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INTRODUCTION



Introduction

We analyze propagation properties of numerical waves obtained through a finite
difference discretization on uniform or non-uniform meshes.

Our approach is based on the study of the propagation of high-frequency Gaussian
beam solutions.

Seminal idea

The energy of Gaussian beam solutions propagates along bi-characteristic
rays, which are obtained from the Hamiltonian system associated to the
symbol of the operator under consideration.

• CONTINUOUS SETTING: these techniques date back to Hörmander, and they
have been extended by several authors (Gérard, Tartar, Wigner).

• DISCRETE SETTING: extension of micro-local techniques to the study of the
propagation properties for discrete waves (Maciá, Marica, Zuazua).

A. Marica and E. Zuazua, Propagation of 1d waves in regular discrete heterogeneous media: a
Wigner measure approach, Found. Comp. Math., 2015.

U. Biccari, A. Marica and E. Zuazua, Propagation of one- and two-dimensional discrete waves under
finite difference approximation, Found. Comp. Math., 2020.
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Gaussian beams

{
ρ(x)∂2t u(x, t)− div

(
σ(x)∇u(x, t)

)
= 0, (x, t) ∈ RN × (0, T)

u(x,0) = u0(x), ∂tu(x,0) = u1(x), x ∈ RN (1)

PRINCIPAL SYMBOL:H(x, t, ξ, τ) = −ρ(x)τ2 + σ(x)|ξ|2

BI-CHARACTERISTIC RAYS: solutions to the first order ODE system
ẋ(s) = ∇ξH(x(s), t(s), ξ(s), τ(s)), x(0) = x0
ṫ(s) = ∂τH(x(s), t(s), ξ(s), τ(s)), t(0) = 0
ξ̇(s) = −∇xH(x(s), t(s), ξ(s), τ(s)), ξ(0) = ξ0
τ̇(s) = −∂tH(x(s), t(s), ξ(s), τ(s)), τ(0) = τ0 s.t. H(x0,0, ξ0, τ0) = 0.

Rays of geometric optics

(t, x(t)): projection of a bi-characteristic to the physical time-space domain.
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Gaussian beams

Gaussian beams (GB) expansion

u ε(x, t) = ε1−
N
4 a(x, t)e

i
ε
φ(x,t)

φ(x, t) = ξ(t)(x − x(t)) +
1

2
(x − x(t))TM(t)(x − x(t)), =(M(t)) > 0

1. u ε is an approximate solution of the wave equation (1):

sup
t∈(0,T)

‖2u ε(·, t)‖L2(RNx ) ≤ Cε
1
2 .

2. The energy of u ε is bounded with respect to ε.
3. The energy of u ε is exponentially small off the ray (x(t), t):

sup
t∈(0,T)

∫
RN\B(t)

|ρu εt |
2 + |σ∇u ε|2 dx ≤ Ce−β/

√
ε

β > 0, B(t) := B(x(t), ε
1
4 )

J. Ralston, Studies in Partial Differential Equations, 1982

F. Maciá and E. Zuazua, Asymptot. Anal., 2002

J. Rauch, X. Zhang and E. Zuazua, J. Math. Pures Appl., 2005
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Finite difference wave propagation

We address the problem on three levels:

• The one-dimensional wave equation with constant coefficients:

∂2t u− ∂
2
x u = 0, (x, t) ∈ (−1, 1)× (0, T);

• The one-dimensional wave equation with variable coefficients:

ρ(x)∂2t u− ∂x(σ(x)∂xu) = 0, (x, t) ∈ (−1, 1)× (0, T);

• The two-dimensional wave equation:

ρ(x, y)∂2t u− div(σ(x, y)∇u) = 0, (x, y, t) ∈ (−1, 1)2 × (0, T).

In all cases we will consider zero Dirichlet boundary condition.

