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A DIRECT METHOD
FOR THE BOUNDARY STABILIZATION
OF THE WAVE EQUATION

By Vilmos KOMORNIK (') and Enrike ZUAZUA (%)

ABSTRACT. — We consider the wave equation y”"—Ay=0 in a bounded domain Q < B" with smooth
boundary I', subject to mixed boundary conditions y=0 on T, and 8y/év=F(x, ') on Ty, (I',, T,) being a
partition of I'.  We study the boundary stabilizability of the solutions i, e. the existence of a partition (I, T',)
and of a boundary feed-back F (., .) such that every solution (corresponding to initial data with finite energy)
decays exponentially in the energy space as /- 0. Several authqrs proved earlier that, under very strong
geometrical hypothesis on Q, the system Is stabilized by the feed- back F(x, y I=—b(x)y with b(x) 2 b, >0
if the partition (I'y, T'y) is suitably chosen. We prove in this paper the stablllzablhly of the system without
geometrical hypothesis on £ (at leastif # £ 3). The proof is based on the use of a feed-back Flx, )Y =—-b(x)y'
with b(x) 20 and b(x)=0 on the interface points xecl(Ty) M cl(Ty), and on the construction of energy
functionals, well adapted to the system. We derive a differential inequality for these functionals' which [ead
to very precise estimates on the decay rates. This method is rather general and &an be adaplcd to other
evolution systems (e. g. models of plates, elasticity systems) as.well.  Also, it allows to prove the exponential
decay for the solutions of the semilinear wave equauon y"-‘-Ay+f(y} 0, undcr natural. growth and sign
assumptions on the nonlinearity f.

1. Introduction and statement of the main result

Let Q be a bounded, open, connected set in R" (n = 1) having a boundary ['=8Q of
class C*. Given a partition (I'y, ') of T and a function F: I’y x R — R, consider the
wave equation

(1.1) Y'—Ay=0 in Qx(0, o)
with the boundary and initial conditions

(1.2) dy/dv=F(x, ') on Ty (0, o)

() Part of the results of this paper was obtained during the author’s visit at the Laboratoire d’Analyse
Numeérique of the Université Pierre-et-Marie-Curie (Paris) as associated researcher of the C.N.R.S. and at the
Université de Savoie (Chambéry) as invited professor.
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34 V. KOMORNIK AND E. ZUAZUA

(1.3) y=0 on I'; x(0, o)

(1.4) y(0)=3° Y (O=y' inQ

where v is the unit normal vector of I" pointing towards the exterior of @ and y'=dy/dt,
y=a*yjor.

If y=y(x, f) is a (sufficiently smooth) solution of this system, then we define its energy
by

(1.5) E(y; r)=% J |¥' e, OP+H|Vy(x, )P dx, VizO.
= JO

We wish to stabilize this system, i.e. we seek a suitable partition (I'y, I';) of I" and a
suitable feed-back F(x, ") such that for any initial data (3°, »') [of finite energy
E(y, 0) < oo, and satisfying the natural compatibility condition y°=0 on I';] the energy
(1.5) of the solution y of the problem (1.1)-(1.4) tends to zero exponentially as t — co.

Taking (at least formally) the derivative of the energy E (y; 1), one obtains

g s t)=j- F(x, y'(x, )y (x, ndl'(x), V¥iz0.
dt ro

Thus, the energy will decrease if we take a feed-back of the form
(1.6) F(x, s)=—b(x)s, xel,, selR

with be L™ (Ty), b(x) = 0 a.e. in Ty,
To formulate our main result, fix a point x°eR” and set

(1.8) m{x)=x—x%  xeR"

(1.9) [o={xel: m(x).v(x) > 0}

(1.10) [ ={xel: m(x).v(x) S0}

(1.11) F(x, )= —(m(x).v(x)) s, xel;, seR

(. denotes the scalar product in R").
Let us assume that ', # . (This is not a restriction on £, since it is always the case
if we choose x° in the exterior of Q.) Then

(1.12) I'p, and T'; have non-empty interior in I'.

Indeed, if x is a farthest (resp. nearest) point in T’ from x°, then x is an interior point
of I'y (resp. I';). It follows that in the subspace

(1.13) V={peH' (Q): =00nT,}
of the Sobolev space H! (Q), Poincaré’s inequality holds, i.e.

(1.14) Jo > 0 such that || @||.2q £ a||Ve

L? @B VoeV.
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THE BOUNDARY STABILIZATION 35

In view of this inequality we may (and we shall) consider in V the equivalent scalar
product (o, \|J)|—>f Vo.Vidy.
o

We also note that for any fixed seR, F(x, 5) » 0 whenever x tends to a point of
cl(T'g) N cl(Ty).

Summarizing, we shall consider the problem (1.1)-(1.4) where Ty, I’y and F are defined
by (1.8)-(1.12).

It is well-known that for any initial data

(0% eV xL3(Q)
this system has a unique solution
(1.15) yeC([0, @); V)N C* ([0, 0); L2 (Q)),
and this solution decreases in the energy space, i. e.
(1.16) EQrt)=EQrt,) if (21,

Our main result is as follows.

