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PART I: introduction to control theory
LECTURE 1: finite-dimensional control systems



HISTORICAL INTRODUCTION



Historical introduction

MATHEMATICAL CONTROL THEORY
or

CONTROL ENGINEERING
or simply

CONTROL THEORY?

An interdisciplinary field of re-
search in between Mathemat-
ics and Engineering with strong
connections with Scientific Com-
puting, Technology, Communica-
tions,...
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The origins

‘‘... if every instrument could accomplish its own work, obeying or antici-
pating the will of others ... if the shuttle weaved and the pick touched the lyre
without a hand to guide them, chief workmen would not need servants, nor
masters slaves.’’

Chapter 3, Book 1, of the monograph ‘‘Politics’’ by Aristotle (384-322 B. C.).

Main motivation

The need of automatizing processes to let the human being gain in liberty,
freedom, and quality of life.

General principle

Modify the behavior of a dynamical system to drive its state to a desired final
configuration, while possibly minimizing relevant aspects such as energy
consumption, delay or overshoot, and ensuring a certain level of control
stability.
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Early examples of controlled systems

Ancient Mesopotamia: water regula-
tion in irrigation systems.

Roman aqueducts: system of water
transportation endowed with devices
of regulating valves for keeping the
water level constant.

Ancient Egypt: the harpenodaptai (string stretchers), were specialized in stretch-
ing strings leading to long straight segments to help in large constructions. Two
fundamental concepts were already well understood:

1. The shortest distance between two points is the straight line.

2. This is equivalent to the dual property that the straight line is the path
generating the longest distance among all the paths of a given length between
two points.
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Modern examples of controlled systems

The pendulum: works of Huygens
and Hooke (end of the XVII century),
the goal being measuring in a precise
way location and time, so precious in
navigation.

These studies inspired James Watt for the invention of his famous steam engine,
marking the start of the industrial revolution.

When the velocity of the balls in-
creases, one or several valves open
to let the vapor escape and make the
pressure diminish. When the pressure
inside the boiler becomes weaker, the
velocity begins to go down. The goal
is to keep the velocity as close as pos-
sible to a constant.
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Contemporary examples of controlled systems

Quantum control and computing:
laser control in Quantum mechanical
and molecular systems to design co-
herent vibrational states.

Aerospace industry:

• Control systems in flexible structures (satellites).

• Optimal shape design in aerodynamics.

• Control of rockets trajectories.
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MATHEMATICAL FORMULATION
OF CONTROL THEORY



Mathematical formulation

First mathematical analysis of control a control system: dated 1868 and due to
Maxwell, who described some erratic behaviors inWatt’s device and proposed control
mechanisms to correct them. Until them it was not well understood why apparently
more elaborated and perfect regulators could have a bad behavior. The reason is
now referred to as the overdamping phenomenon.

Automatic control: the number of applications rapidly increased in the 1930’s cov-
ering different areas like amplifiers in telecommunications, distribution systems in
electrical plants, stabilization of aeroplanes, electrical mechanisms in paper produc-
tion, petroleum and steel industry,...

In that period, two different approaches to control theory where defined:

State space approach, based on modelling by means of Ordinary Differential
equations (ODE).

Frequency domain approach, based in the Fourier representation of signals.
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Mathematical formulation

IMPORTANT ADVANCES IN THE 1960’s

By that time it was known that true systems are often nonlinear and nondetermin-
istic, and this generated important new efforts in identifying novel efficient control
techniques.

Three fundamental contributions

Kalman and his theory of filtering and algebraic approach to the
control of systems.

Pontryagin and his maximum principle: a generalization of Lagrange
multipliers.

Bellman and his principle of dynamic programming: a trajectory is
optimal if it is optimal at every time.
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Mathematical formulation

IMPORTANT FURTHER DEVELOPMENTS IN THE LAST DECADES

Modern advances

Nonlinear problems, with the introduction of Lie brackets.

Stochastic models: Human beings introduce more uncertainty in
already uncertain systems.

