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HISTORICAL INTRODUCTION




Origins of fractional calculus

Fractional calculus was born in 1697

In the letters to J. Wallis and J.
Bernoulli in 1697, Leibniz men-
tioned the possible approach
to fractional-order differentiation
of exponential functions in that
sense, that for non-integer values
of n the definition could be the fol-
lowing:

n
d mx

dxn

— mﬂ emx
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Origins of fractional calculus

Form,ne N

dn m_ . _ m—n_M
e =M = Dm = 2) - (m = N =l

I': Euler gamma function

m—n

Euler suggested to use this rela-
tionship also for negative or non-
integer (rational) values of n. Tak-
ingm = land n = 1/2, he ob-
tained:

dz 2 1 4x
— X = X2 = —
dXE ™ ™
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Origins of fractional calculus

Lacroix adopted Euler's derivation for his successful textbook
S. F. Lacroix, Traité du calcul différentiel et du calcul intégral, Courcier, 1819.

TRAITE

o

CALCUL DIFFERENTIEL

DU CALCUL INTEGRAL,

Pan S, T. LAGROIX.

TOME PREMIER.
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Origins of fractional calculus

Fourier (1820-1822)

The first step to gener-
alization of the notion
of differentiation for
arbitrary functions was
done by Fourier J. B. J.
Fourier, Théorie analytique
de la chaleur, Didot, 1822.

After introducing his famous formula

(0 =5 [ 1@ ([ costox—pycp) 2

Fourier made a remark that

Wf( > / (/Oo cos (px pz—&-f) dp)

and this relationship could serve as a definition of the n-th order derivative for non-

integer n.
5/51



Origins of fractional calculus

Abel (1823) and Liouville (1826)

They solved the integral equation

X
o(t)
= dt a, O 1
f(x) /a o~ 1) , x>0, 0<p<
in connection with the tautochrone problem. The solution was given for

all O < p < 1, although the tautochrone problem itself leads to the case
n=1/2
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Riemann-Liouville fractional integral

Riemann-Liouville fractional integral (1876)

The works of Abel and Liouville led to the definition of the Rieman-Liouville
fractional integral

(t—7)-«
Jef(t) = SR R (G IR <a€eR  LEFT-SIDED INTEGRAL
YT ) Gt T

still in use nowadays.

1 t
JSf() = @ / @ dr, O<a€R RIGHT-SIDED INTEGRAL
el
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FROM INTEGER TO FRACTIONAL
INTEGRALS AND DERIVATIVES




Towards fractional integrals and derivatives

It all starts from the fundamental theorem of calculus

Letf : [a,b] — R be a continuous function, and let the function F : [a,b] — R
be defined by

t
F(t) = /a f(r)dr.

Then, F is differentiable and F'(t) = f(t).

We have a very close relation between differential operators and integral opera-
tors. It is one of the goals of fractional calculus to retain this relation in a suitably
generalized sense.
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Towards fractional integrals and derivatives

We denote by D the operator that maps a differentiable function onto its
derivative, i.e.

DF() = ().

We denote by Jq the operator that maps a function f, assumed to be (Rie-
mann) integrable on the compact interval [a, b], onto its primitive centered
ata,ie

t
Jaf(t):/f(T)d'r fora <t<b.

For n € N we use the symbols D" and Jj to denote the n-fold iterates of D
and Jq, respectively, i.e. we set

D':=D =g
D" :=pD"=t 0= Jo ot forn > 2.

Key question

How can we extend these conceptston ¢ N?
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Some properties

Forn € N, itis well known (and easily proved by induction) that we can replace the
recursive definition J7 by the following explicit formula

n _ 1 t f(T)
()= 3, /a =

for all f Riemann integrable on [a,b]and a <t < b.

Moreover, it is an immediate consequence of the previous identity (and therefore
a consequence of the fundamental theorem of calculus) that the following relation
holds for the operators D and Jq.

Letm,n € Nsuch that m > n, and let f be a function having a continuous

n-th derivative on the interval [a, b]. Then,

Df = D" JPE.

