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PART II: non-local in time models
LECTURE 5: control theory for fractional-in-time ODE and PDE



CONTROLLABILITY OF FRAC-
TIONAL IN TIME DIFFERENTIAL
EQUATIONS



Null controllability

Recall the notion of null controllability for classical abstract differential equations

{
yt − Ay = Bu t ∈ (0, T)

y(0) = y0 ∈ H

The system is null controllable at time T if for any y0 ∈ H there is a control u ∈
L2(0, T;U) such that the corresponding solution y satisfies y(T) = 0.
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Fractional-in-time differential equation

Consider now a fractional-in-time differential equation

{
cDαy − Ay = Bu t ∈ (0, T), α ∈ (0, 1)
y(0) = y0 ∈ H

(1)

The previous standard definition of controllability, when translated as such for this
kind of fractional systems, would lead to a notion of partial but not of full null con-
trollability.

For models involving fractional-in-time derivatives, due tomemory effects induced
by the integral term, the fact that the solution y reaches the null value at time t = T
does not guarantee that the solution stays at rest for t ≥ T when the control action
stops.
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Fractional-in-time differential equation

M. Bettayeb and S. Djennoune, New results on the controllability and observability of fractional
dynamical systems, J. Vib. Control., 2008.

K. Li, J. Peng and J. Gao, Controllability of nonlocal fractional differential systems of orderα ∈ (1, 2]

in Banach spaces, Rep. Math. Phys., 2013.

D. Matignon and B. d’Andréa-Novel, Some results on controllability and observability of finite-
dimensional fractional differential systems, Proc. IEEE Conference on systems, man and cyber-
netics, 1996.

Some referenceswhere thepartial null controllability problem for fractional-in-time
ODE was studied.

Similar to the classical controllability result for ODE, the authors show that
theKalman rank condition of (A,B) is a sufficient andnecessary condition
for the partial null controllability.
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Fractional-in-time differential equation

Null controllability

System (1) is null controllable at time T > 0 if for any y0 ∈ H, there is a control
u ∈ L2(0, T;U) such that the corresponding solution y satisfies that y(t) = 0
for all t ≥ T .

In this definition, we implicitly assume that the control u that has its support in t ∈ [0, T]
and vanishes afterwards, i.e. u(t) = 0 for all t ≥ T .
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Negative controllability result

Q. Lü and E. Zuazua, On the lack of controllability of fractional in time ODE and PDE, Math. Control
Signals Syst, 2016.

Lack of controllability for (1)

The null controllability property in the strict sense of the previous defini-
tion fails systematically due to the memory effects induced by the integral
entering in the fractional in time derivative.
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Proof

Let us assume that the system (1) is null controllable for some T > 0 in the sense
of the previous definition. Then, since y(t) = 0 for all t ≥ T, we have that from the
definition of Caputo derivative that∫ t

0

y′(τ)

(t− τ)α
dτ =

∫ T

0

y′(τ)

(t− τ)α
dτ = 0, for all t ≥ T.

Thus, for any φ ∈ D(A∗), we have that∫ T

0

〈y′(τ), φ〉D(A∗)′,D(A∗)

(t− τ)α
dτ = 0, for all t ≥ T.

By taking derivatives of the above equality with respect to t, we get that∫ T

0

〈y′(τ), φ〉D(A∗)′,D(A∗)

(t− τ)α+j
dτ = 0, for all t ≥ T, j ∈ N.
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Proof

Let σ := (t− τ)−1 . From the last identity, we have that∫ 1
t−T

1
t

〈
y
(
t−

1

σ

)
, φ

〉
D(A∗)′,D(A∗)

σα+j−2 dσ = 0, for all t ≥ T, j ∈ N.

Let

f(σ) :=

〈
y
(
t−

1

σ

)
, φ

〉
D(A∗)′,D(A∗)

σα−2.

We then get that ∫ 1
t−T

1
t

f(σ)σj dσ = 0, for all t ≥ T, j ∈ N.

Weierstrass approximation theorem

The polynomials are dense in the space of continuous functions.

Hence,

f = 0 in
[
1

t
,

1

t− T

)
⇒ y = 0 in [0, T).
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THE DUAL OBSERVABILITY PROB-
LEM



The observability problem

Controllability and observability properties are in duality. Thus, it is natural to analyze
the signification of the negative result on null controllability in what concerns the dual
observability property.