Our principal aim is to illustrate that numerical high-frequency solutions can
behave in unexpected manners, as a result of the accumulation of the local
effects introduced by the heterogeneity of the numerical grid.
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ONE-DIMENSIONAL WAVE
EQUATION



Semi-discrete approximation

Uniform mesh

Gh :=
{
xj := −1 + jh, j = 0, . . . ,N + 1 h = 2/(N + 1), N ∈ N∗

}

Non-uniform mesh

• g ∈ C2(R)

• 0 < g−d ≤ |g
′(x)| ≤ g+

d < +∞
• |g′′(x)| ≤ gdd < +∞

=⇒ Ghg :=
{
gj := g(xj), xj ∈ Gh

}
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Semi-discrete approximation

• hj+1/2 := gj+1 − gj, j = 0, . . . ,N

• hj−1/2 := gj − gj−1, j = 1, . . . ,N + 1

• hj :=
hj+1/2+hj−1/2

2 , j = 1, . . . ,N

Semi-discrete wave equation


hju
′′
j (t)−

(
uj+1(t)− uj(t)

hj+1/2
−

uj(t)− uj−1(t)

hj−1/2

)
= 0

u0(t) = uN+1(t) = 0
uj(0) = u0j , u′j (0) = u1j
j = 1, . . . ,N, t ∈ (0, T).
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Hamiltonian system

Hamiltonian

Hc(x, t, ξ, τ) = −τ2 + ξ2

Bi-characteristic rays


ẋ(s) = 2ξ(s), x(0) = x0
ṫ(s) = −2τ(s), t(0) = 0
ξ̇(s) = 0, ξ(0) = ξ0
τ̇(s) = 0, τ(0) = τ0 s.t. Hc(x0,0, ξ0, τ0) = 0.

• For any ξ0 there are two characteristics starting from x0 : x±(t) = x0 ∓ t.

• Each one of these characteristics reaches the boundary of (−1, 1) in a uniform
time and reflects according to the geometric optics laws.

9/46



Discrete Hamiltonian system

Discrete Hamiltonian

H(y, t, ξ, τ) := −τ2 + cg(y)2ω(ξ)2

y = g−1(x), cg(y) :=
1

g′(y)
, ω(ξ) := 2 sin

(
ξ

2

)

Discrete bi-characteristic rays


ẏ(s) = 2cg(y(s))2ω(ξ(s))∂ξω(ξ(s)), y(0) = y0
ṫ(s) = −2τ(s), t(0) = 0
ξ̇(s) = −2cg(y(s))∂ycg(y(s))ω(ξ(s))2, ξ(0) = ξ0
τ̇(s) = 0, τ(0) = τ0

• ∂ξω(ξ): group velocity, i.e. the speed at which the energy associated with wave
number ξ moves.

10/46



Discrete Hamiltonian system

• ∀ s, τ(s) = τ0

• H(y(s), t(s), ξ(s), τ(s)) = 0
⇒

τ±0 = ±cg(y(s))|ω(ξ(s))|

Since ṫ(s) 6= 0, the Inverse Function Theorem allows to parametrize the curve s 7→
(y(s), t(s), ξ(s), τ±0 ) by t 7→ (y(t), t, ξ(t), τ±0 ).


ẏ±(t) = ∓cg(y±(t))∂ξω(ξ±(t))

ξ̇±(t) = ±∂ycg(y±(t))ω(ξ±(t))

y±(0) = y0, ξ±(0) = ξ0

• cg(·) > 0 ⇒ |ẏ±(t)| = cg(y±(t))
∣∣∂ξω(ξ±(t))

∣∣
• The velocity of the rays vanishes if, and only if, ∂ξ(ω) = cos(ξ/2) = 0, i.e.
ξ = (2k + 1)π, k ∈ Z.

• When ω(ξ) = ξ, corresponding to the continuous case, this cannot happen.
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Numerical results

• xh : uniform mesh of size h = 2/(N + 1).

• g h,1 := tan
(
π
4 x

h
)
and g h,2 := 2 sin

(
π
6 x

h
)
: non-uniform grids

g h,1 g h,2

Time discretization: leap-frog scheme with CFL condition δt = 0.1 · h

Initial data built from a Gaussian profile:

Gγ(x) = e−
γ
2

(
g−1(x)−g−1(x0)

)2
e i
ξ0
h g−1(x), u0(x) = Gγ(x), u1(x) = (u0)′(x).
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Hamiltonian system

Hamiltonian system in the x variable


ẋ±(t) = ∓ag(x±(t)) cos

(
ξ±(t)
2

)
, x±(0) = x0

ξ̇±(t) = ±2bg(x±(t)) sin

(
ξ±(t)
2

)
, ξ±(0) = ξ0.

ag(·) := (g′cg)(g−1(·)), bg(·) := c′g(g−1(·)), x0 = g(y0).

