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EXPONENTIAL DECAY FOR THE SEMILINEAR WAVE
EQUATION WITH LOCALIZED DAMPING IN
UNBOUNDED DOMAINS ()

By E. ZUAZUA

AnSTRACT. — We consider the damped semilinear wave equation

t,—Autan+f(t)+a(x)u,=0 in R*%(0, )

with a>0, aeL¥ (R"), a(x)=a,>0 as |\| — +co and feC!(R) satisfying f(s)s=0 for every seR and the
usual growth conditions at infinity.

The exponential decay of the energy of every solution is proved by assuming either that

(i) fis globally Lipschitz and that either /" (s) has some limits as 5 goes to + oo and — oo or the limit of
f{9)fs as |s| - + oo exists
or
(ii) fis superlinear.

The method of proof is based on multiplier techniques and on unique continuation results that allow us to
estimate the global energy of any solution in terms of the “energy concentrated al infinity”.

Analogous results may be proved for equations in unbounded domains, when the damping term is effective
both at infinity and on a neighbourhood of the boundary of the domain.

RESUME. — On considére I'équation des ondes semilinéaire dissipative suivante

ty—Ant+oau+ () +a(xyy,=0 in R"x (0, wx)

avee a>0, ae LY (R"), a(x)Z 4y >0 lorsque |x|— +oo et feC? (R) vérifiant f(s)s=0 pour tout sR et les
conditions de croissance d P'infini habituelles.

On démontre la décroissance exponenticlle de I'énergie des solutions lorsque 1 — + 20 en supposant que soit

(i) fest globalement Lipschitz et soit la limite de /* (s} existe lorsque s — + o0 el s — — oo ou bien la limite
de f(s)/s existe lorsque |s| — + oo
ou bien

(ii) f est surlinéaire.

La méthode de démonstration est basée sur des techniques de multiplicateurs et un principe de continuation
unique qui permettent d’estimer 'énergic totale des solutions en fonction de «’énergic concentrée i I'infini».

(') Supported by Direccion General de Investigacion Cientifica y Técnica (MEC-Espafia), Project
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514 E. ZUAZUA

On démontre des résultats analogues pour I'équation des ondes dans des domaines non bornés en supposant
que la dissipation est effective d I'infini et sur un voisinage du bord du domaine.

1. Introduction

This paper is devoted to the study of the exponential decay of solutions of the following
semilinear damped wave equation:

1.1 { u,— Autoutf@+a(x)u,=0 in R*x(0, x0)

u(0)=u,eH' (R"), u, (0)=1u, e L* (R").

We assume

(1.2) aeL?(R", a(x)Za,>0 acein Q=RN\B;={|x|ZR}

for some R>0 where B,={ xeR":|x|<R},

(1.3) o>0; f(s)s=0foreveryseR,
a /e C'(R) and there exist some constants C>0, p> 1, (n—2) p<nsuch that
’ f(5)=f(s)|SCU+ sy [P 52" |5, —s,| forevery si,5,€R.

Condition (1.2) ensures that the damping term « (x) u, is effective on the set ;. From
(1.4) we deduce that preblem (1.1) is well pased in H'(R") =% L*(R"). Hypothesis (1.3)
ensures the coercivity of the energy

u(x,

(1.5 E(n= % f [|Vulx O +]ux O +a 2]({'Y+_[ F(u(x, ) dx
= JR" r"

with

(1.6) F(:)=JV:‘}"(S)ds forall zeR.
{

)

Therefore, under conditions (1.2)-(1,4) problem (1.1) has a unique solution in
C([0. 0); HY(R") N C ([0, o0); L? (R") and the energy E (1) is a non increasing function
of the time variable ¢. More precisely,

(1.7 E(tz)—E(11)=—jzf a(x)|u, (x, P dx dr forall ,>1,20.

ty n"
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EXPONENTIAL DECAY FOR THE SEMILINEAR WAVE EQUATION... 515

The aim of this paper is to give sufficient conditions on f implying the existence of
some constants C> 1, y> 0 such that

(1.8) E(N=Z=CE(0)e™ forall t=0and forevery solutionof (1.1).

