
Journal of Machine Learning ISSN: 2790-2048(e), 2790-203X(p)

Cluster-based classification with neural ODEs via control
Antonio Álvarez-López * 1,3, Rafael Orive-Illera † 1,2, and Enrique Zuazua ‡ 1,3,4

1Departamento de Matemáticas, Universidad Autónoma de Madrid, Madrid, Spain.
2Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Madrid, Spain.
3Chair for Dynamics, Control, Machine Learning, and Numerics, Alexander von Humboldt-Professorship,
Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
4Chair of Computational Mathematics, Fundación Deusto, Bilbao, Basque Country, Spain.

Abstract. We address binary classification using neural ordinary differential equations from the perspective
of simultaneous control of N data points. We consider a single-neuron architecture with parameters fixed as
piecewise constant functions of time. In this setting, the model complexity can be quantified by the number of
control switches. Previous work has shown that classification can be achieved using a point-by-point strategy
that requires O(N) switches. We propose a new control method that classifies any arbitrary dataset by se-
quentially steering clusters of d points, thereby reducing the complexity to O(N/d) switches. The optimality
of this result, particularly in high dimensions, is supported by some numerical experiments. Our complexity
bound is sufficient but often conservative because same-class points tend to appear in larger clusters, simpli-
fying classification. This motivates studying the probability distribution of the number of switches required.
We introduce a simple control method that imposes a collinearity constraint on the parameters, and analyze
a worst-case scenario where both classes have the same size and all points are i.i.d. Our results highlight
the benefits of high-dimensional spaces, showing that classification using constant controls becomes more
probable as d increases.

Keywords:
Classification,
complexity,
neural ODEs,
separability,
controllability.

Article Info.:
Volume: 1
Number: 2
Pages: 1- xx
Date: June/2022
doi.org/10.4208/jml.xxx

Article History:
Received: xx/xx/2022
Accepted: xx/xx/2022

Communicated by:
xxx

1 Introduction

At the heart of machine learning lies supervised learning [1], a framework that has been
successfully applied in a vast number of domains [2, 3]. The main objective is to learn an
unknown mapping F : X → Y . To achieve this, a model F̂ : X → Y to approximate F
is constructed by minimizing a loss function, using only the available—possibly noisy—
values of F over a finite dataset D ⊂ X × Y . Our focus is on evaluating the minimal
complexity required for F̂ to fit the points in D without error.

In the context of data classification, the range of F is finite, and its elements are referred
to as labels. Over the years, a wide variety of models have been developed, with notable
examples including linear discriminants [4], support vector machines [5], random forests
[6], and neural networks [7]. In [8], a methodology from a control perspective is proposed,

*Corresponding author. antonio.alvarezl@uam.es.
†rafael.orive@icmat.es.
‡enrique.zuazua@fau.de.

https://www.global-sci.com/jml Global Science Press

J. Mach. Learn., 1(2):1-xx 2

based on modeling deep residual networks (ResNets, [9]) as continuous-time dynamical
systems known as neural ordinary differential equations (neural ODEs).

Neural ODEs have seen the development of several variants [10–12], yet the standard
form remains as {

ẋ(t) = W(t)σ(A(t) x(t) + b(t)), t ∈ (0, T),
x(0) = x0, (1.1)

where:

• x0 ∈ Rd is an input point;

• (W, A, b) ∈ L∞((0, T), Rd×p ×Rp×d ×Rp) are parameters to be trained;

• d, p ≥ 1 are the state dimension and the width of the model, respectively;

• σ : Rp → Rp is a prefixed nonlinear Lipschitz function applied component-wise.

Existence and uniqueness of the solution to (1.1) is guaranteed by the Cauchy–Lipschitz
theorem, ensuring the well-definedness of the flow map

Φt(·; W, A, b) : x0 ∈ Rd 7−→ x(t) ∈ Rd, for t ∈ [0, T]. (1.2)

The formulation of (1.1) naturally frames supervised learning as a control problem. Here,
the input space is X = Rd, and the parameters (W, A, b) serve as controls that simultane-
ously guide all input points toward their respective target positions in Rd. To match the
output space, a mapping g : Rd → Y is introduced as a final layer. The complete model
is thus defined by the composition F̂ = g ◦ΦT.

We focus on binary classification with a hard classifier, whereby Y = {1, 0} and g is
the characteristic function of a fixed set. Nonetheless, our results can be extended to any
multiclass setting by fixing g as a weighted sum of predefined characteristic functions,
each corresponding to a distinct label.

Neural ODEs were originally conceived as a tool for understanding deep ResNets, but
they have since made a significant impact on machine learning. Their continuous-time
framework facilitates mathematical analysis and provides practical benefits like incorpo-
rating structure or the design of new discrete schemes. For more details, we refer to [8].

Notation

• Scalars are denoted by plain letters, vectors by boldface letters, and matrices by up-
percase letters. The scalar product of two vectors u, v is written as u · v.

• Subscripts identify elements of a set. Superscripts identify components of a vector.

• {e1, . . . , ed} denotes the canonical basis in Rd.

• Sd−1 denotes the (d− 1)−dimensional sphere in Rd.

• The cardinality of a set X is denoted by |X |.

• For x ∈ R, we write dxe := min {n ∈ Z : n ≥ x}, bxc := max {n ∈ Z : n ≤ x} .

J. Mach. Learn., 1(2):1-xx 3

2 Problem formulation and main results

Let D := {(xn, yn)} ⊂ Rd × {1, 0} be a finite dataset such that xi 6= xj for all i 6= j. We
define the classesR (red circles) and B (blue crosses) by

R = {xn ∈ Rd : (xn, 1) ∈ D}, B = {xn ∈ Rd : (xn, 0) ∈ D}. (2.1)

We adopt the simplified version of neural ODEs with one-neuron width. Namely, we set
p = 1 in (1.1), which yields

ẋ(t) = w(t)σ(a(t) · x(t) + b(t)), for t ∈ (0, T). (2.2)

Here, σ(·) = (·)+ is the rectified linear unit (ReLU), while θ = (w, a, b) belongs to

ΘT := L∞
(
(0, T) ; Sd−1 ×Rd ×R

)
.

and is assumed to be piecewise constant. Imposing this constraint reduces optimization
to a finite-dimensional space [12], while also inducing a layered structure akin to that of a
discrete ResNet [13, 14]. For any control θ ∈ ΘT, we define the complexity of (2.2) as the
number of finite-jump discontinuities (or switches) of θ over (0, T), denoted by L.

Classification can essentially be interpreted as transforming data into representations
in which different classes are separable. In the neural ODE framework, given a dataset
(R,B), the goal is to find a control θ ∈ ΘT for (2.2) that induces a finite-time flow map ΦT
satisfying

ΦT(R; θ) ⊂ τR and ΦT(B; θ) ⊂ τB ,

where (τR, τB) is a pair of linearly separable regions of Rd. For simplicity, we fix (τR, τB)
to be half-spaces of the form(
{x(i) > 1}, {x(i) ≤ 1}

)
or

(
{x(i) ≤ 1}, {x(i) > 1}

)
for i ∈ {1, . . . , d}, (2.3)

and the hyperplane {x(i) = 1} as decision boundary. We make use of the dynamics of
(2.2) in a constructive manner, by carefully defining each value of the piecewise constant
control θ ∈ ΘT. On the layer t ∈ (tk−1, tk) ⊂ (0, T), the parameters a(t) ≡ a ∈ Rd and
b(t) ≡ b ∈ R determine the hyperplane H : a · x + b = 0 and the two half-spaces

H+ :=
{

x ∈ Rd : a · x + b > 0
}

, H− := Rd \ H+.

The half-space H− remains fixed because σ(a · x + b) = 0 for all x ∈ H−. in contrast, each
point x ∈ H+ evolves according to the vector field w(a · x + b). The direction of this field
is constant and determined by w ∈ Sd−1, while its magnitude at each x ∈ H+ is equal to
the distance from x to the hyperplane H.

This overview of the dynamics suggests that classifying data points using (2.2) is in-
trinsically related to identifying a set of hyperplanes that separate them by labels. All in
all, there is a clear relationship between the complexity of the controls in (2.2) and the
geometric structure of the data distribution. The following questions naturally arise:

J. Mach. Learn., 1(2):1-xx 4

Question 1. What is the minimum number of discontinuities required to ensure that any
dataset with a fixed number of points can be classified?

Question 2. What is the probability that a given dataset can be classified using exactly
L = k discontinuities, for any k ≥ 0?

Regarding Question 1, it was established in [13] that L = 3 min {|R|, |B|} switches are
sufficient to classify (R,B) with (2.2). The proof involves sequentially steering each point
in R ∪ B individually to its corresponding target τR or τB . Our first main result refines
this bound by relying on the concept of general position, a classical notion in combinatorial
geometry [15–18]. We consider the following definition, illustrated in Figure 2.1:

Definition 2.1. A set X ⊂ Rd is in general position if, for every 0 ≤ k ≤ d − 1, no affine
subspace in Rd of dimension k contains more than k + 1 points of X .

Assuming this mild condition—easily achieved by slight perturbations of the dataset—
we construct a family of pairwise parallel hyperplanes that enclose all points of one class
by subsets of size d. We can then define a simultaneous control method that classifies the
points within these subsets rather than individually, thereby reducing the bound for L:

Theorem 2.1. Let d ≥ 2. For any dataset (R,B) defined as in (2.1) in general position and any
pair of target sets (τR, τB) defined as in (2.3), there exist T > 0 and a piecewise constant control
θ ∈ ΘT whose number of discontinuities is

L = 4
⌈

min {|R|, |B|}
d

⌉
− 1,

such that the flow map of the neural ODE (2.2) satisfies ΦT(R; θ) ⊂ τR and ΦT(B; θ) ⊂ τB .

