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HISTORICAL INTRODUCTION



Origins of fractional calculus

Fractional calculus was born in 1697

In the letters to J. Wallis and J.
Bernoulli in 1697, Leibniz men-
tioned the possible approach
to fractional-order differentiation
of exponential functions in that
sense, that for non-integer values
of n the definition could be the fol-
lowing:

dn

dxn
emx = mnemx
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Origins of fractional calculus

Euler (1730)

Form, n ∈ N:

dn

dxn
xm = m(m− 1)(m− 2) · (m− n + 1)xm−n =

Γ(m + 1)

Γ(m− n + 1)
xm−n

Γ: Euler gamma function

Euler suggested to use this rela-
tionship also for negative or non-
integer (rational) values of n. Tak-
ing m = 1 and n = 1/2, he ob-
tained:

d
1
2

dx
1
2

x =
2
√
π
x

1
2 =

√
4x
π
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Origins of fractional calculus

Euler (1730)

Lacroix adopted Euler’s derivation for his successful textbook
S. F. Lacroix, Traité du calcul différentiel et du calcul intégral, Courcier, 1819.
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Origins of fractional calculus

Fourier (1820-1822)

The first step to gener-
alization of the notion
of differentiation for
arbitrary functions was
done by Fourier J. B. J.
Fourier, Théorie analytique
de la chaleur, Didot, 1822.

After introducing his famous formula

f(x) =
1

2π

∫ +∞

−∞
f(z)

(∫ +∞

−∞
cos(px − pz)dp

)
dz,

Fourier made a remark that

dn

dxn
f(x) =

1

2π

∫ +∞

−∞
f(z)

(∫ +∞

−∞
cos
(
px − pz +

nπ
2

)
dp
)

dz,

and this relationship could serve as a definition of the n-th order derivative for non-
integer n.
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Origins of fractional calculus

Abel (1823) and Liouville (1826)

They solved the integral equation

f(x) =

∫ x

a

φ(t)
(x − t)µ

dt, x > a, 0 < µ < 1

in connection with the tautochrone problem. The solution was given for
all 0 < µ < 1, although the tautochrone problem itself leads to the case
µ = 1/2.
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Riemann-Liouville fractional integral

Riemann-Liouville fractional integral (1876)

The works of Abel and Liouville led to the definition of the Rieman-Liouville
fractional integral

Jαa+f(t) :=
1

Γ(α)

∫ t

a

f(τ)

(t− τ)1−α
dτ, 0 < α ∈ R RIGHT-SIDED INTEGRAL

Jαb−f(t) :=
1

Γ(α)

∫ b

t

f(τ)

(t− τ)1−α
dτ, 0 < α ∈ R LEFT-SIDED INTEGRAL

still in use nowadays.
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FROM INTEGER TO FRACTIONAL
INTEGRALS AND DERIVATIVES



Towards fractional integrals and derivatives

It all starts from the fundamental theorem of calculus

Theorem

Let f : [a, b]→ R be a continuous function, and let the function F : [a, b]→ R
be defined by

F(t) =

∫ t

a
f(τ)dτ.

Then, F is differentiable and F′(t) = f(t).

We have a very close relation between differential operators and integral opera-
tors. It is one of the goals of fractional calculus to retain this relation in a suitably
generalized sense.
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Towards fractional integrals and derivatives

Definition

We denote by D the operator that maps a differentiable function onto its
derivative, i.e.

Df(t) = f ′(t).

We denote by Ja the operator that maps a function f , assumed to be (Rie-
mann) integrable on the compact interval [a,b], onto its primitive centered
at a, i.e.

Jaf(t) =

∫ t

a
f(τ)dτ for a ≤ t ≤ b.

For n ∈ N we use the symbols Dn and Jna to denote the n-fold iterates of D
and Ja, respectively, i.e. we set

D1 := D J1a := Ja
Dn := DDn−1 Jna := JaJn−1a for n ≥ 2.

Key question

How can we extend these concepts to n 6∈ N?
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Some properties

For n ∈ N, it is well known (and easily proved by induction) that we can replace the
recursive definition Jna by the following explicit formula

Jnaf(t) =
1

(n− 1)!

