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PART III: non-local in space models
LECTURE 7: The fractional Laplacian in non-local PDE



FRACTIONAL ELLIPTIC PDE



Fractional Poisson equation

Let Ω ⊂ RN be a bounded and regular domain. We consider the following elliptic
problem involving the fractional Laplacian

Fractional Poisson equation{
(−∆)su = f , x ∈ Ω

u ≡ 0, x ∈ Ωc.
(P )

On boundary conditions

In PDE involving the fractional Laplacian on a bounded domain, the boundary
condition is actually an exterior condition posed on the entire Ωc .
Indeed, because of the non-locality of the operator, fractional models with
standard boundary conditions (given only on ∂Ω) are ill-posed.

M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann
and Robin boundary conditions on open sets, Potential Anal., 2015.
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Weak solutions

Finite energy solutions

Let f ∈ H−s(Ω). A function u ∈ Hs
0(Ω) is said to be a finite energy solution

of (P ) if, for every v ∈ Hs
0(Ω), it holds the identity

CN,s

2

∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x − y|N+2s
dxdy = 〈f , v〉H−s(Ω),Hs

0(Ω).

Proposition

Let Ω ⊂ RN be an arbitrary bounded open set and 0 < s < 1. Then for every
f ∈ H−s(Ω), the Dirichlet problem (P ) has a unique finite energy solution
u ∈ Hs

0(Ω) and there exists a constant C > 0 such that ‖u‖Hs(Ω) ≤ C ‖f‖H−s(Ω) .

In addition, we can take C =
√
2/cN,s .

3/49



Proof

Consider the bilinear form E(·, ·) : Hs(RN)× Hs(RN)→ R defined as

E(u, v) :=
CN,s

2

∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x − y|N+2s
dxdy.

• E(u, v) is clearly symmetric: E(u, v) = E(v, u)

• E(u, v) is continuous:

|E(u, v)| =
CN,s

2

∣∣∣∣∣
∫
RN

∫
RN

u(x)− u(y)

|x − y|
N
2 +s

·
v(x)− v(y)

|x − y|
N
2 +s

dxdy

∣∣∣∣∣
≤

CN,s

2
[u]Hs(RN)[v]Hs(RN) ≤

CN,s

2
‖u‖Hs(RN) ‖v‖Hs(RN).

• E(u, v) is coercive:

|E(u, u)| =
CN,s

2

∫
RN

∫
RN

(u(x)− u(y))2

|x − y|
N
+
2s

dxdy ≥ C(N, s,Ω) ‖u‖2L2(Ω)
.

Lax-Milgram: for every f ∈ H−s(Ω) there exists a unique u ∈ Hs
0(Ω) solution of (P ).

Taking v = u as a test function: C ‖u‖2Hs(Ω) = 〈f , u〉H−s(Ω),Hs(Ω) ≤ ‖f‖H−s(Ω) ‖u‖Hs(Ω) .
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Some remarks

When considering right hand side terms f ∈ Lp(Ω) with p ≥ 2, due to the
continuous embedding Lp(Ω) ↪→ H−s(Ω), the notion of weak finite energy
solution suffices.

When f ∈ Lp(Ω) with 1 ≤ p < 2, the regularity of the right-hand side term
does not suffice to define weak finite energy solutions as above. We shall
rather consider those defined by duality or transposition.
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Transposition solutions

{
(−∆)sφ = ψ in Ω

φ ≡ 0 in Ωc (1)

T (Ω) =
{
φ : φ solves (1) with ψ ∈ C∞0 (Ω)

}
.

Transposition solutions

Let f ∈ L1(Ω). We say that u ∈ L1(Ω) is a weak duality or transposition
solution to the elliptic problem (P ), if the identity∫

Ω
uψ dx =

∫
Ω
fφdxdt

holds for any φ ∈ T (Ω) and ψ ∈ C∞0 (Ω).

T. Leonori, I. Peral, A. Primo and F. Soria, Basic estimates for solutions of a class of non-local
elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 2015.
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Some Hölder regularity results

Proposition

Let Ω be bounded, Lipschitz domain satisfying the exterior ball condition, f ∈ L∞(Ω),
and u be a solution of (P ). Then, u ∈ Cs(RN) and ‖u‖Cs(RN)

≤ C(Ω, s) ‖f‖L∞(Ω) .

This Cs regularity is optimal:{
(−∆)su = 1, x ∈ Br(x0)

u ≡ 0, x ∈ Br(x0)c
⇒ u(x) =

2−2sΓ
(
N
2

) (
r2 + |x − x0|2

)s
Γ
( N+2s

2

)
Γ(1 + s)

χBr (x0)(x)

u is Cs up to the boundary but it is not Cα for any α > s.

Proposition

Let Ω be a bounded and C1,1 domain, f ∈ L∞(Ω), u be a solution of (P ), and δ(x) =

dist(x, ∂Ω). Then, u/δs |Ω can be continuously extended to Ω. Moreover, we have
u/δs ∈ Cα(Ω) and∥∥∥∥ u

δs

∥∥∥∥
Cα(Ω)

≤ C(Ω, s) ‖f‖L∞(Ω) , α > 0, α < min{s, 1− s}.

