
GAUSSIAN BEAM ANSATZ FOR FINITE DIFFERENCE WAVE EQUATIONS

UMBERTO BICCARI AND ENRIQUE ZUAZUA

Abstract. This work is concerned with the construction of Gaussian Beam (GB) solutions for the
numerical approximation of wave equations, semi-discretized in space by finite difference schemes. GB

are high-frequency solutions whose propagation can be described, both at the continuous and at the
semi-discrete levels, by microlocal tools along the bi-characteristics of the corresponding Hamiltonian.

Their dynamics differ in the continuous and the semi-discrete setting, because of the high-frequency

gap between the Hamiltonians. In particular, numerical high-frequency solutions can exhibit spurious
pathological behaviors, such as lack of propagation in space, contrary to the classical space-time

propagation properties of continuous waves. This gap between the behavior of continuous and numerical

waves introduces also significant analytical difficulties, since classical GB constructions cannot be
immediately extrapolated to the finite difference setting, and need to be properly tailored to accurately

detect the propagation properties in discrete media. Our main objective in this paper is to present a

general and rigorous construction of the GB ansatz for finite difference wave equations, and corroborate
this construction through accurate numerical simulations.
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1. Introduction

This article deals with the construction of Gaussian Beam (GB) solutions for the numerical approxi-
mation of wave equations, semi-discretized in space by finite difference schemes.

2020 Mathematics Subject Classification. 35C20, 35L05, 65M06.

Key words and phrases. Wave equation, Finite difference, Gaussian Beam ansatz.
E. Zuazua has been funded by the Alexander von Humboldt-Professorship program, the ModConFlex Marie Curie

Action, HORIZON-MSCA-2021-DN-01, the COST Action MAT-DYN-NET, the Transregio 154 Project ‘‘Mathematical

Modelling, Simulation and Optimization Using the Example of Gas Networks’’ of the DFG, grants PID2020-112617GB-C22

and TED2021-131390B-I00 of MINECO (Spain), and by the Madrid Goverment -- UAM Agreement for the Excellence
of the University Research Staff in the context of the V PRICIT (Regional Programme of Research and Technological
Innovation).

1



GB are high-frequency quasi-solutions of wave-like equations concentrated on ray paths, trajectories of
the underlying Hamiltonian system, whose amplitudes at any given time are nearly Gaussian distributions
up to some small error. These waves propagate in a very simple fashion, and it is possible to construct
them rather explicitly. Moreover, one can use them as fundamental building blocks of wave motion, to
study general solutions of PDE and their propagation properties.

Our model of reference in this paper will be the following constant coefficients wave equation defined
on Rd, d ≥ 1: {

utt(x, t)− c∆u(x, t) = 0, (x, t) ∈ Rd × (0, T )

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Rd.
(1.1)

It is well-known (see, e.g., [31]) that there exist GB solutions of (1.1) whose energy is localized near
certain curves Γ : (x(t), t) ∈ Rd × R in space-time, the so-called (bi-characteristic) rays, solutions of a
Hamiltonian system of ordinary differential equations. In fact, given a ray path (x(t), t) it is possible to
construct a sequence of quasi-solutions (uk)k∈N of the wave equation (1.1) such that the amount of their
energy outside a small cylinder centered at x(t) is exponentially small.

In this work, we extend this analysis to semi-discrete approximations of (1.1), obtained by means of a
finite difference scheme. To this end, let

Gh :=
{
xj := jh, j ∈ Zd

}
(1.2)

be a uniform mesh of size h, uj(t) := u(xj , t) and

∆c,huj(t) :=
c

h2

d∑
i=1

(
uj+ei − 2uj + uj−ei

)
be the finite difference approximation on Gh of the Laplacian c∆, where (ei)

d
i=1 denotes the canonical

basis in Rd. With this notation, let us consider the following semi-discrete approximation of the wave
equation (1.1) {

u′′j (t)−∆c,huj(t) = 0, j ∈ Zd, t ∈ (0, T )

uj(0) = u0
j , u′j(0) = u1

j , j ∈ Zd.
(1.3)

As illustrated through numerical simulations in [5, 28], also for (1.3) - at least in space dimension
d = 1, 2 - there exist quasi-solutions concentrated along the corresponding bi-characteristic rays. However,
the propagation properties of these solutions change substantially with respect to their continuous
counterpart, due to relevant changes in the dynamical behavior of the rays. In this paper, we are going
to show that these propagation properties can be completely understood by properly constructing a GB
ansatz for (1.3).

This paper is organized as follows. In Section 2, we motivate our study and discuss some existing
bibliography related with our work. In Section 3, we introduce the Hamiltonian systems for the continuous
and finite difference wave equations, and discuss the main differences between the corresponding rays of
geometric optics. In Section 4, we briefly recall the construction of GB solutions for the continuous wave
equation, for which we will follow the nowadays classical approach of [31] (see also [27]). In Section 5, we
adapt this construction to produce a GB ansatz for the semi-discrete problem (1.3). In Section 6, we
present and discuss some numerical simulations corroborating our theoretical results. Finally, in Section
7, we gather our conclusions and present some open problems related to our work.

2. Motivations and bibliographical discussion

The computation of GB for wave-like equations is a very classical technique, dating back at least to
the early 1970s, when it was originally employed to study resonances in lasers [1, 3]. Since then, this
approach has branched out to an ample fan of different fields.

In [17, 31], these constructions have been used to understand the propagation of singularities in
PDE. Later on, GB have been employed for the resolution of high frequency waves near caustics, with
geophysical applications, for instance to model the seismic wave field [10] or to study seismic migration [16].
More recent works in this direction include studies of gravity waves [34], the semi-classical Schrödinger
equation [18, 20], or acoustic wave equations [30, 33]. Finally, GB have also been widely employed by
the control theory community, to describe the observability and controllability properties of wave-like
equations. An incomplete literature on applications of GB to control includes [4, 7, 8, 27].
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GB are closely related to geometric optics, also known as the Wentzel-Kramers-Brillouin (WKB)
method or ray-tracing [6, 11, 19, 32]. In both approaches, the solution of the PDE is assumed to be of
the form

uk(x, t) = k−
3
4 a(x, t)eikφ(x,t), (x, t) ∈ Rd × R,

where k ∈ N? = N \ {0} is the high-frequency parameter, a is the amplitude function, and φ is the phase
function. What differentiates geometric optics and GB are the assumptions one makes on the phase.

In the geometric optics method, φ is assumed to be a real valued function. This, however, has a
main drawback, since solving the equation for the phase using the method of characteristics may lead
to singularities which invalidate the approximation. Generally speaking, this breakdown occurs at the
intersection of nearby rays, resulting in a caustic where geometric optics incorrectly predicts that the
solution’s amplitude is infinite.

GB, on the contrary, are built with a complex valued phase and do not develop caustics. Intuitively
speaking, this is because these solutions are concentrated on a single ray that cannot self-intersect.
Mathematically, this stems from the fact that the standard symplectic form and its complexification are
preserved along the flow defined by the Hessian matrix of the complex valued phase φ [31, 33]. Thus,
GB are global solutions of the PDE, and represent a very effective tool to understand wave propagation.

The construction of GB is nowadays well-understood for a large class of PDE. Starting from the
previously mentioned works [3, 17], these techniques have been later extended by several authors, and
complemented with the developments of tools like microlocal defect measures (introduced independently
by Gérard in [14] and by Tartar in [35], in the context of nonlinear partial differential equations and of
homogenization, respectively) or Wigner measures [21, 29, 44].

Nevertheless, these kinds of approaches are still only partially developed at the numerical level. If,
on the one hand, we can mention some works on the extension of microlocal techniques to the study
of the propagation properties for discrete waves [26, 28], on the other hand, we are not aware of any
contribution on the GB construction for discretized PDE.

This paper aims at filling this gap, by analyzing the GB approximation of finite difference wave
equations and using them to describe their propagation properties.

The analysis of propagation properties of numerical waves obtained through a finite difference
discretization on uniform or non-uniform meshes is a topic which has been extensively investigated
in the literature. Among other contributions, we mention works of Trefethen [36, 37] and Vichnevetsky
[38, 39, 40, 41, 42], as well as the survey paper [45]. In particular, it is by now well-known that the
finite difference discretization of hyperbolic equations introduces spurious high-frequency solutions with
pathological propagation behaviors that are not detected in their continuous counterpart.

The employment of GB helps understanding the reason of this discrepancy. In fact, knowing that GB
solutions remain concentrated along bi-characteristic rays allows to completely describe the propagation
properties of numerical solutions and detect the pathologies that the discretization introduces. At the
continuous level, if the coefficients of the equation are constants, the bi-characteristic rays are straight
lines and travel with a uniform velocity. In the case of variable coefficients, instead, the heterogeneity of
the medium where waves propagate produces the bending of the rays and, consequently, an increase or
decrease in their velocity.

On the other hand, the finite difference space semi-discretization of the equation may introduce different
dynamics, with a series of unexpected propagation properties at high frequencies, that substantially differ
from the expected behavior of the continuous equation. For instance, one can generate spurious solutions
traveling at arbitrarily small velocities [36] which, therefore, show lack of propagation in space.

As we shall see, this phenomenon is related to the particular nature of the discrete group velocity
which, in contrast with the continuous equation, may vanish at certain frequencies. In addition, the
introduction of a non-uniform mesh for the discretization of the equation makes the situation even more
intricate. For instance, as indicated in [5, 28, 41], for some numerical grids the rays of geometric optics
may present internal reflections, meaning that the waves change direction without hitting the boundary
of the domain where they propagate.

All these pathologies are purely numerical, and they are related to changes in the Hamiltonian system
giving the equations of the rays. In [5, 26, 28], a complete discussion of these spurious dynamics has
been carried out by means of microlocal techniques, supported by sharp numerical simulations. This
work complements the aforementioned contributions, by providing a simple yet accurate GB ansatz to
understand wave propagation in the finite difference setting. We anticipate that our analysis will be
conducted mostly in the frequency regime k ∼ h−1 (that is the one at which the interesting pathologies
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discussed in [5, 26, 28] appear), although we will also present an heuristic study of other relevant ranges
of frequency.

3. Hamiltonian system and rays of geometric optics

In this section, we discuss briefly the behavior of the rays of geometric optics associated with the
continuous and semi-discrete wave equations (1.1) and (1.3).

3.1. Rays of geometric optics for the continuous wave equation. The rays of geometric optics
are defined as the projections on the physical space (x, t) of the bi-characteristic rays given by the
Hamiltonian system associated with the principal symbol of the wave operator. In the case of the wave
equation (1.1), this principal symbol is given by

P(x, t, ξ, τ) := −τ2 + c|ξ|2. (3.1)

and the bi-characteristic rays are the curves

s 7→ (x(s), t(s), ξ(s), τ(s)) ∈ Rd × R× Rd × R

solving the first-order ODE system:
ẋ(s) = ∇ξP(x(s), t(s), ξ(s), τ(s)) x(0) = x0

ṫ(s) = Pτ (x(s), t(s), ξ(s), τ(s)) t(0) = t0

ξ̇(s) = −∇xP(x(s), t(s), ξ(s), τ(s)) ξ(0) = ξ0 6= 0

τ̇(s) = −Pt(x(s), t(s), ξ(s), τ(s)) τ(0) = τ0

(3.2)

with initial data (x0, t0, ξ0, τ0) ∈ Rd × R× Rd × R such that

P(x0, t0, ξ0, τ0) = 0. (3.3)

In what follows, without losing generality, we will assume that t0 = 0. Then, we immediately obtain
from (3.1) and (3.2) the new system

ẋ(s) = 2cξ0 x(0) = x0

t(s) = −2τ0s

ξ(s) = ξ0

τ(s) = τ0

(3.4)

from which, inverting the variables s and t in the second equation, we find the following expression for
the ray x(t)

x(t) = x0 −
cξ0

τ0
t. (3.5)

Moreover, from (3.3), we have that the initial value τ0 has to be chosen such that

τ2
0 = c|ξ0|2. (3.6)

Using this in (3.5), we finally obtain

x±(t) = x0 ±
√
c
ξ0

|ξ0|
t, (3.7)

i.e., the rays x±(t) are straight lines which propagate from x0 with constant velocity
√
c and in the

direction prescribed by the unitary vector ξ0/|ξ0| ∈ Rd. Notice that, in space dimension d = 1, this
is consistent with the D’Alambert’s formula, according to which, given the initial data (u0, u1), the
corresponding solution of (1.1) can be uniquely decomposed into two components - each one propagating
along one of the characteristics x±(t) - and is given by

u(x, t) =
1

2

[
u0(x+

√
ct) + u0(x−

√
ct)
]

+
1

2

∫ x+
√
ct

x−
√
ct

u1(z) dz.
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3.2. Rays of geometric optics for the semi-discrete wave equation. When considering finite
difference approximations of (1.1), namely (1.3), the principal symbol of the wave operator becomes

Pfd(x, t, ξ, τ) := −τ2 + 4c

∣∣∣∣sin(ξ2
)∣∣∣∣2 = −τ2 + 4c

d∑
i=1

sin2

(
ξi
2

)
, (3.8)

where we have denoted by ξi, i ∈ {1, . . . , d}, the i-th component of the vector ξ ∈ Rd, while with the
notation | · | we refer to the classical Euclidean norm.