Infinite dimensional systems = Partial Differential Equations (PDE),
also referred to as Distributed Parameter Systems. When the number
of degrees of freedom is too large one is obliged to deal with models
in Continuum Mechanics.
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Mathematical formulation

State equation

A(y) = f(v)

• y is the state to be controlled.

• v is the control. It belongs to the set of admissible controls Uad .

Goal

Roughly speaking the goal is to drive the state y close to a desired state yd :
y ∼ yd .
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Mathematical formulation

In this general functional setting many different mathematical models feet:

Linear or nonlinear problems.

Deterministic or stochasticmodels.

Finite-dimensional (ODE) or infinite-dimensional (PDE) models.

And, of course, when facing complex real life processes, often, hybrid modelsmight
also be needed.
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Mathematical formulation

Several kinds of different control problems may also feet in this frame
depending on how the control objective is formulated:

Optimal control (related with the Calculus of Variations)

min
v∈Uad

‖y − yd‖2

Controllability: drive exactly the state y to the prescribed one

y = yd

Stabilization or feedback control (real time control)

v = F(y)

A(y) = f(F(y))

Feedback process

The one in which the state of the system determines the
way the control has to be exerted in real time (cause-
effect principle).
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FINITE-DIMENSIONAL LINEAR
CONTROL



Finite-dimensional control

Let N,M ∈ N∗ and T > 0. Consider the following finite-dimensional system{
x′(t) = Ax(t) + Bu(t), t ∈ (0, T)

x(0) = x0
(1)

• A ∈ RN×N describes the dynamics.

• B ∈ RN×M defines the control’s action.

• x0 ∈ RN .

• x : [0, T] −→ RN represents the state.

• u : [0, T] −→ RM is the control.

Given an initial datum x0 ∈ RN and a vector function u ∈ L2(0, T;RM), system
(1) has a unique solution x ∈ H1(0,T;RN) characterized by the variation of
constants formula

x(t) = eAtx0 +

∫ t

0
eA(t−s)Bu(s)ds, ∀t ∈ [0, T].
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Controllability notions

Exact controllability

System (1) is exactly controllable at time T if, for any x0, xT ∈ RN, there exists
u ∈ L2(0, T;RM) such that the corresponding solution x fulfills x(T) = xT .

According to this definition
the aim of exact controllability
consists in driving the solution
x of (1) from the initial state x0
to the final one xT in time T by
acting on the system through
the control u.
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Controllability notions

Null controllability

System (1) is null controllable at time T if, for any x0 ∈ RN, there exists
u ∈ L2(0, T;RM) such that the corresponding solution x fulfills x(T) = 0.

According to this definition
the aim of null controllability
consists in driving the solution
x of (1) from the initial state x0
to zero in time T by acting on
the system through the con-
trol u.
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Controllability notions

Approximate controllability

System (1) is approximately controllable at time T if, for any x0, xT ∈ RN

and any ε > 0, there exists u ∈ L2(0,T;RM) such that the corresponding
solution x fulfills ‖x(T)− xT‖RN < ε.

According to this definition
the aim of approximate con-
trollability consists in driving
the solution x of (1) in time T
from the initial state x0 to a fi-
nal one x(T) which is ε-close
to xT by acting on the system
through the control u.
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Controllability notions

Controllability to trajectories

System (1) is exactly controllable to trajectory at time T if, for any x0 ∈ RN

and any solution x̂ of (1) with x̂(0) = x̂0 ∈ RN and some given û, there exists
a control u ∈ L2(0,T;RM) such that the corresponding solution x fulfills
x(T) = x̂(T).

According to this definition
the aim of controllability to
trajectories consists in driving
the solution x of (1) in time
T from the initial state x0 to
match a particular solution
x̂(T) by acting on the system
through the control u.
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Controllability examples

Example 1: consider the case

A =

(
1 0
0 1

)
B =

(
1
0

)
Then the system (1) can be written as{

x′1(t) = x1(t) + u(t)
x′2(t) = x2(t)

≡
{
x′1(t) = x1(t) + u(t)
x2(t) = x0,2et

where x0 = (x0,1, x0,2) are the initial data.

