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NULL CONTROLLABILITY FOR
NON-LOCAL HEAT EQUATIONS
WITH INTEGRAL KERNEL




Non-local heat equation

Yi— Dy + / K(x,0,y(60,6)d0 = vip, (x,1) € Q
Q

y=0, (x,t)ex
y(x,0) = yo(x), X € Q.

e Q C RY bounded domain of class C2.
e Q:=Qx(0,T), T>0.

o T:=8Qx(0,T).

o K=K(x,0,t) € L®(Qx Qx (0,T)).
Yo € L2(Q). v € L2(O x (0, T)).

There exists a unique solution y € L2(0, T; H5 (Q)) N HY(0, T; H=1(Q)), which satisfies
classical energy estimates.

2/37



Non-local heat equation

We are interested in proving the null controllability of the problem under analysis.

EXISTING RESULTS: it is known that the system is null controllable at least in the following situ-
ations cases.

e Under analyticity assumptions on the non-local potential, one can exploit unique continu-
ation properties and use compactness-uniqueness arguments.

E. Fernandez-Cara, Q. LU and E. Zuazua, Null controllability of linear heat and wave equa-
tions with nonlocal spatial terms, SICON, 2016. In this framework, also coupled systems
have been treated

P. Lissy and E. Zuazua, Internal controllability for parabolic systems involving analytic nonlo-
cal terms, Chin. Ann. Math. Ser. B, 2018.

e \Xhen the problem is one-dimensional and the kernel is time-independent and in sepa-
rated variables, the controllability follows employing spectral analysis techniques.
S. Micu and T. Takahashi, Local controllability to stationary trajectories of a Burgers equation
with nonlocal viscosity, JDE, 2018.

e Under suitable time-decay assumptions for the integral kernel.
U. Biccari and V. Hernandez-Santamaria, Null controllability of linear and semilinear nonlo-
cal heat equations with an additive integral kernel, SICON, 2018

e \Xhen the kernel is constant, using the so-called shadow model.
V.Hernandez-Santamaria and K. Le Balc'h, Local null-controllability of a nonlocal semilinear
heat equation, Appl. Math. Optim., 2021.
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Main result

By means of a Carleman approach, we can extend the above mentioned results by
considering a problem in any space dimension and by weakening the assumptions
on the kernel.

Suppose that the kernel K = K(x, 6,t) € L°°(2 x Q x (0, T)) satisfies

eA
K=: s e / K(x,0,t d9:| < 400, (H)
(X,SZO{Xp(t(T_t)) QI ( ) >

for any e > O, where A is a positive constant. Then, given yo € L2(Q2) and
T > O, there exists a control function v € L2(O x (O, T)) such that y(x, T) = O.

U. Biccari and V. Hernandez-Santamaria, Null controllability of linear and semilinear non-
local heat equations with an additive integral kernel, SICON, 2018
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Observability inequality

There exist two positive constants C; and C,, depending only on the domain
Q, such that

C 2 1 T
o0 Oy < Fexp ez (1443 4+ 2)] [ [ o o
(o] (@}

holds for any solution of the adjoint system

o — Ap+ / K(x,0,8)0(0,t)d0 = 0, (x,t) € Q
Q

=0, x,)ex
(%, T) = or(X), X €Q.

with o7 € L2(Q) and K satisfying (H).
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Carleman estimate

Let © cC Q be a nonempty open set. Then, there exists n° € C2(Q) such

thatn° > 0inQ,n° = 0ondQ and |V1°| > 0inQ\ O.

For a parameter A > O, we define

o) = el - A El° ] +rP0).

and we introduce the weight functions

(o} (o}
()( t) a'()() 5()( t) eA(ZHn Hoo+n (X))
« = , )=
' HT —1) HT —1)
Moreover, we use the notation

ot mmaxo = el — 2l o 2 mine = Pl — 20l
XEQ XEQ

Z(-) ;:sAZ/e*ZSQg\v.|2dxdt+s3,\4/e*25a53| |2 dxdit.
Q Q
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Carleman estimate (cont.)

