CONTROL AND OPTIMIZATION FOR NON-LOCAL AND FRACTIONAL DIFFERENTIAL EQUATIONS

Umberto Biccari and Enrique Zuazua

Chair of Computational Mathematics, Bilbao, Basque Country, Spain
Chair for Dynamics, Control and Numerics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
Universidad Autónoma de Madrid, Spain.
umberto.biccari@deusto.es
cmc.deusto.es

```
enrique.zuazua@fau.de
dcn.nat.fau.eu
```


PART I: introduction to control theory

LECTURE 2: infinite-dimensional control systems

EALUS

Interstuitet von/ Supported by

Universidad Autónoma de Madrid

INFINITE-DIMENSIONAL LINEAR CONTROL

Infinite-dimensional control

Linear infinite-dimensional control problem

$$
\left\{\begin{array}{l}
x^{\prime}(t)=A x(t)+B u(t), \quad t \in(0, T) \tag{1}\\
x(0)=x_{0}
\end{array}\right.
$$

- $A: \mathcal{D}(A) \subseteq H \rightarrow H$: linear operator generating a strongly continuous semi-group $S(t)_{t \geq 0}$.
- $B \in \mathcal{L}(U ; \mathcal{D}(A))$: control operator.
- $\left(H,\langle\cdot, \cdot\rangle_{H}\right)$ and $\left(U,\langle\cdot, \cdot\rangle_{U}\right)$ Hilbert spaces.
- $x_{0} \in H$.

Infinite-dimensional control

Well-posedness

Under the admissibility condition

$$
\int_{0}^{T}\left\|B^{*}(t) S^{*}(t) z\right\|_{U}^{2} d t \leq C_{T}\|z\|_{H}^{2}, \quad \text { for all } z \in \mathcal{D}\left(A^{*}\right)
$$

the Cauchy problem (1) is well-posed in the sense of Hadamard, i.e., for every $x_{0} \in H$ and $u \in L^{2}(0, T ; U)$ there exists a unique solution $x \in C([0, T] ; H)$ satisfying (1). Moreover,

$$
\|x\|_{C([0, T] ; H)} \leq C\left(\left\|x_{0}\right\|_{H}+\|u\|_{L^{2}(0, T ; U)}\right)
$$

for a positive constant $C>0$ depending on T, A and B.

Controllability notions

Exact controllability

System (1) is exactly controllable at time T if, for any $x_{0}, x_{T} \in H$, there exists $u \in L^{2}(0, T ; U)$ such that the corresponding solution x fulfills $x(T)=x_{T}$.

According to this definition the aim of exact controllability consists in driving the solution x of (1) from the initial state x_{0} to the final one x_{T} in time T by acting on the system through
 the control u.

Controllability notions

Null controllability

System (1) is null controllable at time T if, for any $x_{0} \in H$, there exists $u \in L^{2}(0, T ; U)$ such that the corresponding solution x fulfills $x(T)=0$.

According to this definition the aim of null controllability consists in driving the solution x of (1) from the initial state x_{0} to zero in time T by acting on the system through the con-
 trol u.

Controllability notions

Approximate controllability

System (1) is approximately controllable at time T if, for any $x_{0}, x_{T} \in H$ and any $\varepsilon>0$, there exists $u \in L^{2}(0, T ; U)$ such that the corresponding solution x fulfills $\left\|x(T)-x_{T}\right\|_{H}<\varepsilon$.

According to this definition the aim of approximate controllability consists in driving the solution x of (1) in time T from the initial state x_{0} to a final one $x(T)$ which is ε-close to x_{T} by acting on the system through the control u.

Controllability notions

Controllability to trajectories

System (1) is exactly controllable to trajectory at time T if, for any $x_{0} \in H$ and any solution \hat{x} of (1) with $\hat{x}(0)=\hat{x}_{0} \in H$ and some given \hat{u}, there exists a control $u \in L^{2}(0, T ; U)$ such that the corresponding solution x fulfills $x(T)=$ $\hat{x}(T)$.

According to this definition the aim of controllability to trajectories consists in driving the solution x of (1) in time T from the initial state x_{0} to match a particular solution $\hat{x}(T)$ by acting on the system
 through the control u.

The reachable set

Set of reachable states

$$
R\left(T, x_{0}\right)=\left\{x(T) \in H: x \text { solution of }(1) \text { with } u \in\left(L^{2}(0, T) ; U\right)\right\} .
$$

Remark

$R\left(T, x_{0}\right)$ is a convex subset of H.

The controllability notions previously introduced can be redefined through the reachable set

Exact controllability: $R\left(T, x_{0}\right)=H$ for any $x_{0} \in H$.
Null controllability: $0 \in R\left(T, x_{0}\right)$ for any $x_{0} \in H$.
Approximate controllability: $R\left(T, x_{0}\right)$ is dense in H for any $x_{0} \in H$.

ATTENTION!

In infinite-dimensional control, exact controllability, null controllability and approximate controllability are not equivalent in general.

THE OBSERVABILITY PROPERTY

The adjoint problem

Let A^{*} be the adjoint A, i.e. the operator such that

$$
\langle A x, y\rangle=\left\langle x, A^{*} y\right\rangle \quad \text { for all } x, y \in H .
$$

Consider the following homogeneous adjoint system of (1):

$$
\left\{\begin{array}{l}
-p^{\prime}(t)=A^{*} p(t), \quad t \in(0, T) \tag{2}\\
p(T)=p_{T}
\end{array}\right.
$$

We have the following equivalent condition for exact controllability.

Lemma

An initial datum $x_{0} \in H$ of (1) is driven to zero in time T by using a control $u \in L^{2}(O, T ; U)$ if and only if

$$
\begin{equation*}
\int_{0}^{T}\left\langle u, B^{*} p\right\rangle d t+\left\langle x_{0}, p(0)\right\rangle=0, \quad \text { for all } p_{T} \in H \tag{3}
\end{equation*}
$$

p being the corresponding solution of (2).

The adjoint problem

Identity (3) is in fact an optimality condition for the critical points of the quadratic functional $J: H \rightarrow \mathbb{R}$

$$
J\left(p_{T}\right)=\frac{1}{2} \int_{0}^{T}\left|B^{*} p\right|^{2} d t+\left\langle x_{0}, p(0)\right\rangle
$$

where p is the solution of the adjoint system (2) with initial datum p_{T}.

Lemma

Suppose that J has a minimizer $\widehat{p}_{T} \in H$ and let \widehat{p} be the solution of the adjoint system (2) with initial datum $\widehat{\varphi}_{T}$. Then

$$
u=B^{*} \widehat{p}
$$

is a control of system (1) with initial datum x_{0}.

The observability inequality

Remark

Minimizing the functional J requires of its coercivity, that is,

$$
\lim _{\left|p_{T}\right| \rightarrow+\infty} J\left(p_{T}\right)=+\infty
$$

Definition

System (2) is said to be observable in time $T>0$ if there exists $c>0$ such that

$$
\int_{0}^{T}\left|B^{*} p\right|^{2} d t \geq c|p(0)|^{2}
$$

for all $p_{T} \in H_{1} p$ being the corresponding solution of 2 .

In the sequel (4) will be called the observation or observability inequality. It guarantees that the solution of the adjoint problem at $t=0$ is uniquely determined by the observed quantity $B^{*} p(t)$ for $\mathrm{O}<t<T$.

THE WAVE EQUATION

Controllability of the wave equation

Let $N \geq 1$ and $T>0, \Omega$ be a bounded domain of \mathbb{R}^{N} with smooth boundary, $Q=$ $(0, T) \times \Omega$ and $\Sigma=(0, T) \times \partial \Omega$.

Controlled wave equation - interior control

$$
\begin{cases}y_{t t}-\Delta y=u \chi_{\omega} & \text { in } Q \tag{5}\\ y=0 & \text { on } \Sigma \\ y(x, 0)=y_{0}(x), y_{t}(x, 0)=y_{1}(x) & \text { in } \Omega\end{cases}
$$

χ_{ω} denotes the characteristic function of the subset $\omega \subset \Omega$ where the control is active.

We assume that $\left(y_{0}, y_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ and $u \in L^{2}(Q)$ so that (5) admits a unique weak solution

$$
\left(y, y_{t}\right) \in C\left([0, T] ; H_{0}^{1}(\Omega) \times L^{2}(\Omega)\right)
$$

given by the variation of constants formula

$$
\begin{equation*}
\left(y, y_{t}\right)(t)=S(t)\left(y_{0}, y_{1}\right)+\int_{0}^{t} S(t-s)\left(0, u(s) \chi_{\omega}\right) d s \tag{6}
\end{equation*}
$$

Controllability of the wave equation

Remark

The wave equation is reversible in time. Hence, we may solve it for $t \in(O, T)$ by considering initial data $\left(y_{0}, y_{1}\right)$ in $t=0$ or final data $\left(y_{0, T}, y_{1, T}\right)$ in $t=T$. In the former case the solution is given by (6) and in the latter one by

$$
\left(y, y_{t}\right)(t)=S(T-t)\left(y_{0, T}, y_{1, T}\right)+\int_{T-t}^{T} S(s-T+t)\left(0, u(s) \chi_{\omega}\right) d s
$$

Controllability of the wave equation

Let $N \geq 1$ and $T>0, \Omega$ be a bounded open set of \mathbb{R}^{N} with smooth boundary $\Gamma:=\partial \Omega$, and let Γ_{0} be an open nonempty subset of Γ. Denote $Q:=\Omega \times(0, T)$ and $\Sigma:=\partial \Omega \times(0, T)$.

