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PART III: non-local in space models
LECTURE 9: Control theory for PDE involving the fractional Laplacian



CONTROLLABILITY OF THE FRAC-
TIONAL HEAT EQUATON



1-d fractional heat equation


yt + (−d2x )sy = uχω (x, t) ∈ (−1, 1)× (0, T)

y ≡ 0 (x, t) ∈ (−1, 1)c × (0, T),

y(·,0) = y0 x ∈ (−1, 1).
(FH)

Theorem

Given any y0 ∈ L2(−1, 1), ω ⊂ (−1, 1) and T > 0, the fractional heat equation
(FH) is
• approximately controllable at time T with u ∈ L2(ω × (0,T)), for all

s ∈ (0, 1).

• null-controllable at time T with u ∈ L2(ω×(0, T)), if and only if s > 1/2.

• null-controllable at time T with u ∈ L∞(ω × (0,T)), if and only if
s > 1/2.

U. Biccari and V. Hernández-Santamaría, Controllability of a one-dimensional fractional
heat equation: theoretical and numerical aspects, IMA J. Math. Control Inf., 2018

U. Biccari, M. Warma and E. Zuazua, Controllability of the one-dimensional fractional
heat equation under positivity constraints, Commun. Pure Appl. Anal., 2019
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Previous controllability results

• the 1-d fractional heat equation with spectral fractional Laplacian is null
controllable at time T > 0 if and only if s > 1/2.
S. Micu and E. Zuazua, On the controllability of a fractional order parabolic equation,
SICON, 2006

• the same result holds in multi-d setting using a Lebeau-Robbiano strategy.
L. Miller, On the controllability of anomalous diffusions generated by the fractional
Laplacian, Math. Control Signal Systems, 2006

Recall

spectral 6= integral
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Why s > 1/2?

Fractional heat equation

yt − (−∆)sy = 0.
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Proof of the approximate controllability

Parabolic unique continuation property

Given s ∈ (0, 1) and pT ∈ L2(−1, 1), let p be the unique solution to the adjoint
equation 

−pt + (−d2x )sp = 0, (x, t) ∈ (−1, 1)× (0, T)

p = 0, (x, t) ∈ (−1, 1)c × (0, T)

p(x, T) = pT(x), x ∈ (−1, 1),
(1)

Let ω ⊂ (−1, 1) be an arbitrary open set. If p = 0 on ω × (0,T), then p = 0
on (−1, 1)× (0, T).
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Proof of the approximate controllability

To prove this unique continuation, let us observe that for (x, t) ∈ (−1, 1)× (0,T), p
can be expressed in the basis of the eigenfunctions of the fractional Laplacian as

p(x, t) =
∑
k≥1

pke
−λk(T−t)φk(x), pk := 〈pT , φk〉L2(−1,1), (2)

Moreover, p can be analytically extended to the half plane ΣT := {z ∈ C : <(z) < T},
so that we can write

p(x, t) =
∑
k≥1

pke
−λk(T−t)φk(x), for all (x, t) ∈ (−1, 1)× (−∞, T). (3)

V. Keyantuo and M. Warma, On the interior approximate controllability for fractional wave equa-
tions, Discr. Cont. Dyn. Syst., 2016
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Proof of the approximate controllability

Assume that

p = 0 in ω × (0, T) (4)

and let {ψkj}1≤k≤mk
be an orthonormal basis of ker (λk − (−∆)s). Then, we have

φk(x) =

mk∑
j=1

φkjψkj , (φkj )
mk
j=1 ∈ `

2

and (3) can be rewritten as

p(x, t) =
∑
k≥1

 mk∑
j=1

pkjψkj (x)

 e−λk(T−t), (x, t) ∈ (−1, 1)× (−∞, T),

with pkj := pkφkj .
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Proof of the approximate controllability

Let σ ∈ C with η := <(σ) > 0 and let N ∈ N. Since the functions ψkj , 1 ≤ j ≤ mk,
1 ≤ k ≤ N are orthonormal, if we define

pN(x, t) :=
N∑
k=1

 mk∑
j=1

pkjψkj (x)

 eσ(t−T)e−λk(T−t).

we have that

‖pN(x, t)‖2L2(−1,1) ≤
∑
k≥1

 mk∑
j=1

|pkj |
2

 e2η(t−T)e−2λk(T−t)

≤
∑
k≥1
|pk|2

 mk∑
j=1

|φkj |
2

 e2η(t−T) ≤ Ce2η(t−T) ‖pT‖2L2(−1,1).
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Proof of the approximate controllability

Moreover, we have∫ T

−∞
eη(t−T) ‖pT‖L2(−1,1) dt =

1

η
‖pT‖L2(−1,1)

∫ +∞

0
e−τ dτ =

1

η
‖pT‖L2(−1,1).

