
CONTROL AND OPTIMIZATION FOR NON-LOCAL
AND FRACTIONAL DIFFERENTIAL EQUATIONS

Umberto Biccari and Enrique Zuazua
Chair of Computational Mathematics, Bilbao, Basque Country, Spain

Chair for Dynamics, Control and Numerics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.

Universidad Autónoma de Madrid, Spain.

umberto.biccari@deusto.es enrique.zuazua@fau.de
cmc.deusto.es dcn.nat.fau.eu

PART IV: numerical approximation of differential equations and numeri-
cal control
LECTURE 11: numerical approximation of ODE and PDE

FINITE DIFFERENCE APPROXIMA-
TION OF DERIVATIVES

Approximation of derivatives: the finite difference ap-
proximation of derivatives

One of the simplest and of the oldestmethods to solve differential equations.

It was already known by Euler, in one space-dimension, and extended to
dimension two by Runge (ca. 1908).

The advent of finite difference techniques in numerical applications began
in the early 1950s and their development was stimulated by the emergence
of computers that offered a convenient framework for dealing with complex
problems of science and technology.

2/64

Finite difference approximation of derivatives

The principle of finite difference methods consists in approximating the
differential operator by replacing the derivatives in the equation using dif-
ferential quotients.

The domain is partitioned into a mesh (uniform or non-uniform) and approxi-
mations of the operator are computed at the mesh points.

The error between the numerical operator and the exact operator is called
the discretization error or truncation error.

The term truncation error reflects the fact that a finite part of a Taylor series
is used in the approximation.

3/64

Finite difference approximation

The main concept behind any finite difference scheme is related to the definition of
the derivative of a smooth function f at a point x ∈ R

f ′(x) = lim
h→0

1

h

(
f(x + h)− f(x)

)
.

When h tends to 0 (without vanishing), the quotient on the right-hand side provides a
good approximation of the derivative.

What does good approximationmean?

4/64

Approximation error

Approximation error

Error committed when replacing the derivative by the differential quotient.

If the function fu is sufficiently smooth in a neighborhood of x, it is possible
to quantify this error using a Taylor expansion.

For any h > 0, we have

f(x + h) = f(x) + f ′(x)h +O(h2).

We deduce that

Eh :=

∣∣∣∣ 1h(f(x + h)− f(x)
)
− f ′(x)

∣∣∣∣ ≤ Ch, with C = sup
y∈[x,x+h]

|u′′(y)|
2

The approximation error is of order h. The approximation of f ′ at point x is said to be
consistent at the first order.

This approximation is known as the forward difference approximant of f ′ .

∂+
h f(x) =

1

h

(
f(x + h)− f(x)

)
5/64

Approximation error

Order of approximation

The approximation of the derivative f ′ at point x is of order p > 0 if there
exists a constant C > 0, independent of h, such that the error between the
derivative and its approximation is bounded by Chp .

6/64

Approximation error

Backward difference

Similarly to the previous forward difference approximation of f ′, we can
define the backward difference approximation. For any h > 0, we have

f(x − h) = f(x)− f ′(x)h +O(h2).

Also in this case, we can quantify the error

Eh :=

∣∣∣∣ 1h(f(x − h)− f(x)
)
− f ′(x)

∣∣∣∣ ≤ Ch, with C = sup
y∈(x,x+h)

|f ′′(y)|
2

Hence, the backward finite difference

∂−h f(x) =
1

h

(
f(x)− f(x − h)

)
also approximates f ′ up to the order h.

7/64

Central difference

In order to improve the accuracy, we can consider the central difference approxi-
mation of f ′, by taking the points x − h and x + h into account.

