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HISTORICAL INTRODUCTION



Memory-type differential equations

Memory-type differential equations

Introduced in the 1960’s, when researchers started understanding that clas-
sical mathematical models such as the heat and wave equations may fail to
fully capture relevant features of the physical process they describe.
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Memory-type differential equations

It is often claimed that the theory of infinitesimal viscoelasticity can be derived from
an assumption that on amicroscopic level matter can be regarded as composed of lin-
ear viscous elements (also called dashpots) and linear elastic elements (called springs)
connected together in intricate networks.

... We feel that the physicist’s confidence in the usefulness of the theory of infinites-
imal viscoelasticity does not stem from a belief that the materials to which the theory
is applied are really composed of microscopic networks of springs and dashpots, but
comes rather from other considerations. First, there is the observation that the theory
works for many real materials. But second, and perhaps more important to theoreti-
cians, is the fact that the theory looks plausible because it seems to be a mathemati-
zation of little more than certain intuitive prejudices about smoothness in macroscopic
phenomena.

This article tries tomakeprecise these observations... and in sodoing seeks to obtain
a mathematical derivation of infinitesimal viscoelasticity from plausible macroscopic
assumptions. To do this one must first presume a nonlinear theory of the mechanical
behavior of materials with memory, and, if the undertaking is to be at all worthwhile,
the presumed nonlinear theory must rest on constitutive equations based only on very
general physical principles.

B. D. Coleman and W. Noll, Foundations of linear viscoelasticity, Rev. Modern Phys.,
1961
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Memory-type differential equations

...the classical linear theory of heat conduction for homogeneous and isotropic me-
dia is based on the equation

α∆θ = θ̇

where θ = θ(x, t) is the absolute temperature, θ̇ = ∂θ
∂t

, ∆ is the Laplacian, and α >
0 is a constant. This equation, which is parabolic, has a very unpleasant feature: a
thermal disturbance at any point in the body is felt instantly at every other point; or
in terms more suggestive than precise, the speed of propagation of disturbances is
infinite.

M. E. Gurtin andA. C. Pipkin, A general theory of heat conductionwith finitewave speeds,
ARMA, 1968
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Memory-type differential equations

The works of Coleman & Noll and Gurtin & Pipkin highlight the limitations of stan-
dard PDE models in capturing the reality of the phenomena they were supposed to
represent.

To overcome these limitation and give a more precise model for viscoelasticity or
the heat transfer process, they then modified Fick’s and Fourier’s law and introduced
PDE with memory in the form

PDE with memory

ytt −∆y −
∫ t

−∞
M(t− s)∆y(s)ds = 0,

yt −∆y −
∫ t

−∞
M(t− s)∆y(s)ds = 0,

where M(·) is a suitable function, typically called the relaxation kernel.
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Memory-type differential equations

After these first seminal contributions, the theory of evolution equations with memory
has continued expanding both on the physical and on the mathematical level, giving
rise to a thick field of research concerned with such systems

Nowadays, evolution equations involving memory terms appear in several different
applications to describe natural and social phenomena which, apart from their current
state, are influenced also by their history

SOME REFERENCES:

C. M. Dafermos, Contraction semigroups and trend to equilibrium in continuum mechanics, in ‘‘Ap-

plications of Methods of Functional Analysis to Problems in Mechanics’’, 1976

R. K. Miller and R. L. Wheeler, Asymptotic behavior for a linear Volterra integral equation in Hilbert

space, JDE, 1977

H. Grabmüller, Hyperbolic integro-differential equations of convolution type, Integral Equ. Oper.

Theory, 1979

P.Markowich andM. Renardy, Lax--Wendroffmethods for hyperbolic history value problems, SIAM

J. Numer. Anal., 1984

M. Renardy, W. J. Hrusa and J. A. Nohel,Mathematical problems in viscoelasticity, Longman, 1987

J. Prüss, Evolutionary integral equations and applications, Birkhäuser, 2013
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CONTROL THEORY FOR

MEMORY-TYPE EQUATIONS



Control theory for memory-type equations

The raise of interest in the last decades towards differential equations with memory
also largely affected the control community.

Many research works considering an ample spectrum of memory-type equations, for
which approximate and exact/null controllability properties are analyzed.

SOME REFERENCES:

G. Leugering, Exact controllability in viscoelasticity of fading memory type, Appl. Anal., 1984

G. Leugering, Exact boundary controllability of an integrodifferential equation, Appl. Math. Optim.,

1987

V. Barbu and M. Iannelli, Controllability of the heat equation with memory, Differ. Integral Equ.,

2000

X. Fu, J. Yong and X. Zhang, Controllability and observability of a heat equation with hyperbolic

memory kernel, JDE, 2009

P. Loreti, L. Pandolfi andD. Sforza, Boundary controllability and observability of a viscoelastic string,

SICON, 2012

S. Guerrero and O. Y. Imanuvilov, Remarks on non controllability of the heat equation with memory,

ESAIM: Control Optim. Calc. Var., 2013
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Control theory for memory-type equations

In all the previous references, the controllability issue is addressed focusing only on
the steering of the system’s state to some given target at time T, without consider-
ing that the presence of the memory introduces additional effects that make the
classical controllability notion not entirely suitable in this context.