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the
boundary, J. Math. Pures Appl., 2014.
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The fractional semi-group

For every f ∈ H−s(Ω) there exists a unique u ∈ Hs
0(Ω) such that

E(u, v) = 〈f , v〉H−s(Ω),Hs0(Ω), for all v ∈ Hs
0(Ω).

This defines an operatorA0 : Hs
0(Ω)→ H−s(Ω) which is continuous and coercive. LetA be the

part ofA0 in L2(Ω), in the sense that

D(A) =
{
u ∈ Hs

0(Ω), Au ∈ L2(Ω)
}
, Au = Au.

Then A is the realization in L2(Ω) of the operator (−∆)s with the Dirichlet boundary condition
u = 0 on RN \ Ω. More precisely,

D(A) =
{
u ∈ Hs

0(Ω), (−∆)su ∈ L2(Ω)
}
, Au = (−∆)su.

The operatorA has a compact resolvent and its first eigenvalue λ1 > 0.

−A generates a sub-Markovian strongly continuous semi-group (e−tA)t≥0 which is
also ultracontractive in the sense that it maps Lr(Ω) into Lm(Ω) for every t > 0 and
1 ≤ r ≤ m ≤ ∞

∥∥∥e−tAf
∥∥∥
Lm(Ω)

≤ Ce−λ1
(
1
r−

1
m

)
t−

N
2s

(
1
r−

1
m

)
‖f‖Lr (Ω) .

C. Gal and M. Warma, Nonlocal transmission problems with fractional diffusion and boundary con-
ditions on non-smooth interfaces, Commun. PDE, 2017.
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A Lebesgue regularity result

Proposition

Assume that N > 2s and let f ∈ Lp(Ω) for some p ≥ 2N
N+2s . Then (P ) has a

unique solution weak solution u. In addition the following assertions hold.

• If p > N
2s , then u ∈ L∞(Ω) and there exists a constant C > 0 such that

‖u‖L∞(Ω) ≤ C ‖f‖Lp(Ω) .

• If 2N
N+2s ≤ p ≤ N

2s , then u ∈ Lq(Ω) for every q satisfying p ≤ q < Np
N−2sp

and there exists a constant C > 0 such that

‖u‖Lq(Ω) ≤ C ‖f‖Lp(Ω) .

U. Biccari, M. Warma and E. Zuazua, Local elliptic regularity for the Dirichlet fractional Laplacian
Adv. Nonlinear Stud., 2017.
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A maximal Sobolev regularity result

Theorem

Let F ∈ H−s(RN) and u ∈ Hs(RN) be the weak solution to the fractional
Poisson type equation

(−∆)su = F, x ∈ RN.

If F ∈ L2(RN) with p ≥ 2, then u ∈ H2s(RN)

E. Stein, Singular integrals and differentiability properties of functions, Princeton University Press,
1970.

Theorem

Let f ∈ H−s(Ω) and u ∈ Hs
0(Ω) be the unique finite energy solution of the

Dirichlet problem (P ). If f ∈ L2(Ω), then u ∈ H2s
loc(Ω).

U. Biccari, M. Warma and E. Zuazua, Local elliptic regularity for the Dirichlet fractional Laplacian
Adv. Nonlinear Stud., 2017.
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Proof

STEP 1: Cut-off

Given ω and ω̃ two open subsets of the domain Ω such that ω̃ b ω b Ω, we introduce
a cut-off function η ∈ D(ω) such that

Cut-off function 
η(x) ≡ 1 if x ∈ ω̃
0 ≤ η(x) ≤ 1 if x ∈ ω \ ω̃
η(x) = 0 if x ∈ RN \ ω.

Given f ∈ H−s(Ω) and u ∈ Hs
0(Ω) the unique weak solution to the Dirichlet problem

(P ), the function uη belongs to Hs(RN). Moreover:

(−∆)suη = η(−∆)su + u(−∆)sη − Is(u, η)︸ ︷︷ ︸
g

.

Is(u, η) := CN,s P.V.
∫
RN

(u(x)− u(y))(η(x)− η(y))

|x − y|N+2s
dy.
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Proof (cont.)

STEP 2: Regularity of the remainder

We have g ∈ L2(RN). In fact there exists a constant C > 0, independent of u, such
that

‖g‖L2(RN) ≤ C ‖u‖Hs
0(Ω) .

Indeed, since u = 0 on Ωc and (−∆)sη ∈ L∞(RN), we have that∥∥u(−∆)sη
∥∥2
L2(RN)

=

∫
Ω
|u(−∆)sη|2 dx ≤

∥∥(−∆)sη
∥∥2
L∞(Ω)

‖u‖2L2(Ω)
≤ C ‖u‖2Hs

0(Ω).

As for Is(u, η), for a.e. x ∈ RN, we can split

Is(u, η)(x) =CN,s

∫
Ω

(u(x)− u(y))(η(x)− η(y))

|x − y|N+2s
dy

+ CN,sη(x)

∫
Ωc

u(x)− u(y)

|x − y|N+2s
dy = I1(x) + I2(x).
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Proof (cont.)

