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PART IV: numerical approximation of differential equations and numeri-
cal control
LECTURE 12: numerical control of PDE



THE GRADIENT DESCENT
METHOD



Numerical approximation of controls for PDE

Wehave seen that the controllability of a PDE is equivalent to theminimization
of a convex functional

F(u) =
1

2

∫ T

0
|Bu|2 dt +

1

2
|x(T)|2 direct functional

F : L2(0, T;U)→ R

J(pT) =
1

2

∫ T

0
|B∗p|2 dt + 〈x0,p(0)〉 adjoint functional

J : H→ R

We then look for efficient computational algorithms to find the minimizer of J and,
from it, the control for our equation.
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The gradient descent method

Consider a functional J : X → R fulfilling two main assumptions

|∇J(u)−∇J(v)| ≤ L|u− v| Lipschitz gradient

〈∇J(u)−∇J(v), u− v〉 ≥ α|u− v|2 α-convexity

Gradient descent scheme

uk+1 = uk − ρ∇J(uk)

Under the above assumptions, we have that, taking 0 < ρ < 2/(α+ L), the iterative
method converges to the minimizer u∗ of J

|uk − u∗| ≤
(
1−

2ραL
α+ L

) k
2
|u0 − u∗|.

If ρ = 2/(α+ L), then

|uk − u∗| ≤
(
σ − 1

σ + 1

) k
2
|u0 − u∗|,

where σ = α−1L is the conditioning number of the problem.
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The gradient descent method

We see that the convergence of the scheme is influenced by three factors.

• The step-size ρ, that shall be taken small enough. We stress that ρ does not need to be
taken convex, but it can be ρ = ρk , i.e. changing at each iteration.

• The distance |u0 − u∗| of the initialization u0 from the minimizer u∗ .
• The conditioning of the problem, through the constant

CGD :=
σ − 1

σ + 1

Remark

Notice that limσ→+∞ CGD = 1, meaning that the convergence of the algorithm deteri-
orates for badly-conditioned problems.

ILLUSTRATIVE EXAMPLE:

min
x∈R

(
1

2
x>Qτ x − b>x

)

Qτ =

 1 0 0
0 τ 0
0 0 τ2

 b = −

1
1
1


σ =

λmax

λmin
= τ

2

τ iterations ρ
2 27 4
5 161 25
10 633 100
20 2511 400
50 15619 2500

Meza, Steepest descent, 2010
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Computation of the gradient

How can we compute the gradient of the functional?

CASE 1: computation of∇F

STEP 1: we first measure the rate of change of F in any direction ζ ∈ L2(0,T;U) by
calculating the directional derivative as follows:

DζF(u) =
d

dε
F(u + εζ)

∣∣∣
ε=0

=

∫ T

0
〈u, ζ〉U dt + 〈x(T), z(T)〉H, (1)

where z ∈ L2(0, T;H) is the solution of the following equation{
z′(t) = Az(t) + Bζ, 0 < t < T,
z(0) = 0.

(2)

STEP 2: let p ∈ L2(0, T;H) be the solution of the adjoint problem{
p′(t) = −A∗p(t), 0 < t < T,
p(T) = −x(T).

(3)

Multiplying (2) by pν and integrating by parts we obtain

〈x(T), z(T)〉H = −
∫ T

0
〈ζ,B∗p〉U dt.
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Computation of the gradient

How can we compute the gradient of the functional?

CASE 1: computation of∇F

STEP 3: replacing this last expression in (1), we obtain that, for any ζ ∈ L2(0, T;U),

DζFν(u) =

∫ T

0

〈
u− B∗p, ζ

〉
U
dt.

the gradient of the functional F is then given by the expression∇F(u) = u−B∗p. Consequently,
the GD scheme to minimize F becomes

uk+1 = uk − ρ
(
uk − B∗pk

)
.

Applying the GD scheme for minimizing the functional F(u) requires to solve at each
iteration the coupled system

x′(t) = Ax(t) + Bu(t), 0 < t < T,
p′(t) = −A∗p(t), 0 < t < T,
x(0) = x0, p(T) = −x(T)
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Computation of the gradient

How can we compute the gradient of the functional?