Therefore, we can apply the Dominated Convergence Theorem and the change of
variables T − t 7→ τ , obtaining for all x ∈ (−1, 1) and η = <(σ) > 0

lim
N→+∞

∫ T

−∞
pN(x, t)dt =

∫ T

−∞
lim

N→+∞
pN(x, t)dt

=

∫ T

−∞
eσ(t−T)

∑
k≥1

 mk∑
j=1

pkjψkj (x)

 e−λk(T−t) dt (5)

=
∑
k≥1

mk∑
j=1

pkjψkj (x)

∫ +∞

0
e−(σ+λk)τ dτ =

∑
k≥1

mk∑
j=1

pkj
σ + λk

ψkj (x)
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Proof of the approximate controllability

It follows from (4) and (5) that∑
k≥1

mk∑
j=1

pkj
σ + λk

ψkj (x) = 0, for all x ∈ ω and <(σ) > 0.

This holds for every σ ∈ C \ {−λk}k∈N, using the analytic continuation in σ. Hence,
taking a suitable small circle around −λ` not including {−λk}k6=` and integrating on
that circle we get that

p` :=

m∑̀
j=1

p`jψ`j (x) = 0, for all x ∈ ω.

According to

M. M. Fall and V. Felli, Unique continuation property and local asymptotics of solutions to fractional
elliptic equations, Commun. PDE, 2014

providing a unique continuation property for (−∆)s, we have that p` = 0 in (−1, 1)
for every `.

Since {ψ`j}1≤j≤m`
are linearly independent in L2(−1, 1), we get ϕ`j = 0, 1 ≤ j ≤ mk,

` ∈ N. It follows that pT = 0 and hence, p = 0 in (−1, 1) × (0,T), meaning that p
enjoys the parabolic unique continuation property.
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Proof of the approximate controllability

Remark

The elliptic unique continuation property for the fractional Laplacian holds in
any space dimension. In view of that, the approximate controllability of the
fractional heat equation can be proved also in the case N > 1.

On the other hand, we will see that the same does not applies to the null con-
trollability property, since the proof of that result uses arguments specifically
designed for one-dimensional problems.

If one would like to analyze the multi-dimensional problem, other tools such
as Carleman estimates are needed. As far as we know, these techniques
have not been fully developed yet for problems involving the fractional
Laplacian on a domain.
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Proof of the null controllability in L2

First of all, let us recall that the result is equivalent to proving the following observ-
ability inequality for the solution of the adjoint system (1)

L2 observability inequality

‖p(x,0)‖2L2(−1,1) ≤ C
∫ T

0

∫
ω
|p|2 dxdt. (6)

Moreover, using (2), the orthonormality of the eigenfunctions and the change of
variables T − t 7→ t, we easily see that (6) is equivalent to

∑
k≥1
|pk|2e−2λkT ≤ C

∫ T

0

∫
ω

∣∣∣∣∣∣
∑
k≥1

pke
−λktφk

∣∣∣∣∣∣
2

dxdt. (7)
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Proof of the null controllability in L2

We know that, if the eigenvalues (λk)k≥1 satisfy

• λk+1 − λ : k ≥ γ > 0 for all k ≥ 1

•
∑

k≥1 λ
−1
k < +∞

then for any sequence {ck}k≥1 it holds the estimate

∑
k≥1
|ck|e−λkT ≤ C(T)

∥∥∥∥∥∥
∑
k≥1

cke
−λkt

∥∥∥∥∥∥
L2(0,T)

. (8)

Therefore, for any x ∈ (−1, 1) fixed, if we take ck := pkφk(x) in (8) we get∑
k≥1
|pkφk(x)|e−λkT ≤ C(T)

∥∥∥∥∥∥
∑
k≥1

pke
−λktφk(x)

∥∥∥∥∥∥
L2(0,T)

.

