CONTROL AND OPTIMIZATION FOR NON-LOCAL
AND FRACTIONAL DIFFERENTIAL EQUATIONS

Umberto Biccari and Enrique Zuazua

Chair of Computational Mathematics, Bilbao, Basque Country, Spain

Chair for Dynamics, Control and Numerics, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Germany.

Universidad Autonoma de Madrid, Spain.

umberto.biccari@deusto.es enrique.zuazua@fau.de

cmc.deusto.es dcn.nat.fau.eu

PART IlI: non-local in space models
LECTURE 7: The fractional Laplacian in non-local PDE
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FRACTIONAL ELLIPTIC PDE




Fractional Poisson equation

Let Q ¢ RN be a bounded and regular domain. We consider the following elliptic
problem involving the fractional Laplacian

Fractional Poisson equation

(=A)yYu=f, xeQ
{u =0, x € Q°. ®

On boundary conditions

In PDE involving the fractional Laplacian on a bounded domain, the boundary
condition is actually an exterior condition posed on the entire Q€.

Indeed, because of the non-locality of the operator, fractional models with
standard boundary conditions (given only on 9Q) are ill-posed.

M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann
and Robin boundary conditions on open sets, Potential Anal., 2015.
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Weak solutions

Finite energy solutions

Letf € H=°(Q). Afunction u € H () is said to be a finite energy solution
of (P)if, for every v € HR (Q), it holds the identity

Che -
R R R e —

IX y|N+25

Proposition

Let Q c RN be an arbitrary bounded open set and O < s < 1. Then for every
f € H=°(Q), the Dirichlet problem (P) has a unique finite energy solution
u € Hy(£2) and there existsaconstant C > O suchthat [|ulls gy < C Iflly-s(q):

In addition, we can take C = \/2/cpn .
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Consider the bilinear form £(-,-) : H5(RV) x H°(RN) — R defined as

= Gt [ [ =N )

e &(u,v)is clearly symmetric: E(u,v) = E(v,u)

e £(u,v)is continuous:

CNs

[/ ) —U) VE) ~ V)
RN JR 5

[E(u,v)| =
VX =2 -y Bt

CN,s
2

IN

Cn
[U]ps ey Vs vy < TS Ul s vy 1V s ey -
e £(u,v)is coercive:

u(x
£ u) = 2 /N/N (U9 —u))* ) dxdly > C(N,5,9) lull%> g
REJRY - x — y\

Lax-Milgram: for every f € H*(2) there exists a unique u € H () solution of (P).
Taking v = u as a test function: C ||u|\f,5(m =, p—s)ms0) < ||f||H,$(Q) ||u||Hs(Q)
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Some remarks

When considering right hand side terms f € LP(Q) with p > 2, due to the
continuous embedding LP(Q2) — H~°(Q), the notion of weak finite energy
solution suffices.

-
When f € LP(Q) with1 < p < 2, the regularity of the right-hand side term

does not suffice to define weak finite energy solutions as above. We shall
rather consider those defined by duality or transposition.
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Transposition solutions

1
$=0 in Q° @

{(—A)% =4 inQ

() = { : ¢ solves W with y € C(9)}.

Transposition solutions

Let f € LY(Q). We say that u € L1(Q) is a weak duality or transposition
solution to the elliptic problem (P), if the identity

dx = dxdt
/Quzp X /qub X
holds for any ¢ € T(£2) and ¢ € C3°(R).

T. Leonori, I. Peral, A. Primo and F. Soria, Basic estimates for solutions of a class of non-local
elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 2015.
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Some Holder regularity results

Proposition

Let © be bounded, Lipschitz domain satisfying the exterior ball condition, f € L*°(Q),
and u be a solution of (P). Then, u € C*(RV) and ”u”CS(]RN) < C(R2,9) [Ifll oo (q)-

This C° regularity is optimal:

27 (%) (r2 +x = xo|2)S
r(M2)r+s)

= u(x) = XBr(xg) (X)

(=A)Yu=1, x € B(xo)
u=0, X € Br(xo0)°

uis C° up to the boundary but it is not C* for any a > s.

