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PART V: complementary topics
LECTURE 15: turnpike theory



TURNPIKE THEORY



Origins of turnpike

The origin of the term turnpike is due to R. Dorfman, P. Samuelson and R.
Solow in the book Linear Programming and Economics Analysis (1958).

... There is a fastest route between any two points; and if the origin and
destination are close together and far from the turnpike, the best route may
not touch the turnpike. But if the origin and destination are far enough apart,
it will always pay to get on to the turnpike and cover distance at the best rate
of travel, even if this means adding a little mileage at either end.

The authors interpreted this concept as: suppose we want to go from a city A to a city
B by car, the best way to do this, the optimal option, is to take the highway closest to
A, and exit the highway closest to B. That is, the turpike.

• There is always the fastest route between two points.

• If the origin and destination are close and far from the highway, the best route
may be to stay off the highway.

• However, if the origin and destination are far enough apart, it will always be
worthwhile to take the toll road and cover the distance at the best travel pace,
even if it means adding a little mileage at each end.
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Origins of turnpike
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Origins of turnpike
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Applications

AERODYNAMICS: wind tunnel for optimal shape design.
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PDE EXAMPLES OF LACK OF
TURNPIKE



The wave equation

Typical controls for the wave equation exhibit an oscillatory behavior, and
this independently of the length of the control time-horizon. But nobody
would be surprised about this fact. It looks like intrinsically linked to the oscil-
latory (even periodic in some particular cases) nature of the wave equation
solutions.
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The heat equation

Typical controls for the heat equation exhibit unexpected oscillatory and
concentration effects. This was observed by R. Glowinski and J. L. Lions in
the 80’s in their works in the numerical analysis of controllability problems
for heat and wave equations.

8/49



The heat equation

Why this phenomenon?

Optimal controls are normally characterized as traces of solutions of the adjoint
problem through the optimality system or the Pontryagin Maximum Principle, and
solutions of the adjoint system of the adjoint heat equation

−pt −∆p = 0

look precisely this way: large and oscillatory near t = T , they decay and get smoother
when t gets down to t = 0. And this is independent of the time control horizon [0, T].

First conclusion

Typical control problems for wave and heat equations do not seem to
exhibit the turnpike property.
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HEAT AND WAVE EQUATIONS
REVISTED



The control problem

Let N ≥ 1 and T > 0, Ω be a simply connected, bounded domain of RN with smooth
boundary Γ, Q = Ω× (0, T) and Σ = Γ× (0, T).

Controlled heat equation yt −∆y = fχω in Q
y = 0 on Σ
y(x,0) = y0(x) in Ω.

(1)

We assume that y0 ∈ L2(Ω) and f ∈ L2(Q) so that (1) admits a unique solution

y ∈ C([0, T]; L2(Ω)) ∩ L2(0, T;H1
0(Ω)).
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Well-known results

The system is null-controllable in any time T and from any open non-empty
subset ω of Ω.

The control of minimal L2-norm can be found by minimizing

J(pT) =
1

2

∫ T

0

∫
ω
|p|2 dxdt +

∫
Ω
p(0)y0 dx (2)

over the space of solutions of the adjoint system: −pt −∆p = 0χω in Q
p = 0 on Σ
p(x, T) = pT(x) in Ω.

(3)

The functional is continuous and convex from L2(Ω) to R and coercive because of
the observability estimate

‖p(0)‖L2(Ω) ≤ C
∫ T

0

∫
ω
|p|2 dxdt, for all pT ∈ L2(Ω). (4)
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Well-known results

If p̂T is the minimizer of the functional J, the needed control is given by f = p̂, where
p̂ is the solution of the adjoint heat equation corresponding to p̂T .