This problem is by now well understood in which concerns the linear (f=0) wave
equation on a bounded domain © with Dirichlet or Neumann homogeneous boundary
conditions, In that case, by adapting the methods by C. Bardos, G. Lebeau and
J. Rauch ([2], [3]) the exponential decay may be proved when a(x)Za,>0 on some open
subset w of © which satisfies the following geometric control condition: there exists some
T>0 such that every ray of geometric optics intersects the region w x (0, T) (C. Bardos
[1]. see also J. Rauch and M. Taylor [8]). Always in the linear context and in the
particular case where @ is a neighbourhood of the boundary of Q, this result may be
proved by using multiplier techniques (¢f. J.-L. Lions [7], Chap. VII, and A. Haraux [5]).

In [11], by using multiplier techniques, we have proved the exponential decay for
solutions of (1.1) in bounded domains with damping in a neighbourhood of the boundary
for a large class of nonlinearities and various boundary conditions. In the present paper
we extend these results to unbounded domains. ¢

Hypothesis (1.2) is natural for the exponential decay of solutions in all of R”. Indeed,
if (1.2) is not satisfied, a ray of geometric optics may escape to the damping effect and
the exponential decay may fail even in the simplest case where /=0.

As far as we know, the only positive result for the exponential decay of solutions of
(1.1) that exists concerns the simplest situation where

(1.9 a(x)=a,>0 inallofR"

i.e. the damping term is effective everywhere in R". In this particular case, the exponen-
tial decay may be easily obtained by constructing modified energy functionals of the
form

E.(n=E(n+e j w(x, Hu,(x, 1)dx

r"

with €0 small enough. Indeed, in this case it is easy to prove a differential inequality
for E, (#) leading to its exponential decay and therefore, to the exponential decay of E(r)
(¢f- A. Haraux [4], A. Haraux and E. Zuazua [6] and E. Zuazua [10]).

In this paper we shall prove that hypothesis (1.9) may be relaxed to (1.2) provided f
satisfies some additional properties.

We shall distinguish the cases where f'is globally Lipschitz and f is superlinear since
different hypotheses are neaded in each of them.

Our main result is as follows.

THeoreM 1. — Assume that hypotheses (1.2)-(1.4) are verified. Asswme also that
either
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516 . ZUAZUA

(i) (The globally Lipschitz case), f'e L™ (R) and one of the following two conditions
(1.10a) or (1.1056) holds

(1.10a) d lim f(s)=/f"; lim f'(s)=f_
Ko ot ) S
(1.104) 1 lim  f(s)/s=]
|s] = +w®
or

(ii) (The superiinear case). There exists some &>0 such that
(1.1 J9)s=(2+8)F(s) forevery seR,

Then, there exists some constants C>1 and v >0 such that the estimate (1.8) holds for
every solution u=u(x, ty of (1. 1) with initial data in H* (R") x L? (R").

Our proof is inspired by the multiplier methods of [11]. We shall estimate the
global energy of a solution in terms of the energy concentrated on a set of the form
{|x|ZR}=(0, T). This estimates will not hold directly since lower order additional
terms will appear. In order to absorb them we shall use a compactness-unigueness
argument that reduces the question to a unique continuation problem that will be solved
by applying recent results by A. Ruiz [9]. At this level and when [ is globally Lipschitz
we shall need (the technical and probably unnecessary) hypothesis (1.10a) or (1.104).

The rest of the paper is divided in two parts. In section 2 we prove Theorem 1. In
section 3 we discuss some possible extensions of this result. In particular, we show
(Theorem 2) how the methods of this paper and [11] may be combined to obtain
exponential decay results in unbounded domains when the damping term is effective
both at infinity and on a neighbourhood of the boundary.

2. Proof of Theorem 1

Inspired by J. Rauch and M. Taylor [8] we observe that it suffices to prove the
existence of a time T>0 and a positive constant C,>0 so that the following estimate
holds for every selution of (1.1):

T
(2.1) E(T)gC(,j f a(x)|u,(x, 0| dx dr.
D Rﬂ
Indeed, from (1.7) and (2, 1) we deduce
C
E(T)< —2_E(0).
(M= Ve (0)

Q
This last estimate, combined with the semigroup property, gives (1.8) with
| I ]
2.2 C=1+—: =—logl 1+ — |}
(2.2) = =T e( c )

0 0
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EXPONENTIAL DECAY FOR THE SEMILINEAR WAVE EQUATION... 517

Inequality (2.1) signifies, essentially, that we may estimate the total energy of the
solution in terms of the energy concentrated on the set { |x|; R} (0, T).

