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PART V: complementary topics
LECTURE 16: PDE with non-local integral kernels



NULL CONTROLLABILITY FOR
NON-LOCAL HEAT EQUATIONS
WITH INTEGRAL KERNEL



Non-local heat equation


yt −∆y +

∫
Ω
K(x, θ, t)y(θ, t)dθ = v1O, (x, t) ∈ Q

y = 0, (x, t) ∈ Σ

y(x,0) = y0(x), x ∈ Ω.

• Ω ⊂ Rd bounded domain of class C2 .

• Q := Ω× (0, T), T > 0.

• Σ := ∂Ω× (0, T).

• K = K(x, θ, t) ∈ L∞(Ω× Ω× (0, T)).

• y0 ∈ L2(Ω), v ∈ L2(O × (0, T)).

There exists a unique solution y ∈ L2(0, T;H1
0(Ω)) ∩ H1(0, T;H−1(Ω)), which satisfies

classical energy estimates.
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Non-local heat equation

We are interested in proving the null controllability of the problem under analysis.

EXISTING RESULTS: it is known that the system is null controllable at least in the following situ-
ations cases.

• Under analyticity assumptions on the non-local potential, one can exploit unique continu-
ation properties and use compactness-uniqueness arguments.

E. Fernández-Cara, Q. Lü and E. Zuazua, Null controllability of linear heat and wave equa-
tions with nonlocal spatial terms, SICON, 2016. In this framework, also coupled systems
have been treated

P. Lissy and E. Zuazua, Internal controllability for parabolic systems involving analytic nonlo-
cal terms, Chin. Ann. Math. Ser. B, 2018.

• When the problem is one-dimensional and the kernel is time-independent and in sepa-
rated variables, the controllability follows employing spectral analysis techniques.

S. Micu and T. Takahashi, Local controllability to stationary trajectories of a Burgers equation
with nonlocal viscosity, JDE, 2018.

• Under suitable time-decay assumptions for the integral kernel.

U. Biccari and V. Hernández-Santamaría, Null controllability of linear and semilinear nonlo-
cal heat equations with an additive integral kernel, SICON, 2018

• When the kernel is constant, using the so-called shadowmodel.

V. Hernández-Santamaría and K. Le Balc’h, Local null-controllability of a nonlocal semilinear
heat equation, Appl. Math. Optim., 2021.
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Main result

By means of a Carleman approach, we can extend the above mentioned results by
considering a problem in any space dimension and by weakening the assumptions
on the kernel.

Theorem

Suppose that the kernel K = K(x, θ, t) ∈ L∞(Ω× Ω× (0, T)) satisfies

K =: sup
(x,t)∈Q

[
exp

(
εA

t(T − t)

)∫
Ω
|K(x, θ, t)|dθ

]
< +∞, (H)

for any ε > 0, where A is a positive constant. Then, given y0 ∈ L2(Ω) and
T > 0, there exists a control function v ∈ L2(O×(0, T)) such that y(x, T) = 0.

U. Biccari and V. Hernández-Santamaría,Null controllability of linear and semilinear non-
local heat equations with an additive integral kernel, SICON, 2018
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Observability inequality

Theorem

There exist two positive constants C1 and C2, depending only on the domain
Ω, such that

‖ϕ(x,0)‖L2(Ω) ≤
C1
T

exp

[
C2
(
1 +K

2
3 +

1

T

)]∫ T

0

∫
O
|ϕ|2 dx dt

holds for any solution of the adjoint system
−ϕt −∆ϕ+

∫
Ω
K(x, θ, t)ϕ(θ, t)dθ = 0, (x, t) ∈ Q

ϕ = 0, (x, t) ∈ Σ

ϕ(x, T) = ϕT(x), x ∈ Ω.

with ϕT ∈ L2(Ω) and K satisfying (H).
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Carleman estimate

Lemma

Let O ⊂⊂ Ω be a nonempty open set. Then, there exists η0 ∈ C2(Ω) such
that η0 > 0 in Ω, η0 = 0 on ∂Ω and |∇η0| > 0 in Ω \ O.

