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Sidewise control of 1-d waves

Yesim Sarac * and Enrique Zuazua '8

Abstract We analyze the sidewise controllability for the variable coefficients
one-dimensional wave equation. The control is acting on one extreme of
the string with the aim that the solution tracks a given path at the other
free end. This sidewise control problem is also often referred to as nodal
profile or tracking control. First, the problem is reformulated as a dual
observability property for the corresponding adjoint system. Using sidewise
energy propagation arguments the sidewise observability is shown to hold, in
a sufficiently large time, in the class of BV-coefficients. We also present a
number of open problems and perspectives for further research.

Key words 1-d wave equations, sidewise controllability, nodal profile con-
trol, BV-coeflicients, sidewise energy estimates.
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1 Introduction

Consider the following variable coefficient controlled 1-d wave equation:

p(2)yn — (a(@)yz)z = 0, O<az<L, 0<t<T,
y(m,O) = yO(x)’ yt(JT,O) = yl(x)’ O<z< La (11)
y(0,t) = u(t), y(L,t) =0, 0<t<T.

In (IJ), 0 < T < oo stands for the length of the time-horizon, L is the length of the
string where waves propagate, y = y(x,t) is the state and u = u(t) is a control that acts
on the system through the extreme x = 0.

We assume that the coefficients p and a are in BV and to be uniformly bounded
above and below by positive constants, i. e.

0<po<plx)<p, 0<ay<a(r)<a ae in (0,L) (1.2)

and
p,a € BV(0,L). (1.3)
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The main goal of this paper is to analyze the sidewise boundary controllability of
(LI). More precisely, we want to solve the following problem: Given a time-horizon
T > 0, initial data yo(z), y1(x) and a target p(t) for the flur at x = L, to find u(t) such
that the corresponding solution of the system (LL1I) satisfies

y:v(L’t) = p(t), t=>0 (1'4)

in a time-subinterval of [0,T] to be made precise and under suitable conditions on T,
according to the velocity of propagation of waves.

In other words, the string being fixed at the right extreme x = L and the control
u = u(t) acting on the left-extreme x = 0, given a profile p = p(t), we want to choose
the control so that the tension of the string at # = L, namely y,(L,t), tracks the profile
p = p(t).

This is a non-standard controllability problem since, most often, controllability refers
to the possibility of steering the solution to a target in the final time ¢ = T. But here
the aim is rather to assure that a given trace is achieved on the boundary.

There is an extensive literature on the controllability of wave-like equations (see, for
instance, [T0,1TL17,21.24]). Most techniques to handle these problems rely on the dual
observability problem for the adjoint uncontrolled wave equation, that is then addressed
using methods such as multipliers, microlocal analysis or Carleman inequalities, among
others. The one-dimensional case is particularly well understood and sharp results can
be obtained using sidewise energy estimates in the class of BV -coefficients of bounded
variation, [6]. In that context, BV is the minimal requirement on the regularity of the
coefficients since counterexamples can be built in the class of Holder continuous ones
( [3]). In case coefficients are slightly less regular than BV one may obtain weaker
controllability properties in the sense that initial data to be controlled need to be more
smooth than expected according to the BV frame, [7].

Sidewise control problems have also been previously investigated. For instance, mo-
tivated by applications on gas-flow on networks, Gugat et al. [§] proposed the so-called
nodal profile control problem, the goal being to assure that the state fits a given profile
on one or some nodes of the network, after a waiting time, by means of boundary con-
trols. In [12], [20], [13] and [22] this analysis was extended to 1-D quasilinear hyperbolic
systems by a constructive method employing the method of characteristics.

In this paper we address this sidewise or nodal-controllability problem in the context
of the 1-D wave equation above. Our two main contributions are as follows:

e The first one is of a methodological nature. We introduce the dual version of this
problem, which leads to a non-standard observability inequality for the adjoint
wave equation, involving a non-homogeneous boundary condition at x = L, that
needs to be estimated out of measurements done at x = 0. This is inspired on
the classical duality approach to exact controllability as introduced in [I0] (see
also [17]).

As we shall see, this duality method can be applied also in several space dimensions
and for other models, such as heat or Schrodinger equations, also when defined
on networks. Nodal controllability is therefore systematically reduced to proving
suitable observability estimates.

e In the particular case under consideration (L.I), we prove these observability in-
equalities using sidewise energy estimates.



