
PATTERN CONTROL VIA DIFFUSION INTERACTION
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Abstract. We analyse a dynamic control problem for scalar reaction-diffusion equations, focusing on

the emulation of pattern formation through the selection of appropriate active controls. While boundary
controls alone prove inadequate for replicating the complex patterns seen in biological systems, particu-

larly under natural point-wise constraints of the system state, their combination with the regulation of

the diffusion coefficient enables the successful generation of such patterns.
Our study demonstrates that the set of steady-states is path-connected, facilitating the use of the

staircase method. This approach allows any admissible initial configuration to evolve into any stationary

pattern over a sufficiently long time while maintaining the system’s natural bilateral constraints.
We provide also examples of complex patterns that steady-state configurations can adopt.

1. Introduction

1.1. Problem formulation and main results. Reaction-diffusion equations are ubiquitous in modeling
numerous natural phenomena, including patterns in embryos, species invasion, chemical reactions, and
magnetic systems. Controlling these processes is crucial for various applications. In this article, we
analyze the control of reaction-diffusion models to replicate some of the pattern formation phenomena
observed in these complex systems.

We limit our analysis to the one-dimensional case, which, as we shall demonstrate, exhibits a rich and
complex behavior that warrants careful, independent study.

Therefore, we consider the scalar time-evolving reaction-diffusion equation of the form:
∂tm− ∂x (µ(x, t)∂xm) = f(m) (x, t) ∈ (0, 1)× (0, T ),

m(0, t) = a−(t); m(1, t) = a+(t) t ∈ (0, T ),

m(x, 0) = m0(x) x ∈ {0, 1},
(1.1)

where µ is a positive diffusion control and a is a boundary control with prescribed point-wise bounds

− 1 ≤ a ≤ 1, (1.2)

compatible with those imposed on the state,

− 1 ≤ m ≤ 1. (1.3)

Bilateral state-constraints are natural in this context, since the solution describes the evolution of a
density or a volumen fraction. Here, without loss of generality and to simplify the presentation we assume
that −1 ≤ m ≤ 1.

We will assume that the diffusivity µ ∈ L∞((0, 1)× (0, T ); R+) is a bounded measurable non-negative
function depending both on space and time, the boundary control constituted by functions

a− ∈ L∞((0, T ); [−1, 1]); a+ ∈ L∞((0, T ); [−1, 1])

corresponding to the controls at x = 0 and x = 1 respectively (satisfying the constraint (1.2)), and the
initial datum m0 ∈ L∞((0, 1); [−1, 1]) (compatible with (1.2)). This ensures the well-posedness of the
system and the fulfilment of the state constraint (1.3).

One of the main distinguishing features of system (1.1), compared to those often considered in the
literature, is the presence of two controls. The boundary control a = a±(t) models an active control
exerted by an external agent on the system’s boundary. In contrast, the diffusion control µ(x, t) allows
intervention in the medium’s conditions and properties.

In our earlier papers, we analyzed whether the boundary control alone could steer the system from
one equilibrium to another while preserving state constraints ( [21, 22, 24, 28, 30]). We observed that,
even for the simplest linear heat equation, a minimal control or waiting time emerges when aiming to
reach the desired target under constrained dynamics. In the nonlinear setting, added barrier effects
might appear, making some equilibria non-reachable. This largely depends on the domain’s size, with
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(a) Bistable nonlinearity. (b) Phase portrait.

Figure 1. Bistable non-linearity and typical phase portray of the ODE characterising
equilibria.

the impact of boundary control weakening as the domain grows. Additionally, we proved that boundary
control alone does not sufficiently modify the nature of these steady-states since the governing equations
remain unchanged. This suggests the necessity of employing a second control, such as diffusivity, to
regulate the dynamics effectively, as often seen in applications.

Our main objective in this article is to analyse the effect of combined strategies using both boundary
and diffusion controls simultaneously. As we shall see, this combination allows us to shape the target
equilibrium configurations and control the dynamics while preserving constraints.

Controlling diffusivity is natural in various applications. For instance, in fluid mechanics, this can be
achieved through temperature regulation [10]. In ecology, diffusivity plays an essential role in determining
species’ survival and minimal area requirements [29]. Moreover, in material science, the surface of metals
can be patterned through diffusion control [17]. See subsection 1.2 for an in-depth discussion of modeling
issues.

Here and in the sequel f ∈ C1 is a bistable nonlinearity satisfying

f(−1) = f(0) = f(1) = 0, f ′(−1), f ′(1) < 0, f ′(0) > 0 (1.4)

as Figure 1a shows. We shall also assume that

F (1) =

∫ 1

−1
f(s)ds = 0 (1.5)

which leads to the phase portraits as in Figure 1b. In the dynamic context the last condition guarantees,
in particular, that travelling wave solutions behave like standing waves with null velocity of propagation,
constituting steady-states.

We focus on the challenging problem of controllability, where the trajectory must be driven to a spec-
ified final target within a given time horizon. The infinite velocity of propagation in heat-like equations
allows for the control of trajectories even within very short time horizons. However, standard proce-
dures [11, 12] do not consider state constraints, which are essential in our applications. The oscillatory
nature of the controls and controlled trajectories makes it impossible to fulfil the physical bilateral con-
straints unless the control time horizon is sufficiently long.

To understand what can be achieved for this parabolic model under state constraints, it is important to
first analyse the structure of the set of steady-states, which are the most natural targets for the dynamics.
These steady-states are characterized by the following elliptic system:

−∂x (µ(x)∂xm) = f(m) x ∈ (0, 1),

m(0) = a−;m(1) = a+,

−1 ≤ m ≤ +1.