Suppose that the function f is C3 in the vicinity of x. By subtracting the two expressions

f(x + h) = f(x) + f ′(x)h +
f ′′(x)

2
h2 +

f ′′′(ξ+)

6
h3, ξ+ ∈ (x, x + h)

f(x − h) = f(x)− f ′(x)h +
f ′′(x)

2
h2 −

f ′′′(ξ−)

6
h3, ξ+ ∈ (x − h, x)

we get

Central difference

∂hf(x) =
1

2h

(
f(x + h)− f(x − h)

)
= f ′(x) +

f ′′′(ξ)

3
h2, ξ ∈ (x − h, x + h).

Hence, we have the following bound on the approximation error:

Eh :=

∣∣∣∣ 12h(f(x + h)− f(x − h)
)
− f ′(x)

∣∣∣∣ ≤ Ch2, with C = sup
y∈(x−h,x+h)

|f ′′′(y)|
3

8/64

Approximation error

Remark

The order of the approximation is related to the regularity of the function f .

9/64

Example - forward finite difference for f(x) = sin(x)

f(x) = sin(x) f ′(x) = cos(x) ∂+
h =

1

h

(
f(x + h)− f(x)

)

10/64

Example - forward finite difference for f(x) = sin(x)

f(x) = sin(x) f ′(x) = cos(x) ∂+
h =

1

h

(
f(x + h)− f(x)

)

h Eh
1.2566 0.5981
0.6283 0.3090
0.3142 0.1558
0.1257 0.0628
0.0628 0.0314

11 /64

Example - central finite difference for f(x) = sin(x)

f(x) = sin(x) f ′(x) = cos(x) ∂h =
1

2h

(
f(x + h)− f(x − h)

)

12 /64

Example - central finite difference for f(x) = sin(x)

f(x) = sin(x) f ′(x) = cos(x) ∂h =
1

2h

(
f(x + h)− f(x − h)

)

h2 Eh
1.0966 0.5865
0.3263 0.2827
0.0895 0.0746
0.0152 0.0123
0.0039 0.0031

13 /64

Approximation of the second-order derivative

Secon-order finite difference

∂2h f(x) :=
1

h2

(
f(x + h)− 2f(x) + f(x − h)

)

Suppose that the function f is C4 in the vicinity of x. By subtracting the two expressions

f(x + h) = f(x) + f ′(x)h +
f ′′(x)

2
h2 +

f ′′′(x)

6
h3 +

f (4)(ξ+)

24
h4, ξ+ ∈ (x, x + h)

f(x − h) = f(x)− f ′(x)h +
f ′′(x)

2
h2 −

f ′′′(x)

6
h3 +

f (4)(ξ−)

24
h4, ξ+ ∈ (x − h, x)

we get

1

h2

(
f(x + h)− 2f(x) + f(x − h)

)
= f ′′(x) +

f (4)(ξ)

12
h2, ξ ∈ (x − h, x + h).

Hence, we have the following bound on the approximation error:

Eh :=

∣∣∣∣ 1h2 (f(x + h)− 2f(x) + f(x − h)
)
− f ′′(x)

∣∣∣∣ ≤ Ch2, with C = sup
y∈(x−h,x+h)

|f (4)(y)|
12

14 /64

Example - second-order FD for f(x) = sin(x)

f(x) = sin(x) f ′′(x) = − sin(x) ∂2h =
1

h2

(
f(x + h)− 2f(x) + f(x − h)

)

15 /64

Example - second-order FD for f(x) = sin(x)

f(x) = sin(x) f ′′(x) = − sin(x) ∂2h =
1

h2

(
f(x + h)− 2f(x) + f(x − h)

)

h2 Eh
1.0966 0.4053
0.3263 0.0394
0.0895 0.0090
0.0152 0.0014
0.0039 0.0003

16/64

NUMERICAL RESOLUTION OF
ODE

Numerical resolution of ODE

First order autonomous ODE{
y′(t) = f(y(t)), t ∈ (0, T)

y(0) = y0 ∈ R
(1)

Theorem

Let f : R→ R be a continuous function. Then for any initial value y0 ∈ R, the
ODE (1) admits a local solution y : X → R, where D is a neighborhood of x : 0
in R. Moreover, if f is Lipschitz continuous, then the solution is unique.