Theorem 2.1 holds almost surely as long as the points are sampled from a non-singular
measure. However, numerous data points sharing the same label may initially be clus-
tered together, enabling their control with fewer parameters. This observation motivates
the introduction of a probabilistic framework to address Question 2.

We consider the worst-case scenario where all points are i.i.d., and the sizes are fixed
at |R| = |B| = N. To simplify the analysis, we introduce a new control method that
restricts a(t) to be a constant, although optimally chosen. This constraint will allow us to
determine the exact probability distribution of L for this method.

Theorem 2.2. Let d ≥ 2 and N ≥ 1. Consider any dataset (R,B) defined as in (2.1), with
|R| = |B| = N. Assume every point x ∈ R ∪ B is independently sampled from an absolutely
continuous probability measure on [0, 1]d. Then, with probability 1, there exist T > 0, a pair of
target sets (τR, τB) defined as in (2.3), and θ = (w, a, b) ∈ ΘT with

a(t) ∈ {e1, . . . , ed} constant for all t ∈ (0, T),

such that the flow map of the neural ODE (2.2) satisfies ΦT(R; θ) ⊂ τR and ΦT(B; θ) ⊂ τB .
Furthermore, θ is piecewise constant with L discontinuities following, for 0 ≤ k ≤ 2N − 2,

P(L ≥ k) =

 N

∑
p=d k

2+1e

(
N − 1
p− 1

)2
+

N−1

∑
p=d k+1

2 e

(
N − 1

p

)(
N − 1
p− 1

)d

2d
(

2N
N

)−d
. (2.4)

J. Mach. Learn., 1(2):1-xx 5

Figure 2.1: X ⊂ R2 is in general position if no three points
of X lie on the same line. X ⊂ R3 is in general position if,
additionally, no four points lie on the same plane.

Figure 2.2: Configuration where the maximum
number of 2N − 1 hyperplanes is required to
separate the points.

Remark 2.1. Stirling’s approximation simplifies (2.4) for large values of d and N. If we set
k = 1, the formula reduces to

P(L ≥ 1) =

(
1− 2

(
2N
N

)−1
)d

∼ exp

{
−
√

πN
22N−1 d

}
.

Assuming both d and N grow according to some relation d = d(N), we can deduce that

if lim
N→∞

22N

d(N)
√

N
= 0 then lim

N→∞
P(L = 0) = 1.

This observation reveals an explicit trade-off between d and N that allows classifying all
points employing a constant control, or equivalently, with an autonomous neural ODE.

The control method of Theorem 2.2 is designed so that distribution (2.4) is derived from
the number of hyperplanes required to separate the points by labels. The maximum value
L = 2N− 2, corresponding to 2N− 1 hyperplanes, also improves upon the bound of [13].

In the following theorem, we take a geometric perspective on the problem to show
that the maximum number of hyperplanes required to separate the two classes is indeed
2N − 1. Moreover, we characterize the pathological point configurations that attain this
maximum, as illustrated in Figure 2.2.

Theorem 2.3. Let d, N ≥ 1. For any dataset (R,B) defined as in (2.1) with |R| = |B| = N,
the maximum number of hyperplanes in Rd required to separate the points by labels is 2N − 1.
Furthermore, this maximum is attained if and only if the points of R and B are collinear and
alternating, i.e., there exist u, u0 ∈ Rd and −∞ < λ1 < · · · < λ2N < +∞ such that

u0 + λ2k−1u ∈ R and u0 + λ2ku ∈ B for all k ∈ {1, . . . , N}.

We note that deriving the maximum is relatively straightforward; the main challenge
lies in showing that it is attained only when all points are collinear and alternating.

Roadmap

In Section 3, we develop the mathematical framework, which mainly relies on hyperplane
separability. We begin by proving Theorem 2.3 and then present combinatorial results—
first for d = 1 and later in higher dimensions—that culminate in Theorem 2.2. In Section 4,

J. Mach. Learn., 1(2):1-xx 6

assuming all points are in general position (see Definition 2.1), we construct a family of
pairwise parallel hyperplanes that separate the dataset, with each pair enclosing exactly d
points of the same class. Next, we prove Theorem 2.1 by defining a classification method
that sequentially controls these subsets of size d, and analyze alternative activation func-
tions that further reduce the value of L. Although most results are static and not specific
to neural ODEs, Theorems 2.1 and 2.2 incorporate dynamic algorithms, distinguishing
them from standard linear classifiers. In Section 5, we perform a computational test using
gradient-based training to estimate the minimal complexity required for neural ODEs to
classify datasets of fixed size. We then compare these results to the complexity obtained
in Theorem 2.1. We conclude with a summary of our main contributions, a discussion on
connections and extensions, and open questions for future work.

Related work

The theoretical study of neural ODEs from a control theory perspective has gained signif-
icant attention in recent years, opening several and promising research directions.

One line of research explores the approximation power of neural ODE flows, using
either geometric techniques based on Lie brackets [19–21] or constructive methods for
simultaneous control [13, 22]. In [23], the authors conducted a detailed study of controlla-
bility and its connection with density in Lp spaces for p < +∞. Universal approximation
in L∞ was established for a specific class of diffeomorphisms in [24]. We also highlight the
work of [25], which demonstrates density in L1(Rd) for the family of ResNets with one
neuron per hidden layer, corresponding to the forward Euler discretization of (2.2).

Another approach studies the training process as an optimal control problem. In [26],
population risk minimization in deep learning is formulated as a mean-field optimal con-
trol problem, and Hamilton–Jacobi–Bellman and Pontryagin optimality conditions are de-
rived. [27] proposes a modification of the successive approximations method by augment-
ing the Hamiltonian to solve Pontryagin’s maximum principle, resulting in an alternative
training algorithm with rigorous error estimates. [28] employs a continuity equation to
study the mean-field dynamics, examining the existence and uniqueness of minimizers
in the optimal control problem with L2-regularization and establishing a mean-field maxi-
mum principle. In [29], the result is improved by introducing a kinetic regularization term
in the loss function, and proving the existence of minimizers. [30] considers the classical
empirical risk minimization, deriving a manifestation of the turnpike property through
specific regularization terms. Additionally, [31] reduces the complexity for data classifica-
tion by introducing an L1-norm penalty, which promotes temporal sparsity in the control.

We follow a third direction that consists of estimating the complexity required to con-
trol N points. To the best of our knowledge, the only study addressing this problem in the
one-neuron width model (2.2) is [13], where the bound of O(N) switches is established.
We build upon their results by reducing to O(N/d) switches, and deriving a probabilistic
result. In [14], the result of [13] is generalized to any finite width p, resulting in a complex-
ity of O(N/p). The problem is also explored in [32], which examines a neural ODE with
a second-order time derivative to further enrich the dynamics, maintaining a complexity
of O(N). Furthermore, [33] investigates the controllability of probability measures for the

J. Mach. Learn., 1(2):1-xx 7

continuity equation that extends (2.2) and considering errors in total variation.

3 Classification via canonical separability

Suppose that all points of the dataset (2.1) are independently sampled from a particular
absolutely continuous probability measure on [0, 1]d, with |R| = |B| = N fixed, and that
they satisfy the following condition:

x(j)
n 6= x(j)

m , for all j ∈ {1, . . . , d} and n 6= m. (3.1)

Note that (3.1) is fulfilled with probability 1. We now introduce our concept of separability:

Definition 3.1. A finite family H of affine (d − 1)-dimensional hyperplanes in Rd separates
(R,B) if they break the cube [0, 1]d into polyhedra, each of them containing points of at most one
of the two sets. We say that suchH is a collection of separating hyperplanes for (R,B).

Note that some polyhedra might not contain any point from the two sets. Now, for any
pair (R,B) as in (2.1), and any collection of hyperplanesH in Rd, let us consider

Zd,N(R,B) := min {|H| : H separates (R,B)} . (3.2)

As defined, Zd,N is a random variable that maps each pair (R,B) to the minimum cardi-
nality of any collection of separating hyperplanes for (R,B).

Theorem 2.2 is based on separating (R,B) using hyperplanes that are orthogonal to
an optimally chosen canonical vector. We refer to this approach as canonical k-separability,
drawing on the concept of k-separability introduced in [34]. A finite set {xn} ⊂ Rd with
binary labels is k-separable if there exists w ∈ Sd−1 such that the projections w · xn can be
divided into k disjoint intervals, each containing only projections with the same label.

Canonical k-separability is a similar concept, but it constrains w to the canonical basis.
We will determine the exact probability that (R,B) is k-separable under this constraint,
which requires adapting the definition of Zd,N in (3.2).

For each i = 1, . . . , d, the usual projection πi : Rd → R is defined by πi(x) = x(i) for all
x ∈ Rd. Let Πi be the pointwise extension of πi, given by

Πi(X) =
{

πi(x1), . . . , πi(xN)
}
=
{

x(i)1 , . . . , x(i)N

}
for all X = {xn}N

n=1 ⊂ Rd satisfying condition (3.1), which ensures |Πi(X)| = N.
We introduce the random variable Zi

d,N such that

Zi
d,N(R,B) = Z1,N

(
Πi(R), Πi(B)

)
(3.3)

for any pair (R,B) defined as in (2.1). The value Zi
d,N(R,B) represents the minimum

number of points required to separate the projections of both sets on the i-th Cartesian

J. Mach. Learn., 1(2):1-xx 8

Figure 3.1: Z1
d,N = 3 and Z2

d,N = 4 computed by projecting the data on the respective axes x(1) and x(2).

axis. Those points determine a family of parallel hyperplanes in Rd given by the equations
x(i) = Hj with j = 1, . . . , Zi

d,N(R,B), that separate (R,B) in Rd, see Figure 3.1.
Given d, N ≥ 1, we define

Z⊥d,N := min
{

Z1
d,N , . . . , Zd

d,N

}
. (3.4)

The variable Z⊥d,N represents the minimum cardinality of any family of separating hyper-
planes, all of which are perpendicular to some Cartesian axis. For the example shown in
Figure 3.1, we would compute Z⊥d,N(R,B) = 3.