Controlled wave equation - boundary control

$$
\begin{cases}y_{t t}-\Delta y=0 & \text { in } Q \tag{7}\\ y=u \chi_{\Gamma_{0}} & \text { on } \Sigma \\ y(x, 0)=y_{0}(x), y_{t}(x, 0)=y_{1}(x) & \text { in } \Omega\end{cases}
$$

$\chi_{\Gamma_{0}}$ denotes the characteristic function of the subset $\Gamma_{0} \subset \Gamma$ where the control is active.

We assume that $\left(y_{0}, y_{1}\right) \in L^{2}(\Omega) \times H^{-1}(\Omega)$ and $u \in L^{2}(\Sigma)$ so that (7) admits a unique very weak solution defined by transposition

$$
\left(y, y_{t}\right) \in C\left([0, T] ; L^{2}(\Omega) \times H^{-1}(\Omega)\right)
$$

Controllability of the wave equation

EXACT CONTROLLABILITY: to find a control function u such that $\left(y(\cdot, T), y_{t}(\cdot, T)\right)=$ (y_{T}, y_{T}^{\prime}) in Ω.
NULL CONTROLLABILITY: to find a control function u such that $y(\cdot, T)=y_{T}(\cdot, T)=0$ in Ω.

In view of the reversibility, exact and null controllability are equivalent concepts in the context of the wave equation.

Proposition

System (7) is exactly controllable if and only if it is null controllable.

PROOF: exact controllability of (7) implies null controllability since, clearly, (0,0) \in $L^{2}(\Omega) \times H^{-1}(\Omega)$.

Controllability of the wave equation

In view of the reversibility, exact and null controllability are equivalent concepts in the context of the wave equation.

Proposition

System (7) is exactly controllable if and only if it is null controllable.

PROOF: suppose now that (7) is null controllable, i.e., $(0,0) \in R\left(T ;\left(y_{0}, y_{1}\right)\right)$ for any initial datum $\left(y_{0}, y_{1}\right) \in L^{2}(\Omega) \times H^{-1}(\Omega)$. It follows that any initial datum in $L^{2}(\Omega) \times$ $H^{-1}(\Omega)$ can be driven to (O, O) in time T by the control u.
Since the wave equation is time-reversible, we deduce that any state in $L^{2}(\Omega) \times H^{-1}(\Omega)$ can be reached in time T by starting from (O, O). This means that $R(T,(\mathrm{O}, \mathrm{O}))=$ $L^{2}(\Omega) \times H^{-1}(\Omega)$.
Moreover, the linearity of (7) implies that

$$
R\left(T ;\left(y_{0}, y_{1}\right)\right)=R(T ;(0,0))+S(T)\left(y_{0}, y_{1}\right) .
$$

The exact controllability property holds from these two facts.

The adjoint problem

Adjoint system

$$
\begin{cases}p_{t t}-\Delta p=0, & \text { in } Q \tag{8}\\ p=0, & \text { on } \Sigma \\ p(x, 0)=p_{0}(x), \quad p_{t}(x, 0)=p_{1}(x), & \text { in } \Omega\end{cases}
$$

Recall that, for any initial datum $\left(p_{0}, p_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$, (8) admits a unique weak solution $\left(p, p_{t}\right) \in C\left([0, T] ; H_{0}^{1}(\Omega) \times L^{2}(\Omega)\right)$.

Moreover, the energy

$$
E(t)=\frac{1}{2} \int_{\Omega}\left(\left|p_{t}(x, t)\right|^{2}+|\nabla p(x, t)|^{2}\right) d x
$$

is conserved in time:

$$
\begin{gathered}
\frac{d}{d t} E(t)=0 \\
\downarrow \\
E(t)=E(0)=\frac{1}{2} \int_{\Omega}\left(\left|p_{1}\right|^{2}+\left|\nabla p_{0}\right|^{2}\right) d x \sim\left\|p_{0}\right\|_{H_{0}^{1}(\Omega)}+\left\|p_{1}\right\|_{L^{2}(\Omega)} .
\end{gathered}
$$

The adjoint problem

For all $\left(p_{0}, p_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ and $\left(y_{0}, y_{1}\right) \in L^{2}(\Omega) \times H^{-1}(\Omega)$, we shall introduce the duality product

$$
\left\langle\left(p_{0}, p_{1}\right),\left(y_{0}, y_{1}\right)\right\rangle:=\int_{\Omega} p_{1} y_{0} d x-\left\langle y_{1}, p_{0}\right\rangle_{1,-1}
$$

where with $\langle\cdot, \cdot\rangle_{1-1}$ we indicate the duality pairing between $H_{0}^{1}(\Omega)$ and $H^{-1}(\Omega)$.
We have the following equivalent condition for boundary controllability.

Lemma

An initial datum $\left(y_{0}, y_{1}\right) \in L^{2}(\Omega) \times H^{-1}(\Omega)$ in (7) is controllable to zero if and only if there exists $u \in L^{2}\left((0, T) \times \Gamma_{0}\right)$ such that

$$
\begin{equation*}
\int_{0}^{T} \int_{\Gamma_{0}} \frac{\partial p}{\partial \nu} u d \sigma d t+\left\langle\left(p_{0}, p_{1}\right),\left(y_{0}, y_{1}\right)\right\rangle=0 \tag{9}
\end{equation*}
$$

for all $\left(p_{0}, p_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ and where p is the solution of (8).

The adjoint problem

Identity (11) is in fact an optimality condition for the critical points of the quadratic functional $J: H_{0}^{1}(\Omega) \times L^{2}(\Omega) \rightarrow \mathbb{R}$

$$
J\left(p_{0}, p_{1}\right)=\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}}\left(\frac{\partial p}{\partial \nu}\right)^{2} d \sigma d t+\left\langle\left(p_{0}, p_{1}\right),\left(y_{0}, y_{1}\right)\right\rangle,
$$

where p is the solution of the adjoint system (8) with initial datum $\left(p_{0}, p_{1}\right)$.

Lemma

Suppose that J has a minimizer $\left(\widehat{p}_{0}, \widehat{p}_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ and let \widehat{p} be the solution of the adjoint system (8) with initial datum ($\widehat{p}_{0}, \widehat{p}_{1}$). Then

$$
u=\left.\frac{\partial \widehat{p}}{\partial \nu}\right|_{\Gamma_{0}}
$$

is a control of system (7) with initial datum $\left(y_{0}, y_{1}\right) \in L^{2}(\Omega) \times H^{-1}(\Omega)$.

The observability inequality

Minimizing the functional J requires of its coercivity, that is given by the observability inequality

$$
\begin{equation*}
E(0) \sim\left\|p_{0}\right\|_{H_{0}^{1}(\Omega)}^{2}+\left\|p_{1}\right\|_{L^{2}(\Omega)}^{2} \leq C \int_{0}^{T} \int_{\Gamma_{0}}\left(\frac{\partial p}{\partial \nu}\right)^{2} d \sigma d t . \tag{10}
\end{equation*}
$$

The adjoint problem

For the case of interior controllability we have a similar situation.

Lemma

An initial datum $\left(y_{0}, y_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ in (5) is controllable to zero if and only if there exists $u \in L^{2}(\omega)$ such that

$$
\begin{equation*}
\int_{0}^{T} \int_{\omega} p u d x d t+\int_{\Omega} p_{0} y_{1} d x-\left\langle y_{0}, p_{1}\right\rangle_{1,-1}=0 \tag{11}
\end{equation*}
$$

for all $\left(p_{0}, p_{1}\right) \in L^{2}(\Omega) \times H^{-1}(\Omega)$ and where p is the solution of (8).

The adjoint problem

Identity (11) is in fact an optimality condition for the critical points of the quadratic functional $J: H_{0}^{1}(\Omega) \times L^{2}(\Omega) \rightarrow \mathbb{R}$

$$
J\left(p_{0}, p_{1}\right)=\frac{1}{2} \int_{0}^{T} \int_{\omega}|p|^{2} d x d t+\int_{\Omega} p_{0} y_{1} d x-\left\langle y_{0}, p_{1}\right\rangle_{1,-1}
$$

where p is the solution of the adjoint system (8) with initial datum (p_{0}, p_{1}).

Lemma

Suppose that J has a minimizer $\left(\widehat{p}_{0}, \widehat{p}_{1}\right) \in L^{2}(\Omega) \times H^{-1}(\Omega)$ and let \widehat{p} be the solution of the adjoint system (8) with initial datum ($\widehat{p}_{0}, \widehat{p}_{1}$). Then

$$
u=\left.p\right|_{\omega}
$$

is a control of system (5) with initial datum $\left(y_{0}, y_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$.

The observability inequality

Minimizing the functional J requires of its coercivity, that is given by the observability inequality

$$
\begin{equation*}
\left\|p_{0}\right\|_{L^{2}(\Omega)}^{2}+\left\|p_{1}\right\|_{H^{-1}(\Omega)}^{2} \leq C \int_{0}^{T} \int_{\omega}|p|^{2} d x d t . \tag{12}
\end{equation*}
$$

The observability inequality

There are several ways of proving the observability inequalities (10) and (12). The most classical ones are the following.