Adjoint problem

cDαT−p− A∗p =
αp0

Γ(1− α)

∫ t

0

dτ
(t− τ)1+α

, in (0, T), p0 ∈ D(A∗)

p(T) = pT ∈ D(A∗)
(2)
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The observability problem

Proposition

System (1) is null controllable in time T if and only if system (2) is observable
in the sense that there is a constant C > 0 such that for any τ ∈ (T,+∞) and
p0 ∈ D(A∗), it holds

1

Γ(1− α)

∥∥∥∥∫ T

0

(
p(t)
tα

+
p0
τα

)
dt

∥∥∥∥
H
≤ C ‖B∗p‖L2(0,T;U) .

Theorem

System (2) is not observable.
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STABILIZATION



Stabilization

The stabilization problem for the system (1) consists in finding a feedback control
u = F(y), with a suitable linear map F, to accelerate the speed of the decay of
solutions of the free system as t→ +∞.

One typically seeks for exponential decay properties although, in some cases, the
decay achieved can be slow, either polynomial or logarithmic.

N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains,
Math. Res. Lett., 2007.

G. Lebeau and L. Robbiano, Stabilisation de l’équation des ondes par le bord, DukeMath. J., 2007.

K.-D. Phung, Polynomial decay rate for the dissipative wave equation, JDE, 2007.
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Stabilization

In the context of fractional in time models, feedback operators F ∈ L(H,U),
may not suffice to achieve the exponential decay of the system (1).

{
cDαy = cy, in (0, T), c ∈ R, c < 0
y(0) = y0

⇒ y(t) = y0Eα(ctα) = O
(

1

ctα

)
.

No matter what the value of c, the solution decays polynomially. This exam-
ple also shows that if F ∈ L(H,U), the rate of the polynomial decay depends
only on α, which cannot be improved by the choice of F.
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APPROXIMATE CONTROLLABIL-
ITY



Approximate controllability

Laplace tranfsorm

What about approximate controllability?

We have seen that system (1) is not null controllable, due to the memory effects
introduced by the Caputo derivative. But is it approximately controllable?

Recall that approximate controllability is a weaker property than null/exact controlla-
bility. Can we expect some approximate controllability result to hold?
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Approximate controllability


cDαy + Ay = fχω in Ω× (0, T), α ∈ (1, 2)

y = 0 in ∂Ω× (0, T)

y(0) = y0, yt(0) = y1 in Ω

(3)

V. Keyantuo and M. Warma, On the interior approximate controllability for fractional wave equa-
tions, Discr. Cont. Dyn. Syst., 2016.

Theorem

The system (3) is approximately controllable at time T > 0 with control
function f ∈ C∞0 (ω × (0, T)).
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Proof

Four main ingredients are required.

The adjoint system:

Adjoint system


cDαT−p + Ap = 0 in Ω× (0, T), α ∈ (1, 2)

p = 0 in ∂Ω× (0, T)

J2−αT− p(T) = p0, cDα−1T− p(T) = p1 in Ω

(4)
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Proof

Four main ingredients are required.

Spectral decomposition of the solution:

Vγ := D(Aγ) equipped with the norm ‖y‖Vγ := ‖Aγy‖L2(Ω) .

Theorem

Let 1 < α < 2, T > 0 and γ = 1/α. Then, for every p0 ∈ Vγ and p1 ∈ L2(Ω),
(4) has a unique solution p given by

p(·, t) =
∑
k≥1

p0,k(T − t)α−2Eα,α−1
(
− λk(T − t)α

)
φk

+
∑
k≥1

p1,k(T − t)α−1Eα,α
(
− λk(T − t)α

)
φk

with p0,k := (p0, φk) and p1,k := (p1, φk)
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Proof

Four main ingredients are required.

Unique continuation property for the operator A:

Unique continuation for A

If λk is an eigenvalue of A, (A− λ)u = 0 in Ω and u = 0 in ω, then u = 0 in Ω.

