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PART IV: numerical approximation of differential equations and numeri-
cal control
LECTURE 14: numerical control of fractional PDE



FINITE ELEMENT APPROXI-
MATION OF THE FRACTIONAL
LAPLACIAN



FE approximation of (−∆)s

{
(−∆)su = f in Ω

u = 0 in Ωc (1)

LetM = {Ti}Ni=1 be a partition of the domain Ω (i.e. Ω =
⋃N

i=1 Ti)

• In dimension N = 1, we consider a uniform partition of Ω = (−1, 1)

−1 = x0 < x1 < . . . < xi < xi+1 < . . . < xN+1 = 1,

with xi+1 = xi + h, i = 0, . . .N , and we denote Ti := [xi, xi+1]. Moreover, we
indicate with ∂M = {x0, xN+1} the boundary nodes.
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FE approximation of (−∆)s

LetM = {Ti}Ni=1 be a partition of the domain Ω (i.e. Ω =
⋃N

i=1 Ti)

• In dimension N = 2, we consider triangular elements Ti , i = 1, . . . ,N . We
indicate with hi the diameter of the element Ti and with ρi its inner radius, i.e.
the diameter of the largest ball contained in Ti . We define

h = max
i∈{1,...,N}

hi.

Moreover, we require that the triangulation satisfies the regularity and local
uniformity conditions:

there exists σ > 0 s.t. hi ≤ σρi for all i = 1, . . . ,N ,
there exists κ > 0 s.t. hi ≤ κhj for all i, j = 1, . . . ,N , Ti ∩ Tj = ∅.
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FE approximation of (−∆)s

Vh :=
{
v ∈ Hs

0(Ω) : v |Ti ∈ P
1
}
.

Wechoose the usual basis functions {φi}Ni=1 fulfillingφi(xj) = δi,j , for all i, j ∈ {1, . . . ,N}.
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FE approximation of (−∆)s

STEP 1: by decomposing

u(x) =
N∑
j=1

ujφj(x), f(x) =
N∑
j=1

fjφj(x), fj =

∫
Ω
f(x)φj(x)dx

and taking v = φi , we obtain the linear system Ahu = Mhf, where

• u = (u1, . . . , uN ) ∈ RN is an unknown vector.
• f = (f1, . . . , fN ) ∈ RN .
• The stiffnessmatrix Ah ∈ RN×N has components

ai, j =
CN,s

2

∫
RN

∫
RN

(φi(x)− φi(y))(φj(x)− φj(y))

|x − y|N+2s
dxdy

for all i, j ∈ {1, . . . ,N}, N = 1, 2.

• Themassmatrix Mh ∈ RN×N has components

mi, j =

∫
Ω
φi(x)φj(x)dx, for all i, j ∈ {1, . . . ,N}.

STEP 2: the unknown vector u is obtained by solving u = A−1h Mhf.

STEP 3: once the vector u is known, the solution of the Poisson equation is approxi-
mated by

u(x) =
N∑
j=1

ujφj(x).
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Stiffness matrix - N = 1

Remarks

Ah is symmetric. Therefore, in its construction, we only need to compute the
values ai,j with j ≥ i.

Due to the non-local nature of the problem, the matrix Ah is full.

The basis functions satisfy the zero Dirichlet B.C. This is important in the case
s > 1/2.
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Stiffness matrix - N = 1

In space dimension N = 1, the entries of the stiffness matrix Ah can be
computed explicitly.

The matrix has the following structure
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Computations for j ≥ i + 2

In this case we have supp(φi) ∩ supp(φj) = ∅. Hence, we only have to
compute the integral

ai, j = −2
∫ xj+1

xj−1

∫ xi+1

xi−1

φi(x)φj(y)

|x − y|1+2s
dxdy.