Space-dimension $N=1$
\triangleright Ingham's inequalities
Space-dimension $N \geq 1$
\triangleright Multiplier method

INGHAM'S INEQUALITIES

Ingham's inequalities

Theorem

Let $\left(\lambda_{k}\right)_{k \in \mathbb{Z}}$ be a sequence of real numbers and $\gamma>0$ be such that $\lambda_{k+1}-$ $\lambda_{k} \geq \gamma>0$, for all $k \in \mathbb{Z}$. Then, for any real $T>\pi / \gamma$, there exists a positive constant $\mathcal{C}=\mathcal{C}(T, \gamma)>0$ such that, for any finite sequence $\left(a_{k}\right)_{k \in \mathbb{Z}}$.

$$
\mathcal{C} \sum_{k \in \mathbb{Z}}\left|a_{k}\right|^{2} \leq \int_{-T}^{T}\left|\sum_{k \in \mathbb{Z}} a_{k} e^{i \lambda_{k} t}\right|^{2} d t
$$

Ingham's inequalities

PROOF: first of all, notice that we can reduce the problem to the case $T=\pi$ and $\gamma>1$ since, if $T \gamma>\pi$, then the change of variables $s=(T / \pi) t$ yields

$$
\int_{-T}^{T}\left|\sum_{k \in \mathbb{Z}} a_{k} e^{i \lambda_{k} t}\right|^{2} d t=\frac{T}{\pi} \int_{-\pi}^{\pi}\left|\sum_{k \in \mathbb{Z}} a_{k} e^{i \mu_{k} s}\right|^{2} d s
$$

where

$$
\begin{aligned}
& \mu_{k}:=\frac{T \lambda_{k}}{\pi} \\
& \mu_{k+1}-\mu_{k}=\frac{T}{\pi}\left(\lambda_{k+1}-\lambda_{k}\right) \geq \gamma_{1}:=\frac{T \gamma}{\pi}>1 .
\end{aligned}
$$

Hence, it will be sufficient to prove the existence of another positive constant (still denoted by \mathcal{C}) such that

$$
\sum_{k \in \mathbb{Z}}\left|a_{k}\right|^{2} \leq \mathcal{C} \int_{-\pi}^{\pi}\left|\sum_{k \in \mathbb{Z}} a_{k} e^{i \mu_{k} t}\right|^{2} d t
$$

Ingham's inequalities

PROOF: consider now the function $h: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
h(t)= \begin{cases}\cos \left(\frac{t}{2}\right), & \text { if }|t| \leq \pi \\ 0, & \text { if }|t|>\pi\end{cases}
$$

whose Fourier transform is given by

$$
H(\xi)=\int_{-\infty}^{\infty} h(t) e^{i \xi t} d t=\frac{4 \cos (\pi \xi)}{1-4 \xi^{2}}
$$

Ingham's inequalities

PROOF: since $0 \leq h(t) \leq 1$ for all $t \in[-\pi, \pi]$ and $H(\xi)$ is an even function, we have that

$$
\begin{aligned}
\int_{-\pi}^{\pi}\left|\sum_{k \in \mathbb{Z}} a_{k} e^{i \mu_{k} t}\right|^{2} d t & \geq \int_{-\pi}^{\pi} h(t)\left|\sum_{k \in \mathbb{Z}} a_{k} e^{i \mu_{k} t}\right|^{2} d t=\int_{-\pi}^{\pi} h(t) \sum_{k, \ell \in \mathbb{Z}} a_{k} \bar{a}_{\ell} e^{i\left(\mu_{k}-\mu_{\ell}\right) t} d t \\
& =\sum_{k, \ell \in \mathbb{Z}} a_{k} \bar{a}_{\ell} H\left(\mu_{k}-\mu_{\ell}\right)=H(0) \sum_{k \in \mathbb{Z}}\left|a_{k}\right|^{2}+\sum_{k \neq \ell} a_{k} \bar{a}_{\ell} H\left(\mu_{k}-\mu_{\ell}\right) \\
& \geq 4 \sum_{k \in \mathbb{Z}}\left|a_{k}\right|^{2}-\frac{1}{2} \sum_{k \neq \ell}\left(\left|a_{k}\right|^{2}+\left|a_{\ell}\right|^{2}\right)\left|H\left(\mu_{k}-\mu_{\ell}\right)\right| \\
& =4 \sum_{k \in \mathbb{Z}}\left|a_{k}\right|^{2}-\sum_{k \in \mathbb{Z}}\left|a_{k}\right|^{2} \sum_{k \neq \ell}\left|H\left(\mu_{k}-\mu_{\ell}\right)\right|
\end{aligned}
$$

Ingham's inequalities

PROOF: on the other hand,

$$
\begin{aligned}
\sum_{k \neq \ell}\left|H\left(\mu_{k}-\mu_{\ell}\right)\right| & \leq \sum_{k \neq \ell} \frac{4}{4\left|\mu_{k}-\mu_{\ell}\right|^{2}-1} \leq \sum_{k \neq \ell} \frac{4}{4 \gamma_{1}^{2}|k-\ell|^{2}-1} \\
& =\sum_{r \geq 1} \frac{8}{4 \gamma_{1}^{2} r^{2}-1} \leq \frac{8}{\gamma_{1}^{2}} \sum_{r \geq 1} \frac{1}{4 r^{2}-1}=\frac{4}{\gamma_{1}^{2}}
\end{aligned}
$$

Therefore,

$$
\int_{-\pi}^{\pi}\left|\sum_{k \in \mathbb{Z}} a_{k} e^{i \mu_{k} t}\right|^{2} d t \geq\left(4-\frac{4}{\gamma_{1}^{2}}\right) \sum_{k \in \mathbb{Z}}\left|a_{k}\right|^{2}
$$

and the proof is concluded by taking

$$
\mathcal{C}=\frac{T}{\pi}\left(4-\frac{4}{\gamma_{1}^{2}}\right)=\frac{4 \pi}{T}\left(T^{2}-\frac{\pi^{2}}{\gamma^{2}}\right) .
$$

Notice that the assumption $T>\pi / \gamma$ is necessary for the positivity of \mathcal{C}.

Ingham's inequalities

Theorem

Let $\left(\lambda_{k}\right)_{k \in \mathbb{Z}}$ be a sequence of real numbers and $\gamma>0$ be such that $\lambda_{k+1}-$ $\lambda_{k} \geq \gamma>0$, for all $k \in \mathbb{Z}$. Then, for any real $T>0$, there exists a positive constant $\mathcal{C}=\mathcal{C}(T, \gamma)>0$ such that, for any finite sequence $\left(a_{k}\right)_{k \in \mathbb{Z}}$.

$$
\begin{equation*}
\int_{-T}^{T}\left|\sum_{k \in \mathbb{Z}} a_{k} e^{i \lambda_{k} t}\right|^{2} d t \leq \mathcal{C} \sum_{k \in \mathbb{Z}}\left|a_{k}\right|^{2} \tag{14}
\end{equation*}
$$

Ingham's inequalities

PROOF: let us first consider the case $T \gamma \geq \pi / 2$, and notice that, as in the proof of the previous theorem, we can reduce the problem to $T=\pi / 2$ and $\gamma \geq 1$. Indeed

$$
\int_{-T}^{T}\left|\sum_{k \in \mathbb{Z}} a_{k} e^{i \lambda_{k} t}\right|^{2} d t=\frac{2 T}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left|\sum_{k \in \mathbb{Z}} a_{k} e^{i \mu_{k} s}\right|^{2} d s
$$

where

$$
\begin{aligned}
& \mu_{k}:=\frac{2 T \lambda_{k}}{\pi} \\
& \mu_{k+1}-\mu_{k}=\frac{2 T}{\pi}\left(\lambda_{k+1}-\lambda_{k}\right) \geq \gamma_{1}:=\frac{2 T \gamma}{\pi}>1 .
\end{aligned}
$$

Ingham's inequalities

PROOF: let $h(t)$ be the function introduced in the previous theorem. Since $\sqrt{2} / 2 \leq$ $h(t) \leq 1$ for all $t \in[-\pi / 2, \pi / 2]$, we obtain that

$$
\begin{aligned}
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left|\sum_{k \in \mathbb{Z}} a_{k} e^{i \mu_{k} t}\right|^{2} d t & \leq 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} h(t)\left|\sum_{k \in \mathbb{Z}} a_{k} e^{i \mu_{k} t}\right|^{2} d t \leq 2 \int_{-\pi}^{\pi} h(t)\left|\sum_{k \in \mathbb{Z}} a_{k} e^{i \mu_{k} t}\right|^{2} d t \\
& =2 \sum_{k, \ell \in \mathbb{Z}} a_{k} \bar{a}_{\ell} H\left(\mu_{k}-\mu_{\ell}\right)=8 \sum_{k \in \mathbb{Z}}\left|a_{k}\right|^{2}+2 \sum_{k \neq \ell} a_{k} \bar{a}_{\ell} H\left(\mu_{k}-\mu_{\ell}\right) \\
& \leq 8 \sum_{k \in \mathbb{Z}}\left|a_{k}\right|^{2}+\sum_{k \neq \ell}\left(\left|a_{k}\right|^{2}+\left|a_{\ell}\right|^{2}\right)\left|H\left(\mu_{k}-\mu_{\ell}\right)\right| \\
& \leq 8\left(1+\frac{1}{\gamma_{1}^{2}}\right) \sum_{k \in \mathbb{Z}}\left|a_{k}\right|^{2},
\end{aligned}
$$

where we used the fact that

$$
\sum_{k \neq \ell}\left|H\left(\mu_{k}-\mu_{\ell}\right)\right|<\frac{4}{\gamma_{1}^{2}}
$$