Because of this, we observe the tendency of the control to concentrate all
the action in the final time instant t = T .
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Well-known results

But this is so for the control of minimal L2-norm for which the Optimality System (OS)
reads 

yt −∆y = pχω in Q
y = 0 on Σ

y(x,0) = y0(x) in Ω

y(x, T) = 0 in Ω

−pt −∆p = 0 in Q
p = 0 on Σ

p(x, T) = pT(x) in Ω

The fact that the adjoint state p appears isolated as the solution of the adjoint
equation induces this unexpected behavior and the tendency to concentrate
action at t = T .
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Better balanced controls

Let us now consider the control f minimizing a compromise between the norm of the
state and the control among the class of admissible controls:

min

(
1

2

∫ T

0

∫
Ω
|y|2 dxdt +

1

2

∫ T

0

∫
ω
|f |2 dxdt

)
.

Then the Optimality System reads

yt −∆y = −pχω in Q
y = 0 on Σ

y(x,0) = y0(x) in Ω

y(x, T) = 0 in Ω

−pt −∆p = y in Q
p = 0 on Σ

p(x, T) = pT(x) in Ω

We now observe a coupling between p and y on the adjoint state equation!
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New optimality system dynamics

What is the dynamic behavior of solutions of the new fully coupled OS?

For the sake of simplicity, assume ω = Ω.

The dynamical system now reads
yt −∆y = −p in Q
−pt −∆p = y in Q
+ boundary and initial conditions

This is a forward-backward parabolic system.

A spectral decomposition exhibits the characteristic values

µ±j = ±
√
1 + λ2j

where (λj)j≥1 are the (positive) eigenvalues of −∆.

Thus, the system is the superposition of increasing and decreasing real exponen-
tials.
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The turnpike property for the heat equation

This new dynamic behavior, combining exponentially stable and unstable
branches, is compatible with the turnpike behavior. Controls and trajectories
exhibit the expected dynamics.
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The turnpike property for the wave equation

This relevant fact, that modifying the optimality criterion for the choice of the control
ensures the turnpike property, is not intrinsic to the heat equation.

The same applies for the wave equation: the control and controlled trajectories are
close to the steady state ones duringmost of the time interval of control when T >> 1.

M. Gugat, E. Trélat and E. Zuazua, Syst. Control Lett., 2016

What is behind?
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GENERAL THEORY



Linear abstract theory

A. Porretta and E. Zuazua, Remarks on long time versus steady state optimal control, SICON, 2013.

Consider the finite dimensional dynamics{
xt + Ax = Bu
x(0) = x0 ∈ RN (5)

where A ∈ RN×N, B ∈ RN×M, with control u ∈ L2(0, T;RM).

Given a matrix C ∈ RN×N, and some x∗ ∈ RN, consider the optimal control problem

min
u

JT(u) =
1

2

∫ T

0

(
|u(t)|2 + |C(x(t)− x∗)|2

)
dt.

There exists a unique optimal control u(t) in L2(0, T;RM), characterized by the opti-
mality condition

u = −B∗p ,
{
−pt + A∗p = C∗C(x − x∗)
p(T) = 0

(6)
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The steady state control problem

The same problem can be formulated for the steady-state model

Ax = Bu.

Then there exists a unique minimum ū, and a unique optimal state x̄ of the stationary
control problem

min
u

Js(u) =
1

2

∫ T

0

(
|u|2 + |C(x − x∗)|2

)
dt, Ax = Bu.

The optimal control ū and state x̄ satisfy

Ax̄ = Bū , ū = −B∗p̄ , and A∗p̄ = C∗C(x̄ − x∗).
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Controllability/observability assumption

We assume that the pair (A,B) is controllable or, equivalently, that the
matrices A, B satisfy the Kalman rank condition

Rank
[
B AB A2B . . . AN−1B

]
= N. (7)

Concerning the cost functional, we assume that the matrix C is such that
(void assumption when C = Id) the pair (A,C) is observable, which means
that the following algebraic condition holds:

Rank
[
C CA CA2 . . . CAN−1

]
= N. (8)
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Turnpike property

Under the previous controllability and observability assumptions, we have the follow-
ing result.