18 /64

Numerical resolution of ODE

What about the numerical resolution of (1)?

DIFFERENT APPROXIMATION METHODS:

• Forward (explicit) Euler approximation.

• Backward (implicit) Euler approximation.

• Runge-Kutta approximation.

19/64

Forward Euler method

Define a mesh {tk}Nk=0 on the interval (0, T) such that

0 = t0 < t1 < . . . < tk < tk+1 < . . . < tN = T

and denote yk := y(tk) for all k ∈ {0, . . . ,N}.

Forward Euler method

y0 = y0

yk+1 = yk + (tk+1 − tk)f(yk), for all k ∈ {0, . . . ,N− 1}

The method is explicit because to compute yk+1 I only need information about yk .

20/64

Backward Euler method

Define a mesh {tk}Nk=0 on the interval (0, T) such that

0 = t0 < t1 < . . . < tk < tk+1 < . . . < tN = T

and denote yk := y(tk) for all k ∈ {0, . . . ,N}.

Backward Euler method

y0 = y0

yk+1 = yk + (tk+1 − tk)f(yk+1), for all k ∈ {0, . . . ,N− 1}

The method is implicit because to compute yk+1 I need information about yk+1 itself.

21 /64

Stability analysis

Two concepts of stability:

• Small perturbations in the initial datum produce small perturbations in the
corresponding solution (also known as continuous dependence on the initial
datum)

y0 7→ y0 + δ ⇒ |y − yδ| < ε.

• The solution decays to zero as t→ +∞ (requires the global existence of
solutions)

lim
t→+∞

y(t) = 0.

Test problem

{
y′(t) = λy(t) t ∈ (0, T), λ ∈ R
y(0) = y0

(2)

SOLUTION: y(t) = y0eλt .

• If λ < 0, then the solution is stable.
• If λ > 0, then the solution is unstable.

Wewant this to be preserved by the numerical scheme
22/64

Stability analysis - forward Euler

Consider for simplicity a uniform partition {tk}Nk=0, i.e. tk+1 − tk = h for all k ∈
{0, . . . ,N− 1}.

Assume λ < 0 and approximate (2) by the forward Euler method.

y0 = y0

yk+1 = yk + hf(yk) = yk + hλyk = (1 + hλ)yk ⇒ yk = (1 + hλ)ky0.

In order to ensure stability, we then need that |1 + hλ| < 1. For real λ < 0 this is
equivalent to

−2 < hλ < 0 ⇒ h < −
2

λ
.

Conditional stability

The forward Euler method is conditionally stable, i.e., the step size has to
be chosen sufficiently small to ensure stability.

23/64

Stability analysis - backward Euler

Consider for simplicity a uniform partition {tk}Nk=0, i.e. tk+1 − tk = h for all k ∈
{0, . . . ,N− 1}.

Assume λ < 0 and approximate (2) by the backward Euler method.

y0 = y0

yk+1 = yk + hλyk+1 ⇒ yk+1 =
1

1− hλ
yk ⇒ yk =

(
1

1− hλ

)k

y0.

In order to ensure stability, we then need that |1− hλ|−1 < 1 ⇒ |1− hλ| > 1. For real
λ < 0 this is equivalent to

hλ < 0 or hλ > 2.

Conditional stability

Since λ < 0 and h > 0, we always have hλ < 0.

The forward Euler method is unconditionally stable, i.e. it is stable nomatter
the selection of the step size.

24/64

Numerical example - forward Euler

Consider (2) with y0 = 0.5, T = 0.5 and λ = −200. We approximate the solution
with the forward Euler method on two meshes of size

• h1 = 2 · 10−2 > − 2
λ

• h2 = 10−3 < − 2
λ

On the coarser mesh, the method is unstable and fails in approximating the
real solution of the ODE.