ATTENTION!

Driving the solution of a memory-type equation to some specific state, for
instance to zero, in general is not sufficient to guarantee that the dynamics
of the system reaches an equilibrium.

If we were considering an equation without memory, once its solution is driven to rest
at time T by a control, then it vanishes for all t ≥ T also in the absence of control. This
is no longer true when introducing a memory term, which produces accumulation
effects affecting the definition of an equilibrium point for the system and its overall
stability.
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Control theory for memory-type equations

Memory-type linear ODE




θ̇(t) +

∫ t

0

θ(s)ds = u(t), t ∈ (0,+∞)

θ(0) = 1.

(1)

We look for a control u ∈ L2(0,T) such that the solution of (1) is steered to rest at
time T .

For this, it is not enough that θ(T) = 0.

If we do not pay attention to the accumulated memory, then the solution θ is not
guaranteed to stay at the rest after time T as t evolves.
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Control theory for memory-type equations

Main reason

Although at a first glance (1) may appear to be a first order equation - since it
involves only one time derivative of the state θ - this is actually not the case
as the memory term acts as a hidden component in the system.

Apply the transformation

ζ(t) :=

∫ t

0

θ(s)ds, (2)

to obtain a linear system of two first-order ODE

(
θ̇(t)

ζ̇(t)

)
=

(
0 −1
1 0

)(
θ(t)
ζ(t)

)
+

(
1
0

)
u(t), t ∈ (0,+∞), (3)

with initial datum (θ(0), ζ(0)) = (1,0).
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Control theory for memory-type equations

It is then evident that, if wewant the system to be completely controlled, both the state
θ(t) and the ‘‘velocity’’ ζ(t) need to be zero at time T . Therefore, the null controllability
of (3) has to be understood as

Memory-type null controllability

θ(T) = 0 and ζ(T) =

∫ T

0

θ(s)ds = 0.

To ensure that the original system (1) reaches the equilibrium θ(t) = 0 for t ≥ T, it
would be also necessary that the memory term reaches the null value.
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Control theory for memory-type equations

The discussion is easily extendable to linear ODE of any order.

Memory-type linear ODE of order k ∈ N∗




θ(k)(t) +

∫ t

0

θ(s)ds = u(t), t ∈ (0,+∞)

θ(ℓ−1)(0) = 1, ℓ = 1, . . . , k,

(4)

where θ(k)(t) indicates the k-th order derivative of the function θ with respect
to the variable t.
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Control theory for memory-type equations

Denoting θk(t) := θ(k−1)(t) and applying again the transformation (2), we obtain from
(4) the following linear system of k+ 1 first-order ODE in Brunovsky canonical form




θ̇1(t)

θ̇2(t)
.
.
.

θ̇k(t)

ζ̇(t)




=




0 1 0 . . . 0
0 0 1 . . . 0

.

.

.
. . .

.

.

.
0 0 0 . . . 1
−1 0 0 . . . 0







θ1(t)
θ2(t)
.
.
.

θk(t)
ζ(t)




=




u(t)
0

.

.

.
0
0



, t ∈ (0,+∞),




θ1(0)
θ2(0)

.

.

.
θk(0)
ζ(0)




=




1
1

.

.

.
1
0




Memory-type null controllability

θℓ(T) = 0 for all ℓ ∈ {1, . . . , k} and ζ(T) =

∫ T

0

θ(s)ds = 0.
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Control theory for memory-type equations

Analogous considerations for memory-type PDE models.

Memory-type heat equation















yt − ∆y +

∫

t

0

M(t − s)y(x, s) ds = fχω, (x, t) ∈ Ω × (0, T)

y = 0, (x, t) ∈ ∂Ω × (0, T)

y(x,0) = y0(x), x ∈ Ω.

(5)

z =

∫

t

0

M(t − s)y(·, s) ds: we can see (5) as a coupled PDE-ODE system



















yt − ∆y + z = fχω, (x, t) ∈ Ω × (0, T)

zt + M(0)y = 0, (x, t) ∈ Ω × (0, T)

y = z = 0, (x, t) ∈ ∂Ω × (0, T)

y(x,0) = y0(x), z(x,0) = 0, x ∈ Ω.

Memory-type null controllability for (5)

y(x, T) = 0 and z(x, T) =

∫

T

0

M(T − s)y(x, s) ds = 0. (6)
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Control theory for memory-type equations

The same for wave equations with memory.

Memory-type wave equation





ytt −∆y +

∫ t

0

M(t− s)y(x, s)ds = fχω , (x, t) ∈ Ω× (0, T)

y = 0, (x, t) ∈ ∂Ω× (0, T)

y(x,0) = y0(x), yt(x,0) = y1(x), x ∈ Ω.