Now, we prove Theorem 2.3 to determine and characterize the maximum value of Zd,N :

Proof of Theorem 2.3. By relabeling the points, with no loss of generality we can assume

R = {xn}1≤n≤N and B = {xN+n}1≤n≤N .

First, we prove
max
(R,B)

Zd,N(R,B) = 2N − 1. (3.5)

Case d = 1. When the points of the pair (R,B) are alternating, i.e.,

x1 < xN+1 < x2 < · · · < xN < x2N or xN+1 < x1 < xN+2 < · · · < x2N < xN , (3.6)

we have Z1,N(R,B) = 2N− 1. Conversely, if the points ofR∪B are not alternating, then
the number of line segments connecting consecutive points with different labels is less
than 2N − 1 and prove (3.5) with d = 1.

Case d > 1. Since Zd,N ≤ Z⊥d,N as defined in (3.4), we deduce that max Zd,N ≤ 2N − 1
using (3.5) for d = 1. To show that max Zd,N ≥ 2N− 1, assume the 2N points ofR∪B are
collinear and alternating. To separate (R,B), each of the 2N− 1 line segments connecting
two consecutive points of different labels must then be intersected by a hyperplane. Since
any hyperplane that does not contain the entire line can intersect it in at most one point,
we need at least 2N − 1 hyperplanes to separate (R,B), as illustrated in Figure 2.2.
Necessity of being collinear and alternating (only if). If the points ofR∪B are collinear
but not alternating, then the number of line segments connecting consecutive points with

J. Mach. Learn., 1(2):1-xx 9

Figure 3.2: Figures supporting the argument presented in the proof of Theorem 2.3.

Figure 3.3: Figures supporting the argument presented in the proof of Theorem 2.3.

different labels is less than 2N − 1. Consequently, fewer than 2N − 1 hyperplanes suffice
to separate them, that is, Zd,N < 2N − 1.

To show that collinearity is also a necessary condition to attain the maximum, we pro-
ceed by induction on N. For N = 1 the claim is trivial. For N = 2, if the four points are
not collinear, their convex hull is at most a triangle, quadrilateral, or tetrahedron, which
implies Zd,N ≤ 2.

Let N > 2 and suppose that R ∪ B is not contained in any line, yet Zd,N(R,B) =

2N − 1. Since the dataset is finite, we can choose a line r ⊂ Rd with direction v ∈ Sd−1

such that the orthogonal projection of R∪B onto r is injective. The number of points of r
required to separate the projected sets is then 2N − 1. Indeed, it is at most 2N − 1 (as per
(3.5) for d = 1), and on the other hand, these points correspond to a family of hyperplanes
orthogonal to r that separate (R,B), so it must be at least Zd,N(R,B) = 2N − 1. All in
all, we can choose hyperplanes H1, . . . , H2N−1 orthogonal to r that separate (R,B), and
moreover, the projected points {v · xi}2N

i=1 ⊂ R must be alternating as in (3.6). Without loss
of generality, we may assume

v · x1 < h1 < v · xN+1 < · · · < v · xN < h2N−1 < v · x2N ,

where hi = v · hi and hi = Hi ∩ r ⊂ Rd, as illustrated in Figure 3.2 (left). We then define
R′ = R \ {x1} and B′ = B \ {xN+1}, each containing N − 1 points.

Now, we show that Zd,N−1(R′,B′) = 2N − 3. Suppose that k hyperplanes G1, . . . , Gk
in Rd suffice to separate (R′,B′) for some 1 ≤ k ≤ 2N − 4. Then the pair (R,B) can be
separated using k + 2 hyperplanes H1, H2, G1, . . . , Gk, as illustrated in Figure 3.2 (right).
Since k + 2 ≤ 2N − 2 < 2N − 1, this contradicts the fact that Zd,N(R,B) = 2N − 1.

J. Mach. Learn., 1(2):1-xx 10

The remainder of the proof consists of verifying that (R,B) can be separated by at most
2N− 2 hyperplanes, which would lead to a contradiction. Since Zd,N−1(R′,B′) = 2N− 3,
the inductive hypothesis on N − 1 ensures that R′ ∪ B′ must be collinear along some line
r′ ⊂ Rd. By assumption, the points inR∪B are not collinear, which implies that x1 6∈ r′ or
xN+1 6∈ r′. Let G1, . . . , G2N−3 be hyperplanes that separate (R′,B′) and each intersecting
r′ transversely, that is, we can set gj = Gj ∩ r′ ∈ Rd. We distinguish two cases:

1. If x1, xN+1 and g1 are not collinear, we can consider any hyperplane G′1 that inter-
sects the open segment [x1, xN+1] = {tx1 + (1 − t)xN+1 | 0 < t < 1} transversely, and
which also intersects the line r′ transversely at g1. If x1 is on the same side of G′1 as x2,
the family {G′1, G2, . . . , G2N−3} separates (R,B)—as illustrated in Figure 3.3 (left)—and
Zd,N(R,B) = 2N − 3 (contradiction). Otherwise, we also consider any hyperplane G0
that intersects transversely with the open segment [x2, xN+1] and with the open segment
[x1, xN+2]. Then, {G0, G′1, G2, . . . , G2N−3} separates (R,B), as represented in Figure 3.3
(right), and Zd,N(R,B) = 2N − 2 (contradiction).
2. If x1, xN+1 and g1 are collinear, we can slightly translate G1 and perturb its intersection
point with r′ from g1 to another point g′1 of the open segment [x2, xN+2]. Thus, we can
ensure that x1 and xN+1 and g′1 are not collinear and apply case 1.

To obtain the probability distribution of Z⊥d,N , we first solve the case d = 1 employing
combinatorial techniques:

Lemma 3.1. For N ≥ 1, let Z1,N be as defined in (3.2). For any 1 ≤ k ≤ 2N − 1, we have

P(Z1,N = k) =

2
(

N − 1
p− 1

)2(2N
N

)−1
if k = 2p− 1,

2
(

N − 1
p

)(
N − 1
p− 1

)(
2N
N

)−1
if k = 2p.

(3.7)

Proof. Since all points inR∪B are i.i.d., each possible ordering is equally likely. Therefore,
to determine P(Z1,N = k), we count the fraction of orderings that have exactly k gaps
between consecutive subsets of points with different labels. We compute the number of
such favorable configurations by dividing them into two cases based on the parity of k:

Case 1: k = 2p − 1, for 1 ≤ p ≤ N. Any ordering of the points in R ∪ B that leads
to Z1,N(R,B) = 2p − 1 can be represented as the union of two partitions of R and B,
respectively constituted of subsets Ri ⊂ R and Bi ⊂ B, for i ∈ 1, . . . , p, with lengths
|Ri| = ri and |Bi| = bi, that satisfy

p

∑
i=1

ri =
p

∑
i=1

bi = N. (3.8)

There are (N−1
p−1) possible partitions {R1, . . . , Rp} of R, determined by the choice of p− 1

gaps between consecutive elements ofR, among the total N− 1 possibilities. Analogously,

J. Mach. Learn., 1(2):1-xx 11

Figure 3.4: Examples for case 1 in the proof of Lemma 3.1.

Figure 3.5: Examples for case 2 in the proof of Lemma 3.1.

there are (N−1
p−1) possible partitions {B1, . . . , Bp} of B, to insert in the p gaps and therefore

obtain Z1,N(R,B) = k. So there are (N−1
p−1)

2
possible configurations. On the other hand, we

can repeat the argument but now considering the (N−1
p−1) possible partitions of B and then

inserting Ri into the p gaps. Both situations are symmetric; the only difference between
them lies in whether the smallest point of R ∪ B (and thus the first subset of the two
partitions) belongs to R or B, as shown in Figure 3.4. Consequently, the total number of

configurations for (R,B) that yield Z1,N(R,B) = 2p− 1 is 2(N−1
p−1)

2
.

Case 2: k = 2p, for 1 ≤ p ≤ N − 1. To obtain Z1,N(R,B) = 2p, we need an even number
of gaps between subsets of the same color, so now we must consider the partitions of R
and B that are respectively constituted of subsets Ri, Rp+1 ⊂ R and Bi ⊂ B for i ∈ 1, . . . , p
(or the reverse situation) with lengths |Ri| = ri and |Bi| = bi, that satisfy

p+1

∑
i=1

ri =
p

∑
i=1

bi = N. (3.9)

Like in case 1, there exist (N−1
p) possible partitions {R1, . . . , Rp+1} ofR and (N−1

p−1) possible

partitions {B1, . . . , Bp} of B. So there are (N−1
p)(N−1

p−1) possibilities, each one depending on

a choice of (r1, . . . , rp+1) ∈ Np+1 and (b1, . . . , bp) ∈ Np satisfying (3.9). We take also into
account the symmetric situation, when the partitions of R and B are respectively of the
form {R1, . . . , Rp} and {B1, . . . , Bp+1}, shown in Figure 3.5. Therefore, it follows that the
number of configurations for (R,B) that yield Z1,N(R,B) = 2p is 2(N−1

p)(N−1
p−1).

Finally, the total number of possibilities is exactly the number of ways to choose N
points out of 2N, which is given by the central binomial coefficient (2N

N). Indeed,

2
N

∑
p=1

(
N − 1
p− 1

)2
+ 2

N−1

∑
p=1

(
N − 1

p

)(
N − 1
p− 1

)
=

(
2N
N

)
.

