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Abstract. We address the Selective Harmonic Modulation (SHM) problem in power electronic engineering,
consisting in designing a multilevel staircase control signal with some prescribed frequencies to improve
the performances of a converter. In this work, SHM is addressed through an optimal control methodology
based on duality, in which the admissible controls are piece-wise constant functions, taking values only in a
given finite set. To fulfill this constraint, the cornerstone of our approach is the introduction of a special
penalization in the cost functional, in the form of a piece-wise affine approximation of a parabola. In this
manner, we build optimal multilevel controls having the desired staircase structure.

1. Introduction

In power electronic engineering, Selective Harmonic Modulation (SHM) [15, 14] is a well-known technique,
employed to improve the performances of a converter by increasing its power and, at the same time, reducing
its losses. In broad terms, the scope of SHM is to control the phase and amplitude of the harmonics in the
converter’s output voltage, by generating a control signal with a desired harmonic spectrum through the
modulation of specific lower-order Fourier coefficients.

In practice, this signal consists in a step function with a finite number of switches, taking values only in a
given finite set. This function can be fully characterized by:

1. The waveform, i.e. the sequence of values that the function takes in its domain.
2. The switching angles, i.e. the sequence of points where the signal switches from one value to following

one.
Hence, solving the SHM problem consists in determining the waveform and switching angles in the control

signal.
SHM has been extensively studied in the engineering literature in the last decades. Nowadays, many

different techniques are available to approach this problem, among which we highlight:
1. Conversion into a finite-dimensional optimization problem. It consists in fixing a suitable waveform

for the desired control signal and finding the optimal location of the switching angles [13]. This
approach has the main drawback of requiring an a priori knowledge of the waveform, which may be
quite cumbersome in some situations. In fact, even determining the number of switching angles is
not straightforward in general.

2. Conversion into a polynomial system. This approach is based on employing appropriate algebraic
transformations to convert the SHM problem into a polynomial system whose solutions’ set contains
all the possible waveforms for a predetermined number of switching angles (see [17] and the references
therein). Hence, also in this case, it is necessary to fix a priori the number of switching angles, which
is something that, in general, is preferable to avoid.

3. Conversion into a constrained optimal control problem. This is a very novel approach, which has been
firstly proposed in our recent contribution [2]. It consists in identifying the Fourier coefficients of the

Key words and phrases. Selective Harmonic Modulation, Optimal Control Theory, Duality, Piece-wise affine penalization,
Multilevel controls.

This project has received funding from the European Research Council under the European Union’s Horizon 2020 research
and innovation programme (grant agreement 694126-DyCon). The work of U.B. and E.Z. is supported by the Grant PID2020-
112617GB-C22 KILEARN of MINECO (Spain), by the Elkartek grant KK-2020/00091 CONVADP of the Basque government
and by the Air Force Office of Scientific Research (AFOSR) under Award FA9550-18-1-0242. The work of E.Z. is funded by
the Alexander von Humboldt-Professorship program, the European Unions Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreement 765579-ConFlex and the Transregio 154 Project ‘‘Mathematical Modelling,
Simulation and Optimization Using the Example of Gas Networks’’, project C08, of the German DFG.

1



signal with the terminal state of a controlled dynamical system, where the control is actually the signal,
which is computed by minimizing a suitable cost functional. In contrast with the aforementioned
methodologies, the main advantage of this formulation is that neither the waveform of the solution
nor the number of switching angles need to be a priori determined. On the contrary, the optimal
waveform and switching angles are automatically obtained as a result of the minimization process.

In this contribution, we present an alternative optimal control approach to solve the SHM problem, based
on the so-called adjoint methodology, which has been systematically associated to optimal control problems
and their applications to several fields of science and engineering [7, 10]. A similar methodology has already
been applied in our recent work [3] to obtain multilevel controls for linear time-dependent control systems
satisfying the Kalman rank condition. In this work, we will show how this dual technique can be adapted to
solve the SHM problem.

This document is structured as follows. In Section 2, we introduce the mathematical formulation of the
SHM problem. In Section 3, we present the optimal control approach to SHM and its dual version, which
is the main contribution of the present paper. Section 4 is devoted to numerical examples of a concrete
SHM problem that we have solved by means of our methodology. Finally, in Section 5, we summarize the
conclusions of our work and propose some open problems for future investigation.