The combination of these two contributions allows for a rather complete understand-
ing of the problem under consideration for 1-D waves. But the development of techniques
allowing to handle the corresponding observability inequalities in the multi-dimensional
context seems to be a challenging problem.

The parabolic companion of this analysis has been recently developed in [I] where the
nodal controllability of the 1-D heat equation is solved using the same duality principle
and flatness methods, [16]. In the parabolic setting, contrarily to the results on this
paper, results holds in an arbitrary time horizon. But, in the context (LII), because of
the finite velocity of propagation, the sidewise control property can only hold when the
time horizon is large enough.

This paper is organized as follows. In Section 2 we present the dual sidewise observ-
ability inequality problem for the adjoint system. We also present the main sidewise
controllability result and show what the dual equivalent in terms of sidewise observ-
ability is. In Section 4 we present the main sidewise controllability result. Section 4 is
devoted to prove the relevant sidewise controllability inequality. We conclude in Section
5 with some conclusions and some open problems for future research.

2 The dual sidewise observability problem

Let us consider system ([II) with coefficients satisfying the assumptions (I2]) and
(L3).

For any given (yo,y1) with yo € L?(0,L) and py; € H~1(0,L) and any u € L?(0,T),

system (LJ]) admits a unique solution y, defined by transposition (see [6]), enjoying the
regularity property

y € C([0,T); L*(0, L)), py; € C([0,T); H'(0,L)). (2.1)

In this functional setting the sidewise controllability problem can be formulated more
precisely as follows: Given a finite time T > 2L3 and p € H-Y(LB,T — Lj3) we aim to
determine u € L*(0,T) such that the solution y of system (LI satisfies the condition

yz(L,t) = p(t) forall t e (LB, T — LP) (2.2)

B =ess sup \/E (2.3)
zefo,L] V @

Remark 2.1. Several remarks are in order:

where

e Note that this problem makes sense since solutions of (L)) in the above regularity
class fulfill the added boundary reqularity condition

yo(L,t) € H1(0,T). (2.4)

e Note also that in the present formulation of the sidewise controllability problem
the velocity of propagation plays an important role. On one hand the sidewise con-
trollability property is only guaranteed when T > 2LB. On the other, the tracking
condition is only assured in the time sub-interval (LB, T — Lf).



o Without loss of generality, using the principle of additive superposition of solu-
tions of linear problems, the problem can be reduced to the particular case yo(z) =

y1(x) =0.

Let us now consider the adjoint system:

p(X)hy — (a(x)hy)r =0, O0<z<L,0<t<T
(@, T) =0, Yy(x,T) =0, 0<z<L (2.5)
¥(0,t) =0, ¢(L,t) =s(t), 0<t<T

where the boundary data are of the form

0, T-LB<t<T
s(t) =14 so(t), LB<t<T-Lp (2.6)
0, 0<t<Lp

with so € H3 (LB, T — LB).

This system admits an unique finite-energy solution v such that

(¥, %—f) e C([0,T),H*(0,L) x L?*(0, L))

and

1,(0,.) € L*(0, L).

The sidewise observability inequality that, as we shall see, this adjoint system fulfills,
and which is equivalent to the sidewise controllability problem under consideration is
the following:

Proposition 2.1. Let T > 2Lj (8 being given as in ([2.3])).
Then, there exists Cy > 0 such that the observability inequality

[so@O g s r-rs) < C1llz(0,0)l 1,01 (2.7)
is satisfied for every finite energy solution of .5, i. e. for all so € H{(LB,T — Lp).

Remark 2.2. All terms in the inequality [2.7) make sense. In fact, the sidewise energy
estimates in [0] allow showing that there exists a constant Co = Ca(p,a,T) > 0 such
that the finite energy solution v (2.1) satisfies

19200, )l £y 0,7y < C2 0 ()l 510,17 (2.8)
for all sp € HY(LB,T — LB).

This observability inequality (2.7 is equivalent to the sidewise controllability prop-
erty. In fact, out of the observability property above, one can obtain the sidewise control
of minimal L?(0,T)-norm by a variational principle that we present now.

Let us consider the continuous and strictly convex quadratic functional

J:HYLB,T—-LB) —R



defined as
1 (T T—LB
Joo) =5 | a0 0at—amy [ so(tpteya (29)
defined for sy € HY(LB,T — LB), where 9 is the solution of the adjoint system (Z.5])
corresponding to the boundary datum s € H}(0,T) given by (2.0).