(1.6)

We introduce the set

S := {m(x) solution of (1.6) with µ ∈ L∞((0, 1); R+), a± ∈ R},

constituted by the steady-states, solutions of the system above when the diffusivity coefficient µ varies,
together with the boundary values a±.

We will show that this set of steady-states is path connected, a fact that plays an important role for
the control of the evolution parabolic model since it allows us to implement the staircase method [27]
(inspired by [7]), that permits to track the evolution of the system along a path of steady-states. This
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method has played a crucial role to develop the theory of control of reaction-diffusion with point-wise
constraints, see [20,24,28,30].

In Theorem 2 we prove that S can approximate (with respect to the L2-topology) a subset of the
set of simple functions with a momentum restriction (see (2.5)). In Theorem 4 we present the main
consequences for the control problem under consideration.

A straightforward change of variables in the steady-state system above allows us to transform variable
diffusivity into a multiplicative potential on the nonlinearity. Similarly, in the parabolic problem, this
transformation holds. The control problems under consideration also make sense in this case, where
the potential multiplying the nonlinearity becomes the second control, complementing the effect of the
boundary control. We will also consider this second model and control problem, as it appears in some
relevant applications.

1.2. Applications. . In this subsection, we describe in more detail a number of models and relevant
applications where the control of diffusivity (or the nonlinearity of the system) is both relevant and
feasible.

Recent laboratory experiments [26] have demonstrated that limb formation can be intimately related to
Turing instabilities [31], a counterintuitive process where a stable system, when combined with another
stable diffusive process, can lead to unstable eigenmodes at high frequencies. In [26], the number of
fingers in embryos could be controlled by tuning the dynamics through spatial heterogeneities, resulting
in unstable eigenfunctions that are spatially concentrated in the fingering areas. These experiments
were the primary motivation for our work, where we aimed to construct and analyze the simplest model
exhibiting related phenomena.

In the context of interacting particle systems [8] (see also [9]), a rigorous micro-macro derivation is
developed from an N -dimensional lattice hZN , for h > 0, to get the reaction-diffusion model in the limit
as h→ 0. In this setting each x ∈ hZN represents a particle with spin σ(x) = ±1 subject to two types of
interactions. The first one corresponds to the spin-exchange among neighbours, leading to the Laplacian
when h→ 0. The second one is a Glauber dynamics, a spontaneous spin-flip, depending on the spins of
neighbouring particles, modelled by the nonlinearity.

For ecological models of population dynamics [1, 13] or spatial evolutionary games [15, 16], the repro-
duction and death processes are represented by nonlinearity, while diffusion accounts for spatial random
motion. The size of the domain where the diffusion process occurs plays a crucial role in species sur-
vival [29], naturally leading to the question of constrained diffusivity control. Indeed, by scaling, the
diffusivity coefficient and the size of the domain play reverse roles: the impact of boundary control de-
creases as the domain size increases or the diffusivity diminishes. In the nonlinear setting, small diffusivity
or large domains enhance the existence of nontrivial steady-states. The combined effect of the two con-
trol actions plays an important role in this context. Multiplicative control on nonlinearity corresponds
to speeding up or slowing down the Glauber effects - reproduction and death of individuals in ecology-
or the rate at which a game is played. Control in diffusion corresponds to limiting or enforcing species’
movement between areas or slowing down or enhancing spin-exchange dynamics. These processes are
well understood for the micro model [8].

Moreover, heterogeneities are intrinsic in nature, and their impact on system dynamics has been
intensively studied [5, 23,25].

We also refer to [24,28,30] for other related results in control employing phase-plane analysis, [2,3] in
the context of shaping traveling waves in relation to eradication of pests and [18] for explicit solutions to
certain classes of mean-field games exhibiting the so-called tragedy of the commons.

1.3. Structure. . The structure of the paper is the following:

(1) In Section 2 we present the main results of the paper together with some of the fundamental
aspects of the methodology we develop.

(2) In Section 3 we prove the main results.
(3) In Section 4 we present some conclusions and open problems, including the possible extensions

to the multidimensional case.

2. Core phenomena and main results

2.1. The homogeneous case µ(x, t) = µ and admissible paths. We analyse the existence, nature
and role of admissible paths of steady-states in the spatially homogeneous and time-independent case
where µ(x, t) = µ is a constant, [24,28,30]. Here the viscosity µ > 0 plays the role of a design parameter,
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and not that of an active control. The viscosity being fixed, the control enters on the system solely
through its boundary.

Steady-state solutions coincide with the restriction to x ∈ (0, 1) of the solutions of the Hamiltonian
dynamics:

d

dx

(
m
mx

)
=

(
mx

− 1
µf(m)

)
, (2.1)

which preserves the energy

E(m,mx) =
1

2
m2
x +

1

µ
F (m), (2.2)

where

F (m) =

∫ m

−1
f(s)ds.

On the other hand, as mentioned above, in view of assumption (1.5), the traveling wave solutions of

∂tm− µ∂xxm = f(m),

are stationary. Therefore, travelling wave profiles are also solutions of (2.1).
The steady-states m ≡ −1 and m ≡ 1 correspond to the points (−1, 0) and (1, 0) in the phase plane,

that are topological saddles for (2.1). The state m ≡ 0 corresponds to (0, 0), which is a center (see
figure 1b for the representation of the phase-portrait). The traveling wave profiles are heteroclinic orbits
connecting (−1, 0) with (1, 0) and viceversa, satisfying:

0 =
1

2
m2
x +

1

µ
F (m),

denoted by the black curves in Figure 1b. Moreover, by the uniqueness of the solution of the Cauchy
problem (2.1), these curves define an invariant region in the phase-plane. Consequently, the solution of
(2.1) for any initial data inside the invariant region remains inside of it for all x ≥ 0.