25/64

Numerical example - backward Euler

Consider (2) with y0 = 0.5, T = 0.5 and λ = −200. We approximate the solution
with the backward Euler method on two meshes of size

• h1 = 2 · 10−2 > − 2
λ

• h2 = 10−3 < − 2
λ

On both meshes, the method is stable and correctly approximates the real
solution of the ODE.

26/64

NUMERICAL RESOLUTION OF
PDE: THE FINITE DIFFERENCE
METHOD

The Poisson equation

{
−u′′(x) + u(x) = f(x), x ∈ (a,b)

u(a) = α ∈ R, u(b) = β ∈ R
(3)

Theorem (Schauder)

If f ∈ Cm([a,b]) for m ≥ 0, there exists a unique strong solution u ∈
Cm+2(a,b) of (3).

H. Brezis, Functional analysis, Sobolev spaces and Partial Differential Equations, Springer, 2010.

28/64

Finite difference approximation

Uniform mesh of the space domain (a,b): {xj}N+1
j=0

• N ∈ N.
• xj = a + jh

• h = (b− a)/(N + 1)

• u(x0) = α and u(xN+1) = β.

• uj := u(xj) for j ∈ {0, . . . ,N + 1}.
• u = (u1, . . . , uN) ∈ RN unknown vector.

Finite difference approximation

−
1

h2

(
uj−1 − 2uj + uj+1

)
+ uj = f(xj), j ∈ {1, . . . ,N}

u0 = α, uN+1 = β
(4)

29/64

Finite difference approximation - matrix form

Matrix form

Problem (4) can be written in matrix form

(Ah + I︸ ︷︷ ︸
AFD

)u = f

Ah =
1

h2

−2 1 0 · · · · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 0 0
...

. . .
. . .

. . .
...

0 · · · 0 1 −2 1
0 · · · · · · 0 1 −2

f =

f(x1)− α

h2
f(x2)
...

f(xN)− β

h2

30/64

Existence and uniqueness of solutions

Proposition

The matrix AFD ∈ RN×N is invertible, since it is a Toeplitz matrix.

Since AFD is invertible, we have u = A−1FD f.

31 /64

Example

{
−u′′(x) + u(x) = (1 + 4π2) sin(2πx) + (1 + 4x2)ex

2
+ e, x ∈ (−1, 1)

u(−1) = u(1) = 0

SOLUTION: u(x) = sin(2πx)− ex
2

+ e.

32/64

Two-dimensional problems

{
−∆u(x) + u(x) = f(x), x ∈ Ω

u = 0 x ∈ ∂Ω
(5)

The finite difference method allows approximating the solution of (5) in simple ge-
ometries for the domain Ω (for instance, Ω = [a,b]2).

33/64

Finite difference approximation

Uniform mesh of the space domain [a1,a2]× [b1,b2]: {(xj, yj)}N+1
j=0

• N ∈ N.

• xj = yj = a + jh

• h = (b− a)/(N + 1)

• uj := u(xj, yj) for j ∈ {0, . . . ,N + 1}.

• uj = (ui, j)Ni=1 ∈ RN for all j ∈ {1, . . . ,N}.

• U = (uj)Nj=1 ∈ RN2
.

Finite difference approximation

−
ui−1, j + ui+1, j − 4ui, j + ui, j−1 + ui, j+1

h2
+ ui, j = f(xi, yj), (i, j) ∈ {1, . . . ,N}2

ui,0 = ui,N+1 = 0 i ∈ 0, . . . ,N + 1
u0, j = uN+1, j = 0, j ∈ 0, . . . ,N + 1

34/64

Finite difference approximation

Two-dimensional uniform mesh on a domain Ω = [a1,a2]× [b1,b2]

35/64

Finite difference approximation - matrix form

Matrix form

(Ah + I︸ ︷︷ ︸
AFD

)U = F

Ah =
1

h2

P I 0 · · · · · · 0
I P I 0 · · · 0
0 I P I 0 0
...