From this last estimate, we then obtain that∑
k≥1
|pkφk(x)|2e−2λkT ≤

∑
k≥1
|pkφk(x)|e−λkT

2

(9)

≤ C(T)2
∫ T

0

∣∣∣∣∣∣
∑
k≥1

pke
−λktφk(x)

∣∣∣∣∣∣
2

dt.
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Proof of the null controllability in L2

Finally, we can show that there exists a positive constant β > 0, independent of k,
such that the eigenfunctions of the fractional Laplacian satisfy the estimate

‖φk‖L2(ω) ≥ β|ω|
−1, for all k ≥ 1 and ω ⊂ (−1, 1).

Then, integrating over ω, we finally obtain from (9) that

β|ω|−1
∑
k≥1
|pk|2e−2λkT ≤

∫
ω

∑
k≥1
|pkφk(x)|2e−2λkT dx

≤ C(T)2
∫ T

0

∫
ω

∣∣∣∣∣∣
∑
k≥1

pke
−λktφk(x)

∣∣∣∣∣∣
2

dxdt,

from which (7) follows immediately.
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Proof of the null controllability in L2

To conclude our proof, it only remains to check that the eigenvalues (λk)k≥1 satisfy

λk+1 − λk ≥ γ > 0 for all k ≥ 1

∑
k≥1

λ−1k < +∞.

This is true if and only if s > 1/2.

In fact, in this case, the eigenvalues are simple and, therefore, fulfill the gap condition.

Moreover, we have the following asymptotic behavior:

λk =

(
kπ
2

+
(1− s)π

4

)2s

+O
(
1

k

)
as k→ +∞.

M. Kwaśnicki, Eigenvalues of the fractional Laplace operator in the interval, J. Funct. Anal., 2012

We then have that the above sum is convergent if and only if s > 1/2.
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Proof of the null controllability in L∞

By duality, the controllability of (FH) wit controls u ∈ L∞(ω × (0, T)) is equivalent to
the following observability inequality for the solution of the adjoint system (1)

L1 observability inequality

‖p(x,0)‖2L2(−1,1) ≤ C
(∫ T

0

∫
ω
|p|dxdt

)2

.

The proof of this last inequality is the same as the L2 case, and uses

•
∑

k≥1 |ck|e−λkT ≤ C(T)
∥∥∥∑k≥1 cke

−λkt
∥∥∥
L1(0,T)

that holds under the same assumptions on the eigenvalues {λk}k≥1
• ‖φk‖L1(ω) ≥ β > 0
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Proof of the null controllability in L∞

Remark

The L1 observability inequality implies that the fractional heat equation (FH)
is null controllable at time T > 0 with controls u ∈ L∞(ω × (0, T)) such that

‖u‖L∞(ω×(0,T) = ‖p‖L1(ω×(0,T)

This does not necessary implies that such controls are of bang-bang nature,
i.e. in the form

u = sign(p) ‖p‖L∞(ω×(0,T)

To have bang-bang controls, we need the zero set of the solutions of the
adjoint equation to be of null measure, so that the sign of the adjoint state
is well defined.

This is true in the case of the classical heat equation, as a consequence of
the space-time analyticity properties of the solutions, but is unknown (and a
very challenging PDE analysis problem) for the fractional heat equation for
which only time-analyticity of solutions is known.
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CONTROLLABILITY UNDER POSI-
TIVITY CONSTRAINTS



Constrained controllability

We have seen that

1. The fractional heat equation (FH) is null controllable in any time T > 0 by
means of a control u ∈ L2(ω × (0,T)) (or u ∈ L∞(ω × (0,T))), if and only if
s > 1/2. Besides, the equation being linear, by translation the same result holds
if the final target is a trajectory ŷ.

2. The fractional heat equation preserves positivity: if y0 is a given non-negative
initial datum in L2(−1, 1) and u is a non-negative function, then so it is for the
solution y of (FH).

Question

Can we control the fractional heat dynamics (FH) from any initial datum
y0 ∈ L2(−1, 1) to any positive trajectory ŷ, under positivity constraints on the
control and/or the state?
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Constrained controllability

Theorem

Let s > 1/2, y0 ∈ L2(−1, 1) and let ŷ be a positive trajectory, i.e., a solution of
(FH) with initial datum 0 < ŷ0 ∈ L2(−1, 1) and right hand side û ∈ L∞(ω ×
(0,T)). Assume that there exists ν > 0 such that û ≥ ν a.e in ω × (0,T).
Then, the following assertions hold.