Let Q be a bounded and C!! domain, f € L°°(R), u be a solution of (P), and §(x) =
dist(x, 8). Then, u/&° |q can be continuously extended to Q. Moreover, we have
u/é8® € c*(Q)and

u

6% ||¢

<029 [fll ey, @ >0, a<min{s,1—s}.
Q)

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the
boundary, J. Math. Pures Appl., 2014.
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The fractional semi-group

Forevery f € H™°(Q) there exists a unique u € Hg () such that
E(u,v) = {f, V>H—5(Q),Hf)(ﬂ)’ forallv € Hy(%).

This defines an operator Ag : Hp ($2) — H™°(£2) which is continuous and coercive. Let A be the
part of Ao in L2(Q), in the sense that

D(A) = {u € HY(Q), Au € LZ(Q)}, Au = Au.
Then A is the realization in L?() of the operator (—A)® with the Dirichlet boundary condition
u=0onR"\ Q. More precisely,
D(A) = {u € H(Q), (-AYu e L’ (@)}, Au=(-b)u.
.|

The operator A has a compact resolvent and its first eigenvalue A; > O.

— A generates a sub-Markovian strongly continuous semi-group (e‘“‘)tzo which is
also ultracontractive in the sense that it maps L"(Q) into L™(Q) for every t > 0 and
1<r<m<

g (lo1y o N(1_1
61 gy < Co R 2y

. J

C. Gal and M. Warma, Nonlocal transmission problems with fractional diffusion and boundary con-

ditions on non-smooth interfaces, Commun. PDE, 2017. 8/ 49



A Lebesgue regularity result

Assume that N > 2s and let f € LP(Q) for some p > 2. Then (P) has a
unique solution weak solution u. In addition the following assertions hold.

o Ifp> % then u € L°°(Q2) and there exists a constant C > O such that

lull oo @) < ClIfllp(a) -

o If 75 < p < L thenu € L9(Q) for every g satisfying p < q < Nf’gsp
and there exists a constant C > O such that

Hu”Lq(Q) <cC ”f”LP(Q) :

U. Biccari, M. Warma and E. Zuazua, Local elliptic regularity for the Dirichlet fractional Laplacian
Adv. Nonlinear Stud., 2017.
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A maximal Sobolev regularity result

Let F € H=5(RN) and u € H°(RN) be the weak solution to the fractional
Poisson type equation

(-AYu=F, xeRM

If F € L2(RN) with p > 2, then u € H25(RN)

E. Stein, Singular integrals and differentiability properties of functions, Princeton University Press,
1970.

Letf € H™°(Q) and u € Hy(Q2) be the unique finite energy solution of the
Dirichlet problem (P). If f € L2(Q), then u € H2 (Q).

U. Biccari, M. Warma and E. Zuazua, Local elliptic regularity for the Dirichlet fractional Laplacian
Adv. Nonlinear Stud., 2017.
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STEP 1: Cut-off

Given w and @ two open subsets of the domain Q such that @ € w € Q, we introduce
a cut-off function n € D(w) such that

nx)=1 if xew
0<n(x)<1 ifxew\w
nx)=0 if x € RV\ w.

Given f € H=*(R2) and u € Hg(2) the unique weak solution to the Dirichlet problem
(P), the function un belongs to H*(RN). Moreover:

(=A)un =n(=A)Yu+u(=A)n —ls(u,n).
g

() = Cuspv. [ 0 lf;({»y(lzgxg; 1) g
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Proof (cont.)

STEP 2: Regularity of the remainder

We have g € L2(RN). In fact there exists a constant C > O, independent of u, such
that

lgl2qany < C llulle oy -

Indeed, since u = 0 on Q° and (—A)Sn € L=°(RN), we have that
2 2
Hu(fA)ST]HLZ(RN) = A |U(—A)S'Iﬂ2 dx S H(_A)ST]”LOO(Q) ”uHEZ(Q) S c HUHIZ—FO(Q)

As for Is(u,n), for a.e. x € RN, we can split

s [ )80 i)

‘X y|N+25

Is(u; m)(x)

+Cnant) || S50 dy = 1100 + (0.
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Proof (cont.)