(7)

Memory-type null controllability for (7)

y(x, T) = 0, yt(x, T) = 0 and

∫ T

0

M(T − s)y(x, s)ds = 0. (8)
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Control theory for memory-type equations

These controllability notions (6) and (8) have been considered in a limited
number of works.

S. Guerrero and O. Y. Imanuvilov, Remarks on non controllability of the heat equation with memory,

ESAIM: Control Optim. Calc. Var., 2013

Q. Lü, X. Zhang and E. Zuazua, Null controllability for wave equations with memory, J. Math. Pures

Appl., 2017

F. W. Chaves-Silva, X. Zhang and E. Zuazua, Controllability of evolution equations with memory,

SICON, 2017

U. Biccari and S. Micu, Null-controllability properties of the wave equation with a second order

memory term, JDE, 2019
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Control theory for memory-type equations

Important difficulties appear when studying the control properties ofmemory
PDE under those notions.

Once one considers (5) and (7) as coupled PDE-ODE systems, it becomes evident
that the memory term acts as an hidden ODE component with lack of propagation in
the space-variable.

This opens the possibility that null-controllability propertiesmay fail, since the non-
propagating components of the system cannot not reach the control region ω, except
for some trivial case such as when ω coincides with the entire domain of definition Ω.
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The moving control strategy

To copy with this issue, we can employ a moving control strategy to successfully
control PDE with memory.

The equations (5) and (7) are memory-controllable provided the support of
the control moves, covering the whole domain where the equations evolves.
If the control domain is fixed, (5) and (7) are not memory-controllable.

REMARK: clearly, in the case of the wave equation (7), this moving control strategy is
effective if the time horizon T is large enough and the control region ω(t) satisfies
the Geometric Control Condition for all t ∈ (0, T), in analogy with classical hyperbolic
PDE without memory.
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The moving control strategy

ytt − yxx −M

∫ t

0

y(s)ds = uχω with M = 0.1 and a fixed control.

The zero is not reached neither in the state nor in the memory.
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The moving control strategy

ytt − yxx −M

∫ t

0

y(s)ds = uχω(t) with M = 0.1 and a moving control.

Both the state and the memory are driven to zero in time T .
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The moving control strategy

2D heat equation witout memory

yt −∆y = uχω
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The moving control strategy

2D heat equation with memory and fixed control

yt −∆y −
∫ t

0

y(s)ds = uχω .
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The moving control strategy

2D heat equation with memory and moving control

yt −∆y −
∫ t

0

y(s)ds = uχω(t).
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High-order memory terms

Physically relevant memory-type PDE involve high-order memory terms in
the form

∫ t

0

M(t− s)∆y(x, s)ds. (9)

Such a memory term is quite delicate to be handled and may raise important difficul-
ties when addressing controllability properties.

• F. W. Chaves-Silva, X. Zhang and E. Zuazua, Controllability of evolution equations with

memory, SICON, 2017

By means of a Carleman approach it is shown that the system




yt −∆y +

∫ t

0

M(t− s)∆y(x, s)ds = fχω(t), (x, t) ∈ Ω× (0, T)

y = 0, (x, t) ∈ ∂Ω× (0, T)

y(x,0) = y0(x), x ∈ Ω.

with initial datum y0 ∈ L2(Ω) is null controllable at any time T > 0.
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High-order memory terms

The situation changes drastically when considering hyperbolic equations
with high-order memory, in which case (9) naturally yields to observability
inequalities involving the H2-norm of the adjoint state, which is not compact
with respect to the usual L2-norm.

• The approach of

Q. Lü, X. Zhang and E. Zuazua, Null controllability for wave equations with memory, J. Math.

Pures Appl., 2017

fails in providing a controllability property.

• Controllability for high-order memory-type wave equations have been
obtained in space dimension one by employing biorthogonal sequences.

U. Biccari and S. Micu, Null-controllability properties of the wave equation with a second

order memory term, JDE, 2019
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NULL CONTROLLABILITY OF

A ONE-DIMENSIONAL WAVE

EQUATION WITH MEMORY



Problem formulation

High-order memory-type wave equation




ytt − yxx +M

∫ t

0

yxx(s)ds = u1ω(t), (x, t) ∈ T× (0, T) := Q

y(x,0) = y0(x), yt(x,0) = y1(x), x ∈ T, M ∈ R \ {0}.

• T = R/2πZ: one-dimensional torus.

• ω(t) = ω0 − ct, c ∈ R.

• u ∈ L2(O)

• O =
{
(x, t)

∣∣∣ t ∈ (0, T), x ∈ ω(t)
}
.
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Functional setting

• L2p(T) :=
{
f : T → C

∣∣∣
∫ π

−π
|f(x)|2 dx < +∞,

∫ π

−π
f(x)dx = 0

}
.

• H1
p(T) :=

{
f ∈ L2p(T)

∣∣∣ fx ∈ L2p(T),
∫ π

−π
f(x)dx = 0

}
.

• ‖f‖
L2p(T)

:=
(

1
2π

∫ π

−π
|f(x)|2 dx

) 1
2
.