. . .
. . .

...
0 · · · 0 I P I
0 · · · · · · 0 I P

F =

f1
f2
...
fN

P =

−4 1 0 · · · · · · 0
1 −4 1 0 · · · 0
0 1 −4 1 0 0
...

. . .
. . .

...
0 · · · 0 1 −4 1
0 · · · · · · 0 1 −4

36/64

Example

−∆u(x, y) + u(x, y) = (1− x2)(1− y2) + 2(2− x2 − y2), x ∈ (−1, 1)2

u(x,−1) = u(x, 1) = 0 x ∈ (−1, 1)
u(−1, y) = u(1, y) = 0 y ∈ (−1, 1)

SOLUTION: u(x, y) = (1− x2)(1− y2).

37/64

NUMERICAL RESOLUTION OF
PDE: THE FINITE ELEMENT
METHOD

The Poisson equation

{
−∆u(x) + u(x) = f(x), x ∈ Ω

u = 0 x ∈ ∂Ω
(6)

Theorem

If Ω ∈ C1 and f ∈ H−1(Ω), there exists a unique weak solution u ∈ H1
0(Ω) of

(6), characterized through the variational formulation∫
Ω
∇u(x) · ∇v(x)dx +

∫
Ω
u(x)v(x)dx︸ ︷︷ ︸

bilinear form a(u,v)

=

∫
Ω
f(x)v(x)dx︸ ︷︷ ︸

linear functional F(v)

, for all v ∈ H1
0(Ω).

(7)

39/64

The finite element method

The finite element (FE) method consists in approximating the variational
formulation (7) characterizing the weak solution of (6).

INGREDIENTS:

• A meshMh on the domain Ω composed by N ∈ N∗ elements.

• A finite-dimensional space Vh with dim(Vh) = N approximating H1
0(Ω).

• A basis (φi)
N
i=1 for Vh .

40/64

The mesh

LetM = {Ti}Ni=1 be a partition of the domain Ω (i.e. Ω =
⋃N

i=1 Ti)

• In dimension N = 1, we consider a uniform partition of Ω = (a,b)

a = x0 < x1 < . . . < xi < xi+1 < . . . < xN+1 = b,

with xi+1 = xi + h, i = 0, . . .N , and we denote Ti := [xi, xi+1]. Moreover, we
indicate with ∂M = {x0, xN+1} the boundary nodes.

41 /64

The mesh

LetM = {Ti}Ni=1 be a partition of the domain Ω (i.e. Ω =
⋃N

i=1 Ti)

• In dimension N = 2, we consider triangular elements Ti , i = 1, . . . ,N . We
indicate with hi the diameter of the element Ti and with ρi its inner radius, i.e.
the diameter of the largest ball contained in Ti . We define

h = max
i∈{1,...,N}

hi.

Moreover, we require that the triangulation satisfies the regularity and local
uniformity conditions:

there exists σ > 0 s.t. hi ≤ σρi for all i = 1, . . . ,N ,
there exists κ > 0 s.t. hi ≤ κhj for all i, j = 1, . . . ,N , Ti ∩ Tj = ∅.

42/64

The finite dimensional space

Vh :=
{
v ∈ H1

0(Ω) : v |Ti ∈ P
r
}
,

where Pr denotes the space of polynomial of degree r.

• r is usually known as the degree of the FE approximation.

• The order of convergence of the FE method is determined by r and the
regularity of the solution to the continuous problem.

r u ∈ H1(a,b) u ∈ H2(a,b) u ∈ H3(a,b) u ∈ H4(a,b) u ∈ H5(a,b)
1 converges h h h h
2 converges h h2 h2 h2

3 converges h h2 h3 h3

4 converges h h2 h3 h4

43/64

The basis functions - p = 1

• Dimension N = 1: P1 =
{
φ(x) = a + bx, with a,b ∈ R

}
.