J. Mach. Learn., 1(2):1-xx 12

Figure 3.6: Schematic overview of the full control method used to prove Theorem 2.2. Parallel hyperplanes Hi
separate the two classes into point clusters, which then move vertically in zigzag until all points are classified.

Remark 3.1. The probability mass function in (3.7) can be expressed in terms of the hy-
pergeometric distribution, whose mass function is defined by

H(k; M, K, n) =
(K

k)(
M−K
n−k)

(M
n)

,

for all 0 ≤ M, 0 ≤ K, n ≤ M, and max{0,−M + K + n} ≤ k ≤ min{K, n}. Thus, for each
1 ≤ k ≤ 2N − 1 we deduce

P(Z1,N = k) =

N(2N − 1)−1H(p− 1; 2N − 2, N − 1, N − 1), if k = 2p− 1,

(N − 1)(2N − 1)−1H(p; 2N − 2, N − 1, N), if k = 2p.

As a consequence of Lemma 3.1, we get the distribution of Z⊥d,N for any d ≥ 1:

Corollary 3.1. Let Z⊥d,N be as defined in (3.4), for some d, N ≥ 1. For 1 ≤ k ≤ 2N − 1, we have

P(Z⊥d,N ≥ k) =

 N

∑
p=d k+1

2 e

(
N − 1
p− 1

)2
+

N−1

∑
p=d k

2 e

(
N − 1

p

)(
N − 1
p− 1

)d

2d
(

2N
N

)−d
. (3.10)

Proof. Let k ∈ {1, . . . , 2N− 1}. By definition of Z⊥d,N , and the fact that Zi
d,N are independent

and identically distributed to Z1,N for all i, we can compute

P
(

Z⊥d,N ≥ k
)
= P

(
min

i=1,...,d
Zi

d,N ≥ k
)
= (P (Z1,N ≥ k))d .

We conclude the proof by applying Lemma 3.1 to deduce

P (Z1,N ≥ k) =

 N

∑
p=d k+1

2 e

(
N − 1
p− 1

)2
+

N−1

∑
p=d k

2 e

(
N − 1

p

)(
N − 1
p− 1

) 2
(

2N
N

)−1
.

J. Mach. Learn., 1(2):1-xx 13

The results derived in this section are now used to prove Theorem 2.2. For clarity, the
whole control method is represented in Figure 3.6 and formalized in Algorithm 1.

Proof of Theorem 2.2. By definition of (3.4), there exists a family of hyperplanes H1, . . . , Hz,
with z = Z⊥d,N(R,B), that are orthogonal to ei for some i ∈ {1, . . . , d} and separate (R,B).
Moreover, Z⊥d,N(R,B) follows the distribution given by (3.10).

Without loss of generality we can assume i = 1, so the family of hyperplanes is{
Hj : x(1) = hj

}z

j=1
for some 0 < h1 < · · · < hz < 1.

For any fixed k ∈ {2, . . . , d}, we define τR = {x(k) > 1} and τB = {x(k) ≤ 1}. We then
classify the points by clusters based on their x(1)-coordinates in ascending order. We can
assume that {x ∈ R ∪ B : x(1) < h1} ⊂ B. If this is not the case, we swap the definitions
of τR and τB , and also the roles ofR and B in this proof.

Taking t0 = 0, we build the controls

(w, a, b)(t) =
z

∑
j=1

(wj, aj, bj)1[tj−1,tj)
(t),

with wj = (−1)j+1ek, aj = e1, bj = −hj. (3.11)

Each time horizon tj ≥ tj−1 is chosen so that every point x ∈ R∪ B with hj < x(1) < hj+1
is mapped via (wj, aj, bj) to its corresponding target region τR or τB . This is possible
because the dataset is finite. Moreover, these movements do not affect points that have
already been classified, since those satisfy x(1) < hj.

The described method classifies all points according to their labels, and the number of
switches is L = z− 1. Consequently, L inherits the probability distribution of Z⊥d,N .

Remark 3.2. Theorem 2.2 admits an interpretation in terms of the total variation semi-
norm, defined by

|θ|TV(0,T) = sup
P

|P|

∑
i=1
‖θ(ti)− θ(ti−1)‖,

where the supremum is taken over all finite partitions P = {0 = t0 < t1 < · · · < t|P| = T}.
In particular, for piecewise constant functions we have that | · |TV(0,T) equals the sum of
the magnitudes of its jump discontinuities. Thus, the control θ given by (3.11) will satisfy

|θ|TV(0,T) ≤ L · max
1≤j≤L

√
‖wj+1 −wj‖2 + |bj+1 − bj|2 ≤

√
5L.

From here, we can estimate the probability distribution of |θ|TV(0,T) via

P
(
|θ|TV(0,T) ≥ λ

)
≤ P

(
L ≥ λ√

5

)
, for all λ > 0

and then apply (2.4).

J. Mach. Learn., 1(2):1-xx 14

Algorithm 1 Classification of two N-point sets

Require: Two N-point setsR,B ⊂ [0, 1]d

Ensure: Classification ofR and B
1: u← ei . Optimal direction for canonical separability
2: τR ← {x(k) > 1}, τB ← {x(k) < 1} . For any coordinate k 6= i
3: R∪B ← Reorder(R∪B; i) . Sort all points by ascending i-th coordinate
4: S ← {x1}, anchor← 0
5: for j ∈ {2, . . . , 2N} do
6: if yj−1 = yj then
7: S ← S ∪ {xj}
8: else if xj−1 ∈ B and xj ∈ R then
9: while S ⊂ τR do

10: R∪B ← neuralODET=1

(
R∪B; w = −ek, a = u, b = anchor

)
11: end while
12: S ← {xj}, anchor← −u · xj−1
13: else if xj−1 ∈ R and xj ∈ B then
14: while S ⊂ τB do
15: R∪B ← neuralODET=1

(
R∪B; w = ek, a = u, b = anchor

)
16: end while
17: S ← {xj}, anchor← −u · xj−1
18: end if
19: end for

Remark 3.3. If we allow a to be any vector in Rd, then the constraint (3.1) can be removed
in Theorem 2.2, ensuring the existence of T, (τR, τB) and θ in every case, rather than almost
surely. To accomplish this, we choose a new vector basis in which (3.1) holds, and note
that the conclusion of Lemma 3.1 remains valid in the new coordinates.

4 Classification by separability in general position

Let (R,B) be as in (2.1), and assume for now that |R| = |B| = N. We recall Definition 2.1
and the random variable Zd,N , defined in (3.2), to introduce the following quantity:

M(d, N) := max
{

Zd,N(R,B) : (R,B) as (2.1) in general position, |R| = |B| = N
}

.

Observe that for d = 1, any set of points is naturally in general position, so the result
from Theorem 2.3 applies directly. Consequently, we have M(1, N) = 2N − 1 for all N, as
stated in (3.5). However, when d > 1, the situation changes significantly. Assuming gen-
eral position eliminates the pathological configurations described in Theorem 2.3, thereby
reducing the maximum possible value of Zd,N .

For example, assume that d = N = 2. Here, we find M(2, 2) = 2, which is less than
2 · 2− 1 = 3. To show this, consider connecting the two red points with a line r. Since all

J. Mach. Learn., 1(2):1-xx 15

points are in general position, none of the blue points can lie on r. There are two possible
cases:

1. If the blue points are on the same side of r then we can separate R from B with one
line r′ parallel to r, as shown in Figure 4.1 (left).

2. If the blue points are on different sides of r then we can separate R from B with two
lines r′ and r′′ parallel to r, as shown in Figure 4.1 (right).

In the example of Figure 4.1 (left), if the lines were restricted to be perpendicular to the
canonical axes, two lines would be needed to separate (R,B). Moreover, if the lines also
had to be parallel—as in the framework of Section 3—then three lines would be required.

The argument used in the simple case (d, N) = (2, 2) can be extended to derive a
general bound for M(d, N) that shows the improvement over Theorem 2.3 when the points
are in general position. To this end, we cover R with (possibly overlapping) subsets of
size d, and then separate (R,B) by isolating these subsets using hyperplanes under a
transversality condition.

Proposition 4.1. Let d, N ≥ 1, fix i ∈ {1, . . . , d} and let (R,B) be as (2.1) in general po-
sition, with |R| = |B| = N. Then, there exist hyperplanes H′1, H′′1 , . . . , H′dN/de, H′′dN/de that
separate (R,B). Moreover, for all j = 1, . . . , dN/de the following hold:

1. H′j and H′′j are parallel;

2. H′j and H′′j enclose exactly min{d, |R|} points ofR and no points of B.

3. H′j and H′′j are not orthogonal to ei;

In particular, for all d, N ≥ 1 it follows that

M(d, N) ≤ 2
⌈

N
d

⌉
. (4.1)

Proof. If d ≤ N, we can choose R̂1, . . . , R̂dN/de ⊂ R such that R = R̂1 ∪ · · · ∪ R̂dN/de, with
|R̂j| = d for all j. Otherwise, build R̂1 by augmenting the set R with d− N points chosen
from Rd \ B so that R̂1 ∪B remains in general position. SinceR∪B is in general position,
each R̂j spans a unique hyperplane Ĥj ⊂ Rd satisfying

(R∪B \ R̂j) ∩ Ĥj = ∅ and Ĥj 6= Ĥk for all j 6= k. (4.2)

For each j, choose two hyperplanes Ĥ′j and Ĥ′′j that are parallel to Ĥj and lie in the two

distinct connected components of Rd \ Ĥj. If these hyperplanes are chosen sufficiently
close to Ĥj, then the region between Ĥ′j and Ĥ′′j contains the subset R̂j and no other points
ofR∪B. Consequently, (R,B) is separated by the family of pairwise parallel hyperplanes

Ĥ′1, Ĥ′′1 , . . . , Ĥ′dN/de, Ĥ′′dN/de ⊂ Rd.