This invariance, together with the continuity of the solution of (2.1) with respect to the initial data,
allows to build the paths of steady-states fulfilling the relevant constraints (1.3). In fact, the set of
admissible steady-states is path connected, as the arguments below show.

Given two steady-states, m1 and m2, inside the invariant region, we need to construct a curve inside
the invariant region connecting the points(

m1(0)
d
dxm1(0)

)
with

(
m2(0)
d
dxm2(0),

)
see [24,28,30]. The points of this curve constitute the initial data for (2.1), leading to a path of admissible
steady-states linking m1 to m2.

The constant diffusion µ being given, the staircase method allows to control the dynamics along these
paths by means of the sole action of the boundary control.

In particular, given that (0, 0) is always inside the invariant region, corresponding to the trivial steady-
state m ≡ 0, the dynamics can be controlled from m ≡ 0 to any steady-state inside the invariant region,
and vice-versa.

2.2. Homogeneous time-dependent diffusion regulation, µ(x, t) = µ(t). We now consider time-
dependent diffusion coefficients µ, i.e. µ(x, t) = µ(t), playing the role of a second active control. In this
case the equation (1.1) reads

∂tm− µ(t)∂xxm = f(m) (x, t) ∈ (0, 1)× (0, T ),

m = a(x, t) (x, t) ∈ {0, 1} × (0, T ),

m(x, 0) = m0(x) ∈ L∞((0, 1), [−1, 1]).

(2.3)

By suitable choosing the time-dependent diffusivity µ(t), which will now play the role of a control function,
one can control the system, for instance, from a positive function with one single maximum value mmax

to a changing sing function withs two maxima of the same amplitude mmax. See Figure 2, where the
steady-states mi, i = 1, 2 obey {

−µi∂xxmi = f(mi) x ∈ (0, 1),

mi = 0 x ∈ {0, 1},

for i = 1, 2, with diffusivities m1 > m2, so that m1 has only one point of maximum, while m2 has two of
them. Note that, by diminishing the viscosity, the frequency of oscillation of solutions increases, which
allows for this construction.
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Figure 2. Steady-state solutions m1 and m2 with diffusivities µ1 > µ2, constituted by
arcs of a rescaled periodic orbit in the phase-plane.

The path of steady-states connecting m1 with m2, can be built patching two sub-arcs, the first one
connecting m1 to the null sate, while the second one connects the null state to m2. More precisely, the
following holds:

Proposition 1. Given two natural numbers, k, n ∈ N and 0 < m < 1, there exist two steady-states m1

and m2 for suitable constant diffusion coefficients µ1, µ2 ∈ R+, with k and n maxima within x ∈ (0, 1),
respectively, taking the value m.

These two patterns are path-connected in an admissible way. More precisely, there exists T ∗m,n,k > 0

such that for every T ≥ T ∗m,n,k, there exist controls µ ∈ L∞((0, T ),R+) and a ∈ L∞((0, T ), [−1, 1]2) such

that the solution m of (2.3), with initial datum m1 at time T satisfies that

m(T ; a, µ,m1) ≡ m2.

Remark 1. The path of steady-states also solves

−∂xxm = ξ(t)f(m),

with ξ(t) = 1/µ(t), which can be interpreted as a multiplicative control entering in the nonlinearity of
the system.

In other words, the class of steady-states is the same for both systems. Therefore, the statement of
Proposition 1 also applies for the multiplicative control

∂tm− ∂xxm = ξ(t)f(m).

The techniques of this paper can also be considered to consider the corresponding control problem:
∂tm− ∂xxm = ξ(x, t)f(m) (x, t) ∈ (0, 1)× (0, T ),

m(0, t) = a−(t); m(1, t) = a+(t) t ∈ (0, T ),

m(x, 0) = m0(x) x ∈ {0, 1}.
(2.4)

Once the connectivity of the set of steady-states has been proved, the staircase method [27], assures
the controllability for large times from any initial data in S to any target data in S .

2.3. Heterogeneous diffusion µ(x, t). Once the case of homogenous time-dependent diffusivity µ(t)
has been addressed, we analyze that in which the diffusivity depends also in x, i.e. µ = µ(x, t).

2.3.1. Path connectivity. In this case too, all steady-states are path connected:

Theorem 1. All elements of S are path connected in an admissible way.

Remark 2. As we shall see later on, the connectivity of the set of steady-states and the staircase method
assure the controllability for large times from any initial data in S to any target data in S.

To guarantee that all steady-states are path connected, it is sufficient to show that all of them can be
connected to the trivial one, see Figure 3. Since the paths are reversible, the connectivity of any pair of
steady-states will be automatically guaranteed.

The connectivity towards the null steady-state will be proved by extending the domain of definition
x ∈ (0, 1), using that they correspond to arcs of trajectories of globally defined trajectories of the ODE.

Note also that for highly diffusive controls, the steady-state m = 0 is dynamically stable and attracts
all admissible initial data for the parabolic problem. This, in turn, combined with the local controllability
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Figure 3. Star connectivity. All admissible steady-states are connected by continuous
paths of admissible steady-states with the trivial one m = 0. In this figure, six steady-
states m1, ...,m6, represented with dots, are connected with m = 0.

of the system by means of boundary control, implies that any admissible initial datum can be controlled
to m = 0 in finite time, and, from there, to any element of S following a path of steady-states.

In this way we conclude that, departing from any initial configuration, any state in S can be reached
in a sufficiently large finite time by means of suitable controls along admissible trajectories. Thus, to
gain a complete understanding on the final patterns that the dynamics can reach, it suffices to describe
accurately the set of equilibria S.