8/51



Computations for j ≥ i + 2

In this case we have supp(φi) ∩ supp(φj) = ∅. Hence, we only have to
compute the integral

ai, j = −2
∫ xj+1

xj−1

∫ xi+1

xi−1

φi(x)φj(y)

|x − y|1+2s
dxdy.
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Computations for j = i + 1

This is the most cumbersome case, since it is the one with the most interac-
tions between the basis functions.

ai, j =
6∑
`=1

Q`.
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Computations for j = i

In this case, we have

ai, j =
7∑
`=1

R`.
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Entries of the stiffness matrix Ah - s 6= 1/2

ai,j = −h1−2s



4(k + 1)3−2s + 4(k− 1)3−2s

2s(1− 2s)(1− s)(3− 2s)

−
6k3−2s + (k + 2)3−2s + (k− 2)3−2s

2s(1− 2s)(1− s)(3− 2s)
, k = j − i, k ≥ 2

33−2s − 25−2s + 7

2s(1− 2s)(1− s)(3− 2s)
, j = i + 1

23−2s − 4

s(1− 2s)(1− s)(3− 2s)
, j = i.
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Entries of the stiffness matrix Ah - s = 1/2

ai,j =



−4(k + 1)2 log(k + 1)− 4(k− 1)2 log(k− 1)
+6k2 log(k) + (k + 2)2 log(k + 2)

+(k− 2)2 log(k− 2), k = j − i, k > 2

56 ln(2)− 36 ln(3), j = i + 2.

9 ln 3− 16 ln 2, j = i + 1

8 ln 2, j = i.
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Final remarks on the approximation Ah

Remarks

Each entry ai,j of the matrix only depend on i, j, s and h.

The matrix As
h has the structure of a N-diagonal matrix. This is analogous to

the tridiagonal matrix approximating the classical Laplace operator

Ah =
1

h


2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 2


Ah → Ah as s→ 1−, which is in accordance to the behavior of the continuous
operator.
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Stiffness matrix - N = 2

In this case, we have

ai, j =
C2,s
2

∫
R2

∫
R2

(φi(x)− φi(y))(φj(x)− φj(y))

|x − y|2+2s
dxdy.

Since φi = 0 in Ωc, the integral on R2 × R2 is reduced to integrals on the set (Ω ×
Ω) ∪ (Ω×Ωc) ∪ (Ωc ×Ω) and, taking into account that the interactions in Ω×Ωc and
Ωc × Ω are symmetric with respect to x and y, we get

ai, j =
C2,s
2

∫
Ω

∫
Ω

(φi(x)− φi(y))(φj(x)− φj(y))

|x − y|2+2s
dxdy (2)

+ C2,s

∫
Ω

∫
Ωc

φi(x)φj(x)

|x − y|2+2s
dxdy.
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Stiffness matrix - N = 2

Notice that the second integral in (2) has to be computed over the unbounded domain
Ωc . To do that, it is convenient to introduce a ball B containing Ω, since this allows to
employ polar coordinates and exploit symmetry properties.
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Stiffness matrix - N = 2

NB : number of elements on the triangulation of B. Then, recalling (2), the coefficients
ai,j are given by the expression

ai, j =
C2,s
2

NB∑
`=1

NB∑
m=1

I i,j`,m + 2J i,j
`



I i,j`,m :=

∫
T`

∫
Tm

(φi(x)− φi(y))(φj(x)− φj(y))

|x − y|2+2s
dxdy

J i,j
` :=

∫
T`

∫
Bc

φi(x)φj(x)

|x − y|2+2s
dxdy

The computations of the above integrals are challenging for different reasons: they
involve a singular integrand if T` ∩ Tm 6= ∅, or they needs to be calculated on an
unbounded domain.

G. Acosta, F. M. Bersetche and J. P. Borthagaray, A short FE implementation for a 2d homogeneous
Dirichlet problem of a fractional Laplacian, Comput. Math. Appl., 2017.