There exist positive constants C, s; and A; such that, forany s > s;, A > Ay,
F € [2(Q) and z7 € L?(Q), the solution z to

zt+ Az =F, x,tyeQ
z=0, (x,t)ex
z(x,T)=2z7(x), x€Q

satisfies

T2y <c 53)\4/ 6_25“£3|z|2dxdt+/e‘25“|F\2dxdt ‘
0x(0,T) Q

E. Fernandez-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems
and applications to controllability, SICON, 2006
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Carleman estimate (cont.)

Let ¢ € L?(Q) and assume that the kernel K satisfies (}). Then, there exist
positive constants C, A\; and g,, only depending on Q and O, such that the
solution ¢ of the adjoint system corresponding to the initial datum " satisfies

() < €3N / =232
Ox(0,T)

forany A > Mo andany s > g, (T+ T2+}C%T2),
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Preliminary result

For any fixed A > Oand s > 1it holds

oo (B25) <on ()

where, we recall, 6~ and ot are defined as

()‘+ = mal(g' = 84)\HTIOHOO — eZAH')’]o”
xeQ

oo

B Y L
xeQ
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Proof

From the definitions of o~ and o™ we have o~ = F(\)o™, with

Al — Al

el — 1

F(X) is a monotone increasing function, verifying

lim F(A\)=1 and

lim F(A) =1/2
A Hoo Mg F =1/

— F)
osf --- asymptote F(A) =1 -
| |

0 2 4 6 8 10

Moreover, since s > 1we have (1+s)F(\) > 2F(X) > 1.
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Proof (cont.)

Multiplying by o+, and since [t(T — t)]~1 > O, we have

oHUT - 017 (1- @+ 9)F(V) <O,

Hence

exp <t(7‘_’i 5 (1 - (l+s)F()\))) <1

\We therefore conclude

oP (t(;o—+ t)) see (%) - ((TTS—)?)?) '

which immediately gives
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Proof of the Carleman estimate

We begin by applying the Carleman estimate of Fernandez-Cara and Guerrero to ¢, obtaining,
forany A > A;andanys > o (T + TZ),

/K(e,x, £)(6, ) do
Q

2
I(p) < C 53A4/ e’zs"‘§3\¢|2dxdt+/e’25°‘ dxdt|.
O x(0,7) Q

Set the parameter A = \; to a fixed value sufficiently large. We have

g

/ M= K(0,x, t)e” TT=0 (0, 1) do
Q

20~ _ 20— %
[(/ elT=9 |K(6, x, t)|2d6> (/e =0 |p(x, 9)\2d9>]
Q Q

Since X has been fixed, ¢~ (and therefore o) is a constant depending only on Q and O. Re-
placing into the first inequality we get

‘/QK(G,X, t)w(e,t)del =

IN

() <C [53)\4/ e~ o2 dx dit
0x(0,T)

_ 20
+/c2/e*25‘*(*»” (/e f(H)w(a,t)\Zdo) dxdt}.
Q Q
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Proof of the Carleman estimate (cont.)

Using Fubini's Theorem we get

_ 20— _ 20—
/e‘zw(xv“ (/e (=0 |<p(0,t)\2d0> dxat :/e (=0 | (0, 1)|? (/e—z“‘(“) dx) dodt.
Q Q Q Q

Moreover, we have

250
/e*zsa(x*‘) dx < |Qle” =il
Q

Hence, we can compute
_ 20~ _ 2(l4s)o—
/e =10 | (0, )2 </ g2k dx) dadtgc/e =0 |0, )% do dit
Q Q Q
_ 2sot >
gc/e 7= |p(0,t)|~ do dt
Q

<c [ e e, dodt
Q

Putting all together, we get

I(p) < C |:s3)\4/ e_25a§3\go|2dxdt+Kz/e_zs"‘(x’t)W(x, )2 dxdt| .
(@] Q

x(0,T)
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Proof of the Carleman estimate (conclusion)

Recalling the definition of Z(), we find
% / ™| Vp|? dx dt + s3A* / ™23 |2 dx dt
e} e}
—CK? / e~ g dxdt < 6’53)\4/ e™2¢3|p? dx dit.
Q Ox(0,T)
We have the estimate
&nt<cr,

which yields

sAZ/e*ZSag\w\zdxdths%“/e*2$ag3|¢|2dxdt
Q Q
chw/ e=250g3| 2 dx o,
Ox(0,T)

foralls > CK5 T2,
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According to hypothesis (#H), the kernel K should behave like

A(s,\)e

K('?'vt) ~ 97 {r=n )

i.e. it should decay exponentially as t goes to Ot and T—. This is the minimum

decay that we shall ask for the kernel.