This system is not controllable since the control u does not act on the second
component x2 of the state which is completely determined by the initial data
x0,2 .
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Controllability examples

Example 2: by the contrary, the equation of the harmonic oscillator

x′′(t) + x(t) = u(t)

is controllable.

In this case, the matrices are

A =

(
0 1
−1 0

)
B =

(
0
1

)

One can easily check the controllability by simply building a smooth curve
x = x(t) taking the initial values at t = 0 and the final ones at t = T , and then,
computing a posteriori the control u(t) = x′′(t) + x(t).

21 /56



The reachable set

Set of reachable states

R(T, x0) =
{
x(T) ∈ RN : x solution of (1) with u ∈ (L2(0, T);RM)

}
.

Remark

R(T, x0) is a convex subset of RN .

The controllability notions previously introduced can be redefined through the reach-
able set

Exact controllability: R(T, x0) = RN for any x0 ∈ RN .

Null controllability: 0 ∈ R(T, x0) for any x0 ∈ RN .

Approximate controllability: R(T, x0) is dense in RN for any x0 ∈ RN .
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The reachable set

Remark

In linear finite-dimensional control, exact controllability, null controllability
and approximate controllability are equivalent.

Approximate controllability is equivalent to exact controllability, since the
only convex and dense subset of RN is RN itself.

Null controllability is equivalent to exact controllability: indeed, if
x(T) = xT 6= 0, then the function

z(t) = x(t)− xTe
(t−T)A

verifies {
ż = Az + Bu
z(0) = x0 − xTe−TA

and we have x(T) = xT ⇔ z(T) = 0.
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THE OBSERVABILITY PROPERTY



The adjoint problem

Let A> be the adjoint (transpose) matrix of A, i.e. the matrix such that

〈Ax, y〉 = 〈x,A>y〉 for all x, y ∈ RN.

Consider the following homogeneous adjoint system of (1):{
−p′(t) = A>p(t), t ∈ (0, T)

p(T) = pT
(2)

We have the following equivalent condition for exact controllability.

Lemma

An initial datum x0 ∈ RN of (1) is driven to zero in time T by using a control
u ∈ L2(0, T;RM) if and only if∫ T

0
〈u,B>p〉dt + 〈x0,p(0)〉 = 0, for all pT ∈ RN, (3)

p being the corresponding solution of (2).

25/56



The adjoint problem

PROOF: let pT be arbitrary in RN and p be the corresponding solution of (2). By
multiplying (1) by p and (2) by x, we deduce that

〈x′,p〉 = 〈Ax,p〉+ 〈Bu,p〉 = 〈x,A>p〉+ 〈Bu,p〉

−〈x,p′〉 = 〈A>p, x〉

Hence,

〈x′,p〉+ 〈x,p′〉 =
d
dt
〈x,p〉 = 〈Bu,p〉

which, after integration in time, gives that

〈x(T),pT〉 − 〈x0,p(0)〉 =

∫ T

0
〈Bu,p〉dt =

∫ T

0
〈u,B>p〉dt.

We obtain that x(T) = 0 if and only if (3) is verified for any ϕT ∈ RN .
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The adjoint problem

Identity (3) is in fact an optimality condition for the critical points of the quadratic
functional J : RN → R

J(pT) =
1

2

∫ T

0
|B>p|2 dt + 〈x0,p(0)〉,

where p is the solution of the adjoint system (2) with initial datum pT .

Lemma

Suppose that J has a minimizer p̂T ∈ RN and let p̂ be the solution of the
adjoint system (2) with initial datum ϕ̂T . Then

u = B>p̂

is a control of system (1) with initial datum x0 .
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The adjoint problem

PROOF: if p̂T is a point where J achieves its minimum value, then

lim
h→0

J
(
p̂T + hpT

)
− J

(
p̂T
)

h
= 0, for all pT ∈ RN.

This is equivalent to∫ T

0
〈B>p̂,B>p〉dt + 〈x0,p(0)〉 = 0, for all pT ∈ RN.

In view of the previous lemma, u = B>p̂ is a control for (1).
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The observability inequality

Remark

Minimizing the functional J requires of its coercivity, that is,

lim
|pT |→+∞

J(pT) = +∞

Definition

System (2) is said to be observable in time T > 0 if there exists c > 0 such
that ∫ T

0
|B>p|2 dt ≥ c|p(0)|2, (4)

for all pT ∈ RN, p being the corresponding solution of 2.