G. Acosta and J. P. Borthagaray, A fractional Laplace equation: Regularity of solutions and finite
element approximations, SIAM J. Numer. Anal., 2017. 17 / 51



Error analysis

Theorem

Let f satisfy the following regularity assumptions:

f ∈ C
1
2−s(Ω), if 0 < s < 1/2,

f ∈ L∞(Ω), if s = 1/2,
f ∈ Cβ(Ω) for some β > 0, if 1/2 < s < 1,

where Cs− 1
2 (Ω) and Cβ(Ω) denote the standard Hölder spaces of order s−

1/2 and β, respectively. Then, for the solution u of (1) and its FE approximation
uh on a uniform mesh with size h, we have the following a priori estimates

‖u− uh‖Hs
0(Ω) ≤

C(s, σ)

ε
h

1
2−ε ‖f‖

C
1
2−s

(Ω)
, ∀ε > 0, if s < 1/2,

‖u− uh‖Hs
0(Ω) ≤

C(σ)

ε
h

1
2−ε ‖f‖L∞(Ω) , ∀ε > 0, if s = 1/2

‖u− uh‖Hs
0(Ω) ≤

C(s,β,σ)√
ε(2s−1)h

1
2−ε ‖f‖Cβ (Ω) , ∀ε > 0, if s > 1/2, β > 0

where C is a positive constant not depending on h.
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Error analysis

Theorem

Let α := min{s, 1/2− δ}, with δ > 0 arbitrary small. If f ∈ L2(Ω) and u is the
solution to (1), for its FE approximation on a uniform mesh with size h it holds
that

‖u− uh‖L2(Ω) ≤ C(s, α)h2α ‖f‖L2(Ω) .
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Numerical experiments - N = 1

To test the efficiency of the FE scheme we have proposed, we consider the Dirichlet
problem (1) on Ω = (−1, 1) with f = 1, whose explicit solution is given by

u(x) = γs
(
1− x 2

)s
· χ(−1,1), γs =

2−2s
√
π

Γ
(
1+2s
2

)
Γ(1 + s)

.
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Numerical experiments - N = 1

One can notice that for large s ≥ 1/2 the FE scheme provides a good approximation.
On the other hand, when s < 1/2, the computed solution is to a certain extent different
from the exact one, as there is a discrepancy approaching the boundary.

Despite this fact, we can that, for all s ∈ (0, 1) the Hs error of our FE approximations
decreaseswith h at a rate ‖u− uh‖Hs

0(−1,1) ∼
√
h, which is the expected one according

to the previous theorem.
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NUMERICAL CONTROL FOR THE
FRACTIONAL HEAT EQUATION



Fractional heat equation - numerical control


yt + (−∆)sy = fχω , in (−1, 1)× (0, T)

y = 0, in (−1, 1)c × (0, T)

y(0) = y0, in (−1, 1)
(3)

We apply the penalized Hilbert uniqueness method to compute the control function
f and discuss the controllability properties of the system analyzing the behavior of
the optimization procedure.

U. Biccari, M. Warma and E. Zuazua, Control and numerical approximation of fractional diffusion
equations, Handbook of Numerical Analysis, (2022).
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Fully-discrete dynamics

Let us introduce the fully-discrete version of (3). Given a uniformN -points meshM
of size h on (−1, 1) and any integer M > 0, we set δt = T/M and we approximate (3)
through an implicit Euler method.

Mh
ym+1
h − ymh

δt
+Ahy

m+1
h = Bhum+1

h , for allm ∈ {1, . . . ,M− 1}

y1h = y0,h,
(4)

• y0,h ∈ RN : the projection of the initial datum y0 ∈ L2(−1, 1) on the meshM.

• Ah : stiffness matrix computed in FE.

• Mh : mass matrix.