TuEOREM 1. — Assume that n 3. Then for every constant C > 1 there exists a
constant ® > 0 such that, for any initial data

0% yDeVxL2(Q)

the energy (1.5) of the solution of the system (1.1)-(1.4), where 'y, T'y and F are given by
(1.8)-(1.12), satisfies the inequality

(1.17) EQ: H=Ce™E(; 0) forall t=0. e

Remark 1.1. — The proof below will provide explicit expressions for C and ® in terms
of Q and x° The fact that we obtain explicit estimate on @ appears to be new. e

Remark 1.2. — If cl(Tg)Nel(I'))=(F then our proof given below remains valid
without the restriction n < 3 (Note that this assumption excludes the simply connected
regions.) In this case the theorem was already proved (following the work of Quinn
and Russell [26]) by Chen ([2], [3], [4]) and Lagnese [17] [without, however, explicit
constants in (1.17)]. In this case the solution is sufficiently regular for proving (1.17)
by a multiplier technique. These calculations are no longer valid in the general
case. However, as it was proved by Grisvard ([7], [8], [9]), at least in case n < 3, one of
the crucial identities (in the application of a multiplier technique) becomes an inequality
which, fortunately, is sufficient for our purposes. The case n = 4 (without the hypothesis
cd(Ty) N el(T))=¢F) remains open. Provided that Grisvard’s inequality extends to
higher dimensions, our method should apply, However, such an extension does not
seen to be proven. e
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36 V. KOMORNIK AND E. ZUAZUA

Remark 1.3. — The choice of the special multiplier m(x).v(x) in the feed-back (1.11)
seems to be new. It will play a crucial role in the proof. e

Remark 1.4. — The case I',= (& is not considered in this paper. For this case the
estimate (1.17) was already proved earlier by J. Lagnese [17]. This, however, is not
sufficient for the stabilization because now every constant function is a solution of energy
zero. This problem is solved in E. Zuazua [35] by using a more general feed-back of
the form —(m.v)(y'+ay). (For a=0 we recover (1.11).) e

The paper is organized as follows:

— Section 2 is devoted to the proof of Theorem 1.

— In Section 3 several generalizations are given.

In particular, we will show that the proof of Theorem 1 carries over to some semilinear
wave equations with minor modifications. Also, we sutdy the wave equation with a
linear potential.

The authors are grateful to P. Grisvard, J. Lagnese and to J. L. Lions for fruitful
discussions.

2. Proof of the main result

2.1. ENERGY ESTIMATES. — It is well-known that the system (1.1)-(1.4) with the feed-
back (1.11) is well-posed. The existence of strong and weak solutions may be proven
either by the Galerkin method (see e.g. Lions-Magenes [25] or for the present case
Quinn-Russell [26]) or by the theory of semigroups. Let us outline, for the sake of
completeness, the semigroup approach.

Let us introduce the linear operator

2.1 AW, 2)=(—z —4y
where
(2.2) D(A)={(y, 2)eVxV | AyeL?*(Q) and ? =—(m.v)z on FO};
\
here Ay is taken in the distributional sense while the equality dy/dv= — (m.v)z means
that

J‘ Vy.Vvdx-i-J (Ay)vdx+.[ (m.v)zvdl'=0, VoveV.
a 0 T

(Observe that dy/dv is not necessarily defined by the usual trace theorems; however,
when both definitions make sense, then they coincide.) It is clear that A maps
D(A) = VxL?(Q) linearly into VxL?*(Q). Using the operator A we may interprete
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THE BOUNDARY STABILIZATION 37

the system (1.1)-(1.4), (1.11) in the following operational form:
(2.3) 0, 2)'+A(, =0 in[0,0) and  (» 2)(0)=05¥).

It is easy to verify that A is a maximal monotone operator in the Hilbert space
VxL2(Q). Applying the Hille-Yosida theorem, it follows that for every inmitial data
(°, y))eD(A) the problem (2.3) [or equivalently the system (1.1)-(1.4), (1.11)] has a
unique solution

(2.4) (3, ¥)eC([0, w); D(A)) N CH([0, co); Vx L (Q)).
Furthermore, D (A) is dense in V x L?(Q) and for each fixed r€[0, o) the linear map
(2.5) 0% P @), 2(1)

extends to a unique contraction S(f) of VXL?(Q) such that ($(1)),,, is a strongly
continuous semigroup of contractions in Vx L?(Q). We may therefore define for every
initial data (3°, y') eV x L?(Q) the weak solution of (2.3) by the formula

@@, z(0):=8®O0" y) =0
Then
(o, 2)eC([0, o0); VxL*(Q)).

Since the maps (2.5) are continuous for every fixed t =z 0 and since D (A) is dense in
V x L2(Q), it is sufficient to prove the estimate (1.17) of Theorem 1 in the special case
where (»°, y') belongs to D(A). We shall therefore assume in the sequel that (2.4)
holds.

Remark 2.1. — It follows from (2.4) that

AyeC([0, o); L* ().

Moreover, if ¢/(T'y) N cl(I';)=, then by the standard regularity properties of the
solutions of elliptic problems we have also

yeC([0, o0); H?(Q)).