• ‖f‖
H1
p(T)

:=
(

1
2π

∫ π

−π
|fx(x)|2 dx

) 1
2
= ‖fx‖L2(−π,π) .

• H−1
p (T) =

(
H1
p(T)

)′
: dual of H1

p(T) with pivot space L2p(T).

Proposition

For any (y0, y1) ∈ H1
p(T)× L2p(T) and u ∈ L2(O) the system admits a unique

solution y ∈ C([0, T];H1
p(T)) ∩ C1([0, T]; L2p(T)). Moreover,

‖y‖
C([0,T];H1

p(T))∩C1([0,T];L2p(T))
≤ C(T)

(∥∥∥(y0, y1)
∥∥∥
H1
p(T)×L2p(T)

+ ‖u‖L2(O)

)
.
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Proof

Z := C([0, T];H1
p(T)) ∩ C1([0, T]; L2p(T))

‖y‖Z :=

(∥∥∥e−αty
∥∥∥
2

C([0,T];H1
p(T))

+
∥∥∥e−αtyt

∥∥∥
2

C1([0,T];L2p(T))

) 1
2

,

α positive real number to be specified.

• e−αT ‖y‖
C([0,T];H1

p(T))∩C1([0,T];L2p(T))
≤ ‖y‖Z ≤ ‖y‖

C([0,T];H1
p(T))∩C1([0,T];L2p(T))

.

• Z is a Banach space with the norm ‖·‖Z
• Z equals C([0, T];H1

p(T)) ∩ C1([0, T]; L2p(T)) algebraically and topologically.
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Proof (cont.)

Define the map F : Z → Z , ỹ 7→ ŷ, where ŷ is the solution to




ŷtt(x, t)− ŷxx(x, t) = −M

∫ t

0

ỹxx(x, s)ds+ u(x, t)1ω(t), (x, t) ∈ Q

ŷ(x,0) = y0(x), ŷt(x,0) = y1(x), x ∈ T.

Wave equation with a non-homogeneous term in L2(0, T;H−1
p (T)). It has a unique

solution ŷ ∈ C([0, T];H1
p(T)) ∩ C1([0, T]; L2p(T)) such that

∥∥ŷ
∥∥
Z

≤
∥∥ŷ
∥∥
C([0,T];H1

p(T))∩C1([0,T];L2p(T))

≤ C
[∥∥∥(y0, y1)

∥∥∥
H1
p(T)×L2p(T)

+ ‖u‖L2(O) +

∥∥∥∥M
∫ t

0

ỹxx(s)ds

∥∥∥∥
H1
0
([0,T];H−1

p (T))

]

= C
[∥∥∥(y0, y1)

∥∥∥
H1
p(T)×L2p(T)

+ ‖u‖L2(O) + |M|
∥∥ỹ
∥∥
L2([0,T];H1

p(T))

]
,

where C is a positive constant depending only on T . Hence, F(Z) ⊂ Z .

31 /60



Proof (cont.)

Given ˜̃y ∈ Z , let ̂̂y = F( ˜̃y ) be the corresponding solution to the original equation.

e−αt

(∥∥∥F( ỹ )(t)−F( ˜̃y )(t)
∥∥∥
H1
p(T)

+
∥∥∥F( ỹ )t(t)−F( ˜̃y )t(t)

∥∥∥
L2p(T)

)

≤ e−αt
∥∥∥ŷ − ˆ̂y

∥∥∥
C([0,t];H1

p(T))∩C1([0,t];L2p(T))
≤ C|M|e−αt

(∫ t

0

∥∥∥ỹ(s)− ˜̃y(s)
∥∥∥
2

H1
p(T)

ds

) 1
2

= C|M|
(∫ t

0

e−2α(t−s)
∥∥∥e−αs

(
ỹ(s)− ˜̃y(s)

)∥∥∥
2

H1
p(T)

ds

) 1
2

≤ C|M|
(∫ t

0

e−2α(t−s) ds

) 1
2 ∥∥∥ỹ − ˜̃y

∥∥∥
Z

= C|M|
(
1− e−2αt

2α

) 1
2 ∥∥∥ỹ − ˜̃y

∥∥∥
Z
.

This implies

∥∥∥F( ỹ )−F( ˜̃y )
∥∥∥
Z

≤ C|M|√
2α

∥∥∥ỹ − ˜̃y
∥∥∥
Z
.
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Proof (conclusion)

Taking α = 2C2M2 we obtain

∥∥∥F( ỹ )−F( ˜̃y )
∥∥∥
Z

≤ 1

2

∥∥∥ỹ − ˜̃y
∥∥∥
Z
,

i.e. F is a contractive map. Therefore, it admits a unique fixed point, which is the
solution to the equation.