This estimate will be a consequence of several lemmas that we prove below.

In which follows, for notational simplicity, we shall drop the dependence on x and ¢
of the functions under integral sign and we shall use the convention of summation of
repcated indexes as well as the following notation:

(i) J‘ j j dx for every open subset @ of R".

o

(ii) j—j J. dx dt; JJ J J dx dt for every open subset ® of R",

(iii) j J J dI' dt where S,={|x|=r} and d[ its surface measure.

W/

(iv) () [=.(T)—.(0).
(v) ¢./dr=derivative on the radial direction,
(vi) div g=divergence of ¢=4dgq,/dx;.

We shall establish the estimate (2. 1) for smooth solutions of (1.1) with initial data in
H?(R") x H' (R"), for which the integrations by parts below are justified. The estimate
will extend to general weak solutions with initial data in H' (R") x L*(R") by standard
density arguments. Therefore, in which follows, we shall only consider smooth solutions.

Estimate (2. 1) will be a consequence of the following lemmata.

LemmaA 1. — There exists a positive constant C>0 such that

e ljj [ Ve oo+ 7] Jf F (u)
2 Qap "
§C{JJ£?|EI,|1+1In'||12.2[133R>=([,YT),+E(T)}

Jor every T>0 and smooth solution of (1.1).

Proof of Lenmma 1. — Multiplying equation (1.1) by ¢ (x)« with peW?> = (R") and
integrating by parts over R" % (0, T) we obtain:

(2.4) Jfﬁp[|VHF':"(.f‘(“)'i'd”)”]:jﬂ:A_;p |”|1+(p|ur|3:| W(J[(u +ua —)(pu:D"r.

We apply (2.4) with pe W* = (R") verifying
2.5) 0=@p=1 in RY =0 in By =1 in R™\B,,.

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES.



518 E. ZUAZUA

It follows:

(2.6) ij [|Vr:|2+(j(u)+au)u]§C{Jf |1, |*+ || o
Qag Qr

R
JL:(Hle{(),T]]

(JL(ees)e)

gCjE(U)+E(T)}=2CE(T)+CH¢1|MF

+

T}
0

Observing that

([[25)=-])

and the existence of some constant p>0 so that

T

Q

2.7 {_f'(s)-l-otx).vgu(%.vz-%—F{,v)) for every seR

the estimate (2. 3) follows easily from (1.2) and (2.6)., H

Remark 1. — We note that the constant p of (2.7) may be chosen as p=2e/(z+|[/"].,)
in the situation («) [resp. p=2 in the situation (b)] of Theorem 1. W

Remark 2. — By density, the estimate (2. 3) extends to weak solutions of (1.1). H

LEmMMA 2. — Let be g=(qy, - - ..q, )6 (WL (R*))".  For every T, >0 and every smooth
solution of (1.1) the following identity holds in B, % (0, T):

E]ﬁjj div (¢) F ()
B,
g, du D
_{_J‘J' iﬂgk L fli +JI au g . Viu= —(J i, q.Vu)
p Ox; OX; Ox; B, B, 0

1 - 5 ” 1 dut
+— | @0~ |VulP—x|u1- - || (g-x)F@)+|{ —(g.Vu).