PROOF: we have f = D"—"J7~"f. Applying the operator D" to both sides of this
relation and using the fact that D"D"—" = D™, the statement follows.
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Towards fractional integrals and derivatives

Fundamental theorem of calculus in Lebesgue spaces

Letf € LY([a, b]). Then, Jof is differentiable almost everywhere in [a, b], and
DJaf = f holds almost everywhere on [a, b].
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The Gamma function

Definition

The function T : (O, 4+00) — R, defined by

I A
r(t) = s e ds, R({t)>0
0

is called Euler's Gamma function (or Euler’s integral of the second kind).
Extended to R(t) < O by analytic continuation to a meromorphic function with simple
polesint=0andt e Z~.

SOME PROPERTIES:
e I(n)=(n—1)!foralln e N.
o T(t+1) =tr(t)forallt > O. ’ U

. /tsa_l(tis)/aqu _ patp—1 M(a)r(B)

o Ma+p)
foralle,, B8 > O.

SPECIFIC VALUES:
T3 =
o M(-)=-2y7 N —1(t)
) F( ) -
)

Nlw Mol

%
IS
[}
o
%)
=~

° F(
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Left Riemann-Liouville integral

Let O < a € R. The operator J¢, defined on L1([a, b]) by

oprp 1L tOf(n)
Jaf(t)fﬂ/amdr fora<t<b

is the left Riemann-Liouville fractional integral of order o centered at a.
Fora = 0, we set J9 := /, the identity operator.
Fora = O, we simply write J§ = J* forallO < o € R.

To emphasize the fact that a < t, sometimes it is used the notation Jg, f(1).
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Some properties

Theorem

Letf € L([a,b]) and O < « € R. Then, the integral JSf(t) exists for almost
every t € [a,b]. Moreover, JSf € L([a, b]).

Theorem

Let O < a,8 € Rand f € L([a,b]). Then, J2J2f = JSTPF holds almost
everywhere on [a, b]. If additionally f € C([a,b]) or a + 3 > 1, then the
identity holds everywhere on [a, b].

Corollary

7
\.

Under the previous assumptions, Jgjg?f = Jgjf;f.
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Some properties

Riemann-Liouville integral of power functions

Foralla > 0,8 > —landt>a

o _ B+, e
Ja(t—a)ﬁ_m(t a)eth

Notice that when o, 8 € N

r+1)
Ma+B8+1)
=B gyets
@rpn
(t_o)oﬂrﬁ

B+D(B+2)- - (B+a)

Jg(t—a)f = (t—a)>*h
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Right Riemann-Liouville integral

Let O < a € R. The operator Jg_, defined on LY([a, b]) by
L [P f)
Jy f(t) = == ———-—dr fora<t<b
B0 = | st fora<ts
is the right Riemann-Liouville fractional integral of order o centered at b.

Fora = O, we set Jt?_ := 1, the identity operator.
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Riemann-Liouville derivatives

Foralln € N, we have D"J" = | but the inverse is false: /D" # /. In fact

s = i - 32 (580

D" is the left inverse (but not the right inverse) of J".

This motivates defining D> for O < a € R as the left inverse of J*.
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Riemann-Liouville derivatives

Lenn € N. By A"([a, b]) we denote the set of absolutely continuous functions
with absolutely continuous (n — 1) derivative on [a, b].

Definition

Let 0 < a € Rand m = [a]. The operator D, defined on Al([a, b]) by
DSf = D"JF=of

is the Riemann-Liouville fractional derivative of order o centered at a.

For a = O, we set D9 := /, the identity operator.

Fora = O, we simply write D§ = D> forallO < a € R.
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Some properties

LetO < a € Rand o < m € N. Then, Dg = D7~ <.

Letf € Al([a,b]).0 < a € Randm = [«]. Then DS exists almost everywhere
in [a, b]. Moreover Dgf € LP([a,b]) forl <p < 1/aand

7510 = G (a1 |, Tryern ).
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Some properties

Riemann-Liouville derivative of power functions

Foralla > 0,8 > —landt > 0O

rB+1-oa)

Notice that when o, 8 € Nwith 8 > o+ 1

aﬁ_MBi&—Lﬁ*a— —1)..--(8 — B—a
bt _I'(,B-i-l—a)t —(5_a)!f =pB-1)--(B-—a+l)

ATTENTION!

