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LIVIU I. IGNAT AND ENRIQUE ZUAZUA

Abstract. We study the P1 finite element approximation of the best constant in the
classical Hardy inequality over bounded domains containing the origin in RN , for N ≥ 3.

Even though this constant is not attained in the natural Sobolev space H1, our main
result establishes an explicit, sharp, and dimension-independent rate of convergence pro-
portional to 1/| log h|2.

The analysis combines an enhanced Hardy inequality with a remainder term involving
logarithmic weights, refined approximation estimates for Hardy-type singular radial func-
tions that serve as minimizing sequences, structural properties of continuous piecewise
linear finite elements, and techniques from weighted Sobolev spaces.

We also consider other closely related spectral problems involving the Laplacian with
singular quadratic potentials and obtain sharp convergence rates.

1. Introduction and main results

The Hardy inequality plays a central role in the analysis of partial differential equations
(PDEs) with singular potentials, spectral theory, and the study of critical functional in-
equalities. In its classical form, it provides a lower bound on the Dirichlet energy in terms
of a weighted L2-norm involving the distance to the origin.

For bounded domains Ω ⊂ RN containing the origin and with N ≥ 3, the best Hardy
constant is known and sharp but notably not attained in the Sobolev space H1

0 (Ω). The
same occurs in the whole space RN . This lack of attainability poses significant challenges
for the numerical approximation of the constant via variational methods.

In this paper, we study the convergence behavior of finite element approximations of the
Hardy constant. Specifically, we focus on continuous piecewise linear P1 finite elements
and establish an explicit convergence rate of order 1/| log h|2 as the mesh size h → 0.
Our analysis relies on an improved Hardy inequality involving a remainder term with
logarithmic weights, carefully constructed singular test functions, weighted Sobolev space
estimates, and interpolation error bounds adapted to the singular nature of the Hardy
inequality.
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To be more precise, given a bounded domain Ω ⊂ RN , N ≥ 3, containing the origin, let
us consider the following minimization problem related to the Hardy inequality

(1.1) ΛN(Ω) = inf
u∈H1

0 (Ω)

󰀂∇u󰀂2L2(Ω)

󰀂 u
|x|󰀂2L2(Ω)

.

It is well known that this infimum is not attained, is independent of the domain, and
coincides with the Hardy constant in the whole space

(1.2) ΛN(Ω) = ΛN =
(N − 2)2

4
.

The minimizer is not achieved in H1
0 (Ω). For instance, when Ω is a ball, the minimizer

should be a radial function of the form u(r) = r−N/2+1(a1 + a2 log(r)), which does not
belong to H1

0 (Ω) but to a larger Hilbert space H, which is essentially the closure of H1
0 (Ω)

with respect to the norm (see Section 2)

(1.3) 󰀂u󰀂2H = 󰀂∇u󰀂2L2(Ω) − ΛN

󰀐󰀐󰀐󰀐
u

|x|

󰀐󰀐󰀐󰀐
2

L2(Ω)

.

Given a P1 finite-element subspace Vh of H1
0 (Ω) associated to a finite element mesh

in Ω, the Hardy constant can be approximated by the corresponding finite-dimensional
minimization problem:

(1.4) Λh(Ω) = inf
u∈Vh

󰀂∇u󰀂2L2(Ω)

󰀂 u
|x|󰀂2L2(Ω)

.

The main result of this paper is the following theorem, which holds under standard as-
sumptions on the finite element mesh, to be detailed below.

Theorem 1.1. Let Ω be a smooth, convex domain of RN , N ≥ 3, and Vh be the space of
P1 finite elements on Ω. Then

(1.5) Λh(Ω)− ΛN ≃ 1

| log h|2 .

This result fully clarifies an issue whose analysis was initiated in [11], where the one-
dimensional case was treated. In [11], the rotational symmetry of the ball was exploited
to derive convergence rates in specific configurations by reducing the analysis to the one-
dimensional case. The approach we introduce here is more flexible and applies to arbitrary
smooth convex domains, using that the approximating minimizers have the same singular-
ity at the origin as the radial ones.

Note that the two-dimensional case is critical and an inverse square logarithmic correc-
tion of the Hardy inequality should be included [1]. This would require further analysis.