[ )

— =05
e=10"
— e=10"°
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Proof of the observability inequality

From the Carleman estimate:

53/9_250‘53|<p|2dxdt§ cé/ e %3P dxdt.
Q Ox(0,T)

Due to the definition of the weight function a. if we choose s > CT?, we have;
_Cs _GCs
o ST < T % T <C(T) e SeTF>ce T2, fte [; %T] .

Therefore, we obtain

i 2 & 2
/ / || dxdt < CeT? / || dx dt.
% Q O x(0,T)

We multiply the adjoint equation by ¢ and integrate by parts. From the fact that K € L*°(Q x
Q x (0, T)) and using Fubini's Theorem, we have

1d 2
55 LletenPacs [1vetnPar<c ([ etxnax) .
2dt Q Q Q

Using Jensen's inequality and Gronwall's Lemma, we deduce

[t 0)Pax <€ [ et te 0.7
Q Q

_ 37 37 T
Hence: € [ [ ot dxat > [ [ 1o, 0)P dect = 2 [o(x,0)l g
% Ja % Ja 2
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Removing the decay assumption att =0

Remark
We are allowed to consider kernels K which does not decay att = O:

M= sup [exp (i)/|K(X,0,t)|d0} < 4o00.
(x,t)ea =8 Q

This requires a modification in the Carleman weight

s ol pCllL )

@l +°)

YT T
T4, te[0,T/2]
°or )= {t(Tt), te[T/2,T]
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Removing the decay assumption att =0

Let T > 0 and assume that K satisfies

M= sup [exp (i)/|K(x,0,t)|d0} < 4o00.
e T=t)Ja

Then, for any yo € L2(Q), there exists a control function
vel?(0x(0,T)

such that the associated solution y satisfies y(x, T) = O.
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Proof (preliminaries)

There exist a positive constants C, depending on T, s and A, such that, for all
F € L?(Q) and z7 € L?(Q), the solution z to

Zr+ Az =F, (x,tyeQ
z=0, x,t)ex
z(x, Ty =z7(x), x€Q

satisfies

2. 0) oy + [ €722 et

<c / 28 3|z|2dxdt+/ e=2B|F2 dx it | .
0x(0,T)

E. Fernandez-Cara, S. Guerrero, O. Y. Imanuvilov and J.-P. Puel, Local exact controlla-
bility of the Navier-Stokes system, J. Math. Pures Appl.,, 2004.
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Proof (preliminaries)

Let T > O and suppose that e’f € L2(Q). Then, for any yo € L?(Q) there exists a
control function v € L2(O x (0, T)) such that the associated solution to

yi—Ay=f+vlp, (x,t)€Q

y=0, (xt)ex
y(x,0) = yo(x), X€EQ
is in the space € := {y cefy e LZ(Q)}. Moreover, there exists a positive constant

C = C(T,s, A) such that the following estimate holds

258 —3),,2 2583 12 2 sB |2
e v dxdt+/e dxdtgc( + ||le )
Lo &M Kl Wolizi + [¢7F]

e ycéE = / P |y|? dx dt < +oo.
Q
Since the weight 8 blows upast — T, this yields y(x, T) = O.
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Proof of the theorem

We employ a fixed point strategy. For R > O, we define

sﬂWH s R},
2@ —

which is a bounded, closed and convex subset of L2(Q).

SR::{\X/ES:

Forany w € &g, we us consider the control problem

Ve — Ay + / K(x,0,t)w(0,t)do = vlp, (x,t)€Q
Q

y =0, (X, t) ex

y(x;0) = yo(x), X €Q.

\¥e have that

2
/ (955 / K(x, 0, )w(8, 1) d@) dxdt < M2 / 2B wRe—258 gxdlt < M2R2.
Q Q Q

Therefore, the above system is null controllable at time 7.
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Proof of the theorem (cont.)

In order to obtain the same controllability result for w = y, we apply Kakutani's fixed
point theorem.