2. Preliminaries

In this section, we present the mathematical formulation of the SHM problem and introduce the notation
that will be used throughout the paper. Let

U = {u1, . . . , uL} (2.1)

be a given set of L ≥ 2 real numbers satisfying

u1 = −1, uL = 1 and uk+1 = uk + 2
L− 1 , ∀k ∈ {1, . . . , L}.

The main objective of SHM is to construct a step function u(t) : [0, 2π) → U , with a finite number of
switches, such that some lower-order coefficients in its Fourier expansion

u(t) =
∑
j∈N

[
aj cos(jt) + bj sin(jt)

]
take specific values prescribed a priori.

Due to applications in power converters, it is typical to only consider functions with half-wave symmetry,
i.e.

u(t+ π) = −u(t) ∀t ∈ [0, π). (2.2)

Notice that, because of (2.2), the Fourier coefficients of u corresponding to even indices j vanish:

aj = 1
π

∫ 2π

0
u(τ) cos(jτ) dτ = 1

π

∫ π

0
u(τ) cos(jτ)dτ + 1

π

∫ 2π

π

u(τ) cos(jτ) dτ

= 1
π

∫ π

0
u(τ)

[
cos(jτ)− cos(j(τ + π))

]
dτ = 1

π

(
1− (−1)j

)∫ π

0
u(τ) cos(jτ) dτ,

bj = 1
π

∫ 2π

0
u(τ) sin(jτ) dτ = 1

π

(
1− (−1)j

)∫ π

0
u(τ) sin(jτ) dτ,

which gives the Fourier expansion

u(t) =
∑
j∈N
j odd

[
aj cos(jt) + bj sin(jt)

]

aj = 2
π

∫ π

0
u(τ) cos(jτ) dτ, bj = 2

π

∫ π

0
u(τ) sin(jτ) dτ. (2.3)
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Moreover, in view of (2.2), in what follows, we will only work with the restriction u|[0,π) which, with some
abuse of notation, we still denote by u. Hence, from now on, we will consider piece-wise constant functions
u : [0, π)→ U of the form

u(t) =
M∑
m=0

smχ[φm,φm+1)(t), M ∈ N, (2.4)

where
• S = {sm}Mm=0 with sm ∈ U and sm 6= sm+1 for all m ∈ {0, . . . ,M} is the waveform.
• Φ = {φm}Mm=1 are the switching angles such that

0 = φ0 < φ1 < . . . < φM < φM+1 = π.

• χ[φm,φm+1) denotes the characteristic function of the interval [φm, φm+1).
Observe that S and Φ fully characterize any function u of the form (2.4).

In the engineering applications that motivated our study, due to technical limitations, it is preferable to
employ signals taking consecutive values in U . In the sequel, we will refer to this property of the waveform
as the staircase property, which can be rigorously formulated as follows.

Definition 2.1. We say that a signal u of the form (2.4) fulfills the staircase property if its waveform S
satisfies ]

sminm , smaxm

[
∩ U = ∅, ∀m ∈ {0, . . . ,M − 1}, (2.5)

where sminm = min{sm, sm+1} and smaxm = max{sm, sm+1}.

Note that when U = {−1, 1} (which is known in the SHM literature as the bi-level problem), this property
is satisfied for any u of the form (2.4).

We can now conclude this section by formulating the SHM problem as follows.

Problem 2.1 (SHM). Let U be given as in (2.1), and let Ea and Eb be finite sets of odd numbers of cardinality
|Ea| = Na and |Eb| = Nb respectively. For any two given vectors aπ ∈ RNa and bπ ∈ RNb , we want to
construct a function u : [0, π) → U of the form (2.4), satisfying (2.5), such that the vectors a ∈ RNa and
b ∈ RNb , defined as

a =
(
aj
)
j∈Ea

and b =
(
bj
)
j∈Eb

(2.6)

satisfy a = aπ and b = bπ, where the coefficients aj and bj in (2.6) are given by (2.3).