For a parameter λ > 0, we define

σ(x) := e
4λ
∥∥∥η0∥∥∥

∞ − e
λ
(
2
∥∥∥η0∥∥∥

∞
+η0(x)

)
,

and we introduce the weight functions

α(x, t) :=
σ(x)

t(T − t)
, ξ(x, t) :=

e
λ
(
2
∥∥∥η0∥∥∥

∞
+η0(x)

)
t(T − t)

.

Moreover, we use the notation

σ+ := max
x∈Ω

σ = e
4λ
∥∥∥η0∥∥∥

∞ − e
2λ
∥∥∥η0∥∥∥

∞ , σ− := min
x∈Ω

σ = e
4λ
∥∥∥η0∥∥∥

∞ − e
3λ
∥∥∥η0∥∥∥

∞

I(·) := sλ2
∫
Q
e−2sαξ|∇ · |2 dx dt + s3λ4

∫
Q
e−2sαξ3| · |2 dx dt.
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Carleman estimate (cont.)

Proposition

There exist positive constants C, s1 and λ1 such that, for any s ≥ s1, λ ≥ λ1,
F ∈ L2(Q) and zT ∈ L2(Ω), the solution z to

zt + ∆z = F, (x, t) ∈ Q
z = 0, (x, t) ∈ Σ

z(x, T) = zT(x), x ∈ Ω

satisfies

I(z) ≤ C
[
s3λ4

∫
O×(0,T)

e−2sαξ3|z|2 dx dt +

∫
Q
e−2sα|F|2 dx dt

]
.

E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems
and applications to controllability, SICON, 2006
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Carleman estimate (cont.)

Proposition

Let ϕT ∈ L2(Ω) and assume that the kernel K satisfies (H). Then, there exist
positive constants C, λ1 and %2, only depending on Ω and O, such that the
solutionϕ of the adjoint system corresponding to the initial datumϕT satisfies

I(ϕ) ≤ Cs3λ4
∫
O×(0,T)

e−2sαξ3|ϕ|2 dx dt,

for any λ ≥ λ0 and any s ≥ %2
(
T + T2 +K

2
3 T2

)
.
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Preliminary result

Proposition

For any fixed λ > 0 and s > 1 it holds

exp

(
−

(1 + s)σ−

t(T − t)

)
< exp

(
−

sσ+

t(T − t)

)
,

where, we recall, σ− and σ+ are defined as

σ+ := max
x∈Ω

σ = e
4λ
∥∥∥η0∥∥∥

∞ − e
2λ
∥∥∥η0∥∥∥

∞

σ− := min
x∈Ω

σ = e
4λ
∥∥∥η0∥∥∥

∞ − e
3λ
∥∥∥η0∥∥∥

∞ .
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Proof

From the definitions of σ− and σ+ we have σ− = F(λ)σ+, with

F(λ) :=
e
2λ
∥∥∥η0∥∥∥

∞ − e
λ
∥∥∥η0∥∥∥

∞

e2λ‖η
0‖∞ − 1

.

F(λ) is amonotone increasing function, verifying

lim
λ→+∞

F(λ) = 1 and lim
λ→0+

F(λ) = 1/2

0 2 4 6 8 10

0.5

1

F(λ)

asymptote F(λ) = 1

Moreover, since s > 1 we have (1 + s)F(λ) > 2F(λ) > 1.
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Proof (cont.)

Multiplying by σ+, and since [t(T − t)]−1 > 0, we have

σ+[t(T − t)]−1
(
1− (1 + s)F(λ)

)
< 0.

Hence

exp

(
σ+

t(T − t)

(
1− (1 + s)F(λ)

))
< 1

We therefore conclude

exp

(
sσ+

t(T − t)

)
< exp

(
(1 + s)F(λ)σ+

t(T − t)

)
= exp

(
(1 + s)σ−

t(T − t)

)
.

which immediately gives

exp

(
−

(1 + s)σ−

t(T − t)

)
< exp

(
−

sσ+

t(T − t)

)
.