• Independently of the choice of the function g, we always have ag ≡ 1.

• For each mesh refinement, bg can be computed explicitly:

. g(y) = tan
(π
4
y
)

⇒ bg(x) = −
2x

x2 + 1

. g(y) = 2 sin
(π
6
y
)

⇒ bg(x) =
x

4− x2
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Phase portrait

EQUILIBRIUM: Pe := (xe, ξe) = (0, π)

• tangential mesh (left): CENTER (stable equilibrium)

• sinusoidal mesh (right): SADDLE (unstable equilibrium)
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Plots

At low frequencies, the numerical solutions behave like the continuous ones: they
propagate along straight characteristic lines and reflect following the Descartes-
Snell’s law when they touch one of the two endpoints.

Propagation of a Gaussian wave packet with initial frequency ξ0 = π/4 (left) and
ξ0 = 7π/4 (right), employing the mesh g h,1 .
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High-frequency pathologies

NON-PROPAGATINGWAVES (x0 = 0, ξ0 = π)

JUSTIFICATION

• The non propagating waves cor-
respond to the equilibrium point
Pe on the phase diagram.

• For ξ = π we have ∂ξω(ξ) = 0
and, therefore, the velocity of the
rays vanishes.
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High-frequency pathologies

INTERNAL REFLECTION

x0 = 0, ξ0 = 7π
15 , mesh g h,1 x0 = 0, ξ0 = 13π

15 , mesh g h,1

x0 = 1
2 , ξ0 = π, mesh g h,2 x0 = − 1

2 , ξ0 = π, mesh g h,2
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High-frequency pathologies

JUSTIFICATION

• On the mesh g h,1, approaching the endpoints of the domain the step size in-
creases and the group velocity 1/h of the high-frequency waves decreases. If
this group velocity vanishes before the wave has reached the boundary, then
this results in a process of internal reflection.

• For the mesh g h,2, Pe is a saddle point, and the red curves always remain
trapped either in the region x ∈ [0, 1] or x ∈ [−1,0].

• The amplitude of the wave is the one of the Gaussian profile of the initial datum,
which is of the order of h−0.9 . On the mesh g h,1, while approaching the bound-
ary h increases. Therefore, the support of the ray shrinks and, due to energy
conservation, the high of the corresponding wave has to increase.
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VARIABLE COEFFICIENTS CASE



Variable coefficients wave equation


ρ(x)∂2t u− ∂x

(
σ(x)∂xu

)
= 0, (x, t) ∈ (−1, 1)× (0, T)

u(−1, t) = u(1, t) = 0, t ∈ (0, T)

u(x,0) = u0(x), ∂tu(x,0) = u1(x), x ∈ (−1, 1),

ρ, σ ∈ L∞(R) with ρ(x) ≥ ρ∗ > 0 and σ(x) ≥ σ∗ > 0.

PRINCIPAL SYMBOL:Hc(x, t, ξ, τ) = −ρ(x)τ2 + σ(x)ξ2

BI-CHARACTERISTIC RAYS: solutions to the first order ODE system


ẋ(s) = 2σ(x(s))ξ(s), x(0) = x0
ṫ(s) = −2ρ(x(s))τ(s), t(0) = 0
ξ̇(s) = ρ′(x(s))τ2(s)− σ′(x(s))ξ2(s), ξ(0) = ξ0
τ̇(s) = 0, τ(0) = τ0 s.t. Hc(x0,0, ξ0, τ0) = 0.