3. SHM as an optimal control problem

In [2], the SHM problem has been formulated via optimal control. In this formulation, the Fourier
coefficients of the signal u(t) are identified with the terminal state of a controlled dynamical system of
N := Na + Nb components defined in the time-interval [0, π). The control of the system is precisely the
signal u(t), defined as a function [0, π)→ U , which has to steer the state from the origin to the desired values
of the prescribed Fourier coefficients. This approach is based on the observation (see [2, Section 4] for more
detail) that the Fourier coefficients of the function u(t) can be rewritten as the initial state of a dynamical
system controlled by u(t) ẋ(t) = C(t)u(t), t ∈ [0, π)

x(0) = [aπ; bπ] =: x0,
(3.1)

with
C(t) =

[
Ca(t),Cb(t)

]>
, (3.2)
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and Ca(t) ∈ RNa and Cb(t) ∈ RNb given by

Ca(t) = − 2
π

[
cos(e1

at), cos(e2
at), · · · , cos(eNaa t)

]
(3.3)

Cb(t) = − 2
π

[
sin(e1

bt), sin(e2
bt), · · · , sin(eNbb t)

]
.

Here, eia and eib denote the elements in Ea and Eb, i.e.

Ea = {e1
a, e

2
a, e

3
a, . . . , e

Na
a }, Eb = {e1

b , e
2
b , e

3
b , . . . , e

Nb
b }.

We notice that the unique solution to (3.1) can be characterized through a direct integration against a
test function φ ∈ RN as

〈x(t)− x0, φ〉 =
∫ t

0
〈u(τ),C>(τ)φ〉 dτ, (3.4)

where 〈·, ·〉 is the standard scalar product in RN . We shall use this (3.4) in the proof of our main result
Theorem 3.1.

With this formulation, the SHM Problem 2.1 can be reduced to a controllability one for (3.1).

Problem 3.1 (SHM via controllability). Let U be given as in (2.1), and let Ea, Eb and the targets aπ and
bπ be given as in Problem 2.1. We look for a function u : [0, π)→ [−1, 1] of the form (2.4), satisfying (2.5),
such that the solution x ∈ C([0, π);RN ) to (3.1) satisfies x(π) = 0.

In [2], we have shown that Problem 3.1 can be solved via an optimal control approach, by computing the
optimal SHM control uε ∈ L1([0, π); [−1, 1]) through

uε = argmin
u∈L1([0,π);[−1,1])

x solves (3.1)

Fε(u) (3.5)

Fε(u) = 1
2ε‖x(π)‖2

RN +
∫ π

0
L(u(t)) dt,

where ε > 0 is a (small) penalization parameter and the function L is constructed as the piece-wise affine
interpolation of the parabola P(u) = u2 in [−1, 1], considering the elements in U as the interpolating points:

L(u) =
{
λk(u) if u ∈ [uk, uk+1)
1 if u = uL

(3.6)

for all u ∈ [−1, 1] and k ∈ {1, . . . , L− 1},
where

λk(u) := (uk+1 + uk)u− ukuk+1. (3.7)
In particular, we have proved in [2, Theorems 4.1-4.2 and Proposition 4.1] that:

• The optimal control uε, solution to Problem 3.1 is unique and has the form (2.4) satisfying (2.5).
• uε is continuous with respect to the initial datum x0 in the strong topology of L1(0, π).
• The optimal trajectory xε associated with uε satisfies

‖xε(π)‖2
RN ≤ 4επ‖L‖∞, (3.8)

that is, uε is an approximate control solution of the SHM problem, allowing us to get ε-close to the
target Fourier coefficients.

As we anticipated, the main interest of this paper is to show that the SHM Problem 3.1 can be solved
through duality. As a matter of fact, applying general results of the Fenchel-Rockafellar theory [8], we can
build the following dual problem associated with (3.5)

pε,π = argmin
pπ∈RN

Jε(pπ) (3.9)

Jε(pπ) =
∫ π

0
L?
(
C>(t)p(t)

)
dt+ ε

2 ‖pπ‖
2
RN + 〈x0,p(0)〉,
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where p is the solution of the adjoint equation{
ṗ(t) = 0, t ∈ [0, π)
p(π) = pπ ∈ RN

(3.10)

and L? denotes the convex conjugate of L (see [4, Chapter 3] for the definition of L?).
Moreover, we notice that in the particular situation of the SHM problem considered in this work, the

adjoint dynamics is trivial and the solution of (3.10) is constant, p(t) = pπ for all t ∈ [0, π). Hence, (3.9)
simplifies into

pε,π = argmin
pπ∈RN

Jε(pπ) (3.11)

Jε(pπ) =
∫ π

0
L?
(
C>(t)pπ

)
dt+ ε

2 ‖pπ‖
2
RN + 〈x0,pπ〉,

where the dynamical behavior is given only by the time-dependent matrix C(t).
Let us stress that the convex conjugate of a piece-wise affine function is still piece-wise affine and convex.