This trigonometric symbol (3.8) can be easily inferred by taking in (1.3) plane wave solutions of the
form

uj(t) = ei(
τt
h +ξ·j) = e

i
h (τt+ξ·xj), (3.9)

where τ is the temporal frequency and ξ the spatial frequency (also known as the wave number).
Notice that these solutions (3.9) are in a high-frequency regime of order h−1. This results in a principal

symbol (3.8) which is independent of the mesh parameter h.
At this regard, we shall stress that in some classical references (see, e.g., [37]) the authors consider

plane waves in a uniform (independent of h) frequency regime, i.e.

uj(t) = ei(τt+ξ·xj),

whose associate principal symbol

Pfd,h(x, t, ξ, τ) := −τ2 +
4c

h2

∣∣∣∣sin(hξ2
)∣∣∣∣2 = −τ2 +

4c

h2

d∑
i=1

sin2

(
hξi
2

)
(3.10)

depends explicitly on h. But since one of the motivations of our study is to provide a deeper understanding
of the high-frequency pathologies of finite-difference wave propagation, it is more natural to work in the
high-frequency regime of (3.9).

There is a clear substantial difference in this symbol (3.8) with respect to its continuous counterpart
(3.1). In (3.8), the Fourier symbol |ξ|2 of the Laplace operator is replaced by

4c

d∑
i=1

sin2

(
ξi
2

)
,

corresponding to the finite difference approximation of the second-order space derivative. This affects
also the behavior of the bi-characteristic rays, that are now given by the curves

s 7→ (xfd(s), t(s), ξfd(s), τ(s)) ∈ Rd × R× Rd × R

solving the first-order ODE system
ẋfd(s) = ∇ξPfd(xfd(s), t(s), ξfd(s), τ(s)) xfd(0) = x0

ṫ(s) = ∂τPfd(xfd(s), t(s), ξfd(s), τ(s)) t(0) = t0

ξ̇fd(s) = −∇xPfd(xfd(s), t(s), ξfd(s), τ(s)) ξfd(0) = ξ0 6= 0

τ̇(s) = −∂tPfd(xfd(s), t(s), ξfd(s), τ(s)) = 0 τ(0) = τ0

(3.11)

with initial data (x0, t0, ξ0, τ0) ∈ Rd × R× Rd × R such that

Pfd(x0, t0, ξ0, τ0) = 0. (3.12)

Once again, without losing generality, we will assume that t0 = 0. Then, we immediately obtain from
(3.8) and (3.11) the new system 

ẋfd(s) = 2c sin(ξ0) x(0) = x0

t(s) = −2τ0s

ξfd(s) = ξ0

τ(s) = τ0

(3.13)

from which, inverting the variables s and t in the second equation, we find the following expression for
the ray xfd(t)

xfd(t) = x0 −
c sin(ξ0)

τ0
t. (3.14)
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Moreover, from (3.12), we have that the initial value τ0 has to be chosen such that

τ2
0 = 4c

∣∣∣∣sin(ξ0

2

)∣∣∣∣2 .
Using this in (3.14), we then obtain

x±fd(t) = x0 ±
√
c sin(ξ0)

2
∣∣∣sin(ξ02 )∣∣∣ t.

Finally, by observing that

sin(ξ0) = 2 sin

(
ξ0

2

)
� cos

(
ξ0

2

)
,

where � denotes the standard Hadamard product 1, we get the following expression for the characteristic
rays

x±fd(t) = x0 ±
√
c cos

(
ξ0

2

)
�

sin
(
ξ0
2

)
∣∣∣sin(ξ02 )∣∣∣ t. (3.15)

We then see that the rays x±fd(t) are still straight lines originating from x0 and propagating in the
direction of the unitary vector

sin
(
ξ0
2

)
∣∣∣sin(ξ02 )∣∣∣ ,

but this time with a velocity of propagation (also denoted group velocity in some classical references -
see [36, 39])

v =
√
c

∣∣∣∣cos

(
ξ0

2

)∣∣∣∣
which is not constant anymore. Instead, it depends on the frequency ξ0 and vanishes whenever∣∣ cos(ξ0/2)

∣∣ = 0. This happens, for instance, if

ξ0 = (2k + 1)π, with k ∈ Zd and 1 = (1, 1, . . . , 1) ∈ Rd.

In Figure 1, we display this phenomenon in the one-dimensional case d = 1.

Figure 1. Velocity of propagation of x±(t) and x±fd(t) for ξ0 ∈ [−4π, 4π] in space

dimension d = 1. The blue dots indicate the values of ξ0 for which ẋ±fd(t) = 0.

1We recall that, given two vectors v = (v1, v2, . . . , vd) ∈ Rd and w = (w1, w2, . . . , wd) ∈ Rd, their Hadamard product is
the vector v �w = z = (z1, z2, . . . , zd) ∈ Rd with zi = viwi for all i ∈ {1, . . . , d}.
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This possibility of a zero velocity of propagation generates unexpected dynamical behaviors and
spurious high-frequency solutions of (1.3), that are not observed at the continuous level and shall be duly
taken into account when addressing the construction of GB.

4. Gaussian Beams for the continuous wave equation

In this section, we give an abridged presentation of the construction of GB solutions for the wave
equation (1.1). This construction being nowadays very classical, in what follows we shall only recall its
main steps. Complete details can be found, e.g., in [27, 31].

4.1. The GB ansatz. Given a ray x(t) as in (3.7), our objective is to generate approximate solutions of
equation (1.1) with energy

Ec(u(·, t)) =
1

2

∫
Rd

[
|ut(x, t)|2 + c|∇u(x, t)|2

]
dx, (4.1)

concentrated on x(t) for every t ∈ (0, T ). These solutions will have the structure

uk(x, t) = k
d
4−1a(x, t)eikφ(x,t), k ∈ N? = N \ {0}, (4.2)

with an amplitude function a given by

a(x, t) := e−|x−x(t)|2

and a phase function φ of the form

φ(x, t) = ξ0 · (x− x(t)) +
1

2
(x− x(t)) ·

[
M0(x− x(t))

]
, (4.3)

where M0 ∈ Cd×d is a d× d complex symmetric matrix with strictly positive imaginary part to be
determined. Let us stress that taking M0 with strictly positive imaginary part is fundamental for the
construction of GB. In fact, if we replace (4.3) in (4.2), we can easily see that

uk(x, t) = k
d
4−1a(x, t)e−

k
2 (x−x(t))·

[
=(M0)(x−x(t))

]
eikξ0·(x−x(t))e

ik
2 (x−x(t))·

[
<(M0)(x−x(t))

]
,

so that

|uk(x, t)|2 = k
d
2−2|a(x, t)|2e−k(x−x(t))·

[
=(M0)(x−x(t))

]
and =(M0) > 0 implies that uk is essentially a Gaussian profile translated along x(t).

The main result that we recall in this section is nowadays classical (see [27, 31]), and establishes the
existence of functions of the form (4.2)-(4.3) that are approximate solutions of (1.1).

Theorem 4.1. Let M0 ∈ Cd×d with =(M0) > 0, 0 6= ξ0 ∈ Rd and 0 < c ∈ R. Let �c := ∂2
t − c∆ denote

the standard D’Alambert operator, and let x(t) be a ray for �c given by (3.7). Given any 0 < k ∈ R,
define

uk(x, t) := k
d
4−1a(x, t)eikφ(x,t), (4.4)

with

a(x, t) := e−|x−x(t)|2 (4.5)

and

φ(x, t) := ξ0(x− x(t)) +
1

2
(x− x(t)) ·

[
M0(x− x(t))

]
. (4.6)

Then, the following facts hold:

1. uk is an approximate solution of the wave equation (1.1):

sup
t∈(0,T )

∥∥�cuk(·, t)
∥∥
L2(Rd)

≤ Ck− 1
2 (4.7)

for some constant C = C(a, φ) > 0 not depending on k.
2. The energy of uk is of the order of a positive constant when k → +∞: more precisely, for
t ∈ (0, T ) we have

lim
k→+∞

Ec(u
k(·, t)) = C

(
d, ξ0,M0

)( π

det
(
=(M0)

)) d
2

. (4.8)
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3. The energy of uk is exponentially small off x(t) as k → +∞:

sup
t∈(0,T )

∫
Rd\Bk(t)

(
|ukt (·, t)|2 + c|∇uk(·, t)|2

)
dx ≤ C(a, φ, d,M0)e−

1
2det
(
=(M0)

)
k

1
2
. (4.9)

Here Bk(t) denotes the d-dimensional ball centered at x(t) of radius k−1/4 and C(a, φ, d,M0) > 0
is a positive constant not depending on k.

Remark 4.1 (High-order Gaussian Beams). As shown e.g. in [43], it is possible to find correcting terms

φ̃, a1, a2, . . . , aN and a cut-off function χ ∈ C∞0 (Rd ×R) identically equal to one in a neighborhood of the
ray x(t) such that the function

ũkN (x, t) = k
d
4−1χ(x, t)

a(x, t) +

N∑
j=1

k−jaj(x, t)

 eik(φ(x,t)+φ̃(x,t)) (4.10)

still satisfies the conclusions of Theorem 4.1 and moreover

sup
t∈(0,T )

∥∥�cukN (·, t)
∥∥
L2(Rd)

≤ Ck− 1
2−N . (4.11)

We stress that the introduction of a cut-off function in (4.10) is necessary to avoid spurious growth
away from the center ray. Besides, we see from (4.11) that the approximation rate of ukN is improved
by a factor k−N . Actually, with this procedure, we can build quasi-solutions of (1.1) approximating the
real solution up to an arbitrary order. These quasi-solutions of (1.1) are usually called N-th order
Gaussian Beams. Assuming this terminology, the ansatz (4.2) will then define a 0-th order Gaussian
Beam.

Remark 4.2 (Variable-coefficients wave equation). When considering a variable-coefficients wave
equation, i.e. when taking c = c(x) ∈ C∞(R), the GB construction of Theorem 4.1 still applies.
Nevertheless, some small changes need to be introduced in the phase function. In particular, φ has to be
chosen in the form

φ(x, t) := ξ0(x− x(t)) +
1

2
(x− x(t)) ·

[
M(t)(x− x(t))

]
,

with M(t) ∈ Cd×d solution of the nonlinear ODE{
Ṁ(t) = M(t)C(t)M(t) +B(t)M(t) +M(t)B>(t) +A(t), t ∈ (0, T )

M(0) = M0

(4.12)

and where A(t), B(t) and C(t) are d × d matrices whose coefficients depend on the first and second
derivatives of the principal symbol P evaluated along the characteristics. This is a Riccati equation and
it can be shown ([2, 31]) that, given a symmetric matrix M0 ∈ Cd×d with =(M0) > 0, there exist a global
solution M(t) of (4.12) that satisfies M(0) = M0, M(t) = M(t)> and =(M(t)) > 0 for all t.

We are postponing the proof of Theorem 4.1 to Appendix A. Here we shall just highlight the main
ingredients for the explicit construction of the ansatz (4.4)-(4.5)-(4.6), that shall be later adapted to the
finite difference setting.

4.2. Asymptotic expansion and explicit construction of the GB ansatz. We start by substituting
the function uk into (1.1) and, after having gathered the terms with equal power of k, we get

�cu
k = k

d
4−1eikφ�ca

+ k
d
4 eikφi

(
a�cφ+ 2atφt − 2c∇a · ∇φ

)
(4.13)

+ k
d
4 +1eikφ

(
c |∇φ|2 − φ2

t

)
a.

Let us write the expression (4.13) as

�cu
k = k

d
4−1eikφr0 + ik

d
4 eikφr1 + k

d
4 +1eikφr2, (4.14)

where we have denoted

r0 := �ca (4.15a)

r1 := a�cφ+ 2atφt − 2c∇a · ∇φ (4.15b)

r2 :=
(
c |∇φ|2 − φ2

t

)
a (4.15c)
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We are going to construct a and φ in such a way that the terms of higher order in k, namely r1 and
r2, vanish on x(t) up to order 0 and 2, respectively.

4.2.1. Analysis of the r2 term: computation of the phase φ. We want to construct φ such that

Dα
xr2(x(t), t) = 0 for all t ∈ R and α ∈ Nd with |α| ∈ {0, 1, 2}. (4.16)

with r2 given by (4.15c). For this, it is enough to solve the eikonal equation

c|∇φ|2 − φ2
t = 0 (4.17)

up to order 2 on (x(t), t). Next we show that this can be done if φ is of the form (4.6). To this end, let
us first notice that, from the definition (4.6) of the phase φ we get

∇φ(x(t), t) =
[
ξ0 +M0(x− x(t))

]∣∣∣∣
x=x(t)

= ξ0

φt(x(t), t) =

[
− ξ0 · ẋ(t)− ẋ(t) ·

[
M0(x− x(t))

]]∣∣∣∣∣
x=x(t)

= −ξ0 · ẋ(t).