1. There exist T > 0 and a non-negative control u ∈ L∞(ω × (0, T)) such
that the corresponding solution y of (FH) satisfies y(x, T) = ŷ(x, T) a.e.
in (−1, 1). Moreover, if y0 ≥ 0, y(x, t) ≥ 0 a.e. in (−1, 1)× (0, T).

2. Define the minimal controllability time by

Tmin(y0, ŷ) := inf
{
T > 0 : ∃ 0 ≤ u ∈L∞(ω × (0, T)) s. t.

y(·,0) = y0 and y(·, T) = ŷ(·, T)
}
.

For T = Tmin, there exists a non-negative control u ∈M(ω × (0, Tmin)),
the space of Radon measures on ω × (0,Tmin), such that the corre-
sponding solution of (FH) satisfies y(x, T) = ŷ(x, T) a.e. in (−1, 1).

U. Biccari, M. Warma and E. Zuazua, Controllability of the one-dimensional fractional
heat equation under positivity constraints, Commun. Pure Appl. Anal., 2019
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Proof of the constrained controllability

Two main ingredients

1. Controllability through L∞(ω × (0, T)) controls.

2. Dissipativity of the fractional heat semi-group.
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Proof of the constrained controllability

STEP 1: reduction to null-controllability

Subtracting ŷ in the equation, if we denote w := u− û, we have that ξ := y − ŷ fulfills
ξt + (−d2x )sξ = wχω , (x, t) ∈ (−1, 1)× (0, T)

ξ = 0, (x, t) ∈ (−1, 1)c × (0, T)

ξ(·,0) = y0(·)− ŷ0(·), x ∈ (−1, 1)
ξ(·, T) = 0, x ∈ (−1, 1)

It is enough to show that v ∈ L∞(ω × (0, T)) fulfills v > −ν a.e. in ω × (0, T).
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Proof of the constrained controllability

STEP 2: controllability ≡ observability

The controllability of the previous system for the function ξ is is equivalent to the
observability inequality

‖p(·, τ)‖2L2(−1,1) ≤ C(T − τ)

(∫ T

τ

∫
ω
|p(x, t)|dxdt

)2

STEP 3: dissipativity

Using that the eigenvalues {λk}k≥1 form a non-decreasing sequence, and the dissi-
pativity of the fractional heat semi-group, we have

‖p(·,0)‖2L2(−1,1) ≤ e−2λ1τ ‖p(·, τ)‖2L2(−1,1) ≤ e−2λ1τC(T − τ)

(∫ T

0

∫
ω
|p(x, t)|dxdt

)2
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Proof of the constrained controllability

STEP 4: duality

By duality, the control w can be chosen such that

‖w‖2L∞(ω×(0,T)) ≤ e−2λ1τC(T − τ)
∥∥y0 − ŷ0

∥∥2
L2(−1,1) .

Taking τ = T/2, we obtain

‖w‖2L∞(ω×(0,T)) ≤ e−λ1TC(T)
∥∥y0 − ŷ0

∥∥2
L2(−1,1) .

The observability constant C(T) is uniformly bounded for any T > 0 (although it
blows-up exponentially as T → 0+). Hence, for T large enough we have

‖w‖2L∞(ω×(0,T)) < ν → w > −ν

Therefore, the control w > −ν steers ξ from y0 − ŷ0 to zero in time T, provided T is
large enough. Consequently, u > w + û ≥ 0 steers y from y0 to ŷ(·, T) in time T

If y0 ≥ 0, thanks to the maximum principle, we also have y(x, t) ≥ 0 for every
(x, t) ∈ (−1, 1)× (0, T).
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Minimal-time control

Constrained controllability of (FH) holds in the minimal time Tmin with con-
trols in the (Banach) space of the RadonmeasuresM(ω×(0, Tmin)) endowed
with the norm

‖µ‖M(ω×(0,Tmin)) = sup

{∫ Tmin

0

∫
ω
ϕ(x, t) dµ(x, t) :

ϕ ∈ C(ω × [0, Tmin],R), max
ω×[0,Tmin]

|ϕ| = 1

}
.
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Minimal-time control

Solutions of (FH) with controls inM(ω × (0, Tmin)) are defined by transposition

Transposition solution

Given y0 ∈ L2(−1, 1), T > 0, and u ∈M(ω × (0, T)), y ∈ L1((−1, 1)× (0, T))
is a solution of (FH) defined by transposition if∫ T

0

∫
ω
p(x, t)du(x, t) = 〈y(·, T),pT〉 −

∫ 1

−1
y0(x)p(x,0)dx,

where, for every pT ∈ L∞(−1, 1), the function p ∈ L∞(Q) is the unique
solution of the adjoint equation.