CASE 2: computation of∇J

With a similar procedure as the one to obtain∇F, we can show that

∇J(pT) = x(T),

with 
x′(t) = Ax(t) + BB∗p(t), 0 < t < T,
p′(t) = −A∗p(t), 0 < t < T,
x(0) = x0, p(T) = pT

Consequently, the GD scheme to minimize J becomes

pT,k+1 = pT,k − ρxk(T).
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The conjugate gradient method

The conjugate gradient method is an efficient algorithm to solve linear systems,
that can also be applied in optimization.

CASE 1: direct functional F

STEP 1: recall the gradient of F: ∇F(u) = u− B∗p with (x,p) solution of the coupled
system 

x′(t)Ax(t) + Bu(t), 0 < t < T
p′(t) = −A∗p(t), 0 < t < T
x(0) = x0, p(T) = −x(T) =: pT

Moreover, notice that x(t) = etAx0 + z(t), with{
z′(t) = Az(t) + Bu(t), 0 < t < T,
z(0) = 0.

(4)
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The conjugate gradient method

CASE 1: direct functional F

STEP 2: we can readily check that∇F can be rewritten in the form

∇F(u) = (I + L∗TLT)︸ ︷︷ ︸
A

u + L∗T(eTAx0)︸ ︷︷ ︸
−b

, (5)

where the operators LT and L∗T are defined as

LT : L2(0, T;U) −→ H
u 7−→ z(T)

and L∗T : H −→ L2(0, T;U)
pT 7−→ B∗p,

Since the minimizer u∗ of F has to satisfy∇F(u∗) = 0, we see from (5) that
computing u∗ is equivalent to solve the linear system

Au = b. (6)

9/20



The conjugate gradient method

The CG methodology amounts to solve (6) through the following iterative procedure.

CG algorithm

input d 0 = r 0 = b− Au 0

for k ≥ 1 do

αk =
(r k)>r k

(d k)>Ad k

xk+1 = xk + αkd k

r k+1 = r k − αkd k

γk+1 =
(r k+1)>r k+1

(r k)>r k

d k+1 = r k+1 + γk+1d k

end for

About convergence, we know that

|uk − u∗| ≤ 2
(√

σ − 1
√
σ + 1

)k

|u0 − u∗|.

Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003.
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The conjugate gradient method

CASE 2: adjoint functional F

With a similar procedure as for F, we can readily check that∇J can be rewritten in
the form

∇J(pT) = LTL∗T︸ ︷︷ ︸
A

pT + eTAx0︸ ︷︷ ︸
−b

. (7)

Since the minimizer p∗T of F has to satisfy∇J(p∗T) = 0, we see from (7) that
computing p∗T is equivalent to solve the linear system

ApT = b.
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NUMERICAL APPROXIMATION OF
CONTROLS



The penalized Hilbert uniqueness method

The penalized Hilbert Uniqueness Method is a largely employed methodology to
compute the controls for a general dynamical system{

ẏ(t) + Ay(t) = Bu(t), t ∈ (0, T)

y(0) = y0

F. Boyer, On the penalised HUM approach and its applications to the numerical approximation of
null-controls for parabolic problems, ESAIM: Proc., 2013.

R. Glowinski and J.-L. Lions, Exact and approximate controllability for distributed parameter sys-
tems, Acta Num., 1994.

R. Glowinski, J.-L. Lions and J. He, Exact and approximate controllability for distributed parameter
systems: a numerical approach, Cambridge University Press, 2008.
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The penalized Hilbert uniqueness method

Let H be a Hilbert space and A : D(A) ⊂ H→ H be an unbounded operator such that
−A generates an analytic semi-group.

Let U be another Hilbert space and B : U→ D(A)∗ be a bounded operator.

Let T > 0 be given and, for any y0 ∈ H and u ∈ L2(0, T;U), let us consider the Cauchy
problem

yt + Ay = Bu in (0, T), y(0) = y0. (8)

The penalized HUM approach consists in finding the control of minimal L2(0,T;U)
norm for (8) by means of the following optimization problem:

uβ = argmin
u∈L2(0,T;U)

Fβ(u)

Fβ(u) :=
1

2

∫ T

0
‖u(t)‖2U dt +

1

2β
‖y(T)‖2H .