STEP 3.a: Estimate of I;(x)
Using the Cauchy-Schwartz inequality, we get that

—u 2 e\ 2
e < o (S o) ([ 00 o))

Let x € Q be fixed and R > O such that @ C B(x, R). Since 7 is a smooth function (in
particular Lipschitz), there exists a constant C > O (depending on n) such that

In(x) — n(y)I? dy / dy
— 7 dy<C — < _
0 —y[Nees V= o = yE=2 S Jo o - yNrEs—2 S

Hence,

|u() — u)|®

L(x)]2 dx <C
[ P o < R

dydx < Cl|ul|Zs o
JR RN JQ Ho (D

13749



Proof (cont.)

STEP 3.b: Estimate of I>(x)

I, = O on RN\ w. In addition, from the Cauchy-Schwartz inequality we get

2 2
2 o2 n°(x)dy |u(x) —u()|
()| < CR s /QC X — yINt2 Joo |x — y|N¥ES d
2
) xs)nx)
yea = |x — y|N+2s - |x — y|N+2s = X‘*’(X)n ) SUP T |x — y|N+es”

Thus there exists a constant C > O such that

/ OO om0 [ Y < exa(nR(0),

c |x —y|N+es — qc dist(y, dw)N+2s —

where we have used that dist(092, 0w) > 6 > O, that the distance function it grows
linearly as y tends to infinity, and that N + 2s > N.

o €L®(w) = /w Io(x) dX:/ ITo(x)|2 dx
lu(x) = u(y)[? 2
<c//nc L o <l o

14 /7 49



Proof (cont.)

STEP 4: Conclusion We have shown that nu is a weak solution to the Poisson Equation
(P) with

F=n(-A)Yu+g e L2RN).

It follows that (nu) € H2(RN). Thus u € H2 (Q).

loc

15749



Proof with the heat semi-group definition

The heat semi-group representation of the fractional Laplacian can be used for an
alternative proof of the previous result.

oty :=eB(qu), t>0 = o —NDp=0, t>0, o0)=mnu.

_ ¢t — D=0, #(0) =u
e=dn+z with {zt — Az = 2div(¢Vn) — ¢An, z(0)=0

" (ot~ (0))

(=8 () =

" (nott) + (0 - nu(t)) el

+o00o Z(t)
r( 5) t1+5

e u—u t1+s

n(=2)u

By means of sharp estimates on the decay, both att = O and at t — 40, of

the function z we can prove that g € L2(RM).
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The casep #£ 2

Letl < p < +oo. Given F € LP(RN), let u be the weak solution of (—A)*u = F,
x € RN. Then, u € Z5(RN), where

L2 ®RN) = {u € LPRN) © (~A)ue LP(RN)}.

o 1<p<2ands#1/2 Z5(RV) C B2, (RV).
o l<p<2ands=1/2 2 (RV) = £ (RN) = WLP(RN),
o 2<p < +ooiu € B, (RV) = W2SP(RN).

Besov space

|y‘/\l+qs

1
lutx +y) = uW)ll] !
Bf,,q(RN) = uelPRN): (/N LPRY) dy | < +oo
R

1<p,g<+o00, O<s< 1l
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Local elliptic regularity

Letl < p < 4o0. Given f € LP(Q), let u be the unique weak solution of

( AYu=f x€eQ
=0, x € Q°.

Thenu e £°

2s,loc

o Ifl<p<2ands#1/2 thenu € B3, ().

(R2). As a consequence:

e Ifl<p<2ands=1/2 thenu e Wy ’p(Q) P(Q).

loc

o If2<p < oo thenu e WP (Q).

LB 0e(Q) = {u €LP(Q) : upe Lo RN) foranyn e D(Q)}.