∫ t

a

f(τ)

(t− τ)1−n
dτ

for all f Riemann integrable on [a,b] and a ≤ t ≤ b.

Moreover, it is an immediate consequence of the previous identity (and therefore
a consequence of the fundamental theorem of calculus) that the following relation
holds for the operators D and Ja .

Lemma

Let m, n ∈ N such that m > n, and let f be a function having a continuous
n-th derivative on the interval [a,b]. Then,

Dnf = DmJm−na f .

PROOF: we have f = Dm−nJm−na f . Applying the operator Dn to both sides of this
relation and using the fact that DnDm−n = Dm, the statement follows.
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Towards fractional integrals and derivatives

Fundamental theorem of calculus in Lebesgue spaces

Let f ∈ L1([a, b]). Then, Jaf is differentiable almost everywhere in [a, b], and
DJaf = f holds almost everywhere on [a,b].
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The Gamma function

Definition

The function Γ : (0,+∞)→ R, defined by

Γ(t) =

∫ +∞

0
st−1e−s ds, <(t) > 0

is called Euler’s Gamma function (or Euler’s integral of the second kind).
Extended to <(t) < 0 by analytic continuation to a meromorphic function with simple
poles in t = 0 and t ∈ Z− .

SOME PROPERTIES:

• Γ(n) = (n− 1)! for all n ∈ N.
• Γ(t + 1) = tΓ(t) for all t > 0.

•
∫ t

0
sα−1(t− s)β−1 ds = tα+β−1 Γ(α)Γ(β)

Γ(α + β)
for all α, β > 0.

SPECIFIC VALUES:

• Γ
(
− 3

2

)
= 4
√

π
3

• Γ
(
− 1

2

)
= −2

√
π

• Γ
(
1
2

)
=
√
π

• Γ
(
3
2

)
=
√

π
2
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Left Riemann-Liouville integral

Definition

Let 0 ≤ α ∈ R. The operator Jαa , defined on L1([a,b]) by

Jαa f(t) =
1

Γ(α)

∫ t

a

f(τ)

(t− τ)1−α
dτ for a ≤ t ≤ b

is the left Riemann-Liouville fractional integral of order α centered at a.

For α = 0, we set J0a := I, the identity operator.

For a = 0, we simply write Jα0 = Jα for all 0 ≤ α ∈ R.

To emphasize the fact that a < t, sometimes it is used the notation Jαa+f(t).
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Some properties

Theorem

Let f ∈ L1([a,b]) and 0 < α ∈ R. Then, the integral Jαa f(t) exists for almost
every t ∈ [a,b]. Moreover, Jαa f ∈ L1([a,b]).

Theorem

Let 0 < α, β ∈ R and f ∈ L1([a,b]). Then, Jαa J
β
a f = Jα+β

a f holds almost
everywhere on [a,b]. If additionally f ∈ C([a,b]) or α + β ≥ 1, then the
identity holds everywhere on [a,b].

Corollary

Under the previous assumptions, Jαa J
β
a f = Jβa J

α
a f .
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Some properties

Riemann-Liouville integral of power functions

For all α > 0, β > −1 and t > a

Jαa (t− a)β =
Γ(β + 1)

Γ(α+ β + 1)
(t− a)α+β

Notice that when α, β ∈ N

Jαa (t− a)β =
Γ(β + 1)

Γ(α+ β + 1)
(t− a)α+β

=
β!

(α+ β)!
(t− a)α+β

=
(t− a)α+β

(β + 1)(β + 2) · · · (β + α)
.
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Right Riemann-Liouville integral

Definition

Let 0 ≤ α ∈ R. The operator Jαb−, defined on L1([a,b]) by

Jαb−f(t) =
1

Γ(α)

∫ b

t

f(τ)

(τ − t)1−α
dτ for a ≤ t ≤ b

is the right Riemann-Liouville fractional integral of order α centered at b.

For α = 0, we set J0b− := I, the identity operator.
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Riemann-Liouville derivatives

Lemma

For all n ∈ N, we have DnJn = I but the inverse is false: JnDn 6= I. In fact

JnDnf(t) = f(t)−
n−1∑
k=0

f (k)(0)

k!
tk

Dn is the left inverse (but not the right inverse) of Jn .