• The matrix Bh has entries

bi,j =

∫
ω
φi(x)φj(x)dx, i, j = 1, . . . ,N .
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Fully-discrete dynamics

In (4), uh = (umh )Mm=1 ∈ RN×M is a fully-discrete control function, whose cost is given
by the discrete L2((−1, 1)× (0, T))-norm

‖uh‖L2h,δt
:=

(
M∑

m=1

δt|umh |
2
L2h,Mh

)1/2

and where | · |L2h,Mh

is the norm associated with the L2-inner product onM and the

mass matrixMh

for all v = (vi)
N
i=1 ∈ RN and w = (wi)

N
i=1 ∈ RN

〈v,w〉L2h,Mh

= 〈Mhv,w〉L2h
= h

N∑
i=1

(Mhv)iwi −→ |v|2
L2h,Mh

= 〈v, v〉L2h,Mh
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Fully-discrete dynamics

With this above notation, given some penalization parameter β > 0 we can introduce
the fully-discrete primal and dual functionals

Fβ,h(uh) =
1

2
‖uh‖2L2h,δt

+
1

2β
|yMh |

2
L2h,Mh

Jβ,h(pMh ) =
1

2
‖Bhph‖2L2h,δt

+
β

2
|pMh |

2
L2h,Mh

+
〈
pMh , e

AhTy0,h
〉
L2h,Mh

(5)

with ph = (pnh)Mn=1R
N×M solution to the adjoint systemMh
pmh − pm+1

h

δt
+Ahp

m
h = 0, for allm ∈ {1, . . . ,M− 1}

pMh = pT,h,
(6)

where pT,h ∈ RN is the projection of pT ∈ L2(Ω) on the meshM.
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The penalized Hilbert uniqueness method

Analyzing the behavior of the penalized problemwith respect to the parameter β > 0,
we can discuss controllability properties for our system.

Theorem

Let p̂T,h be the unique minimizer of Jβ,h and ûh be the corresponding control.
The system is

• NULL CONTROLLABLE at time T if and only if the optimal energy

Ey0,h := Fβ,h(ûh)

is bounded. In this case

‖ûh‖L2h,δt
≤
√
Ey0,h and |yMh |L2h,Mh

≤
√
βEy0,h

• APPROXIMATELY CONTROLLABLE at time T if and only if
|yMh |L2h,Mh

→ 0 as β → 0+ .
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Practical considerations

We apply the conjugate gradient method to minimize the functional Jβ,h and discuss the control
properties of (4) from the viewpoint of the previous theorem.

In the context of fully-discrete problems as (4), this may be a delicate issue.

In general, we cannot expect for a given bounded family of initial data that the fully-discrete
controls are uniformly boundedwhen h, δt andβ tend to zero independently. Instead,weexpect
to obtain uniform bounds by taking β = φ(h) that tends to zero in connection with the mesh
size not too fast. It is then crucial to choose properly the penalization parameter β.

A reasonable practical rule is to take β = φ(h) ∼ h2p , where p is the order of accuracy in space
of the numerical method employed for the discretization of (−∆)s .

The effectiveness of this choice has only been demonstrated numerically and is not
supported by rigorous mathematical results.

F. Boyer, On the penalised HUM approach and its applications to the numerical approximation of
null-controls for parabolic problems, ESAIM: Proc., 2013.
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Practical considerations

To select the correct value for p, let us recall that the solution y to (3) with y0 ∈ L2(Ω)
and u ∈ L2(ω × (0, T)) belongs to L2(0, T;Hs

0(Ω)) ∩ C([0, T]; L2(Ω)). In particular, we
have that y(·, T) ∈ L2(Ω).

Therefore, we shall choose the value of p as the convergence rate in the L2-norm for
the approximation of the elliptic problem. Recalling the convergence theorems for
the FE approximation of (−∆)s, the appropriate value of p that we shall employ is

p =

{
2s, for s < 1

2
1− 2δ, for s ≥ 1

2

−→ β = h2p =

{
h4s, for s < 1

2
h2−4δ, for s ≥ 1

2 ,

with δ > 0 arbitrary small.
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Numerical experiments - s = 0.2

We observe that the discrete L2 norm of ŷM tends to zero as h→ 0, confirm-
ing computationally the approximate controllability of the equation.