Note that, in (29), the integral [ LTﬁ_Lﬁ p(t)so(t)dt represents the duality pairing
between p(t) € H-1(LB,T — LB) and so(t) € H (LB, T — Lp).

The observability inequality above guarantees that the functional is also coercive.
The Direct method of the Calculus of Variations then ensures that J has a unique
minimizer.

The following lemma states that the minimum of the functional J provides the desired
sidewise control.

Lemma 2.1. Suppose that 39 € HE(LB,T — LB) is the unique minimizer of J in the
space H (LB, T — LB). If 1 is the solution of the adjoint system (5] corresponding to
the boundary datum 3¢ € HS(LB, T — Lp), then

u(t) = —a(0)yx(0,1) (2.10)

15 a control such that

when the initial data yo = y1 = 0.

Remark 2.3. As mentioned above, once the control is built for yo = y1 = 0, using the
linear superposition of solutions of the wave equation, the control for arbitrary initial
data can be built. The functional J above can be also modified so to lead directly the
control corresponding to non-trivial initial data.

Proof. Since J achieves its minimum at Sy, the Gateaux derivative of J vanishes
at that point and, in other words,

0= Jim %(J(§0 + hso) — J(50))
s ) T_L (2.12)
= [ @O0 0et0. 00— [ aysoomtar
for any other sy € Hg(LB,T — L3) where v stands for the solution of adjoint system
([238) with sg as boundary datum.
On the other hand, multiplying the equation (LI by the solution #(z,t) of the
adjoint problem and integrating on (0, L) x (0,7") we get (recall that, without loss of
generality, we have assumed that yo(z) = y1(z) = 0)

T

/ ! a(0)u(t)y, (0, t)dt + / a(L)s(t)ys (L, t)dt = 0. (2.13)
0 0

Comparing (Z12)) and @2I3) we get that u(t) = —a(0)1,(0,t) is a control which
leads y,(z,t) to p(t) on x = L for all L <t < T — Lp. O

Remark 2.4. Using classical arguments it can be seen that the control obtained by this
minimization method is the one of minimal L*(0,T)-norm (see [17]).



3 The main sidewise controllability result

Summarizing, the main sidewise controllability result is as follows:

Theorem 3.1. Let us consider system (1) with coefficients satisfying the assumptions
(T2) and ([T3).

Let T > 2Lp (B being given as in ([23])).

Then, for any p € H-Y(LB,T — LJ) there exists a control u € L*(0,T) such that the
solution of (1) satisfies (2Z2]).

4 Proof of the sidewise observability inequality

Let us now proceed to the proof of Proposition 211

In order to prove the observability inequality (2.7]), we will use the sidewise energy
estimates (see [0,23]) (see also [4], [18] for other applications of this technique).

Assume that T > 2L and set

1 T—Bx
F@ =5 [ ple)wn(e. 0 + @)oo, 0)Plde, - Va € 0,11

T

Because of the boundary condition (0,t) = 0, we have

a T
FO) =P [ (w01

Let us compute the derivative of F' with respect to x:

dF
d;x) = —g[mb? +adl| - g[m/)f +ail|

(4.1)

T—Bzx / /
#[7 (vt + e + 7+ U2

Integrating by parts and using the equation (2.35]) we have

T—Ba
[ et + o) a

T

T—px
= —/ a (z)2dt + p(x) i) — p(2)Yi)y .

- t=T—Bx :[3:1:.

Combining this identity and ([@I]) and using the elementary inequality

o)l < 5 loa)i? + a2,

we obtain -
dF 1 P / /
d;m) < 5 /ﬁx (p (x)¢§ —a (x)q,z)i) dt
1 / / T—pBx
< 5 max {%, ’%J} /w (p(x)i/)tz + a(x)wi) dt



Integrating this differential inequality with respesct to x, we get

F(z) < exp (/Om max { |‘;((S))| , %} ds> F(0)

From
) [P/ (s)] a'(s)] TV(p)  TV(a)
/ ma"{ p(s) " als) }dsg a0
we get
T
F(z) < %O)exp <T‘;0(p) + T‘;O(a)> /0 (12(0,1))%dt, Yz €0, L). (4.2)

Integrating with respect to z in (0, L), we have
T—BL
/ / 2) (P12, 1))? + ale) (Yo (2, 1)) dadt
BL
T
2 0

o ao

Because of the boundary condition (0,t) = 0, we can write that

/;_BL(zp(L,t))zdt: /T . {/ V(2,1 dw} dt

T—BL
< L/ / Vo (, ) dxdt
/3

T—BL
/ ) (Y (x,1))? + a(z) (e (x, t))?]dadt.