2rtls, rJlJs, s, OF

Proof of Lemma 2. — Tt suffices to multiply equation (1.1) by ¢.Vu and to integrate
by partson B, x (0, T). H

(2.8) %JI div (] u, >~ | Vu|*—o|u
B,

T

Lemma 3. — Let be T, r>0 and e Wt = (R"). The following identity holds for every
smooth solution of (1.1):

(2.9) Jf (p[|Vu|2+(f(u)+c¢u}u]—jj [o|u|?—uVe.Vu]
B, B

A
+ (p(ﬂ—uuf uﬁmrﬂ (Pt
Sy or B, 2

T

0
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Proof of Lemma 3. — It suffices to multiply the equation (I1.1) by @ (x)r and to
integrate by parts over B, x (0, T). H

LEmMa 4. — For every >R there exists a positive constaint C.>0 so that the following
estitnaie holds for every T>0 and every smooth solution of (1.1):

2.10) l” (V4o +]n 3]+H F )
2JJs, B,

=C, { J‘J‘u | u, "—‘ 4 H u ||ﬁ: ma, <01y T E(T) }

Proof of Lemma 4. — Applying identity (2.8) with ¢=x we deduce:

{211} ”-” [111,|2-|Vu|3auﬁ—nJJ F(u)-l—jj ]V11:=—J‘j au, x. Vu+A-+B
20y, i, By B,
with
)
(2.12) AZ—(J. u,x.Vu)l
B, 0
and

2

Sk

ot
or

§|zl|3—F(u)j|.

1 ,
(2.13) B-:-JJ; l:z—‘ur|'— 5|Vu

On the other hand, applying (2.9) with o=1 we get

(2.14) Jj [|Vn|2-+-(f(u)+au)u]=J‘J‘ ‘11,3+J @u—(J‘ [(u,nLaﬂ)u])
B, B, 5; ar B, 2

We choose a positive constant

- |
2.15) pe(%‘f)

In the situation (ii) of Theorem 1, the constant B is chosen so that there exists some
1n>0 for which

T

4]

(2.16) Bf(s)sz(m+n)F(s) forevery seR.
Note that, because of (1. 11), conditions (2.15) and (2. 16) are compatible.
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520 E. ZUAZUA

Combining (2.10) and (2.14) we deduce

(2.17) (2 —B>jjnr|u,|2+(l+ﬁ— ;)J.JBFVHF'}'CL(B_ g)J];JMZ
+J.J‘ (Bf(u)u—nF(u))g—JJ‘ azz,x.Vu+BJj @11+B+D
B, B, 5, ar

with

e ol )

We now remark that
’.2 .
gsJ‘J. | Vu|* + M Jf alu,|*
Bl‘ 4E Bl’

(2.19) Uf au,x. Vu
B,
Combining (2.17) and (2.19) with the existence of some ¢>0 so that

T

(]

for every e>(.

(2.20) a(B )sz-i-ﬁf(s)s—nF(s);nF(s)—cs3 forevery seR

n
2

we deduce easily the following estimate

(2.21) l[J [|Vu|2+ot|u|2+|u,|?‘]+ﬁ[ F ()
2 Jlg, B,
§C{J‘J‘“|“f2+||“||flwrx(0,m+

for some constant C >0 which does not depend on T.

#[B|+ D]}

J‘J‘ du
—
s, OF
Note that in the case (i) (resp. case (ii)) of Theorem 1, (2.20) is valid for

(e ) (s )

We now estimate the integrals over S, x(0,T) on the right hand side of
(2.21). Applying the identities (2.8) and (2.9) with eeW! ©(B,) and ¢ x respectively
with

1

o=

(2.22) 0=¢p=1 in B; @=0in B, with R</'<r;jp=1on §,

r
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we deduce for some constant C >0 which does not depend on T,

,
(2.23) UJ gty +|B|§C{J‘J‘ (Vul+a|u
s, Or BB,

with

(2.24) G=—{J ’:zr,(p.Vu+(u,+ t‘;”)(pu:|}
B, <

Finally we apply (2.9) in B,, x (0, T) with e W' < (B, ,) such that

2+|u,|:"-$~f(1.!)u]+|(fi|}

T

4]

0=¢=1linB,; @=0inBy; @=1inB\B,withR<r' <r;0=00n8,,,

2 2
(3:29 Vel =@,
P
We obtain
(2.26) Jj cp[|Vu|2+cz|u|2+f(zz)1¢]§C{fjcz|zt,|2+ff |V(p.Vzm|+iH’}
By, Ba,
with

(2.27) H=—{J.J (u,+ g)(pu:H
By, b

We now remark that, by (2.23),

(2.28) J‘J‘ |Vq).V:m|§EJJ (p|Vu|2+iJ:[ MMP
Bap B, 48 B, (p
gsjf (p|Vze|2+EfJ | n|?
B, € Bar
for every £>0.