Then, (14) follows immediately with

$$
\mathcal{C}=8\left(\frac{4 T^{2}}{\pi^{2}}+\frac{1}{\gamma^{2}}\right)
$$

Ingham's inequalities

PROOF: when $T \gamma<\pi / 2$, instead, we have that

$$
\int_{-T}^{T}\left|\sum_{k \in \mathbb{Z}} a_{k} e^{i \lambda_{k} t}\right|^{2} d t=\frac{1}{\gamma} \int_{-T \gamma}^{T \gamma}\left|\sum_{k \in \mathbb{Z}} a_{k} e^{i \frac{\lambda_{k}}{\gamma} s}\right|^{2} d s \leq \frac{1}{\gamma} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left|\sum_{k \in \mathbb{Z}} a_{k} e^{i \frac{\lambda_{k}}{\gamma} s}\right|^{2} d s
$$

Moreover, since $\left(\lambda_{k+1}-\lambda_{k}\right) / \gamma \geq 1$ from the analysis of the previous case we obtain

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left|\sum_{k \in \mathbb{Z}} a_{k} e^{i \frac{\lambda_{k}}{\gamma} s}\right|^{2} d s \leq 16 \sum_{k \in \mathbb{Z}}\left|a_{k}\right|^{2}
$$

and (14) follows with

$$
\mathcal{C}=\frac{16}{\gamma}
$$

Joining the two cases, we finally obtain that (14) holds for all $T>0$ with

$$
\mathcal{C}=8 \max \left\{\frac{4 T^{2}}{\pi^{2}}+\frac{1}{\gamma^{2}}, \frac{2}{\gamma}\right\} .
$$

Remarks on Ingham's inequalities

Remark

Notice that (14) holds for all $T>0$ while, instead, (13) requires the length T of the time interval to be sufficiently large, depending on the gap γ between two consecutive exponents λ_{k}. In view of that, when the gap becomes small the value of T must increase proportionally.

Remark

The constant \mathcal{C} in (13) blows-up when T goes to π / γ. In this critical case, the inequality may hold or not, depending on the particular family of exponential functions.

Remarks on Ingham's inequalities

Remark

The length T of the time interval in (13) does not depend on the smallest distance between two consecutive exponents but on the asymptotic gap defined by

$$
\begin{equation*}
\gamma_{\infty}=\liminf _{|k| \rightarrow+\infty}\left|\lambda_{k+1}-\lambda_{k}\right| . \tag{15}
\end{equation*}
$$

An induction argument due to A. Haraux allows to give an Ingham-type inequality in which condition the gap condition for γ is replaced by a similar one for γ_{∞}.

Remarks on Ingham's inequalities

Theorem

Let $\left(\lambda_{k}\right)_{k \in \mathbb{Z}}$ be an increasing sequence of real numbers such that $\lambda_{k+1}-\lambda_{k} \geq$ $\gamma>0$ for any $k \in \mathbb{Z}$, and let $\gamma_{\infty}>0$ be given by (15). Then, for any real $T>\pi / \gamma_{\infty}$ there exist two positive constants $\mathcal{C}_{1}, \mathcal{C}_{2}>0$ such that, for any finite sequence $\left(a_{k}\right)_{k \in \mathbb{Z}}$.

$$
\begin{equation*}
\mathcal{C}_{1} \sum_{k \in \mathbb{Z}}\left|a_{k}\right|^{2} \leq \int_{-T}^{T}\left|\sum_{k \in \mathbb{Z}} a_{k} e^{i \lambda_{k} t}\right|^{2} d t \leq \mathcal{C}_{2} \sum_{k \in \mathbb{Z}}\left|a_{k}\right|^{2} \tag{16}
\end{equation*}
$$

Spectral analysis for the wave operator

We give here a Fourier expansion for the solutions of the one-dimensional wave equation

$$
\begin{cases}p_{t t}-p_{x x}=0, & (x, t) \in(0,1) \times(0, T) \tag{17}\\ p(0, t)=p(1, t)=0, & t \in(0, T) \\ p(x, 0)=p_{0}(x), \quad p_{t}(x, 0)=p_{1}(x), & x \in(0,1)\end{cases}
$$

as a preliminary tool for obtaining observability properties by means of the Ingham's inequalities previously presented.

Spectral analysis for the wave operator

Let us firstly remark that (17) can be rewritten as an abstract Cauchy problem

$$
\begin{cases}\Phi_{t}+A \Phi=0, & (x, t) \in(0,1) \times(0, T) \tag{18}\\ \Phi(x, 0)=\Phi_{0}(x), & x \in(0,1)\end{cases}
$$

where $\Phi=\left(p, p_{t}\right)^{\top}, \Phi_{0}=\left(p_{0}, p_{1}\right)^{\top}$ and A is the unbounded operator in $H:=$ $L^{2}(0,1) \times H^{-1}(0,1), A: \mathcal{D}(A) \subset H \rightarrow H$, defined by

$$
\mathcal{D}(A)=H_{0}^{1}(0,1) \times L^{2}(0,1), \quad A=\left(\begin{array}{cc}
0 & -1 \\
-\partial_{x}^{2} & 0
\end{array}\right)
$$

A is an isomorphism from $H_{0}^{1}(0,1) \times L^{2}(0,1)$ to $L^{2}(0,1) \times H^{-1}(0,1)$.

Spectral analysis for the wave operator

Lemma

The eigenvalues of A are $\lambda_{k}=i k \pi, k \in \mathbb{Z}^{*}$. The corresponding eigenfunctions are given by

$$
\begin{equation*}
\Phi_{k}=\left(\frac{1}{\lambda_{k}},-1\right)^{\top} \sin (k \pi x), \quad k \in \mathbb{Z}^{*} \tag{19}
\end{equation*}
$$

and form an orthonormal basis in $H_{0}^{1}(0,1) \times L^{2}(0,1)$.

Spectral analysis for the wave operator

Since $\left(\Phi_{k}\right)_{k \in \mathbb{Z}^{*}}$ is an orthonormal basis in $H_{0}^{1}(0,1) \times L^{2}(0,1)$ and A is an isomorphism from $H_{0}^{1}(0,1) \times L^{2}(0,1)$ to $L^{2}(0,1) \times H^{-1}(0,1)$, we have that also $\left(A\left(\Phi_{k}\right)\right)_{k \in \mathbb{Z}^{*}}$ is an orthonormal basis in $L^{2}(0,1) \times H^{-1}(0,1)$. Moreover $\left(\lambda_{k} \Phi_{k}\right)_{k \in \mathbb{Z}^{*}}$ is an orthonormal basis in $L^{2}(0,1) \times H^{-1}(0,1)$, and we have that

- $\Phi=\sum_{k \in \mathbb{Z}^{*}} a_{k} \Phi_{k} \in H_{0}^{1}(0,1) \times L^{2}(0,1)$ if and only if $\sum_{k \in \mathbb{Z}^{*}}\left|a_{k}\right|^{2}<+\infty$.
- $\Phi=\sum_{k \in \mathbb{Z}^{*}} a_{k} \Phi_{k} \in L^{2}(0,1) \times H^{-1}(0,1)$ if and only if $\sum_{k \in \mathbb{Z}^{*}} \frac{\left|a_{k}\right|^{2}}{\left|\lambda_{k}\right|^{2}}<+\infty$.

In addition, the solution of the Cauchy problem (18) corresponding to an initial datum

$$
\Phi_{0}=\sum_{k \in \mathbb{Z}^{*}} a_{k} \Phi_{k} \in L^{2}(0,1) \times H^{-1}(0,1)
$$

is given by

$$
\Phi(t)=\sum_{k \in \mathbb{Z}^{*}} a_{k} e^{\lambda_{k} t} \Phi_{k}
$$

Boundary observability inequality

By means of Ingham's inequality we can prove the following.