J. Mach. Learn., 1(2):1-xx 16

Figure 4.1: Separation of (R,B) in general position in
R2 with |R| = |B| = 2 using at most two lines r′, r′′.

Figure 4.2: Hyperplanes constructed following the proof
of Proposition 4.1, separating two unbalanced classes.

By construction, these hyperplanes meet the first two conditions of the statement; how-
ever, they may not satisfy the third condition, as some might be orthogonal to ei. Suppose
that exactly 2p hyperplanes are orthogonal to ei for some 1 ≤ p ≤ dN/de. Without loss of
generality, assume these are

Ĥ′1, Ĥ′′1 , . . . , Ĥ′p, Ĥ′′p .

Since these hyperplanes are parallel, and different by (4.2), we get R̂i
⋂

R̂j = ∅ for i 6= j.
Let 1 ≤ j ≤ p. Because R ∪ B is finite, we can slightly adjust the direction vector

of Ĥ′j and Ĥ′′j . This yields new parallel hyperplanes H′j and H′′j in Rd that are no longer
orthogonal to ei, yet still enclose exactly Rj, with no other points ofR∪B in between. For
p < j ≤ dN/de, set H′j = Ĥ′j and H′′j = Ĥ′′j . This yields a new family

H′1, H′′1 , . . . , H′p, H′′p , H′p+1, H′′p+1, . . . , H′dN/de, H′′dN/de ⊂ Rd

that meets all the required conditions. Moreover, this proves (4.1).

In the unbalanced case, where |R| 6= |B|, the method can be similarly applied to isolate
the smaller set using pairwise parallel hyperplanes, as shown in Figure 4.2. It follows:

Corollary 4.1. Let d ≥ 1. For any dataset (R,B) as in (2.1) in general position, there exists
a family of 2

⌈
min{|R|,|B|}

d

⌉
hyperplanes that separate the points by labels and satisfy the three

conditions of Proposition 4.1, withR replaced by argminR,B {|R|, |B|}.

Corollary 4.1 enables the separation of any finite dataset in general position in Rd into
clusters of size d. We now describe an inductive approach to classify these clusters using
the dynamics of neural ODEs. First, let us consider the system

ẋ(t) = w(t) σtrun(a(t) · x(t) + b(t)), (4.3)

where the activation function is defined as

σtrun(z) := min
{

1, (z)+
}
= (z)+ − (z− 1)+, for z ∈ R. (4.4)

J. Mach. Learn., 1(2):1-xx 17

Figure 4.3: Schematic overview of an iteration in the control method used to prove Proposition 4.2. We aim
to move the two red points that lie between the hyperplanes H′1 and H′′1 to the region τR through a two-step

process. First, we move all points within the half-space H′+1 , determined by a1, in the direction of w1. Second,

we move all points within the half-space H′′+1 , determined by a2, in the direction of w1. The controls are adjusted

to ensure that the vector field in H′′+1 maintains a unit norm at all times. Consequently, the points in H′′+1 return
exactly to their original positions after these two steps.

Observe that the flow map associated with (4.3) remains well-defined because σtrun is
Lipschitz-continuous. The introduction of σtrun is motivated by its properties, which facil-
itate the inductive argument. Specifically, in the half-space defined by a(t) · x + b(t) > 1,
the system (4.3) simplifies to ẋ = w(t). This property can be used to ensure that points
already classified will remain so after each inductive step. For more details, see Figure 4.3,
which serves as support for the proof, and the formalized control method in Algorithm 2.

Proposition 4.2. Let d ≥ 2. For any dataset (R,B) defined as in (2.1) in general position, and
any pair of target sets (τR, τB) defined as in (2.3), there exist T > 0 and a piecewise constant
control θ ∈ ΘT whose number of discontinuities is

L = 2
⌈

min {|R|, |B|}
d

⌉
− 1,

such that the flow map of (4.3) satisfies ΦT(R; θ) ⊂ τR and ΦT(B; θ) ⊂ τB .

Proof. Let i ∈ {1, . . . , d} be fixed and consider τR = {x(i) > 1}, τB = {x(i) ≤ 1}. The
strategy is to evolve R into the interior of τR while keeping fixed B. We first assume
|R| = |B| = N and will then extend to the general case |R| 6= |B|.

By Proposition 4.1, there exist 2dN/de pairwise parallel hyperplanes separating (R,B).
Assume these hyperplanes are defined by

H′j : uj · x + h′j = 0, and H′′j : uj · x + h′′j = 0, for j = 1, . . . ,
⌈

N
d

⌉
,

where h′j > h′′j , and uj ∈ Sd−1 satisfies |uj · ei| < 1. Moreover, the region between each
pair (H′j , H′′j) encloses a subset Rj ⊂ R such that |Rj| = min{d, |R|}, and no other points
ofR∪B lie between these hyperplanes, namely,

(H′+j \ H′′+j) ∩ (R∪B) = Rj ⊂ R with |Rj| = min{d, |R|},

J. Mach. Learn., 1(2):1-xx 18

where H′+j = {x ∈ Rd : uj · x + h′j > 0} and H′′+j = {x ∈ Rd : uj · x + h′′j > 0}. Note that
H′′+j ⊂ H′+j because h′j > h′′j . Taking t0 = 0, we define

(w, a, b) =
2dN/de

∑
k=1

(wk, ak, bk)1(tk−1,tk)

such that, for j = 1, . . . , dN/de:

1. (w2j−1, a2j−1, b2j−1) = (vj, uj/d′j, h′j/d′j), where

• vj ∈ Sd−1 satisfies vj · uj = 0 and vj · ei > 0 (for instance, take vj to be the
normalized projection of ei onto the orthogonal subspace 〈uj〉⊥);

• d′j = min
{

σtrun(uj · x + h′j) : x ∈ Rj

}
> 0.

Inside the half-space {x ∈ Rd : uj · x + h′j ≥ d′j} ⊂ H′+j and over (t2j−2, t2j−1),
equation (4.3) becomes ẋ = vj with vj · ei > 0. Since the dataset is finite and contained
in this half-space, we can choose t2j−1 > t2j−2 such that Φt2j−1(x) ∈ τR for all x ∈ Rj.

2. (w2j, a2j, b2j) = (−vj, uj/d′′j , h′′j /d′′j), where

• d′′j = min
{

σtrun(uj · x + h′′j) : x ∈ (R∪B) ∩ H′′+j

}
> 0.

Inside the half-space {x ∈ Rd : uj · x+ h′′j ≥ d′′j } ⊂ H′′+j and over (t2j−1, t2j), equation
(4.3) becomes ẋ = −vj. Now, we set t2j = 2t2j−1 − t2j−2 so that

Φt2j(x) = Φt2j−2(x) for all x ∈ (R∪B) ∩ H′′+j .

All the while, we have

Φt2j(x) = Φt2j−1(x) for all x ∈ (R∪B) ∩ H′′−j .

For T = t2dN/de, we conclude ΦT(R) ⊂ τR and ΦT(B) = B ⊂ τB , with L = 2dN/de − 1.
If |R| < |B|, we apply the same argument to obtain ΦT(R) ⊂ τR and ΦT(B) = B ⊂ τB

with L = 2d|R|/de − 1, by virtue of Corollary 4.1. If |R| > |B|, we swap the roles of R
and B and the definitions of τR and τB , with L = 2d|B|/de − 1.

The following lemma formalizes an idea from [33, section 2.2]. It shows that any flow of
(4.3) can be represented as the composition of two flows of (2.2), if w and a are orthogonal:

Lemma 4.1. Let θ = (w, a, b) ∈ Sd−1 ×Rd+1 ×R with w · a = 0. Then, θ1 = (w, a, b) and
θ2 = (−w, a, b− 1) satisfy

Φt(Φt(· ; θ1) ; θ2) = Φtrun
t (· ; θ) for all t > 0,

where Φt and Φtrun
t are the flow maps of (2.2) and (4.3), respectively.

J. Mach. Learn., 1(2):1-xx 19

Algorithm 2 Classification of two point sets via (4.3)

Require: Two finite setsR,B ⊂ [0, 1]d in general position; Direction ei
Ensure: Classification ofR and B

1: S ← arg min{|R|, |B|}, τS ← {x(i) > 1}
2: C ← cover(S , d, d|S|/de) . Covering for S by d|S|/de subsets Sj with |Sj| = d
3: for (j,Sj) in enumerate(C) do
4: Hj(aj, bj) = {x : aj · x + bj = 0, ‖aj‖ = 1} ← Span(Sj)
5: if |aj · ei| = 1 then
6: aj ← NormalizedPerturbation(aj) . Achieves |aj · ei| < 1, ‖aj‖ = 1
7: end if
8: δj ← min{dist(x, Hj) : x ∈ (R∪B) \ Sj}
9: b′j ← bj + 0.5 δj, b′′j ← bj − 0.5 δj

10: wj ← NormalizedProjection〈aj〉⊥(ei)

11: d′j = minx∈Sj σtrun(aj · x + b′j)
12: d′′j = minx∈(R∪B)∩{x : aj·x+b′′j >0} σtrun(aj · x + b′′j)
13: while Sj 6⊂ τS do
14: R∪B ← neuralODET=1(R∪B ; w = wj, a = aj/d′j, b = b′j/d′j)
15: R∪B ← neuralODET=1(R∪B ; w = −wj, a = aj/d′′j , b = b′′j /d′′j)
16: end while
17: end for

Proof. Since w · a = 0, it holds

d
dt
(a · x(t) + b) = a · ẋ(t) = a ·wσ(a · x(t) + b) = 0.