The Riemann-Liouville fractional derivative is not zero for the constant func-
tions: forallO < a ¢ N

_e
rl—a)’
IfO < a € N, D*1 = O due to the poles of the Gamma function.

D*1 = t>0.
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Caputo fractional derivative

Definition

Let O < a € Rand m = [a]. The operator Dg, defined on Al([a,b]) by

CDg+ (t) = CDgf(t) — a) dt/ ([(:-)T a+l m

is the left Caputo fractional derivative of order o centered at a.

Fora = O, we simply write cD§ = ¢D* forallO < a € R.

Let 0 < a € Rand m = [a]. The operator Dy _ defined on Al([a, b]) by

dr

cDp-f(t) = — o) dl‘ / (7 71‘ &+1 m

is the right Caputo fractional derivative of order o centered at b.
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Caputo fractional derivative

ForalO<aeR m=

cDgf(t) =

In particular

[a]l and f € A™([a,b]). we have
1t ()

r(m—a) o (t—7)ti-m

Fm(
cDb f(t)f ( 1a)/ T_ta+3m

D3f =3~ D"f

dr

dr
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Riemann-Liouville VS Caputo derivative

In general, D¥f := DM JM—af £ Jn—apmf —. .D*f. In fact, for O < a € R,
m = [a]andt > O, we have
fO©) e
DOf(t) = cDf(t A A
f(t) = c f()+§:r(k o

Recalling the formula for the Riemann-Liouville fractional derivative of power
functions, we then have

(R
D"f(t) = D" (f(t) Zf (%)

The Caputo fractional derivative of a constant function is zero:

cD*1=0, foralO<a€eR.
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APPLICATION: SOLUTION OF
INTEGRAL EQUATIONS




Abel's equation of the first kind

Abel's equation of the first kind

Given a function g € AY([0, 1]), find f € L1([O, {]) such that

L e,
@) o Ty 9T =90,

MULTIPLE APPLICATIONS IN DIVERSE FIELDS:

e The mechanical problem of the tautochrone, that is, determining a curve in the
vertical plane, such that the time required for a particle to slide down the curve
to its lowest point is independent of its initial placement on the curve.

e Evaluation of spectroscopic measurements of cylindrical gas discharges
e Study of the solar or a planetary atmosphere
e Star densities in a globular cluster

e Inversion of travel times of seismic waves for determination of terrestrial
sub-surface structure

e Inverse boundary value problems in partial dizerential equations
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Example

Let the colored area in the figure represent —y = f(h)
the cross section of a weir notch, whose
form is determined by the functiony = f(h)
for h > O the cross section being symmet-
ric wrt. the y axis. The quantity of flow
through the notch per unit time is given by

h
o= [re)vh—gd.
(0]

Problem

Determine f so that the flow per unit of time is proportional to a given power of the
depth of the strem, i.e. Q = kh"™ form > O.

Hence, we must find f from an integral equation of the form

/hf(g)\/hfgdgzkhm i iG] d¢ = 2rmh™ ! = g(h).
¢} o Vh—¢

Abel's equation of first kind

W. C. Brenke, An application of Abel’s integral equation, Amer. Math. Monthly, 1922.
27 /51



Abel's equation of the first kind - solution

Abel's equation of the first kind

Given a function g € AY([0, 1]), find f € L1(]O, {]) such that

RO G
) o Ty 9T =90,

The equation is immediately solved by observing that it can be written in the form

St =g9(t) — [f(t)=D"9(1)
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Abel's equation of the first kind - solution

Coming back to the previous example, we have

2km

"(3)

A1

h f(g) _ m—1 % —
/O mdg_kah - JIf(h) =

Hence
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Abel's equation of the second kind

Abel's equation of the second kind

Given a function g € AY([0, 1)), find f € L1([O, t]) such that

A t T
f(t)‘f‘@ o (t—f(T))l_o‘ dT:g(t), a>0, xeC.