11 / 37



Proof of the Carleman estimate

We begin by applying the Carleman estimate of Fernández-Cara and Guerrero to ϕ, obtaining,

for any λ ≥ λ1 and any s ≥ %1
(
T + T2

)
,

I(ϕ) ≤ C
[
s3λ4

∫
O×(0,T)

e−2sα
ξ
3|ϕ|2 dx dt +

∫
Q
e−2sα

∣∣∣∣∫
Ω

K(θ, x, t)ϕ(θ, t) dθ

∣∣∣∣2 dx dt

]
.

Set the parameter λ = λ1 to a fixed value sufficiently large. We have∣∣∣∣∫
Ω

K(θ, x, t)ϕ(θ, t) dθ

∣∣∣∣ =

∣∣∣∣∣
∫

Ω

e
σ−

t(T−t) K(θ, x, t)e
− σ−

t(T−t) ϕ(θ, t) dθ

∣∣∣∣∣
≤
[(∫

Ω

e
2σ−
t(T−t) |K(θ, x, t)|2 dθ

)(∫
Ω

e
− 2σ−

t(T−t) |ϕ(x, θ)|2 dθ
)] 1

2
.

Since λ has been fixed, σ− (and therefore σ+) is a constant depending only on Ω and O. Re-
placing into the first inequality we get

I(ϕ) ≤ C
[
s3λ4

∫
O×(0,T)

e−2sα
ξ
3|ϕ|2 dx dt

+K2
∫
Q
e−2sα(x,t)

(∫
Ω

e
− 2σ−

t(T−t) |ϕ(θ, t)|2 dθ
)

dx dt

]
.
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Proof of the Carleman estimate (cont.)

Using Fubini’s Theorem we get∫
Q
e−2sα(x,t)

(∫
Ω

e
− 2σ−

t(T−t) |ϕ(θ, t)|2 dθ
)

dxdt =

∫
Q
e
− 2σ−

t(T−t) |ϕ(θ, t)|2
(∫

Ω

e−2sα(x,t) dx
)
dθdt.

Moreover, we have ∫
Ω

e−2sα(x,t) dx ≤ |Ω|e
− 2sσ−

t(T−t) .

Hence, we can compute∫
Q
e
− 2σ−

t(T−t) |ϕ(θ, t)|2
(∫

Ω

e−2sα(x,t) dx
)

dθ dt ≤ C
∫
Q
e
− 2(1+s)σ−

t(T−t) |ϕ(θ, t)|2 dθ dt

≤ C
∫
Q
e
− 2sσ+

t(T−t) |ϕ(θ, t)|2 dθ dt

≤ C
∫
Q
e−2sα(θ,t)|ϕ(θ, t)|2 dθ dt,

Putting all together, we get

I(ϕ) ≤ C
[
s3λ4

∫
O×(0,T)

e−2sα
ξ
3|ϕ|2 dx dt +K2

∫
Q
e−2sα(x,t)|ϕ(x, t)|2 dx dt

]
.
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Proof of the Carleman estimate (conclusion)

Recalling the definition of I(ϕ), we find

sλ2
∫
Q
e−2sαξ|∇ϕ|2 dx dt + s3λ4

∫
Q
e−2sαξ3|ϕ|2 dx dt

− CK2
∫
Q
e−2sα|ϕ|2 dx dt ≤ Cs3λ4

∫
O×(0,T)

e−2sαξ3|ϕ|2 dx dt.

We have the estimate

ξ(t)−1 ≤ CT2,

which yields

sλ2
∫
Q
e−2sαξ|∇ϕ|2 dx dt + s3λ4

∫
Q
e−2sαξ3|ϕ|2 dx dt

≤ Cs3λ4
∫
O×(0,T)

e−2sαξ3|ϕ|2 dx dt,

for all s > CK
2
3 T2 .
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A remark

Remark

According to hypothesis (H), the kernel K should behave like

K(·, ·, t) ∼ e
−A(s,λ)ε

t(T−t) ,

i.e. it should decay exponentially as t goes to 0+ and T− . This is theminimum
decay that we shall ask for the kernel.
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Proof of the observability inequality
From the Carleman estimate:

s3
∫
Q
e−2sα

ξ
3|ϕ|2 dx dt ≤ Cs3

∫
O×(0,T)

e−2sα
ξ
3|ϕ|2 dx dt.