However, as it was shown by Lagnese [17] (c¢f. also Grisvard [6]), we have nof
yeC([0, w); H2(Q)) in general. o
We shall need the inequality

(2.6) 1B >0, f (m.v)tpzdfgﬁj |Vo|*dx, VeeV.
I'o 9]

It follows easily from the Poincaré inequality (1.14) combined with the trace inequality
in H! (©2). [Here and throughout this paper a, B, ¢;, €3, . . . denote constants depending
only on Q and eventually on x° but not on the initial data (°, y').]
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38 V. KOMORNIK AND E. ZUAZUA

We now fix £ > 0 and introduce the functional

@.7) E.(; )=E (5 )+ep (5 1)

with

(2.8) p(y; t)=j Vx, 02m(x).Vyx, 0+m—1)p(x, O)dx
Q

for #= 0. We shall prove the existence of positive constants &, c,, ¢, such that

(2.9) |E.(;; D—E(; H| S c,eE(y; 0, Viz0, Ve>0,
and that
(2.10) E,(v: D:=dE_ (y; )jdt £ —c,€E,(y; D), V=0

whenever € £ g,.

From (2.9), (2.10) the theorem will follow. Indeed, for 0 <e <%, E (3; 1) = 0 by
(2.9) and then integrating (2.10) we obtain

(2.11) E.(i ) Sexp(—ece)E (3, 0), Yiz0.
On the other hand, for 0 <& < ¢ (1—C~%?) (2.9) implies that
(2.12) E(p; 02 JCE(; DSCE(; 1), V20,
and (2.9), (2.10) yield (1.17) with a=c, €.
The proof of (2.9) is straightforward. Putting for brevity
2.13) R=[[m | mm
we have, using (1.14),
e | E,0n D—EQ; 0|=|p0; 1|

=1y Oz @ RR| VY0 |2 @ + 01— Dy
S QR+@m=Do)|y®

L2 @)
L2 [ VYO |2 @
§(2R+(ﬁ—l)a)EU!; [), Vth’

i.e. (2.9) is satisfied with

(2.14) ¢;=2R+(n—1)a

Now we turn to the proof of (2.10). In order to simplify the notations, we shall omit
the variables x, ¢ of the functions under the integral signs /. e. we shall write y, ', Vy, m, v
instead of y (z, x), ' (¢, x), Vy (¢, x), m(x), v(x), etc. We will use the following important
technical result; it is a slight generalization of an inequality of Grisvard ([7], [8], [9]). The
proof of the lemma will be given in the Subsection 2.2.
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THE BOUNDARY STABILIZATION 38

Lemma 2.2, — Assume that n £ 3 and let (y, 2)e D(A). Then
(2.15) 2[ (Ay)ym. Vydx < (11—2)J |Vy|?dx
Q o
+2J (53;/6v)r:1.V}’dF—j (m.v)|Vy|*dl. e
r r

Let us differentiate (1.5), (2.7) and (2.8). We obtain

(2.16) B0 )=E"(; D+ep'(n; 1)
with
(2.17) E'(y; 0= J. Yy +Vy . Vy'dx
a
and
(2.18) o' (v 1) =J V'Rm Vy+m—Dy+y2m. V' +(n—1)y]dx
Q

for all 1 =2 0. Applying the divergence theorem and using (1.1)-(1.3), (1.8)-(1.11), we
obtain

(2.19) E'(y; 1)=-[ (Ay)y' -+Vy.Vy' dx=j (dyfov)y' dl
a r
=j (Op[dv)y dl'= __[ (m.v)(y')*dl,
To I'n
(2.20) f ¥y dx=f (Ay)ydx= J (yfov) y dT’ —j |Vy|Pydx
a o r Q
= —j (m.v)y'_vfﬂ"——[ |Vy|2dx
I'g Q

and

(2.21) EJ Y (m.Vy) dx=j m.V(y')? dx=j (m.v)(»')*dl
Q o r
—j (divm)@')zdx=f (m.v)(y‘)zdl"—nj ) dx
Q fn Q

for all t = 0.
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40 V. KOMORNIK AND E. ZUAZUA

Furthermore, applying Lemma 2.2 and using (1.2)-(1.3), (1.9)-(1.11), we have

(2.22) 2 j

Q

y'(m.Vy)dx=2 j (ApY(m.Vy)dx
Q
< (11—2)jﬂ|Vy|2dx+2L(m.Vy)(ﬁy/Bv)dT—f (m.v)|Vy|?dl
r

=(n—2)fn|Vy|2dx+2J (m.v)(ﬁy/é‘v)"‘dl"—ZL (m. vy (m.Vy)dr

Ty 0
—J (m.v)(@y/ﬁv)zdr—j (m.v)|Vy|?dl

r, ro
g(;;—?.)f |Vy|2a’x—£_ (m.v)2y (m.Vy)+|Vy[ldl
9- 0

for all ¢t = 0, because Vy=(dy/dv)von I'; x[0, co) and m.v=0onT},.
From (2.16)-(2.22) we conclude that