B2 10c(Q) 1= {U € LP(Q) : un € BZ%,(RM) for any n € D(D) }.
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Asymptoticass — 1-

Let Fs = {fs}o<s<1 C H°(2) be a sequence satisfying the following as-
sumptions:

H1 HfSHH,S(Q) < C, forall O < s < 1and uniformly with respect to s.
H2 fs — f weakly in H=1(Q) ass — 1~.
Forallfs € Fs. letus € H3(Q) be the unique weak solution of the Dirichlet

problem (P). Then, ass — 17, us — u strongly in Hlo*‘;(Q) forallO<d§ <1
Moreover, u € H}_)(Q) and verifies

/ Vu-Vvdx = / fvdx, VYveD(Q),
Q Q
i.e. it is the unique weak solution of

—Au=f, xeQ
u=0, x € 0Q.

U. Biccari and Hernandez-Santamaria, The Poisson equation from non-local to local,
Electron. J. Differential Equations, 2018
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STEP 1: For any f € H~1(Q) there exists a sequence Fs = {fs}ocs<1 C H5(Q)
verifying the assumptions H1 and H2. Indeed:

e Anyf € H71(Q) can be written as f = div(g) with g € L2(R).
e p. standard mollifier, gc := g * pe:

—N &2
pelx)i= 4C5 P (\leeZ) o Kli<e
o, x| >

(@) g. is well defined, since g € L?(Q), hence it is locally integrable.
(b) Ox,ge is bounded uniformly with respecttoe foralli=1,...,N.
(© lim._,o+ ge = g, strongly in L2(Q).
o fe:=divV(ge) = |Ifelly-1+(q) is bounded uniformly w.rt. e (property (a).
o OxJe = pe xgx, — Jx; s e — O (properties (b) and (c)).
o lim__,o+ fe = lim__,o+ div(ge) = div(g) = f (strong convergence in H~1(Q)).
e Choosee =1-s.

20/49



Proof (cont.)

STEP 2:

e Assumes > 1/2. From H2 and the definition of weak convergence:

lim /fsvdx:/fvdx, Vv € D(Q).
Q Q

s—1—

e Us € Hy(Q): solution of (P) corresponding to fs. For s sufficiently close to one:

2—2s
V1=s|lusllysqy < C(S,NY Ifslly—siq)»  C(s,N) :=

CN,S

e Forall N fixed, C(s,N) is decreasing w.rt. s.

B WNE

zzzzz

c(s,N) < ¢C (%N) = @

2

[ V=5 [lUs]lse) < CN, Q)

21749



Proof (cont.)

STEP 3:

e us — ustrongly in Hy °(Q) forall 0 < § < 1and u € H5(%).
J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, in Optimal
Control and Partial Differential Equations, 2001.

e Forall¢ € H3(2) and y € D(Q):

s _ Cns (¢(x) — o) (W (x) — ¥(y))
(ayew) =3 [ [ N dxaly
= ($, (~A)FP) = (us, (~A) V) = / fovax
Q
e Ass — 1~

[{us, (=A)v) = (u,—AV)| = [(us, (~A)°V = (=AV)) + (us —u, —Av)|
< lusll 2(q) [(=a)yv— (*AV)HLz(Q) + I=Avli2(g) llus — ull 2(q) — O

= lim (us,(—A)5v>:<u,—Av>:—/uAvdx:/Vu~Vvdx.
s—1— Q Q

° Hence:/Vu~Vvdx:/fvdx. forallv € D(Q).
Q Q

22749



Weakening the assumptions

A convergence result as s — 17 can be obtained under weaker assumption on the

sequence Fs.

Let Fs = {fs}ocs<1 C H71(Q) be a sequence such that fs — f weakly in

H=Y(Q). For allfs € Fs, let us be the corresponding solution to (P). Then, as
s — 17, us — u weakly in L2(Q), with u solution to (P) in the transposition

sense.

23/49



The right-hand side fs belongs to H=1(Q), which is strictly greater than H=5(Q). Hence,
we cannot apply Lax-Milgram and we shall define the solution by transposition.