• Dimension N = 2: P1 =
{
φ(x, y) = a + bx + cy, with a,b, c ∈ R

}
.

The typical choice for basis functions {φi}Ni=1 has to fulfill φi(xj) = δi,j , for all
i, j ∈ {1, . . . ,N}.

44/64

The method

STEP 1: by decomposing

u(x) =
N∑
j=1

ujφj(x), f(x) =
N∑
j=1

fjφj(x), fj =

∫
Ω
f(x)φj(x)dx

and taking v = φi , from (7) we obtain the linear system Ahu = Mhf, where

• u = (u1, . . . , uN) ∈ RN is an unknown vector.

• f = (f1, . . . , fN) ∈ RN .
• The stiffnessmatrix Ah ∈ RN×N has components

ai,j =

∫
Ω
∇φi(x) · ∇φj(x)dx, for all i, j ∈ {1, . . . ,N}. (8)

• Themassmatrix Mh ∈ RN×N has components

mi,j =

∫
Ω
φi(x)φj(x)dx, for all i, j ∈ {1, . . . ,N}. (9)

STEP 2: the unknown vector u is obtained by solving u = A−1h Mhf.

STEP 3: once the vector u is known, the solution of the Poisson equation is approxi-
mated by

u(x) =
N∑
j=1

ujφj(x).

45/64

The method

Remark

By construction, the basis functions {φi}Ni=1 are such that supp(φi) ∩
supp(φj) 6= ∅ if and only if j ∈ {i − 1, i, i + 1}. Consequently, the stiffness and
mass matrices are both tri-diagonal.

SPECIAL CASE: space dimension N = 1. We can compute explicitly

Ah =
1

h

−2 1 0 · · · · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 0 0
...

. . .
. . .

. . .
...

0 · · · 0 1 −2 1
0 · · · · · · 0 1 −2

Mh = h

2/3 1/6 0 · · · · · · 0
1/6 2/3 1/6 0 · · · 0
0 1/6 2/3 1/6 0 0
...

. . .
. . .

. . .
...

0 · · · 0 1/6 2/3 1/6
0 · · · · · · 0 1/6 2/3

46/64

Finite Element VS Finite Difference

ADVANTAGES OF FINITE ELEMENTW.R.T. FINITE DIFFERENCE:

• Working with the variational formulation, FE allows to approximate weak
solution and do not requires high regularity to converge.

• FE is applicable to complex problems with complex geometries.

ADVANTAGES OF FINITE ELEMENTW.R.T. FINITE DIFFERENCE:

• In simple geometries (namely, rectangles), FD is typically easier to implement
than FE.

Due to the success that FE methods have had since their introduction, many
computational tools for the FE approximation of PDE have been developed
and perfected in the last decades.

• PDE toolbox of Matlab.

• Fenics.

• Free Fem.

47/64

Free FEM

−∆u(x, y) + u(x, y) = (1− x2)(1− y2) + 2(2− x2 − y2), x ∈ (−1, 1)2

u(x,−1) = u(x, 1) = 0 x ∈ (−1, 1)
u(−1, y) = u(1, y) = 0 y ∈ (−1, 1)

SOLUTION: u(x, y) = (1− x2)(1− y2).

48/64

Free FEM code

include "ffmatlib.idp" // Library connecting
// FreeFEM to Matlab

// Mesh
real x0 = -1, x1 = 1, y0 = -1, y1 = 1; // Vertices of the square
int M = 30; // Number of partition points

//for each edge
mesh Th = square(M,M,[x0+(x1-x0)*x,y0+(y1-y0)*y]);

fespace Vh(Th, P1); // The FE space defined over Th
Vh u, v;

func f= (1-x^2)*(1-y^2) + 2*(2-x^2-y^2); // Right-hand side function

// Define and solve the PDE
solve Poisson(u,v) = int2d(Th)(dx(u)*dx(v) + dy(u)*dy(v) + u*v) // Bilinear form