Theorem

For some γ > 0 for T > 0 large enough we have∫ bT

aT

(
|u− ū|2 + |x − x̄|2

)
ds ≤ K

(
e−γaT + e−γ(1−b)T

)
for every a,b ∈ [0, 1].
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Proof

STEP 1: a dissipativity identity

We have

[(x − x̄)(p− p̄)]t = −[B∗(p− p̄)|2 + |C(x − x̄)|2]

as a direct consequence of
(x − x̄)t + A(x − x̄) = B(u− ū)

u− ū = −B∗(p− p̄)

−(p− p̄)t + A∗(p− p̄) = C∗C(x − x̄).
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Proof

STEP 2: decay for correlations

If B∗ and C are coercive (these conditions can be relaxed under the controllability-
observability conditions above) we also have

|B∗(p− p̄)|2 + |C(x − x̄)|2 ≥ γ
(
|p− p̄|2 + |x − x̄|2

)
.

Hence

[(x − x̄)(p− p̄)]t = −|B∗(p− p̄)|2 − |C(x − x̄)|2 ≤ −γ|(x − x̄)(p− p̄)| ,

for some γ > 0.

Consequently,

−Ke−γ(T−t) ≤ [(x − x̄)(p− p̄)](t) ≤ Ke−γt

if (x − x̄)(p− p̄) is bounded at t = 0 and t = T .

P. Cardaliaguet, J.-M. Lasry, P.-L. Lions and A. Porretta, Long time average of Mean Field Games,
Network Heter. Media, 2012.
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Proof

STEP 3: convergence of averages

In fact, the bounds on the extremal values at t = 0 and T = T immediately yields the
turnpike property in an averaged sense. Indeed, as a consequence of the identity,∫ T

0

(
|u− ū|2 + |C(x − x̄)|2

)
dt = (x0 − x̄)(p(0)− p̄)− (x(T)− x̄)p̄

and the bounds at the extremal values t = 0 and t = T we then have

∫ T

0

(
|u− ū|2 + |C(x − x̄)|2

)
dt ≤ C (9)

with C independent of T and

1

T

∫ T

0

(
|u− ū|2 + |C(x − x̄)|2

)
dt ≤

C
T
→ 0.

This, of course, also implies the convergence of the averagedminima to the stationary
minimum.
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Proof

STEP 4: bounds on the extremal values

Using the observability inequality of the pair (A∗,B∗) we have

|(p(0)− p̄)| ≤ c

(∫ T

0
|C(x − x̄)|2 dt

) 1
2

+

(∫ T

0
|B∗(p− p̄)|2 dt

) 1
2

+ |p̄|

 . (10)

Similarly, in the equation of x − x̄ we use the observability inequality for (A,C) which
is ensured by (8):

|x(T)− x̄| ≤ c
(∫ T

0
|u− ū|2dt +

∫ T

0
|C(x(t)− x̄)|2dt + |x0 − x̄|2

) 1
2

. (11)

This, together with the identity∫ T

0

(
|u− ū|2 + |C(x − x̄)|2

)
dt = (x0 − x̄)(p(0)− p̄)− (x(T)− x̄)p̄

yields the needed bounds.
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Proof

STEP 5: the exponential turnpike estimate

The conclusion holds employing the exponential decay of the correlation term and
the fact that∫ bT

aT

(
|u− ū|2 + |C(x − x̄)|2

)
dt = (x(aT)− x̄)(p(aT)− p̄)− (x(bT)− x̄)(p(bT)− p̄).

To obtain the exponential turnpike estimate we exploit the correlation of optimal
control with the theory of Riccati differential equations. For this it is necessary that
the control operator B is bounded.

Notice that this implies that the previous result is not immediately extendable to
the case of Dirichlet boundary controls. Indeed, in this case, the control is the trace
on the boundary of some given function, and the Dirichlet trace is an unbounded
operator.
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What is the reason behind turnpike?

It is a direct consequence of the hyperbolicity of the underlying dynamics, whose
steady state solutions are characterized by the system

Ax̄ + BB∗p̄ = 0

− A∗p̄ + C∗Cx̄ = C∗Cx∗

generated by the operator matrix

Ã =

(
A BB∗

C∗C −A∗
)

Note however that the hyperbolicity of this matrix operator needs of control-
lability conditions.
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What is the reason behind turnpike?