Combining (2.26) and (2.28) with £>0 small enough we obtain

(2.29) -[[ (Vul*+ea|u
BBy

From (2.21), (2.23) and (2.29) we deduce

(2.30) é” [|vu|2+u|u|2+|a,|2]+” F (1)
i Bay Bay

éc{ﬂam|2+||unfzm,xm.m+|D|+JG

+fwu]=C { Jfa | Uy |3 + ” u ”11‘2 By, %0, T f H I }

+|H|}
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We now observe that
(2.31) |D|+|G|+|H|gc{E(())+E(T),=C{2E(0)+”u|u,|3}

and the estimate (2.10) holds. H
Remark 3. — By density, the estimate (2.10) extends for weak solutions of (1.1). W

Lemma 5. — There exists some T >0 such that for every T>T, there exists a constant
C(T)y>0 so that the following estimate holdy

(2.32) E(T=C { J‘J‘u Lt 1P | 2|22 oy g % 0.7 }

Proof of Lemuna 5. — Combining Lemma 1 and Lemma 4 for r=2R we deduce

]
J E()di<C, {”u\u‘m|u||g:(,,_tw,'.m+ EtT)}
0

with C, >0 which does not depend on T.

12
L
[¥%)
—

Taking into account that, from the nonincreasing character of the energy,

T
j. E(di=TE(T)
C

)
inequality (2.32) follows from (2.33) for every T>T, =C, with C(T=(T-T,) '. H

Remark 4. — Let us now introduce the rescaled nonlinearities

(2.34) fi(s)= }' fOs),  YseRA>0

and consider the family of problems

(2.35) u,—Autoutf (w+a(x)u=0 in R"x(0, w).

The estimate (2.32) applies to (2.35). We claim that the constant C,(T) ol the
corresponding estimate is uniformly bounded with respect to »>0. Indeed, as our proof
of (2.32) shows, the constant C=C(T) of (2.32) only depends on the following properties
ol the nonlinearity f;

(i) The Lipschitz constant || /*|
and

L= @ in the situation (i)

(ii) the & constant in (1.11) in the situation (ii).
We note that both are uniform with respect to the family (2.34) for A>0. B

We may now prove the final estimate’

TOME 70 — 1991 — N 4
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Lemma 6. — Let Ty be given by
(2.36) Ty=max {T,,2R}.

Then, for every T>T, there exists a constant C(T)>0 so that

(2.37) lleelIE2 g e <tn.T11§jf"JI’rl2-

Proof of Lemima 6. — We argue by contradiction, Let be T>T, and assume that
(2.37) does not hold. Then, there exists a sequence of initial data
g, o 11y, JEHG(Q)x L*(Q) such that the corresponding sequence {u,} of solutions of

(1.1) satisfies

(2.38) M‘J’w! A
We define
(2.39) v, = Lo
A‘n
where
(2.40) | T—
Clearly
(2.41) 12 lle2 myp <0, tn=1 forevery neN
and v, solves (2.35) with A=X. i.e.
(2.42) (v )y —Av,+ov,+f, (z)Fa(x)(z,),=0 in R"x(0, x)
with f, =L
On the other hand, (2.38) ensures that
(2.43) J‘J‘a“z'u), ?=0 as n— o,

Combining (2.41)-(2.43) and the fact that, as we have mentioned in Remark 4. the
estimate (2.32) is uniform with respect to the family of problems (2.42) we conclude

H[IVT.,IZ-WIPH Bt |+ HF,.('L'”)éC.

In particular {», } is uniformly bounded in H' (R" x (0, T)).

(2.44)

| —
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Let us extract a subsequence (for simplicity still denoted by the subscript #1) such that:

g v, — v weaklyin H' (R" % (0, T))

(2.45) v, — v stronglyinL? (B, % (0.T))
l v,—~v a.einByyx(0,T)

From (2.41) and (2.45,) we deduce that

(2.46) Hf‘lhz_zuu[;x:o,ﬂ): !

ch1|t',|l=

(2.47) 2,=0 a.e.in {a>0}x(0, T).

and from (2.43)-(2.45,) we obtain

and therefore

In order to pass to the limit in (2.42) we distinguish the situations (i) and (ii) of
Theorem 1.