STEP 3.a: Estimate of I1(x)

Using the Cauchy-Schwartz inequality, we get that

|I1(x)| ≤ CN,s

(∫
Ω

|u(x)− u(y)|2

|x − y|N+2s
dy

) 1
2
(∫

Ω

(|η(x)− η(y)|2

|x − y|N+2s
dy

) 1
2

.

Let x ∈ Ω be fixed and R > 0 such that Ω ⊂ B(x,R). Since η is a smooth function (in
particular Lipschitz), there exists a constant C > 0 (depending on η) such that∫

Ω

|η(x)− η(y)|2

|x − y|N+2s
dy ≤ C

∫
Ω

dy
|x − y|N+2s−2 ≤ C

∫
B(x,R)

dy
|x − y|N+2s−2 ≤ C.

Hence, ∫
RN
|I1(x)|2 dx ≤ C

∫
RN

∫
Ω

|u(x)− u(y)|2

|x − y|N+2s
dydx ≤ C‖u‖2Hs

0(Ω).
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Proof (cont.)

STEP 3.b: Estimate of I2(x)

I2 = 0 on RN \ ω. In addition, from the Cauchy-Schwartz inequality we get

|I2(x)|2 ≤ C2
N,s

∫
Ωc

η2(x)dy
|x − y|N+2s

∫
Ωc

|u(x)− u(y)|2

|x − y|N+2s
dy.

y ∈ Ωc ⇒
η2(x)

|x − y|N+2s
=
χω(x)η2(x)

|x − y|N+2s
≤ χω(x)η2(x) sup

x∈ω

1

|x − y|N+2s
.

Thus there exists a constant C > 0 such that∫
Ωc

η2(x)dy
|x − y|N+2s

≤ χω(x)η2(x)

∫
Ωc

dy
dist(y, ∂ω)N+2s

≤ Cχω(x)η2(x),

where we have used that dist(∂Ω, ∂ω) ≥ δ > 0, that the distance function it grows
linearly as y tends to infinity, and that N + 2s > N.

χω η
2 ∈ L∞(ω) ⇒

∫
RN
|I2(x)|2 dx =

∫
ω
|I2(x)|2 dx

≤ C
∫
ω

∫
Ωc

|u(x)− u(y)|2

|x − y|N+2s
dydx ≤ C ‖u‖2Hs

0(Ω).
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Proof (cont.)

STEP4: ConclusionWehave shown that ηu is a weak solution to the Poisson Equation
(P ) with

F = η(−∆)su + g ∈ L2(RN).

It follows that (ηu) ∈ H2s(RN). Thus u ∈ H2s
loc(Ω).
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Proof with the heat semi-group definition

The heat semi-group representation of the fractional Laplacian can be used for an
alternative proof of the previous result.

%(t) := et∆(ηu), t ≥ 0 ⇒ %t −∆% = 0, t > 0, %(0) = ηu.

% = φη + z with

{
φt −∆φ = 0, φ(0) = u
zt −∆z = 2div(φ∇η)− φ∆η, z(0) = 0.

(−∆)s(ηu) =
1

Γ(−s)

∫ +∞

0

(
ρ(t)− ρ(0)

) dt
t1+s

=
1

Γ(−s)

∫ +∞

0

(
ηφ(t) + z(t)− ηu(t)

) dt
t1+s

=
η

Γ(−s)

∫ +∞

0

(
et∆u− u

) dt
t1+s︸ ︷︷ ︸

η(−∆)su

+
1

Γ(−s)

∫ +∞

0

z(t)
t1+s

dt︸ ︷︷ ︸
g

.

By means of sharp estimates on the decay, both at t = 0 and at t→ +∞, of
the function z we can prove that g ∈ L2(RN).
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The case p 6= 2

Theorem

Let 1 < p < +∞. Given F ∈ Lp(RN), let u be theweak solution of (−∆)su = F,
x ∈ RN . Then, u ∈ L p

2s(R
N), where

L p
2s(R

N) :=
{
u ∈ Lp(RN) : (−∆)su ∈ Lp(RN)

}
.

• 1 < p < 2 and s 6= 1/2: L p
2s(R

N) ⊂ B2sp,2(RN).

• 1 < p < 2 and s = 1/2: L p
2s(R

N) = L p
1 (RN) = W1,p(RN).

• 2 ≤ p < +∞: u ∈ B2sp,p(RN) = W2s,p(RN).

Besov space

Bsp,q(RN) :=

u ∈ Lp(RN) :

∫
RN

‖u(x + y)− u(y)‖q
Lp(RN)

|y|N+qs
dy

 1
q

< +∞


1 ≤ p,q ≤ +∞, 0 < s < 1.
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Local elliptic regularity

Theorem

Let 1 < p < +∞. Given f ∈ Lp(Ω), let u be the unique weak solution of{
(−∆)su = f , x ∈ Ω

u = 0, x ∈ Ωc.

Then u ∈ L p
2s,loc(Ω). As a consequence:

• If 1 < p < 2 and s 6= 1/2, then u ∈ B2sp,2,loc(Ω).