In particular, for L defined as in (3.6)-(3.7), L? can be computed explicitly and takes the form (see [3, Lemma
A4], [4, Chapter 3] and [5, Section 3.31])

L?(ω) =


λ?1(ω) if ω ∈ [ω0, ω1)
λ?` (ω) if ω ∈ [ω`−1, ω`)
λ?L(ω) if ω ∈ [ω`, ωL)

,
∀ω ∈ [ω0, ωL]
` ∈ {2, . . . , L− 1}

, (3.12)

where
ω0 := ω1 −

4
L− 1 , ωL := ωL−1 + 4

L− 1
ω` := u` + u`+1, ∀` ∈ {2, . . . , L− 1},

(3.13)

and
λ?k(ω) := ukω − u2

k, ∀k ∈ {1, . . . , L}. (3.14)
Dual optimization problems as (3.9) are widely employed in the control literature as they usually reduce the

computational effort with respect to their primal counterpart (3.5) when actually addressing the optimization
process. This is essentially because the optimization variable in (3.5) is the control u ∈ L1([0, π); [−1, 1]),
which is time-dependent, while in (3.9) one minimizes over pπ ∈ RN , the final state of the adjoint equation
(3.10). This renders an optimization process which is, typically, computationally less expensive. We refer to
[6] for a more complete discussion on these issues in the context of the heat equation.

In what follows, we will show that the multilevel staircase control solution to the SHM Problem 3.1 can
be obtained through the minimization of (3.11) and is given by

uε(t) ∈ ∂L?
(
C>(t)pε,π

)
, for a.e. t ∈ [0, π), (3.15)

where ∂L? denotes the subdifferential of the (non-differential) function L?, defined for any q ∈ RN as

∂L?(q) =
{
C ∈ R : L?(r)− L?(q) ≥ C(r− q), ∀r ∈ RN

}
.

Besides, since ∂L? coincides with the standard derivative wherever the function L? is differentiable, we
have from (3.15) that uε is given by the slopes of the linear branches λ?k in (3.14), except for the tm such
that C>(tm)pε,π = ωm, ωm being one of the values given in (3.13). This, in particular, will imply that the
controls computed through (3.11) have the desired multilevel and staircase structure. As a matter of fact, we
have the following result.

Theorem 3.1. For any ε > 0, there exists a unique minimizer pε,π ∈ RN of the functional Jε. Moreover,
this minimizer is related with the minimizer uε of Fε through the formulas

uε(t) ∈ ∂L?
(
C>(t)pε,π

)
, for a.e. t ∈ [0, π) (3.16)

and
xε(π) = −εpε,π. (3.17)

5



In particular, the approximate controllability condition (3.8) is satisfied, i.e. pε,π univocally determines a
multilevel and staircase approximate control uε, solution to the SHM Problem 3.1.

Proof. First of all, the existence and uniqueness of a minimizer pε,π ∈ RN for Jε is an immediate consequence
of the direct method of calculus of variations, since the functional is clearly continuous, strictly convex and
coercive, i.e.

Jε(pπ)→ +∞ as ‖pπ‖RN → +∞.

Let us show that, if uε is in the form (3.16), then (3.17) holds. To this end, we first notice that the
minimizer pε,π can be characterized by the Euler-Lagrange equation

d

dσ
Jε(pε,π + σp̃π)

∣∣∣
σ=0

= 0, ∀ p̃π ∈ RN ,

which, in our case, reads as

−〈εpε,π + x0, p̃π〉 ∈
∫ π

0

〈
∂L?

(
C>(t)pε,π

)
,C>(t)p̃π

〉
dt. (3.18)

In the same way, the minimizer uε of (3.5) can be characterized by the Euler-Lagrange equation

0 ∈
∫ π

0
〈∂L(uε(t)), v(t)〉 dt+ 1

ε
〈xε(π), x̃(π)〉, ∀ v ∈ L1([0, π); [−1, 1]), (3.19)

where x̃ is the solution of (3.1) corresponding to ũ. Moreover, let us recall that, by using (3.4) with φ = p̃π,
the optimal trajectory xε is characterized as

〈xε(π)− x0, p̃π〉 ∈
∫ π

0

〈
∂L?