Notice that the bi-characteristics are not straight lines, since ξ̇(s) 6= 0.
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Discrete Hamiltonian

Uniform mesh

H(y, t, ξ, τ) := −τ2 + cg(y)2ω(ξ)2

y = g−1(x), cg(y) :=
1

g′(y)

√
σ(g(y))

ρ(g(y))
, ω(ξ) := 2 sin

(
ξ

2

)

Discrete bi-characteristic rays

{
ẏ±(t) = ∓cg(y±(t))∂ξω(ξ±(t)), y±(0) = y0
ξ̇±(t) = ±∂ycg(y±(t))ω(ξ±(t)), ξ±(0) = ξ0.
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Numerical results

COEFFICIENTS:ρ(x) ≡ 1 and σ(x) = 1 + A cos2(κπx), A > 0, κ ∈ N∗ .

Hamiltonian system


ẋ(t) = −

√
1 + A cos2(κπx(t)) cos

(
ξ(t)
2

)
, x(0) = x0

ξ̇(t) = FA,κj (x(t)) sin

(
ξ(t)
2

)
, ξ(0) = ξ0, j = 0, 1, 2.

• j = 0: uniform mesh

• j = 1: tangential mesh

• j = 2: sinusoidal mesh
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Plots

LOW-FREQUENCY SOLUTIONS:(ξ0 = π/7)

A = 2, κ = 1.

• The wave travels along characteristics and reaches the boundary,
where it is reflected according to the Descartes-Snell’s law.

• The parameters A and κ in the coefficient σ affect the shape of the rays.
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Plots

A = 7, κ = 1.

• A1 ≥ A2 ⇒ |ẋA1,κ(t)| ≥ |ẋA2,κ(t)|, |ẍA1,κ(t)| ≥ |ẍA2,κ(t)|

A = 2, κ = 5.

• σ is a periodic function of period T = 2κ.
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High-frequency pathologies

In what follows, we will always assume A = 1 and κ = 1 in the coefficient σ.

Mesh g h,1

Mesh g h,2
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High-frequency pathologies

NON PROPAGATINGWAVES:

x0 = 0, ξ0 = π, mesh g h,1 x0 = 0, ξ0 = π, mesh g h,2

INTERNAL REFLECTION:

x0 = 0, ξ0 = 4π
5 , mesh g h,1 x0 = 0, ξ0 = 4π

5 , mesh g h,2
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Numerical example - forward Euler

• We have several different initial positions which, at frequency ξ0 = π, generate
non propagating waves.

x0 = unstable equilibrium
ξ0 = π, mesh g h,1

• Initial data corresponding to one of the unstable fixed point produce solutions
that, apart from showing absence of propagation, present also a huge dispersion.

• These solutions, as soon as they move away from the unstable equilibrium
point, are quite immediately affected by the orbits around the stable ones, thus
generating the comeback effects that can be appreciated in the figure.
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TWO-DIMENSIONAL WAVE
EQUATION



Two-dimensional wave equation

Two-dimensional wave equation


ρ(z)∂2t u− divz

(
σ(z)∇zu

)
= 0, (z, t) ∈ Ω× (0, T)

u|∂Ω = 0, t ∈ (0, T)

u(z,0) = u0(z), ∂tu(z,0) = u1(z), z ∈ Ω,

• z := (x, y)

• Ω := (−1, 1)2

• ρ, σ ∈ L∞(Ω) with ρ(z) ≥ ρ∗ > 0 and σ(z) ≥ σ∗ > 0.
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Semi-discrete approximation

Uniform mesh

Gh :=
{
zj,k := (xj, yk) = (−1 + jhx,−1 + khy),

j = 0, . . . ,M + 1, k = 0, . . . ,N + 1
}

Non-uniform mesh

g1,g2 : diffeomorphisms of Ω ⇒ Gh
g :=

{
ωj,k := (υj, ζk) = (g1(xj),g2(yk))

}
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Hamiltonian system

Discrete Hamiltonian

P(x, y, t, ξ, η, τ) := τ2 − Λ(x, y, ξ, η)

Λ(x, y, ξ, η) :=
σ(x, y)

ρ(x, y)

(
4 sin2

(
ξ

2

)
1

g′1(x)2
+ 4 sin2

(η
2

) 1

g′2(y)2

)
.