Let now y be this unique solution. We have that

‖y(t)‖2
H1
p(T)

+ ‖yt(t)‖2L2p(T)

≤ C
(∥∥∥(y0, y1)

∥∥∥
2

H1
p(T)×L2p(T)

+ ‖u‖2
L2(O)

+ |M|
∫ t

0

‖y(s)‖2
L2p(T)

ds

)

≤ C
(∥∥∥(y0, y1)

∥∥∥
2

H1
p(T)×L2p(T)

+ ‖u‖2
L2(O)

)
+ C|M|

∫ t

0

(
‖y(s)‖2

H1
p(T)

+ ‖ys(s)‖2L2p(T) ds

)
.

Using Gronwall’s inequality we get

‖y(t)‖2
H1
p(T)

+ ‖yt(t)‖2L2p(T) ≤ C
(
1+ C|M|eC|M|t

)(∥∥∥(y0, y1)
∥∥∥
2

H1
p(T)×L2p(T)

+ ‖u‖2
L2()

)
.
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On the necessity of a moving control

We want to prove a null controllability result for our equation. Before doing that, we
discuss further the necessity of a moving control.

• We show that the spectrum has an accumulation point.

• We show that there are solutions which are localized along vertical
characteristics and, therefore, do not propagate in time.

Reduction to a coupled PDE/ODE system

z =

∫ t

0

y(s)ds ⇒





ytt − yxx +Mzxx = u1ω(t), (x, t) ∈ Q

zt = y, (x, t) ∈ Q

y(0) = y0, yt(0) = y1, z(0) = 0, x ∈ T.
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Spectral analysis

Our original equation can be equivalently written as a first order system.

Reduction to a first order system

{
Y′(t) +AY = 0, t ∈ (0, T)

Y(0) = Y0
, Y(t) =




y
w
z


 , Y0 =




y0

y1

0




A : D(A) → X−σ , A




y
w
z


 =




−w
−yxx +Mzxx

−y


 .

The spaces X−σ and D(A) are given respectively by

X−σ = H−σ
p (T)× H−σ−1

p (T)H−σ
p (T)

D(A) =








y
w
z


 ∈ X−σ : y −Mz ∈ H−σ−1

p (T)



 .
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Spectral analysis

Theorem

The spectrum of the operator (D(A),A) is given by

σ(A) =
(
µjn

)

n∈N∗, 1≤j≤3
,

where the eigenvalues µjn verify the following estimates





µ1n = −M+
M3

n2
+O

(
1

n 4

)
, n ∈ N∗

µ2n =
M

2
− M3

2n 2
+ in+ i

3M2

8n
+O

(
1

n 3

)
, n ∈ N∗

µ3n = µ2n, n ∈ N∗.

Each eigenvalue µjn ∈ σ(A) is double and has two associated eigenvectors

Φj
±n =




1

−µjn
1

µjn


 e±inx, j ∈ {1, 2, 3}, n ∈ N

∗.
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Spectral analysis
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family µ3n

Distribution of the eigenvalues µj
n for n ∈ {1, . . . , 10}, corresponding to

M = 1. The accumulation of the family µ1
n zeros at −M appears.
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Proof

A




φ1

φ2

φ3


 =




−φ2
−φ1xx +Mφ3xx

φ1


 = µ




φ1

φ2

φ3


⇒





φ2 = −µφ1
φ3 = µ−1φ1

−(µ−M)φ1xx = −µ3φ1
φ1 ∈ H2+σ

p (T).

Plugging the first two equations in the third one, we immediately get

−φ1xx =

(
− µ3

µ−M

)
φ1.

Consequently, φ1 takes the form

φ1(x) = einx, n ∈ Z
∗,

and µ is an eigenvalue of the operatorA corresponding to φ1 if and only if verifies the
characteristic equation

µ3 + n2µ−Mn2 = 0.
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Proof (cont.)

For each n ≥ 1, the characteristic equation has a unique real root µ1n ∈ (0,M).

µ1n = M− M(µ1n)
2

(µ1n)
2 + n2

⇒ µ1n = M− M3

n2
+O

(
1

n4

)
, n ≥ 1.

In particular, M is an accumulation point.

Consider now that µ = α+ iβ with α, β ∈ R and β 6= 0. Plugging this in the character-
istic equation and setting both the real an the imaginary part to zero, we have

{
β2 = 3α2 + n2

−8α3 − 2αn2 −Mn2 = 0.

Hence, −2α is the real solution of the characteristic equation and we deduce that





µ2,3n = α2,3
n + iβ2,3

n , n ∈ N∗

α2
n = α3

n = −µ
1
n

2
, n ∈ N∗

β2
n =

√√√√3

(
µ1n
2

)2

+ n2, β3
n = −

√√√√3

(
µ1n
2

)2

+ n2, n ∈ N∗.
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Construction of a localized solution

Adjoint equation

ptt − pxx +M

∫ t

0

pxx(s)ds+Mq0xx, (x, t) ∈ R× (0, T)

Characteristics

pttt − pxxt +Mpxx = 0
⇓

P(x, t, ξ, τ) = τ3 − τ |ξ|2 = τ(τ2 − |ξ|2)

−2 −1 0 1 2
0

2

4

6

8
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Construction of a localized solution

Theorem

For any x0 ∈ R \ {0} and ε > 0, let the functions p ε be defined as

p ε(x, t) :=
1

x0

(
2

π

) 1
4

ε
7
8 e

i
ε
x− 1√

ε
(x−x0)

2+Mt−M3ε2t
.