Examples of operators fulfilling this unique continuation property

• Variable coefficients Laplacian in RN

Ay(x) = −
N∑

i,j=1

∂

∂xj

(
ai,j(x)

∂y

∂xi
(x)

)
+ b(x)u(x)

with Dirichlet or Robin boundary conditions.
D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order,
Springer-Verlag, 2001.

• The fractional Laplacian Ay(x) = (−∆)sy(x).
M. M. Fall and V. Felli, Unique continuation property and local asymptotics of solutions to
fractional elliptic equations, Commun. PDE, 2014
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Proof

Four main ingredients are required.

Unique continuation property for the solution of (4):

Unique continuation for (4)

Let 1 < α < 2, γ = 1/α, p0 ∈ Vγ and p1 ∈ L2(Ω). Assume that A has the
unique continuation property in the sense of the previous definition. Let p be
the unique solution to the system (4). If p = 0 on ω × (0,T), then p = 0 on
Ω× (0, T).
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Proof of the unique continuation for (4)

Assume that p = 0 inω×(0, T). Since p : [0, T)→ L2(Ω) can be analytically extended
to the half plane ΣT := {z ∈ C : <(z) < T}, it follows that

p(x, t) =
∑
k≥1

p0,k(T − t)α−2Eα,α−1
(
− λk(T − t)α

)
φk(x) (5)

+
∑
k≥1

p1,k(T − t)α−1Eα,α
(
− λk(T − t)α

)
φk(x), (x, t) ∈ ω × (−∞, T).
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Proof of the unique continuation for (4)

Let {λk}k≥1 be the set of eigenvalues of the operator A and let {ψkj}1≤k≤mk
be an

orthonormal basis of ker (λk − A). Then, we have

φk(x) =

mk∑
j=1

φkjψkj , (φkj )
mk
j=1 ∈ `

2

and (5) can be rewritten as

p(x, t) =
∑
k≥1

 mk∑
j=1

p0,kjψkj (x)

 (T − t)α−2Eα,α−1
(
− λk(T − t)α

)
(6)

+
∑
k≥1

 mk∑
j=1

p1,kjψkj (x)

 (T − t)α−1Eα,α
(
− λk(T − t)α

)
, (x, t) ∈ ω × (−∞, T),

with p0,kj := p0,kφkj and p1,kj := p1,kφkj .
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Proof of the unique continuation for (4)

Let σ ∈ C with η := <(σ) > 0 and let N ∈ N. Since the functions ψkj , 1 ≤ j ≤ mk,
1 ≤ k ≤ N are orthonormal, we have∥∥∥∥∥∥

N∑
k=1

 mk∑
j=1

p0,kjψkj (x)

 eσ(t−T)(T − t)α−2Eα,α−1
(
− λk(T − t)α

)∥∥∥∥∥∥
2

L2(Ω)

≤
∑
k≥1

 mk∑
j=1

|p0,kj |
2

 e2η(t−T)
∣∣∣(T − t)α−2Eα,α−1

(
− λk(T − t)α

)∣∣∣2
≤ Ce2η(t−T)(T − t)2(α−2) ‖p0‖2Vγ

and ∥∥∥∥∥∥
N∑
k=1

 mk∑
j=1

p1,kjψkj (x)

 eσ(t−T)(T − t)α−2Eα,α−1
(
− λk(T − t)α

)∥∥∥∥∥∥
2

L2(Ω)

≤ Ce2η(t−T)(T − t)2(α−1) ‖p1‖2L2(Ω)
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Proof of the unique continuation for (4)

Hence, if we define

pN(x, t) :=
N∑
k=1

 mk∑
j=1

p0,kjψkj (x)

 eσ(t−T)(T − t)α−2Eα,α−1
(
− λk(T − t)α

)

+
N∑
k=1

 mk∑
j=1

p1,kjψkj (x)

 eσ(t−T)(T − t)α−2Eα,α−1
(
− λk(T − t)α

)
we have that

‖pN(x, t)‖L2(Ω) ≤ Ce
2η(t−T)

[
(T − t)α−2 ‖p0‖Vγ + (T − t)α−1 ‖p1‖L2(Ω)

]
.
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Proof of the unique continuation for (4)

Moreover, since 1 < α < 2, we have that∫ T

−∞
e2η(t−T)