(i) The limit equation depends on the behaviour of the sequence {%,}. Therefore we
distinguish the following three possibilities.

Case (i1). — There exists a subsequence (still denoted by { &, }) such that

(2.48) ), = A (0, o).

It is easy to see that the limit state v satisfies (2.35) in B, % (0,T) and therefore

(2.49) w=1
verifies
(2.50) w,—Awtaw+f (Rv)w=0 in B,y x(0,T)

and by (2.47):
(2.51) w=0 a.e.in (B, \Bp)*(0,T).

Case (i2). — We are not in the situation above and there exists a subsequence satisfying
(2.52) A, — 0.

In this case the limit state » satisfies

(2.53) v,—Avt+ov+(0)v=0 in B, xx(0,T)

TOME 70 — 1991 — N° 4
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and therefore, in addition to (2. 51), w verifies
(2.54) W= Aw+ow+/ (0)w=0 in B,,x(0,T).

Case (i3). — The whole sequence {1, } goes to infinity. In this case we proceed as in
[11].  Let us assume first that (1.10«) holds. We note that w,=(v,), verifies

(2.55) (W) —Aw, +ow, + 1 (A, v)w,+a(x)(w,),=0 in Byg*(0,T)

Hypotheses (1.10), (2.45, ,) and (2.47) allow to pass to the limit in (2.55) to obtain,
in addition to (2.51), the limit equation

(2.56) We—Awt+oawtg(x,7)w=0 in By gx(0,T)
with
(2.57a) q(x, =[x {v>0}+f_ x{v<0}.

When (1.105) holds, passing to the limit in (2.42) we obtain that the limit v satisfies
v,—Av+(a+)er=0 in B,gx(0,T)
and therefore, =1, satisfies (2. 56) with
(2.37h) g(x,n=1

(ii) Let us now consider the situation (ii) of Theorem 1. In this case the third
possibility where A, —+ co may be easily excluded.

From (2.44) we know that

(2.58) { F,(v,) } isuniformly bounded in L' (B, , % (0, T))
with
(2‘59) Fn (:)=J'-J(;J(S) dS: % F‘(Ku :)'

0 (]

We note that (1.11) implies

(2.60) F)zc|s|?*,  V]s|z1

with e=min {F (1), F(=1)}.
Combining (2. 58)-(2.60) we deduce

(2.61) ;agﬂ |,
{log 1227 V) At Bag x(0,T))
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that implies

(2.62) J‘J. | v,
Bap x(0,T)

which contradicts (2. 46).

3+6_)(}

The situations (iil} where A, — Le(0, oo) and (ii2) where &, — 0 may be treated as in
the situation (@) above. The same conclusions hold.

Recapitulating, we see that, in all the possible situations, the state

Ww=ue L? (B.L R (O-; T))

satisfies

(2.64) { w,—Awtow+b(x, )w=0 in By,x(0,T)

w=0 a.ein {Byg\Bg}*(0,T)

for some non negative potential h(x, /=0. In the situation (i) the potential & is
bounded. ie. bheLy(Bypx(0,T)). In the situation (i), since (n—2)p=n,
be LT (0, T; L"(Byy)).

Therefore, since T>2 R, we may apply the unique continuation result by A. Ruiz [9]
showing that

(2.65) w=rgp,=0 a.e.in B,y *(0,T).
Combining (2.47), (2.64) we deduce that

(2.66) v=v(x)eH"' (R").

On the other hand passing to the limit in (2.42) (for this we shall distinguish the
different possibilities above) we obtain that v satisfies

(2.67) v,—Avtavtp(x,eta(x)n,=0 in R"x(0,T)
with p=0 such that

(i) In the situation (i}, peL* (R"% (0, T))

(i) In the situation (ii). p(x, N=C(1+]|v(x, n|""!) (note that, from (I.4),
|o ()P~ el (RM).