• If 1 < p < 2 and s = 1/2, then u ∈W2s,p
loc (Ω) = W1,p

loc (Ω).

• If 2 ≤ p <∞, then u ∈W2s,p
loc (Ω).

L p
2s,loc(Ω) :=

{
u ∈ Lp(Ω) : uη ∈ L p

2s(R
N) for any η ∈ D(Ω)

}
.

B2sp,2,loc(Ω) :=
{
u ∈ Lp(Ω) : uη ∈ B2sp,2(RN) for any η ∈ D(Ω)

}
.
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Asymptotic as s→ 1−

Theorem

Let Fs = {fs}0<s<1 ⊂ H−s(Ω) be a sequence satisfying the following as-
sumptions:

H1 ‖fs‖H−s(Ω) ≤ C, for all 0 < s < 1 and uniformly with respect to s.

H2 fs ⇀ f weakly in H−1(Ω) as s→ 1− .

For all fs ∈ Fs, let us ∈ Hs
0(Ω) be the unique weak solution of the Dirichlet

problem (P ). Then, as s→ 1−, us → u strongly in H1−δ
0 (Ω) for all 0 < δ ≤ 1.

Moreover, u ∈ H1
0(Ω) and verifies∫

Ω
∇u · ∇v dx =

∫
Ω
fv dx, ∀v ∈ D(Ω),

i.e. it is the unique weak solution of{
−∆u = f , x ∈ Ω

u = 0, x ∈ ∂Ω.

U. Biccari and Hernández-Santamaría, The Poisson equation from non-local to local,
Electron. J. Differential Equations, 2018
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Proof

STEP 1: For any f ∈ H−1(Ω) there exists a sequence Fs = {fs}0<s<1 ⊂ H−s(Ω)
verifying the assumptions H1 and H2. Indeed:

• Any f ∈ H−1(Ω) can be written as f = div(g) with g ∈ L2(Ω).

• ρε standard mollifier, gε := g ? ρε :

ρε(x) :=

{
Cε−N exp

(
ε2

|x|2−ε2

)
, |x| < ε

0, |x| ≥ ε

(a) gε is well defined, since g ∈ L2(Ω), hence it is locally integrable.
(b) ∂xigε is bounded uniformly with respect to ε for all i = 1, . . . ,N.
(c) limε→0+ gε = g, strongly in L2(Ω).

• fε := div(gε)⇒ ‖fε‖H−1+ε(Ω) is bounded uniformly w.r.t. ε (property (a)).

• ∂xigε = ρε ? gxi → gxi as ε→ 0+ (properties (b) and (c)).

• limε→0+ fε = limε→0+ div(gε) = div(g) = f (strong convergence in H−1(Ω)).

• Choose ε = 1− s.
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Proof (cont.)

STEP 2:

• Assume s > 1/2. From H2 and the definition of weak convergence:

lim
s→1−

∫
Ω
fsv dx =

∫
Ω
fv dx, ∀v ∈ D(Ω).

• us ∈ Hs
0(Ω): solution of (P ) corresponding to fs . For s sufficiently close to one:

√
1− s ‖us‖Hs(Ω) ≤ C(s,N) ‖fs‖H−s(Ω) , C(s,N) :=

√
2− 2s
cN,s

• For all N fixed, C(s,N) is decreasing w.r.t. s.

C(s,N) < C
(
1

2
,N
)

=

√√√√ π

Γ
(
N+1
2

)
√
1− s ‖us‖Hs(Ω) ≤ C(N,Ω)
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Proof (cont.)

STEP 3:

• us → u strongly in H1−δ
0 (Ω) for all 0 < δ ≤ 1 and u ∈ H1

0(Ω).
J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, in Optimal
Control and Partial Differential Equations, 2001.

• For all φ ∈ Hs
0(Ω) and ψ ∈ D(Ω):〈

(−∆)sφ, ψ
〉

=
CN,s

2

∫
RN

∫
RN

(φ(x)− φ(y))(ψ(x)− ψ(y))

|x − y|N+2s
dxdy

=
〈
φ, (−∆)sψ

〉
⇒
〈
us, (−∆)sv

〉
=

∫
Ω
fsv dx

• As s→ 1−

|〈us, (−∆)sv〉 − 〈u,−∆v〉
∣∣ =

∣∣〈us, (−∆)sv− (−∆v)〉+ 〈us − u,−∆v〉
∣∣

≤ ‖us‖L2(Ω)

∥∥(−∆)sv− (−∆v)
∥∥
L2(Ω)

+ ‖−∆v‖L2(Ω) ‖us − u‖L2(Ω) → 0

⇒ lim
s→1−

〈
us, (−∆)sv

〉
=
〈
u,−∆v

〉
= −

∫
Ω
u∆v dx =

∫
Ω
∇u · ∇v dx.

• Hence:
∫

Ω
∇u · ∇v dx =

∫
Ω
fv dx, for all v ∈ D(Ω).
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Weakening the assumptions

A convergence result as s→ 1− can be obtained under weaker assumption on the
sequence Fs .