In other words, the fact that the spectrum of the operator matrix Ã is symmetric to
the left and right half complex plane, ensures the stability+unstability pattern.

Summarizing, two key ingredients are needed for the turnpike property to arise for
the optimal control problem.

• The cost criterion for the optimal control needs to penalize both state and
control.

• The system needs to be controllable.

In particular, it is worth underlying that controllability is needed for the turn-
pike property to hold !!!

Remark

The controllability assumption might be dropped out if we impose some
further hypothesis on the matrix A (for instance, coercivity, 〈Ax, x〉 ≥ γ|x|2). In
this case, the observation operator C could be taken to be the identity: C = I.
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Extensions

• Extension of this linear finite-dimensional theory to a linear abstract setting of infinite-
dimensional semigroups, including wave and heat equations.

Note that, since (null) controllability is required, turnpike holds for the heat equation with
any support ω of the control, but that, for the wave equation, ω is required to fulfill the
Geometric Control Condition (by Bardos-Lebeau-Rauch).

When the GCC fails, weaker turnpike properties are achieved, with slower convergence
rates (not exponential ones).
A. Porretta and E. Zuazua, Remarks on long time versus steady state optimal control, SICON,
2013.

• Nonlinear finite-dimensional systems.
E. Trélat and E. Zuazua, The turnpike property in finite-dimensional nonlinear optimal control,
JDE, 2015.

• Hamilton-Jacobi-Bellman equation.
C. Esteve, H. Kouhkouh, D. Pighin and E. Zuazua, The turnpike property and the longtime be-
havior of the Hamilton-Jacobi-Bellman equation for finite-dimensional LQ control problems,
Math. Control Sign. Syst., 2022.

• Neural networks.
B. Geshkovski and E. Zuazua, Turnpike in optimal control of PDEs, ResNets, and beyond, Acta
Num., 2022.

• Fractional heat equation.
M. Warma and S. Zamorano, Exponential turnpike for fractional parabolic equations with
non-zero exterior data, ESAIM:COCV, 2021.
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TURNPIKE FOR THE FRACTIONAL
HEAT EQUATION



Turnpike for the fractional heat equation

Turnpike results have been obtained also in the context of the fractional heat
equation.

M.Warma and S. Zamorano, Exponential turnpike for fractional parabolic equations with
non-zero exterior data, ESAIM:COCV, 2021.
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Preliminary remarks

Remark

The fractional heat operator is coercive in appropriate functional spaces.

H. Antil, R. Khatri and M. Warma, External optimal control of nonlocal PDEs, Inv. Prob-
lems, 2020.

Hence, the turnpike property for this operator does not require the controlla-
bility assumption.

Notice that the controllability of fractional heat-like equations is known
only in one space dimension!!
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Preliminary remarks

Remark

In the case of interior control
ut + (−∆)su = fχω in Ω× (0, T),

u = 0 in Ωc × (0, T),

u(·,0) = 0 in Ω,

the turnpike property is a direct consequence of the general theory of Por-
retta and Zuazua, since the fractional Laplacian is a self-adjoint operator.

Remark

What about the exterior control problem?
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The Robin case

Consider the following exterior optimal control problem:

min
g∈U

JT(g) :=
1

2

∫ T

0
‖u− ud‖2L2(Ω)

dt +
1

2

∫ T

0
‖g(·, t)‖2L2(Ωc,µ)

dt, (12)

s.t. u solves 
ut + (−∆)su = 0 in Ω× (0, T),

Nsu + βu = βg in Ωc × (0, T),

u(·,0) = 0 in Ω,

(13)

where β ∈ L1(Ωc) is a given nonnegative function.