Combining (2.66) and (2.67) we deduce that v=2v(x)e H' (R") solves

—Avtoavtp(x.)v=0 in R"

and since >0 and p=0 we deduce that »=0 which contradicts (2. 46).

The proof of Lemma 6 is now complete. W
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End of proof of Theorem 1. — Combining the estimates (2.32) and (2.37) we obtain
(2.1) for T>T, and some positive constant C,=C(T). The proof of Theorem 1 is
complete. W

3. Some comments on the extensions of the main results

In this section we discuss some possible extensions of Theorem 1.

3.1. Semilinear wave equation in unbounded domains. — Let @ be an unbounded
domain of R" with boundary of class C* and let us consider the semilinear wave equation

u,—Autout+f(ny+a(x),=0 in Qx(0,00)
(3.1) =0 on dQx(0,x)
u(@)=u,eHL(Q)., 1, (0)=u,eL?*(Q)

with a>0, ge L7 (Q) and f as in section 1.

The energy related to the system is now

(3.2) E(n)= J (Vulx, 0+ (x, 03P +o|ulx 0] a'x-f-J F(u(x, ))dx.
Q

Q

19 | =

In [11] we proved that when Q is bounded and ¢=a,>0 on a neighbourhood of the
boundary ¢€, then the energy decays exponentially as ¢ goes to infinity (here and in
what follows, by a neighbourhood of the boundary we mean the intersection of £ with
a neighbourhood of the boundary in R*).

Combining the methods of [11] and of the present paper the following result may be
easily proved.

TuEOREM 2. — Let Q be an unbounded domain of R" with boundary of class C* and
assume  thar the nonlinearity [ satisfies either the lhypothesis (1) or (ii) of
Theorem 1.  Assume that ae LY (Q) is such that there exists some a,>0 so that

(3.3) a(x)Zay>0 a.e.in ®

with
(3.4) ®=the union of a neighbourhood of the boundary 6Q and the set { xeQ: |xlgR }
for some R>0.

Then, there exists some constants C>1 and y>0 such that the estimate (1.8) holds for
every solution u=u(x.1) of (3.1), the energy being given by (3.2).

Remark 3.1. — The same result holds if we consider in (3.1) Neumann boundary
conditions instead of Dirichlet boundary conditions. The method can also be adapted
to treat Dirichlet-Neumann mixed boundary conditions. H
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Remark 3.2. — The same multiplier methods allow us to prove the estimate (2.32)
for (3.1) if the set ® in (3.4) is the union of a set of type {er:]x@R} and a
neighbourhood of part of the boundary

[(x9)={xedQ:(x—x%.v(x)>0}

for some x°&R" [we denote by v(x) the unit outward vector to Q.

If we had a unique continuation result for solutions of (2.64,) vanishing in o x (0, T)
(for T>0 large enough) the arguments of the proof of Lemma 6 would apply and the
exponential decay would hold. However, this unique continuation problem seems to be
open. We note that the results of [9] only apply if the solution vanishes on the exterior
of a bounded set of R” during a large enough time interval and therefore, in this context,
they are only valid if w is a neighbourhood of the whole boundary. MW

3.2. Plate models. — Let us consider the simplified semilinear plate model

AT ut ot f()+a(x)uy,=0 in Qx(0, o)
(3.5) u=7adufov=0 on dQx (0, o)
w(0)=1u,eHZ (Q), u (0)=u, eL*(Q)

where Q is an unbounded domain of R" with smooth boundary (we denote by . /dv the
derivative on the outward normal direction).

The multiplier methods of [11] and the present paper allow us to prove an estimate of
type (2.32) under the hypotheses of Theorem 2 [the growth condition (1.4) may be
relaxed to (n—4) p<n).

Once again, in order to conclude the exponential decay a unique continuation result
is needed. More precisely, we need a result asserting that solutions weH? (Q2 x (0, T))
of a linear plate equation of type

w, AT wHg(x,)w=0 in Qx(0,T)

with g L™ (0, T: L2 (Q)) and satisfying

loc

w=0 in ox(0,T)

must necessarily be identically zero.
This problem seems to be open. B
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