In the sequel (4) will be called the observation or observability inequality. It guar-
antees that the solution of the adjoint problem at t = 0 is uniquely determined by the
observed quantity B>p(t) for 0 < t < T .
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The observability inequality

The following result is very important in finite dimensional control.

Proposition

Inequality (4) is equivalent to the following unique continuation principle:

B>p(t) = 0 for all t ∈ [0, T]⇒ pT = 0. (5)

General principle

UNIQUE CONTINUATION
↓

OBSERVABILITY INEQUALITY
↓

CONTROLLABILITY

with a constructive procedure to build controls by minimizing a coercive
functional.
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The Kalman rank condition

What about the observability property? Are there algebraic conditions on the state
matrix A and the control one B for it to be true?

The following classical result is due to Kalman and gives a complete answer to the
problem of exact controllability of finite dimensional linear systems.

Theorem

System (1) is exactly controllable in some time T if and only if

rank
[
B|AB|A2B| · · · |AN−1B

]
= N. (6)
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The Kalman rank condition

PROOF: for simplifying the notation, from now on we will indicate

C :=
[
B|AB|A2B| · · · |AN−1B

]
.

From the variation of constants formula, we know that (1) is controllable at time T if
and only if it holds the identity

eTAx0 +

∫ T

0
e(T−s)ABu(s)ds = xT .

• Without losing generality, we can assume x0 = 0 by eventually changing the
target xT with yT := xT − eTAx0 .

• x0 = 0 → x(T) =

∫ T

0
e(T−s)ABu(s)ds = xT = yT .

Hence xT = yT 6= if and only if B 6= 0.
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The Kalman rank condition

PROOF: we introduce the matrices

F(s) := e(T−s)AB ∈ RN×M and G :=

∫ T

0
F(s)F(s)> ds ∈ RN×N︸ ︷︷ ︸

Controllability Grammian

.

We can easily see that (1) is controllable if and only if G is invertible.

• If G is invertible we can define the control u?(s) := B>e(T−s)A>G−1yT and we
have ∫ T

0
e(T−s)ABu?(s)ds =

∫ T

0
e(T−s)ABB>e(T−s)A>

G−1yT ds

=

∫ T

0
F(s)F(s)>G−1yT ds = GG−1yT = yT .

• If (1) is controllable (B 6= 0)

det(G) =

∫ T

0
det
(
e(T−s)A

)2
det(B)2 ds 6= 0.
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The Kalman rank condition

PROOF: we have that det(G) 6= 0 if and only if the rank condition (6) holds.

• If det(G) = 0, there exists 0 6= v ∈ RN such that v>G = 0. Thus

v>Gv =

∫ T

0
v>F(s)F(s)>v ds = 0,

and this is possible if and only if v>F(s)F(s)>v = 0 for all s ∈ [0, T], since v 7→
v>F(s)F(s)>v is a positive definite quadratic form. In particular, v>F(s) = 0
for all s ∈ [0, T]. Therefore,

0 = v>F(s) = v>e(T−s)AB = v>

I +
∑
k≥1

(T − s)k

k!
Ak

B,

from which we conclude that v>AkB = 0 for all k ≥ 0.
Since we are assuming v 6= 0, the above identities immediately imply that
v>C = 0, i.e. rank(C) < N.
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The Kalman rank condition

PROOF: we have that det(G) 6= 0 if and only if the rank condition (6) holds.

• Finally, let us assume that rank(C) < N. Then, there exists 0 6= v ∈ RN such that
v>C = 0. By definition of C, this implies that

v>AkB = 0 for all k = 0, . . . ,N− 1.

Hamilton-Cayley Theorem: AN = c1AN−1 + c2AN−2 + . . .+ cNI. Hence,

v>ANB = v>
(
c1A

N−1 + c2A
N−2 + . . .+ cNI

)
B

= c1v
>AN−1B + c2c

>AN−2B + . . .+ cNv
>B = 0.