[
(T − t)α−2 ‖p0‖Vγ + (T − t)α−1 ‖p1‖L2(Ω)

]
dt

= ‖p0‖Vγ

∫ +∞

0
e−τ

τα−2

ηα−1
dτ + ‖p1‖L2(Ω)

∫ +∞

0
e−τ

τα−1

ηα
dτ

=
Γ(α− 1)

ηα−1
‖p0‖Vγ +

Γ(α)

ηα
‖p1‖L2(Ω) .
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Proof of the unique continuation for (4)

Therefore, we can apply the Dominated Convergence Theorem and the fact that∫ T

−∞
eσ(t−T)(T − t)α−2Eα,α−1

(
− λk(T − t)α

)
dt =

σ

σα + λk∫ T

−∞
eσ(t−T)(T − t)α−1Eα,α

(
− λk(T − t)α

)
dt =

1

σα + λk

to conclude that for all x ∈ (−1, 1) and η = <(σ) > 0

lim
N→+∞

∫ T

−∞
pN(x, t)dt =

∫ T

−∞
lim

N→+∞
pN(x, t)dt =

∑
k≥1

mk∑
j=1

(σp0,kj + p1,kj
σα + λk

)
ψkj (x)

(7)
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Proof of the unique continuation for (4)

It follows from (6) and (7) that∑
k≥1

mk∑
j=1

(σp0,kj + p1,kj
σα + λk

)
ψkj (x) = 0, for all x ∈ ω and <(σ) > 0.

Moreover, letting ζ = σα, we have

∑
k≥1

mk∑
j=1

 ζ
1
α p0,kj + p1,kj
ζ + λk

ψkj (x) = 0, for all x ∈ ω and <(ζ) > 0.

This holds for every ζ ∈ C \ {−λk}k∈N, using the analytic continuation in ζ . Hence,
taking a suitable small circle around −λ` not including {−λk}k6=` and integrating on
that circle we get that

p` :=

m∑̀
j=1

[
(−λ`)

1
α p0,`j + p1,`j

]
ψ`j (x) = 0, for all x ∈ ω,

where

(−λ`)
1
α = e

1
α

ln(−λ`) = e
1
α

(ln(λ`)+iπ) = λ
1
α
`

[
cos
(π
α

)
+ i sin

(π
α

)]
.
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Proof of the unique continuation for (4)

Then, from the unique continuation property for A, we can conclude that p` = 0 in Ω
for every `.

Since {ψ`j}1≤j≤m` are linearly independent in L2(Ω), we get that(
(−λ`)

1
α p0 + p1, ϕ`j

)
= 0, for all 1 ≤ j ≤ mk, ` ∈ N.

This implies that

0 = (−λ`)
1
α p0 + p1 = λ

1
α
`

[
cos
(π
α

)
+ i sin

(π
α

)]
p0 + p1.

It follows that p0 = 0 = p1 and hence, p = 0 in Ω× (0, T).
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Proof of the approximate controllability

First of all, notice that the approximate controllability for (3) is equivalent to the fact
that the set

U :=
{

(y(·, T), yt(·, T)) : f ∈ C∞0 (ω × (0, T))
}

is dense in Vγ × L2(Ω), that is,

UVγ×L2(Ω)
= Vγ × L2(Ω). (8)

By Hahn-Banach Theorem, (8) is equivalent to show that, if (p0, p1) ∈ Vγ × L2(Ω) are
such that ∫

Ω

[
yt(x, T)p0(x) + y(x, T)p1(x)

]
dx = 0, (9)

for any f ∈ C∞0 (ω × (0, T)), then p0 = 0 = p1 .
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Proof of the approximate controllability

Now, multiplying (3) by (4) and integrating over Ω× (0, T), we can show that∫
Ω

[
yt(x, T)p0(x) + y(x, T)p1(x)

]
dx =

∫ T

0

∫
ω
fp dxdt.

Hence, if (9) holds, we have that∫ T

0

∫
ω
fp dxdt = 0, for any f ∈ C∞0 (ω × (0, T)) ⇒ p = 0 in ω × (0, T).

It then follows from the unique continuation of (4) that p = 0 in Ω× (0, T). Since the
solution of (4) is unique, we can then conclude that p0 = 0 = p1 .
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