Forany w € &g, we define the multi-valued map A : & — 2¢ such that

&2y~ axdt < C (R + llyollZ2(q) }

Aw) = {ye E:3Jvs.t.
0x(0,T)

A(w) is a nonempty, closed and convex subset of L2(Q). Moreover:

/ ezsﬂ7_3|v\2dxdt+/ezsﬂ\y|2 dx dt
ox(0,7) a

2
<C {H,VOHfz(Q)Jr /O e*P ( /Q K(x,e,t)y(e,t)de) dxdt}

< C (MR +llyoliq) < CR?,

for R large enough. Hence, up to a multiplicative constant we have A(Eg) C &Er.
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Proof of the theorem (cont.)

Let {w,} be a sequence in &. Then the corresponding solutions {yx} are bounded
in L2(0, T; Hy(Q2)) N H}(0, T; H~Y(Q)) and A(&g) is compact in L2(Q) by Aubin-Lions'
Theorem.

Forany w € &g, we have at least one control v such that the corresponding solution
y belongs to &z. Hence, for the sequence {wy} we can find a sequence of controls
{vx} such that the corresponding solutions {y,} is in L2(Q).

Let wy, — win & and y, € A(wg), yr — v in L2(Q). By the regularity of the solutions it
follows that

vy = v weakly in L2(O x (0,T)),
Yk —y weakly in L2(0, T; H5(R)) N H(O, T; H7H(Q)),
Ve =y strongly in L?(Q).

We obtain y € L2(Q) and, letting k — +oco in the system

O = By + [ K(x.0,0W4(0,8)d0 = vilo, (x,8) € O
yr =0, ! x,t)ex
Yr(x,0) = yo(x), X € Q.
we can conclude that A(w) = y. Thus the map A is upper hemicontinuous.
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Proof of the theorem (conclusion)

Let S be a non-empty, compact and convex subset of the Euclidean space
RN, Let ¢ : S — 2° be an upper hemicontinuous set-valued function on S
with the property that ¢(x) is non-empty, closed, and convex for all x € S.
Then ¢ has a fixed point.

S. Kakutani, A generalization of Brouwers fixed point theorem, Duke Math. J., 1941,

According from the previous discussion, all the assumptions of Kakutani's fixed point
theorem are fulfilled and there is at least one y € &z such that y = A(y).

By the definition of A, there exists at least one pair (u, y) satisfying the conditions of
the Theorem.

We have y(x, T) = O in Q due to the definition of £ and the weight function g.

UPPER HEMICONTINUITY:

Amap A : A — Bis said to be upper hemicontinuous at a point x if for any
open neighborhood V of A(x) there exists a neighborhood U of x such that,

forally € U, A(y) C V.
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On the necessity of the hypothesis (#)

Hypotheses on the kernel K more general that just being bounded are nec-
essary. Otherwise, it is possible to provide counterexamples to the unique
continuation for the solution of the adjoint equation.

Consider a function u with the following properties:

e UeCF(O,1)

e u(x) =0 for
x € (a,b) C (0,1),

e UZ0in(0,1).
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On the necessity of the hypothesis (#)

Decomposition in the eigenfunctions of the Laplacian

ueL?(0,1) = u(x) = crer(x)
k>1

With ¢ (x) = v2sin(kmx) and ¢, = (U, ¢r)2(0,1)

Moreover, for O < A < 7 and up to a change of variables of the type u + ou, o > 0O,

we have
> (®#r?-2%) g =1.
k>1
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essity of the hypothesis ()

p0) =3 (Kr? = 52) crge().

k>1

e —Uxx — Mu = pis verified in the sense of distributions;
e p € C&(0,1) with p(x) = O'in (a, b) (since u has these properties);
o fé pudx =1
Therefore, u satisfies the non-local elliptic problem
{uxx + /1 K(x,0)u(f) d = X°u, x e (0,1)
u(0) = u?l) =0

with K(x, 0) = p(x)p(0). Furthermore, by assumption u(x) = O for x € (a,b) C (0,1)
but u # O elsewhere.
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EXTENSION TO SEMILINEAR
PROBLEMS



Semilinear problems

The approach previously presented can be combined with a by now standard method-
ology to deduce similar controllability results for the semilinear heat equation with
globally Lipschitz nonlinearity

yi— By + / K(x,0,)y(6,1)d = F(y) + vxlo, (1) € Q
Q

y =0, xex D

y(x,0) = yo(x), x € Q.