(2.23) E.(3; ) <—2&E, (3 1)

—J m.W[(1=e) ") +emr—1)yy' +2ey (m.Vy)+e|Vy|dl, Vi=0.
o

Next we remark that, in view of (2.6) and (2.13) we have
[2y'(m. V)| SR +RT m.Vy|P SR () +|Vy|?

on I'y X [0, o0), and

j (;n_v)(n—l)yy'dr{ é % (HI.V)[(H— 1)2 B(yr)2+B*1y2]dF
I'o

< Jryp

=

(fi—l)zﬂj m.v)(¥)Pdl+E@; 1), Vez0.
I'o

=

Therefore from (2.23) we conclude that

E (0 ) =—cE(; t)—'[

T

(m.v){l—s(1+ %(rzml)gﬁ-i-Rz):I(y')zdl", Viz0.

Ife<(1+2 *(n—1)>p+R?*» ™, then the function under the integral sign is nonnega-
tive because m.v 2 0 on I'y. Hence

E(: D= —eEQ; ),
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THE BOUNDARY STABILIZATION 41

and taking into account (2.9), (2.10) follows with

(2.24) go=(1+2"'(n—1)*p+RH!
and
(2.25) =l P g™

Using the explicit values of ¢, ¢,, g, obtained above, the estimate (1.17) of Theorem 1
holds with

(2.26)
o=QR+@E-Da+max{ZR+m—-Do)(1-C V)L 1+27 L (n—1)? B+RZ})~L.

The theorem is thus proved. e

Remark 2.3. — Let n be arbitrary and assume that the geometrical condition
c(Tg) N el(I'))=F is satisfied. Then (y, z)eD(A) implies ye H?(Q) (¢f. Remark 2.1)
and the above proof applies if we replace the inequality (1.15) of Lemma 2.2 by the
following classical identity due to Rellich [28]:

(2.27) 2j (Ay)m.Vydx=(n—2)f |Vy|2dx+2j (Bp/ov)m.V ydl
O Q r
—f (m.v)|Vy|?dl, VYyeH*(Q.
r

This proves the proposition formulated in Remark 1.2. o

2.2. PROOF OF LEMMA 2.2. — In order to motivate the validity of the inequality (2.15),
let us first recall briefly the proof of Rellich’s identity, mentioned in Remark 2.3. Since
in this case y belongs to H?(Q), the following calculation based on the Green’s formula
and on the special form (1.8) of m (x) is correct:

ZJ (Ay)m.Vydx=2j (8y/6v)m.VydI"—j Vy.V2m.Vyldx
Q r Q
=2J (8y/6v)m.Vde-2j ]Vy|2d‘x—J‘ m.V|Vy|*dx
r Q 0
=2j (3y/6v)m.Vydl"—2f |Vy|*dx
r Q
—j (f?:.v)[Vy|2d1”+nj |V y|?dx.
r Q

Let us now turn to the proof of Lemma22. If n=1 then obviously
el(Tp) N el(T'y)= & and the inequality (1.15) follows from Rellich’s identity.
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42 V. KOMORNIK AND E. ZUAZUA

Let us now consider the case n=2. Given (y, z)e D (A) arbitrarily, let us fix a function
y1€H*(Q) NV such that dy,/év=—(m.v)z on I and put y,=y—y,. Then éy,/dv=0
on I'y whence p, satisfies the inequality (2.15) by the results of Grisvard ([7], [8], [9]),
while y, satisfies Rellich’s identity (2.27). Therefore it is sufficient to prove the following
identity:

(2.28) jAyl (fn.VJ)2)+AJ"2(?71.Vy1)dx=f %;i(fﬂ-VyzH%vi(’"-vl'l)dr
Q R v

r

- J (m.v)(Vy,.Vy,)dx.
r

To do this, following Grisvard ([7], [8], [9]) let us write y, in the form
V2=pt Zges g

with ppeH?*(Q) and cseR, where S runs over c/(T'y) N\ c/([,) and @g is a uniquely
determined “singular” function associated to the point S. Furthermore, we approach
the domain Q by a family of subdomains Q (g), &€ > 0, excluding the “singularity” points
Secl(Ty) N cl(T,).

For each domain Q(g) the corresponding identity (2.28) holds. Indeed, it follows
easily from Rellich’s identity (2.27) because y,eH?(Q(g)). Therefore it is sufficient to
pass to the limit.

Taking into account that y,, y,€V and Ay,, Ay, eL?(Q), we have

J Ayl(m.Vyz)-i-Ayz(m.V_dex-—»j Ay (m.Vy,)+ Ay, (m.Vy )dx
Q{c)

Q

as €= 0. On the other hand, using the estimates of the singularities, obtained in
Grisvard ([7], [8], [9]), we obtain easily that

ay dy,
.[ A(m.Vyz)-i*L(m.Vyl)—(m.v)(Vyl.V_vz)dl"
rrnae OV ov

B i)

_,-[ L(m,vyz)-{-ﬁ(in.V}’l)“‘(m-V)(VJhAV."z)dr
iV av

and

dy,
av

)
j -—)il(m.VyZ)—}- (m.Vy)—(m.v)(Vy,.Vy,)dll =0
‘'m0

as € » 0. Hence the identity (2.28) follows.