- mm{po,ao} AL

Combining this inequality and (£3]), we get

T-pL a(0)L? TV(p) TV(a) T
L.t)%dt < —2— —ex < + )/ 2(0,0)%dt. (44
[, Wt s e (S0 T ) [0 @)
On the other hand, from (£.2)) we have
0 TV TV T
Fr) < "o (T D) 002
0

o ag

Thenrefore we can write

T—BL a a T
e M e I R

2 Jse Po ao
where
0, T—LB<t<T
P(L,t) =< sp(t), LB<t<T-LpB
0, 0<t<Lj

Combining (£4) and (43]) we get the desired observability inequality ([2.7]) with
L? 1 T T
C? = < - + ) a(0) exp < Vi) + V(a)) )

min{pg, a0}  p(L) P0 aop
Thus, the proof of Proposition 2.1]is done.




5 Conclusions and open problems

In this paper we have proved the sidewise controllability of the 1-D wave equation
with BV coefficients. This was done superposition, on one hand, a dual formulation of
the problem, which leads to a novel sidewise observability inequality that, on the other
hand, we prove by sidewise energy estimates that have been previously developed and
implemented in the context of control of 1-D wave equations.

The methods and results in this paper lead top some interesting open problems and
could be extended in various directions that we briefly describe now:

1. Other boundary conditions. For the sake of simplicity in this paper the case
of Dirichlet boundary conditions has been addressed. But similar problems are
relevant with other boundary conditions. Our techniques apply in those cases too.

One could for instance consider the same model with Neumann boundary condi-
tions and control:

p(T)yu — (a(z)yz)z = 0, O<az<L, 0<t<T,

)
y(z,0) = yo(x), y(x,0) =yi1(x), 0<zx <L, (5.1)
yw(oat) = u(t), ym(L,t) =0, O0<t<T.

In this case the problem consists on, given a time-dependent function p = p(t), to
find a control u = u(t) such that the corresponding solution fulfills:

y(L,t) =p(t), t=0 (5.2)
Our methods apply in this case too, leading to similar results with minor changes.

2. Less regular coefficients. The methods developed in this paper combined with
those of [7] allow to consider coefficients with slightly weaker regularity and obtain
sidewise controllability results for more smooth Sobolev targets. Note, however,
that the results in [3] can also be adapted to show that in the class of Holder
continuous coefficients one cannot expect such results for targets in Sobolev classes.

3. Non-harmonic Fourier series.The results presented in this paper could be also
obtained using other genuinely 1-D methods such as the D’Alembert formula or
Fourier series representation methods.

When dealing with Fourier series the sidewise observability inequality proved above
leads to new variants of the classical Ingham inequalities (see [I7]). It would be
interesting to see if they can be obtained directly by non-harmonic Fourier series
methods.

4. Nonlinear problems. The results in this paper, combined with those in [23],
allow to extend our sidewise controllability result for semilinear wave equations of
the form

p(@)ys — (a(z)yz)e + f(y) = 0
with f a locally Lipschitz nonlinearity such that

f(s)

|s|—oc slog?(s)

is small enough (see also [2]).



. Transmutation. As explained in [6], transmutation techniques can be used to
transfer controllability properties of wave equations into heat equations. It would
be interesting to analyse whether this can be done in the context of the sidewise
controllability /observability of the heat equation.

Recall, as mentioned above, that the sidewise controllability of the 1-D heat equa-
tion has been directly addressed in [I] using flatness methods in Gevrey classes.

. Networks. The techniques in this paper can be applied for 1-D wave propagation
on networks. It could for instance allow to handle the case of a tree-shaped network
with active controls on all but one free ends ( [9]). But adapting them to more
general networks, or to the case of fewer controls, would require substantial further
developments in combination with graph and diophantine theory ( [5]).