Theorem

Let Fs = {fs}0<s<1 ⊂ H−1(Ω) be a sequence such that fs ⇀ f weakly in
H−1(Ω). For all fs ∈ Fs, let us be the corresponding solution to (P ). Then, as
s → 1−, us ⇀ u weakly in L2(Ω), with u solution to (P ) in the transposition
sense.
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Proof

The right-hand side fs belongs toH−1(Ω), which is strictly greater thanH−s(Ω). Hence,
we cannot apply Lax-Milgram and we shall define the solution by transposition.

For all φ ∈ L2(Ω), let y be solution of the elliptic problem{
(−∆)sy = φ, x ∈ Ω

y ≡ 0, x ∈ Ωc.

• For all ε > 0, y ∈ H2s−ε
0 (Ω) ↪→ H1

0(Ω), with continuous and compact
embedding.

• The map Λ : φ 7→ y is linear and continuous from L2(Ω) into H2s−ε
0 (Ω). Thus, Λ

is compact from L2(Ω) into H1
0(Ω) and Λ∗ is compact from H−1(Ω) into L2(Ω).

〈fs, y〉H−1(Ω),H10(Ω) = 〈fs,Λφ〉H−1(Ω),H10(Ω) = (Λ∗fs, φ)L2(Ω).

• Therefore, us := Λ∗fs ∈ L2(Ω) is a solution of (P ) defined by transposition:∫
Ω
usφdx = 〈fs, y〉H−1(Ω),H10(Ω).

Moreover, we have

‖us‖L2(Ω) ≤ C ‖fs‖H−1(Ω) ≤ C.
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Proof (cont.)

In particular, {us}0<s<1 is a bounded sequence in L2(Ω), which implies that us ⇀ u
weakly in L2(Ω).

Using the definition of weak limit we have∫
Ω
uφdx = lim

s→1−

∫
Ω
usφdx = lim

s→1−
〈fs, y〉H−1(Ω),H10(Ω) = 〈f , y〉H−1(Ω),H10(Ω),

i.e. u is a solution by transposition of{
−∆u = f , x ∈ Ω

u = 0, x ∈ ∂Ω.

Since the L2(Ω)-regularity of us cannot be improved, its convergence to a
solution of the above Poisson equation can be expected only in the weak
sense.
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FRACTIONAL HEAT EQUATION



Fractional heat equation

Fractional heat equation
ut + (−∆)su = f , (x, t) ∈ Ω× (0, T)

u = 0, (x, t) ∈ Ωc × (0, T)

u(x,0) = u0(x), x ∈ Ω

(H)

It represents processes involving anomalous diffusion. Applications in:

• PHYSICS (plasma models).

• ECOLOGY (population dynamics).

• FINANCE.
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Weak solutions

Weak solutions

u ∈ L2(0,T;Hs
0(Ω)) ∩ C([0,T], L2(Ω)) with ut ∈ L2(0,T;H−s(Ω)) is a weak

solution for (H) with f ∈ L2(0, T;H−s(Ω)) and u0 ∈ L2(Ω) if it satisfies∫ T

0

∫
Ω
utv dxdt +

∫ T

0
a(u, v)dt =

∫ T

0
〈f , v〉−s,s dt,

for any v ∈ L2(0, T;Hs
0(Ω)).

The bilinear form a(·, ·) : Hs
0(Ω)× Hs

0(Ω)→ R is defined as

a(u, v) =
CN,s

2

∫
R

∫
R

(u(x)− u(y))(v(x)− v(y))

|x − y|1+2s
dxdy.
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Some remarks

When considering right hand side terms f ∈ Lp(Ω× (0, T)) with p ≥ 2, due to
the continuous embedding Lp(Ω× (0, T)) ↪→ L2((0, T);H−s(Ω)), the notion
of weak finite energy solution suffices.

When f ∈ Lp(Ω× (0, T)) with 1 ≤ p < 2, the regularity of the right-hand side
term does not suffice to define weak finite energy solutions as above. We
shall rather consider those defined by duality or transposition.
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Transposition solutions


−pt + (−∆)sp = ψ (x, t) ∈ Ω× (0, T) =: ΩT ,

p ≡ 0 (x, t) ∈ Ωc × (0, T),

p(·, T) ≡ 0 x ∈ Ω.

(P )

P(ΩT) =
{
p(·, t) ∈ C1((0, T),Cβ0 (Ω)) : p solves (P) with ψ ∈ C∞0 (ΩT)

}
.

Transposition solutions

Let f ∈ L1(Ω× (0,T)). We say that u ∈ C([0,T]; L1(Ω)) is a weak duality or
transposition solution to the parabolic problem (H), if the identity∫ T

0

∫
Ω
uψ dxdt =

∫ T

0

∫
Ω
fp dxdt

holds, for any p ∈ P(ΩT) and ψ ∈ C∞0 (ΩT).
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Well-posedness theorems

Theorem

Assume f ∈ L2(0,T;H−s(Ω)). Then for any u0 ∈ L2(Ω), problem (H) has
a unique weak solution. Moreover, if f is also a non-negative function and
u0 > 0, such a solution is non-negative too.