The same method applies when n=3. In this case we apply the inequality established
in Grisvard [8]; Theorem 6.10] and the inequality (2.15) is easily deduced. e
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THE BOUNDARY STABILIZATION 43
3. Some generalizations and other applications
3.1. A COMPACTNESS ARGUMENT AND LINKS WITH EXACT CONTRALLABILITY. — Consider first
the case where (1.1) is replaced by the more general equation
3.1 y'—Ay+q(x)y=0 in Qx(0, o)
where g =g (x) is a nonnegative function such that
(3.2) geL7(Q) with p>n ifnz2 and with p=2 if n=1.

The energy of the solution of the system (3.1), (1.2)-(1.4) is now defined by
1 " 2 2 .
(3.3) E(y; = 5 j [V (x, D+ Vyix, D +q(x) |y (x, B)|? dx.
= 40

The aim of this section is to prove that the estimate (1.17) remains valid:

THEOREM 2. — Assume that n < 3. Then, for every constant C > 1 there exists another
constant @ > 0 such that, for any initial data

(0% yHeVXL(Q)

the energy (3.3) of the solution of the system (3.1), (1.2)-(1.4), where T o I'1, F and q(x)
are given by (1.8)-(1.12) and (3.2), satisfies the inequality

(1.17) EG; ) =Ce™E(,0) forall t=0. e

Remark 3.1. — As in the case of Theorem 1, the same result holds without any
restriction on # if the geometrical condition ¢/(Ig) M ¢/ (T')= & is satisfied. e

Let us define, as in Section 2 above,
(3.4) E. 05 D=EQ; D+ep(; 1), V20,

where E(y, 1) is given by (3.3), p(y; #) by (2.8), and € > 0. The method of the proof of
Theorem 1 in Section 2 allows to obtain in the present case the estimate

(3.5) E (5; 0 S —ceE (y; )+ey Ej lg(@)y(x, )dx, Viz0,
Q

for some positive constants ¢, and ¢, provided & > 0 is small enough. Furthermore, it
is clear that the estimate (2.9) remains valid.

Remark 3.2. — The exponential decay rate of E,(p, 7) does not follow directly from
(2.9) and (3.5). One can overcome this difficulty by adapting some ideas of Lagnese
([17], [18], [19]). We choose here another method motivated by the work of Rauch-
Taylor [27] and using a compactness-uniqueness argument which was proved successful
for several exact controllability problems (¢f. I. L. Lions [23], E. Zuazna [32]). e
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44 V. KOMORNIK AND E. ZUAZUA

First we note that we have, as before,

(36) E'(y; f)= —J (m.v)(’)Pdl <0, Viz0.

To
Thus, it is sufficient to prove the existence of T > 0 and C > 0 such that

T
(3.7 : E(y; D£C j j (m.v)(y")?dl dt

0 I'p
for any solution of finite energy y=y (¢, x) of (3.1), (1.2)-(1.4). Indeed, then integrating
(3.6) for te(0, T) and substituting the result in (3.7), we obtain

ET)=CEQW 0)-E(; T)

whence
(3.8) E(3; ) SC(1+O1E(; 0).

In other words, denoting by S(f) the strongly continuous semigroup in VxL2(Q)
associated to the problem (3.1) and (1.2)-(1.4), (3.8) implies that |S(T)|| < 1. This,
combined with (3.6) and the semigroup property, implies

(3.9) ]]S(t) || L Ce™@, Viz=0,
with
(3.10) C=||S(T)||'1 and = —Iog||S(T)||1“".

In order to prove the estimate (3.7) we use the multiplier technique
[¢f. e.g. L. F. Ho [11], J. L. Lions [23], V. Komornik [13], P. Grisvard ([7], [8])] We
multiply the equation (3.1) by the scalar field m.V y [¢f. (1.8)]. Integrating by parts and
applying Lemma 2.2 we obtain

T

1 (T ~1
(3.11) jy’(m.Vy)de-i——j f@’)2+|Vy|2+Q}:2dxdr+LJ IU")Z—IVJ’Idedf
Q 2 0 9] 2 e

0
1 (T T
—— -[ f t]yzdxdt+j J qy(m.Vy)dxdi
2 Jo Ja 0 JO

JTJ (m.V)(y']pza'l"dt—l jT j (m.v)|Vy|dl dt
T'g - r

0 2 0

—

=

2
T 1 T
+j f @yjovy(m.Vy)dl' dt = - J J‘ (m.v)(y")*dTl dt
1] r 2 0 Ig

+JT j (aylav)(m.Vy)dth—le j (m.v)|Vy|*dl dt.
0 JIg 2 To

0
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(We have used the notation j f(x, Hdx |§= j fx, T) dx—f f(x,0dx) As in
Q Q )

Section 2, we deduce easily that the right hand side is majorized by

C JT J (m.v)(¥") dxdt
T'o

(t]

for some positive constant C > 0 depending only on R [¢f. (2.13)].
On the other hand, multiplying the equation (3.1) by y(x, ) we obtain