To illustrate the nature of S, hereafter we build a subset S∗ of simple functions, with a momentum
restriction, that can be approximated by elements of S:

S∗ =

{
g ∈ L∞((0, 1); (−1, 1)) : g =

2N∑
n=1

λnχ(an−1,an), with a0 = 0, a2N = 1 and satisfying (2.5)

}

sign (λn+1λn) = −1, |an − an−1||f(λn)| = |an+1 − an||f(λn+1)| n = 1, 3, ..., 2N − 1. (2.5)

The equality |an − an−1||f(λn)| = |an+1 − an||f(λn+1)| is due to the transmission conditions at the
diffusivity jumps and the changing sign of the parameters λ is related to the nonlinear pendulum dynamics
of the ODE under consideration.

Theorem 2 (Approximate steady-states for the diffusive interaction). For any function v ∈ S∗ and for
all ε > 0 there exist µε ≥ 0 and mε ∈ L∞((0, 1); [−1, 1]) solution of:{

−∂x (µε(x)∂xmε) = f(mε) x ∈ (0, 1)

mε = 0 x ∈ {0, 1}

such that
‖v −mε‖L2(0,1) ≤ ε. (2.6)

Theorem 2 will be proved constructing piecewise constant diffusivities µε, analysing the dynamics of
the ODE characterising steady-states in the phase-plane. The resulting state mε, even if continuous, has
jump discontinuities in its derivative whenever µ has a discontinuity. Indeed, when µ has a discontinuity
at x0, the solution fulfils the following natural transmission conditions:

µ(x−0 ) = µ1, µ(x+0 ) = µ2; lim
x→x−0

µ1∂xm(x) = lim
x→x+

0

µ2∂xm(x).

The set S∗ does not exhaust the class of patterns that can be approximated through elements of S,
as shown in Proposition 1. In fact, as illustrated in Figure 5, one can also build continuous composite
profiles matching two different oscillatory patterns.

2.4. Some model variants. The same questions arise and our techniques can be adapted for the fol-
lowing model variants{

∂tm− µ(x, t)∂xxm = f(m) x ∈ (0, 1),

m(0) = a−(t) ∈ [−1, 1], m(1) = a+(t) ∈ [−1, 1]

where the control enters multiplying the Laplacian or{
∂tm− ∂xxm = ξ(x, t)f(m) x ∈ (0, 1),

m(0) = a−(t) ∈ [−1, 1], m(1) = a+(t) ∈ [−1, 1]
(2.7)

where it enters multiplying the nonlinearity.
This type of control falls into the class of the multiplicative controls studied by [4] and others.



7

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a)

-1 -0.5 0 0.5 1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(b)

-1 -0.5 0 0.5 1
-400

-300

-200

-100

0

100

200

300

400

(c)

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(d)

Figure 4. Approximation using the affine controllability of the ODE system. (A) A
target step function (B) its representation in the phase plane as two points, the dashed
red line indicates the invariant region enclosed by the standing traveling waves for a
certain constant multiplicative action (C) Controllability of the associated ODE system
driving the state from one point to the other employing different values of the multiplica-
tive control (multiple colours). The different dashed lines indicate the invariant region
delimited by the corresponding standing traveling waves with the associated value of the
multiplicative control. (D) The corresponding state in the physical space.

The steady states of (2.8) fulfil{
−∂xxm = ξ(x)f(m) x ∈ (0, 1),

m(0) = a− ∈ [−1, 1], m(1) = a+ ∈ [−1, 1]
(2.8)

For this model the set of controlled steady-states turns out to be dense:

Theorem 3. For any function v ∈ L∞((0, 1); [−1, 1]) and for all ε > 0 there exists ξ ∈ L∞((0, 1); R+)
such that mε ∈ L∞((0, 1); (−1, 1)) solution of:{

−∂xxmε = ξ(x)f(mε) x ∈ (0, 1),

mε = 0 x ∈ {0, 1},

such that ‖v −mε‖L2((0,1)) ≤ ε.

The proof is very similar to the proof of Theorem 2. In consists in approximating the target state by
a piecewise-constant function and building the control to approximate the latter.

For the present model the transmission condition is not required and this allows for the density of the
set of steady-states.

Theorem 1 also holds for the set of steady-states of (2.8).
Theorem 3 can be proved analysing the affine ODE control problem

d

dx

(
m
mx

)
=

(
mx

−ξ(x)f(m)

)
, (2.9)

where ξ ∈ L∞((0, 1); R+) is the control function.
Recall that, by changing ξ, the invariant region changes. This can help generating the steady states we

desire. See Figure 4 for an illustration of how the multiplicative control can be used for approximation.
The functions ξ we employ are piecewise constant in x. By smoothly changing its switching points

one obtains the connected family of steady-states allowing to apply the staircase method.
A key point for proving Theorem 3 is the following Lemma, which guarantees the exact controllability

of (2.9) provided the initial data and target are in the region

R :=
{

(m,mx) ∈ R2 : −1 < m < 1
}
.

Lemma 1. For any L > 0, any initial data m0 ∈ R\{(0, 0)}, and any target mL ∈ R\{(0, 0)}, there
exists a strictly positive function ξ ∈ L∞((0, L),R+) such that the solution of (2.9) with initial data m0

takes the value m(L; ξ,m0) = mL at x = L, and, furthermore, m(x; ξ,m0) ∈ R for all 0 ≤ x ≤ L.

2.5. Dynamic control. Using the results above on the nature of the set S and the staircase method
the following control result can be proved:

Theorem 4 (Approximate controllability with point-wise constraints). Take any pair of functions m0 ∈
L∞((0, 1); [−1, 1]) and m1 ∈ S. Then, for every ε > 0 there exists Tε,m1

> 0 such that for all T ≥ Tε,m1
>
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(a) (b) (c)

Figure 5. Example of a composite pattern within S. (A) Steady-state for a constant
diffusivity µ1 with a critical point at x = 0.5; (B) Steady-state for a constant diffusivity
µ2 < µ1 with a critical point at x = 0.5; (C) Steady-state presenting a frequency contrast,
with an heterogeneous diffusivity combining the previous patterns in different regions.