Most often applied in problems of heat and mass transfer.
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Abel's equation of the second kind

Abel's equation of the second kind

In terms of the Riemann-Liouville integral operator:

(1+ )t =a(t), a>0,recC

FORMAL SOLUTION:
1
o) = (1+21%) g = [ 14+ 3 (=N" ) o)
k>1
. k . tak—l
Noting that Jo#f(t) = (%k « f)(t) with ®,,,(1) = &5, we then get

ak—1
F(0) =) + (Z(—A)k ﬁ(ak)> “9(0)

k>1
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Relation with the Mittag-Leffler function

Mittag-Leffler function

+oo R
z
Eaﬁ(z):i — O<a,fBEeER
k:OF(ak—i—,B)

B=1Ey1(2) = Eal2)
e o = O: the series above equals the Taylor expansion of the geometric
series and consequently

1 1
Eop(2) = @E

a = 8 = 1 the series above equals the Taylor expansion of the
exponential and consequently

Ei(2) = e?

e a =2, 8 =1 the series above equals the Taylor expansion of the
hyperbolic cosine evaluated in y/z and consequently

E>(2) = cosh(v/Z)

In particular E>(—2z2) = cosh(iz) = cos(z)
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Relation with the Mittag-Leffler function

We have that

takfl d al? d Ata)
AR - = R -

g( ) I'(aR) dt er:( A) (ak +1) d z>: MNak+1)

d
= —Eq (=A%) = EL (-t
Ea(~M®) = EL (A7)

Hence, the solution of the Abel's integral equation of second kind is given by

f(t) = g(t) + EL(=At*) + g(D)
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FRACTIONAL-IN-TIME ODE AND
PDE



The Laplace transform

Laplace tranfsorm

If f € LY(R, ), we define its Laplace transform (usually denoted by £f or )
as

£fs) =F) = | " fyetat
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Properties of the Laplace transform

Generalized linearity L (Z akfk(t)> (s) = Z apLfr(s)

k>0 k>0

LT of powers £(t)(s) = r(fk:n

LT of derivatives L(S’; ()) (5) =s"Lf(s) - ZS" "< i 1f( )

LT of integrals (/ f(r)dr ) (s) = Lf(s)

LT of convolution L(f(t) * g(t)) (s) = (Lf(s)) (Lg(s))

LT of R-L integral LIF(t) = ££ (<)

LT of R-L derivative LD*f(t) = s*Lf(s) — ZDk STTE0)S"TTHR m = [a]

LT of Caputo derivative ~ L:Df(t) = s“ Lf(s Z fP©0)s*1* m = [a]
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The Fourier transform

Fourier transform

If f € L1(R), we define its Fourier transform (usually denoted by Ff or fas

FFE) =) = /R Fx)e 1 dx

Generalized linearity 7 | > axfu(x) | (&) = D apFfe(€)
k>0 k>0

LT of derivatives F (5—;/‘()()) &) = (ie)"Ff(&)

LT of convolution .F(f(x) * g(X)) ©) = (]:f(f)) (Fg(ﬁ))

37/51



Fractional-in-time ODE

Linear first-order ODE

u'(t) = —u(b),
u(0) = uo

t>0

7
I L

Linear first-order ODE

u’(t)y = —u(t)+q(t), t>0
u(0) = uo, u'(0) = uy

Linear second-order ODE

SOLUTION: u(t) = upe™!

SOLUTION: u(t) = ug cos(t) + uy sin(t)

\¥hat about fractional order ODE?
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Fractional-in-time ODE

Linear a-order ODE

Du(t) = D™ (u(t) -

O<a€eR, m=[a]

m—1

>

k=0

“(k})?fo)t’*> =—u(t), t>0

u®©)=u,, ke{0,...,m-1}
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Fractional-in-time ODE

SOLUTION BY LAPLACE TRANSFORM
Applying the operator J* on both sides of the equation, we get

m=1 ()
uty =34 kfo)t’? — Uty
k=0 :

