+∇q = ν0weN , ∇ · u = 0 in Q,

wt − ν0∆w − ν1(∥∇y1∥2)∆θ1 − ∥∇y2∥2∆θ2) + u · ∇θ1 + y2 · ∇w

= ν0Dy
1 : ∇y1 − ν0Dy

2 : ∇y2 + ν1∥∇y1∥2Dy1 : ∇y1 − ν1∥∇y2∥2Dy2 : ∇y2 in Q,

u(x, t) = 0, w(x, t) = 0 on Σ,

u(x, 0) = 0, w(x, 0) = 0 in Ω.

Which we can rewrite as follows

ut − ν0∆u− ν1[∥∇y1∥2∆u+ (∥∇y1∥+ ∥∇y2∥)(∥∇y1∥ − ∥∇y2∥)∆y2]

+(u · ∇y1) + (y2 · ∇)u+∇q = ν0weN , ∇ · u = 0 in Q,

wt − ν0∆w − ν1[∥∇y1∥2∆w + (∥∇y1∥+ ∥∇y2∥)(∥∇y1∥ − ∥∇y2∥)∆θ2]

+u · ∇θ1 + y2 · ∇w = ν0(Du : ∇y1 +Dy2 : ∇u) + ν1[∥∇y1∥2Du : ∇y1

+(∥∇y1∥+ ∥∇y2∥)(∥∇y1∥ − ∥∇y2∥)Dy2 : ∇u] in Q,

u(x, t) = 0, w(x, t) = 0 on Σ,

u(x, 0) = 0, w(x, 0) = 0 in Ω.

(B.12)
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Multiplying by −∆u and w in first and second line of (B.12), respectively, and integrating in Ω, we obtain

1

2

d

dt
(∥∇u∥2 + ∥w∥2) + (ν0 + ν1∥∇y1∥2)(∥∆u∥2 + ∥∇w∥2)

=

∫
Ω

(∥∇y1∥+ ∥∇y2∥)(∥∇y1∥ − ∥∇y2∥)∆y2∆u+

∫
Ω

[(u · ∇y1)∆u

+(y2 · ∇u)∆u]−
∫
Ω
we3∆u+

∫
Ω

(∥∇y1∥+ ∥∇y2∥)(∥∇y1∥ − ∥∇y2∥)∇θ2∇w

−
∫
Ω

u · ∇θ1w +

∫
Ω

ν0[(Du : ∇y1)w + (Dy2 : ∇u)w]

+

∫
Ω

(∥∇y1∥+ ∥∇y2∥)(∥∇y1∥ − ∥∇y2∥)Dy2 : ∇uw =
7∑

i=1

Li.

Notice that,

|L1| ≤
∫
Ω

C(∥∇y1∥+ ∥∇y2∥)∥∇u∥|∆y2||∆u∥

≤ C(∥∇y1∥+ ∥∇y2∥)2∥∇u∥2∥∆y2∥2 + 1

ϵ
∥∆u∥2;

SinceN ≤ 3, by continuous embeddingH2(Ω) ↪→ L∞(Ω),H1(Ω) ↪→ L4(Ω) and inequality ∥f∥H2(Ω) ≤
C∥∆f∥ to any f ∈ H2(Ω) ∩H1

0 (Ω), we achieved

|L2| ≤ C∥u∥L4(Ω)∥∇y1∥L4(Ω)∥∆u∥+ C∥y2∥∞∥∇u∥∥∆u∥

≤ C∥∇u∥∥∆y1∥∥∆u∥+ C∥∆y2∥∥∇u∥∥∆u∥

≤ 1

ϵ
∥∆u∥2 + C(∥∆y1∥2 + ∥∆y2∥2)∥∇u∥2;

|L3| ≤
1

ϵ
∥∆u∥2 + C∥w∥2;

|L4| ≤ C(∥∇y1∥+ ∥∇y2∥)2∥∇u∥2 + C∥∇θ2∥2∥∇u∥2;

|L5| ≤ C∥u∥∞∥∇θ1∥∥w∥

≤ C∥∆u∥∥∇θ1∥∥w∥

≤ 1

ϵ
∥∆u∥2 + C∥∇θ1∥2∥w∥2;

|L6| ≤ C∥∇u∥L4(Ω)∥∇y1∥L4(Ω)∥w∥+ C∥∇y2∥L4(Ω)∥∇u∥L4(Ω)∥w∥

≤ 1

ϵ
∥∆u∥2 + C(∥∆y1∥2 + ∥∆y2∥2)∥w∥2;

Finally,

|L7| ≤ C (∥∇y1∥+ ∥∇y2∥)∥∇y1∥∥∇y2∥L4(Ω)∥∇u∥L4(Ω)∥w∥

+C (∥∇y1∥+ ∥∇y2∥)∥∇y2∥∥∇y2∥L4(Ω)∥∇u∥L4(Ω)∥w∥

≤ 1

ϵ
∥∆u∥2 + C

[
(∥∇y1∥+ ∥∇y2∥)2(∥∇y1∥2 + ∥∇y2∥2)∥∆y2∥2

]
∥w∥2.
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Consequently,

1

2

d

dt
(∥∇u∥2 + ∥w∥2) + (ν0 + ν1∥∇y1∥2)(∥∆u∥2 + ∥∇w∥2)

≤ 6

ϵ
∥∆u∥2 + C

[
(∥∇y1∥+ ∥∇y2∥)2(∥∆y2∥2 + 1) + ∥∇θ2∥2

+ ∥∆y1∥2 + ∥∆y2∥2
]
∥∇u∥2 + C

[
1 + ∥∇θ1∥2 + ∥∆y1∥2 + ∥∆y2∥2

+ (∥∇y1∥+ ∥∇y2∥)2(∥∇y1∥2 + ∥∇y2∥2)∥∆y2∥2
]
∥w∥2

=
6

ϵ
∥∆u∥2 + CL8∥∇u∥2 + CL9∥w∥2,

(B.13)

where

L8 = (∥∇y1∥+ ∥∇y2∥)2(∥∆y2∥2 + 1) + ∥∇θ2∥2 + ∥∆y1∥2 + ∥∆y2∥2

and

L9 = 1 + ∥∇θ1∥2 + ∥∆y1∥2 + ∥∆y2∥2 + (∥∇y1∥+ ∥∇y2∥)2(∥∇y1∥2 + ∥∇y2∥2)∥∆y2∥2.