0, there exists µε ∈ L∞((0, 1)×(0, T ); R+), aε ∈ L∞({0, 1}×(0, T ); [−1, 1]) such that the solution of (1.1)
satisfies m(t; aε, µε,m0) ∈ L∞((0, 1); [−1, 1]) a.e. in (0, T ) and

‖m(T ; aε, µε,m0)−m1‖L2 ≤ ε.
Moreover m(T ; aε, µε,m0) is a steady-state in S, with diffusivity µε(x, T ) and boundary values aε(x, T )
at x = 0, 1.

Remark 3. In fact, the control time Tε,m1
can be taken to depend on the target m1 and ε, but independent

of m0. This is due to the exponential attractiveness of the null state of the system (1.1), that is enhanced
when the diffusivity µ increases. More precisely, the convergence towards the null equilibrium of the
solutions of (1.1) as t→∞ is faster than the one determined by the eigenvalue

λ1(µ) := min
v∈H1

0

∫ 1

0
µ|∇v|2 − ‖f ′‖∞v2dx∫ 1

0
v2dx

,

which, obviously, fulfils

lim
µ→+∞

λ1(µ) = +∞.

Therefore, by means of a suitable choice of the diffusivity one may stabilise the system towards m ≡ 0
arbitrarily fast and then apply the staircase method to drive the system towards the final state m1

(see [27]). This second regime in which the system is controlled towards m1 up to an ε error needs of a
control time depending both on m1 and ε. But the overall control time turns out to be independent of
m0.

3. Proofs

3.1. Proof of Proposition 1. It suffices to set the diffusivity as

µ(s) =

{
µ1 s ∈ [0, 1/2),

µ2 s ∈ [1/2, 1],

and then define the boundary values a(s) so that

a(s) =

{
A path connecting m1 to m ≡ 0 for s ∈ [0, 1/2),

A path connecting m ≡ 0 to m2 for s ∈ [1/2, 1].

This is one of the many possible paths connecting two elements of S.

3.2. Preliminary results. The ideas of the proofs of the Theorems are similar: switching from one
control to another and combining the use of periodic orbits of different frequencies.

Let us first analyse how the period behaves when the diffusion control is constant and µ → 0 (resp.
µ→ +∞).

Let Γµ be the invariant region defined as

Γµ :=

{
(m,mx) ∈ [−1, 1]× R : m2

x ≤
−2

µ
F (m)

}
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Figure 6. Invariant regions for different values of the diffusivity µ for the symmetric
nonlinearity f(s) = s(s+ 1)(s− 1). In blue µ = 0.001 in red µ = 0.005.

Lemma 1. (1) Fix mmin ∈ (−1, 0) (or mmax ∈ (0, 1)). The period of the periodic orbit starting at
(mmin, 0) (or (mmax, 0)) tends to 0 as µ → 0. Moreover, fixing the maximum value of an orbit,
the period of the orbit passing through that maximum depends continuously on µ.

(2) For every a, b ∈ [−1, 1] and any L there exists µ ∈ R+ and (m,mx) /∈ Γµ such that the solution
of (2.1) starting at (m,mx) satisfy that m(L∗) = b with 0 < L∗ ≤ L. Moreover, L∗ → 0 when
µ→ +∞.

Proof. We proceed in order.

(1) The system is symmetric with respect to the mx = 0 axis. Let τ be the period of one orbit
inside the invariant region defined by the static traveling waves. The period τ can be computed
as follows: Consider an arc of an orbit that goes from the minimum value mmin of the orbit to
the maximum mmax. The map m : [0, τ/2] → [mmin,mmax] is invertible, since both the positive
and the negative branch of the curve mx(m) only change sign in {mmin,mmax}. Hence mx has
the same sign along [0, τ/2].

τ

2
=

∫ τ
2

0

dx =

∫ m−1(mmax)

m−1(mmin)

dx =

∫ mmax

mmin

1

mx(m)
dm

=

∫ mmax

mmin

dm√
2
(
E − 1

µF (m)
) =

√
µ

∫ mmax

mmin

dm√
2 (µE − F (m))

.

Note that the expression above is continuous with respect to µ.
If mmin and mmax are away of −1 and 1 then the function G(m) = µE−F (m) near m = mmin

behaves as −f(mmin)(m − mmin) + O(m2). Similarly one can see that G(m) behaves linearly
around mmax which enables us to assure that∫ mmax

mmin

dm√
2 (µE − F (m))

≤ C < +∞,

where C is independent of µ, since the energy of the orbit E is E = 1
µF (mmin) = 1

µF (mmin).

Note that any extreme of the orbit can take the value 0 since, at that point, we would have
mx = 0, moreover m = 0 is a zero for f , and (0, 0) is a critical point for the ODE system.

The maximum value on the mx variable that trajectories in the invariant region reach is

1

µ

√
2(µE − F (0)), (3.1)

which goes to infinity as µ goes to zero. Moreover, the derivative with respect to m of the positive
branch of mx(m) is

d

dm
mx =

1
√
µ

f(m)√
2(µE − F (m))

and goes to infinity as µ→ 0 if m 6= 0.
This shows that small diffusivities produce a significant increase in the gradient in a very short

interval.
(2) Let us now analyze what happens when the gradient is large and with high diffusivity µ, for

example, for trajectories outside the invariant region. They take values fromm = −∞ tom = +∞
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(or vice versa). Thus, following trajectories outside the invariant region, we can access every value
of m.