Such results are now well established in other related contexts. In particular, the answer
is well known for the classical Poincaré inequality, which is directly related to the first
eigenvalue of the Dirichlet Laplacian. In that setting, the first continuous eigenvalue and
its finite element approximation are known to be h2-close [8, Prop. 6.30, p. 315], [4, Section
8, p. 700].
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It is important to note, however, that the Poincaré inequality differs in two fundamental
ways from the Hardy constant under consideration here. First, for the Poincaré constant,
the infimum is actually attained, making it a true minimum. Second, this minimum is
realized by the first eigenfunction of the Laplacian, which – up to normalization – is
unique, belongs to H1

0 (Ω), and is in fact smooth.
In [13], the same issue was analyzed for the Sobolev constant, yielding polynomial con-

vergence rates, with an order depending on both the dimension N and the exponent p in
W 1,p. It is worth noting that the Hardy constant differs fundamentally from the Sobolev
constant in that, while the Hardy constant is not attained, the Sobolev constant is achieved
in the whole space, and the set of minimizers forms an explicitly characterizable, finite-
dimensional (of dimension N + 2) manifold.

Thus, the Hardy constant represents a new instance, with respect to the existing litera-
ture, in the sense that it is not achieved even in the whole space. This partially explains
the logarithmic, rather than polynomial, approximation rate. The technical reason for
the logarithmic rate becomes rather natural within the proof, which employs an improved
Hardy inequality with a logarithmic correction [9, Th. 2.5.2], which replaces the Sobolev
deficit estimates used in [13].

We also consider some closely related spectral problems involving the Laplacian with a
singular quadratic potential.

Let us first consider

(1.6) µ1(Ω) = inf
u∈H1

0 (Ω)

󰀂∇u󰀂2L2(Ω) − ΛN󰀂 u
|x|󰀂

2
L2(Ω)

󰀂u󰀂L2(Ω)

= min
u∈H

󰀂∇u󰀂2L2(Ω) − ΛN󰀂 u
|x|󰀂

2
L2(Ω)

󰀂u󰀂L2(Ω)

.

Again, the optimal constant is not achieved in H1
0 (Ω) but in a larger Hilbert space H. Of

course, this spectral problem is well–posed thanks to the Hardy inequality, which ensures
that the numerator of the Rayleigh quotient is non-negative and coercive in H. The
compactness of the embedding H ⊂ L2(Ω) assures that the minimum is achieved over H.

We also consider its discrete counterpart, defining µ1h(Ω) as the minimum of the same
ratio in Vh. In this case, we have the following result.

Theorem 1.2. In the setting of Theorem 1.1

(1.7) µ1h(Ω)− µ1(Ω) ≃
1

| log h| .

Note that, although the convergence rate is also logarithmic, its order differs from that
established in Theorem 1.1.

The same problem can be considered in the subcritical case in which the amplitude of
the quadratic potential is 0 ≤ Λ < ΛN :

(1.8) λ1(Ω) = min
u∈H1

0 (Ω)

󰀂∇u󰀂2L2(Ω) − Λ󰀂 u
|x|󰀂

2
L2(Ω)

󰀂u󰀂L2(Ω)

.

Note that, in this case, the minimizer is achieved in H1
0 (Ω) given the coercivity (in H1

0 (Ω))
of the numerator of the Rayleigh quotient.
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Minimizing over the finite element subspace Vh, we obtain the corresponding FEM ap-
proximation λ1h(Ω). In the present case, we obtain a polynomial convergence rate:

Theorem 1.3. In the setting of Theorem 1.1, denoting

(1.9) m =
󰁳

ΛN − Λ ∈
󰀕
0,

N − 2

2

󰀘
,

the following holds:
1. for N ≥ 5

(1.10) λ1h(Ω)− λ1(Ω) ≃

󰀻
󰁁󰀿

󰁁󰀽

h2m, 0 < m < 1,

h2| log h|, m = 1,

h2, 1 < m ≤ N−2
2

;

2. for N = 4

λ1h(Ω)− λ1(Ω) ≃
󰀫
h2m, 0 < m < 1,

h2, m = 1;

3. for N = 3

λ1h(Ω)− λ1(Ω) ≃
󰀫
h2m, 0 < m < 1

2
,

h2, m = 1
2
.

In the present setting, the continuous eigenfunctions are less singular than in the criti-
cal case Λ = ΛN , and belong to H1

0 (Ω), although they still exhibit a singularity of order

|x|−N/2+1+
√
ΛN−Λ. Thus, the error analysis reduces to estimating the H1

0 (Ω)–distance be-
tween the eigenfunction and the finite element space. This permits obtaining polynomial
decay rates rather than logarithmic ones, as in the previous theorems.