Forall ¢ € L2(Q), let y be solution of the elliptic problem

(_A)Sy:¢’ xe
y=0, X € Q°.

e Foralle >0,y € H5" °(Q) = H5(RQ), with continuous and compact
embedding.

e Themap A: ¢ — y s linear and continuous from L2(£) into HéS_E(Q). Thus, A
is compact from L2(Q) into H5(Q) and A* is compact from H~1(Q) into L2(Q).

<fsaY>H—1(Q),H%)(Q) = <fsaA¢>H—1(Q),Hé(Q) = (A*f57¢)L2(Q)'

e Therefore, us := A*fs € L2(£) is a solution of (P) defined by transposition:

/gzus(j)dx = <fs:,V>H*1(Q),H%)(Q)'

Moreover, we have

lusll 2y < Clifslly-1q) < C.
24 /49



Proof (cont.)

In particular, {us}o<s<1 is a bounded sequence in L2(£), which implies that us — u
weakly in L2(Q).

Using the definition of weak limit we have
/u¢dx: lim /usqbdx_ I|m s V) py— 1(9),Hy(2 ={f,¥)y- Q),HL (@)
Q s—1—
i.e. u is a solution by transposition of

—Au=f, xeQ
u=20, X € 09.

Since the L2(Q)-regularity of us cannot be improved, its convergence to a

solution of the above Poisson equation can be expected only in the weak
sense.

25749



FRACTIONAL HEAT EQUATION




Fractional heat equation

Fractional heat equation

ur+ (=AYu=f, (x,t)eQx(0,T)
u=0, (x,t) € Q° x (0, T) (H)
u(x,0) =up(x), xeQ

It represents processes involving anomalous diffusion. Applications in:

e PHYSICS (plasma models).
e ECOLOGY (population dynamics).
e FINANCE.

27749



Weak solutions

\Xeak solutions

u € L2(0,T; H3(Q)) N C([0, T], L2()) with u; € L2(0, T;H=5(Q)) is a weak
solution for (H) with f € L2(0, T; H=5(R2)) and uo € L2(RQ) if it satisfies

T T T
/ /utvdxdt—f—/ a(u,v)dt:/ (f,v)—ssdt,
o Ja 0 o

forany v € L2(0, T; H3(Q)).
The bilinear form a(-, ) H3(Q) x H3(Q2) — Ris defined as
G [ [ (U0) ~ W) =) o

Ix — y|i+2s

a(u,v) =

28/49



Some remarks

When considering right hand side terms f € LP(Q2 x (0, T)) withp > 2, due to
the continuous embedding LP(Q x (0, T)) < L2((0, T); H=5(2)). the notion
of weak finite energy solution suffices.

When f € [P(Q2 x (0,T)) with1 < p < 2, the regularity of the right-hand side
term does not suffice to define weak finite energy solutions as above. We
shall rather consider those defined by duality or transposition.
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Transposition solutions

—pt+ (=Ayp=1v (x,t)€Qx(0,T)=Qr,
p=0 (x,t) € Q° x (0, T), (P
p(,T)=0 x € Q.

P(&r) = {p(,t) € C((0, T),C5(R)) : p solves (P) with v € C3°(2r) }.

Transposition solutions

Letf € L1(Q x (0, T)). We say that u € C([0, T]; L1(Q)) is a weak duality or
transposition solution to the parabolic problem (H), if the identity

/()T/Quwdxdtz/or/ﬂfpdxdt

holds, forany p € P(Qr) and ¥ € CZ°(Qr).

30/49



Well-posedness theorems

Assume f € L2(0, T; H=5(Q)). Then for any ug € L2(Q), problem (H) has
a unique weak solution. Moreover, if f is also a non-negative function and
uo > O, such a solution is non-negative too.