Therefore, v>AkB = 0 for all k ≥ 0, which is equivalent to v>G = 0. Hence G is
singular.
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BANG-BANG CONTROL



Bang-bang control

Let us consider the particular case B ∈ RN×1, i. e. M = 1, in which only one control
u : [0, T]→ R is available and B is a column vector.

L1 quadratic functional

Jbb(pT) =
1

2

[∫ T

0
|B>p|dt

]2
+ 〈x0,p(0)〉 (7)

The same argument as above shows that Jbb is also continuous and coercive. It
follows that Jbb attains a minimum in some point p̂T ∈ RN .
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Bang-bang control

Optimality condition (Euler-Lagrange equation)

∫ T

0

[
sgn(B>p̂)

∫ T

0
|B>p̂|dt

]
B>pdt + 〈x0,p(0)〉 = 0

for all pT ∈ RN, where p is the corresponding solution of (2).

This gives the control

ubb = sgn(B>p̂)ΛT,bb with ΛT,bb =

∫ T

0
|B>p̂|dt,

that is of bang-bang form, and takes only two values ±ΛT,bb switching finitely many
times when the function B>p̂ changes sign. It has minimal L∞(0, T) norm.
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MULTILEVEL CONTROL



Multilevel control

Multilevel controls

Generalization of the concept of bang-bang control. They are piece-wise
constant functions with a finite number o jumps, taking values in a finite-
dimensional set.

U. Biccari and E. Zuazua, Multilevel control by duality, 2022
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Multilevel control

Multilevel control functional

Jml(pT) =

∫ T

0
L(B>p)dt + 〈x0,p(0)〉

L: piece-wise affine interpolation of P(u) = u2 .

For conservative or dissipative dynamics, Jml has a minimizer p̂T,ml provided that the
time horizon T is large enough.

Control

ûml ∈ ∂
(
L(B>p̂T,ml)

)
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Multilevel control

Multilevel control functional

Jml(pT) =
1

2

(∫ T

0
L(B>p)dt

)2

+ 〈x0,p(0)〉

L: piece-wise affine interpolation of P(u) = u2 .

For general dynamics that satisfy the Kalman rank condition, Jml has a minimizer
p̂T,ml for any T > 0.

Control

u∗ml ∈ ΛT,ml∂
(
L(B>p̂ml)

)
with ΛT,ml :=

∫ T

0
L(B>p̂ml(t))dt

Remark

Bang-bang controls are obtainedwhenL(u) = |u|, which interpolatesP(u) =
u2 on the points {−1,0, 1}.
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STABILIZATION



Stabilization

The controls we have obtained so far are the so called open loop controls.
In practice, it is interesting to get closed loop or feedback controls, so that
its value is related in real time with the state itself.

We assume that A is skew-adjoint, i. e. A> = −A. In this case, 〈Ax, x〉 = 0.

Consider the system {
x′ = Ax + Bu
x(0) = x0.

(8)

When u ≡ 0, the energy of the solution of (8) is conserved. Indeed, by multiplying (8)
by x, if u ≡ 0, one obtains

d
dt
|x(t)|2 = 2〈x′(t), x(t)〉 = 2〈Ax(t), x(t)〉 = 0 → |x(t)| = |x0|, for all t ≥ 0.
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Stabilization

Stabilization problem

Suppose that the pair (A,B) is controllable. We then look for a matrix L such
that the solution of system (8) with the feedback control law

u(t) = Lx(t) (9)

has a uniform exponential decay, i.e. there exist c > 0 and ω > 0 such that

|x(t)| ≤ ce−ωt|x0| (10)

for any solution.

Note that, according to the law (9), the control u is obtained in real time from the state
x.
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Stabilization

In other words, we are looking for matrices L such that the solution of the system

x′ = (A + BL)x = Dx (11)

has an uniform exponential decay rate.

Theorem

If A is skew-adjoint and the pair (A,B) is controllable then L = −B> stabilizes
the system, i.e. the solution of{

x′ = Ax − BB>x
x(0) = x0

(12)

has a uniform exponential decay (10).
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Stabilization

PROOF: with L = −B> we obtain that

1

2

d
dt
|x(t)|2 = −〈BB>x(t), x(t)〉 = −|B>x(t)|2 ≤ 0.