When µ > 0 is large enough the space x required to go from the value m = a to the value
m = b with b > a and mx(0) > 0 is approximately (b− a)/mx(0)

x =

∫ b

a

dm√
mx(0)2 + 2

µ (F (m(0)− F (m)))
→ b− a

mx(0)

when µ→∞.
Then, for µ large and mx(0) large enough we can access to any b > a in a small space interval

[0, x].

�

3.3. Proof of Theorem 2.

(1) Let g be a piecewise constant function of the form

g =

N∑
i=1

αiχ(ai−1,ai) (3.2)

with a0 = 0, aN = 1 and ai < ai+1.
We now explore the class of α’s that can be approximated by steady-state solutions.
First of all we approximate each constant segment by an elliptic equation. Consider Ii =

(ai−1 + δ, ai − δ) and the elliptic equation:{
−µi∂xxmi = f(mi) x ∈ Ii
mi = αi x ∈ ∂Ii

(3.3)

Since αi ∈ (−1, 0) ∪ (0, 1), equation (3.3) has a solution taking values in (−1, 1). To obtain

‖mi − αi‖L∞(Ii) ≤ ε
we can fix the maximum or minimum of (3.3) to be at αi ± ε. Since the energy (2.2) of the
ODE associated to the problem (3.3) is preserved, we have a formula for the Neumann trace of
a solution of (3.3):

∂xm
2
i =

2

µi
(F (αi ± ε)− F (αi)) . (A)

(2) The derivative of dp/dx, with p = µ(x)∂xm, is bounded regardless of the control action. In
particular, if we are trying to approximate a piecewise constant function, since p is continuous
and its derivative is bounded, we can only expect to approximate piecewise constant functions
fulfilling the transmission condition.

Assume that µ is piecewise constant with a discontinuity at x0 ∈ (0, 1). Then any solution of{
−∂x (µ(x)∂xm) = f(m) x ∈ (0, 1)

m = 0 x ∈ {0, 1}

satisfies

lim
x→x−0

µ(x)∂xm(x) = µ1∂xm1 = µ2∂xm2 = lim
x→x+

0

µ(x)∂xm(x) (B)

(3) Let Li be the length of the interval Ii. As in Lemma 1, we have an expression relating the
diffusivity µi, the energy of the system and αi with Li:

L2
i = 2µi

(∫ αi

αi±ε

dm√
F (αi ± ε)− F (αi)

)2

(C)

(4) Combining (A),(B) and (C) one arrives at the following relationship between the α’s depending
on ε and Li’s for two adjacent constant pieces of (3.2): ∫ αi

αi±ε
dm√

F (αi±ε)−F (αi)∫ αi−1

αi−1∓ε
dm√

F (αi−1∓ε)−F (αi−1)

−2 =
L2
i−1
L2
i

F (αi−1 ∓ ε)− F (αi−1)

F (αi ± ε)− F (αi)
(3.4)

Now we will see that when ε→ 0 it corresponds to require that g in (3.2) satisfies

L2
i−1f(αi−1)2 = L2

i f(αi)
2. (3.5)
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Figure 7. (A) In dashed lines, the standing traveling wave delimiting the invariant
region. The solid line denotes the trajectory employed. Red µ = 100, blue µ = 5.537×
10−4, light red µ = 1.3647. (B) Resulting approximate steady-state in the physical space.
(C) Diffusion depicted in the physical space in a log scale.

The right hand side of (3.4), when ε→ 0 tends to

L2
i−1
L2
i

f(αi−1)

f(αi)

While for the left hand side we need to analize the integral∫ α+ε

α

dm√
F (α+ ε)− F (m)

=

∫ ε

0

ds√
F (α+ ε)− F (α+ s)

=

∫ ε

0

ds√
(ε− s)(f(α)) +O(ε2.s2)

∼ 2
√
ε√

f(α)
.

Therefore, the left hand side of (3.4) tends to

f(αi)

f(αi−1)
.

Thus, one arrives to (3.5).

Consider a function of the form:

S =

{
g =

2N∑
n=1

λnχIn , sign (λn+1λn) = −1, Ln|f(λn)| = Ln+1|f(λn+1)| n = 1, 3, ..., 2N − 1

}
2N∑
n=1

λnχIn (3.6)

with
2N⋃
n=1

In = (0, 1) In ∩ In′ = ∅ if n 6= n′. (3.7)

Let Ln = |In|.
If

sign (λn+1λn) = −1, Ln|f(λn)| = Ln+1|f(λn+1)| n = 1, 3, ..., 2N − 1 (3.8)

there exists µ ∈ L∞([0, 1]; R+) such that (2.6) holds with v = g.
In Figure 7, we present an example of the procedure described and the diffusivity employed.

3.4. Proof of Theorem 3. Take v ∈ L∞ ((0, 1), [−1, 1]) and let Sv ∈ L∞ ((0, 1), (−1, 1)) be a piecewise
constant function such that:

‖v − Sv‖L2 <
ε

2
For α ∈ (−1, 1) we can approximate a constant segment w ≡ α in (0, L) for every L > 0 by:{

−∂xxm = ξf(m)

m = α
(3.9)
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for ξ small enough.
Equation (3.9) has a solution in L∞((0, 1); [−1, 1]) since m ≡ −1 is a subsolution and m ≡ 1 is a

supersolution. Therefore, we can consider a solution, within such bounds, and so that the following
estimate holds:

|mx| =

∣∣∣∣∣
∫ L

0

−ξf(m)dx

∣∣∣∣∣ ≤ ξL‖f‖∞
and thus,

‖m− α‖∞ =

∣∣∣∣∣
∫ L

0

mxdx

∣∣∣∣∣ ≤ ξL2‖f‖∞.