Theorem

Let f ∈ L1(Ω×(0, T)) and u0 ∈ L1(Ω). Then there exists a unique transposition
solution of (H). Moreover:

• u ∈ Lq(Ω× (0, T)) for all q ∈
(
1, N+2s

N

)
.

• |(−∆)su| ∈ Lr(Ω× (0, T)) for all r ∈
(
1, N+2s

N+s

)
.

T. Leonori, I. Peral, A. Primo and F. Soria, Basic estimates for solutions of a class of non-local elliptic
and parabolic equations, Discrete Contin. Dyn. Syst., 2015.
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Maximum principle

Proposition

Let f ∈ L2(Ω × (0, T)) and u0 ∈ L2(Ω) be non-negative. Then the corresponding
solution u of the system (H) is also non-negative.

U. Biccari, M. Warma and E. Zuazua, Local regularity for fractional heat equations, in
Recent advances in PDEs: analysis, numerics and control, 2019

PROOF: (−∆)s is a self-adjoint operator in L2(Ω) associated with the bilinear form

a(ϕ,ψ) =
CN,s

2

∫
RN

∫
RN

(ϕ(x)− ϕ(y))(ψ(x)− ψ(y))

|x − y|N+2s
dxdy, ϕ, ψ ∈ Hs

0(Ω).

(−∆)s is a resolvent positive operator. Indeed, let λ > 0 be a real number, g ∈ L2(Ω) and set

φ :=
(
λ + (−∆)s

)−1
g.

Then, φ belongs to Hs
0(Ω) and is a weak solution of the Dirichlet problem{

(−∆)sφ + λφ = g, x ∈ Ω

φ = 0, x ∈ Ωc

in the sense that

E(φ, v) + λ

∫
Ω

φv dx =

∫
Ω

gv dx, ∀ v ∈ Hs
0(Ω).
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Maximum principle (cont.)

There is a constant C > 0 such that

λ

∫ 1

Ω

|v|2 dx + E(v, v) ≥ C‖v‖2Hs0(Ω), ∀v ∈ Hs
0(Ω).

Assume that g ≤ 0 a.e. in Ω and define φ+ := max{φ,0} and φ− := max{−φ,0}. We have

(
φ
−(x)− φ−(y)

)(
φ

+(x)− φ+(y)
)

= φ
−(x)φ+(x)− φ−(x)φ+(y)− φ−(y)φ+(x) + φ

−(y)φ+(y)

= −
(
φ
−(x)φ+(y) + φ

−(y)φ+(x)
)
≤ 0⇒ E(φ−, φ+) ≤ 0.

Hence,

E(φ, φ+) = E(φ+ − φ−, φ+) = E(φ+
, φ

+)− E(φ−, φ+) ≥ 0

0 ≤ λ
∫

Ω

φφ
+ dx + E(φ, φ+) =

∫
Ω

gφ+ dx ≤ 0.

Therefore, φ+ = 0, that is, φ ≤ 0 almost everywhere.
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Sobolev regularity

Theorem

Let 1 < p < ∞ and f ∈ Lp(Ω × (0,T)). Then, problem (H) has a unique

weak solution u ∈ C([0,T]; Lp(Ω)) such that u ∈ Lp
(

(0,T); L p
2s,loc(Ω)

)
and

ut ∈ Lp(Ω× (0, T)). As a consequence:

• If 1 < p < 2 and s 6= 1/2, u ∈ Lp
(

(0, T);B2sp,2,loc(Ω)
)
.

• If 1 < p < 2 and s = 1/2,

u ∈ Lp
(

(0, T);W2s,p
loc (Ω)

)
= Lp

(
(0, T);W1,p

loc (Ω)
)
.

• If 2 ≤ p < +∞, u ∈ Lp
(

(0, T);W2s,p
loc (Ω)

)
.

U. Biccari, M. Warma and E. Zuazua, Local regularity for fractional heat equations, in
Recent advances in PDEs: analysis, numerics and control, 2019
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Proof

Direct consequence of the elliptic regularity and the following result.

Theorem

Let (Ω,Σ,m) be a measure space and let A be the generator of a strongly
continuous semi-group of linear operators (Tt)t≥0 on L2(Ω,Σ,m) satisfying
the following hypothesis:

• The semi-group (Tt)t≥0 is analytic and bounded on L2(Ω,Σ,m).

• For every p ∈ [1,∞] and φ ∈ Lp(Ω) ∩ L2(Ω) we have the estimate

‖Ttφ‖Lp(Ω) ≤ ‖φ‖Lp(Ω) , for all t ≥ 0.

Let p ∈ (1,∞). If f ∈ Lp(Ω× (0, T)), then the system{
ut − Au = f , t ∈ (0, T)

u(0) = 0

admits a solution u ∈ C([0, T]; Lp(Ω)), such that ut, Au ∈ Lp(Ω× (0, T)).

D. Lamberton, Equations d’évolution linéaires associées à des semi-groupes de contractions dans
les espaces Lp ,J. Funct. Anal., 1987
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Asymptotic as s→ 1−

Theorem

Let Gs := {gs}0<s<1 ⊂ L2(0, T;H−s(Ω)) satisfy for all 0 < t < T :

K1 ‖gs(t)‖H−s(Ω) ≤ C, for all 0 < s < 1 and uniformly with respect to s.