(
C>(t)pε,π

)
,C>(t)p̃π

〉
dt.

Combining this with (3.18), we get that

〈xε(π)− x0, p̃π〉 = −〈εpε,π + x0, p̃π〉,

from which we immediately obtain that xε(π) = −εpε,π.
Let now v(t) ∈ L1([0, π); [−1, 1]) and let zv(t) be the solution of{

żv(t) = C(t)v(t), t ∈ [0, π)
zv(0) = 0

(3.20)

Multiplying (3.20) by pε,π and integrating by parts using (3.17) we obtain that

0 =
∫ π

0
〈żv(t)−C(t)v(t),pε,π〉 dt = 〈zv(π),pε,π〉 −

∫ π

0
〈v(t),C>(t)pε,π〉 dt

= −1
ε
〈zv(π),xε(π)〉 −

∫ π

0
〈v(t),C>(t)pε,π〉 dt.

Combining this with (3.19), we then have that

0 ∈
∫ π

0
〈∂L(uε(t))−C>(t)pε,π, v(t)〉 dt.

Since the above relation holds for all v(t) ∈ L1([0, π); [−1, 1]), we then conclude that

C>(t)pε,π ∈ ∂L(uε(t)), for a.e. t ∈ [0, π),

which, thanks to [3, Lemma A2], is equivalent to

uε(t) ∈ ∂L?(C>(t)pε,π), for a.e. t ∈ [0, π).

Finally, the multilevel and staircase structure of uε in (3.16) is a direct consequence of the fact that, by
construction, L? is a piece-wise affine function and, therefore ∂L? is piece-wise constant. The complete
details of this last part of the proof are omitted here for brevity, and can be found in [3]. �
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Remark 3.2. According to Theorem 3.1, our dual methodology provides a solution to the SHM Problem 2.1
under the perspective of approximate controllability, meaning that we can construct a multilevel and staircase
approximate control uε allowing us to get ε-close to the target Fourier coefficients. For completeness, we
shall stress that in the literature (see, e.g., [9]) approximate controllability had also been addressed through a
slightly different approach, by minimizing the functional

Ĵε(pπ) =
∫ π

0
L?
(
C>(t)pπ

)
dt+ ε ‖pπ‖RN − 〈x0,pπ〉. (3.21)

In this case, the coercivity of Ĵε, hence the existence of an optimal control pε,π is guaranteed by the
unique continuation principle

C(t)>p(t) = 0 for a.e t ∈ [0, π) ⇒ pπ = 0, (3.22)

which is trivially satisfied by the adjoint dynamics (3.10). This is the Fenchel-Rockafellar dual of the problem

uε = argmin
u∈L1([0,π);[−1,1])

x solves (3.1)
‖x(π)‖RN≤ε

∫ π

0
L(u(t)) dt (3.23)

Nevertheless, as it has been observed in [11, 6], to solve (3.21) or (3.23) numerically may lead to important
computational difficulties, which can instead be avoided through (3.11)

4. Numerical experiments

In this section, we present some numerical experiments to illustrate how our dual optimal control problem
(3.11) allows to solve the SHM Problem 3.1. To this end, we consider the frequencies

Ea = Eb = {1, 5, 7, 11, 13} (4.1)

and the target vectors

aπ = bπ = (m, 0, 0, 0, 0)> ∈ R5, ∀m ∈ [−0.8, 0.8]. (4.2)

In the engineering applications of SHM motivating our work, m in (4.2) is the so-called modulation index.
Finally, we choose ε = 10−5 and the control set

U = {−1, 0, 1} , (4.3)

meaning that u∗ will be a 3-level staircase control function taking only the constant values in (4.3).
As for the minimization of Jε, we adopt the approach of [2, Sections 6.1 and 6.2] and implement the

interior point method via the optimization software IPOpt [16], with the help of the open-source tool CasADi
[1] for nonlinear optimization and algorithmic differentiation.

Our experiments were conducted on a personal Acer laptop with 1.6 GHz Intel Core i5-10210U processor
and 16GB RAM. The results of our simulations are displayed in Fig. 1 and 2, in which we have plotted the
function

Φ : [−0.8, 0.8]× [0, π] −→ U
(m, t) 7−→ u∗m(t),

where, for each m ∈ [−0.8, 0.8], u∗m represents the solution to the SHM problem in our case of study. That is,
Fig. 1 and 2 contain all the solutions of the SHM problem in the range of modulation indices m ∈ [−0.8, 0.8]
and with the frequencies, targets coefficients and levels defined in (4.1), (4.2) and (4.3), respectively.