The main problem is how to generate a steady-state approximating a piecewise constant function made
out of two components. We know that we can approximate a constant arc, and we could approximate
several ones in different intervals. The remaining task is to find a steady state (defined in a small segment)
whose Dirichlet and Neumann traces matches the two steady states generated with ξ small. In this way,
the steady state would make the transition from one segment to the other in a way that the L∞ bounds
are respected. This is where the exact controllability of Lemma 1 is of crucial importance. Using the
controllability, we can approximate

Sv :=

{
α 0 ≤ x ≤ L,
β L < x ≤ 1,

with α, β ∈ (−1, 1), by a steady-state considering the solutions of:{
−∂xxm1 = ξ1f(m1) x ∈ (0, L− δ

2 ),

m1 = α x ∈ {0, L− δ
2},

(3.10)

and {
−∂xxm2 = ξ2f(m2) x ∈ (L− δ

2 , 1),

m2 = β x ∈ {L− δ
2 , 1}.

(3.11)

We have to find a way to match the traces, in order to do so we formulate the following control problem

d
dx

(
m

mx

)
=

(
mx

−ξ(x)f(m)

)
, ξ(x) > 0, x ∈ (0, δ),

(
m(0)

mx(0)

)
=

(
m1(L− δ

2 )
d
dxm1(L− δ

2 )

)
,

(
m(δ)

mx(δ)

)
=

(
m2(L+ δ

2 )
d
dxm2(L+ δ

2 )

)
.

(3.12)

The exact controllability of (3.12) with a trajectory inside R is guaranteed by Lemma 1 that we will
prove subsequently (see subsection 3.4.1). Then

‖Sv −m‖2L2(L− δ2 ,L+
δ
2 )

=

∫ L

L− δ2
|m− α|2dx+

∫ L+ δ
2

L

|m− β|2dx ≤ 4δ.

Choosing δ1/2 = ε/4, and ξ small enough in problems (3.10) and (3.11), one has:

‖Sv −m‖L2((0,1)) ≤
ε

2
.

3.4.1. Proof of Lemma 1. .
It suffices to understand the switching dynamics. Let us consider the initial data (m0, ∂xm0) and the
target (mL, ∂xmL). We will start the trajectory in the initial data with a multiplicative control ξ1 until
the trajectory reaches its maximum velocity, at m = 0, i.e at the point (0, ∂xm). At this point, we
change the multiplicative control to a value ξ2 so that the trajectory will eventually pass (not necessarily
at x = L) through the target (mL, ∂xmL). We can ensure this by the fact that both phases employ a
constant control, and hence the dynamics preserves the energy in each phase:{

1
2∂xm

2
0 + ξ1F (m0) = 1

2∂xm
2 + ξ1F (0)

1
2∂xm

2 + ξ2F (0) = 1
2∂xm

2
L + ξ2F (mL).
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Figure 8. (A) The dashed lines correspond to the traveling wave solutions limiting the
invariant regions for different diffusivities, the filled curve is the controlled trajectory.
Red µ = 100, blue µ = 5 × 10−6, black µ = 2 × 10−5. (B) representation of the
approximate steady-state in the physical space.

Note that ξ2 as a function of ξ1 is monotonous, a decrease (increase) on ξ1 implies a decrease (increase)
in ξ2. Indeed,

ξ2(ξ1) =
∂xm

2
0 − ∂xm2

L

2(F (mL)− F (0))
+
F (m0)− F (0)

F (mL)− F (0)
ξ1.

The constraints require the multiplicative control ξ to be positive. Hence, we have to impose the condition

ξ1 > −
1

2

∂xm
2
0 − ∂xm2

L

F (m0)− F (0)
.

Up to now, we only know that there is a controlled trajectory reaching the target at a certain x, not
necessarily at x = L. For ensuring this, we will make use of Claim 1.

The period of an orbit starting at (mmax, 0)) is a decreasing function of ξ. Hence, one may find, ξ1
large enough so that the length required to achieve the target (mL, ∂xmL), L(ξ1) is smaller than L, in
fact

lim
ξ1→+∞

L(ξ1) = 0.

Using that the period is a continuously decreasing function of ξ, one can find an orbit passing through
the target with the period X(ξ3) being so that:

L− L(ξ1)

X(ξ3)
∈ N\{0}.

3.5. Proof of Theorem 4. .
Once the approximate target steady-state is built, see Figure 9, we fix an arbitrary initial datum m0

fulfilling the state-constraints, and we proceed as follows:

(1) Set a constant very large diffusivity µ(x) ≡ µ and a = 0. Then, m ≡ 0 is stable, and the solution
exponentially converges to it. Once we are close enough to m =≡ 0, we apply local controllability
from the boundary to control exactly at m ≡ 0.

(2) We construct a path connecting m ≡ 0 to the approximate steady-state, and we employ the
staircase method.

The construction of the path is the following:
Consider the approximate steady-state and its diffusion (mε, µε). For the seek of simplicity we consider

an approximate steady-state fulfilling the following condition on the boundary:

1

2
∂xmε(1) <

1

µε(1)
F (mε(1)). (3.13)
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Figure 9. (A) In red, a random target function constructed randomizing the first three
Fourier coefficients. In blue, an approximate steady-state. (B) The corresponding loga-
rithm of the diffusion giving rise to the approximate steady-sate. (C) Extension of the
approximate steady-state in (0, 2) with constant diffusion µ(x) in (1, 2).

Then, we can extend the steady-state to (0, 2) (see Figure 9c) by employing the ODE dynamics
extending the diffusion by a constant with continuity:

µE(x) :=

{
µε(x) x ∈ [0, 1]

µε(1) x ∈ (1, 2]

Since (3.13) holds the extended steady-state mE also satisfies the bounds:

−1 < m(x) < 1 x ∈ (0, 2).