This motivates defining Dα for 0 < α ∈ R as the left inverse of Jα .
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Riemann-Liouville derivatives

Definition

Len n ∈ N. By An([a, b]) we denote the set of absolutely continuous functions
with absolutely continuous (n− 1) derivative on [a,b].

Definition

Let 0 ≤ α ∈ R andm = dαe. The operator Dαa , defined on A1([a,b]) by

Dαa f = DmJm−αa f

is the Riemann-Liouville fractional derivative of order α centered at a.

For α = 0, we set D0
a := I, the identity operator.

For a = 0, we simply write Dα0 = Dα for all 0 ≤ α ∈ R.
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Some properties

Theorem

Let 0 < α ∈ R and α < m ∈ N. Then, Dαa = Dm
a J

m−α
a .

Theorem

Let f ∈ A1([a, b]), 0 ≤ α ∈ R andm = dαe. ThenDαa exists almost everywhere
in [a,b]. Moreover Dαa f ∈ Lp([a,b]) for 1 ≤ p < 1/α and

Dαa f(t) =
dm

dtm

(
1

Γ(m− α)

∫ t

a

f(τ)

(t− τ)α+1−m dτ
)
.

20/51



Some properties

Riemann-Liouville derivative of power functions

For all α > 0, β > −1 and t > 0

Dαtβ =
Γ(β + 1)

Γ(β + 1− α)
tβ−α

Notice that when α, β ∈ N with β > α+ 1

Dαtβ =
Γ(β + 1)

Γ(β + 1− α)
tβ−α =

β!

(β − α)!
tβ−α = β(β − 1) · · · (β − α+ 1)tβ−α

ATTENTION!

The Riemann-Liouville fractional derivative is not zero for the constant func-
tions: for all 0 < α 6∈ N

Dα1 =
t−α

Γ(1− α)
, t > 0.

If 0 < α ∈ N, Dα1 = 0 due to the poles of the Gamma function.
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Caputo fractional derivative

Definition

Let 0 ≤ α ∈ R andm = dαe. The operator cDαa+ defined on A1([a,b]) by

cDαa+f(t) = cDαa f(t) =
1

Γ(m− α)

d
dt

∫ t

a

f(τ)− f(a)

(t− τ)α+1−m dτ

is the left Caputo fractional derivative of order α centered at a.

For a = 0, we simply write cDα0 = cDα for all 0 ≤ α ∈ R.

Definition

Let 0 ≤ α ∈ R andm = dαe. The operator cDαb− defined on A1([a,b]) by

cDαb−f(t) =
1

Γ(m− α)

d
dt

∫ b

t

f(τ)− f(b)

(τ − t)α+1−m dτ

is the right Caputo fractional derivative of order α centered at b.
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Caputo fractional derivative

Definition

For all 0 ≤ α ∈ R,m = dαe and f ∈ Am([a,b]), we have

cDαa f(t) =
1

Γ(m− α)

∫ t

a

f (m)(τ)

(t− τ)α+1−m dτ

cDαb−f(t) =
(−1)m

Γ(m− α)

∫ b

t

f (m)(τ)

(τ − t)α+1−m dτ

In particular

cDαa f = Jm−αa Dmf
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Riemann-Liouville VS Caputo derivative

In general, Dαf := DmJm−αf 6= Jm−αDmf =: cDαf . In fact, for 0 ≤ α ∈ R,
m = dαe and t > 0, we have

Dαf(t) = cDαf(t) +

m−1∑
k=0

f (k)(0)

Γ(k− α+ 1)
tk−α.

Recalling the formula for the Riemann-Liouville fractional derivative of power
functions, we then have

cDαf(t) = Dα

f(t)−
m−1∑
k=0

f (k)(0)

k!
tk

 .

ATTENTION!

The Caputo fractional derivative of a constant function is zero:

cDα1 = 0, for all 0 < α ∈ R.
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APPLICATION: SOLUTION OF
INTEGRAL EQUATIONS



Abel’s equation of the first kind

Abel’s equation of the first kind

Given a function g ∈ A1([0, t]), find f ∈ L1([0, t]) such that

1

Γ(α)

∫ t

0

f(τ)

(t− τ)1−α
dτ = g(t).