Letf € LY(Qx(0,T))andug € L(R). Then there exists a unique transposition
solution of (H). Moreover:

o ueLI(Qx (0,T)) forallqg e (1, N+T2$)

o |(-Ayul € L@ x (0,T)) forallr € (1,52,

T. Leonori, I. Peral, A. Primo and F. Soria, Basic estimates for solutions of a class of non-local elliptic
and parabolic equations, Discrete Contin. Dyn. Syst., 2015.
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Maximum principle

Proposition

Letf € L2(Q x (0,T))and up € L%(R2) be non-negative. Then the corresponding
solution u of the system (H) is also non-negative.

U. Biccari, M. Warma and E. Zuazua, Local regularity for fractional heat equations, in
Recent advances in PDEs: analysis, numerics and control, 2019

PROOF: (—A)* is a self-adjoint operator in L2(£2) associated with the bilinear form

iy = S [ [ OO =00 o, e )

‘X y|N+2$

(—A)* is a resolvent positive operator. Indeed, let A > O be areal number, g € L2(2) and set
-1

o= (A+(-0)) g
Then, ¢ belongs to H§(£2) and is a weak solution of the Dirichlet problem

(-AYp+Ap=g, xeQ
¢ =0, x e Q°

in the sense that

£(¢,V)+/\/¢vdx=/gvdx, YV € Hyo(Q).
“ “ 32/49



Maximum principle (cont.)

There is a constant C > O such that
toe 2
)\/ VP dx+ £, V) > ClVIEg @) W € HO(9).
Q
Assume that g < O a.e. in Q and define ¢t := max{¢, 0} and ¢~ := max{—¢, 0}. We have

(6700 =) (¢7 ) - 67 W)
=676 ) = 67 (T — &~ M) + ¢~ (1S W)
=—(¢" " M+~ e () SO=E(¢,67) <O

Hence,

E(¢,dT) =E(¢T —¢T,0T) = E(pT. ¢T) —E(¢7,9T) > 0
+ y +
OS/\/QM o + £, )—/Qg¢ d < 0.

Therefore, ¢ = O, thatis, ¢ < O almost everywhere.

33/49



Sobolev regularity

Letl < p < ocoandf € LP(Q x (0,T)). Then, problem (H) has a unique

weak solution u € C([O, T]; LP(2)) such that u € LP ((O, T);.Zfs loc
ur € LP(2 x (0, T)). As a consequence:
o Ifl<p<2ands#1/2. ucLP ((o, T);BS?Z,IOC(Q)).
e fl<p<2ands=1/2
uelLr ((o, T); WZS’P(Q)) =P ((o, T); Wl‘p(Q)>.

(Q)) and

loc loc

e If2<p<toouclP ((o, 7); WZS’P(Q)).

loc

U. Biccari, M. Warma and E. Zuazua, Local regularity for fractional heat equations, in
Recent advances in PDEs: analysis, numerics and control, 2019
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Proof

Direct consequence of the elliptic regularity and the following result.

Let (2, X, m) be a measure space and let A be the generator of a strongly
continuous semi-group of linear operators (T¢);>0 on L2(Q, X, m) satisfying
the following hypothesis:

e The semi-group (T;)¢>0 is analytic and bounded on L2(, %, m).

e Foreveryp € [1,00] and ¢ € LP(Q) N L2(Q) we have the estimate
||Tt¢||Lp(Q) < H¢||L/J(Q) , forall t > 0.

Letp € (1,00). If f € LP(Q2 x (O, T)), then the system

u—Au=f, te(0,T)
u(0)="0

admits a solution u € C([O, T]; LP(£2)), such that u;, Au € LP(2 x (O, T)).

D. Lamberton, Equations d'évolution linéaires associées a des semi-groupes de contractions dans
les espaces LP J. Funct. Anal., 1987
35/49



Asymptoticass — 1-

Let Gs := {gs}ows<1 C L2(0, T; H~5(RQ)) satisfy forall 0 < t < T:
K1 \|gs(t)||,_,,s(m < C forallO < s < 1and uniformly with respect to s.