Due to the definition of the weight function α, if we choose s ≥ CT2 , we have:

• s3e−2sα
ξ
3 ≤ Cs3T−6e

−Cs
T2 ≤ C(T) • s3e−2sα

ξ
3 ≥ Ce

− Cs
T2 , if t ∈

[
T

4
,
3

4
T
]
.

Therefore, we obtain ∫ 3
4 T

T
4

∫
Ω

|ϕ|2 dx dt ≤ Ce
Cs
T2

∫
O×(0,T)

|ϕ|2 dx dt.

We multiply the adjoint equation by ϕ and integrate by parts. From the fact that K ∈ L∞(Ω ×
Ω× (0, T)) and using Fubini’s Theorem, we have

−
1

2

d

dt

∫
Ω

|ϕ(x, t)|2dx +

∫
Ω

|∇ϕ(x, t)|2dx ≤ C
(∫

Ω

ϕ(x, t) dx
)2

.

Using Jensen’s inequality and Gronwall’s Lemma, we deduce∫
Ω

|ϕ(x,0)|2dx ≤ C̃
∫

Ω

|ϕ(x, t)|2, t ∈ [0, T].

Hence: C̃
∫ 3

4 T

T
4

∫
Ω

|ϕ(x, t)|2 dx dt ≥
∫ 3

4 T

T
4

∫
Ω

|ϕ(x,0)|2 dx dt =
T

2
‖ϕ(x,0)‖2

L2(Ω)
.
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Removing the decay assumption at t = 0

Remark
We are allowed to consider kernels K which does not decay at t = 0:

M := sup
(x,t)∈Q

[
exp

(
B

T − t

)∫
Ω
|K(x, θ, t)|dθ

]
< +∞.

This requires a modification in the Carleman weight

0 T

0

K(·, ·, t)

α 7→ β :=
e
4λ
∥∥∥η0∥∥∥

∞ − e
λ
(
2
∥∥∥η0∥∥∥

∞
+η0

)
`(t)

ξ 7→ γ :=
e
λ
(
2
∥∥∥η0∥∥∥

∞
+η0

)
`(t)

`(t) :=

{
T2/4, t ∈ [0, T/2]

t(T − t), t ∈ [T/2, T]
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Removing the decay assumption at t = 0

Theorem

Let T > 0 and assume that K satisfies

M := sup
(x,t)∈Q

[
exp

(
B

T − t

)∫
Ω
|K(x, θ, t)|dθ

]
< +∞.

Then, for any y0 ∈ L2(Ω), there exists a control function

v ∈ L2(O × (0, T))

such that the associated solution y satisfies y(x, T) = 0.
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Proof (preliminaries)

Proposition

There exist a positive constants C, depending on T , s and λ, such that, for all
F ∈ L2(Q) and zT ∈ L2(Ω), the solution z to

zt + ∆z = F, (x, t) ∈ Q
z = 0, (x, t) ∈ Σ

z(x, T) = zT(x), x ∈ Ω

satisfies

‖z(x,0)‖2L2(Ω)
+

∫
Q
e−2sβγ3|z|2 dxdt

≤ C
[∫
O×(0,T)

e−2sβγ3|z|2 dx dt +

∫
Q
e−2sβ |F|2 dx dt

]
.