MULTIPLE APPLICATIONS IN DIVERSE FIELDS:

• The mechanical problem of the tautochrone, that is, determining a curve in the
vertical plane, such that the time required for a particle to slide down the curve
to its lowest point is independent of its initial placement on the curve.

• Evaluation of spectroscopic measurements of cylindrical gas discharges

• Study of the solar or a planetary atmosphere

• Star densities in a globular cluster

• Inversion of travel times of seismic waves for determination of terrestrial
sub-surface structure

• Inverse boundary value problems in partial di¤erential equations
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Example

Let the colored area in the figure represent
the cross section of a weir notch, whose
form is determined by the function y = f(h)
for h ≥ 0 the cross section being symmet-
ric w.r.t. the y axis. The quantity of flow
through the notch per unit time is given by

Q =

∫ h

0
f(ξ)
√

h− ξ dξ.

Problem

Determine f so that the flow per unit of time is proportional to a given power of the
depth of the strem, i.e. Q = khm form > 0.

Hence, we must find f from an integral equation of the form

∫ h

0
f(ξ)
√

h− ξ dξ = khm
d
dh−→
∫ h

0

f(ξ)√
h− ξ

dξ = 2kmhm−1 = g(h)︸ ︷︷ ︸
Abel’s equation of first kind

.

W. C. Brenke, An application of Abel’s integral equation, Amer. Math. Monthly, 1922.
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Abel’s equation of the first kind - solution

Abel’s equation of the first kind

Given a function g ∈ A1([0, t]), find f ∈ L1([0, t]) such that

1

Γ(α)

∫ t

0

f(τ)

(t− τ)1−α
dτ = g(t).

The equation is immediately solved by observing that it can be written in the form

Jαf(t) = g(t) → f(t) = Dαg(t)
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Abel’s equation of the first kind - solution

Coming back to the previous example, we have∫ h

0

f(ξ)√
h− ξ

dξ = 2kmhm−1 → J
1
2 f(h) =

2km

Γ
(

1
2

)hm−1.

Hence

f(h) =
2km

Γ
(

1
2

)D 1
2 hm−1 =

2km
√
π

Γ(m)

Γ
(
m− 1

2

)hm− 3
2
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Abel’s equation of the second kind

Abel’s equation of the second kind

Given a function g ∈ A1([0, t]), find f ∈ L1([0, t]) such that

f(t) +
λ

Γ(α)

∫ t

0

f(τ)

(t− τ)1−α
dτ = g(t), α > 0, λ ∈ C.

Most often applied in problems of heat and mass transfer.
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Abel’s equation of the second kind

Abel’s equation of the second kind

In terms of the Riemann-Liouville integral operator:(
1 + λJα

)
f(t) = g(t), α > 0, λ ∈ C.

FORMAL SOLUTION:

f(t) =
(
1 + λJα

)−1
g(t) =

1 +
∑
k≥1

(−λ)kJαk

g(t)

Noting that Jαkf(t) =
(

Φαk ∗ f
)

(t) with Φαk(t) = tαk−1

Γ(αk)
, we then get

f(t) = g(t) +

∑
k≥1

(−λ)k
tαk−1

Γ(αk)

 ∗ g(t)
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Relation with the Mittag-Leffler function

Mittag-Leffler function

Eα,β(z) =
+∞∑
k=0

zk

Γ(αk + β)
, 0 < α, β ∈ R

• β = 1: Eα,1(z) = Eα(z)

• α = 0: the series above equals the Taylor expansion of the geometric
series and consequently

E0,β(z) =
1

Γ(β)

1

1− z

• α = β = 1: the series above equals the Taylor expansion of the
exponential and consequently

E1(z) = e z

• α = 2, β = 1: the series above equals the Taylor expansion of the
hyperbolic cosine evaluated in

√
z and consequently

E2(z) = cosh(
√
z)

In particular E2(−z2) = cosh(iz) = cos(z)
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Relation with the Mittag-Leffler function