K2 gs(t) — g(t) weakly in H}(Q) ass — 1.
Forany fs € Gs. let ¢ € L2(0, T; H3(R2)) be the unique weak solution of
s + (=AY ps = gs, (x,1) € 2 x (0,T)
¢s =0, (x, 1) € Q° x (0, T)
¢5(X, O) =0, X € Q,
Then,s — 17, (¢s, Brps) — (¢, Brgp) strongly in L2(0, T; H °(£2)) x L2(0, T; H71(R2))
forany O < § < 1. Moreover, ¢ € L?(0, T; H},(Q)) x L2(0, T; H~}(2)) and verifies

/OT/QB[qbwdxdt—t-/oT/QV(b~Vzb dxdt:_/OT/ngdxdt, vy € D(Q2 x (0, 7)),

i.e. itis the unique weak solution of
o —Ap=g, (x,1)eQx(0,T)
¢ =0, (x,t) € 92 x (0, T)
¢(x,0) =0, X € Q.

U. Biccari and Hernandez-Santamaria, The Poisson equation from non-local to local, Electron. J.

Differential Equations, 2018
36/49



e A sequence Gs verifying K1 and K2 exists. It can be constructed following the
methodology of the elliptic case, since both properties are independent of the
time variable.

e \We shall only analyze the first term on the left-hand side of the variational
formulation. Indeed:

> The functional space in which the integration in time is carried out does
not depend on s. Therefore, the limit process does not affect the regularity
in the time variable.

> For the remaining two terms, the limit as s — 1~ can be addressed in an
analogous way as in the elliptic case.

e Multiplying the equation by ¢s and integrating by parts we obtain the energy
estimate:

6slliz(0,7m () + 195 lli2(0,7H-s()) < CI9slliz0,7.4-5(0)
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Proof (cont.)

e Analogously as in the elliptic case, we can show that ¢s — ¢ strongly in
L2(0,T;Hy °(Q)) forall0 < § <lass — 1.

e Energy estimate: {9;¢s} boundedin2(0, T; H—5(RQ)) — L2(0, T; H-1(Q)) com-
pactly. Thus,ass — 17, 8ips — b stronglyinL2(0, T; H~1(Q)) and (¢s, Bybs) —
(¢, 9k9) strongly in L?(0, T; Hy °(Q)) x L2(0, T;H~1(Q)) forall0 < § < 1. In

particular:
T T
lim / /8t¢5’tﬁdth:/ /8{¢1/1dth
s—1— Jo Q o] Q

e This, together with the above remarks, implies that the function ¢ satisfies

/OT/Q&(dedt—’_/OT/QvQﬁ'Vwdth:/oT/Qgtbdth,

forally € D(2 x (O, T)).
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THE FRACTIONAL LAPLACIAN
WITH EXTERIOR CONDITIONS




The fractional Laplacian with exterior conditions

Fractional Poisson equation with non-homogeneous exterior condition

{ —APu=f inQ )

Fractional heat equation with non-homogeneous exterior condition

yi+(-APy=0 inQx(0,T)
y=g inQ° x (0, T) 3
y(-,0) =Yo in Q.
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The fractional normal derivative

Fractional normal derivative

u X
Nst(x) = Cx / W dy, x e Q. @

Clearly, Ns is a non-local operator. Moreover, it is well defined on H5(RN) as the
following result shows.

The non-local normal derivative A5 maps H°(RN) continuously into
(Q°) C L2 _(Q°).

loc loc

T. Ghosh, M. Salo and G. Uhlmann, The Calderdn problem for the fractional Schrédinger
equation, Anal. PDE, 2020.
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Some properties

Even if Ns is defined on the unbounded domain QF, it is still denoted normal derivative. This is
due to similarity with the classical normal derivative.