K2 gs(t) ⇀ g(t) weakly in H−1(Ω) as s→ 1− .

For any fs ∈ Gs , let φs ∈ L2(0, T;Hs
0(Ω)) be the unique weak solution of

∂tφs + (−∆)sφs = gs, (x, t) ∈ Ω× (0, T)

φs ≡ 0, (x, t) ∈ Ωc × (0, T)

φs(x,0) = 0, x ∈ Ω,

Then, s → 1− , (φs, ∂tφs) → (φ, ∂tφ) strongly in L2(0, T;H1−δ
0 (Ω)) × L2(0, T;H−1(Ω))

for any 0 < δ ≤ 1. Moreover, φ ∈ L2(0, T;H1
0(Ω))× L2(0, T;H−1(Ω)) and verifies∫ T

0

∫
Ω

∂tφψ dxdt +

∫ T

0

∫
Ω

∇φ · ∇ψ dxdt =

∫ T

0

∫
Ω

gψ dxdt, ∀ψ ∈ D(Ω× (0, T)),

i.e. it is the unique weak solution of
∂tφ−∆φ = g, (x, t) ∈ Ω× (0, T)

φ = 0, (x, t) ∈ ∂Ω× (0, T)

φ(x,0) = 0, x ∈ Ω.

U. Biccari and Hernández-Santamaría, The Poisson equation from non-local to local, Electron. J.
Differential Equations, 2018
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Proof

• A sequence Gs verifying K1 and K2 exists. It can be constructed following the
methodology of the elliptic case, since both properties are independent of the
time variable.

• We shall only analyze the first term on the left-hand side of the variational
formulation. Indeed:

. The functional space in which the integration in time is carried out does
not depend on s. Therefore, the limit process does not affect the regularity
in the time variable.

. For the remaining two terms, the limit as s→ 1− can be addressed in an
analogous way as in the elliptic case.

• Multiplying the equation by φs and integrating by parts we obtain the energy
estimate:

‖φs‖L2(0,T;Hs
0(Ω)) + ‖∂tφs‖L2(0,T;H−s(Ω)) ≤ C ‖gs‖L2(0,T;H−s(Ω))
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Proof (cont.)

• Analogously as in the elliptic case, we can show that φs → φ strongly in
L2(0, T;H1−δ

0 (Ω)) for all 0 < δ ≤ 1 as s→ 1− .

• Energyestimate: {∂tφs}bounded in L2(0, T;H−s(Ω)) ↪→ L2(0, T;H−1(Ω)) com-
pactly. Thus, as s→ 1−, ∂tφs → ∂tφ strongly in L2(0, T;H−1(Ω)) and (φs, ∂tφs)→
(φ, ∂tφ) strongly in L2(0,T;H1−δ

0 (Ω)) × L2(0,T;H−1(Ω)) for all 0 < δ ≤ 1. In
particular:

lim
s→1−

∫ T

0

∫
Ω
∂tφsψ dxdt =

∫ T

0

∫
Ω
∂tφψ dxdt.

• This, together with the above remarks, implies that the function φ satisfies∫ T

0

∫
Ω
∂tφψ dxdt +

∫ T

0

∫
Ω
∇φ · ∇ψ dxdt =

∫ T

0

∫
Ω
gψ dxdt,

for all ψ ∈ D(Ω× (0, T)).
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THE FRACTIONAL LAPLACIAN
WITH EXTERIOR CONDITIONS



The fractional Laplacian with exterior conditions

Fractional Poisson equation with non-homogeneous exterior condition

{
(−∆)su = f in Ω

u = g in Ωc.
(2)

Fractional heat equation with non-homogeneous exterior condition


yt + (−∆)sy = 0 in Ω× (0, T)

y = g in Ωc × (0, T)

y(·,0) = y0 in Ω.

(3)
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The fractional normal derivative

Fractional normal derivative

Nsu(x) := CN,s

∫
Ω

u(x)− u(y)

|x − y|N+2s
dy, x ∈ Ωc. (4)

Clearly, Ns is a non-local operator. Moreover, it is well defined on Hs(RN) as the
following result shows.

Lemma

The non-local normal derivative Ns maps Hs(RN) continuously into
Hs
loc(Ωc) ⊂ L2loc(Ωc).

T. Ghosh, M. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger
equation, Anal. PDE, 2020.
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Some properties

Even ifNs is defined on the unbounded domain Ωc , it is still denoted normal derivative. This is
due to similarity with the classical normal derivative.

Proposition

Divergence theorem: let u ∈ C2(RN) vanishing at±∞. Then∫
Ω

(−∆)su dx = −
∫

Ωc
Nsu dx.