On the other hand, we see that the cost of the control and the optimal energy
increase as h → 0. Hence, numerical evidence indicates that the null
controllability is not fulfilled.
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Numerical experiments - s = 0.8

We can observe that this time the control cost and the optimal energy remain
bounded as h→ 0. Furthermore, we also see that

|ŷM|L2h,Mh

∼ h =
√
β,

which is the expected convergence rate for the discrete L2 norm of y(·, T). All
these facts provide numerical evidence indicating that the null controlla-
bility is fulfilled when s = 0.8.
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Numerical experiments - s = 0.8

The control is almost inactive for a large
part of the time interval, and then experi-
ences large oscillations in the proximity of
the final time.

This fact, related with the characterization of the control as restrictions of solutions of
the adjoint system, is in accordance with the lazy behavior observed by Glowinski and
Lions of controls for the local heat equation which, at the very beginning, leave the
solution evolve under the dissipative effect of the heat semi-group and, only when ap-
proaching the final controllability time, inject energy into the system in order to match
the desired configuration.
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Two-dimensional problem

We observe analogous behavior as in the one-dimensional case.

s = 0.2: the discrete L2 normof the solution at time T decreaseswith h, thus confirming
the approximate controllability. However, the control cost and the optimal energy both
increase as h→ 0, thus suggesting the failure of the null controllability property.

s = 0.8: the control cost and the optimal energy remain bounded as h→ 0, while the
discrete L2 norm of y(T) decreases with rate h. This suggests that the fractional heat
equation in 2-D is null-controllable at time T .
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NUMERICAL EXTERIOR CONTROL
FOR THE FRACTIONAL HEAT
EQUATION



Fractional heat equation - numerical exterior control


yt + (−∆)sy = 0, in (−1, 1)× (0, T)

y = gχO, in (−1, 1)c × (0, T)

y(0) = y0, in (−1, 1)
(7)

We apply the penalized Hilbert uniqueness method to compute the control g by
minimizing the functional

Fextβ (g) :=
1

2

∫ T

0
‖g‖2Hs(O) dt +

1

2β
‖y(·, T)‖2L2(−1,1) .

and discuss the controllability properties of the system analyzing the behavior of the
optimization procedure.
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Discretization of the dynamics

To discretize the dynamics, we first approximate (7) through the following exterior
Robin problem


ynt + (−∆)syn = 0 in (−1, 1)× (0, T),

Nsyn + nκyn = nκg in (−1, 1)c × (0, T),

yn(·,0) = y0 in (−1, 1),
(8)

where n ∈ N is a fixed natural number and κ ∈ L1((−1, 1)c) ∩ L∞((−1, 1)c) is a non-
negative function.

H. Antil, R. Khatri and M. Warma, External optimal control of nonlocal PDEs, Inv. Problems, 2019.

H. Antil, D. Verma and M. Warma, External optimal control of fractional parabolic PDEs, ESAIM:
Control Optim, Calc. Var., 2020.
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Discretization of the dynamics

Theorem

Let y0 ∈ L2(−1, 1), g ∈ L2((0, T);Hs(−1, 1)c), κ ∈ L1((−1, 1)c) ∩ L∞((−1, 1)c)
non-negative and

yn ∈ L2((0, T);Hs
κ(−1, 1)) ∩ H1((0, T);H−sκ (−1, 1))

be the weak solution of (8). Let y ∈ L2((0, T);Hs(R)) be the weak solution of
(7). There is a constant C > 0, independent of n, such that∥∥y − yn

∥∥
L2(R×(0,T))

≤
C
n
‖y‖L2((0,T);Hs(R)) . (9)

In particular, yn converges strongly to y in L2((−1, 1)× (0, T)) as n→ +∞.
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Optimal control problem

The controllability of (8) can be characterized through a dual argument.