Divergence theorem: let u € C2(R") vanishing at +c0. Then

/(fA)sudX: 7/ Nsudx.
Q ac

Integration by parts formula: letu € H°(RV) be such that (—A)*u € L2(Q) and Nsu €
L2(Q2°). Then, for every v € H*(R") we have

s Cngs (u(x) — u)(v(x) — v(y))
/QV(_A) udx = 2 S e PRI dxdy — /QC VNsu dx,

where RN \ (Q°)? = (2 x Q) U (2 x Q°) U (Q° x Q).
Limitass 1 17: letu,v € C3(RV) vanishing at #-co. Then

ou
Iim/ v/\/’sudx:/ v— do.
st1— Jac a2 Ov

S. Dipierro, X. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary
conditions, Rev. Mat. Iberoam., 2017.
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Existence and uniqueness of solutions

\Weak solutions

Letg € L2(Q°), f € H5(Q) and G € H(RN) be such that Glgc = g. A
function u € H5(RV) is said to be a weak solution to (2) if u — G € H§(Q2) and
the identity

/ (u() = uW))(v(x) = v(y))
RN JRN

|x — y|N+2s

dxdy = (f,v)-s,s

holds for every v € Hg(Q).

Let f € H™5(Q) and g € L2(Q°). Then, (2) has a unique weak solution
u € H5(RN), and there is a constant C > O such that

lullzz@y < € (IFll-soy + I9lli2(qe)) -

H. Antil, R. Khatri and M. Warma, External optimal control of nonlocal PDEs, Inv. Prob-
lems, 2019.
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Existence and uniqueness of solutions

Very weak (transposition) solutions

Letg € L2(QC) and f € H—5(Q). A function u € L2(RVN) is said to be a solution
by transposition to (2) if the identity

[ ut-ayvar = {f.v)ss— [ orivax
Q Qc

holds forevery v € V:= {v € H3(Q) : (—A)veL3(Q)}.

Let f € H=5(Q) and g € L2(). Then, (2) has a unique solution by transposi-
tion u € L2(RN), and there is a constant C > O such that

lullzzqzy < € (IFll-s(@) + 1912 )

H. Antil, R. Khatri and M. Warma, External optimal control of nonlocal PDEs, Inv. Prob-
lems, 2019.
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The parabolic case

Let yo € L2(Q). g € L2((0, T); H5(°)) and consider the following two sys-

tems:
&+ (—AyPE=0 inQx(0,7)
£=0 inQ° x (0,T) ()
E(:O):yo inQ.

and
Zt+ (—APz=0 inQx(0,T)
z=g in Q¢ x (0,T) (6)
z(-,0)=0 in Q.

Then, the solution of (3)is given by y = ¢ + z.
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The parabolic case

Let (ér)ren be the normalized eigenfunctions of the operator (—A)* as-
sociated with the eigenvalues (\,)ren. For every yo € L2(R), define
Yo,k := (Yo, ¢k>L2(Q)- Then, there is a unique function

€ € ([0, TI; L3(R2)) NLE((0, T); Ha () MHY(0, T): H*(R))
satisfying (5) which is given for a.e. x € Qand every t € [0, T] by

£ 8) =D yo ke M r(x).

Jjz1
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The parabolic case

Weak solutions of (6)

Let g € L2((0,T);H()). By a weak solution of (6) we mean a function z €
L2((0, T); H*(R)) such that z = g a.e. in Q° x (O, T) and the identity

T T
/ (—wi + (—A)Y’'w,z) s sdt = / z(x, T)w(x, T)dx + / / gNsw dxdt
0 Q o Jac

holds for every w € C([O, T];L2(R)) N L2((0, T); H5(R)) N HX((0, T); H5(Q)) with
Naw € L2((0,T) x Q°).

For every g € L2((0, T); H*(9)). (6) has a unique weak solution z € L3((0, T); H*(R))
given by

t
20,0 =3 ([ (@0t = 7). Net) 2 geye 7 o) ().

k>1

M. Warma, Approximate controllability from the exterior of space-time fractional diffusive
equations, SICON, 2019.
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The parabolic case

Forevery yo € L2(Q) and g € L2((0, T); H5(2°)) , the system (3) has a unique
weak solution y € L2((0, T) x RY) given by

¢
y(x,t) = Zyo’ke”‘k%k + Z (/o (9, t— T)J\/’s¢k)Lz(QC)€7)‘”T d‘F) r(X).

k>1 k>1
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