Thus, σ(a · x(t) + b) is constant for all t. Suppose a · x + b ≤ 1. Then

Φtrun
t (x ; θ) = x + tw(a · x + b) = Φt(x ; θ1) = Φt(Φt(x ; θ1) ; θ2).

Otherwise, if a · x + b > 1,

Φt(Φt(x ; θ1) ; θ2) = Φt(x + tw(a · x + b) ; θ2)

= x + tw(a · x + b)− tw(a · (x + tw(a · x + b)) + b− 1)

= x + tw = Φtrun
t (x ; θ).

We can now use Lemma 4.1, together with Proposition 4.2, to demonstrate Theorem 2.1.

Proof of Theorem 2.1. By virtue of Proposition 4.2, there exist T̄ > 0 and a piecewise con-
stant control θ̄ = (w̄, ā, b̄) ∈ ΘT̄, which presents 2dmin{|R|, |B|}/de − 1 discontinuities,
such that

Φtrun
T̄ (R; θ̄) ⊂ τR and Φtrun

T̄ (B; θ̄) ⊂ τB ,

J. Mach. Learn., 1(2):1-xx 20

where Φtrun
t is the flow map of (4.3). Moreover, w̄(t) · ā(t) = 0 for all t, so by Lemma 4.1

there exists a piecewise constant θ ∈ Θ2T̄ with 4dmin{|R|, |B|}/de − 1 discontinuities,
such that Φtrun

T̄ (· ; θ̄) = Φ2T̄(· ; θ). We conclude by defining T = 2T̄.

Remark 4.1. Similarly to Remark 3.2, we can extract from Theorem 2.1 a bound for the
total variation of the controls as

|θ|TV(0,T) ≤ 2L‖θ‖∞ ≤ 2
√

1 + ‖(a, b)‖2
∞

(
4
⌈

min {|R|, |B|}
d

⌉
− 1
)

,

where ‖(a, b)‖∞ depends on the minimum separation between points of R ∪ B and the
maximum distance of any point to the origin.

The structure of pairwise parallel hyperplanes defined in Proposition 4.1 can be ex-
ploited for control when combined with certain architectures. We propose triangular neural
ODEs

ẋ(t) = w(t) σTr(a(t) · x(t) + b(t)), (4.5)

where the activation σTr is defined as

σTr(z) = max{1− |z− 1|, 0}, for z ∈ R. (4.6)

The function σTr remains globally Lipschitz, ensuring that the flow map is well-defined.
By replacing σtrun with σTr, we can improve upon Proposition 4.2. Specifically, we can

halve the number of values taken by the control θ. Adapting the proof is straightforward:
Step 2 can be omitted, as the support of σTr is restricted to the interval (0, 2).

Corollary 4.2. Let d ≥ 2. For any dataset (R,B) defined as in (2.1) in general position, and any
pair of target sets (τR, τB) defined as in (2.3), there exist T > 0 and a piecewise constant control
θ ∈ ΘT whose number of discontinuities is

L =

⌈
min {|R|, |B|}

d

⌉
− 1,

such that the flow map of the neural ODE (4.5) satisfies ΦT(R; θ) ⊂ τR and ΦT(B; θ) ⊂ τB .

Remark 4.2. Our separability-based methodology aligns with existing research in discrete
geometry. In [35], the authors establish lower and upper bounds on the minimum number
of hyperplanes required to individually separate N points in general position in Rd. In
[36] it is shown that finding such number for an arbitrary point set is an NP-complete
problem. From a computational perspective, efficient algorithms for separability in low-
dimensional spaces are proposed in [37, 38].

Remark 4.3. The VC dimension of a classification model is defined as the size of the largest
set of points that can be shattered, meaning any arbitrary binary assignment of labels is
possible [39]. We can interpret Theorem 2.1 in terms of the VC dimension of our model.
Specifically, we can establish a lower bound: by fixing the maximum number of disconti-
nuities in the controls to L ≥ 1, our method can shatter any set of Ld points in Rd.

J. Mach. Learn., 1(2):1-xx 21

Figure 5.1: Trajectories for σ = ReLU exhibit an exponential drift when a · x + b > 1 (left). If σ = tanh (center)
or σ = σtrun (right), this drift is mitigated because ‖σ‖∞ ≤ 1. Here, we have used N = 5, L = 10, and T = 60.

5 Numerics

We present a computational test1 designed to evaluate the capacity of neural ODEs for
binary classification. Specifically, our objective is to numerically estimate the minimal
complexity they require to classify an arbitrary dataset of a fixed size, and compare it with
the complexity we used in Algorithm 1.

Let D = {(xn, yn)} ⊂ Rd × {1, 0} be a finite dataset and R = {xn : (xn, 1) ∈ D},
B = {xn : (xn, 0) ∈ D} be such that |R| = |B| = N. For a fixed L ≥ 0 and time T > 0, we
aim to find piecewise constant controls θ ∈ ΘT with L discontinuities (or switches) such
that the flow map of the neural ODE satisfies

ΦT(R; θ) ⊂
{

x(1) > 1
}

and ΦT(B; θ) ⊂
{

x(1) ≤ 1
}

. (5.1)

We opt for σtrun as in (4.4) and equation (4.3) to better visualize the results (see Figure 5.1).
In this case, Proposition 4.2 establishes that L = 2dN/de − 1 switches ensure any dataset
in general position can be classified. This condition is generically satisfied when all points
are sampled from a non-singular probability measure, such as U([0, 1]d).

We design our experimental setup in the following way:
Data. We use ten random datasets, each consisting of N = 30 red points (R) and N = 30
blue points (B), sampled from U([0, 1]d) for various dimensions d ranging from 2 to 2N.
Model. We consider equation (4.3) with controls that are piecewise constant over L + 1
time intervals of length ∆t = T(L + 1)−1, where T = 60. To approximate the solution, we
use an explicit Euler discretization scheme with a step size of 0.25∆t. The control values
are initialized using Kaiming uniform initialization; that is, each component is sampled
from U([−α, α]), where α is the inverse of the number of input units in the weight tensor.
Error. To enforce the correct classification of all points as defined by (5.1), we introduce

1The code, implemented in PyTorch [40], is available at https://github.com/antonioalvarezl/2024-WCS-NODEs

https://github.com/antonioalvarezl/2024-WCS-NODEs

J. Mach. Learn., 1(2):1-xx 22

Figure 5.2: Left: Initial data comprising 30 red points and 30 blue points in [0, 1]2. Right: Final positions at time
T = 60, having fixed L = 37 switches.

the following margin-based loss function:

L(θ) = 1
|R| ∑

xn∈R
dist

(
ΦT(xn; θ), {x(1) < 1.5}

)2
+

1
|B| ∑

xn∈B
dist

(
ΦT(xn; θ), {x(1) > 0.5}

)2

Training. Optimization is conducted using the Adam optimizer [41] with a learning rate
of 0.01, which was determined to be optimal through a grid search over a range of values.
Procedure. First, for each d, we verify that setting L = 2dN/de − 1 switches is sufficient
to classify all ten datasets. Then, we gradually decrease the value of L until at least one of
the datasets fails to be classified, according to the stopping criteria defined below.
Stopping criteria. If condition (5.1) is met, classification is successful and the training is
stopped. Conversely, we consider the following three failure stopping criteria:

1. The maximum number of 70000 epochs is reached.

2. Slow convergence, if L ≥ 0.15 at 20000 epochs or L ≥ 0.1 at 40000 epochs, or if the
minimum error does not decrease over 5000 consecutive epochs.

3. Local minima detection, if the maximum relative error over 50 consecutive epochs
exceeds a threshold of 10−20.

Close. We conclude that the model with L switches does not have the capacity to classify
60 points if any of the failure stopping criteria is met in 20 randomized initializations of
the parameters for any of the ten datasets.

The experiments were conducted using specific seed settings to ensure reproducibility,
and the results are shown in Figure 5.3. We observe that L = 2dN/de − 1 is typically close
to the optimal value L∗ obtained through training. Specifically, for d ∈ {7, 10, 15, 20, 60},
we get L∗ = 2dN/de − 1. For d ∈ {2, 30}, we even find that L∗ > 2dN/de − 1.

We observed that training requires an increasing number of parameter initializations
in lower dimensions. This tendency is particularly pronounced when d = 2, as shown

J. Mach. Learn., 1(2):1-xx 23

Figure 5.3: L versus d for fixed N = 30. Green bars represent the number of switches in Proposition 4.2,
given by 2dN/de − 1. Purple bars show the minimum number of switches required by gradient-based training to
successfully classify all datasets. Dark bars indicate the minimum number of switches found after data rescaling.

by the purple bar with a hatched pattern. In that case, only five out of ten datasets were
successfully classified using L = 37 switches. We were unable to find any higher value of
L that could classify the remaining five datasets.

Motivated by the difficulties found in low dimensions, we applied a preprocessing step
to improve the separability of the data points. Specifically, for d ∈ {2, 3, 4}, we standard-
ized the data by subtracting the mean and scaling to unit variance. This reduces the risk of
the algorithm becoming trapped in poor local minima due to an overly dense point cloud.
The results are represented by the blue bars of Figure 5.3.

In summary, we observed that the value of L = 2dN/de − 1 switches given in Propo-
sition 4.2 is a suboptimal bound that closely approximates the optimal value obtained via
gradient descent, especially for large d with fixed N.

Conclusions

In this work, we have explored the capacity of neural ODEs to classify an arbitrary dataset,
using the framework of simultaneous control of clusters of points and geometric separa-
bility techniques to define these clusters.