Hence, the norm of the solution decreases in time. Moreover,

|x(T)|2 − |x0|2 = −2
∫ T

0
|B>x|2dt. (13)

To prove the uniform exponential decay it is sufficient to show that there
exist T > 0 and c > 0 such that

|x0|2 ≤ c
∫ T

0
|B>x|2 dt (14)

for any solution x of (12).
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Stabilization

Indeed, from (13) and (14) we would obtain that

|x(T)|2 − |x0|2 ≤ −
2

c
|x(0)|2 → |x(T)|2 ≤ γ|x0|2 with γ = 1−

2

c
< 1.

Hence, since γ < 1

|x(kT)|2 ≤ γk|x0|2 = ek ln(γ)|x0|2 = e−k| ln(γ)||x0|2, for all k ∈ N.

Now, given any t > 0 we write it in the form t = kT + δ, with δ ∈ [0, T) and k ∈ N and
we obtain that

|x(t)|2 ≤ |x(kT)|2 ≤ e−k| ln(γ)||x0|2

= e−( t
T )| ln(γ)|e

δ
T | ln(γ)||x0|2 ≤

1

γ
e−

| ln(γ)|
T t|x0|2.

We have obtained the desired decay result (10) with

c =
1

γ
and ω =

| ln(γ)|
T

.
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Stabilization

To prove (14) we decompose the solution x of (12) as x = ϕ+ y with ϕ and y solutions
of the following systems: {

ϕ′ = Aϕ
ϕ(0) = x0

(15)

and {
y′ = Ay − BB>x
y(0) = 0.

(16)

Remark

Since A is skew-adjoint, (15) is exactly the adjoint system (2) except for the
fact that the initial datum is taken at t = 0.
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Stabilization

The pair (A,B) being controllable, the following observability inequality holds for
system (15):

|x0|2 ≤ C
∫ T

0
|B>ϕ|2 dt. (17)

Since ϕ = x − y we deduce that

|x0|2 ≤ 2C
[∫ T

0
|B>x|2 dt +

∫ T

0
|B>y|2 dt

]
.
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Stabilization

On the other hand, it is easy to show that the solution y of (16) satisfies

1
2
d
dt
|y(t)|2 = −〈B>x(t),B>y(t)〉

≤ |B>x(t)| |B>| |y(t)| ≤ 1
2

(
|y(t)|2 + |B>|2|B>x(t)|2

)
.

From Gronwall’s inequality we deduce that

|y(t)|2 ≤ |B>|2
∫ t

0
et−s|B>x(s)|2 ds ≤ |B>|2eT

∫ T

0
|B>x(s)|2 ds

and consequently∫ T

0
|B>y(t)|2 dt ≤ |B|2

∫ T

0
|y(t)|2 dt ≤ T|B|4eT

∫ T

0
|B>x(t)|2 dt.

Finally, we obtain that

|x0|2 ≤ 2C
∫ T

0
|B>x(t)|2 dt+ C|B>|4TeT

∫ T

0
|B>x(t)|2 dt ≤ C

∫ T

0
|B>x(t)|2 dt.
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Example

Damped harmonic oscillator

mx′′ + Rx + kx′ = 0, (18)

wherem, k and R are positive constants.

Note that (18) may be written in the equivalent form

mx′′ + Rx = −kx′

which indicates that an applied force, proportional to the velocity of the point-mass
and of opposite sign, is acting on the oscillator.
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Example

It is easy to see that the solutions of this equation have an exponential decay property.
Indeed, it is sufficient to remark that the two characteristic roots have negative real
part.

Damped harmonic oscillator

mr2 + R + kr = 0 ⇔ r± =
−k±

√
k2 − 4mR
2m

and therefore

<(r±) =

{
− k

2m if k2 ≤ 4mR

− k
2m ±

√
k2
4m −

R
2m if k2 ≥ 4mR

We observe here the classical overdamping phenomenon. Contradicting a first
intuition it is not true that the decay rate increases when the value of the damping
parameter k increases.
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