Plugging this into (4.17), and using (3.5) and (3.6), we then obtain that

c|∇φ(x(t), t)|2 − φ2
t (x(t), t) = c|ξ0|2 − (ξ0 · ẋ(t))2 = c|ξ0|2 −

c2|ξ0|4

τ2
0

= c|ξ0|2 −
c2|ξ0|4

c|ξ0|2
= 0.

Secondly, we have from (4.17) that

∇
(
c|∇φ|2 − φ2

t

)
= 2
(
cH(φ)∇φ− φt∇φt

)
, (4.18)

where H(φ) denotes the Hessian matrix of φ. Moreover,

H(φ(x(t), t)) = M0 and ∇φt(x(t), t) = −M0ẋ(t).

Hence, we get from (4.18), (3.5) and (3.6) that

∇
(
c|∇φ(x(t), t)|2 − φ2

t (x(t), t)
)

= 2cM0

(
ξ0 −

(
ξ0 · ẋ(t)

)
ẋ(t)

)
= 2cM0ξ0

(
1− c2|ξ0|2

τ2
0

)
= 0.

Finally, taking into account that D3
xφ = 0, we can compute

H
(
c|∇φ|2 − φ2

t

)
= 2
(
cH(φ)2 − φtH(φt)−∇φt ⊗∇φt

)
, (4.19)

with

∇φt ⊗∇φt :=


φ2
x1,t φx1,tφx2,t . . . φx1,tφxd,t

φx1,tφx2,t φ2
x2,t . . . φx2,tφxd,t

...
...

...

φxd,tφx2,t φxd,tφx2,t . . . φ2
xd,t

 ∈ Rd×d.

Hence, since H(φt)(x(t), t) = 0, we obtain from (4.19) that

H
(
c|∇φ(x(t), t)|2 − φ2

t (x(t), t)
)

= 2M2
0

(
c− |ẋ(t)|2

)
= 0.

Therefore, with our choice (4.6) of the phase function φ (4.16) is satisfied.

4.2.2. Analysis of the r1 term: computation of the amplitude a. To complete the construction of our
ansatz, we now have to determine a suitable amplitude a. To this end, we shall start by computing a on
the bi-characteristic rays, which is done by asking that r1 in (4.15b) vanishes on (x(t), t), that is,

2c∇a(x(t), t) · ∇φ(x(t), t)− 2at(x(t), t)φt(x(t), t)− a(x(t), t)�cφ(x(t), t) = 0. (4.20)

On the other hand, we can readily check from the definition (4.6) that the D’Alambertian of the phase
φ vanishes on the characteristics, that is,

�cφ(x(t), t) = 0.

In view of this, (4.20) simply becomes

2c∇a(x(t), t) · ∇φ(x(t), t)− 2at(x(t), t)φt(x(t), t) = 0. (4.21)
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Substituting ∇φ and φt, and evaluating on the ray (x(t), t) using the fact that c = |ẋ(t)|2 = x(t) ·x(t),
we obtain that

2c∇a(x(t), t) · ∇φ(x(t), t)− 2at(x(t), t)φt(x(t), t) = 2
(
cξ0 · ∇a(x(t), t) +

(
ξ0 · ẋ(t)

)
at(x(t), t)

)
= 2ξ0 ·

(
c∇a(x(t), t) + ẋ(t)at(x(t), t)

)
= 2
(
ξ0 · ẋ(t)

)(
ẋ(t) · ∇a(x(t), t) + at(x(t), t)

)
= −2τ0

d

dt
a(x(t), t),

(4.22)
where we have used (3.6) and (3.7) to compute

2ξ0 · ẋ(t) = −2c|ξ0|2

τ0
= −2τ2

0

τ0
= −2τ0.

Hence, we obtain from (4.21) and (4.22) that a(x(t), t) is determined by solving the equation

d

dt
a(x(t), t) = 0. (4.23)

i.e.

a(x(t), t) = a(x0, 0) for all t ∈ [0, T ].

In what follows, for simplicity, we will take a(x0, 0) = 1, so that

a(x(t), t) = 1 for all t ∈ [0, T ]. (4.24)

Notice that we have many possible choices of a function a(x, t) satisfying both (4.23) and (4.24). Here,
we will take

a(x, t) = e−|x−x(t)|2 ,

so that (4.4) is really a Gaussian profile propagating along the characteristic x(t).

5. Finite-difference approximation

In this section, we adapt the continuous construction of GB described in Section 4 to the finite
difference wave equation (5.2). Our aim is to provide a GB ansatz yielding to approximate solutions of
(5.2) concentrated on the rays x±fd(t) in (3.15), generated by the finite difference principal symbol (3.8).
As we shall see, two main difficulties raise when attempting this construction:

1. The discrete operators that we shall employ depend on the mesh size h. Because of that, we will
need to limit the range of the high-frequency parameter k in the GB ansatz according to h. We
will see that the correct scale is k = h−1.

2. As mentioned before, the finite difference equation (5.2) admits some spurious solution with zero
velocity of propagation. This shall be taken duly into account when constructing the ansatz.

5.1. Numerical scheme. Let us start by introducing in more detail the numerical scheme we shall
employ. Given a mesh size h > 0, we consider an uniform grid on the whole Rd

Gh :=
{
xj := jh, j ∈ Zd

}
.

Moreover, for a function f : Rd → R, we denote fj := f(xj) its evaluation on the grid points, and we
define the following finite difference operators:

∇+
h fj :=

(
∂+
h,i fj

)d
i=1

with ∂+
h,i fj :=

1

h

(
fj+ei − fj

)
forward difference (5.1a)

∇−h fj :=
(
∂−h,i fj

)d
i=1

with ∂−h,i fj :=
1

h

(
fj − fj−ei

)
backward difference (5.1b)

∇hfj :=
(
∂h,i fj

)d
i=1

with ∂h,i fj :=
1

2h

(
fj+ei − fj−ei

)
centered difference (5.1c)

∆c,hfj :=
c

h2

d∑
i=1

(
fj+ei − 2fj + fj−ei

)
finite difference Laplacian, (5.1d)
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with (ei)
d
i=1 denoting the canonical basis in Rd.

With the notations just introduced, we consider the following semi-discrete finite difference wave
equation on Gh {

�c,huj(t) = 0, j ∈ Zd t ∈ (0, T )

uj(0) = u0
j , u′j(0) = u1

j , j ∈ Zd
(5.2)

where, for simplicity of notation, we have denoted

�c,h := ∂2
t −∆c,h

the discrete D’Alambertian operator. Moreover, we define the semi-discrete energy associated with the
solutions of (5.2) as

Eh[u](t) :=
1

2

(
‖∂tu(t)‖2`2(hZd) + c ‖u(t)‖2◦

h1(hZd)

)
, (5.3)

where `2(hZd) and
◦
h1(hZd) are discrete Lebesgue and Sobolev spaces on the mesh Gh defined as

`2(hZd) :=

u s.t. ‖u‖`2(hZd) :=

hd ∑
j∈Zd

|uj |2
 1

2

< +∞

 (5.4)

◦
h1(hZd) :=

u s.t. ‖u‖◦
h1(hZd)

:=

(
d∑
i=1

∥∥∥∂+
h,i uj

∥∥∥2

`2(hZd)

) 1
2

=

hd d∑
i=1

∑
j∈Zd

|∂+
h,i uj |

2

 1
2

< +∞

 .

As illustrated numerically in [5], the semi-discrete wave equation (5.2) admits highly concentrated
and oscillating solutions that propagate along the characteristics xfd(t) given by (3.15). The aim of this
section is to justify these numerical observation through the definition of a GB ansatz.

In what follows, for the sake of simplicity, we will first consider the one-dimensional case d = 1, in
which we will give complete detail of the GB construction. In a second moment, we will comment about
the extension of this construction to the general multi-dimensional case.

5.2. One-dimensional semi-discrete GB ansatz. We start by introducing the one-dimensional
version of the finite difference operators we defined in (5.1a), (5.1b), (5.1c) and (5.1d):

∂+
h fj :=

1

h

(
fj+1 − fj

)
for all j ∈ Z forward difference (5.5a)

∂−h fj :=
1

h

(
fj − fj−1

)
for all j ∈ Z backward difference (5.5b)

∂hfj :=
1

2h

(
fj+1 − fj−1

)
for all j ∈ Z centered difference (5.5c)

∆c,hfj :=
c

h2

(
fj+1 − 2fj + fj−1

)
for all j ∈ Z finite difference Laplacian, (5.5d)

These operators fulfill some useful properties, that can be easily shown through the definitions: for all
j ∈ Z, we have (

∂+
h + ∂−h

)
fj = 2∂hfj (5.6a)

(
∂+
h − ∂

−
h

)
fj =

h

c
∆c,hfj (5.6b)

∆c,h(fg)j = fj∆c,hgj + gj∆c,hfj + c
(
∂+
h fj∂

+
h gj + ∂−h fj∂

−
h gj

)
(5.6c)

Finally, let us state the main result of the present paper, whose proof will be provided in the next
section and whose validation will be given in Section 6 through sharp numerical simulations.

Theorem 5.1. Let M0 ∈ C with <(M0) = 0 and =(M0) > 0, 0 6= ξ0 ∈ R, 0 < c ∈ R and xfd(t) be a ray
for �c,h given by (3.15). Given h ∈ (0, 1), define

uhfd(x, t) := h
3
4Aj(x, t)e

i
hΦj(x,t), (5.7)
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with

A(x, t) := e−(x−xfd(t))2e
∓ 1

2 ln
(

1−M0
√
c

2 sin( ξ02 )t
)

(5.8)

and

Φ(x, t) := ±
√
c

(
ξ0 cos

(
ξ0
2

)
− 2 sin

(
ξ0
2

))
t+ ξ0(x− xfd(t)) +

M0

2∓M0
√
c sin

(
ξ0
2

)
t
(x− xfd(t))2.

(5.9)

Then, the following facts hold:

1. The uhfd are approximate solutions of the finite difference wave equation (5.2):

Sh[uhfd] := sup
t∈(0,T )

∥∥�c,huhfd(·, t)∥∥`2(hZ)
= O(h

1
2 ), as h→ 0+. (5.10)

2. The energy of uhfd satisfies

Eh[uhfd](t) = O(1), as h→ 0+. (5.11)

3. The energy of uhfd is exponentially small off xfd(t) as h→ 0+:

sup
t∈(0,T )

h

2

∑
j∈Z†(t)

(
|∂tuhfd,j |2 + c|∂+

h u
h
fd,j |2

)
≤ C1(A,Φ)

(
1 + h+ h2

)
e−C2(M0)h−

1
2 , (5.12)

where C1(A,Φ) > 0 and C2(M0) > 0 are two positive constants independent of h and we have
denoted

Z†(t) :=
{
j ∈ Z : |xj − xfd,j(t)| > h

1
4

}
We mention that, in Theorem 5.1, x ∈ R has to be considered as a dummy variable, that we inherited

from the continuous construction in Section 4 and we have kept in order to slightly simplify our notation
in the forthcoming computations.

Remark 5.1. We anticipate that the mesh-size parameter h in the finite difference ansatz (5.7) will be
related with the high-frequency parameter k in the continuous ansatz (4.4) through the choice h = k−1.
In this way, our GB construction in Theorem 5.1 is consistent with the one of Theorem 4.1 in space
dimension d = 1 for what concerns the approximation rate of the obtained quasi-solutions.

Remark 5.2. We highlight that there are some differences between the continuous ansatz provided in
Theorem 4.1 and the semi-discrete one of Theorem 5.1. In particular, uhfd defined in (5.7) is not simply

the projection on the mesh Gh of its continuous counterpart (4.4). Instead, some corrector terms have
been introduced both in the amplitude A and in the phase Φ. As we shall see with more detail in Section
5.3, the introduction of these corrector terms is required to compensate the non-uniform velocity of
propagation of the finite difference characteristics xfd(t) in (3.15), which makes a and φ in (4.4) not
suitable choices for our semi-discrete GB ansatz.

As we did for Theorem 4.1 before, we are postponing the proof of Theorem 5.1 to Appendix B. Here
we shall just highlight the main ingredients for the explicit construction of the ansatz (5.7)-(5.8)-(5.9).