• The p ε are approximate solutions, with the choice

q0(x) :=
1

M−M3ε2
p ε(x,0).

• The initial energy of p ε satisfies

Eε(0) := E(p ε)(0) = 1+O(
√
ε),

i.e. it is bounded as ε→ 0.

• The energy of p ε is exponentially small off the vertical ray (t, x0):

∫

|x−x0|>ε
1
8

(
|p ε

x |2 + |p ε
t |2
)
dx = O

(
e−2ε

− 1
4
)

41 /60



Construction of a localized solution
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The adjoint system

Adjoint system





ptt − pxx +Mqxx = 0, (x, t) ∈ Q

−qt = p, (x, t) ∈ Q

p(T) = p0, pt(T) = p1, x ∈ T

q(T) = q0, x ∈ T

Change of variables p(x, t) = ϕ(x + ct, t), q(x, t) = ψ(x + ct, t)





ϕtt − (1− c2)ϕxx + 2cϕxt +Mψxx = 0, (x, t) ∈ Q

−ψt − cψx = ϕ, (x, t) ∈ Q

ϕ(T) = p0, ϕt(T) = p1 − cp0x , x ∈ T

ψ(T) = q0, x ∈ T.

P. Martin, L. Rosier and P. Rouchon, Null controllability of the structurally damped wave equation

with moving control SICON, 2013.
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Reduction to a first order system

{
Φ′(t) +AcΦ = 0, t ∈ (0, T)

Φ(0) = Φ0
,

Φ(t) =




ϕ
η
ψ


 ,Y0 =




p0

p1 − cp0x
q0




Ac




ϕ
ϕt

ψ


 =




−η
−(1− c2)ϕxx + 2cηx +Mψxx

cψx + ϕ


 .

The domain D(Ac) is the same as D(A).
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Spectral analysis

Theorem

The spectrum of the operator (D(Ac),Ac) is given by

σ(Ac) =
(
λjn

)

n∈Z∗, 1≤j≤3
,

where the eigenvalues λjn are defined as follows

λjn = cni + µj
|n|
, n ∈ Z

∗, 1 ≤ j ≤ 3.

Each eigenvalue λjn ∈ σ(Ac) is simple and has an associated eigenvector of
the form

Ψj
n =




1

−λjn
1

(cni − λjn)




einx, j ∈ {1, 2, 3}, n ∈ Z
∗.
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Spectral analysis
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Distribution of the eigenvalues λj
n for n ∈ {1, . . . , 10}, corresponding to

M = 1 and c = 0.5 (left) and c = 2 (right).
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The controllability problem

Lemma

Let 0 ≤ σ < ∞. The equation is memory-type null controllable in time T

if and only if, for each initial data (y0, y1) ∈ Hσ+1
p (T) × Hσ

p (T), there exits a

control ũ ∈ L2(Q) verifying
∫ π

−π

1ω0
ũ(t, x)dx = 0 t ∈ (0, T),

such that, for any (p0, p1, q0) ∈ L2p(T)× H−1
p (T)× L2p(T), it holds the identity

∫ T

0

∫

ω0

ũ(t, x)ϕ̄(t, x)dxdt =
〈
y0(·), ϕt(0, ·)

〉
H1
p(T),H

−1
p (T)

−
∫

T

(
y1(x) + cy0x (x)

)
ϕ̄(0, x)dx,

where (ϕ,ψ) is the unique solution to the corresponding adjoint system.
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The controllability problem

Lemma

For each initial data



ϕ(T, x)
ϕt(T, x)
ψ(T, x)


 =




ϕ0(x)

ϕ1(x)
ψ0(x)


 =

∑

(n,j)∈S

b j
nΨ

j
n(x) ∈ L2p(T)× H−1

p (T)× L2p(T),

there exists a unique solution of the adjoint equation given by



ϕ(t, x)
ϕt(t, x)
ψ(t, x)


 =

∑

(n,j)∈S

b j
ne

λ
j
n(T−t)Ψj

n(x),

where we denoted S := {(n, j) : n ∈ Z∗, 1 ≤ j ≤ 3}
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The controllability problem

Lemma

Let 0 ≤ σ <∞. The equation is memory-type null controllable at time T if,

for each initial data (y0, y1) ∈ Hσ+1
p (T)× Hσ

p (T),

y0(x) =
∑

n∈Z∗
yn0e

inx, y1(x) =
∑

n∈Z∗
yn1 e

inx,

there exists û ∈ L2(Q) such that the following relations hold

∫ T

0

∫

ω0

û(t, x)e−inxe−λ̄
j
nt dxdt = −2π

(
µ̄j
|n|

y0n + y1n

)
, (n, j) ∈ S

∫ T

0

∫

ω0

û(t, x)e−λ̄
j
nt dxdt = 0, (n, j) ∈ S.
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Some spectral properties

Theorem

Each eigenvalue λjn ∈ σ(Ac) has an associated eigenvector of the form

Ψj
n =




1

−λjn
1

λjn − icn




einx, j ∈ {1, 2, 3}, n ∈ Z
∗.