Theorem

Let $T \geq 2$. There exists a positive constant $\mathcal{C}>0$ such that, for any initial datum $\left(p_{0}, p_{1}\right) \in H_{0}^{1}(0,1) \times L^{2}(0,1)$, the corresponding solution p of (17) satisfies

$$
\begin{equation*}
\mathcal{C}\left\|\left(p_{0}, p_{1}\right)\right\|_{H_{0}^{1}(0,1) \times L^{2}(0,1)}^{2} \leq \int_{0}^{T}\left|p_{x}(1, t)\right|^{2} d t . \tag{2}
\end{equation*}
$$

Boundary observability inequality

PROOF: if $\left(p_{0}, p_{1}\right)=\sum_{k \in \mathbb{Z}^{*}} a_{k} \Phi_{k}$ then, using the orthonormality of the eigenfunctions on $H_{0}^{1}(0,1) \times L^{2}(0,1)$ we have

$$
\left\|\left(p_{0}, p_{1}\right)\right\|_{H_{0}^{1}(0,1) \times L^{2}(0,1)}^{2}=\sum_{k \in \mathbb{Z}^{*}}\left|a_{k}\right|^{2} .
$$

On the other hand,

$$
\int_{0}^{T}\left|p_{x}(1, t)\right|^{2} d x=\int_{0}^{T}\left|\sum_{k \in \mathbb{Z}^{*}}(-1)^{k} a_{k} e^{i k \pi t}\right|^{2} d t
$$

Hence, (20) reduces to the following inequality

$$
\begin{equation*}
\mathcal{C} \sum_{k \in \mathbb{Z}^{*}}\left|a_{k}\right|^{2} \leq \int_{0}^{T}\left|\sum_{k \in \mathbb{Z}^{*}}(-1)^{k} a_{k} e^{i k \pi t}\right|^{2} d t \tag{21}
\end{equation*}
$$

Boundary observability inequality

PROOF: notice that (21) is in the form of an Ingham's inequality, in which $\lambda_{k}=k \pi$ and the family $\left(\lambda_{k}\right)_{k \in \mathbb{Z}^{*}}$ satisfies the gap condition with $\gamma=\pi$. Hence, since the time integration in the interval $[0, T]$ is equivalent, up to a change of variables, to considering $t \in[-T / 2, T / 2]$, from (13) we have that (21) holds for any $T>2 \pi / \gamma=2$.

Finally, when $T=2$, by using the orthogonality in $L(0,2)$ of the exponentials $\left(e^{i k \pi t}\right)_{k \in \mathbb{Z}^{*}}$, we immediately get that

$$
\int_{0}^{2}\left|\sum_{k \in \mathbb{Z}^{*}}(-1)^{k} a_{k} e^{i k \pi t}\right|^{2} d t=\sum_{k \in \mathbb{Z}^{*}}\left|a_{k}\right|^{2}
$$

Hence (20) is actually an identity.

Interior observability inequality

By means of Ingham's inequality we can prove the following.

Theorem

Let $T \geq 2$. There exists a positive constant $\mathcal{C}>0$ such that, for any initial datum $\left(p_{0}, p_{1}\right) \in L^{2}(0,1) \times H^{-1}(0,1)$, the corresponding solution p of (17) satisfies

$$
\begin{equation*}
\mathcal{C}\left\|\left(p_{0}, p_{1}\right)\right\|_{L^{2}(0,1) \times H^{-1}(0,1)}^{2} \leq \int_{0}^{T} \int_{\omega}|p|^{2} d x d t \tag{22}
\end{equation*}
$$

Remark

The need of a large time horizon ($T>2$ in this case) for observability is not only a consequence of Ingham's inequality. It is actually an intrinsic property of hyperbolic systems, related to the finite velocity of propagation of their solutions.

Interior observability inequality

PROOF: since A is an isomorphism form $H_{0}^{1}(0,1) \times L^{2}(0,1)$ into $L^{2}(0,1) \times H^{-1}(0,1)$. and $A^{-1} \Phi_{k}=\lambda_{k}^{-1} \Phi_{k}$, we have

$$
\left\|\left(p_{0}, p_{1}\right)\right\|_{L^{2}(0,1) \times H^{-1}(0,1)}^{2}=\left\|A^{-1}\left(p_{0}, p_{1}\right)\right\|_{H_{0}^{1}(0,1) \times L^{2}(0,1)}^{2}=\sum_{k \in \mathbb{Z}^{*}} \frac{\left|a_{k}\right|^{2}}{k^{2} \pi^{2}}
$$

On the other hand, we obtain from Fubini's Theorem that

$$
\int_{0}^{T} \int_{\omega}|p|^{2} d x d t=\int_{\omega} \int_{0}^{T}\left|\sum_{k \in \mathbb{Z}^{*}} \frac{a_{k}}{k \pi} e^{i \lambda_{k} t} \sin (k \pi x)\right|^{2} d t d x
$$

Hence, (20) is equivalent to the following inequality

$$
\begin{equation*}
\mathcal{C} \sum_{k \in \mathbb{Z}^{*}} \frac{\left|a_{k}\right|^{2}}{k^{2} \pi^{2}} b_{k} \leq \int_{\omega} \int_{0}^{T}\left|\sum_{k \in \mathbb{Z}^{*}} \frac{a_{k}}{k \pi} e^{i \lambda_{k} t} \sin (k \pi x)\right|^{2} d t d x \tag{23}
\end{equation*}
$$

where we denoted

$$
b_{k}:=\int_{\omega} \sin ^{2}(k \pi x) d x
$$

Interior observability inequality

PROOF: notice that, for $T>2$, (23) holds true by applying (13) with $\lambda_{k}=k \pi$ and by replacing the family $\left(a_{k}\right)_{k \in \mathbb{Z}^{*}}$ with $\left(\frac{a_{k}}{\lambda_{k}} \sqrt{b_{k}}\right)_{k \in \mathbb{Z}^{*}}$.

Moreover, when $T=2$, by using again the orthogonality in $L(0,2)$ of the exponentials $\left(e^{i k \pi t}\right)_{k \in \mathbb{Z}^{*}}$, we immediately get that

$$
\int_{\omega} \int_{0}^{2}\left|\sum_{k \in \mathbb{Z}^{*}} \frac{a_{k}}{k \pi} e^{i \lambda_{k} t} \sin (k \pi x)\right|^{2} d t d x=\sum_{k \in \mathbb{Z}^{*}} \frac{\left|a_{k}\right|^{2}}{k^{2} \pi^{2}} b_{k}
$$

Hence, we can conclude that (23) holds true for all $T \geq 2$.

Interior observability inequality

PROOF: from (23), we can now derive (22). To this end, let us firstly notice that, from the definition of b_{k} we have

$$
b_{k}=\int_{\omega} \sin ^{2}(k \pi x) d x=\frac{|\omega|}{2}-\frac{1}{2} \int_{\omega} \cos (2 k \pi x) d x \geq \frac{|\omega|}{2}-\frac{1}{2|k| \pi} .
$$

Since $1 /(2|k| \pi) \rightarrow 0$ when $k \rightarrow \infty$, there exists $k_{0}>0$ such that

$$
b_{k} \geq \frac{|\omega|}{2}-\frac{1}{2|k| \pi} \geq \frac{|\omega|}{2}>0, \quad \text { if }|k|>k_{0}
$$

Hence, $\inf _{|k|>k_{0}} b_{k}>0$ and, since $b_{k}>0$ for all $k \in \mathbb{Z}^{*}$, we conclude that

$$
B:=\inf _{k \in \mathbb{Z}^{*}} b_{k}>0
$$

Therefore,

$$
B \sum_{k \in \mathbb{Z}^{*}} \frac{\left|a_{k}\right|^{2}}{k^{2} \pi^{2}} \leq \int_{\omega} \int_{0}^{T}\left|\sum_{k \in \mathbb{Z}^{*}} \frac{a_{k}}{k \pi} e^{i \lambda_{k} t} \sin (k \pi x)\right|^{2} d t d x
$$

or, equivalently,

$$
B\left(\left\|p_{0}\right\|_{L^{2}(0,1)}^{2}+\left\|p_{1}\right\|_{H^{-1}(0,1)^{2}}\right) \leq \int_{0}^{T} \int_{\omega}|p|^{2} d x d t
$$

THE MULTIPLIER METHOD

The multiplier method

$$
\begin{aligned}
& \Gamma_{0}=\Gamma_{0}\left(x_{0}\right):=\left\{x \in \partial \Omega:\left(x-x_{0}\right) \cdot \nu \geq 0, \exists x_{0} \in \mathbb{R}^{N}\right\} \\
& \Gamma_{1}=\Gamma \backslash \Gamma_{0}
\end{aligned}
$$

For simplifying the notation, let us define

- $m(x):=x-x_{0}$
- $Y:=\left.\left(p_{t}, p\right)\right|_{0} ^{T}$
- $X:=\left.\left(p_{t}, m \cdot \nabla p\right)\right|_{0} ^{T}$
- $\Sigma_{i}:=\Gamma_{i} \times(0, T), i=0,1$

The technique consists in multiplying the adjoint equation by $m \cdot \nabla p$ and integrate by parts over Q. In this way, we obtain

$$
\begin{aligned}
0 & =\int_{Q}\left(p_{t t}-\Delta p\right)(m \cdot \nabla p) d x d t \\
& =x-\int_{Q} p_{t} m \cdot \nabla p_{t} d x d t-\int_{\Sigma}(m \cdot \nabla p) \frac{\partial p}{\partial \nu} d \sigma d t+\int_{Q} \nabla p \cdot \nabla(m \cdot \nabla p) d x d t
\end{aligned}
$$

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 1988

The multiplier method

Through some simple algebraic computation, the last term on the right hand side of this previous identity may be developed as

$$
\int_{Q} \nabla p \cdot \nabla(m \cdot \nabla p) d x d t=\int_{Q}|\nabla p|^{2} d x d t+\frac{1}{2} \sum_{k=1}^{N} \int_{Q} m_{k} \frac{\partial}{\partial x_{k}}|\nabla p|^{2} d x d t
$$