In Fig. 1, u∗m is displayed seen from above. Each vertical snapshot in the picture corresponds to a
multilevel control for a specific modulation index, which moves from one level to another each time there
is a change of color. Moreover, to better appreciate the multilevel and staircase structure of the controls
obtained, we present in Fig. 2 a side view of u∗m. In both figures, we can appreciate how our numerical
results are in accordance with Theorem 3.1.
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Figure 1. Top view of the 9-levels staircase control for the SHM Problem 3.1 computed
via the minimization of Jε.

Figure 2. Side view of the 9-levels staircase control for the SHM Problem 3.1 computed
via the minimization of Jε.

5. Conclusions

In this paper, we have discussed the Selective Harmonic Modulation problem in power electronic engineering
adopting an optimal control viewpoint. More precisely, we have illustrated how the SHM Problem 2.1 can be
interpreted as an approximate controllability one for which the SHM signal u plays the role of the control
and can be obtained through a dual minimization process. Besides, we have shown both theoretically and
through numerical simulations that, by suitably designing the penalization L? in our cost functional as the
convex conjugate of the piece-wise affine approximation of a parabola, the proposed dual optimal control
problem automatically generates SHM signals having the desired multilevel and staircase structure.

As already observed in our previous contribution [2], this optimal control approach to SHM solves several
critical issues arising in practical power electronic engineering applications. In particular, neither the waveform
nor the number of switching angles need to be a priori determined, as they are implicitly established by the
optimal control. This bypasses the (usually difficult) task of a priori estimating the number of switches which
is necessary to reach the desired Fourier coefficients.

However, some relevant issues are not covered by our study, and will be considered in future works:
1. SHM via null controllability. The results of this paper show that the SHM Problem 2.1 can be

addressed as an approximate controllability one. It would then be natural to analyze whether this
can be extended to the null controllability framework, which corresponds to taking the limit ε→ 0+

in (3.11). This would require some precise estimate of the computational cost with respect to ε.
2. Characterization of the solvable set. The SHM Problem 2.1, by its own nature, brings some

restrictions when converted into a controllability one. Firstly, the time horizon for the control
8



problem is π, therefore fixed and bounded. Secondly, the energy of the controls is also bounded, as u
can only take the values in the control set U . These restrictions yield that not all the initial data
x0 ∈ RN in (3.1) are controllable, meaning that the SHM problem may not be solvable. It would
then be interesting to have a full characterization of the solvable set for the SHM problem, thus
determining the entire range of Fourier coefficients which can be reached by means of our approach.
A rough estimate of the solvable set can be obtained by considering (3.11) with ε = 0 and noticing
that, as shown in [3, Section 3], there exists a constant C > 0 such that∫ π

0
L?(C(t)>pπ) dt ≥ C ‖pπ‖RN . (5.1)

The observability inequality (5.1) is equivalent to the unique continuation (3.22) and, therefore,
yields that, in the limit ε → 0+, the coercivity of Jε is guaranteed for small enough initial data,
namely, ‖x0‖RN ≤ C. On the other hand, for large initial data, this coercivity may be lost. We stress
that this is just a sufficient condition showing that the SHM problem can be solved through null
controllability if the solvable set is contained in some ball in the euclidean space RN . It would be
interesting to obtain a sharper characterization of this solvable set and, possibly, its geometry.

3. Minimal number of switching angles. In practical applications, to optimize the converters’
performance, it is required to keep the number of switches in the SHM signal the lowest possible.
This yields to the very relevant yet challenging task of designing a cost functional for our optimal
control problem which provides a multilevel and staircase signal u, with the additional structural
property of having the minimal possible number of switching angles. A similar problem has been
treated, in a different context, in [12]. There, the authors addressed optimal discrete-valued control
problems using the so-called control parametrization enhancing technique and introducing in their
cost functional a penalization term involving the TV -norm of the control. This term has precisely
the effect of reducing the variations (hence, the switching) in the control signal. It would be worth
to analyze whether a similar approach is applicable also in our context, for instance by penalizing
the TV -norm of the control in (3.5), and if it effectively yields to a minimal switches’ number.
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