T T T 5
(3.12) J —[ o = |Vy)? dxdt=J J q* dxdt+j » dx|§—j J — ydldt.
0o Ja o Ja Q o Jrp OV

Since for every & > 0 there exists C, (8) > 0 such that

d
J —yya’l"’§5E(}', t)+C1(5)f (m.v)|y'|*dT,
I'p aV T

0

from (3.11), (3.12) we deduce that

Q

4 , n—1 i =2, [T )
(3.13) (1-8)| EQ; ddt+| y'|(m.Vy+ SR dx|0+T qy” dx di
0 2 2 Jo Ja

T

+JT j qr(m. Vy)dxdt < (C-I-Cl(S))J‘

("]

f (m.v)(y")* dT dt.

Using (3.6) we have clearly

(3.14) SREW T)+E(; 0))

T
f ¥ (m.Vy)ydx[g
0]

T
=2RE (y; T)+Rf

0

J (m.v)(Y) dl dt,
To

On the other hand, taking (3.2) into account we have for some s < 1 the estimate

n—1 [T | w, =2 [T 5 it
5 Y ydx|§+ 5 gy*dxdt+ gy (m.Vy)dxdt
= ¢} 0 0 0 Q

T
= Sj E(Q; ) di-+C, (5)||J"||12.'~“(0,T.H5(n))
0

(3.15)

with C, (8) > 0 large enough.
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Combining (3.13)-(3.15) we conclude that

(1-28) T-2R)E(y; T) < (1-8) jTEU’; 1) dt—2RE (y; T)
o

T
=GC5(0) (j J. (m.v) U")z dxdt+ ” ¥y HE““ (0, T-H5 (m))
To

0

and then, for every T > 2R there exists a positive constant C > 0 such that
T

(3.16) BE(y; T) < C(J j (m. V(' VdUdi+||y|E, o e {n)))
¢ Ty

Now we remark that

T
(3.17) |7 |lE= o, 7.1y = C(J‘ f (m.v) (V')zdrdt+|]-"||rzi“(nx(n,Tn)
To

0

for some constant C large enough.

Indeed, if (3.17) is not satisfied, then there exists a sequence (y,) of solutions of finite
energy of (3.1), (1.2), (1.3) such that

|7l o, s an =1 V=1,

T
J J (m. vy dU dr+|| ye|li-1 @xw, o — 0ask — o0,
To

0

From (3.16) we deduce that
(3.18) (y,) is bounded in L= (0, T; V)W = (0, T; L*(Q))
and then (¢f. Simon [30])
(3.19) () is relatively compact in L= (0, T; H5(Q)).

Thus, for a subsequence [that we still denote by (y;)] we have

¥, — y strongly in L™ (0, T; H%(Q))

and
(3-20) 17 lle= 0. r15 an=1-

But on the other hand we have

7%—0 in H ' (Qx(0, T)).

Hnece y = 0 which contradicts (3.20).
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From (3.16) and (3.17) we deduce that
T
(3.21) E(»T) < C(J f (m. V)V dU di+ ||y |z- (:mm.T)))*
0 I'p
Therefore it is sufficient to establish the existence of a positive constant C such that
T
(3.22) 7 lli-t @<y S C f f (m.v) () dT dt.
4] o
We argue by contradiction. If (3.22) is not satisfied, then there exists a sequence of

solutions y, of (3.1), (1.2), (1.3) of finite energy such that

“vvk”H_l(nx(U,T)):l, Yk
and

(3.23) ;
f J (m.V()dldi—0 as k— .
] T'p

The estimate (3.21) implies (3.18) and then
(3.24) () is relatively compact in H™! (Q % (0, T)).
Choosing a subsequence if needed, we may assume that

Yp—y weakly* in L®(0, T; V)
(3.25) and
Ye—y weakly* in L*®(0, T; L?*(Q)).

From (3.23), (3.24) we conclude that

(3.26) 17 lla-1 @xco, =1
and
(3.27) dyfov=—(m.v)y'=0 on Tyx(0, T).

On the other hand y=y(x, t) is a weak solution of (3.1), (1.2) and (1.3).

Applying a unique continuation theorem of Kenig-Ruiz-Sogge [12], we are going to
show that (3.26) and (3.27) are in contradiction. We shall prove in fact that y = 0. In
view of (1.3) it is sufficient to prove that 3" = 0.

Let us consider the function z:=)’. Then z belongs to L= (0, T; L2(Q)), and z is a
weak solution of (3.1) satisfying [by (3.27)] the boundary conditions

z=0 on I'x(0, T)
(3.28) and
z/ov=0 on T'yx (0, T).
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Therefore the Corollary 3.3 in Kenig-Ruiz-Sogge [12] applies provided
(3.29) ze W2 20+ () x (0, T)),

’

and gives z=0. In order to prove (3.29) we remark that w:=z'is a weak solution of
(3.1), (3.28) in the class H™'(Qx (0, T)). From (3.21) and taking the property w'=0
on I'y % (0, T) into account, we then deduce that w has finite energy i.e.