Hence, we get

$$
\begin{aligned}
X-\frac{1}{2} \int_{Q} m \cdot \nabla\left(p_{t}^{2}\right) d x d t & +\frac{1}{2} \sum_{k=1}^{N} \int_{Q} m_{k} \frac{\partial}{\partial x_{k}}|\nabla p|^{2} d x d t \\
& +\int_{Q}|\nabla p|^{2} d x d t-\int_{\Sigma}(m \cdot \nabla p) \frac{\partial p}{\partial \nu} d \sigma d t=0 .
\end{aligned}
$$

Then, a further integration by parts yields

$$
\begin{aligned}
x+\frac{N}{2} \int_{Q} p_{t}^{2} d x d t & +\left(1-\frac{N}{2}\right) \int_{Q}|\nabla p|^{2} d x d t \\
& -\sum_{k=1}^{N} \int_{\Sigma}\left[\frac{\partial p}{\partial \nu}\left(m_{k} \frac{\partial p}{\partial x_{k}}\right)-\frac{1}{2} m_{k}\left(\frac{\partial p}{\partial x_{k}}\right)^{2} \nu_{k}\right] d \sigma d t=0
\end{aligned}
$$

The multiplier method

Since $p=0$ on Γ, we have $\frac{\partial p}{\partial x_{k}}=\nu_{k} \frac{\partial p}{\partial \nu}$ and

$$
\begin{aligned}
0= & x+\frac{N}{2} \int_{Q} p_{t}^{2} d x d t+\left(1-\frac{N}{2}\right) \int_{Q}|\nabla p|^{2} d x d t-\frac{1}{2} \int_{\Sigma}\left(\frac{\partial p}{\partial \nu}\right)^{2}(m \cdot \nu) d \sigma d t \\
= & x+\frac{N-1}{2} \int_{Q}\left(p_{t}^{2}-|\nabla p|^{2}\right) d x d t+\frac{1}{2} \int_{Q}\left(p_{t}^{2}+|\nabla p|^{2}\right) d x d t \\
& -\frac{1}{2} \int_{\Sigma}\left(\frac{\partial p}{\partial \nu}\right)^{2}(m \cdot \nu) d \sigma d t .
\end{aligned}
$$

Moreover, we have

$$
\int_{Q}\left(p_{t}^{2}-|\nabla p|^{2}\right) d x d t=Y-\int_{Q}\left(p_{t t}-\Delta p\right) p d x d t=Y
$$

and we then obtain

$$
X+\frac{N-1}{2} Y+\frac{1}{2} \int_{Q}\left(p_{t}^{2}+|\nabla p|^{2}\right) d x d t-\frac{1}{2} \int_{\Sigma}\left(\frac{\partial p}{\partial \nu}\right)^{2}(m \cdot \nu) d \sigma d t=0
$$

that is,

$$
X+\frac{N-1}{2} Y+E(0)-\frac{1}{2} \int_{\Sigma}\left(\frac{\partial p}{\partial \nu}\right)^{2}(m \cdot \nu) d \sigma d t=0
$$

The multiplier method

We then get

$$
T E_{0}-\frac{1}{2} \int_{\Sigma_{1}}\left(\frac{\partial p}{\partial \nu}\right)^{2}(m \cdot \nu) d \sigma d t=-X-\frac{N-1}{2} Y+\frac{1}{2} \int_{\Sigma_{0}}\left(\frac{\partial p}{\partial \nu}\right)^{2}(m \cdot \nu) d \sigma d t .
$$

Since $m \cdot \nu \leq \mathrm{O}$ on Γ_{1}, the second term on the left hand side of the previous identity is positive. In view of that, we have

$$
T E_{0} \leq\left|X+\frac{N-1}{2} Y\right|+\frac{R\left(x_{0}\right)}{2} \int_{\Sigma_{0}}\left(\frac{\partial p}{\partial \nu}\right)^{2} d \sigma d t
$$

where $R\left(x_{0}\right):=\sup _{\Gamma}(m \cdot \nu)$.

The multiplier method

If we define

$$
\xi(t):=X+\frac{N-1}{2} Y=\left.\left(p_{t}, m \cdot \nabla p+\frac{N-1}{2} p\right)\right|_{0} ^{\top}
$$

we have

$$
\left|X+\frac{N-1}{2} Y\right| \leq|\xi(T)|+|\xi(0)| .
$$

On the other hand, Young's inequality yields

$$
|\xi(t)| \leq \frac{R\left(x_{0}\right)}{2}\left|p_{t}\right|^{2}+\frac{1}{2 R\left(x_{0}\right)}\left|m \cdot \nabla p+\frac{N-1}{2} p\right|^{2}, \quad \text { for all } t \in[0, T] .
$$

Moreover, we can estimate

$$
\left|m \cdot \nabla p+\frac{N-1}{2} p\right|^{2} \leq|m \cdot \nabla p|^{2} \leq R\left(x_{0}\right)^{2}|\nabla p|^{2}
$$

so to obtain

$$
|\xi(t)| \leq \frac{R\left(x_{0}\right)}{2}\left(\left|p_{t}\right|^{2}|\nabla p|^{2}\right)=R\left(x_{0}\right) E(0) .
$$

The multiplier method

Consequently,

$$
\left|X+\frac{N-1}{2} y\right| \leq 2 R\left(x_{0}\right) E(0)
$$

and we finally obtain

$$
T E(0) \leq 2 R\left(x_{0}\right) E(0)+\frac{R\left(x_{0}\right)}{2} \int_{\Sigma_{0}}\left(\frac{\partial p}{\partial \nu}\right)^{2} d \sigma d t
$$

Therefore, assuming $T>2 R\left(x_{0}\right)$, (10) follows immediately with

$$
\mathcal{C}:=\frac{R\left(x_{0}\right)}{2\left(T-2 R\left(x_{0}\right)\right)} .
$$

THE HEAT EQUATION

Controllability of the heat equation

Let $N \geq 1$ and $T>0$, Ω be a bounded domain of \mathbb{R}^{N} with smooth boundary, $Q=$ $(\mathrm{O}, \mathrm{T}) \times \Omega$ and $\Sigma=(\mathrm{O}, T) \times \partial \Omega$.

Controlled heat equation

$$
\begin{cases}y_{t}-\Delta y=u \chi_{\omega} & \text { in } Q \tag{24}\\ y=0 & \text { on } \Sigma \\ y(x, 0)=y_{0}(x) & \text { in } \Omega\end{cases}
$$

χ_{ω} denotes the characteristic function of the subset $\omega \subset \Omega$ where the control is active.

We assume that $y_{0} \in L^{2}(\Omega)$ and $u \in L^{2}(Q)$ so that (24) admits an unique solution

$$
y \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left(O, T ; H_{0}^{1}(\Omega)\right)
$$

Approximate controllability

For all initial data y_{0}, all final data $y_{T} \in L^{2}(\Omega)$ and all $\varepsilon>0$ there exists a control u_{ε} such that the solution satisfies

$$
\left\|y(\cdot, T)-y_{T}\right\|_{L^{2}(\Omega)} \leq \varepsilon .
$$

Unique continuation

Approximate controllability holds if and only if the following unique continuation property (UCP) is true

$$
\begin{equation*}
p=0 \text { in } \omega \times(\mathrm{O}, T) \Longrightarrow p \equiv \mathrm{O}, \text { i.e. } \varphi_{0} \equiv \mathrm{O} \tag{25}
\end{equation*}
$$

where p is the unique solution of the adjoint system

$$
\begin{cases}-p_{t}-\Delta p=0 & \text { in } Q \tag{26}\\ p=0 & \text { on } \Sigma \\ p(x, T)=p_{T}(x) & \text { in } \Omega\end{cases}
$$

This UCP is a consequence of Holmgren's uniqueness Theorem and holds for all ω and all $T>0$.

UCP \Longrightarrow Approximate controllability

Recall that (24) is approximately controllable in time T if, for every initial datum $y_{0} \in L^{2}(\Omega)$, the set $\mathcal{R}\left(T ; y_{0}\right)$ is dense in $L^{2}(\Omega)$, i.e.

$$
\overline{R\left(T, y_{0}\right)}{ }^{L^{2}(\Omega)}=L^{2}(\Omega)
$$

Moreover, the linearity of (24) implies that

$$
R\left(T ; y_{0}\right)=R(T ; 0)+S(T) y_{0} .
$$

Hence, the problem of approximate controllability for (24) may be reduced to the case $y_{0}=0$.

UCP \Longrightarrow Approximate controllability

Hahn-Banach Theorem: the set $\mathcal{R}\left(T ; y_{0}\right)$ is dense in $L^{2}(\Omega)$ if the following property holds

There is no $p_{T} \in L^{2}(\Omega), p_{T} \neq 0$, such that $\left\langle y(\cdot, T), p_{T}\right\rangle=0$ for all y solution of (24) with $u \in L^{2}(\omega \times(0, T))$.

Hence, the proof can be reduced to showing that, if $p_{T} \in L^{2}(\Omega)$ is such that

$$
\begin{equation*}
\left\langle y(\cdot, T), p_{T}\right\rangle=\int_{\Omega} y(x, T) p_{T}(x) d x=0 \tag{27}
\end{equation*}
$$

then, necessarily, $p_{T}=0$.