Discrete bi-characteristic rays


że(s) = ∇θeP(ze(s),θe(s)), ze(0) = z0e := (x0, y0, t0)

ṫ(s) = 2τ(s), t(0) = 0
θ̇e(s) = −∇zeP(ze(s),θe(s)), θe(0) = θ0e := (ξ0, η0, τ0)

τ̇(s) = 0, τ(0) = τ0.

ze := (x, y, t), θe := (ξ, η, τ)

31 /46



Hamiltonian system

Assume ρ = σ ≡ 1.

HAMILTONIAN SYSTEM IN THE x COMPONENT:
ẋ±(t) = ∓

r1
r0
g′1(g

−1
1 (x±(t)))∂ξλ1(g

−1
1 (x±(t)), ξ±(t))

ξ̇±(t) = ∓
r1
r0
∂xλ1(g

−1
1 (x±(t)), ξ±(t))

HAMILTONIAN SYSTEM IN THE y COMPONENT:
ẏ±(t) = ∓

r2
r0
g′2(g−12 (y±(t)))∂ηλ2(g−12 (y±(t)), η±(t))

η̇±(t) = ∓
r2
r0
∂yλ2(g−12 (y±(t)), η±(t)).

• r0 :=
√

Λ(z±(t),θ±(t)), r1 := λ1(x±(t), ξ±(t)), r2 := λ2(y±(t), η±(t)),

• λ1(x, ξ) := 2 sin

(
ξ

2

)
1

g′1(x)
, λ2(y, η) := 2 sin

(η
2

) 1

g′2(y)
.
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Mesh

MESH FUNCTIONS: g1(x) = g2(x) = tan
(
π
4 x
)

=: g(x)

Uniform grid Non-uniform grid

33/46



Numerical solution

Solution in Fourier series

uh =
M∑
j=1

N∑
k=1

βj,kΦj,k(ω) e it
√
λj,k .

• ω := (υ, ζ)

• {Φj,k, λj,k} are the eigenvector and the eigenvalues of the discrete
Laplacian −∆ω on the refined mesh Gh

g

−∆ωΦj,k = λj,kΦj,k, j = 1, . . . ,M, k = 1, . . . ,N.

• βj,k : corresponding Fourier coefficients of the initial datum u0,h .

INITIAL DATUM:

u0(x, y) = exp

[
− γ

(
(x − x0)2 + (y − y0)2

)]
exp

[
i
(
xξ0
h

+
yη0
h

)]
γ := h−0.9.
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Plots

At low frequencies, the solution remains concentrated and propagates along straight
characteristics which reach the boundary, where there is reflection according to
the Descartes-Snell’s law. This independently on whether we use a uniform or a
non-uniform mesh.

(x0, y0, ξ0, η0) = (0, 1/2, π/4, π/4). The discretization is done on a uniform
mesh (left) and on a non-uniform one obtained through the mesh function g
(right).

35/46



High frequency pathologies

NON PROPAGATINGWAVES:

• (x0, y0, ξ0, η0) = (1,0, π/2, π), uniform (left) and non-uniform (right) mesh

• (x0, y0, ξ0, η0) = (0,0, π, π), uniform (left) and non-uniform (right) mesh
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High frequency pathologies

JUSTIFICATION:

Hamiltonian system in the x/y direction


ẋ(t) = −

4

r0π
sin(ξ(t))

1

x(t)2 + 1

ξ̇(t) = −
32

r0π
sin2

(
ξ(t)

2

)
x(t)

(x(t)2 + 1)2


ẏ(t) = −

4

r0π
sin(η(t))

1

y(t)2 + 1

η̇(t) = −
32

r0π
sin2

(
η(t)

2

)
y(t)

(y(t)2 + 1)2
.

Pe := (0, π): unique equilibrium for both systems.

• (x0, y0, ξ0, η0) = (0, y0, π, η0): the corresponding solution does not propagates
in the vertical direction.

• (x0, y0, ξ0, η0) = (x0,0, ξ0, π): the corresponding solution does not propagates
in the horizontal direction.