The existence of a unique transposition solution of (FH) is a consequence of the
maximum principle together with duality and approximation arguments.

J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, 1968
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Minimal-time control

Denote Tk := Tmin + 1
k , k ≥ 1. There exists a sequence of non-negative controls

{uTk}k≥1 ⊂ L∞(ω × (0, Tk)) such that the corresponding solution yk of (FH) with
yk(x,0) = y0(x) a.e. in (−1, 1) satisfies yk(x, Tk) = ŷ(x, Tk) a.e. in (−1, 1).

Extend these controls by û on (Tk,Tmin + 1) to get a new sequence in the space
L∞(ω × (0, Tmin+1)).

Take pT > 0 ⇒ p(x, t) ≥ θ > 0 for all (x, t) ∈ (−1, 1)× (0, Tmin + 1). Then,

θ
∥∥∥uTk∥∥∥

L1(ω×(0,Tmin+1))
= θ

∫ Tmin+1

0

∫
ω
uTk dxdt

≤
∫ Tmin+1

0

∫ 1

−1
puTk dxdt

= 〈y(·, T),pT〉 −
∫ 1

−1
y0p(·,0)dx ≤ M.
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Minimal-time control

{uTk}k≥1 is bounded in L1(ω×(0, Tmin+1)), hence, it is bounded inM(ω × (0, Tmin+1)).
Thus, extracting a sub-sequence, we have:

uTk ∗⇀ ũ weakly −∗ inM(ω × (0, Tmin+1)) as k→ +∞.

The limit control ũ satisfies the non-negativity constraint.

For any k large enough and Tmin < T0 < Tmin+1, we have∫ T0

0

∫
ω
pduTk = 〈ŷ(·, T0),pT〉 −

∫ 1

−1
y0p(·,0)dx.

pT : first eigenfunction of (−d2x )s ⇒ p ∈ C([0, T];D((−d2x )s)) ↪→ C([0, T]× [−1, 1]).

By definition of weak∗ limit, letting k→ +∞, we obtain∫ T0

0

∫
ω
pd ũ = 〈ŷ(·, T0),pT〉 −

∫ 1

−1
y0p(·,0)dx → y(·, T0) = ŷ(·, T0) a.e. in(−1, 1).

Taking the limit as T0 → Tmin and using the fact that

|ũ|(ω × (Tmin, T0)) = |û|(ω × (Tmin, T0)) = 0, as T0 → Tmin

we deduce that z(·, Tmin) = ẑ(·, Tmin) a.e. in (−1, 1).
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Lower bounds for the minimal controllability time

What about lower bounds for the minimal controllability time Tmin?
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Lower bounds for the minimal controllability time

General approach for the case of the classical linear and semi-linear heat
equations.

D. Pighin and E. Zuazua, Controllability under positivity constraints of semilinear heat
equations, Math. Control. Relat. Fields, 2018

1. By a translation argument, we can consider the case zero initial datum. Then,
from the definition of transposition solutions we have

〈y(·, T),pT〉 −
∫ T

0

∫
ω
p(x, t)du(x, t) = 0.

2. The idea is now to find T0 > 0 and pT ∈ L2(−1, 1) such that the corresponding
solution of the adjoint system satisfies{

p ≥ 0, in ω × (0, T0),

〈 ŷ(·, T),pT〉 < 0, for all T ∈ [0, T0).
(10)

Then, an explicit lower bound of Tmin is obtained by analyzing sharply the con-
ditions required for (10) to hold.
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Lower bounds for the minimal controllability time

The choice of a suitable initial datum such that (10) holds is not obvious.

For linear and semi-linear heat equations with a boundary control, we can take

pT = −φ1 + 2(1− ζ)φ1 or pT = −αφ1 + βφ3,

where φ1 and φ3 are respectively the first and third eigenfunction of the Dirichlet
Laplacian,α and β are suitable positive constants, and ζ is a cut-off function supported
outside the control region.

With these choices, a lower estimate for Tmin is obtained by employing the positivity
of φ1 and the explicit knowledge of the eigenfunctions φ1 and φ3 .

These choices of pT are not appropriate for the fractional case for at least two main
reasons.