UCP \Longrightarrow Approximate controllability

Multiplying (24) by p and integrating by parts on Q taking into account that $y_{0}=0$ and $y=p=0$ on Σ, we obtain

$$
\begin{aligned}
\int_{0}^{T} \int_{\omega} u p d x d t & =\int_{0}^{T} \int_{\Omega}\left(y_{t}-\Delta y\right) p d x d t \\
& =\left.\int_{\Omega} y p d x\right|_{t=0} ^{t=T}+\int_{0}^{T} \int_{\Omega}\left(-p_{t}+\Delta p\right) y d x d t \\
& =\int_{\Omega} y(x, T) p_{T}(x) d x
\end{aligned}
$$

Hence, (27) holds if and only if

$$
\int_{0}^{T} \int_{\omega} u p d x d t=0 \quad \text { for all } u \in L^{2}(\omega \times(0, T))
$$

from where we deduce that $p=0$ a.e. in $\omega \times(O, T)$.
Thanks to the unique continuation property (UCP), this implies that $p=0$ in Q. Consequently $p_{T}=0$.

UCP \Longrightarrow Approximate controllability

Approximate controllability functional

$$
J_{\varepsilon}\left(p_{T}\right)=\frac{1}{2} \int_{0}^{T} \int_{\omega}|p|^{2} d x d t+\varepsilon\left\|p_{T}\right\|_{L^{2}(\Omega)}-\int_{\Omega} p_{T} y_{T} d x+\int_{\Omega} p(x, 0) y_{0} d x .
$$

$J_{\varepsilon}: L^{2}(\Omega) \rightarrow \mathbb{R}$ is continuous, and convex. Moreover, UCP implies coercivity:

$$
\lim _{\left\|p_{T}\right\|_{L^{2}(\Omega)} \rightarrow+\infty} \frac{J_{\varepsilon}\left(p_{T}\right)}{\left\|p_{T}\right\|_{L^{2}(\Omega)}} \geq \varepsilon .
$$

Accordingly, the minimizer \hat{p}_{T} exists and the control

$$
u_{\varepsilon}=\hat{p},
$$

where \hat{p} is the solution of the adjoint system corresponding to the minimizer, is such that

$$
\left\|y(\cdot, T)-y_{T}\right\|_{L^{2}(\Omega)} \leq \varepsilon .
$$

C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proc. Roy. Soc. Edinburgh Sec. A Math., 1995

Null controllability

For achieving $y(\cdot, T)=0$ we have to consider the case in which $y_{T}=0$ and $\varepsilon=0$. Thus, we are led to considering the functional

Null controllability functional

$$
J_{0}\left(p_{T}\right)=\frac{1}{2} \int_{0}^{T} \int_{\omega}|p|^{2} d x d t+\int_{\Omega} p(x, 0) y_{0} d x
$$

Obviously, J_{O} is continuous and convex from $L^{2}(\Omega)$ to \mathbb{R}. For coercivity, it is needed the observability inequality

$$
\begin{equation*}
\|p(x, 0)\|_{L^{2}(\Omega)}^{2} \leq C \int_{0}^{T} \int_{\omega}|p|^{2} d x d t, \quad \text { for all } \varphi_{T} \in L^{2}(\Omega) \tag{28}
\end{equation*}
$$

Null controllability

Remark

The observability inequality (28) is very likely to hold.
Because of the very strong regularizing effect of the heat equation, the norm of $p(x, 0)$ is a very weak measure of the total size of solutions. Indeed, in a Fourier series representation, this norm presents weights of the order of

$$
\exp \left(-\lambda_{j} T\right)
$$

$\lambda_{j} \rightarrow+\infty$ being the eigenvalues of the Dirichlet Laplacian $-\Delta$ on Ω.

Remark

Due to the irreversibility of the system, (28) is not easy to prove.

The observability inequality

There are several ways of proving the observability inequality (28). The most classical ones are the following.

Space-dimension $N=1$
\triangleright Parabolic Ingham's inequalities
\triangleright Moments method
Space-dimension $N \geq 1$

- Carleman estimates
\triangleright Lebeau-Robbiano strategy

PARABOLIC INGHAM'S INEQUALITIES

A spectral estimate

Theorem

Let $\left\{\lambda_{k}\right\}_{k \geq 1}$ be a sequence of real numbers satisfying the following conditions:

1. There exists $\gamma>0$ such that $\lambda_{k+1}-\lambda_{k} \geq \gamma$ for all $k \geq 1$.
2. $\sum_{k \geq 1} \frac{1}{\lambda_{k}}<+\infty$.

Then, for any $T>0$, there is a constant $\mathcal{C}(T)>0$ (depending only on T) such that, for any sequence $\left\{c_{k}\right\}_{k \geq 1}$ it holds the inequality

$$
\begin{equation*}
\sum_{k \geq 1}\left|c_{k}\right| e^{-\lambda_{k} T} \leq \mathcal{C}(T)\left\|\sum_{k \geq 1} c_{k} e^{-\lambda_{k} t}\right\|_{L^{2}(0, T)} \tag{30}
\end{equation*}
$$

Moreover, the function $\mathcal{C}(T)$ is uniformly bounded away from $T=0$ and blows-up exponentially as $T \downarrow \mathrm{O}^{+}$.

Proof of the observability inequality

Let $\left\{\lambda_{k}, \phi_{k}\right\}_{k \geq 1}$ be the eigenvalues and eigenfunctions of the one-dimensional Laplacian on $\Omega=(\bar{O}, 1)$. Then

$$
p(x, t)=\sum_{k \geq 1} p_{k} e^{-\lambda_{k}(T-t)} \phi_{k}(x) \quad \text { with } p_{k}=\int_{0}^{1} p_{t}(x) \phi_{k}(x) d x
$$

and the observability inequality can be written as

$$
\begin{equation*}
\sum_{k \geq 1}\left|p_{k}\right|^{2} e^{-2 \lambda_{k} T} \leq \mathcal{C} \int_{0}^{T} \int_{\omega}\left|\sum_{k \geq 1} p_{k} e^{-\lambda_{k} t} \phi_{k}\right|^{2} d x d t \tag{31}
\end{equation*}
$$

Since the eigenvalues $\left(\lambda_{k}\right)_{k \geq 1}$ satisfy (29a) and (29b), if we take $c_{k}:=p_{k} \phi_{k}(x)$ for any $x \in(-1,1)$ fixed in (31), we obtain the estimate

$$
\sum_{k \geq 1}\left|p_{k} \phi_{k}(x)\right| e^{-\lambda_{k} T} \leq \mathcal{C}(T)\left\|\sum_{k \geq 1} p_{k} e^{-\lambda_{k} t} \phi_{k}(x)\right\|_{L^{2}(0, T)}
$$

Proof of the observability inequality

Hence

$$
\begin{align*}
\sum_{k \geq 1}\left|p_{k} \phi_{k}(x)\right|^{2} e^{-2 \lambda_{k} T} & \leq\left(\sum_{k \geq 1}\left|p_{k} \phi_{k}(x)\right| e^{-\lambda_{k} T}\right)^{2} \tag{32}\\
& \leq \mathcal{C}(T)^{2} \int_{0}^{T}\left|\sum_{k \geq 1} p_{k} e^{-\lambda_{k} t} \phi_{k}(x)\right|^{2} d t \tag{33}
\end{align*}
$$

Finally, since the eigenfunctions of the fractional Laplacian satisfy the estimate

$$
\left\|\phi_{k}\right\|_{L^{2}(\omega)} \geq \beta|\omega|^{-1}, \quad \text { for all } k \geq 1 \text { and } \omega \subset(-1,1)
$$

integrating over ω, we obtain that

$$
\begin{aligned}
\beta|\omega|^{-1} \sum_{k \geq 1}\left|p_{k}\right|^{2} e^{-2 \lambda_{k} T} & \leq \int_{\omega} \sum_{k \geq 1}\left|p_{k} \phi_{k}(x)\right|^{2} e^{-2 \lambda_{k} T} d x \\
& \leq \mathcal{C}(T)^{2} \int_{0}^{T} \int_{\omega}\left|\sum_{k \geq 1} p_{k} e^{-\lambda_{k} t} \phi_{k}(x)\right|^{2} d x d t .
\end{aligned}
$$

MOMENT METHOD

The moment method

Recall that the controllability of the heat equation is equivalent to the identity

$$
\begin{equation*}
\int_{0}^{T} \int_{\omega} u p d t+\int_{0}^{1} y_{0} p(0) d x=0, \quad \text { for all } p_{T} \in L^{2}(0,1) \tag{34}
\end{equation*}
$$

Since $\left\{\phi_{k}\right\}_{k \geq 1}$ is an orthonormal basis of $L^{2}(0,1)$, it is sufficient that (34) holds for each eigenfunction. Writing

$$
y_{0}(x)=\sum_{k \geq 1} y_{k} \phi_{k}(x) \quad \text { with } \quad y_{k}=\int_{0}^{1} y_{0}(x) \phi_{k}(x) d x \text { for all } k \geq 1
$$

and $p_{T}=\phi_{k}$ in (34), we obtain the new identity (equivalent to null controllability)

$$
\begin{equation*}
\int_{0}^{T} \int_{\omega} u \phi_{k} e^{\lambda_{k} t} d t=-y_{k}, \quad \text { for all } k \geq 1 \tag{35}
\end{equation*}
$$

Identity (35) is known as a problem of moments.
H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, ARMA, 1971

The moment method

Biorthogonal sequence

$$
\left\{\sigma_{k}(t)\right\}_{k \geq 1} \subset L^{2}(0, T) \quad \text { such that } \int_{0}^{T} \sigma_{k}(t) e^{\lambda_{\ell} t} d t=\delta_{k, \ell}
$$

The problem of moments (35) is satisfied by the control function

$$
\begin{equation*}
u(x, t)=\sum_{k \geq 1}-y_{k} \sigma_{k}(t) \frac{\phi_{k}(x)}{\left\|\phi_{k}\right\|_{L^{2}(\omega)}} \tag{36}
\end{equation*}
$$

The existence of such a control u is guaranteed by two facts.