Moreover, for any σ ≥ 0, the set
(
|n|σΨj

n

)

n∈Z∗, 1≤j≤3
forms a Riesz basis in

the spaces X−σ .

RIESZ BASIS: there exist two positive constants C1 and C2 such that

C1
∑

(n,j)∈S

|a j
n|2 ≤

∥∥∥∥∥∥

∑

(n,j)∈S

a j
n|n|σΨj

n

∥∥∥∥∥∥

2

X−σ

≤ C2
∑

(n,j)∈S

|a j
n|2.
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Some spectral properties

Lemma

All the elements of the spectrum σ(Ac) =
(
λjn

)

(n,j)∈S
are well separated

one from another except for the following special cases:

• If c ∈ (0, 1) the eigenvalues λ2m and λ2−nm
have a distance at least of

order 1
m2 between them and a similar relation holds for λ3m and λ3−nm

.

• If c ∈ (1,∞) the eigenvalues λ2m and λ3nm have a distance at least of

order 1
m2 between them and a similar relation holds for λ3−m and λ2−nm

.

• If c ∈ V , there exists a unique double eigenvalues λ2−nc
= λ3nc , where

we denoted

V =





√√√√1+ 3

(
µ1n
2n

)2

: n ∈ N
∗




.
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A biorthogonal family

Theorem

Let c ∈ R \ {−1,0, 1} and let define

P(z) = z
3

lim
R→∞

∏

(n,j)∈S

|λj
n|≤R

(

1 +
z

iλ
j

n

)

.

• P is an entire function of exponential type
(

1
|c| + 1

|1+c| + 1
|1−c|

)

π.

• For each δ > 0, there exists a positive constant C(δ) > 0 such that

|P(z)| ≤ C(δ), z = x + iy, x, y ∈ R, |y| ≤ δ.

Moreover, there exists a constant C1 > 0 such that, for any (m, k) ∈ S,

∣

∣

∣

∣

∣

P(x)

x + iλ
k

m

∣

∣

∣

∣

∣

≤
C1

1 +
∣

∣x + ℑ(λk
m)
∣

∣

, z = x + iy, x, y ∈ R, |y| ≤ δ.

• Each−iλ
j

m is a simple zero of P and there exists a positive constant C2 such that

∣

∣

∣
P
′
(−iλ

j

m)
∣

∣

∣
≥

C2

m2
, (m, j) ∈ S.
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A biorthogonal family

Theorem

Let c ∈ R \ {−1,0, 1} and T > 2π
(

1
|c|

+ 1
|c−1|

+ 1
|c+1|

)
. There exist a

biorthogonal sequence
(
θkm
)
(m,k)∈S

to the family of complex exponentials
(
e−λ

j
nt
)

(n,j)∈S
in L2

(
− T

2
, T
2

)
and a positive constant C with the property that

∥∥∥∥∥∥

∑

(m,k)∈S

βk
mθ

k
m

∥∥∥∥∥∥

2

L2(− T
2
, T
2 )

≤ C
∑

(m,k)∈S

m4
∣∣∣βk

m

∣∣∣
2
,

for any finite sequence of complex numbers
(
βk
m

)
(m,k)∈S

.

BIORTHOGONAL SEQUENCE:
(
θkm
)
(m,k)∈S

such that

∫ T
2

− T
2

θkm(t)e−λ̄
j
nt dt = δn,j

m,k
.
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Estimates for the biorthogonal family

Corollary

Let c ∈ R \ {−1,0, 1} and T > 2π
(

1
|c|

+ 1
|c−1|

+ 1
|c+1|

)
. For any finite se-

quence of scalars (aj
n)(n,j)∈S ⊂ C, it holds the inequality

∑

(n,j)∈S

∣∣∣a j
n

∣∣∣
2

n4
≤ C

∥∥∥∥∥∥

∑

(n,j)∈S

aj
ne

−λ
j
nt

∥∥∥∥∥∥

2

L2(− T
2
, T
2 )

.

PROOF: By taking into account the orthogonality properties of
(
θkm
)
(m,k)∈S

we deduce

∑

(n,j)∈S

∣∣∣a j
n

∣∣∣
2

n4
=

∫ T
2

− T
2



∑

(n,j)∈S

a j
ne

−λ
j
nt





∑

(m,k)∈S

ak
m

m4
θkm(t)


 dt

≤

∥∥∥∥∥∥

∑

(n,j)∈S

a j
ne

−λ
j
nt

∥∥∥∥∥∥
L2(− T

2
, T
2 )

∥∥∥∥∥∥

∑

(m,k)∈S

ak
m

m4
θkm

∥∥∥∥∥∥
L2(− T

2
, T
2 )

.
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A technical result

Theorem

Let (fn)n be a sequence of vectors belonging to a Hilbert space H and (cn)n
a sequence of scalars. In order that the equations

(f , fn) = cn

shall admit at least one solution f ∈ H for which ‖f‖H ≤ M, it is necessary
and sufficient that

∣∣∣∣∣
∑

n

anc̄n

∣∣∣∣∣ ≤ M

∥∥∥∥∥
∑

n

anfn

∥∥∥∥∥
H

(Y )

for every finite sequence of scalars (an)n .