We have that∑
k≥1

(−λ)k
tαk−1

Γ(αk)
=

d
dt

∑
k≥0

(−λ)k
tαk

Γ(αk + 1)
=

d
dt

∑
k≥0

(−λtα)k

Γ(αk + 1)

=
d
dt
Eα(−λtα) = E′α(−λtα)

Hence, the solution of the Abel’s integral equation of second kind is given by

f(t) = g(t) + E′α(−λtα) ∗ g(t)
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FRACTIONAL-IN-TIME ODE AND
PDE



The Laplace transform

Laplace tranfsorm

If f ∈ L1(R+), we define its Laplace transform (usually denoted by Lf or f̃ )
as

Lf(s) = f̃(s) =

∫ +∞

0
f(t)e−st dt
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Properties of the Laplace transform

Generalized linearity L

∑
k≥0

akfk(t)

 (s) =
∑
k≥0

akLfk(s)

LT of powers L(tk)(s) =
Γ(k + 1)

sk+1

LT of derivatives L
(

dn

dtn
f(t)
)

(s) = snLf(s)−
n∑

k=1

sn−k dk−1

dtk−1
f(0)

LT of integrals L
(∫ t

0
f(τ) dτ

)
(s) =

Lf(s)

s

LT of convolution L
(
f(t) ∗ g(t)

)
(s) =

(
Lf(s)

)(
Lg(s)

)
LT of R-L integral LJαf(t) =

Lf(s)

sα

LT of R-L derivative LDαf(t) = sαLf(s)−
m−1∑
k=0

DkJm−αf(0)sm−1−k
, m = dαe

LT of Caputo derivative LcD
αf(t) = sαLf(s)−

m−1∑
k=0

f (k)(0)sα−1−k
, m = dαe
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The Fourier transform

Fourier transform

If f ∈ L1(R), we define its Fourier transform (usually denoted by F f or f̂ ) as

F f(ξ) = f̂(ξ) =

∫
R
f(x)e−iξx dx

Generalized linearity F

∑
k≥0

akfk(x)

 (ξ) =
∑
k≥0

akF fk(ξ)

LT of derivatives F
(
dn

dtn
f(x)

)
(ξ) = (iξ)nF f(ξ)

LT of convolution F
(
f(x) ∗ g(x)

)
(ξ) =

(
F f(ξ)

)(
Fg(ξ)

)
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Fractional-in-time ODE

Linear first-order ODE

u′(t) = −u(t), t ≥ 0

u(0) = u0

SOLUTION: u(t) = u0e
−t

Linear first-order ODE

u′′(t) = −u(t) + q(t), t ≥ 0

u(0) = u0, u
′(0) = u1

SOLUTION: u(t) = u0 cos(t) + u1 sin(t)

Linear second-order ODE

What about fractional order ODE?
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Fractional-in-time ODE

Linear α-order ODE

cDαu(t) = Dα

u(t)−
m−1∑
k=0

u(k)(0)

k!
tk

 = −u(t), t ≥ 0

u(k)(0) = uk, k ∈ {0, . . . ,m− 1}
0 < α ∈ R, m = dαe
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Fractional-in-time ODE

SOLUTION BY LAPLACE TRANSFORM

Applying the operator Jα on both sides of the equation, we get

u(t) =

m−1∑
k=0

u(k)(0)

k!
tk − Jαu(t)

Applying the Laplace transform on both sides of the equation, we get

ũ(s) =

m−1∑
k=0

u(k)(0)

k!

1

sk+1
−

1

sα
ũ(s) → ũ(s) =

m−1∑
k=0

u(k)(0)

k!

sα−k−1

sα + 1
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Fractional-in-time ODE

LAPLACE TRANSFORM OF MITTAG-LEFFLER: L
(
JkEα(−λtα)

)
(s) =

sα−k−1

sα + λ

Hence

ũ(s) =

m−1∑
k=0

u(k)(0)

k!
L
(
JkEα(−tα)

)
(s)

=

m−1∑
k=0

uk
k!
L
(
JkEα(−tα)

)
(s) = L

m−1∑
k=0

uk
k!

JkEα(−tα)

 (s)

Inverting the Laplace transform we finally obtain

Solution of the equation

u(t) =

m−1∑
k=0

uk
k!