- int2d(Th)(f*v) // Right-hand side
+ on(1,2,3,4,u=0); // Boundary condition

// Save
Vh Ex, Ey;
Ex = -dx(u);
Ey = -dy(u);
savemesh(Th, "Th_circle_mesh.msh");
ffSaveVh(Th,Vh,"Poisson_vh.txt");
ffSaveData3(u,Ex,Ey,"solutionPoisson.txt");

49/64

Free FEM code

In Free FEM, we can easily change the geometry of our domain

// Mesh
real a = 2; //The length of the semimajor axis
real b = 1; //The length of the semiminor axis
border Gamma(t=0., 2*pi){x=a*cos(t); y=b*sin(t);}
mesh Th = buildmesh(Gamma(100));
...
// Define and solve the PDE
solve Poisson(u,v) = int2d(Th)(dx(u)*dx(v) + dy(u)*dy(v) + u*v) // Bilinear form

- int2d(Th)(f*v) // Right-hand side
+ on(Gamma,u=0); // Boundary condition

50/64

Free FEM

In Free FEM, we can easily change the geometry of our domain

POISSON EQUATION ON A DELTOID:

{
x = 2 cos(t) + cos(2t)
y = 2 sin(t)− sin(2t)

51 /64

Free FEM

In Free FEM, we can easily change the geometry of our domain

POISSON EQUATION ON A NEFROID:

{
x = 3 cos(t)− cos(3t)
y = 4 sin3(t)

52/64

Free FEM

In Free FEM, we can easily solve complex problems

Free FEM webpage: freefem.org

Large collection of tutorials for solving different types of PDE including

• Poisson equation with non-Dirichlet boundary conditions on any type of domain.

• System of elasticity.

• Stokes equations for fluids.

• Maxwell’s equations.

• p-Laplace equation.

53/64

TIME-DEPENDENT PDE

Time-dependent PDE

ut(x, t)− Au(x, t) = f(x, t) (x, t) ∈ Ω× (0, T)

u(x, t) = 0 (x, t) ∈ ∂Ω× (0, T)

u(x,0) = u0(x) x ∈ Ω

55/64

Time-dependent PDE

To approximate numerically a time-dependent PDE we shall proceed in two steps.

STEP 1: discretize in space - Finite Difference

{
ut(t)− Ahu(t) = f(t), t ∈ (0, T)
u(0) = u0

u(t) =
(
ui(t)

)N
i=1

ui(t) = u(xi, t)

u0 =
(
u0,i
)N
i=1

u0,i = u0(xi)

f(t) =
(
fi(t)
)N
i=1

fi(t) = f(xi, t)

STEP 2: discretize in time

FORWARD EULER:

{
1

∆t

(
u j+1 − u j

)
− Ahu

j = f j

u0 = u0

u j =
((

u j
i

)N
i=1

)M
j=1

u j
i = u(xi, tj)

u0 =
(
u0,i
)N
i=1

u0,i = u0(xi)

f j =
((

f ji
)N
i=1

)M
j=1

f ji = f(xi, tj)

BACKWARD EULER:

{
1

∆t

(
u j+1 − u j

)
− Ahu

j+1 = f j+1

u0 = u0

u j =
((

u j
i

)N
i=1

)M
j=1

u j
i = u(xi, tj)

u0 =
(
u0,i
)N
i=1

u0,i = u0(xi)

f j =
((

f ji
)N
i=1

)M
j=1

f ji = f(xi, tj)

56/64

Time-dependent PDE

To approximate numerically a time-dependent PDE we shall proceed in two steps.