E. Fernández-Cara, S. Guerrero, O. Y. Imanuvilov and J.-P. Puel, Local exact controlla-
bility of the Navier-Stokes system, J. Math. Pures Appl., 2004.
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Proof (preliminaries)

Proposition

Let T > 0 and suppose that esβ f ∈ L2(Q). Then, for any y0 ∈ L2(Ω) there exists a
control function v ∈ L2(O × (0, T)) such that the associated solution to

yt −∆y = f + v1O, (x, t) ∈ Q
y = 0, (x, t) ∈ Σ

y(x,0) = y0(x), x ∈ Ω

is in the space E :=
{
y : esβy ∈ L2(Q)

}
. Moreover, there exists a positive constant

C = C(T, s, λ) such that the following estimate holds

∫
O×(0,T)

e2sβγ−3|v|2 dx dt +

∫
Q
e2sβ |y|2 dx dt ≤ C

(
‖y0‖2L2(Ω)

+
∥∥∥esβ f∥∥∥2

L2(Q)

)
.

• y ∈ E ⇒
∫
Q
e2sβ |y|2 dx dt < +∞.

Since the weight β blows up as t→ T− , this yields y(x, T) = 0.
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Proof of the theorem

We employ a fixed point strategy. For R > 0, we define

ER :=

{
w ∈ E :

∥∥∥esβw∥∥∥
L2(Q)

≤ R
}
,

which is a bounded, closed and convex subset of L2(Q).

For any w ∈ ER, we us consider the control problem
yt −∆y +

∫
Ω
K(x, θ, t)w(θ, t)dθ = v1O, (x, t) ∈ Q

y = 0, (x, t) ∈ Σ

y(x,0) = y0(x), x ∈ Ω.

We have that∫
Q

(
esβ

∫
Ω
K(x, θ, t)w(θ, t)dθ

)2

dxdt ≤M2
∫
Q
e2sβw2e−2sβ dxdt ≤M2R2.

Therefore, the above system is null controllable at time T .
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Proof of the theorem (cont.)

In order to obtain the same controllability result for w = y, we apply Kakutani’s fixed
point theorem.

For any w ∈ ER, we define the multi-valued map Λ : ER 7→ 2E such that

Λ(w) =

{
y ∈ E : ∃ v s. t.

∫
O×(0,T)

e2sβγ−3|v|2 dx dt ≤ C
(
R2 + ‖y0‖2L2(Ω)

)
.

}

Λ(w) is a nonempty, closed and convex subset of L2(Q). Moreover:∫
O×(0,T)

e2sβγ−3|v|2 dx dt +

∫
Q
e2sβ |y|2 dx dt

≤ C

[
‖y0‖2L2(Ω)

+

∫
Q
e2sβ

(∫
Ω
K(x, θ, t)y(θ, t)dθ

)2

dxdt

]
≤ C

(
M2R2 + ‖y0‖2L2(Ω)

)
≤ CR2,

for R large enough. Hence, up to a multiplicative constant we have Λ(ER) ⊂ ER .
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Proof of the theorem (cont.)

Let {wk} be a sequence in ER . Then the corresponding solutions {yk} are bounded
in L2(0, T;H1

0(Ω)) ∩ H1(0, T;H−1(Ω)) and Λ(ER) is compact in L2(Q) by Aubin-Lions’
Theorem.

For any w ∈ ER, we have at least one control v such that the corresponding solution
y belongs to ER . Hence, for the sequence {wk} we can find a sequence of controls
{vk} such that the corresponding solutions {yk} is in L2(Q).

Let wk → w in ER and yk ∈ Λ(wk), yk → y in L2(Q). By the regularity of the solutions it
follows that

vk ⇀ v weakly in L2(O × (0, T)),

yk ⇀ y weakly in L2(0, T;H1
0(Ω)) ∩ H1(0, T;H−1(Ω)),

yk → y strongly in L2(Q).

We obtain y ∈ L2(Q) and, letting k→ +∞ in the system
(yk)t −∆yk +

∫
Ω
K(x, θ, t)wk(θ, t)dθ = vk1O, (x, t) ∈ Q

yk = 0, (x, t) ∈ Σ

yk(x,0) = y0(x), x ∈ Ω.

we can conclude that Λ(w) = y. Thus the map Λ is upper hemicontinuous.
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Proof of the theorem (conclusion)

Theorem

Let S be a non-empty, compact and convex subset of the Euclidean space
RN . Let φ : S → 2S be an upper hemicontinuous set-valued function on S
with the property that φ(x) is non-empty, closed, and convex for all x ∈ S.
Then φ has a fixed point.