5.3. Asymptotic expansion and explicit construction of the GB ansatz. In our forthcoming
computations, we shall use the following well-known identities: for all α, β ∈ R

eiα − e−iβ = 2i sin

(
α+ β

2

)
e
i
2 (α−β) (5.13a)

2− eiα − e−iβ = 4 sin2

(
α+ β

4

)
− 4i cos

(
α+ β

2

)
sin

(
α− β

4

)
e
i
4 (α−β) (5.13b)

Moreover, similarly to the continuous case of Section 4, we shall consider the following ansatz for
approximated solutions of (5.2)

ukfd(x, t) = k−
3
4A(x, t)eikΦ(x,t), (5.14)

with suitable phase Φ and amplitude A.
12



To properly identify these phase and amplitude functions, the starting point is once again to compute
�c,hukfd,j and gather the terms with equal power of the high-frequency parameter k. First of all, we have

∂2
t u

k
fd,j = eikΦj

[
k−

3
4 ∂2
tAj + ik

1
4

(
2∂tAj∂tΦj +Aj∂

2
t Φj

)
− k 5

4Aj(∂tΦj)
2
]
. (5.15)

Secondly, using (5.6c) we can compute

∆c,hu
k
fd,j = k−

3
4

[
Aj∆c,he

ikΦj + eikΦj∆c,hAj + c
(
∂+
h Aj∂

+
h e

ikΦj + ∂−h Aj∂
−
h e

ikΦj
)]
. (5.16)

Now, using (5.5a), (5.5b), (5.6a), (5.6b) and (5.13a), we can show that

∂+
h Aj∂

+
h e

ikΦj + ∂−h Aj∂
−
h e

ikΦj = 2ikeikΦj∂hAj
sin(hk∂hΦj)

hk
ei
h2k
2c ∆c,hΦj .

We then get from (5.16) that

∆c,hu
k
fd,j = k−

3
4

(
Aj∆c,he

ikΦj + eikΦj∆c,hAj

)
+ k

1
4 eikΦj2ic∂hAj

sin(hk∂hΦj)

hk
ei
h2k
2c ∆c,hΦj . (5.17)

Moreover, by means of (5.5d), (5.6a), (5.6b) and (5.13b), we get

∆c,he
ikΦj =

c

h2

(
eikΦj+1 − 2eikΦj + eikΦj−1

)
= − c

h2
eikΦj

(
2− eihk∂

+
h Φj − e−ihk∂

−
h Φj

)

= eikΦj

−k2 4c sin2
(
hk
2 ∂hΦj

)
(hk)2

+ ik cos (hk∂hΦj)
4c sin

(
h2k
4c ∆c,hΦj

)
h2k

ei
h2k
4c ∆c,hΦj

 .

Hence, we obtain from (5.17) that

∆c,hu
k
fd,j =

k−
3
4 eikΦj∆c,hAj

+ik
1
4 eikΦj

(
2c∂hAj

sin (hk∂hΦj)

hk
e
ih2k
2c ∆c,hΦj +Aj cos (hk∂hΦj)

4c sin
(
h2k
4c ∆c,hΦj

)
h2k

ei
h2k
4c ∆c,hΦj

)

−k 5
4 eikΦjAj

4c sin2
(
hk
2 ∂hΦj

)
(hk)2

.

(5.18)
Therefore, joining (5.15) and (5.18) we finally get

�c,hu
k
fd,j = k−

3
4 eikΦjR0 + ik

1
4 eikΦjR1 + k

5
4 eikΦjAjR2, (5.19)

with

R0 :=�c,hAj (5.20a)

R1 := 2∂tAj∂tΦ− 2c∂hAj
sin (hk∂hΦj)

hk
e
ih2k
2c ∆c,hΦj (5.20b)

+Aj

∂2
t Φj − cos (hk∂hΦj)

4c sin
(
h2k
4c ∆c,hΦj

)
h2k

ei
h2k
4c ∆c,hΦj


R2 :=

4c sin2
(
hk
2 ∂hΦj

)
(hk)2

− (∂tΦj)
2 (5.20c)

Starting from (5.19), we shall now determine the phase Φ and the amplitude A of the ansatz by
annulling the terms R1 and R2 on the semi-discrete characteristics.

To do so, it will be fundamental a correct selection of the parameter k, which shall be taken as a power
of the step-size h:

k = hq, q ∈ R.

Nevertheless, when doing this, we have to choose carefully the exponent q ∈ R. In fact:
13



• If q < −1, then

lim
h→0+

hk = lim
h→0+

hq+1 = +∞

and we have from (5.20c) that

lim
h→0+

R2 = −(∂tΦ)2.

We then obtain a degenerate eikonal equation for Φ in which the space derivative ∂xΦ does not
appear, which suggests that this choice of q is not suitable.

• If q > −1, then

lim
h→0+

hk = lim
h→0+

hq+1 = 0

and we have from (5.20c) that

lim
h→0+

R2 = c(∂xΦ)2 − (∂tΦ)2.

This is the eikonal equation corresponding to the continuous wave equation (1.1). Nevertheless,
the construction of GB for the finite difference wave equation (5.2) should be based on solving
the eikonal equation corresponding to the principal symbol (3.8), that is

Rfd := 4c sin2

(
∂xΦ

2

)
− (∂tΦ)2 = 0. (5.21)

Then, also this second choice of q is not appropriate for our construction.
• If q = −1, then

lim
h→0+

hk = lim
h→0+

hq+1 = 1

and we have from (5.20c) that

lim
h→0+

R2 = 4c sin2

(
∂xΦ

2

)
− (∂tΦ)2 = Rfd.

Therefore, k = h−1 is the correct choice for the high-frequency parameter.

Remark 5.3. We stress that more general choices of the high-frequency parameter as a function of the
mesh size h would also be possible. In fact, we could take any k = ζ(h) with

lim
h→0+

hζ(h) = 1. (5.22)

The choice k = h−1, for the sake of simplicity, is the most natural situation in which (5.22) holds.

In view of the above discussion, in the sequel, we will consider the following ansatz for approximated
solutions of (5.2)

uhfd(x, t) = h
3
4A(x, t)e

i
hΦ(x,t). (5.23)

Then, from (5.19) we get

�c,hu
h
fd,j = eikΦj

[
h

3
4R0 + ih−

1
4R1 + h−

5
4AjR2

]
= e

i
hΦj

[
h

3
4

(
R0 +Aj

R2 −Rfd
h2

)
+ ih−

1
4R1 + h−

5
4AjRfd

]
. (5.24)

5.3.1. Frequency ranges: discrete versus continuous. Before continuing further with the technical details
about the construction of GB solutions for the discrete wave equation (5.2), let us devote some words to
a heuristic discussion showing how our asymptotic analysis allows building a bridge to connect the GB
theory for the continuous model (1.1) with the FD regime studied in this paper.

To this end, let us consider the FD symbol (3.10) that, in the one-dimensional case that we are
addressing in this section, reads as

Pfd,h(ξ, τ) = −τ2 +
4c

h2
sin2

(
hξ

2

)
. (5.25)

Taking into account that the sinus is an analytic function, we can replace it with its Taylor expansion

sin

(
hξ

2

)
=
∑
n≥0

βn(hξ)2n+1, βn =
(−1)n

22n+1(2n+ 1)!
for all n ≥ 0, (5.26)
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thus obtaining an equivalent FD symbol in the form

Pfd,h(ξ, τ) = −τ2 + 4c
∑
n≥0

γnh
2nξ2n+2,

with

γn =

n∑
m=0

βnβm =

n∑
m=0

(−1)m+n

22m+2n+2(2m+ 1)!(2n+ 1)!
, for all n ≥ 0.

Moreover, observing that γ0 = 1/4, we can easily obtain

Pfd,h(ξ, τ) = −τ2 + cξ2 + 4c
∑
n≥1

γnh
2nξ2n+2. (5.27)

From the above expression, we can immediately see how the symbol −τ2 + cξ2 of the continuous
one-dimensional wave equation is obtained simply by truncating the Taylor expansion (5.26) at the first
term n = 0. But, actually, (5.27) hides more information.

As a matter of fact, the series in (5.27) produces different types of effects on the symbol Pfd,h(ξ, τ),
depending on the range of frequencies at which we observe it.

Case 1: |ξ| ∼ h−1. We start by analyzing the frequency regime |ξ| ∼ h−1 that, we recall, is the one at
which we are going to construct our GB solution. Consider the partial sums

sN := 4c
N∑
n=1

γnh
2nξ2n+2, N ∈ N∗ = N \ {0}

and the associated partial symbol

Pfd,h,N (ξ, τ) := −τ2 + cξ2 + sN , (5.28)

and observe that, when |ξ| ∼ h−1, for all N ∈ N∗ we can approximate sN as

sN = 4c

N∑
n=1

γnh
2nξ2n+2 = 4cξ2

N∑
n=1

γnh
2nξ2n ∼ 4cξ2

N∑
n=1

γn.

When replacing the above expression into (5.28), we then obtain that

Pfd,h,N (ξ, τ) ∼ −τ2 + cNξ
2,

with

cN := c

(
1 + 4

N∑
n=1

γn

)
, for all N ∈ N∗.

In other words, the contribution of the partial sums sN is that of introducing correction terms on the
velocity of propagation of the waves, making it deviating from its usual value c. This phenomenon is
appreciated in Figure 2, where we show the function ξ2 + sN for different values of N , ranging from
N = 0 (corresponding to cξ2) up to the finite-difference symbol (5.25) as N → +∞. We can see in the
plot how the successive approximations (5.28) fill the gap between the continuous and finite-difference
setting, reducing their slope during the process and, therefore, inducing the aforementioned adjustments
in the waves’ propagation velocity.

0 π
4

π
2

3π
4

π

0

2

4

6

8

10 ξ2

ξ2 + s1

ξ2 + s2

ξ2 + s3

4 sin2(ξ/2)

Figure 2. Function

ξ2 + sN for ξ ∈ (0, π)
and different values
of N , ranging from
N = 0 up N → +∞.
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We stress that, since {γn}n≥0 ∈ `1, there exists some ĉ ∈ R such that cN → ĉ when N → +∞. This
means that, when |ξ| ∼ h−1, the trigonometric symbol (5.25) generates high-frequency spurious solutions
of the wave equation, traveling at a velocity ĉ. As observed in several previous works (see [5, 27, 28] and
the references therein), the presence of these solutions will contaminate all kind of conclusions about the
properties of the finite-difference wave equation (5.2), with consequences, for instance, on related inverse
or control problems.

Case 2: |ξ| ∼ h−
2n

2n+2 for all n ∈ N∗. A second interesting frequency regime that deserves some further
discussion is

|ξ| ∼ h−
2n

2n+2 for all n ∈ N∗.

In particular, we can see that, in this regime, the contribution of the sum into the trigonometric
symbol (5.27) changes with respect to the situation of Case 1 above. To this end, let us start by rewriting

Pfd,h(ξ, τ) = −τ2 + cξ2 + 4cγ1h
2ξ4 + 4c

∑
n≥2

γnh
2nξ2n+2.

We can easily see that, in the regime |ξ| ∼ h−
1
2 (that we stress corresponds to |ξ| ∼ h−

2n
2n+2 when

n = 1), the last term of the above expression is of the order of h and, therefore, negligible as h → 0+.
This leads to the following approximation of the symbol Pfd,h(ξ, τ):

Pfd,h(ξ, τ) ∼ −τ2 + cξ2 + γ1h
2ξ4.

Notice that this is the Fourier symbol associated with the fourth-order PDE

utt − c∂2
xu− γ1h

2∂4
xu = 0.

In the same fashion, when |ξ| ∼ h− 2
3 (corresponding to |ξ| ∼ h−

2n
2n+2 when n = 2), we can approximate

Pfd,h(ξ, τ) with

Pfd,h(ξ, τ) ∼ −τ2 + cξ2 + γ1h
2ξ4 + γ2h

4ξ6,

with the associated sixth-order PDE

utt − c∂2
xu− γ1h

2∂4
xu− γ2h

4∂6
xu = 0.

This kind of reasoning can be carried on for all N ∈ N∗, until recovering the symbol (5.25) in the
regime |ξ| ∼ h−1 when n→ +∞. In particular, this heuristic discussion suggests that we can fill the gap
between the pure wave equation utt − c∂2

xu = 0 and the discrete one associated with the trigonometric
symbol (5.25) by adding a series of correcting terms of the form

−γnh2n∂2n+2
x u, n ∈ N∗, (5.29)

that generate a family of solutions for the discretized wave equation that are observable only in the

high-frequency regime |ξ| ∼ h−
2n

2n+2 .
A possible way to appreciate the impact of these solution on the propagation properties of discrete

wave equation would be to develop a general GB analysis starting from the symbol (5.27). To do that,
we may expect that the approach we develop in this paper (which, according to our previous discussion,
covers the limit case N → +∞) is still applicable up to some modification, including and adaptation of
the ansatz so to take into account the presence of the correcting terms (5.29), and a different selection of
the frequency parameter k(h), that we could conjecture to be

k(h) ∼ h−
2n

2n+2 , for all n ∈ N∗.

This would provide us with a series of GB profiles, whose superposition would connect the continuous
GB solutions of Theorem 4.1 to the semi-discrete ones of Theorem 5.1.