. Numerical analysis. Most of the methods developed for the numerical control-
lability ( [23]) of the wave equation can also be applied in the context of sidewise
controllability. But this would require a careful adaptation since, most often, the
needed numerical results are achieved using Fourier series techniques, and not the
sidewise energy estimates presented here, that do not hold in the discrete setting.

. Multi-dimensional problems. As explained in the introduction, the controlla-
bility theory of wave equations has been also developed in the multi-dimensional
context. Duality arguments reduce the problem to boundary observability inequal-
ities that can be obtained by different methods including multipliers, Carleman
inequalities and microlocal analysis.

The sidewise control problem discussed in this paper can also be easily reformu-
lated in the multi-dimensional frame. The duality method described here can also
be applied, reducing the problem to the obtention of new sidewise observability
inequalities.

However, adapting the existing techniques for the observability of waves to prove
those sidewise observability inequalities for multi-dimensional wave equations seems
to be a challenging problem.

Let us present this interesting and challenging issue with some more detail.

Let Q be a bounded smooth domain of R", in dimension n > 2, and consider the
wave equation:

yir — Ay =0, in Qx (0,7)

y(z,0) = yo(x), ye(z,0) =yi(x), inQ 653
y=1u, OHPCX(O,T) ’
y =0, on Ty x (0, 7).

Here I'y and I, stand for a partition of the boundary, I'g being the fix part of the
boundary and I'; the one under control. While the control w acts on I'., the subset
of the boundary 'y remains fixed, thanks to the homogeneous Dirichlet boundary
conditions.

Given a smooth enough target p : Ty x (0,7) — R to be tracked, the question is
then to find a control u in, say, L?(T'. x (0,T)), such that the solution y of (5.3)
satisfies the condition

dy/Ov=p onTqyx (0,T).



Here and in what follows v denotes the outward unit normal vector and 0 - /Ov
the normal derivative.

This is the natural multi-d version of the sidewise controllability problem discussed
above. In fact the same formulation can be easily adapted to consider other models
such as multi-dimensional heat, Schrodinger equations or the system of thermoe-
lasticity (see [25]).

The sidewise controllability problem above can be reduced, by duality, to a new
class of sidewise observability inequalities for the adjoint system

Yy — A =0, in Q x (0,7)

1/1(907T) :wt(xaT) :Oa in (54)
P =0, onI'. x (0,7)

P =s, on 'y x (0,7).

Here s = s(x,t) is a smooth boundary condition given on I'g X (0, 7). The question
is then whether one can prove the existence of an observability constant C' > 0
such that

15[ < ClloY /N 2, x01)) (5.5)
for every solution of this adjoint system.

Observe that here the norm || - ||, in this inequality is to be identified both in what
corresponds the Sobolev regularity and the support within T’y x (0, 7).

As we mentioned above the existing techniques do not seem to yield this kind of
inequalities in a direct manner.

However, as described in [I1], using the Holmgren’s uniqueness Theorem, a unique
continuation property can be easily proved. This constitutes a weaker and non-
quantitative version of this kind of inequality.

Indeed, it can be easily proved that, as soon as 91 /0v =0in I'. x (0,7) and T is
large enough, one can guarantee that s = 0 provided its support is localized in a
subset of the boundary of the form v x (7,7 — 7), with v a suitable open subset
of I'p and 0 < 7 < T'/2. Both v and 7 can be easily characterized it terms of the
cones of influence and dependence of solutions of the wave equation. Essentially,
~v is constituted by the points for which the geodesic distance (within Q) to I'. is
less than 7.

Obviously, for this result to be active in some effective subset v x (7,7 — 7), one
needs T to be large enough, in particular T° > 2§, where ¢ is the minimal geodesic
distance from I'; to I'y.

This unique continuation result assures, in the corresponding geometric setting,
that the wave equation enjoys the property of sidewise approximate controllability:
i. e. that given any p € L?(y x (1,7 — 7)) and any € > 0 there exists a control
u € L*(T:x(0,T)) (depending on €) such that the corresponding solution y satisfies

[|0y/0v — pl|L2(yx (rr—r)) < €
This result can be viewed as a partial extension of the 1-D results in this paper to

the multi-dimensional case. Note however that these arguments, based purely on
Holmgren uniqueness, do not yield any quantitative estimates.
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The systematic analysis of these problems in the multi-dimensional context for
the wave equation and other relevant models constitutes a very rich source of
interesting open problems.
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