For any pnT ∈ L2(−1, 1) we denote with pn the solution of the following adjoint problem
with Robin exterior conditions

−pnt + (−∆)spn = 0 in (−1, 1)× (0, T),

Nspn + nκpn = 0 in (−1, 1)c × (0, T),

pn(·, T) = pnT in (−1, 1).
Then

yn(·, T) = 0 a.e. in (−1, 1) if and only if
∫ 1

−1
y0p

n(·,0)dx + n
∫ T

0

∫
O
pnκgdx = 0.

Hence, the controllability of (8), is equivalent to the observability inequality∥∥pn(·,0)
∥∥2
L2(−1,1) ≤ C

∫ T

0

∥∥pn(t)
∥∥2
L2(O)

dt,

and the exterior control can be obtained from the following optimal control problem:
gβ = argmin

g∈L2(O×(0,T))

Gext
β (g)

Gext
β (g) :=

1

2

∫ T

0
‖g‖2L2(O)

dt +
1

2β

∥∥yn(·, T)
∥∥2
L2(−1,1) .
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Numerical experiments

To approximate (8), we consider the interval I = (−2, 2) ⊃ (−1, 1) and assume that
the control function g is supported in O ⊂ ((−2, 2) \ (−1, 1)).

Notice that, in this case, the regularity required in the previous approximation theorem
for the function κ, namely κ ∈ L1((−2,2) \ (−1, 1)) ∩ L∞((−2,2) \ (−1, 1)), simply
reduces to κ ∈ L∞((−2, 2) \ (−1, 1)) and is fulfilled by considering κ to be constant.
For simplicity, we take κ = 1.


ynt + (−∆)syn = 0 in (−1, 1)× (0, T),

Nsyn + nyn = ngχO×(0,T) in ((−2, 2) \ (−1, 1))× (0, T),

yn(·,0) = y0 in (−1, 1).
(10)

To discretize (10):

• We use FE scheme in space based on the variational formulation

n
∫
O
gv dxdt =

∫ 1

−1
ynt v dxdt + a(yn, v) + n

∫
(−1,1)c

ynv dxdt, for all v ∈ Hs
0(−1, 1).

• We use implicit Euler in time.
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Numerical experiments - s = 0.2

We observe that the discrete L2 norm of the solution at time T tends to zero
as h→ 0, confirming computationally the approximate controllability of
the equation.

On the other hand, we see that the cost of the control and the optimal energy
increase as h → 0. Hence, numerical evidence indicates that the null
controllability is not fulfilled.
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Numerical experiments - s = 0.8

We observe that the control cost and the optimal energy remain bounded
as h→ 0. Furthermore, we also see that the discrete L2 norm of the solution
at time T behaves as h, which is the expected convergence rate. All these
facts provide numerical evidence indicating that the null controllability
is fulfilled when s = 0.8.
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Numerical experiments - s = 0.8

Acting from the exterior of the
domain, the control g is capa-
ble to steer the state y to zero
at time T .
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Alternative discretization of the dynamics

The exterior control problem for the fractional heat equation can be dis-
cretized without introducing the Robin approximation.

The exterior control can be computed minimizing a dual functional in the
spirit of Fenchel and Rockafellar.

U. Biccari, S. Zamorano and E. Zuazua, Adjoint formulation for the fractional exterior control prob-
lem, in preparation.
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FE for the elliptic exterior problem

{
(−∆)su = f in Ω

u = g in Ωc (11)