5.3.2. Design of the phase Φ. As for the continuous case of Section 4, a suitable phase for our GB
construction needs to possess two main features. On the one hand, Φ should contain a term of the form

M(t)(x− xfd(t))2

with =(M(t)) > 0 for all t > 0, to ensure that the ansatz (5.23) is really a Gaussian profile transported
along the ray xfd. On the other hand, Φ has to be such that

∂αhR2(xfd(t), t) = 0 for all t ∈ R and α ∈ {0, 1, 2}, (5.30)

where ∂αh denotes a discrete derivative of order α on the mesh Gh.
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Hence, to impose (5.30), one has to compute discrete derivatives of Φ on xfd(t) which, however, may
lead to cumbersome calculations. To avoid them, we replace the semi-discrete eikonal R2 in (5.20c) with
Rfd given in (5.21), that only involves continuous derivatives. We are allowed to do that since the error
is small:

|R2 −Rfd| = 4c

∣∣∣∣sin2

(
∂hΦj

2

)
− sin2

(
∂xΦ

2

)∣∣∣∣ (5.31)

= 4c

∣∣∣∣sin(∂hΦj − ∂xΦ

2

)
sin

(
∂hΦj + ∂xΦ

2

)∣∣∣∣ ≤ 2c |∂hΦj − ∂xΦ| = O(h2).

Hence, in what follows, we will design Φ such that

∂αxRfd(xfd(t), t) = 0 for all t ∈ R and α ∈ {0, 1, 2}. (5.32)

Taking inspiration from the continuous framework of Section 4, one could then try considering a phase
function Φ with the same structure as φ in (4.3), i.e.

Φ(x, t) = ξ0(x− xfd(t)) +
1

2
M(t)(x− xfd(t))2, =(M(t)) > 0. (5.33)

Nevertheless, we can easily see that this would not be a good candidate for our construction. In fact,
such a function Φ does not satisfy (5.32), not even at order α = 0. Indeed, we can readily check from
(3.15) and (5.33) that

Rfd(xfd(t), t) = 4c sin2

(
∂xΦ(xfd(t), t)

2

)
− (∂tΦ(xfd(t), t))

2

= 4c sin2

(
ξ0
2

)
− ξ2

0 ẋfd(t)
2 = 4c sin2

(
ξ0
2

)
− cξ2

0 cos2

(
ξ0
2

)
.

Hence, we would have Rfd(xfd(t), t) = 0 only for ξ̂0 ∈ R satisfying the trigonometric equation

ξ̂0 cos

(
ξ̂0
2

)
= ±2 sin

(
ξ̂0
2

)
. (5.34)

But for all the values of ξ0 ∈ R such that (5.34) is not fulfilled, we would have Rfd(xfd(t), t) 6= 0.
This tells us that Φ as in (5.33) is not appropriate to generate a suitable GB ansatz for (5.2).

To cope with this fact, taking inspiration from general GB constructions described for instance in
[22, 23, 24, 25], we shall introduce a correction term in the definition of the phase. In particular, we shall
take Φ in the form

Φ(x, t) = ω(t) + ξ0(x− xfd(t)) +
1

2
M(t)(x− xfd(t))2, (5.35)

with ω and M to be determined by imposing (5.32). To this end, let us first compute

∂xRfd(x, t) = 2
(
c sin(∂xΦ)∂xxΦ− ∂tΦ∂txΦ

)
, (5.36)

and

∂xxRfd(x, t) = 2
(
c cos(∂xΦ)(∂xxΦ)2 + c sin(∂xΦ)∂xxxΦ− (∂txΦ)2 − ∂tΦ∂txxΦ

)
. (5.37)

Moreover, from (5.35), we get that

∂xΦ(xfd(t), t) = ξ0 ∂txΦ(xfd(t), t) = −M(t)ẋfd(t)

∂tΦ(xfd(t), t) = ω̇(t)− ξ0ẋfd(t) ∂xxxΦ(xfd(t), t) = 0

∂xxΦ(xfd(t), t) = M(t) ∂txxΦ(xfd(t), t) = Ṁ(t).

(5.38)

Plugging this in (5.21), (5.36) and (5.37), we then obtain that

Rfd(xfd(t), t) = 4c sin2

(
ξ0
2

)
−
(
ω̇(t)− ξ0ẋfd(t)

)2

∂xRfd(xfd(t), t) = 2

(
c sin(ξ0) +

(
ω̇(t)− ξ0ẋfd(t)

)
ẋfd(t)

)
M(t)

∂xxRfd(xfd(t), t) = 2

((
c cos(ξ0)− ẋfd(t)2

)
M(t)2 −

(
ω̇(t)− ξ0ẋfd(t)

)
Ṁ(t)

)
.
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Therefore, by imposing (5.32), we have that the functions ω and M in (5.35) are obtained by solving
the following ODE system

(
ω̇(t)− ξ0ẋfd(t)

)2

= 4c sin2

(
ξ0
2

)
(
ω̇(t)− ξ0ẋfd(t)

)
ẋfd(t) = −c sin(ξ0)(

ω̇(t)− ξ0ẋfd(t)
)
Ṁ(t) =

(
c cos(ξ0)− ẋfd(t)2

)
M(t)2

(5.39a)

(5.39b)

(5.39c)

with initial conditions (ω(0),M(0)) = (ω0,M0). In what follows, without losing generality, we will always
assume ω0 = 0.

5.3.3. Solution of the ODE system (5.39a)-(5.39c). Let us start by observing that the first equation
(5.39a) is actually redundant, which is not surprising since the ODE system has only two unknowns (ω(t)
and M(t)). In fact, by taking the square in both terms of the second equation (5.39b), and using the
explicit expression of the finite difference bi-characteristic rays xfd(t) obtained in (3.15), we have

c2 sin2(ξ0) = 4c2 sin2

(
ξ0
2

)
cos2

(
ξ0
2

)
=
(
ω̇(t)− ξ0ẋfd(t)

)2

ẋfd(t)
2 = c

(
ω̇(t)− ξ0ẋfd(t)

)2

cos2

(
ξ0
2

)
,

so that we immediately get (
ω̇(t)− ξ0ẋfd(t)

)2

= 4c sin2

(
ξ0
2

)
.

In other words, a function ω(t) satisfying (5.39b) will automatically solve also (5.39a). In view of this,
the original ODE system reduces to

(
ω̇(t)− ξ0ẋfd(t)

)
ẋfd(t) = −c sin(ξ0)

(
ω̇(t)− ξ0ẋfd(t)

)
Ṁ(t) = −c sin2

(
ξ0
2

)
M(t)2

(5.40a)

(5.40b)

where we have used the fact that

c cos(ξ0)− ẋfd(t)2 = c cos(ξ0)− c cos2

(
ξ0
2

)
= −c sin2

(
ξ0
2

)
.

Now, replacing (3.15) into (5.40a), we obtain

±
√
c
(
ω̇(t)− ξ0ẋfd(t)

)
cos

(
ξ0
2

)
= −c sin(ξ0) −→ ω̇(t)− ξ0ẋfd(t) = ∓2

√
c sin

(
ξ0
2

)
, (5.41)

from which we can easily compute

ω(t) = ±
√
c

(
ξ0 cos

(
ξ0
2

)
− 2 sin

(
ξ0
2

))
t. (5.42)

Moreover, notice that, when

ξ0 cos

(
ξ0
2

)
= 2 sin

(
ξ0
2

)
,

which is one of the two solutions of (5.34), we have ω(t) = 0. This is consistent with the fact that, for
the above value of ξ0, the phase function φ given in (4.3) for the ansatz of the continuous wave equation
(1.1) satisfies the finite difference eikonal equation

Rfd(xfd(t), t) = 0

and, therefore, the correction term ω(t) is not needed.
Finally, to compute M and conclude the resolution of the ODE system (5.39a)-(5.39c), we replace

(5.42) into (5.40b). In this way, we obtain

M(t) =
M0

1∓ M0
√
c

2 sin
(
ξ0
2

)
t
. (5.43)
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Let us recall, however, that to guarantee that the phase function Φ really generates an ansatz (5.23)
with a Gaussian envelop we shall have =(M(t)) > 0 for all t > 0. This can be ensured by a proper choice
of the initial datum M0. In fact, a simple calculation gives us

=(M(t)) =

(
1∓ <(M0)

√
c

2 sin
(
ξ0
2

)
t
)
=(M0)−

(
1∓ =(M0)

√
c

2 sin
(
ξ0
2

)
t
)
<(M0)

1 + |M0|2c
4 sin2

(
ξ0
2

)
t2 ∓<(M0)

√
c sin

(
ξ0
2

)
t

.

We then immediately see that it is enough to take

M0 ∈ C with
<(M0) = 0
=(M0) > 0

to obtain

=(M(t)) =
=(M0)

1 + |M0|2c
4 sin2

(
ξ0
2

)
t2
> 0 for all t > 0.

This concludes the construction of the phase Φ.

5.3.4. Design of the amplitude A. To construct the amplitude function A, we start again from (5.24) and
notice that, since the eikonal equation Rfd = 0 is solved up to the second order on the ray xfd(t), the
last term in that identity will not contribute in the computation. On the other hand, the second term of
order h−

1
4 will definitely contribute. In particular, A shall be determined by imposing

R1Aj(xfd(t), t) = 0.

As for the phase Φ before, we notice that the expression of R1 involves discrete partial derivatives
with respect to the space variable, which may lead to cumbersome computations. To avoid them, we
replace R1 with the following expression

R̃1Aj := 2∂tAj∂tΦj − 2c∂xAj sin(∂xΦj) +Aj

(
∂2
t Φj − c cos(∂xΦj)∂

2
xΦj

)
, (5.44)

in which only continuous derivatives in space appear. Once again, we are allowed to do that since the
error is small. Indeed, we have

R1Aj − R̃1Aj = 2cK1 +AjK2

with

K1 := ∂xAj sin(∂xΦj)− ∂hAj sin (∂hΦj) e
i h2c∆c,hΦj

and

K2 := c cos(∂xΦj)∂
2
xΦj − cos (∂hΦj)

4c sin
(
h
4c∆c,hΦj

)
h

ei
h
4c∆c,hΦj .

Moreover, we can easily rewrite

K1 =
(
∂xAj − ∂hAj

)
sin(∂xΦj) + ∂hAj

(
sin (∂xΦj)− sin (∂hΦj)

)
+ ∂hAj sin (∂hΦj)

(
1− ei h2c∆c,hΦj

)

K2 = c
(

cos(∂xΦj)− cos(∂hΦj)
)
∂2
xΦj + cos(∂hΦj)

(
c∂2
xΦj −

4c sin
(
h
4c∆c,hΦj

)
h

)

+ cos(∂hΦj)
4c sin

(
h
4c∆c,hΦj

)
h

(
1− ei h4c∆c,hΦj

)
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and estimate

|K1| ≤ |∂xAj − ∂hAj |+ |∂hAj || sin (∂xΦj)− sin (∂hΦj) |+ |∂hAj |
∣∣∣1− ei h2c∆c,hΦj

∣∣∣
≤ |∂xAj − ∂hAj |+ |∂hAj ||∂xΦj − ∂hΦj |+ C|∆c,hΦj ||∂hAj |h ≤ C|∆c,hΦj ||∂hAj |h+O(h2)

|K2| ≤ c|∂2
xΦj || cos(∂xΦj)− cos(∂hΦj)|+

∣∣∣∣∣c∂2
xΦj −

4c sin
(
h
4c∆c,hΦj

)
h

∣∣∣∣∣
+

∣∣∣∣∣4c sin
(
h
4c∆c,hΦj

)
h

∣∣∣∣∣ ∣∣∣1− ei h4c∆c,hΦj
∣∣∣

≤ c|∂2
xΦj ||∂xΦj − ∂hΦj |+ |c∂2

xΦj −∆c,hΦj |+ C|∆c,hΦj |2h ≤ C|∆c,hΦj |2h+O(h2).

Therefore,

|R1Aj − R̃1Aj | ≤ C
(
|∆c,hΦj |+ |∆c,hΦj |2

)
h+O(h2) (5.45)

and, if we rewrite

�c,hu
h
fd,j = e

i
hΦj

[
h

3
4

(
R0Aj +Aj

R2 −Rfd
h2

)
+ ih−

1
4 (R1Aj − R̃1Aj) + ih−

1
4 R̃1Aj + h−

5
4AjRfd

]
,

(5.46)

we then see that it is enough to design Aj such that

R̃1Aj(xfd(t), t) = 0.

By means of (3.15), (5.38) and (5.44), we can readily see that this amounts at solving the equation

d

dt
A(xfd(t), t) =

√
c

4
sin

(
ξ0
2

)
M(t)A(xfd(t), t),

from which, taking into account the explicit expression of M given in (5.43), we obtain

A(xfd(t), t) = A(x0, 0)e
√
c

4 sin( ξ02 )
∫ t
0
M(s) ds = A(x0, 0)e

∓ 1
2 ln
(

1−M0
√
c

2 sin( ξ02 )t
)
.

Choosing A(x0, 0) = 1, we then get

A(xfd(t), t) = e
∓ 1

2 ln
(

1−M0
√
c

2 sin( ξ02 )t
)
.