S. Kakutani, A generalization of Brouwers fixed point theorem, Duke Math. J., 1941.

According from the previous discussion, all the assumptions of Kakutani’s fixed point
theorem are fulfilled and there is at least one y ∈ ER such that y = Λ(y).

By the definition of Λ, there exists at least one pair (u, y) satisfying the conditions of
the Theorem.

We have y(x, T) = 0 in Ω due to the definition of E and the weight function β.

UPPER HEMICONTINUITY:

A map Λ : A → B is said to be upper hemicontinuous at a point x if for any
open neighborhood V of Λ(x) there exists a neighborhood U of x such that,
for all y ∈ U, Λ(y) ⊂ V .
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On the necessity of the hypothesis (H)

Remark

Hypotheses on the kernel K more general that just being bounded are nec-
essary. Otherwise, it is possible to provide counterexamples to the unique
continuation for the solution of the adjoint equation.

Consider a function u with the following properties:

• u ∈ C∞0 (0, 1);

• u(x) = 0 for
x ∈ (a,b) ⊂ (0, 1);

• u 6≡ 0 in (0, 1).
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On the necessity of the hypothesis (H)

Decomposition in the eigenfunctions of the Laplacian

u ∈ L2(0, 1) ⇒ u(x) =
∑
k≥1

ckφk(x)

with φk(x) =
√
2 sin(kπx) and ck = 〈u, φk〉L2(0,1)

Moreover, for 0 < λ < π and up to a change of variables of the type u 7→ σu, σ > 0,
we have ∑

k≥1

(
k2π2 − λ2

)
c2k = 1.
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On the necessity of the hypothesis (H)

p(x) =
∑
k≥1

(
k2π2 − λ2

)
ckφk(x).

• −uxx − λ2u = p is verified in the sense of distributions;

• p ∈ C∞0 (0, 1) with p(x) = 0 in (a,b) (since u has these properties);

•
∫ 1
0 pu dx = 1.

Therefore, u satisfies the non-local elliptic problem−uxx +

∫ 1

0
K(x, θ)u(θ)dθ = λ2u, x ∈ (0, 1)

u(0) = u(1) = 0

with K(x, θ) = p(x)p(θ). Furthermore, by assumption u(x) = 0 for x ∈ (a,b) ⊂ (0, 1)
but u 6≡ 0 elsewhere.
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EXTENSION TO SEMILINEAR
PROBLEMS



Semilinear problems

The approach previously presented can be combinedwith a by now standardmethod-
ology to deduce similar controllability results for the semilinear heat equation with
globally Lipschitz nonlinearity


yt −∆y +

∫
Ω
K(x, θ, t)y(θ, t)dθ = f(y) + vχ1O, (x, t) ∈ Q

y = 0, (x, t) ∈ Σ

y(x,0) = y0(x), x ∈ Ω.

(1)

In fact, it is possible to prove the following result.

Theorem

Assume f ∈ C1(R) is globally Lipschitz with f(0) = 0. Then, given any
y0 ∈ L2(Ω) and T > 0 there exists a control function v ∈ L2(O× (0, T)) such
that the solution to (1) satisfies y(x, T) = 0.
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Proof (sketch)

The proof of this result is by now standard and uses well-known results on the
controllability of nonlinear systems

C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proc.
Roy. Soc. Edinburgh Sect. A, 1995.

L. A. Fernández and E. Zuazua, Approximate controllability for the semilinear heat equation involv-
ing gradient terms, J. Optim. Theory Appl., 1999.

E. Fernández-Cara, Null controllability of the semilinear heat equation, ESAIM: COCV, 1997.
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Proof (sketch)

Since f ∈ C1(R), we can introduce the function g : R→ R defined as

g(s) :=


f(s)

s
, if s 6= 0

f ′(0), if s = 0.

Then, for all η ∈ L2(Q) we can consider the following linearized version of (1)


yt −∆y +

∫
Ω
K(x, θ, t)y(θ, t)dθ = g(η)y + v1O, (x, t) ∈ Q

y = 0, (x, t) ∈ Σ

y(x,0) = y0(x), x ∈ Ω.