In our main result, we have established a new bound of L = 4 dmin{|R|, |B|}/de
control switches that guarantees classification of any dataset given by (R,B) in Rd, us-
ing the single-neuron model (2.2). The only assumption is that all points are in gen-
eral position (see Definition 2.1), a condition that is satisfied almost surely by any finite

J. Mach. Learn., 1(2):1-xx 24

set sampled from a non-singular measure. Our result improves the previous bound of
L = 3 min{|R|, |B|}, by leveraging the better separability that points present in higher
dimensions. From a technical perspective, we demonstrate that any subset of d points can
be isolated between two parallel hyperplanes within any finite dataset in general position.
We have complemented this result with some numerical experiments that supported the
optimality of our bound, particularly in high dimensions.

Our second result acknowledges that maximal complexity is rarely necessary, as data
points of the same class are often initially close together, which facilitates their classifica-
tion. We develop a new control method to derive the probability distribution of L when all
data points are i.i.d. and both classes have fixed size N ≥ 1. Our method once again em-
phasizes the advantage of high dimensionality. Specifically, we deduce that if d & 2N/

√
N

then classification using an autonomous neural ODE (characterized by L = 0) is possible
with high probability. Additionally, we have characterized the pathological configurations
in which the maximum value of L = 2N − 2 occurs.

Our results can be seen as a manifestation of the blessing of dimensionality [42], a phe-
nomenon where machine learning problems become more tractable in high dimensions.
This contrasts with the well-known curse of dimensionality, which occurs when data spar-
sity in higher dimensions leads to an exponential increase in computational complexity
and data requirements.

We now discuss some connections and extensions of our results:

• Multiclass classification. For any S ≥ 2, letR1, . . . ,RS ⊂ Rd be finite subsets whose
union is in general position. Suppose |RS| = max |Ri|. We first address binary clas-
sification between R1 and R2 ∪ · · · ∪ RS using Proposition 4.2. Once these two sets
are linearly separable under the flow map ΦT, we proceed to classify ΦT(R2) against
ΦT(R1 ∪R3 ∪ · · · ∪RS) in a similar manner. Since Algorithm 2 consistently fixes the
larger of the two sets, we can proceed inductively and ensuring that ultimately every
pair of distinct subsets will be linearly separable under the flow map.

• Alternative activation functions. Theorem 2.2 applies broadly to any Lipschitz-
continuous activation function σ : R → R, as long as there exist −∞ ≤ a < b ≤ ∞
such that σ(z) = 0 for all z ∈ (a, b) and σ 6= 0. The choice of σ would only affect the
control time T > 0. Following the terminology of reference [22], such a σ would be
referred to as a well function, and our proofs could be extended using an argument
based on affine-invariance of system (2.2).

Generalizing Theorem 2.1 to other activations presents additional challenges since
they must represent any flow of the truncated ReLU (as in Lemma 4.1). A modifica-
tion (and improvement) of Theorem 2.1 is Corollary 4.2, where we consider the tri-
angular activation function. In fact, any activation function σ with supp(σ) ⊂ (a, b)
for some −∞ < a < b < +∞ allows for the same extension.

• Alternative loss functions. While we have used a simplified error function—the sum
of the distances of all points to their respective target regions—cross-entropy loss `CE
is the standard choice for classification problems in practice. In binary classification,

J. Mach. Learn., 1(2):1-xx 25

Figure 5.4: In the first picture, at least two hyperplanes are required to separate both classes (“static” classifica-
tion). In the other three pictures, the same points evolve according to ẋ = w(a · x+ b)+ (with constant (w, a, b))
and can eventually be separated using only one hyperplane (“dynamic” classification).

the cross entropy loss associated with a data point (xn, yn) ∈ D is defined as

`CE(xn, yn) = −yn log(ŷn)− (1− yn) log(1− ŷn),

where ŷn = (softmax ◦P ◦ΦT(xn))
(1) is the predicted probability that yn = 1. This

prediction is obtained by applying a linear transformation P : Rd → R2 and then
performing component-wise normalization using the softmax function.

For any fixed P, our methods can be adapted to minimize this loss while maintaining
the same complexity L. For example, if d = 2 and P is the identity matrix, then we can
achieve `CE(xn, yn) → 0 when (−1)yn ΦT(xn) · (−1, 1) → +∞. To accomplish this,
we can set x(1) = x(2) as the decision boundary and increase the time T; however,
this would not require additional switches.

• Point separability. Since our control methods fundamentally rely on identifying hy-
perplanes that separate two classes (mostly via combinatorics), an important ques-
tion arises: does dynamic classification using neural ODEs essentially reduce to static
separability using hyperplanes? The short answer is no; they are distinct frameworks.

On one hand, a collection of separating hyperplanes does not necessarily translate
into effective neural ODE dynamics. In other words, having fixed a(t) and b(t), there
may be no control w(t) that yields the desired classification via (2.2). Our construc-
tions require those hyperplanes to follow a specific structure (e.g., pairwise parallel
in Theorem 2.1), making it possible to determine a suitable w(t). However, for a
random family of separating hyperplanes, finding such w(t) can be highly complex.

It might then seem that dynamic classification with neural ODEs is more restrictive
than linear classification methods. Yet this is also false: neural ODEs can classify
without explicitly relying on separating hyperplanes, that is, there exist controls a(t)
and b(t) that lead to successful classification even if the hyperplanes given by a(t) ·
x + b(t) = 0 do not fully separate both classes. In Figure 5.4 we illustrate a scenario
where neural ODEs outperform linear methods.

Our results address these questions by proving that, in the worst-case scenario (i.e.,
for any arbitrary dataset), neural ODEs can perform at least as well as linear clas-
sifiers. Furthermore, our numerical experiments seem to confirm that, under such

J. Mach. Learn., 1(2):1-xx 26

worst-case conditions, the performance of neural ODEs trained via gradient descent
matches our theoretical findings.

• Discrete neural networks. In the discrete setting, the capacity to control N points
in Rd with a given level of complexity has been more broadly studied and often
referred to as finite-sample expressivity. Early studies, focused on sigmoid acti-
vation functions, showed that networks with one hidden layer could perform this
task using O(N) neurons [43]. With the rise of deep models and the ReLU activa-
tion, researchers explored how adding depth could reduce the required complex-
ity [44, 45], and existent results were extended to ReLU networks, see [46]. For deep
feed-forward networks, [47] solved the problem using O(

√
N) neurons.

In the past decade, the focus has shifted towards new architectures like convolu-
tional networks [48], or ResNets [49], which achieve the goal using O(N log N) hid-
den nodes, assuming a minimum distance between points. This bound was later
improved to O(N/d) in [47], under the assumption of general position. Notably, for
conditional networks, the complexity can be reduced to O(log N) neurons [50].

Future work

Several important directions still need to be explored. Below, we present some of them.

1. Improvement or sharpness of the bound. A first and natural question is whether
the new bound we have introduced for the minimal number of switches L required
to classify any dataset in general position is sharp or can be further improved.

On one hand, it turns out that equality in (4.1) can be achieved in some simple cases,
for example, when d = N = 2, as illustrated in Figure 4.1. However, our algorithm
does not fully exploit the capacity of the parameter space because the piecewise con-
stant controls a(t) and w(t) repeat certain values throughout the algorithm. More-
over, the algorithm is designed to iteratively classify clusters of d points but does not
consider the possibility of classifying larger clusters, unlike Algorithm 2.

If our bound for L is indeed sharp, a related problem is to identify the geometry of
those configurations where this bound is attained, similar to Theorem 2.3.

2. Decision boundary. In this study, we have restricted the decision boundary to be
any hyperplane defined by the equation x(i) = 1 for i ∈ {1, . . . , d}. Our control
methods, detailed in Algorithms 1 and 2, can easily be adapted to every hyperplane
in Rd. However, the classification problem may also be addressed using more com-
plex hypersurfaces than hyperplanes or by treating the decision boundary itself as an
optimizable parameter. This leads to the open question of determining the optimal
decision boundary that minimizes complexity while maximizing training accuracy.

3. Generalization. The ultimate goal of supervised learning models is to make accurate
predictions on new, unseen data that were not part of the training dataset. While our

J. Mach. Learn., 1(2):1-xx 27

methods aim to determine the minimum complexity required for a model to achieve
zero training error, this often leads to overfitting and poor performance on test data.

Proper generalization requires to model to capture the geometric patterns in the con-
figuration of data points, rather than perfectly classifying every individual point re-
gardless of their distribution. We must mention, however, that recent studies suggest
overfitting does not necessarily imply poor generalization [51]. Understanding the
relationship between both concepts remains an active area of research [52].

In practice, generalization is typically achieved by adding a regularization term to
the loss function. In the context of simultaneous control, some outlier data points
could be misclassified to reduce the control cost. Developing constructive control
methods that intentionally sacrifice some accuracy on the training data to improve
the model’s ability to generalize remains an open question.

4. Combination with self-attention. Transformers are deep architectures that alternate
between attention and feed-forward layers, adding residual connections. A highly
simplified continuous-time version is the interacting particle system given by:

ẋi(t) = w(t)σ(a(t) · xi(t) + b(t)) +
N

∑
j=1

exi(t)·B(t)xj(t)

∑N
`=1 exi(t)·B(t)x`(t)

V(t)xj(t).

Here, the vector xi(t) represents the position of the i-th particle (or data point) at time
t, whereas V(t), B(t) ∈ Rd×d are additional controls. The attention term induces a
clustering effect among the data points, causing them to concentrate towards certain
limiting configurations, as studied in [53]. An open question is to quantify the reduc-
tion in complexity achieved by controlling this mechanism to cluster points by classes
as a preprocessing step for classification. A constructive control of continuous-time
transformers has been carried out in [54] for the mean-field formulation of this sys-
tem restricted to the sphere.