In the same spirit of what we did in Section 4, this suggests to take the amplitude function in our
discrete ansatz (5.23) in the form

A(x, t) = e−(x−xfd(t))2e
∓ 1

2 ln
(

1−M0
√
c

2 sin( ξ02 )t
)
. (5.47)

In conclusion, we finally have from (5.23), (5.35) and (5.47) that

uhfd(x, t) = h
3
4 e−(x−xfd(t))2e

∓ 1
2 ln
(

1−M0
√
c

2 sin( ξ02 )t
)
e
i
h

[
ω(t)+ξ0(x−xfd(t))+ 1

2M(t)(x−xfd(t))2
]
, (5.48)

with ω and M given by (5.42) and (5.43), respectively.

Remark 5.4. To conclude this section, let us highlight again the main differences between the finite
difference GB ansatz (5.48) and the continuous one we have introduced in Theorem 4.1. These differences
arise at two levels.

1. First of all, in (5.48), we have a phase function

Φ(x, t) = ω(t) + ξ0(x− xfd(t)) +
1

2
M(t)(x− xfd(t)), (5.49)

with ω and M given by (5.42) and (5.43), respectively. This differs from the phase

φ(x, t) = ξ0(x− xfd(t)) +
1

2
M0(x− xfd(t)) (5.50)

of Theorem 4.1 in two aspects. On the one hand, in (5.49) we have a time-dependent complex-
valued function M(t) in the quadratic part of the phase, which replaces the constant M0 in
(5.50). In addition to that, we remark the presence of the correction term ω. Both modifications
stem from the fact that a phase in the form (5.50) does not fulfill the condition (5.32) and, in
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particular, does not solve the finite difference eikonal equation on the semi-discrete characteristics.
Therefore, it is not suitable to build a GB ansatz correctly approximating the solutions of (5.2).

2. Secondly, also the amplitude function

A(x, t) = e−(x−xfd(t))2e
∓ 1

2 ln
(

1−M0
√
c

2 sin( ξ02 )t
)

in (5.48) presents some modification with respect to its continuous counterpart

a(x, t) = e−(x−xfd(t))2 .

This originates directly from (5.44), where the presence of some trigonometric terms of the phase
Φ (that do not appear at the continuous level) needs to be compensated through some small
adjustments when designing A.

5.4. The multi-dimensional case. We discuss here briefly the extension of Theorem 5.1 to the general
multi-dimensional case d ≥ 1. In particular, we shall point out the main changes in the construction of
the GB ansatz with respect to the one-dimensional case presented in the previous sections.

When going from 1D to multi-D, the GB ansatz for the semi-discrete wave equation (5.2) changes at
three levels.

First of all, the scaling factor h
3
4 in (5.7) needs to be adjusted to the dimension of the problem. In

particular, to remain consistent with the continuous case of Theorem 4.1, we shall take a scaling factor

h1− d4 . Our ansatz for the semi-discrete wave equation (5.2) in dimension d ≥ 1 will then take the form

uhfd(x, t) = h1− d4A(x, t)e
i
hΦ(x,t). (5.51)

Secondly, also the phase and amplitude functions Φ(x, t) and A(x, t) need to be adjusted, in a way
that we describe below.

5.4.1. Multi-dimensional semi-discrete phase. The phase function Φ(x, t) is still of the form

Φ(x, t) = ω(t) + ξ0 · (x− xfd(t)) +
1

2
(x− xfd(t)) ·

[
M(t)(x− xfd(t))

]
, (5.52)

but has to be designed so that it fulfills

Dα
xRfd(x(t), t) = 0 for all t ∈ R and α ∈ Nd with |α| ∈ {0, 1, 2},

with

Rfd(x, t) := 4c

∣∣∣∣sin(1

2
∇Φ

)∣∣∣∣2 − Φ2
t = 4c

d∑
i=1

sin2

(
∂xiΦ

2

)
− Φ2

t .

Following the construction we have presented in Section 5.3.2 for the one-dimensional case, we then
obtain that the functions ω(t) and M(t) in (5.52) have to solve the coupled ODE system

(
ω̇(t)− ξ0 · ẋ(t)

)2

= 4c

∣∣∣∣sin(ξ0

2

)∣∣∣∣2(
ω̇(t)− ξ0 · ẋ(t)

)
Ṁ(t) = M(t)>ΘM(t)

(5.53a)

(5.53b)

with initial data (ω(0),M(0)) = (0,M0) and where θ = diag
(
θ1, θ2, . . . , θd

)
∈ Rd×d is a real and diagonal

d× d matrix with elements

θi := c cos(ξ0,i)− ẋ2
fd,i, i ∈ {1, . . . , d}.

By using the explicit expression (3.15) for the ray xfd(t), we immediately obtain from (5.53a) that

ω(t) = ±2
√
c

∣∣∣∣sin(ξ0

2

)∣∣∣∣
 ξ0 · sin(ξ0)

4
∣∣∣sin(ξ02 )∣∣∣2 ± 1

 t.

Finally, we obtain from (5.53b) that M(t) is the solution of the differential Riccati equation

±2
√
c

∣∣∣∣sin(ξ0

2

)∣∣∣∣ Ṁ(t) = M(t)>ΘM(t)

and we know from [2, 31] that, given a symmetric matrix M0 ∈ Cd×d with =(M0) > 0, there exist a
global solution M(t) of (5.53b) that satisfies M(0) = M0, M(t) = M(t)> and =(M(t)) > 0 for all t.

21



5.4.2. Multi-dimensional semi-discrete amplitude. Finally, the amplitude function A(x, t) has to be
designed such that

R̃1A(x(t), t) = 0 (5.54)

with

R̃1A := 2AtΦt − 2c∇A · sin(∇φ) +A
(

Φ2
t − c∇Φ>Ψ(Φ)∇Φ

)
,

where Φ is given by (5.52)-(5.53a)-(5.53b) and where Ψ(Φ) = diag
(
ψ1(Φ), ψ2(Φ), . . . , ψd(Φ)

)
∈ Rd×d is

a real and diagonal d× d matrix with elements

ψi(Φ) := cos(∂xiΦ), i ∈ {1, . . . , d}.

Moreover, from (5.52) and (5.53a) we have that

Φt(xfd(t), t) = ω̇(t)− ξ0 · ẋfd(t) = ±2
√
c

∣∣∣∣sin(ξ0

2

)∣∣∣∣
∇Φ(xfd(t), t)

>Ψ(Φ(xfd(t), t))∇Φ(xfd(t), t) = (ξ0 � ξ0) · cos(ξ0).

Using this in (5.54), we can readily see that the amplitude A has to solve the equation

d

dt
A(xfd(t), t) = C(c, ξ0)A(xfd(t), t)

with

C(c, ξ0) =
√
c

(ξ0 � ξ0) · cos(ξ0)− 4
∣∣∣sin(ξ02 )∣∣∣2

4
∣∣∣sin(ξ02 )∣∣∣ .

Choosing the initial datum A(xfd(0), 0) = A(x0, 0) = 1, we then obtain that

A(xfd(t), t) = eC(c,ξ0)t.

In the same spirit of what we did in the one-dimensional case, this suggests to take the amplitude
function A(x, t) in the form

A(x, t) = e−|x−xfd(t)|2eC(c,ξ0)t.

5.4.3. Concentration along the semi discrete characteristics. Once the ansatz has been built according to
the above discussion, we can prove that it provides quasi-solution to the semi-discrete wave equation
(5.2) whose energy is concentrated along the rays xfd(t) given by (3.15). In particular, we have:

1. sup
t∈(0,T )

∥∥�c,huhfd(·, t)∥∥`2(hZd)
= O(h

1
2 ) as h→ 0+.

2. Eh[uhfd](t) = O(1) as h→ 0+.

3. sup
t∈(0,T )

hd

2

∑
j∈Zd,†(t)

(
|∂tuhfd,j |2 + c|∂+

h u
h
fd,j |2

)
≤ C1(A,Φ)

(
1 + h+ h2

)
e−C2(M0)h−

1
2

where C1(A,Φ) > 0 and C2(M0) > 0 are two positive constants independent of h and we have
denoted

Zd,†(t) :=
{
j ∈ Zd : |xj − xfd,j(t)| > h

1
4

}
.

The proofs of the above facts are totally analogous to what we have already presented in the one-
dimensional case. We leave the details to the reader.

6. Numerical simulations

We present here some numerical simulations to illustrate the results of the previous sections. On the
one hand, we shall provide a graphical comparison of the solution to our finite difference wave equation
(5.2) and the ansatz uhfd given by (5.23). This will give us a visual confirmation of the correctness
of our theoretical results of the previous sections. On the other hand, we shall check numerically the
approximation rates obtained in Theorem 5.1 for the GB ansatz uhfd.
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To compute numerically the solution of the finite difference wave equation (5.2), we have employed a
standard leapfrog scheme in time

∂2
t uj(t) ∼

1

h2
t

(
un+1
j − 2unj + un−1

j

)
, unj := u(xj , tn) (6.1)

on a uniform mesh T = {tn}Nn=1 of size ht, satisfying the Courant-Friedrichs-Lewy (CFL) condition
(which is necessary since the method is explicit). This corresponds to taking ht = µh, with µ ∈ (0, 1). In
our forthcoming simulations, we have always chosen µ = 0.1, although other selections of µ ∈ (0, 1) are
possible without affecting the stability of the numerical scheme and the propagation properties of our
numerical solution.

To remain consistent with (5.23), the initial data in (5.2) are constructed starting from the Gaussian
profile uhfd(x, 0). In more detail, we have taken

u0
j = uhfd(xj , 0) and u1

j = ∂tu
h
fd(xj , 0).

Moreover, we have considered different values of the frequency ξ0 to illustrate the different propagation
properties of the rays, hence of the solution.

We start by considering the one-dimensional case and providing in Figure 3 a first graphical confirmation
of the accuracy of our construction. This is done by displaying the `2(hZ) error

e =
∥∥uhfd − unj ∥∥2

=:
∥∥uhfd − unj ∥∥`2(hZ)

between our ansatz uhfd given by (5.23) and the numerical solution unj obtained through (6.1), computed

for different values of the frequency ξ0, and noticing that this error decreases as h→ 0+.

Figure 3. `2(hZ) er-
ror between the ansatz
uhfd given by (5.23)
and the numerical
solution unj obtained
through (6.1), in space
dimension d = 1.

Moreover, in Figure 4, we display and compare the dynamical behavior of the ansatz uhfd, on the left,
and the numerical solution unj , on the right, for all the frequency previously considered.

Figure 4. Comparison between the ansatz (5.23) (left) and solution of (5.2) (right), in
space dimension d = 1. Both solutions are localized on the characteristic rays starting
from x0 = 0, with different frequencies ξ0 ∈ (0, π].

We can appreciate that both the solution of (5.2) computed through the scheme (6.1) and the GB
ansatz (5.23) show the same dynamical behavior, remaining concentrated along the bi-characteristic
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ray xfd(t). In addition to that, we can clearly see how, as the frequency ξ0 increases, the propagation
properties of these solutions change up to the pathological case ξ0 = π in which we appreciate a lack of
propagation in space. This is consistent with the equations for the semi-discrete bi-characteristic rays
xfd(t) given in (3.15).

An analogous behavior can be appreciated also in the two-dimensional case in Figure 5, we display
and compare again the ansatz uhfd, on the left, and the numerical solution unj , on the right, for different
frequencies ξ0.

Figure 5. Comparison between the the ansatz (5.23) (left) and solution of (5.2) (right)
in space dimension d = 2. Both solutions are localized on the characteristic rays starting
from x0 = [−1/4,−1/4] ,with different frequencies ξ0 ∈ (0, π]× (0, π].

We can appreciate again that both the solution of (5.2) computed through the scheme (6.1) and the
GB ansatz (5.23) show the same dynamical behavior, remaining concentrated along the bi-characteristic
ray xfd(t). In addition to that, we can clearly see how the frequency ξ0 = [π, π] is pathological, making
the velocity of propagation of the rays (3.15) vanish both in the x and in the y direction. This results in
a wave that, for all t, is trapped at the initial point x0 = xfd(0), as we can clearly see in the plots.

Moreover, to confirm the accuracy of our approximation even in this two-dimensional case, we display
in Figure 6 the `2(hZ2) error

e =
∥∥uhfd − unj ∥∥2

=:
∥∥uhfd − unj ∥∥`2(hZ2)

between our ansatz uhfd given by (5.23) and the numerical solution unj obtained through (6.1), computed
for different values of the frequency ξ0.

Figure 6. `2(hZ2) er-
ror between the ansatz
uhfd given by (5.23)
and the numerical
solution unj obtained

through (6.1), in space
dimension d = 2.

Finally, in Table 1 and Figure 7 we collect and display the behavior with respect to the mesh parameter
h of the quantities S[uhfd] and E [uhfd] introduced in (5.10) and (5.11), once again in the one-dimensional

case. For simplicity, we have considered there only solutions with initial frequency ξ0 = π/16, although
other values of ξ0 could have been employed obtaining analogous results.