U := L2((0,T); L2(Ωc, µ)), where the measure µ on Ωc is defined by dµ :=
βdx with dx the usual N-dimensional Lebesgue measure.
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Well-posedness

For β ∈ L1(Ωc) a nonnegative function, we denote by Hs
Ω,β the space

Hs
Ω,β :=

{
u : RN → Rmeasurable ‖u‖Hs

Ω,β
< +∞

}
,

where

‖u‖Hs
Ω,β

:=

(
‖u‖2L2(Ω)

+ ‖β1/2u‖2L2(Ωc)
+

∫ ∫
R2N\(RN\Ω)2

|u(x)− u(y)|2

|x − y|N+2s
dxdy

) 1
2

,

and

R2N \ (R2N \ Ω)2 = (Ω× Ω) ∪ ((Ωc)× Ω) ∪ (Ω× (Ωc)).

Let µ be the measure in Ωc given by dµ = βdx. Then, the norm can be written as

‖u‖Hs
Ω,β

=

(
‖u‖2L2(Ω)

+ ‖u‖2L2(Ωc,µ)
+

∫ ∫
R2N\(RN\Ω)2

|u(x)− u(y)|2

|x − y|N+2s
dxdy

) 1
2

.
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Well-posedness

Definition

Let g ∈ L2((0,T); L2(Ωc, µ)). We say that a function u ∈ L2((0,T);Hs
Ω,β) ∩

H1((0, T); (Hs
Ω,β)∗) is a weak solution of (13), if the identity

〈ut, v〉(Hs
Ω,β

)∗,Hs
Ω,β

+ E(u, v) =

∫
Ωc

gvdµ,

holds for every v ∈ Hs
Ω,β and almost every t ∈ (0, T).

Here

E(u, v) :=
CN,s

2

∫ ∫
R2N\(RN\Ω)2

(u(x)− u(y))(v(x)− v(y))

|x − y|N+2s
dxdy +

∫
Ωc
βuv dx,

for u, v ∈ Hs
Ω,β .
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Optimality conditions

Theorem

There exist a unique optimal control gT ∈ L2((0,T); L2(Ωc, µ)) and a state
u∈L2((0,T);Hs

Ω,β) ∩ H1((0,T); (Hs
Ω,β)∗) such that the functional JT attains

its minimum at gT . In addition, there exists ψT ∈ L2((0,T);D(−∆)sR) ∩
H1((0, T); L2(Ω)) solution of

−ψT
t + (−∆)sψT = uT − ud in Ω× (0, T),

NsψT + βψT = 0 in (Ωc)× (0, T),

ψ(·, T) = 0 in Ω.

(14)

Moreover,

gT = −ψT
∣∣∣
(Ωc)×(0,T)

.

H. Antil, D. Verma and M. Warma, ESAIM-COCV, 2020.
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Stationary problem

We also consider the corresponding stationary problem

min
g∈U

J(g) :=
1

2
‖u− ud‖2L2(Ω)

+
1

2
‖g‖2L2(Ωc,µ)

, (15)

s.t. u is the solution of {
(−∆)su = 0 in Ω

Nsu + βu = βg in Ωc.
(16)
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Stationary problem

Theorem

There exist a unique optimal control g ∈ L2(Ωc, µ) and u ∈ Hs
Ω,β , such

that the functional J in (15) attains its minimum at g. In addition, there exists
ψ ∈ Hs

Ω,β solution of {
(−∆)sψ = u− ud in Ω

Nsψ + βψ = 0 in Ωc.

Moreover,

g = −ψ
∣∣∣
Ωc
.

H. Antil, R. Khatri and M. Warma, Inv. Problems, 2019.
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Turnpike for the Robin problem

Theorem

Let (uT , gT , ψT) be the solution of the optimality system and (u,g, ψ) solution
of the stationary optimal system. Then,

1

T

∫ T

0
gT dt −→ g, strongly in L2(Ωc, µ) as T → +∞,

and

1

T

∫ T

0
uT dt −→ u, strongly in L2(Ω) as T → +∞.

M. Warma and S. Zamorano, ESAIM-COCV, 2021.
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Turnpike for the Robin problem

Theorem

Let γ ≥ 0 be a real number. There is a constant C = C(γ) > 0 (independent
of T) such that for every t ∈ [0, T] we have the following estimate

‖uT(·, t)− u‖L2(Ω) + ‖ψT(·, t)− ψ‖L2(Ω)

≤ C
(
e−γt + e−γ(T−t)

)(
‖u‖L2(Ω) + ‖ψ‖L2(Ω)

)
.