Now by shifting smoothly along mE we obtain a s-dependent family defined by
ms(x) = mE(x+ s)1(0,1)

µs(x) = µE(x+ s)1(0,1)

a1 = mE(s) a2(s) = mE(1 + s)

which is continuous with respect to the L2-norm, connecting the approximate steady-state with a steady-
state with homogeneous diffusion.

Then we can employ the techniques in [24,28,30] to find a path that connects with m ≡ 0.
Since the admissible path can be taken in the opposite way, we obtain the desired result.
The employed diffusivity coefficients are in BV . But thanks to the results of [19], the staircase method

can also be extended in such setting.

4. Open problems and perspectives

.
1. Other nonlinearities. The fact of being able to orbit around (0, 0) in the ODE dynamics has been
crucial for approximating any steady-state. It would be interesting to analyse whether similar results can
be achieved for other bistable nonlinearities with F (1) 6= 0.

Our proof relies on the existence of an oscillator and two trajectories arriving to and going away from
(1, 0) and (−1, 0). In the case where F (1) = 0 the invariant region fulfils both conditions. But for the case
of F (1) > 0, for instance, we would have to adapt the proof considering the invariant region containing
periodic orbits with the trajectory associated to E = F (1).

However, one can see that this type of result cannot be true for general nonlinearities. For instance, for
monostable nonlinearities such as f(s) = (s+ 1)(1− s) similar results cannot be achieved. Steady-states
with a monostable nonlinearity reach their minimum values always on the boundary and never in the
interior (except for the trivial stationary solutions m ≡ −1 and m ≡ 1). Accordingly, a target with a
minimum in the interior cannot be approximated.

.
2. Several space dimensions. In our 1−d constructions sharp transitions on the diffusivity have played
a major role. Of course, the multi-dimensional setting presents a much higher geometric complexity. It
is therefore unclear how the transitions on the diffusivity would need to be designed.

The connectivity result for the set of steady-states can be extended to the multi-dimensional setting.
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3. Minimal controllability time. The analysis and numerical investigation of the minimal controlla-
bility time is a widely open subject in the present context.

.
4. Other type of equations. Similar problems are of interest for the Fokker-Planck diffusivity law [32]{

∂tm− ∂xx(µ(x, t)m) = f(m)

m = a
(4.1)

Nonlinear models such as the porous medium equation would also be interest:{
∂tm− ∂x(µ(x, t)∂x(mα)) = f(m)

m = a
(4.2)

Its analysis would require a more technical of the phase plane behaviour of trajectories.
Note that for this model, due to the degeneration of the diffusivity when m ∼ 0, not even the boundary

controllability property without constraints is known (see [6, 14]).

5. ODE Controllability problems. The analysis of this type of problems leads to interesting questions
on ODE control as well. For instance, in the context of equation (4.1) the following ODE control problem
arises: Setting µ(x, t) = exp(g(x, t)) to guarantee the positivity of the diffusion, and considering the ODE

d

dx


m
mx

g
gx

 =


mx

−e−gf(m)− 2mxgx − g2xm
gx
0

+ u(x)


0
m
0
1

 (4.3)

one would need to understand its control properties with u ∈ L∞((0, 1)) as control.
For the PDE controllability result to hold, it would be enough to prove the controllability for any

(m(0),mx(0)) ∈ R to any target function in R while keeping the whole trajectory in R.
The possible limitations that could arise in the context of the control problem (4.3) would be inherited

by the steady-states that the diffusion model can reach.
This task seems challenging since (4.3) is an affine control problem with drift, and a global constrained

control result is needed.

6. Efficient numerical methods. The development of efficient numerical solvers poses multiple diffi-
culties, independent of the numerical scheme employed to discretise the PDE. Normally one should adopt
an optimal control strategy. This would lead to non convex optimisation problems. Efficient methods
would be required to deal, on one hand, with the complex pattern that the nearly optimal diffusion
coefficients would adopt, and, on the other, with the necessity of fulfilling the constraints on the state
and boundary controls. .

7. Semilinear elliptic systems for pattern formation. One may consider a class of semilinear
evolution equations such as

∂tm
(1) − µ1∂xxm

(1) = a(x)f(m(1)) + b(x)m(2) (x, t) ∈ (0, 1)× R+,

∂tm
(2) − µ2∂xxm

(2) = c(x)m(2) + d(x)g(m(2)) (x, t) ∈ (0, 1)× R+,

m(1) = 0,m(2) = 0 (x, t) ∈ {0, 1} × R+,

m(1) = m
(1)
0 ,m(2) = m

(2)
0 (x, t) ∈ (0, 1)× {0},

(4.4)

with f, g ∈ C1, f(0) = g(0) = 0 and f ′(0) = g′(0) = 1. Suppose that, for a specific open set of initial
data X ⊂ L2((0, 1)) × L2((0, 1)), the omega limit of ω(X ) for the dynamics (4.4) is a stable solution of
the elliptic system 

−µ1∂xxm
(1) = a(x)f(m(1)) + b(x)m(2) x ∈ (0, 1),

−µ2∂xxm
(2) = c(x)m(2) + d(x)g(m(2)) x ∈ (0, 1),

m(1) = 0,m(2) = 0 x ∈ {0, 1},
(4.5)

This, of course, would be a subject of investigation. But, even if that were true, the question of deter-
mining the class of configurations that could be approximated by the steady-states of (4.5) would be also
worth considering.
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models, Journal de mathématiques pures et appliquées 134 (2020), 1–35.

[24] I. Mazari, D. Ruiz-Balet, and E. Zuazua, Constrained control of gene-flow models, Annales de l’Institut Henri Poincaré
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