In fact, it is possible to prove the following result.

Assume f € CL(R) is globally Lipschitz with f(O) = O. Then, given any

Yo € L2(Q) and T > O there exists a control function v € L2(O x (0, T)) such
that the solution to (1) satisfies y(x, T) = O.
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Proof (sketch)

The proof of this result is by now standard and uses well-known results on the
controllability of nonlinear systems

C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proc.
Roy. Soc. Edinburgh Sect. A, 1995.

L. A Fernandez and E. Zuazua, Approximate controllability for the semilinear heat equation involv-
ing gradient terms, J. Optim. Theory Appl., 1999.

E. Fernandez-Cara, Null controllability of the semilinear heat equation, ESAIM: COCV, 1997.
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Proof (ske

Since f € CY(R), we can introduce the function g : R — R defined as

fts) .
9(s) = et ifs#0
f'(0), ifs=0.

Then, for all € L2(Q) we can consider the following linearized version of (1)

Vi Dy + / K(x,0,(0,5)d0 = g(n)y + Vi, (x,1) € Q
Q

y=0, (x,t)yex

y(x,0) = yo(x), x €.

2
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Proof (sketch)

The continuity of f and the density of C§°(Q) in L2(Q) allows to see that g(n) €

L>°(Q) for all y € L?(Q). Therefore, arguing as before, we can obtain the following
observability estimate

1 2 2
(X, O)ll 2 < Crexp [ce (1 + 3 4TIl + g% + zc)} /.
Ox(0,T)

where g is the solution to the adjoint system associated to (2).

This in particular implies that (2) is null-controllable in time T > O with a control
vy € L2(O x (0, T)) satisfying
IVallzox(o,m) < \/E”yO”LZ(Q) , Vnel¥Q),

where with C we indicate the constant in the above inequality.
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Proof (sketch)

Consider the map A : L2(Q) — L?(Q) defined by An = y,,, where y,, is the solution to
(2) corresponding to the control v;,.

Due to the regularity of the solution y, we deduce that A maps L2(Q) into a bounded
setof L2(0, T, H5 () N HY(O, T,H~1(R)).

This space being compactly embedded in L2(Q), there exists a fixed compact set W
such that A(L2(Q)) c W.

Moreover, it can be readily verified that A is also continuous from L2(Q) into L2(Q).

In view of that, applying the Schauder fixed point theorem and proceeding as before
the result follows immediately.

33/37



Proof (sketch)

Itis possible to address also more general versions of (1) in which the nonlinearity is
included in the non-local term, that is, problems in the form

Vi— Dy + /Q K, 0,Df [y(6,8)] d = vip, (x,1) € Q

y=0, xtex
y(Xvo):yO(X)v XGQ’
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Proof (sketch)

For doing that, we just need to prove a Carleman estimate for the linearized adjoint
system corresponding to (3), which reads as

—ot— Do +gn) [ KOx00(0.900 =0, (x0) €0
Q

=0, (x,t)yex
QO(X,O) = SOT(X)v X €9,

to obtain from there an observability inequality for (4) and conclude by following the
same argument as before.
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Proof (sketch)

The proof of such Carleman inequality is a straightforward adaptation of our previous results.
Indeed, it is sufficient to notice that, in this case,

()< C |:s3)\4 // efzsa§3|ga|2dxdt+// o2
0x(0,T) Q

<c |:53)\4 // e~ 3o didlt + ”gHio // o—25a
ox(0,T) o

since g(n) € L°°(Q). From here, the remaining of the proof is the same as we did before, with
the only change that we now have to choose

2
g(n)/QK(O,x, t)w(e,t)cw’ dxdt}

2
/K(e,x, t)ap(f),t)df)‘ dxdt] ,
Q

2
s> 0 [r+ 7+ (Kllgll..) 3 Tz} 7

with g3 a positive constant only depending on Q and O. In view of that, the observability estimate
that we obtain is in the form

1 2
o, O)l2q) < G [c2 (14 14T (Klal) 3 )] [ toPasat o
T Ox(0,7)

From (5), the null controllability in time T > O for (4) follows immediately by means of a classical
argument.
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