M. Warma and S. Zamorano, ESAIM-COCV, 2021.
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Turnpike for the Robin problem

Remark

From these results, we can also obtain an estimate for the control. Indeed,
from the previous estimate, we can deduce that there is a constant C > 0
(independent of T) such that∥∥∥∥ 1

e−γt + e−γ(T−t) (gT − g)

∥∥∥∥
L2((0,T);L2(Ωc,µ))

≤ C
(
‖u‖L2(Ω) + ‖ψ‖L2(Ω)

)
.
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The Dirichlet case

Let U = L2(0, T; L2(Ωc)) and consider the following exterior optimal control problem

min
g∈U

JT(g) :=
1

2

∫ T

0
‖u− ud‖2L2(Ω)

dt +
1

2

∫ T

0
‖g(·, t)‖2L2(Ωc)

dt, (17)

s.t. u solves 
ut + (−∆)su = 0 in Ω× (0, T)

u = g in (Ωc)× (0, T)

u(·,0) = 0 in Ω

(18)
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Well-posedness

Transposition solutions

Let g ∈ L2((0,T); L2(Ωc)). We say that u ∈ L2(Ω × (0,T)) is a solution by
transposition of (18) if the identity∫ T

0

∫
Ω
u
(
− vt + (−∆)sv

)
dxdt = −

∫ T

0

∫
Ωc

gNsvdxdt,

holds for every v ∈ L2((0, T);D((−∆)sD)) ∩ H1((0, T); L2(Ω)) with v(·, T) = 0.

46/49



Optimality condition

Theorem

There exists an optimal pair (gT , uT) to the problem (17)-(18). Moreover,

gT = Nsλ
T ,

where λT ∈ L2((0, T);D((−∆)sD) ∩ H1((0, T); L2(Ω)) solves
−λTt + (−∆)sλT = uT − ud in Q
λT = 0 in Σ

λT(·, T) = 0 in Ω

H. Antil, D. Verma, M. Warma, ESAIM-COCV, 2020.
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Turnpike for the Dirichlet problem

Theorem

Let γ ≥ 0 be a real number. Let (uT , gT , λT) be the solution of the optimality
system and (u,g, λ) the corresponding solution of the stationary optimality
system. Then, there is a constant C = C(γ) > 0 (independent of T) such that
for every t ∈ [0, T] we have

‖uT(·, t)− u‖L2(Ω) + ‖λT(·, t)− λ‖L2(Ω)

≤ C
(
e−γt + e−γ(T−t)

)(
‖u‖L2(Ω) + ‖λ‖L2(Ω)

)
.

Moreover,∥∥∥∥ uT − u

e−γt + e−γ(T−t)

∥∥∥∥
L2((0,T);Hs

0(Ω))

+

∥∥∥∥ gT − g

e−γt + e−γ(T−t)

∥∥∥∥
L2((0,T);L2(Ωc))

+

∥∥∥∥∥ λT − λ
e−γt + e−γ(T−t)

∥∥∥∥∥
L2((0,T);Hs

0(Ω))

≤ C
(
‖u‖L2(Ω) + ‖λ‖L2(Ω)

)
.

M. Warma and S. Zamorano, ESAIM-COCV, 2021.
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Proofs (general ideas)

ROBIN CASE: the proof of the convergence of the averages follows the same steps
as in the work of Porretta and Zuazua.

To obtain the exponential turnpike estimate, the main ingredient is to prove that the
solution operator of the optimality system is bounded uniformly with respect to the
time horizon T.

Notice that this is not necessarily true for general dynamics.

DIRICHLET CASE: for the Dirichlet problem, the situation is much more delicate, due
to the low regularity of the solutions. It is required the employment of the abstract
control theory of Tucsnak and Weiss, based on the concepts of admissible control
and admissible observation operators.

M. Tucsnak and G. Weiss, Observation and control for operator semigroups, Birkhäuser, 2009.
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