JkEα(−tα)
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Fractional-in-time ODE

Solution of the equation

u(t) =

m−1∑
k=0

uk
k!

JkEα(−tα)

α ∈ (0, 1) → m = 1: we have u(t) = u0J0Eα(−tα) = u0Eα(−tα)

When α = 1
(
recall that cDαu(t) = cD1u(t) = u′(t)

)
:

u(t) = u0E1(−t) = u0e
−t
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Fractional-in-time ODE

Solution of the equation

u(t) =

m−1∑
k=0

uk
k!

JkEα(−tα)

α ∈ (1, 2) → m = 2: we have u(t) = u0Eα(−tα) + u1JEα(−tα)

When α = 2
(
recall that cDαu(t) = cD2u(t) = u′′(t)

)
:

u(t) = u0E2(−t2) + u1JE2(−t2) = u0 cosh(it) + u1J cosh(it)

= u0 cosh(it) + u1

∫ t

0
cosh(iτ)dτ = u0 cos(t) + u1

∫ t

0
cos(τ)dτ = u0 cos(t) + u1 sin(t)
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Fractional-in-time PDE

Fractional diffusion equation

cDαu(x, t) = ∆u(x, t), (x, t) ∈ RN × R+, α ∈ (0, 1)

u(x,0) = u0(x)

Obtained from the standard diffusion equation by replacing the first-order time deriva-
tive with a Caputo derivative of order α ∈ (0, 1)
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Fractional-in-time PDE

SOLUTION BY FOURIER/LAPLACE TRANSFORM IN SPACE/TIME

1. Taking the Laplace transform in time, we obtain

sαũ(x, s)− u0(x)sα−1 = ∆ũ(x, s)

2. Taking the Fourier transform in space, we obtain

sα ˆ̃u(ξ, s)− û0(ξ)sα−1 = −|ξ|2 ˆ̃u(ξ, s) → ˆ̃u(ξ, s) = û0(ξ)
sα−1

sα + |ξ|2

3. Inverting the Laplace transform, we obtain

û(ξ, t) = û0(ξ)Eα(−|ξ|2tα)

4. Inverting the Fourier transform, we obtain

u(x, t) =
1

(2π)
N
2

[
u0 ∗ F−1

(
Eα(−| · |2tα)

)]
(x)
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The Wright function

Wright function

Mν(z) =
∑
k≥0

(−z)k

k!Γ(−νk + 1− ν)
=

1

π

∑
k≥0

(−z)k−1

(k− 1)!
Γ(νk) sin(πνk)

F. Mainardi and A. Consiglio, The Wright functions of the second kind in Mathematical
Physics, Mathematics, 2020.

FOURIER TRANSFORM OF THEWRIGHT FUNCTION:

F
(
t−νMν(|x|t−ν)

)
(ξ) = 2E2ν(−|ξ|2tν)
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Solution of the PDE

We then have

Eα(−|ξ|2tα) = Eα
(
− |ξ|2(t2)

α
2

)
=

1

2
F
(
t−

α
2 Mα

2

(
|x|t−

α
2
))

(ξ)

Therefore, the solution of the fractional diffusion equation is given by

u(x, t) =
1

(2π)
N
2

[
u0 ∗ F−1

(
Eα(−| · |2tα)

)]
(x)

=
1

2

t−
α
2

(2π)
N
2

[
u0 ∗Mα

2

(
| · |t−

α
2
)]

(x)
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Fundamental solution

Fundamental solution of the fractional diffusion equation

As for the case of the standard heat equation, the fundamental solution is obtained
when considering as initial datum the Dirac delta distribution:

u0(x) = δ(x)

Since δ is the identity element of convolution, we obtain

u(x, t) =
1

(2π)
N
2

F−1
(
Eα(−|ξ|2tα)

)
(x) =

1

2

t−
α
2

(2π)
N
2

Mα
2

(
|x|t−

α
2
)

α = 1: fundamental solution of the dif-
fusion equation

u(x, t) =
F−1

(
e−|ξ|

2 t
)

(x)

(2π)
N
2

=
e−
|x|2
4t

(4πt)
N
2

The Wright function for different values of ν .

Source: F. Mainardi and A. Consiglio, 2020.
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