In both cases, we can clearly appreciate how these quantities of interest behave as anticipated by
Theorem 5.1. In particular, while we can see how Sh[uhfd] decreases at a rate h

1
2 as h→ 0+, the energy

Eh[uhfd] remains essentially constant with respect to h. This provides further confirmation of the accuracy
of our theoretical results.
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h 0.1 0.05 0.01 0.005 0.002

Eh[uhfd] 0.3197 0.2633 0.2747 0.2562 0.2599

Sh[uhfd] = sup
t∈(0,T )

∥∥�c,huhfd(·, t)∥∥`2(hZ) 0.1084 0.0769 0.0452 0.0311 0.0212

h
1
2 0.3162 0.2236 0.1 0.0707 0.0316

Table 1. Behavior with respect to the mesh parameter h of the quantities E [uhfd] and

S[uhfd] introduced in Theorem 5.1.

Figure 7. Behavior
with respect to the
mesh parameter h
of the quantities
S[uhfd] and E [uhfd]
introduced in The-
orem 5.1. Case
ξ0 = π/16.

7. Conclusions and open problems

In this paper, we have discussed the construction of GB solutions for the numerical approximation
of wave equations, semi-discretized in space by finite difference schemes. In particular we have focused
on the case of constant coefficient wave equations defined on the entire Euclidean space, and we have
shown how to accurately build a GB ansatz to describe the solutions’ propagation properties. Due
to the well-known fact that the solutions of finite difference wave equations may exhibit pathological
behaviors such as lack of space propagation at high-frequencies, classical GB constructions developed
for the corresponding continuous models cannot be immediately applied. In turn, some adjustments in
the GB ansatz are required, in order to compensate this lack of propagation and generate a family of
quasi solutions that correctly approximates the finite difference wave dynamics. As we have showed
in our main result Theorem 5.1, this can be done by introducing a correction term ω(t) in the ansatz’s
phase Φ, to cope with the vanishing velocity of propagation of high-frequency discrete waves. The main
contribution of this paper has therefore been to show that our proposed GB construction indeed produces
approximated solutions for the finite difference wave equation (5.2), whose energy propagates along
the corresponding bi-characteristic rays, with specific approximation rates given in terms of the mesh
parameter h. Furthermore, the numerical experiments of Section 6 have provided a confirmation of
the validity and accuracy of our construction. Nevertheless, some key interesting issues have remained
excluded by our analysis, and will be object of future research works.

1. GB for semi-discrete wave equations on bounded domains The constructions of Theorems
4.1 and 5.1 can be adapted to obtain highly localized solutions for the corresponding finite difference
approximation of the Dirichlet problem

utt(x, t)− c∆u(x, t) = 0, (x, t) ∈ Ω× (0, T )

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T )

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω

(7.1)

Ω ⊂ Rd being a bounded and regular domain. Obviously, since Ω is bounded, there may exist rays
that exit this domain in finite time. So for an arbitrary T > 0 a GB beam will not satisfy in general
the Dirichlet boundary condition. In order to overcome this difficulty, one has to superpose two
GB beams - concentrated one on the positive branch x+

fd(t) of the bi-characteristics and the other

on the negative branch x−fd(t) - and include in the construction the Snell’s law to handle the
reflections at the boundary. An overview of this construction for the continuous wave equation
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(7.1) can be found, for instance, in [27, Proposition 8]. The extension of this constructions to the
case of finite difference approximations of (7.1) is, to the best of our knowledge, still missing and
it would be an interesting complement to our analysis.

2. GB for semi-discrete wave equations on non-uniform meshes Our GB construction has
focused on the employment of a uniform mesh

Gh :=
{
xj := jh, j ∈ Zd

}
for the space discretization. A natural extension of our work would then be to address the case
of non-uniform meshes

Ghg :=
{
gj := g(xj), xj ∈ Gh

}
,

obtained by transforming Gh through some suitable diffeomorphism g : Rd → R. The introduction
of a non-uniform mesh for the finite difference space semi-discretization of wave equations is a
delicate issue that needs to be handled with a particular care. On the one hand, it has been shown
in [13] that there are suitable choices of Gh that may help fixing the high-frequency pathologies
of semi-discretized waves. On the other hand, a refinement of the mesh may introduce further
pathological dynamics, with a series of unexpected propagation properties at high frequencies,
that are not observed when employing a uniform mesh. For instance, in space dimension d = 1,
one can generate spurious solutions presenting the so-called internal reflection phenomenon,
meaning that the waves change direction as if they were hitting some fictitious boundary (see
Figure 8). These effects are enhanced in the multi-dimensional case where the interaction and

Figure 8. Numerical solution cor-

responding to the mesh Ghg with
g(x) = tan(πx/4) and initial fre-
quency ξ0 = 7π/15. The mesh
is finer in the interior of the do-
main and coarser near the boundary,
and generates the internal reflec-
tion phenomenon, which makes
the wave changing direction even
though no boundary is present in
the discretization domain.

combination of such behaviors in the various space directions may produce, for instance, the
rodeo effect, i.e., waves that are trapped by the numerical grid in closed loops (see Figure 9).
As usual, these new phenomena are due to changes in the Hamiltonian system providing the

Figure 9. The rodeo effect in two-
dimensional wave equations, semi-
discretized in space on a non-uniform
mesh. The blue line describes the
characteristics, that propagate in time
on a closed loop.

equations for the bi-characteristic rays, which in this case is generated by the principal symbol

P̃(x, t, ξ, τ) = −τ2 +
4c

g′(g−1(x))

d∑
i=1

sin2

(
ξi
2

)
.

The GB ansatz should then be designed by adapting our construction in Section 5, including in it
the new equations of the bi-characteristic rays. Notice that this may require the introduction of
some further correction term in the definition of the phase, in order to deal with those added
pathological behaviors that do not appear when discretizing on a uniform mesh.
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3. Alternative numerical schemes In this paper, we have considered only the case of finite
difference approximations for the wave equation. On the other hand, it would be interesting to
consider also other numerical schemes such as mixed finite elements, which have been introduced,
for instance, in [9, 12, 15] with control purposes. According to our analysis, the first step would be
to identify the principal symbol associated with the FE discretization of the wave equation. From
there, the study of the corresponding Hamiltonian system would again allow one to understand
the propagation properties of the numerical solutions and, consequently, properly design a GB
ansatz.

4. GB for fully-discrete wave equations Our GB construction of Section 5 has focused on the
finite difference semi-discretization of the wave equation (5.2), defined through the semi-discrete
scheme

∂2
t uj(t) =

c

h2

(
uj+1 − 2uj + uj−1

)
.

It would be worth to extend this analysis to the case of fully-discrete wave equations, approximated
through

un+1
j − 2unj + un−1

j = c
h2
t

h2

(
unj+1 − 2unj + unj−1

)
. (7.2)

When working at this fully discrete level, the analysis of wave propagation is quite more involved
than the semi-discrete case, since now the bi-characteristic rays are generated by a principal
symbol in the form

P̂(x, t, ξ, τ) = − sin2
(τ

2

)
+ c

d∑
i=1

sin2

(
ξi
2

)
,

with a trigonometric structure also in the time-frequency τ . Some preliminary study of the
dynamical behavior of these fully-discrete waves has been conducted in [41]. Nevertheless, to the
best of our knowledge, a GB construction for (7.2) is still am open (and very interesting) problem
that definitely deserves further investigation.

Appendix A. Proof of Theorem 4.1

We give here the proof of Theorem 4.1, concerning the construction of a GB ansatz for the wave
equation (1.1). To this end, we shall first need the following technical result.

Proposition A.1. Let x0 ∈ Rd, N ∈ N and f ∈ L∞(Rd) be a function satisfying

|x− x0|−Nf(x) ∈ L∞(Rd). (A.1)

Then, for any positive constant 0 < β ∈ R, we have∫
Rd

∣∣∣f(x)e−kβ|x−x0|2
∣∣∣2 dx ≤ Ck− d2−N (A.2)

for some C = C(d,N, β) > 0 that does not depend on k.

Proof. Using (A.1), we have that there exists a function g ∈ L∞(Rd) such that

f(x) = |x− x0|Ng(x).

In view of this, we can apply the Hölder inequality to estimate∫
Rd

∣∣∣f(x)e−kβ|x−x0|2
∣∣∣2 dx =

∫
Rd

∣∣∣|x− x0|Ng(x)e−kβ|x−x0|2
∣∣∣2 dx ≤ C(d)

∫
Rd
|x− x0|2Ne−2kβ|x−x0|2 dx.

Now, by means of the change of variable y =
√

2kβ(x− x0), we obtain that∫
Rd
|x− x0|2Ne−2kβ|x−x0|2 dx = (2kβ)−

d
2−N

∫
Rd
|y|2Ne−|y|

2

dy.

Finally, by employing polar coordinates, we can compute∫
Rd
|y|2Ne−|y|

2

dy =

∫
Sd−1

∫ +∞

0

r2N+d−1e−r
2

drdσ =
1

2
|Sd−1|

∫ +∞

0

ρN+ d
2−1e−ρ dρ

=
dπ

d
2

2Γ
(
d
2 + 1

) ∫ +∞

0

ρN+ d
2−1e−ρ dρ =

dπ
d
2

2

Γ
(
d
2 +N

)
Γ
(
d
2 + 1

) ,
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where Γ denotes the Euler gamma function. Putting everything together, we finally obtain that∫
Rd

∣∣∣f(x)e−kβ|x−x0|2
∣∣∣2 dx ≤ C(d)

[
(2β)−

d
2−N

dπ
d
2

2

Γ
(
d
2 +N

)
Γ
(
d
2 + 1

) ] k− d2−N .
�

Proof of Theorem 4.1. We organize the proof in three steps, one for each statement of the theorem.

Step 1: proof of (4.7). Starting from (4.14), we have that∥∥�cuk∥∥2

L2(Rd)
=

∫
Rd
|�cuk|2 dx ≤ k

d
2−2

∫
Rd

∣∣eikφr0

∣∣2 dx+ k
d
2

∫
Rd

∣∣eikφr1

∣∣2 dx+ k
d
2 +2

∫
Rd

∣∣eikφr2

∣∣2 dx,
where, we recall

r0 = �ca

r1 = a�cφ+ 2atφt − 2c∇a · ∇φ

r2 =
(
c|∇φ|2 − φ2

t

)
a.

Since a, φ ∈ C∞(Rd×R), we clearly have that also r0, r1, r2 ∈ C∞(Rd×R). Moreover, by construction,
r1 and r2 vanish on x = x(t) up to the order 0 and 2. In view of that, we have that r0, r1, r2 satisfy
(A.1) with N = 0, N = 1 and N = 3, respectively. Then, applying Proposition A.1 with x0 = x(t) and
the previous values of N ∈ N, we get

k
d
2−1

∫
Rd

∣∣eikφr0

∣∣2 dx ≤ C(a, φ)k−2

k
d
2

∫
Rd

∣∣eikφr1

∣∣2 dx ≤ C(a, φ)k−1

k
d
2 +1

∫
R

∣∣eikφr2

∣∣2 dx ≤ C(a, φ)k−1.

Putting everything together, since k ≥ 1, we finally obtain that∥∥�cuk∥∥2

L2(Rd)
≤ C

(
k−2 + k−1 + k−1

)
≤ C(a, φ)k−1,

that is, ∥∥�cuk∥∥L2(Rd)
≤ C(a, φ)k−

1
2 .

Step 2: proof of (4.8). Starting from (4.1), we have that

Ec(u
k(·, t)) =

1

2

∫
Rd

(
|ukt (·, t)|2 + c|∇uk(·, t)|2

)
dx = Ξk0(t) + Ξk1(t) + Ξk2(t),

where we have denoted

Ξk0(t) :=
k
d
2

2

∫
Rd
|a|2
(
|φt|2 + c|∇φ|2

)
e−k(x−x(t))·

[
=(M0)(x−x(t))

]
dx

Ξk1(t) := k
d
2−1

∫
Rd
a
(
atφt + c∇a · ∇φ

)
e−k(x−x(t))·

[
=(M0)(x−x(t))

]
dx

Ξk2(t) :=
k
d
2−2

2

∫
Rd

(
|at|2 + c|∇a|2

)
e−k(x−x(t))·

[
=(M0)(x−x(t))

]
dx.