STEP 1: discretize in space - Finite Element

{
Mhut(t)− Ahu(t) = Mhf(t), t ∈ (0, T)
u(0) = u0

u(t) =
(
ui(t)

)N
i=1

ui(t) = u(xi, t)

u0 =
(
u0,i
)N
i=1

u0,i = u0(xi)

f(t) =
(
fi(t)
)N
i=1

fi(t) = f(xi, t)

STEP 2: discretize in time

FORWARD EULER:

{
1

∆tMh

(
u j+1 − u j

)
− Ahu

j = Mhf
j

u0 = u0

u j =
((

u j
i

)N
i=1

)M
j=1

u j
i = u(xi, tj)

u0 =
(
u0,i
)N
i=1

u0,i = u0(xi)

f j =
((

f ji
)N
i=1

)M
j=1

f ji = f(xi, tj)

BACKWARD EULER:

{
1

∆tMh

(
u j+1 − u j

)
− Ahu

j+1 = Mhf
j+1

u0 = u0

u j =
((

u j
i

)N
i=1

)M
j=1

u j
i = u(xi, tj)

u0 =
(
u0,i
)N
i=1

u0,i = u0(xi)

f j =
((

f ji
)N
i=1

)M
j=1

f ji = f(xi, tj)

57/64

Matrix form

FINITE DIFFERENCE + FORWARD EULER: u j+1 =
(
I + ∆tAh

)
u j + ∆tf j

FINITE DIFFERENCE + BACKWARD EULER: u j+1 =
(
I−∆tAh

)−1(
u j + ∆tf j

)
FINITE ELEMENT + FORWARD EULER: u j+1 =

(
I + ∆tM

−1
h Ah

)
u j + ∆tf j

FINITE ELEMENT + BACKWARD EULER: u j+1 =
(
I−∆tM

−1
h Ah

)−1(
u j + ∆tf j

)

WARNING

Depending on the numerical scheme we select for the time discretization,
we have to pay attention to the choice of the time-step ∆t .

58/64

The CFL condition

ut(x, t)− uxx(x, t) = 0 (x, t) ∈ (−1, 1)× (0, T)

u(0, t) = u(1, t) = 0 t ∈ (0, T)

u(x,0) = u0(x) x ∈ (0, 1)

FINITE DIFFERENCE APPROXIMATION OF −∆: Ah = 1
(∆x)2

tridiag
(
1,−2, 1

)
FORWARD EULER METHOD: it is conditionally stable, meaning that we need a small
enough time-step to correctly approximate the solution of the equation. In the case
of the heat equation, we need

Courant-Friedrichs-Lewy (CFL) condition

∆t = µ(∆x)2, µ ∈ (0, 1)

BACKWARD EULER METHOD: it is unconditionally stable, meaning that no matter
the time-step we can always approximate the solution of the equation.

59/64

Numerical examples - FD + backward Euler

Finite Difference for the space discretization
Backward Euler for the time discretization

60/64

Numerical examples - FD + forward Euler

Finite Difference for the space discretization
Forward Euler for the time discretization

61/64

REFERENCES

References

• S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods,
Springer, 2008.

• P. Ciarlet and J. L. Lions, Handbook of Numerical Analysis - Finite Difference
Methods, Elsevier, 1990.

• E. Isaacson and H. B. Keller, Analysis of numerical methods, Courier Corporation,
2012.

• A. Quarteroni and A. Valli, Numerical approximation of partial differential equa-
tions, Springer, 2008.

63/64

THANK YOU FOR YOUR ATTENTION!

Funding

• European Research Council (ERC): grant agreements NO: 694126-DyCon and
No.765579-ConFlex.

• MINECO (Spain): Grant PID2020-112617GB-C22 KILEARN

• Alexander von Humboldt-Professorship program

• DFG (Germany): Transregio 154 Project ‘‘Mathematical Modelling,Simulation
and Optimization Using the Example of Gas Networks’’

• COST Action grant CA18232, ‘‘Mathematical models for interacting dynamics
on networks’’.

64 /64

	Finite difference approximation of derivatives
	Numerical resolution of ODE
	Numerical resolution of PDE: the finite difference method
	Numerical resolution of PDE: the finite element method
	Time-dependent PDE
	References