Define the bilinear and linear forms

a : Hs(RN)× Hs(RN)→ R a(u, v) :=
CN,s
2

∫
Q

(u(x)− u(y))(v(x)− v(y))

|x − y|N+2s
dxdy

Q := (Ω× R) ∪ (R× Ω)

b : Hs(RN)× H−s(Ωc)→ R b(u, λ) :=

∫
Ωc

u(x)λ(x) dx

F : Hs(RN)→ R F(u) :=

∫
Ω

f(x)u(x) dx

G : H−s(Ωc)→ R G(λ) :=

∫
Ωc

g(x)λ(x) dx

We have the following variational formulation for (11): find (u, λ) ∈ Hs(RN)× H−s(Ωc) such that

a(u, v)− b(v, λ) = F(v) for all v ∈ Hs(RN)

b(u, µ) = G(µ) for all µ ∈ H−s(Ωc)

G. Acosta, J. P. Borthagaray and N. Heuer, Finite element approximations of the nonhomogeneous fractional Dirichlet problem, IMA J.

Numer. Anal., 2019.

U. Biccari, S. Zamorano and E. Zuazua, Adjoint formulation for the fractional exterior control problem, in preparation.
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NUMERICAL CONSTRAINED CON-
TROL FOR THE FRACTIONAL
HEAT EQUATION



Fractional heat equation - constrained controllability

Theorem

Let s > 1/2, y0 ∈ L2(−1, 1) and let ŷ be a positive trajectory, i.e., a solution of (3) with
initial datum 0 < ŷ0 ∈ L2(−1, 1) and right hand side f̂ ∈ L∞(ω × (0, T)). Assume that
there exists ν > 0 such that f̂ ≥ ν a.e in ω × (0, T). Then, the following assertions
hold.

1. There exist T > 0 and a non-negative control f ∈ L∞(ω × (0, T)) such that the
corresponding solution y of (3) satisfies y(x, T) = ŷ(x, T) a.e. in (−1, 1).
Moreover, if y0 ≥ 0, we also have y(x, t) ≥ 0 for every (x, t) ∈ (−1, 1)× (0, T).

2. Define the minimal controllability time by

Tmin(y0, ŷ) := inf
{
T > 0 : ∃ 0 ≤ f ∈L∞(ω × (0, T)) s. t.

y(·,0) = y0 and y(·, T) = ŷ(·, T)
}
.

For T = Tmin , there exists a non-negative control f ∈ M(ω × (0, Tmin)), the
space of Radon measures on ω × (0, Tmin), such that the corresponding
solution of (3) satisfies y(x, T) = ŷ(x, T) a.e. in (−1, 1).
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Numerical simulations

• We consider the problem of steering the initial datum y0(x) = 1
2 cos

(
π
2 x
)
to

the target trajectory ŷ solution of 3 with initial datum ŷ0(x) = 6 cos
(
π
2 x
)
and

right-hand side f̂ ≡ 1.

• We choose s = 0.8 and ω = (−0.3,0.8) ⊂ (−1, 1) as the control region.
• The approximation of the minimal controllability time is obtained by solving the

following constrained minimization problem:

minimize T



T > 0
yt + (−∆)sy = fχω , a. e. in (−1, 1)× (0, T)

y(·,0) = y0 ≥ 0, a. e. in (−1, 1)
y ≥ 0, a. e. in (−1, 1)× (0, T)

f ≥ 0, a. e. in ω × (0, T).
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Numerical simulations

We obtain the minimal time Tmin ' 0, 2101.

In this time horizon, the fractional heat equation is controllable from the initial
datum y0 to the desired trajectory ŷ(·, T) by maintaining the positivity of the
solution.
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Numerical simulations

The impulsional behavior of the control is lost when extending the time horizon
beyond Tmin .

This control has been computed by solving the minimization problem:

min ‖y(·, T)− ŷ(·, T)‖L2(−1,1)

T > 0
yt + (−∆)sy = fχω, a. e. in (−1, 1)× (0, T)

y(·,0) = y0 ≥ 0, a. e. in (−1, 1)
y ≥ 0, a. e. in (−1, 1)× (0, T)

f ≥ 0, a. e. in ω × (0, T).
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Numerical simulations

When considering a time horizon T < Tmin, constrained controllability fails.
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