Notice that, since a, φ ∈ C∞(Rd × R) and =(M0) > 0, we have that for all t ∈ (0, T )

|Ξk1(t)| ≤ C(a, φ)k
d
2−1

∫
Rd
e−k(x−x(t))·

[
=(M0)(x−x(t))

]
dx = C(a, φ)

dΓ
(
d+1

2

)
2Γ
(
d
2 + 1

) ( π

det(=(M0))

) d
2

k−1

|Ξk2(t)| ≤ C(a, φ)k
d
2−2

∫
Rd
e−k(x−x(t))·

[
=(M0)(x−x(t))

]
dx = C(a, φ)

dΓ
(
d+1

2

)
2Γ
(
d
2 + 1

) ( π

det(=(M0))

) d
2

k−2

Hence,

sup
t∈(0,T )

(
|Ξk1(t)|+ |Ξk2(t)|

)
→ 0, as k → +∞. (A.3)
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As for the term Ξk0(t), replacing in it the explicit expression (4.5) of the amplitude function a, we get
that

Ξk0(t) =
k
d
2

2

∫
Rd

(
|φt|2 + c|∇φ|2

)
e
−(x−x(t))·

[(
2Id+k=(M0)

)
(x−x(t))

]
dx, (A.4)

where Id denotes the identity matrix in dimension d×d. Moreover, using (3.7) and the explicit expression
(4.6) of the phase function a, we can compute

|φt|2 =
c

|ξ0|2

[
|ξ0|2 + ξ0 ·

(
M0(x− x(t))

)]2

c|∇φ|2 = c
∣∣∣ξ0 +M0(x− x(t))

∣∣∣2
and we obtain from (A.4) that

Ξk0(t) =
c

2|ξ0|2
k
d
2

∫
Rd

[
|ξ0|2 + ξ0 ·

(
M0(x− x(t))

)]2

e
−(x−x(t))·

[(
2Id+k=(M0)

)
(x−x(t))

]
dx

+
c

2
k
d
2

∫
Rd

∣∣∣ξ0 +M0(x− x(t))
∣∣∣2e−(x−x(t))·

[(
2Id+k=(M0)

)
(x−x(t))

]
dx.

Now, since 2Id + k=(M0) > 0, we can apply the change of variables(
2Id + k=(M0)

) 1
2

(x− x(t)) = y

and we get

Ξk0(t) =
c

2|ξ0|2
k
d
2

det
(

2Id + k=(M0)
) d

2

∫
Rd

[
|ξ0|2 + ξ0 ·

((
2Id + k=(M0)

)− 1
2

M0y

)]2

e−|y|
2

dy

+
c

2

k
d
2

det
(

2Id + k=(M0)
) d

2

∫
Rd

∣∣∣ξ0 +
(

2Id + k=(M0)
)− 1

2

M0y
∣∣∣2e−|y|2 dy.

Finally, the two integrals in the expression above can be computed by employing polar coordinates. In
this way, we obtain that

Ξk0(t) = C
(
d, ξ0,M0

)
π
d
2

k
d
2

(
1 + k−1

)
det
(

2Id + k=(M0)
) d

2

=
C
(
d, ξ0,M0

)
π
d
2

det
(

2k−1Id + =(M0)
) d

2

(
1 + k−1

)
.

Hence,

lim
k→+∞

Ξk0(t) = C
(
d, ξ0,M0

)( π

det
(
=(M0)

)) d
2

. (A.5)

From (A.3) and (A.5), we immediately get (4.8).

Step 3: proof of (4.9). Since a, φ ∈ C∞(Rd × R) and k ≥ 1, we have that∫
Rd\Bk(t)

(
|ukt (·, t)|2 + c|∇uk(·, t)|2

)
dx ≤ C

(
k
d
2 + k

d
2−1 + k

d
2−2
)∫

Rd\Bk(t)

e−k(x−x(t))·
[
=(M0)(x−x(t))

]
dx

≤ Ck d2
∫
Rd\Bk(t)

e−k(x−x(t))·
[
=(M0)(x−x(t))

]
dx

= Ck d2
∫
Rd\B

(
0,k−

1
4

) e−ky·
[
=(M0)y

]
dy,
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with C = C(a, φ) > 0 a positive constant not depending on k. Moreover, by employing the change of

variable y = k−
1
2 z, we have that

Ck d2
∫
Rd\B

(
0,k−

1
4

) e−ky·
[
=(M0)y

]
dy = C

∫
Rd\B

(
0,k

1
4

) e−z·
[
=(M0)z

]
dz

= C
∫
Rd\B

(
0,k

1
4

) e− 1
2z·
[
=(M0)z

]
e−

1
2z·
[
=(M0)z

]
dz

≤ sup
Rd\B

(
0,k

1
4

)
(
e−

1
2z·
[
=(M0)z

])∫
Rd\B

(
0,k

1
4

) e− 1
2z·
[
=(M0)z

]
dz

= e−
1
2 det
(
=(M0)

)
k

1
2

∫
Rd\B

(
0,k

1
4

) e− 1
2z·
[
=(M0)z

]
dz

≤ e−
1
2 det
(
=(M0)

)
k

1
2

∫
Rd
e−

1
2z·
[
=(M0)z

]
dz

=
dΓ
(
d+1

2

)
2Γ
(
d
2 + 1

) ( 2π

det(=(M0))

) d
2

e−
1
2 det
(
=(M0)

)
k

1
2
.

From this last estimate, (4.9) follows immediately. �

Appendix B. Proof of Theorem 5.1

B.1. Concentration of solutions. We give here the proof of Theorem 5.1, concerning the construction
of a GB ansatz for the semi-discrete wave equation (5.2).

Proof of Theorem 5.1. We are going to split the proof into three steps, one for each point in the statement
of the theorem. Moreover, in what follows, we will denote by C > 0 a generic positive constant independent
of h. This constant may change even from line to line.

Step 1: proof of(5.10). Starting from (5.46), we have that∥∥�c,huhfd(·, t)∥∥2

`2(hZ)
= h

∑
j∈Z

∣∣�c,huhfd,j(t)∣∣2
≤ h 5

2

∑
j∈Z

∣∣∣∣e ihΦj

(
R0Aj +Aj

R2 −Rfd
h2

)∣∣∣∣2
+ h

1
2

∑
j∈Z

(∣∣∣e ihΦj (R1Aj − R̃1Aj)
∣∣∣2 +

∣∣∣e ihΦj R̃1Aj

∣∣∣2)
+ h−

3
2

∑
j∈Z

∣∣∣e ihΦjAjRfd
∣∣∣2 .

Moreover, using (5.35), we see that

e
i
hΦj = e

i
h<(Φj)e−

1
h=(Φj) = e

i
h

(
ω(t)+ξ0(xj−xfd,j(t))+ 1

2<(M(t))(xj−xfd,j(t))2
)
e−

1
2h=(M(t))(xj−xfd,j(t))2

and, therefore, ∣∣∣e ihΦj
∣∣∣2 = e−

1
2h=(M(t))(xj−xfd,j(t))2 . (B.1)

In view of this, we get∥∥�c,huhfd(·, t)∥∥2

`2(hZ)
≤ h 5

2

∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2

∣∣∣∣R0Aj +Aj
R2 −Rfd

h2

∣∣∣∣2
+ h

1
2

∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2

(∣∣∣R1Aj − R̃1Aj

∣∣∣2 +
∣∣∣R̃1Aj

∣∣∣2)
+ h−

3
2

∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2 |AjRfd|2 .
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Now, by means of (5.31) and (5.45), we have that

h
5
2

∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2

∣∣∣∣R0Aj +Aj
R−Rfd

h2

∣∣∣∣2
≤ h 5

2

∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2

(
|R0Aj |2 + C |Aj |2

)
and

h
1
2

∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2

∣∣∣R1Aj − R̃1Aj

∣∣∣2
≤ Ch 5

2

∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2

(
|∆c,hΦj |2 + |∆c,hΦj |4

)
+ Ch 9

2

∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2 .

Hence, ∥∥�c,huhfd(·, t)∥∥2

`2(hZ)
≤ Ch 9

2

∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2 + Ch 5

2

∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2

+ h
1
2

∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2

∣∣∣R̃1Aj

∣∣∣2
+ h−

3
2

∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2 |AjRfd|2 .

The first two terms on the right-hand side of the above inequality can be estimated by observing that∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2 = O(h−

1
2 ). (B.2)

This can be easily seen by considering the Riemann sum approximating on the mesh Gh the integral∫
R
e−

1
h=(M(t))(x−xfd(t))2 dx = Ch 1

2 .

Hence, using (B.2), we obtain that(
h

9
2 + h

5
2

)∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2 = O(h4) +O(h2) = O(h2)

and, therefore,∥∥�c,huhfd(·, t)∥∥2

`2(hZ)
≤ h 1

2

∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2

∣∣∣R̃1Aj

∣∣∣2
+ h−

3
2

∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2 |AjRfd|2 +O(h2).

Finally, since by construction R̃1Aj and Rfd vanish on the discrete characteristics xfd(t) up to the
order 0 and 2 respectively, we have that∑

j∈Z
e−

1
h=(M(t))(xj−xfd,j(t))2

∣∣∣R̃1Aj

∣∣∣2 = O(h
1
2 )

∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2 |AjRfd|2 = O(h

5
2 ).

This is the discrete version of Proposition A.1, which can be proven once again by applying Riemann
sum to approximate the corresponding integrals. In view of this, we obtain

h
1
2

∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2

∣∣∣R̃1Aj

∣∣∣2 + h−
3
2

∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2 |AjRfd|2 = O(h).

and we can finally conclude that∥∥�c,huhfd(·, t)∥∥2

`2(hZ)
= O(h2) +O(h) = O(h), as h→ 0+.
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Step 2: proof of(5.11). First of all, starting from (5.3), (5.4) and (5.23), we can write

Eh[uhfd] =
h

2

∑
j∈Z

(
|∂tuhfd,j |2 + c|∂+

h u
h
fd,j |2

)
=
h

5
2

2

∑
j∈Z

(∣∣∣∂t (Aje ihΦj
)∣∣∣2 + c

∣∣∣∂+
h

(
Aje

i
hΦj
)∣∣∣2) .

Moreover, we can easily compute

∂t

(
Aje

i
hΦj
)

=
1

h
e
i
hΦj
(
h∂tAj + iAj∂tΦj

)
∂+
h

(
Aje

i
hΦj
)

=
1

h
e
i
hΦj
(
h∂+

h Aje
i∂+
h Φj +

(
ei∂

+
h Φj − 1

)
Aj

)
Using these identities and (B.1), we then obtain

Eh[uhfd] =
h

5
2

2

∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2S1 + h

3
2

∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2S2

+
h

1
2

2

∑
j∈Z

e−
1
h=(M(t))(xj−xfd,j(t))2S3,

where we have denoted

S1 :=
∣∣∣∂tAj∣∣∣2 + c

∣∣∣∂+
h Aje

i∂+
h Φj

∣∣∣2 (B.3a)

S2 :=
∣∣∣iAj∂tAj∂tΦj∣∣∣+ c

∣∣∣∂+
h Aje

i∂+
h Φj

(
ei∂

+
h Φj − 1

)
Aj

∣∣∣ (B.3b)

S3 :=
∣∣∣iAj∂tΦj∣∣∣2 + c

∣∣∣(ei∂+
h Φj − 1

)
Aj

∣∣∣2. (B.3c)

Moreover, by construction of A and Φ, we have that |Si| ≤ C(A, φ) for i ∈ {1, 2, 3}. Using this and
(B.2), we finally obtain

Eh[uhfd] = O(h2) +O(h) +O(1) = O(1), as h→ 0+.

Step 3: proof of(5.12). Repeating the computations of Step 2, we have that

h

2

∑
j∈Z†(t)

(
|∂tuhfd,j |2 + c|∂+

h u
h
fd,j |2

)
=
h

5
2

2

∑
j∈Z†(t)

e−
1
h=(M(t))(xj−xfd,j(t))2S1

+ h
3
2

∑
j∈Z†(t)

e−
1
h=(M(t))(xj−xfd,j(t))2S2

+
h

1
2

2

∑
j∈Z†(t)

e−
1
h=(M(t))(xj−xfd,j(t))2S3,

with S1, S2 and S3 defined in (B.3a), (B.3b) and (B.3c), respectively. Hence, recalling that |Si| ≤ C(A,Φ)
for i ∈ {1, 2, 3}, we obtain

h

2

∑
j∈Z†(t)

(
|∂tuhfd,j |2 + c|∂+

h u
h
fd,j |2

)
≤ C

(
h

5
2 + h

3
2 + h

1
2

) ∑
j∈Z†(t)

e−
1
h=(M(t))(xj−xfd,j(t))2 . (B.4)

Now, employing the transformation

xj − xfd,j = yj ,

and denoting

Z‡(t) :=
{
j ∈ Z : |yj | > h

1
4

}
,

we have that∑
j∈Z†(t)

e−
1
h=(M(t))(xj−xfd,j(t))2 =

∑
j∈Z‡(t)

e−
1
h=(M(t))y2j ≤ e− 1

2=(M(t))h−
1
2
∑

j∈Z‡(t)

e−
1
2h=(M(t))y2j

≤ e− 1
2=(M(t))h−

1
2
∑
j∈Z

e−
1
2h=(M(t))y2j = Ch− 1

2 e−
1
2=(M(t))h−

1
2 .
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Substituting this in (B.4), we finally conclude that

h

2

∑
j∈Z†(t)

(
|∂tuhfd,j |2 + c|∂+

h u
h
fd,j |2

)
≤ C

(
1 + h+ h2

)
e−

1
2=(M(t))h−

1
2 .
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successives. Compt. Rend. Acad. Sci 183, 11 (1926), 24--26.
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