R. M. Young, An Introduction to Non-Harmonic Fourier Series, Elsevier, 2001.
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Controllability result

Theorem

Let M 6= 0, c ∈ R \ {−1,0, 1}, T > 2π
(

1
|c|

+ 1
|1−c|

+ 1
|1+c|

)
, ω a non void

open set in T and

ω(t) = ω0 − ct, t ∈ [0, T].

For each initial data (y0, y1) ∈ H3
p(T)×H2

p(T) there exists a control u ∈ L2(O)
such that the solution (y, yt) of our original problem verifies

y(T, x) = yt(T, x) =

∫ T

0

yxx(s, x)ds = 0.
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Proof

It is enough to show that, for each initial data (y0, y1)∈ H3
p(T)× H2

p(T) in the form

y0(x) =
∑

n∈Z∗
yn0e

inx, y1(x) =
∑

n∈Z∗
yn1 e

inx,

there exists û ∈ L2(Q) such that

∫ T

0

∫

ω0

û(t, x)e−inxe−λ̄
j
nt dxdt = −2π

(
µ̄ j
|n|

y0n + y1n

)
, (n, j) ∈ S

∫ T

0

∫

ω0

û(t, x)e−λ̄
j
nt dxdt = 0, (n, j) ∈ S.

This is equivalent to show that the following inequality holds

∣∣∣∣∣∣

∑

(n,j)∈S

(µ j
|n|

ȳ0n + ȳ1n)a
j
n

∣∣∣∣∣∣

2

≤ C
∫ T

0

∫

ω0

∣∣∣∣∣∣

∑

(n,j)∈S

b j
ne

−λ
j
nt +

∑

(n,j)∈S

a j
ne

inxe−λ
j
nt

∣∣∣∣∣∣

2

dxdt,

for all finite sequences (a j
n)(n,j)∈S ∪ (b j

n)(n,j)∈S ⊂ C.
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Proof (cont.)

Notice that∣∣∣∣∣∣

∑

(n,j)∈S

(µ j
|n|

ȳ0n + ȳ1n)a
j
n

∣∣∣∣∣∣

2

≤



∑

(n,j)∈S

n4
∣∣∣µ j

|n|
ȳ0n + ȳ1n

∣∣∣
2





∑

(n,j)∈S

|a j
n|2
n4




≤ C
∥∥∥(y0, y1)

∥∥∥
2

H3
p(T)×H2

p(T)



∑

(n,j)∈S

|a j
n|2
n4


 .

On the other hand, taking into account that we can have at most one double eigen-
value λ2−nc

(if c ∈ V ), we deduce that

∫ T

0

∫

ω0

∣∣∣∣∣∣

∑

(n,j)∈S

b j
ne

−λ
j
nt +

∑

(n,j)∈S

a j
ne

inxe−λ
j
nt

∣∣∣∣∣∣

2

dxdt

=

∫

ω0

∫ T
2

− T
2

∣∣∣∣∣∣

∑

(n,j)∈S

(
a j
ne

inx + b j
n

)
eλ

j
n
T
2 e−λ

j
nt

∣∣∣∣∣∣

2

dtdx

≥ C
(

∑

(n,j)∈S\{(−nc,2), (nc,3)}

1

n4

∫

ω0

∣∣∣∣
(
a j
ne

inx + b j
n

)
eλ

j
n
T
2

∣∣∣∣
2

dx

+

∫

ω0

∣∣∣∣a
2
−nc

e
λ2
−nc

T
2 e−incx + a3

nc
e
λ3
nc

T
2 eincx + b2−nc

e
λ2
−nc

T
2 + b3nce

λ3
nc

T
2

∣∣∣∣
2

dx

)
.
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Proof (conclusion)

Notice that, if c /∈ V , all the eigenvalues are simple and the separation of the second
term in the last inequality is not needed.

Since the maps

C
2 ∋ (a,b) 7→

(∫

ω0

∣∣∣aeinx + b
∣∣∣
2
dx

) 1
2

,

C
3 ∋ (a′,a′′,b) 7→

(∫

ω0

∣∣∣a′e−incx + a′′eincx + b
∣∣∣
2
dx

) 1
2

,

are norms in C2 and C3, respectively, it follows that

∫ T

0

∫

ω0

∣∣∣∣∣∣

∑

(n,j)∈S

b j
ne

−λ
j
nt +

∑

(n,j)∈S

a j
ne

inxe−λ
j
nt

∣∣∣∣∣∣

2

dxdt ≥ C
∑

(n,j)∈S

|a j
n|2
n4

.
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