1. The biorthogonal sequence exists.

Consequence of Münz's Theorem and the fact that $\sum_{k \geq 1} \lambda_{k}^{-1}<+\infty$.
2. The sum (36) converges

Consequence of suitable bounds for $\left\|\sigma_{k}\right\|_{L^{2}(0, T)}$ that can be obtained under the gap condition $\lambda_{k+1}-\lambda_{k} \geq \gamma>0$ for all $k \geq 1$.
H. O. Fattorini and D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math., 1974

CARLEMAN ESTIMATES

Carleman estimates

They take their name form the Swedish mathematician Torsten Carleman (1892-1949), who firstly introduced them in the mathematical literature in 1939 as a powerful tool to prove unique continuation result for elliptic partial differential equations with smooth coefficients
T. Carleman, Sur un problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Mat. Astr. Fys., 1939.

Firstly applied in control theory by Fursikov and Imanuvilov in 1996.
A. V. Fursikov and O. Y. Imanuvilov, Controllability of evolution equations, Lecture notes, 1996.

Carleman estimates

Lemma

Let $\omega \subset \subset \Omega$ be a nonempty open set. Then, there exists $\eta^{0} \in C^{2}(\bar{\Omega})$ such that

- $\eta^{0}>0$ in Ω.
- $\eta^{0}=0$ on $\partial \Omega$.
- $\left|\nabla \eta^{0}\right|>0$ in $\overline{\Omega \backslash \omega}$.

In some particular cases, for instance when Ω is star-shaped with respect to a point in ω, η° can be built explicitly without difficulty. But the existence of this function is less obvious in general, when the domain has holes or its boundary oscillates, for instance.

Carleman estimates

For a parameter $\lambda>0$, we define

$$
\sigma(x):=e^{4 \lambda\left\|\eta^{0}\right\|_{\infty}-e^{\lambda\left(2\left\|\eta^{0}\right\|_{\infty}+\eta^{0}(x)\right)}, \text {, }, \text {. }}
$$

and we introduce the weight functions

$$
\begin{equation*}
\alpha(x, t):=\frac{\sigma(x)}{t(T-t)}, \quad \xi(x, t):=\frac{e^{\lambda\left(2\left\|\eta^{0}\right\|_{\infty}+\eta^{0}(x)\right)}}{t(T-t)} . \tag{37}
\end{equation*}
$$

Proposition

There exist positive constants \mathcal{C} and s_{1} such that, for all $s \geq s_{1}, \lambda \geq \mathcal{C}$ and $p_{T} \in L^{2}(\Omega)$, the solution p to the adjoint equation (26) satisfies

$$
\begin{aligned}
s \lambda^{2} \int_{Q} e^{-2 s \alpha} \xi|\nabla p|^{2} d x d t & +s^{3} \lambda^{4} \int_{Q} e^{-2 s \alpha} \xi^{3}|p|^{2} d x d t \\
& \leq \mathcal{C} s^{3} \lambda^{4} \int_{0}^{T} \int_{\omega} e^{-2 s \alpha} \xi^{3}|p|^{2} d x d t
\end{aligned}
$$

E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability, SICON, 2006.

From Carleman to observability

From the Carleman estimate we have

$$
s^{3} \int_{Q} e^{-2 s \alpha} \xi^{3}|p|^{2} d x d t \leq \mathcal{C} s^{3} \int_{0}^{T} \int_{\omega} e^{-2 s \alpha} \xi^{3}|p|^{2} d x d t
$$

Moreover, due to the definition of the weight function α, if we choose $s \geq \mathcal{C} T^{2}$ we have the following two estimates:

$$
\begin{aligned}
& \text { 1. } s^{3} e^{-2 s \alpha} \xi^{3} \leq \mathcal{C} s^{3} T^{-6} e^{-\frac{\mathcal{C} s}{T^{2}}} \leq \mathcal{C}(T) \\
& \text { 2. } s^{3} e^{-2 s \alpha} \xi^{3} \geq \mathcal{C} e^{-\frac{\mathcal{C} s}{T^{2}}} \text {, if } t \in[T / 4,3 T / 4] .
\end{aligned}
$$

Therefore, we obtain

$$
\begin{equation*}
\int_{\frac{T}{4}}^{\frac{3}{4} T} \int_{\Omega}|p|^{2} d x d t \leq \mathcal{C} e^{\frac{c_{s}}{T^{2}}} \int_{0}^{T} \int_{\omega}|p|^{2} d x d t \tag{38}
\end{equation*}
$$

Finally, classical energy estimates yield that $t \mapsto\|p(t)\|_{L^{2}(\Omega)}$ is an increasing function. Hence,

$$
\begin{aligned}
\frac{T}{2}\|p(x, 0)\|_{L^{2}(\Omega)}^{2} & =\int_{\frac{T}{4}}^{\frac{3}{4} T} \int_{\Omega}|p(x, 0)|^{2} d x d t \\
& \leq \int_{\frac{T}{4}}^{\frac{3}{4} T} \int_{\Omega}|p(x, t)|^{2} d x d t \leq \mathcal{C} e^{\frac{C 5}{T^{2}}} \int_{0}^{T} \int_{\omega}|p|^{2} d x d t
\end{aligned}
$$

LEBEAU-ROBBIANO STRATEGY

The Lebeau-Robbiano strategy

Based on three main steps.

Step 1

Use a local Carleman estimate for the operator $\partial_{t}^{2}+\Delta$ in order to deduce the interpolation inequality: for any $T>0$ and all $\alpha \in(0, T / 2)$, there exists $\gamma \in(0,1)$ such that

$$
\left\|\phi_{k}\right\|_{L^{2}(\Omega \times(\alpha, T-\alpha))} \leq C\left\|\phi_{k}\right\|_{H^{1}(Q)}^{\gamma}\left(\left\|\left(\partial_{t}^{2}+\Delta\right) \phi_{k}\right\|_{L^{2}(Q)}+\left\|\phi_{k, t}(x, O)\right\|_{L^{2}(\omega)}\right)^{1-\gamma}
$$

Step 2

Use the interpolation inequality to obtain the spectral inequality

$$
\sum_{\lambda_{k} \leq 2^{2 j}}\left|a_{k}\right|^{2} \leq \mathcal{C}_{1} e^{2^{2 j} \mathcal{C}_{2}}\left\|\sum_{\lambda_{k} \leq 2^{2 j}} a_{k} \phi_{k}(x)\right\|_{L^{2}(\omega)}
$$

to obtain the the observability of low-frequency solutions.

The Lebeau-Robbiano strategy

Step 3
Use an iterative strategy alternating the observability of low-frequency and decay of the heat semi-group to obtain the final observability result.
G. Lebeau and L. Robbiano, Contrôle exact de léquation de la chaleur. Commun. PDE, 1995

References

References

GENERAL TEXTS IN PDE THEORY

\triangleright L. C. Evans, Partial differential equations, American Mathematical Soc., 2010
\triangleright J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, 1968

PDE CONTROL

\triangleright S. Micu and E. Zuazua, An introduction to the controllability of linear PDE, Contrôle non linéaire et applications, Sari, T., ed., Collection Travaux en Cours Hermann, 2005, pp. 67-150
\triangleright M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts, Basel, 2009
\triangleright E. Zuazua, Controllability and observability of Partial Differential Equations: Some results and open problems, Handbook of Differential Equations: Evolutionary Equations, Elsevier, 2006
\triangleright J. M. Coron, Control and nonlinearity, American Mathematical Society, 2007
\triangleright J.-L. Lions, Contrôlabilité exacte perturbations et stabilisation de systèmes distribués, Masson, 1988

THANK YOU FOR YOUR ATTENTION!

Funding

- European Research Council (ERC): grant agreements NO: 694126-DyCon and No.765579-ConFlex.
- MINECO (Spain): Grant PID2020-112617GB-C22 KILEARN
- Alexander von Humboldt-Professorship program
- DFG (Germany): Transregio 154 Project "Mathematical Modelling,Simulation and Optimization Using the Example of Gas Networks"
- COST Action grant CA18232, "Mathematical models for interacting dynamics on networks".

erc

C3M = $\begin{aligned} & \text { Fundacion } \\ & \text { deusto } \\ & \text { fundazioa }\end{aligned}$

Chair
DYNAMICS, CONTROL
AND NUMERICS
FAU

Unterstützt von / Supported by

Alexander von Humboldt
Stiftung/Foundation

Universidad Autónoma de Madrid