Acknowledgments

This work has been supported by the Madrid Government (Comunidad de Madrid, Spain)
under the multiannual Agreement with UAM in the line for the Excellence of the Uni-
versity Research Staff in the context of the V PRICIT (Regional Programme of Research
and Technological Innovation) and by PID2023-146872OB-I00 of MICIU (Spain). AÁ has
been funded by FPU21/05673 from the Spanish Ministry of Universities. RO has been
funded by Severo Ochoa Programme for Centres of Excellence in R&D (CEX2023-001347-
S) of MICIU (Spain). EZ has been funded by the Alexander von Humboldt-Professorship
program, the ModConFlex Marie Curie Action, HORIZON-MSCA-2021-DN-01, the COST
Action MAT-DYN-NET, the Transregio 154 Project “Mathematical Modelling, Simulation
and Optimization Using the Example of Gas Networks” of the DFG and TED2021-131390B-
I00 of MICINN (Spain).

J. Mach. Learn., 1(2):1-xx 28

References

[1] Yann LeCun, Y. Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–44, 05
2015.

[2] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[3] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural
probabilistic language model. J. Mach. Learn. Res., 3:1137–1155, 2003.

[4] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7(7):179–188, 1936.

[5] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[6] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[7] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

[8] Weinan E. A proposal on machine learning via dynamical systems. Communications
in Mathematics and Statistics, 5:1–11, 02 2017.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. In Proceedings of 2016 IEEE Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

[10] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural
ordinary differential equations. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, page 6572–6583. Curran Associates Inc., 2018.

[11] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. In-
verse Problems, 34(1):014004, 2017.

[12] Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime
Asama. Dissecting neural odes. Advances in Neural Information Processing Systems,
33:3952–3963, 2020.

[13] Domènec Ruiz-Balet and Enrique Zuazua. Neural ODE control for classification, ap-
proximation, and transport. SIAM Rev., 65(3):735–773, 2023.

[14] Antonio Álvarez-López, Arselane Hadj Slimane, and Enrique Zuazua. Interplay
between depth and width for interpolation in neural odes. Neural Networks, page
106640, 2024.

[15] David Mumford, John Fogarty, and Frances Kirwan. Geometric Invariant Theory.
Springer Berlin, 1994.

J. Mach. Learn., 1(2):1-xx 29

[16] Thomas M. Cover. Geometrical and statistical properties of systems of linear inequal-
ities with applications in pattern recognition. IEEE Transactions on Electronic Comput-
ers, EC-14(3):326–334, 1965.

[17] Thomas M. Cover. The Number of Linearly Inducible Orderings of Points in d -Space.
SIAM Journal on Applied Mathematics, 15(2):434–439, March 1967.

[18] Eduardo D. Sontag. Shattering All Sets of ‘k’ Points in “General Position” Requires
(k — 1)/2 Parameters. Neural Computation, 9(2):337–348, February 1997.

[19] Paulo Tabuada and Bahman Gharesifard. Universal approximation power of deep
residual neural networks through the lens of control. IEEE Trans. Autom. Control.,
68(5):2715–2728, 2023.

[20] Christa Cuchiero, Martin Larsson, and Josef Teichmann. Deep neural networks,
generic universal interpolation, and controlled ODEs. SIAM J. Math. Data Sci.,
2(3):901–919, 2020.

[21] Karthik Elamvazhuthi, Xuechen Zhang, Samet Oymak, and Fabio Pasqualetti. Learn-
ing on manifolds: Universal approximations properties using geometric controllabil-
ity conditions for neural odes. In Learning for Dynamics and Control Conference, Pro-
ceedings of Machine Learning Research, pages 1–11, 2023.

[22] Qianxiao Li, Ting Lin, and Zuowei Shen. Deep learning via dynamical systems: An
approximation perspective. Journal of the European Mathematical Society, 25(5):1671–
1709, 2022.

[23] Jingpu Cheng, Qianxiao Li, Ting Lin, and Zuowei Shen. Interpolation, approximation
and controllability of deep neural networks, 2023.

[24] Isao Ishikawa, Takeshi Teshima, Koichi Tojo, Kenta Oono, Masahiro Ikeda, and
Masashi Sugiyama. Universal Approximation Property of Invertible Neural Net-
works. Journal of Machine Learning Research, 24(287):1–68, 2023.

[25] Hongzhou Lin and Stefanie Jegelka. Resnet with one-neuron hidden layers is a uni-
versal approximator. In Proceedings of the 32nd International Conference on Neural Infor-
mation Processing Systems, page 6172–6181, 2018.

[26] Weinan E, Jiequn Han, and Qianxiao Li. A mean-field optimal control formulation of
deep learning. Research in the Mathematical Sciences, 6(1):10, December 2018.

[27] Qianxiao Li, Long Chen, Cheng Tai, and Weinan E. Maximum principle based algo-
rithms for deep learning. Journal of Machine Learning Research, 18(165):1–29, 2018.

[28] Benoı̂t Bonnet, Cristina Cipriani, Massimo Fornasier, and Hui Huang. A measure
theoretical approach to the mean-field maximum principle for training NeurODEs.
Nonlinear Analysis, 227:113161, February 2023.

J. Mach. Learn., 1(2):1-xx 30

[29] Noboru Isobe and Mizuho Okumura. Variational formulations of ode-net as a mean-
field optimal control problem and existence results. Journal of Machine Learning,
3(4):413–444, 2024.

[30] Borjan Geshkovski and Enrique Zuazua. Turnpike in optimal control of pdes, resnets,
and beyond. Acta Numerica, 31:135–263, 2022.

[31] Carlos Esteve-Yagüe and Borjan Geshkovski. Sparsity in long-time control of neural
ODEs. Systems Control Lett., 172:Paper No. 105452, 14, 2023.

[32] Domènec Ruiz-Balet, Elisa Affili, and Enrique Zuazua. Interpolation and approxima-
tion via momentum resnets and neural odes. Systems & Control Letters, 162:105182,
2022.

[33] Domènec Ruiz-Balet and Enrique Zuazua. Control of neural transport for normalis-
ing flows. Journal de Mathématiques Pures et Appliquées, 181:58–90, 2024.

[34] Wlodzislaw Duch. K-separability. In Artificial Neural Networks - ICANN 2006, volume
4131 of Lecture Notes in Computer Science, pages 188–197, 2006.

[35] Ralph P. Boland and Jorge Urrutia. Separating collections of points in Euclidean
spaces. Inform. Process. Lett., 53(4):177–183, 1995.

[36] Robert Freimer, Joseph S. B. Mitchell, and Christine Piatko. On the Complexity of
Shattering Using Arrangements. Technical Report, Cornell University, USA, March
1991.

[37] Esther M. Arkin, Ferran Hurtado, Joseph S. B. Mitchell, Carlos Seara, and Steven S.
Skiena. Some lower bounds on geometric separability problems. Internat. J. Comput.
Geom. Appl., 16(1):1–26, 2006.

[38] Michael F. Houle. Algorithms for weak and wide separation of sets. Discrete Applied
Mathematics, 45(2):139–159, 1993.

[39] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. Theory of Probability and its Applications,
16(2):264–280, 1971.

[40] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Au-
tomatic differentiation in pytorch. In NIPS 2017 Workshop on Autodiff, 2017.

[41] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014.

[42] David Donoho. High-dimensional data analysis: The curses and blessings of dimen-
sionality. AMS Math Challenges Lecture, pages 1–32, 01 2000.

[43] S.-C. Huang and Y.-F. Huang. Bounds on the number of hidden neurons in multilayer
perceptrons. IEEE Transactions on Neural Networks, 2(1):47–55, 1991.

J. Mach. Learn., 1(2):1-xx 31

[44] Ronen Eldan and Ohad Shamir. The Power of Depth for Feedforward Neural Net-
works. JMLR: Workshop and Conference Proceedings, 49:1–34, 2015.

[45] Guang-Bin Huang. Learning capability and storage capacity of two-hidden-layer
feedforward networks. IEEE Transactions on Neural Networks, 14(2):274–281, 2003.

[46] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Un-
derstanding deep learning requires rethinking generalization. Communications of the
ACM, 64, 11 2016.

[47] Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small relu networks are powerful mem-
orizers: A tight analysis of memorization capacity. In Proceedings of the 33rd Interna-
tional Conference on Neural Information Processing Systems, page 15558–15569. Curran
Associates Inc., 2019.

[48] Quynh Nguyen and Matthias Hein. Optimization Landscape and Expressivity of
Deep CNNs. In Proceedings of the 35th International Conference on Machine Learning,
pages 3730–3739. PMLR, July 2018.

[49] Moritz Hardt and Tengyu Ma. Identity matters in deep learning. In International
Conference on Learning Representations, 2017.

[50] Erdem Koyuncu. Memorization capacity of neural networks with conditional com-
putation. In The Eleventh International Conference on Learning Representations, 2023.

[51] Peter L. Bartlett, Philip M. Long, Gábor Lugosi, and Alexander Tsigler. Benign overfit-
ting in linear regression. Proceedings of the National Academy of Sciences, 117(48):30063–
30070, 2020.

[52] Hongkang Yang. A mathematical framework for learning probability distributions.
Journal of Machine Learning, 1(4):373–431, 2022.

[53] Borjan Geshkovski, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. The emer-
gence of clusters in self-attention dynamics. Advances in Neural Information Processing
Systems, 36:57026–57037, December 2023.

[54] Borjan Geshkovski, Philippe Rigollet, and Domènec Ruiz-Balet. Measure-to-measure
interpolation using Transformers, November 2024. arXiv:2411.04551 [cs, math, stat].

	Introduction
	Problem formulation and main results
	Classification via canonical separability
	Classification by separability in general position
	Numerics