#el® (0, T; V)WY = (0, T; L2(Q)),

whence, taking into account that z satisfies (3.1), the property (3.29) follows. This
completes the proof of Theorem 2. e

Remark 3.3. — The use of compactness arguments and unique continuation results
make the proof of Theorem 2 rather technical. In V. Komornik [15] a general construc-
tive method was introduced which, based on an estimation method of A. Haraux [10],
permits to avoid the indirect arguments of this type. e

Remark 3.4. — Theorem 2 and its proof remains valid if we assume, instead of the
nonnegativity of g that

(3.30) 3o >0  such that (]—CL)J‘ |Vzt|2dx+j glul|*dx =0, YueV. e
o Q

Remark 3.5. — It is well-known that stabilizability implies exact controlability,
¢f. D.L. Russell [29]. From the above stabilizatbility results the following exact controll-
ability results may be obtained.

Let ¢ (x) be a function satisfying the hypothesis of Theorem 2, and let T be such that
|S(Ty)|| <1. Then for every T > T, and for every % eV xL*(Q) there exists a
boundary control

veH (0, T; L2 (Ty)
such that the solution of the problem
y'=Ay+g(x)y=0 in Qx(0,T)
dyfov=v on I'y%x(0, T)
y=0 on I'; x(0, T)
pO=3°  y(0)=p' on Q

satisfies y(T)=y'(T)=0. The above estimates show that [|S(T)|| <1 if T >2R; this
implies the exact controllability provided T > 2R.

However, using directly the Hilbert Uniqueness Method due to J. L. Lions
(122, [23], [24]), one obtains the same exact controllability result without the hypothesis
(3.30). e
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3.2. OTHER RESULTS AND REMARKS. — In order to improve the estimate (1.17), we may
try to use more general feed-backs of the form

Fx, p)=—alsy (5 B

with a(x)eL*(Iy), a(x) 20 a.e. on T'y. It turns out however, that the method given
in Sections 2 and 3 no longer works unless

com(x).vix)Sa(x) Scsm(x).v(x) on T,

for some positive constants c,, ¢; > 0.

We may slightly improve the value of ® obtained in Section 2 by taking
a(x)=b(x)(m(x).v(x)) with a suitably chosen function beL=(Ty), b(x)=5b, > 0 a.e.
on I'y, but @ (b) may not be taken arbitrarily large. The reason of this, as it was pointed
out to us by J. Lagnese and J. L. Lions, is that the system (1.1)-(1.4) becomes (at least
formally) conservative as by — co.

The method of Section 2 allows us to obtain exponential decay rates for nonlinear
feed-backs F (x, y')= —(m(x).v(x)) £ (), too, where : R — R is a non-decreasing func-
tion such that ' (0)=0 and

c|s|Z| ()| Seqls VseR

L]

for some positive constants ¢4, ¢; > (.

It has been proved by Lagnese [19] that the special radial vector field m (x)=x—x,
may be replaced by a more general vector field of the form

hx)=(h, (x), ..., h,(x)eC?(cl(D)
where

h(x}.v(x)£0 on Iy, h(x).vix)=0 on T,

and

(@ h;+ ;1) (x) is positive definite on ¢/ (),

provided that the corresponding generalization of Grisvard’s inequality (¢f. Lemma 2.4)
holds. Since, for the time being it does not seem to be proved, these results are formal
unless ¢/ (T'y) N cl(T,)= .

In Lagnese [20] it was pointed out that the utilisation of feed-backs containing the
multiplicator m(x).v(x) permits to remove (at least formally) the classical hypothesis
c(T'g) N el(T'y) = also in the stabilization problem of some models of plates.

We note that this type of feed-backs allows us to remove (at least formally) the
hypothesis ¢/(T'p) N e/(I';)=@ in the stabilization of elastodynamic systems
(¢f. J. Lagnese [18]), too. However, the corresponding generalization of Lemma 2.4 does
not seem to be proved.
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In a recent work of C. Bardos-G. Lebeau-J. Rauch [1] other boundary partitions
Ty, T';) have been also used for the stabilizability of the wave equation. Their proofs
are based on microlocal analysis. Assuming that o/(I'y) Ncl(I',)=& and that T,
“controls geometrically” the domain , they prove the exponential decay rate of the
solutions of (1.1)-(1.4) by taking F (x, y")= —b(x)y" with beC®(I'y) and b(x) = b, >0
on I'y. The class of boundary regions I'y which “control geometrically” € is much
larger than the class considered in this paper [¢f. (1.9)]. Unfortunately, the additional
hypothesis ¢/ (T'y) N ¢/(T',) = & is needed again.

I. Lasiecka and R. Triggiani [21] proved the stabilizability of the wave equation with
Dirichlet boundary feed-back under a rather strict geometrical hypothesis on Q.

3.3. SEMILINEAR WAVE EQUATION. — The aim of this section is to extend Theorem 1 to
the semilinear wave equation

(3.31) ¥ —Ay+g(»)=0 in Qx(0, w).