(9)

Remark

Recall that, if (8) is controllable (either null, exactly or approximately), then
for any β > 0, the functional Fβ is strictly convex, continuous and coercive.
Hence, it has a unique minimizer uβ ∈ L2(0, T;U).
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The penalized Hilbert uniqueness method

Theorem

The following controllability properties hold.

1. Problem (8) is approximately controllable at time T > 0 from y0 ∈ H if
and only if

∥∥yβ(T)
∥∥
H → 0 as β → 0, where yβ denotes the solution

corresponding to uβ .

2. Problem (8) is null-controllable at time T > 0 from y0 ∈ H if and only if

Ey0 := 2 sup
β>0

(
inf

u∈L2(0,T;U)
Fβ(u)

)
< +∞. (10)

In this case, we have ∥∥uβ∥∥L2(0,T;U)
≤
√
Ey0 (11a)∥∥yβ(T)

∥∥
H ≤

√
Ey0β. (11b)

Moreover, as β → 0, uβ → ū strongly in L2(0, T;U), ū being the
optimal control obtained from the functional (9) without the second
penalization term.
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The penalized Hilbert uniqueness method

According to the previous theorem, there is then an essential difference
between approximate and null controllability in this penalization context.

In both cases, the solution at time T of (8) corresponding to uβ converges to zero in
H as β → 0.

Nevertheless, for null-controllability, this convergence has a precise rate
√
β which

is typically violated when only approximate controllability holds.

Furthermore, when the problem is null controllable, we also have that the control
cost

∥∥uβ∥∥L2(0,T;U)
remains uniformly bounded which, together with (11b), yields the

convergence of uβ to the solution ū of the non-penalized problem.
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The Fenchel-Rockafellar duality

One of the funding pillars of optimal control theory is that a convex optimiza-
tion problem can be solved by applying duality in the sense of Fenchel and
Rockafellar.

I. Ekeland and R. Temam, Convex analysis and variational problems, SIAM, 1999.

STEP 1: since the problem (8) is linear, we can write its solution as y = e−tAy0 + z,
with {

z′ + Az = Bu in (0, T)

z(0) = 0
(12)

STEP 2: letLT : L2(0, T;U)→ H be the linear continuous operator defined asLT(u) =
z(T). Then, the adjoint operator L?T : H→ L2(0, T;U) is given by L?T(pT) = B∗pwhere,
for all pT ∈ H, p solves {

−p′ + A∗p = 0 in (0, T),

p(T) = pT
(13)

17 /20



The Fenchel-Rockafellar duality

STEP 3: with the notation introduced, we have Fβ(u) = F̂(u) + Gβ(LTu), where

F̂(u) :=
1

2

∫ T

0
‖u(t)‖2U dt and Gβ(LTu) :=

1

2β

∥∥∥LTu + e−TAy0
∥∥∥2
H
.

Since both F̂ and Gβ are convex functionals, Fenchel-Rockafellar theory yields that

uβ = B∗pβ , (14)

with pβ solution of (13) corresponding to the initial datum

pT,β = argmin
pT∈H

J(pT),

and J(pT) := F̂?(L?TpT) + G?β(−pT), F̂? and G?β being the convex conjugates

F̂?(u) = sup
v∈L2(0,T;U)

{
〈u, v〉L2(0,T;U) − F̂(v)

}
, u ∈ L2(0, T;U)

G?β(−pT) = sup
qT∈H

{
− 〈pT ,qT〉H − Gβ(qT)

}
, qT ∈ H.

(15)
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The Fenchel-Rockafellar duality

STEP 4: it can be readily checked using (15) that

F̂?(L?TpT) =
1

2

∫ T

0
‖p(t)‖2H dt

G?β(−pT) = 〈pT , e−TAy0〉H +
β

2
‖pT‖2H .

Collecting everything, we then obtain that Jβ(pT) is given by

Jβ(pT) =
1

2

∫ T

0
‖p(t)‖2H dt +

β

2
‖pT‖2H + 〈pT , e−TAy0〉H.
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