1. We cannot ensure that with such pT the solution of the adjoint equation remains
positive in ω.

2. For the eigenfunctions of the Dirichlet fractional Laplacian we do not have an
explicit expression. Therefore, to perform explicit estimates is very difficult.
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THE EXTERIOR CONTROLLABIL-
ITY PROBLEM



Exterior controllability of the fractional heat equation

Fractional heat equation with exterior control


yt + (−d2x )sy = 0 in (−1, 1)× (0, T)

y = gχω in (−1, 1)c × (0, T)

y(·,0) = y0 in (−1, 1)
(11)
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Controllability results - approximate controllability

Theorem

Let ω ⊂ Ωc be any nonempty and open subset of Ωc and s ∈ (0, 1). For any
T > 0, y0, yT ∈ L2(Ω) and ε > 0, there exists a control function g ∈ D(Ωc ×
(0, T)) such that the unique solution y of (11) satisfies ‖y(·, T)− yT‖L2(Ω) ≤ ε.

M.Warma, Approximate controllability from the exterior of space-time fractional diffusive
equations, SICON, 2019.

PROOF: direct consequence of the following unique continuation principle.

Let ω ⊂ Ωc be an arbitrary nonempty open set. Let λ > 0, and let φ ∈
D((−∆)s) satisfy {

(−∆)sφ = λφ, in Ω

Nsφ = 0, in Ωc

Then φ = 0 in RN .
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Controllability results - L2 null controllability

Theorem

Let ω ⊂ (−1, 1)c be any nonempty and open subset of (−1, 1)c . For any T > 0
and y0 ∈ L2(−1, 1), there exists a control function g ∈ L2(0,T;Hs((−1, 1)c))
such that the unique solution y of (11) satisfies y(·, T) = 0 a.e. in (−1, 1), if and
only if s ∈ (1/2, 1).

M. Warma and S. Zamorano, Null controllability from the exterior of a one-dimensional
nonlocal heat equation, Control Cybern., 2020.

PROOF: direct consequence of the following observability inequality

‖p(·,0)‖2L2(−1,1) ≤ C
∫ T

0

∫
ω
|Nsp|2 dxdt

that holds if and only if s ≥ 1/2 and can be proven in the same way as the interior
controllability case.
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Controllability results - L∞ null controllability

Theorem

Let ω ⊂ (−1, 1)c be any nonempty and open subset of (−1, 1)c . For any T > 0
and y0 ∈ L2(−1, 1), there exists a control function g ∈ L∞(ω × (0,T)) such
that the unique solution y of (11) satisfies y(·, T) = 0 a.e. in (−1, 1), if and only
if s ∈ (1/2, 1).

H. Antil, U. Biccari, R. Ponce, M. Warma and S. Zamorano, Controllability properties from
the exterior under positivity constraints for a 1-d fractional heat equation, 2020.

PROOF: direct consequence of the following observability inequality

‖p(·,0)‖2L2(−1,1) ≤ C
(∫ T

0

∫
ω
|Nsp|dxdt

)2

that holds if and only if s ≥ 1/2 and can be proven in the same way as the interior
controllability case.
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Constrained controllability

Theorem

Let s > 1/2, y0 ∈ L2(−1, 1) and let ŷ be a positive trajectory, i.e., a solution of (11) with
initial datum 0 < ŷ0 ∈ L2(−1, 1) and exterior datum ĝ ∈ L∞(ω× (0, T)). Assume that
there exists ν > 0 such that ĝ ≥ ν a.e in ω × (0, T). Then, the following assertions
hold.

1. There exist T > 0 and a non-negative control g ∈ L∞(ω× (0, T)) such that the
corresponding solution y of (11) satisfies y(x, T) = ŷ(x, T) a.e. in (−1, 1). Moreover,
if y0 ≥ 0, y(x, t) ≥ 0 a.e. in (−1, 1)× (0, T).

2. Define the minimal controllability time by

Tmin(y0, ŷ) := inf
{
T > 0 : ∃ 0 ≤ g ∈L∞(ω × (0, T)) s. t.

y(·,0) = y0 and y(·, T) = ŷ(·, T)
}
.

For T = Tmin , there exists a non-negative control g ∈ M(ω × (0, Tmin)), the
space of Radonmeasures onω× (0, Tmin), such that the corresponding solution
of (11) satisfies y(x, T) = ŷ(x, T) a.e. in (−1, 1).

H. Antil, U. Biccari, R. Ponce, M. Warma and S. Zamorano, Controllability properties from
the exterior under positivity constraints for a 1-d fractional heat equation, 2020.
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