L. (@) is a locally Lipschitz continuous function satisfying the

loc

Assume that geW
following conditions:

(3.32) g(®s=0, VselR,

(333) dc>0, |g@-g®|=CU+|xP |y H]x=»|, VYx yeR

for some 1 < p = nf(n—2),

(3.34) d3=0, g(s)s=(2+3)G(s), VselR, where G(s):=j g()dte.
0

We define the energy of the solution of the system (3.31), (1.2)-(1.4) by
1
(3.35) E(; = 5 j |y (x, D2+ |Vy(x, 0P +Gp(x, 0)dx.
= JQ

Then the estimate (1.17) remains valid:

THEOREM 3. — Assume that n £ 3. Then, to every constant C > 1 there exists another
constant © > 0 such that, for any initial data (y°, y*) of finite energy, the solution of the
system (3.31), (1.2)-(1.4), where Ty, Ty, F and ge W@ (R) are given by (1.8)-(1.12) and
(3.32)-(3.34), satisfies the inequality

E(3wH=Ce™E(;0 forali=0. e

Remark 3.6. — As in the case of Theorems 1 and 2, the same result holds without
any restriction on a if the geometrical condition o/ (Ty) M ¢/ (T';)= & is satisfied. e

Proof of Theorem 3. — It is easy to prove that under the hypothesis (3.32)-(3.33) there
exists a unique solution y=y(x, ¢) of the system (3.31), (1.2)-(1.4) in the class

(3.36) C([0, w); V)N C* ([0, oo); L2 ()
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for every pair of initial data (3, y)eVxL?(Q). Furthermore we have
(3.37) E(; ) <E(:0), Y120

Given any initial data (y°, ')eD(A), the solution y=y(x, r) has the additional
regularity property

0, ¥)eC([0, c0); D(A))

and then

(3.38) %(y; N=E(y; )= —f (m.v)(")2dl, VYit=0.
To

We have in particular, as in the proof of Theorem 1, the property
AyeC([0, w); L* ()

and then Grisvard’s inequality applies.

As we have observed in Section 2, D (A) is dense in Vx L2(Q). Furthermore, one
can easily show that

06 1) = 0% ¥h) in VxL2(Q)
implies
E(gu )—E(Q;¢#) in L2 (0, co).

Thus, it is sufficient to prove the estimate of the theorem for the solutions correspond-
ing to initial data in D (A).
We define for each € > 0

(3.39) E.(; )=E(; D+ep(y; 8

with

(3.40) p(y; 8) =I Y, ) 2m(x). Vy(x, )+0y(x, N]dx
o

where Be(n— 2, ») is such that

3y>0, 2r+y)GE)=0g(s)s, VselR.

This choice of 8 is possible because

2n+y
2 o 7
Qu+y)G(s) £ T g(s)s

and 2a+7y)/(2+8) <nfor 0 <y < én.
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As in Section 2, it is easy to show that (2.9) is satisfied. On the other hand, we have
3.41) p'( 0 =f 23" (m.Vy)+2y (m.Vy)+8y" y+00 ) dx, Ye=0.
0
We also have
(3.42) f y"ydx=j (Ay—g () ydx
Q 0
=—J (rn.v)y’ydl"—f[Vyildxujvg(y)ydx, V=0
Io a Q

and

¥ (m.Vy)dsc= J‘ m. V(') dx

o

(3.43) 2J

Q

=—nj|y’|2dx+j (m.v)|yPdr, V¥tz0.
Q Tp
Furthermore, using Grisvard’s inequality (¢f. Lemma 2.4) we obtain

(3.44) 2J y”(nz.Vy)dx=2J (Ay—g () (m.Vy)dx
o

Q

é()i“2)J IVylzdx—j (m.v)[2y'(m.Vy)+|Vy|2]dF—2j m.VG(y)dx
a Ti o
=(}1—2)J |Vy|"‘dx—j (m.v)[2y (m.Vy)+|Vy|Hldl
Q T'o
+2nj G(y)dx—Zj (m.v)G()dl
o r
g(n—?_)J |Vy|2dx—.[ (m.v)[2y'(m.Vy)+|Vy|2]d1"+2nJ‘ G()dx, Vt=0.
¢ o Q

Combining (3.38), (3.41)-(3.44) we deduce, as in Section 2, for sufficiently small positive
€ (which is independent of y) the inequality

g(y)ydx+2nJ‘

1]

E.(nn= s|:(n—2—9).[ [Vy[zdx-l-(e—n).[ (y’)zdx—J G(y)a’x:|.
o o

Q
Taking into account the choice of 8 this yields the inequality

El(y; ) £ —emin{2(0—n+2),2(n—08), v}E(; 5, V20
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combining with (2.9) this implies (2.10) and the proof may be completed as in
Section 2. e

Remark 3.7. — Theorem 3 applies in particular to the nonlinearities

g®)=|sP"'s with p>1 ifn<2 and l<p<ni(n—2) ifn=3 e

Remark 3.8. — The argument (¢f. D. L. Russell [29]) which proves exact controllability
from stabilizability is no longer valid for semilinear equations. Hence other methods
are required to obtain exact controllability results in the semilinear framework. For
these problems we refer to D. L. Russell [29] and E. Zuazua [34], e
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