(2)
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Proof (sketch)

The continuity of f and the density of C∞0 (Q) in L2(Q) allows to see that g(η) ∈
L∞(Q) for all η ∈ L2(Q). Therefore, arguing as before, we can obtain the following
observability estimate

‖ϕ(x,0)‖L2(Ω) ≤ C1 exp

[
C2

(
1 +

1

T
+ T ‖g‖∞ + ‖g‖

2
3∞ +K

2
3

)]∫∫
O×(0,T)

|ϕ|2 dxdt,

where ϕ is the solution to the adjoint system associated to (2).

This in particular implies that (2) is null-controllable in time T > 0 with a control
vη ∈ L2(O × (0, T)) satisfying

‖vη‖L2(O×(0,T) ≤
√
C ‖y0‖L2(Ω) , ∀ η ∈ L2(Q),

where with C we indicate the constant in the above inequality.
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Proof (sketch)

Consider the map Λ : L2(Q)→ L2(Q) defined by Λη = yη , where yη is the solution to
(2) corresponding to the control vη .

Due to the regularity of the solution y, we deduce that Λ maps L2(Q) into a bounded
set of L2(0, T,H1

0(Ω)) ∩ H1(0, T,H−1(Ω)).

This space being compactly embedded in L2(Q), there exists a fixed compact setW
such that Λ(L2(Q)) ⊂W .

Moreover, it can be readily verified that Λ is also continuous from L2(Q) into L2(Q).

In view of that, applying the Schauder fixed point theorem and proceeding as before
the result follows immediately.
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Proof (sketch)

It is possible to address also more general versions of (1) in which the nonlinearity is
included in the non-local term, that is, problems in the form


yt −∆y +

∫
Ω
K(x, θ, t)f

[
y(θ, t)

]
dθ = v1O, (x, t) ∈ Q

y = 0, (x, t) ∈ Σ

y(x,0) = y0(x), x ∈ Ω,

(3)
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Proof (sketch)

For doing that, we just need to prove a Carleman estimate for the linearized adjoint
system corresponding to (3), which reads as


−ϕt −∆ϕ+ g(η)

∫
Ω
K(θ, x, t)ϕ(θ, t)dθ = 0, (x, t) ∈ Q

ϕ = 0, (x, t) ∈ Σ

ϕ(x,0) = ϕT(x), x ∈ Ω,

(4)

to obtain from there an observability inequality for (4) and conclude by following the
same argument as before.
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Proof (sketch)

The proof of such Carleman inequality is a straightforward adaptation of our previous results.
Indeed, it is sufficient to notice that, in this case,

I(ϕ) ≤ C

[
s3λ4

∫∫
O×(0,T)

e−2sα
ξ
3|ϕ|2 dx dt +

∫∫
Q
e−2sα

∣∣∣∣g(η)

∫
Ω

K(θ, x, t)ϕ(θ, t) dθ

∣∣∣∣2 dx dt

]

≤ C

[
s3λ4

∫∫
O×(0,T)

e−2sα
ξ
3|ϕ|2 dx dt + ‖g‖2∞

∫∫
Q
e−2sα

∣∣∣∣∫
Ω

K(θ, x, t)ϕ(θ, t) dθ

∣∣∣∣2 dx dt

]
,

since g(η) ∈ L∞(Q). From here, the remaining of the proof is the same as we did before, with
the only change that we now have to choose

s ≥ %3
[
T + T2 +

(
K‖g‖∞

) 2
3 T2

]
,

with %3 a positive constant only depending onΩ andO. In view of that, the observability estimate
that we obtain is in the form

‖ϕ(x,0)‖L2(Ω)
≤ C1 exp

[
C2

(
1 +

1

T
+ T

(
K‖g‖∞

) 2
3

)]∫∫
O×(0,T)

|ϕ|2 dxdt. (5)

From (5), the null controllability in time T > 0 for (4) follows immediately by means of a classical
argument.
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