Integration by parts formula: let u ∈ Hs(RN) be such that (−∆)su ∈ L2(Ω) andNsu ∈
L2(Ωc). Then, for every v ∈ Hs(RN) we have

∫
Ω

v(−∆)su dx =
CN,s

2

∫
R2N\(Ωc)2

(u(x)− u(y))(v(x)− v(y))

|x − y|N+2s
dxdy −

∫
Ωc

vNsu dx,

where R2N \ (Ωc)2 = (Ω× Ω) ∪ (Ω× Ωc) ∪ (Ωc × Ω).
Limit as s ↑ 1−: let u, v ∈ C2(RN) vanishing at±∞. Then

lim
s↑1−

∫
Ωc

vNsu dx =

∫
∂Ω

v
∂u

∂ν
dσ.

S. Dipierro, X. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary
conditions, Rev. Mat. Iberoam., 2017.
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Existence and uniqueness of solutions

Weak solutions

Let g ∈ L2(Ωc), f ∈ H−s(Ω) and G ∈ Hs(RN) be such that G|Ωc = g. A
function u ∈ Hs(RN) is said to be a weak solution to (2) if u− G ∈ Hs

0(Ω) and
the identity ∫

RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x − y|N+2s
dxdy = 〈f , v〉−s,s

holds for every v ∈ Hs
0(Ω).

Theorem

Let f ∈ H−s(Ω) and g ∈ L2(Ωc). Then, (2) has a unique weak solution
u ∈ Hs(RN), and there is a constant C > 0 such that

‖u‖L2(Ω) ≤ C
(
‖f‖H−s(Ω) + ‖g‖L2(Ωc)

)
.

H. Antil, R. Khatri and M. Warma, External optimal control of nonlocal PDEs, Inv. Prob-
lems, 2019.
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Existence and uniqueness of solutions

Very weak (transposition) solutions

Let g ∈ L2(Ωc) and f ∈ H−s(Ω). A function u ∈ L2(RN) is said to be a solution
by transposition to (2) if the identity∫

Ω
u(−∆)sv dx = 〈f , v〉−s,s −

∫
Ωc

gNsv dx

holds for every v ∈ V :=
{
v ∈ Hs

0(Ω) : (−∆)sv ∈ L2(Ω)
}
.

Theorem

Let f ∈ H−s(Ω) and g ∈ L2(Ωc). Then, (2) has a unique solution by transposi-
tion u ∈ L2(RN), and there is a constant C > 0 such that

‖u‖L2(RN) ≤ C
(
‖f‖H−s(Ω) + ‖g‖L2(Ωc)

)
.

H. Antil, R. Khatri and M. Warma, External optimal control of nonlocal PDEs, Inv. Prob-
lems, 2019.
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The parabolic case

Remark

Let y0 ∈ L2(Ω), g ∈ L2((0,T);Hs(Ωc)) and consider the following two sys-
tems: 

ξt + (−∆)sξ = 0 in Ω× (0, T)

ξ = 0 in Ωc × (0, T)

ξ(·,0) = y0 in Ω.

(5)

and 
zt + (−∆)sz = 0 in Ω× (0, T)

z = g in Ωc × (0, T)

z(·,0) = 0 in Ω.

(6)

Then, the solution of (3) is given by y = ξ + z.
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The parabolic case

Theorem

Let (φk)k∈N be the normalized eigenfunctions of the operator (−∆)s as-
sociated with the eigenvalues (λk)k∈N . For every y0 ∈ L2(Ω), define
y0,k := 〈y0, φk〉L2(Ω) . Then, there is a unique function

ξ ∈ C([0, T]; L2(Ω)) ∩ L2((0, T);Hs
0(Ω)) ∩ H1((0, T);H−s(Ω))

satisfying (5) which is given for a.e. x ∈ Ω and every t ∈ [0, T] by

ξ(x, t) =
∑
j≥1

y0,ke
−λktφk(x).
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The parabolic case

Weak solutions of (6)

Let g ∈ L2((0, T);Hs(Ωc)). By a weak solution of (6) we mean a function z ∈
L2((0, T);Hs(RN)) such that z = g a.e. in Ωc × (0, T) and the identity

∫ T

0
〈−wt + (−∆)sw, z〉−s,s dt =

∫
Ω

z(x, T)w(x, T) dx +

∫ T

0

∫
Ωc

gNsw dxdt

holds for every w ∈ C([0, T]; L2(Ω)) ∩ L2((0, T);Hs
0(Ω)) ∩ H1((0, T);H−s(Ω)) with

Nsw ∈ L2((0, T)× Ωc).

Theorem

For every g ∈ L2((0, T);Hs(Ωc)), (6) has a unique weak solution z ∈ L2((0, T);Hs(R))
given by

z(x, t) =
∑
k≥1

(∫ t

0

(
g(·, t− τ),Nsφk

)
L2(Ωc)

e−λkτ dτ
)
φk(x).

M.Warma, Approximate controllability from the exterior of space-time fractional diffusive
equations, SICON, 2019.
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The parabolic case

Theorem

For every y0 ∈ L2(Ω) and g ∈ L2((0, T);Hs(Ωc)) , the system (3) has a unique
weak solution y ∈ L2((0, T)× Rd) given by

y(x, t) =
∑
k≥1

y0,ke
−λktφk +

∑
k≥1

(∫ t

0

(
g(·, t− τ),Nsφk

)
L2(Ωc)

e−λkτ dτ
)
φk(x).
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