• (x0, y0, ξ0, η0) = (0,0, π, π): the corresponding solution does not propagates
neither in the vertical nor in the horizontal direction.
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High frequency pathologies

INTERNAL REFLECTION:

(a) (b)

(c) (d)

x0 y0 ξ0 η0 T
Figure (a) 0 tan(arccos( 4

√
1/2)) π/2 π 8s

Figure (b) 0 0 π/2 5π/6 21s
Figure (c) 0 0 π/2 7π/18 37s
Figure (d) 0 0 π/2 7π/12 118s
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NUMERICAL CONTROL OF THE
WAVE EQUATION



Motivations for the study presented

This study is motivated by control theory and inverse problems.

Boundary controllability and identifiability properties of solutions of wave
equations hold because of the fact that the energy is driven by characteristics
that reach a sub-region of the domain or of its boundarywhere the controllers
or observers are placed.

In the framework of wave-like processes, observability is guaranteed by the geomet-
ric control condition (GCC), requiring all rays of geometric optics to enter the control
region during the control time.

C. Bardos, G. Lebeau and J. Rauch, SIAM J. Control Optim., 1992

L. Baudouin and S. Ervedoza, SIAM J. Control Optim., 2013

L. Baudouin, S. Ervedoza and A. Osses, J. Math. Pures Appl., 2015
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Motivations for the study presented

When the wave equation is approximated by finite difference methods,
observability/controllability may be lost under numerical discretization as
themesh size tends to zero, due to the existence ofhigh-frequency spurious
solutions for which the group velocity vanishes.

These high-frequency solutions are such that the energy concentrated in the control
region is asymptotically smaller than the total energy, and we have exponential
blow-up of the observability constant as h→ 0.

This is related with the explicit form of the discrete spectrum of the FD Laplacian and
with the lack of asymptotic spectral gap.

Discrete spectrum

λhk =
4

h2
sin2

(
kπh
2

)
→ λk = k2π2, as h→ 0+

E. Zuazua, Propagation, observation, control and numerical approximation of waves, SIAM Rev.,
2015.
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Motivations for the study presented
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Possible remedies

FOURIER FILTERING:

Discrete spectrum

To filter the high frequencies, keeping the components k ≤ δ/hwith 0 < δ <
1. Then the group velocity remains uniformly bounded below and uniform
observation holds in time T(δ) > 2 such that T(δ)→ 2 as δ → 0.

S. Ervedoza and E. Zuazua, The wave equation: control and numerics, in Control and stabilization
of PDEs, Springer, 2012.
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Possible remedies

TWO-GRID ALGORITHMS:

High frequencies producing lack of gap and spurious numerical solutions correspond
to large eigenvalues √

λhk ∼
2

h
When refining the mesh

h 7→
h
2
→

√
λ
h/2
k ∼

4

h

Refining the mesh h 7→ h
2 produces the same effect as filtering with parame-

ter 1/2.

Two-grid algorithms

Compute solutions of the wave equation on a fine grid of size h, starting from
slowly oscillating initial data discretized on a coarse mesh of size 2h. These
solutions are no longer pathological.

L. Ignat and E. Zuazua, Convergence of a two-grid algorithm for the control of the wave equation,
JEMS, 2009.
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Possible remedies

OTHER POSSIBLE REMEDIES:

• Tikhonov regularization: reinforce the observation operator by adding an extra
observation, distributed everywhere in the discrete grid, so that observability
holds uniformly on the mesh-size parameter h for all solutions.

R. Glowinski, C. H. Li and J.-L. Lions, A numerical approach to the exact boundary controlla-
bility of the wave equation, Japan J. Appl. Math., 1990.

• Employ mixed FE: using a mixed FE scheme for the space discretization of
the wave equation may allow recovering the spectral gap. C. Castro and S. Micu,

Boundary controllability of a linear semi-discrete 1dwave equation derived fromamixed finite
element method, Numer. Math., 2006.

• Usenon-uniformmeshes: discretizing on appropriately built non-uniformmeshes
may remove the high-frequency pathologies. S. Ervedoza, A. Marica and E. Zuazua,

Numerical meshes ensuring uniform observability of one-dimensional waves: construction
and analysis, IMA J. Numer. Anal., 2015.
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