Taking ϵ = 12/ν0 and integrating (B.13) from 0 to t,

∥∇u(t)∥2 + ∥w(t)∥2 +
∫ t

0
(ν0 + ν1∥∇y1∥2)(∥∆u(s)∥2 + ∥∇w(s)∥2)ds

≤ 0 +

∫ t

0
C(L8 + L9)(∥∇u(s)∥2 + ∥w(s)∥2)ds.

Hence, applying Gronwall’s Lemma, we obtain u(t) = 0 and w(t) = 0, for all t ∈ [0, T ]. Consequently,

(y1, p1, θ1) = (y2, p2, θ2) confirming the uniqueness of the solution.

Proof of Lemma 2.12 Continuing as in the proof of the existence of solution, we will make an

additional estimate for the temperature term. More accurately, taking w = −∆θm(t) in the second

equation of (B.1), using the inequalities ∥.∥L3 ≤ C∥.∥1/2∥.∥1/2
H1 , ∥.∥L4 ≤ C∥.∥1/2∥.∥1/2

H1 and (B.2) we

deduce

1

2

d

dt
(λ1∥∇ym∥2 + ∥θm∥2 + ∥∇θm∥2) + ν0

4
(∥∇θm∥2 + ∥∆θm∥2)

+ν1∥∇ym∥2∥∆θm∥2 + λ1ν1∥∇ym∥2∥∆ym∥2 + λ1ν0
8

∥∆ym∥2

+
(
ν1 − Ĉ6∥∇ym∥2

)
∥∇ym∥2∥∇θm∥2 +

[
λ1ν0
8

− Ĉ3∥∇ym∥

−Ĉ9∥∇ym∥2 − Ĉ10∥∇ym∥6
]
∥∆ym∥2 ≤ 0,

(B.14)

where Ĉ9 = max{Ĉ4, Ĉ7} and Ĉ10 = max{Ĉ5, Ĉ8} with Ĉ7 and Ĉ8 constants coming from the estimate

of −∆θm(t). Remembering that Ĉi, i = {1, . . . , 10} are constants that may depend on Ω, ν0, ν1 and λ1.

In a similar way to what was done for (B.2) we can obtain that all terms on the left side of (B.14) are

positive. Just as was done for (B.3), we can obtain that the last term on the left side of (B.14) is positive.

Therefore, we just need to prove the following statement:

Affirmation 2.

B(t) = Ĉ6∥∇ym(t)∥2 < ν1, ∀ t ∈ [0, Tm]. (B.15)
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Indeed, suppose by contradiction that (B.15) is false then there exist t∗m such that

B(t) < ν1, ∀ 0 ≤ t < t∗m

and

B(t∗m) = ν1. (B.16)

Since there is r > 0 such that

∥y0∥V + ∥θ0∥H1
0 (Ω) < r

we have,

∥∇y0∥2 < λ1ν1

2Ĉ6

. (B.17)

Integrating (B.14) from 0 to t∗m, we obtain

1

2

(
λ1∥∇ym(t∗m)∥2 + ∥θm(t∗m)∥2 + ∥∇θm(t∗m)∥2

)
+
ν0
4

∫ t∗m

0
∥∇θm∥2dt

+
λ1ν0
8

∫ t∗m

0
∥∆ym∥2dt+ ν0

4

∫ t∗m

0
∥∆θm∥2dt

≤ 1

2
(λ1∥∇y0∥2 + ∥θ0∥2 + ∥∇θ0∥2)

(B.18)

and consequently B(t∗m) < ν1, contradicting (B.16).

Therefore, (B.15) holds and we conclude that

1

2

d

dt
(λ1∥∇ym(t)∥2 + ∥θm(t)∥2 + ∥∇θm(t)∥2) + ν0

4
∥∇θm(t)∥2

+
λ1ν0
8

∥∆ym(t)∥2 ≤ 0,∀t ∈ [0, T ]

which we will rewrite in the form

d

dt
Φm(t) +

ν0
2
∥∇θm∥2 + λ1ν0

4
∥∆ym∥2 ≤ 0, (B.19)

where Φm(t) = λ1∥∇ym∥2 + ∥θm∥2 + ∥∇θm∥2. Note that,

Φm(t) ≤ C̃1ν0
2

2∥∇θm∥2 + C̃2λ1ν0
4

∥∆ym∥2 ≤ Ĉ

(
ν0
2
∥∇θm∥2 + λ1ν0

4
∥∆ym∥2

)
where C̃1, C̃2 > 0 and Ĉ = max{C̃1, C̃2}. Thus, from (B.19),

d

dt
Φm(t) +

1

Ĉ
Φm(t) ≤ 0

which results in

Φm(t) ≤ e(−1/Ĉ)tΦm(0).

Then

λ1∥∇y(t, .)∥2 + ∥θ(t, .)∥2 + ∥∇θ(t, .)∥2 ≤ lim inf
m→∞

Φm(t)

≤ e(−1/Ĉ)t(λ1∥∇y0∥2 + ∥θ0∥2 + ∥∇θ0∥2),

and consequently one can deduce (2.71).
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