Applying the Laplace transform on both sides of the equation, we get

m—1 (k)
. ut®(o) 1 1. =1 (R a—k—1
i(s) = B ol gall®) s u(0) s

k=0 : s> +1
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Fractional-in-time ODE

a—k—1
LAPLACE TRANSFORM OF MITTAG-LEFFLER: £ (JkEa(—)\t“)) (s) = ‘; Y
Hence
m—1 (k) 0
- u
a(s) = kf ) (S Ea(=1%)) (5)
k=0
m—1 m—1
u
=3 L (SEa(-t) () = £ (Z Tl Ealt )) (s)
k=0 k=0

Inverting the Laplace transform we finally obtain

Solution of the equation

m— 1

u(t):z J*?E (—t)

kO
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Fractional-in-time ODE

Solution of the equation

m—1

u(t) = 3 e (—t)

= R!

a€(0,1) = m=1 wehave u(t) = ugSEa(—t*) = UpEa(—t)
When o = 1 (recall that cDu(t) = Du(t) = u’(t)):

u(t) = upEr(—t) = uge™
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Fractional-in-time ODE

Solution of the equation

m—1

uty=%" %J’?Ea(—t“)
k=0 "’

ac(l,2) > m=2 wehaveu(t) = upEa(—t*) + u1JEa(—t%)

When o = 2 (recall that cDu(t) = D2u(t) = u”(t)):

U(t) = UpEa(—t?) + U1 JEo(—t?) = ug cosh(it) + U1 cosh(it)
t t

= Ug cosh(it) + uy / cosh(iT) dT = ug cos(t) + up / cos(7) dr = ug cos(t) + uy sin(t)
0 0

a=0.1
——a =02
—a=03
—a=04
—a=05
—a=06
—a=07
—a=08
—a=09

—a=1
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Fractional-in-time PDE

Fractional diffusion equation

Du(x,t) = Au(x,t), (x,t) e RV xRy, ae(0,1)
u(x,0) = uop(x)

Obtained from the standard diffusion equation by replacing the first-order time deriva-
tive with a Caputo derivative of order a € (0, 1)
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Fractional-in-time PDE

SOLUTION BY FOURIER/LAPLACE TRANSFORM IN SPACE/TIME
1. Taking the Laplace transform in time, we obtain
s20i(x,5) — Up(X)s* ™! = Afli(x, s)
2. Taking the Fourier transform in space, we obtain

afl

s°0i(6,) ~ Bo(€)s" ™ = ~IePl(Es) > 86,9 =000 7 e

3. Inverting the Laplace transform, we obtain

(&, 1) = Oo(&)Eal—[€[7t*)

4. Inverting the Fourier transform, we obtain

(Zﬂ)g[uo*.rfl(Eac—\wsz)]<x)

u(x,t) =
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The Wright function

Wright function

M, (2) = Z— Z(Z)Mr( k) sin(vk)
v RIF(—vk+1—v) 72 (k=11 /oM

k>0 k>0

F. Mainardi and A. Consiglio, The Wright functions of the second kind in Mathematical
Physics, Mathematics, 2020.

FOURIER TRANSFORM OF THE WRIGHT FUNCTION:

F(t7Mu (X)) (€) = 262, (~[¢PPt)
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Solution of the PDE

\We then have

Eal-[6Pt%) = Ea( ~ [EP(E)?) = JF(r 20 (M%) ()

Therefore, the solution of the fractional diffusion equation is given by

u(x,t) = c )% [uo *]-‘—1(Ea(—| . |2ta))](x)
“Sigmrle e
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Fundamental solution

Fundamental solution of the fractional diffusion equati

As for the case of the standard heat equation, the fundamental solution is obtained
when considering as initial datum the Dirac delta distribution:

Uo(x) = 6(x)

Since § is the identity element of convolution, we obtain

u(x, t) =

=2

(2m)

@ 1)%F1(E"(_|5|2ta)>(x):% Mg (x|t~ %)

Nz

«a = 1 fundamental solution of the dif-

fusion equation

Fl(ele1?t L
u(x,t) = (e >(X) e

N
(2m)?

The Wright function for different values of v

Source: F. Mainardi and A. Consiglio, 2020.
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