Note that in the case Λ = 0, we recover the classical problem of finite element approxi-
mation of the Poincaré constant, and we retrieve the well–known optimal convergence rate
of order h2.

The paper is organized as follows. We first introduce the functional framework needed
to address the Hardy inequality, along with some classical results of finite element theory.
We then present the proofs of the main results. The paper concludes with a section on
comments and open problems, followed by an appendix containing technical lemmas.

2. Functional framework

As mentioned above, we denote by H ⊂ L2(Ω), the Hilbert space obtained as the com-
pletion of C∞

c (Ω) with respect to the norm

(2.1) 󰀂u󰀂2H =

󰁝

Ω

󰀕
|∇u|2 − ΛN

u2

|x|2

󰀖
dx.

The space H is isometric to the space

W 1,2
0 (|x|−(N−2)dx,Ω) = W 1,2(dµ,Ω), 󰀂v󰀂H̃ =

󰀕󰁝

Ω

|x|−(N−2)|∇v|2dx
󰀖1/2



5

under the transformation

u = Tv = |x|−(N−2)/2v.

Here and in what follows, the density µ is defined as

(2.2) µ(x) = |x|−(N−2).

It has been proved in [17, 16] that

H = {u = Tv, v ∈ C∞
c (Ω)}󰀂·󰀂H ,

where

󰀂u󰀂2H =

󰁝

Ω

|x|−(N−2)|∇(|x|(N−2)/2u)|2dx.

Let us introduce the two operators

Lu = −∆u− ΛN
u

|x|2 ,

L̃v = −|x|N−2∇ · (|x|−(N−2)∇v) = −∆v + (N − 2)
x

|x|2 ·∇v.

Under the transformation u = Tv, we have

Lu = L(Tv) = |x|−N/2+1L̃v = T L̃v,

i.e. LT = T L̃.
There exists a sequence of common eigenvalues

0 < µ1 ≤ µ2 ≤ · · · ≤→ ∞

and the corresponding eigenfunctions are related by φk = Tψk.
In the particular case when Ω is a ball centered at the origin (for simplicity, we take

Ω = B1(0)), the eigenvalues can be computed explicitly

ψj,n(r, σ) = Jmj
(zmj ,nr)fj(σ),

where {fj}j≥0 are the spherical harmonics, zm,n is the nth zero of the Bessel function Jm,
m2 = j(j +N − 2), j ≥ 0, and µj,n = z2mj ,n

.
Let us denote by ψ1 the first eigenfunction, i.e.,

ψ1 = ψ0,1 = J0(z0,1r),

and φ1 = Tψ1. The properties of the Bessel function guarantee that

ψ1(0) ∕= 0, ∇ψ1(0) = 0.
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3. Fundamental Tools from Finite Element Analysis

3.1. Finite element meshes. Let Ω be a polytope in RN (in particular, an interval, a
polygonal or a polyhedral domain in dimension one, two, and three, respectively). For
each positive h we construct a partition Th (a mesh) of the domain Ω into a finite set of
N -simplices or cells (tetrahedra in dimension N = 3) satisfying

(1) ∪T∈ThT = Ω,
(2) if T, T ′ ∈ Th, T ∕= T ′, then either T ∩ T

′
= ∅, T ∩ T

′
is a single common vertex or

T ∩ T
′
is a whole common facet (point in N = 1, edge in N = 2, face in N = 3).

For each T ∈ Th, we denote by ρT and hT the radius of the largest inscribed ball in T
and the diameter of T , respectively. We set

h = h(Th) = max
T∈Th

hT .

We will consider a set of regular meshes (Th)h>0: there exists σ > 0, independent of h,
such that

(3.1)
hT

ρT
≤ σ, ∀ T ∈ Th, ∀ h > 0.

The mesh is also assumed to be quasi-uniform, i.e.

inf
h>0

minT∈Th hT

maxT∈Th hT

> 0.

Each element of the mesh Th is the image of a reference N -simplex through an affine
mapping FT : RN → RN ,

FT (󰁥x) = BT 󰁥x+ bT ,

with BT being an invertible N ×N matrix, bT ∈ RN , such that

FT (󰁥T ) = T, ∀ T ∈ Th.

We recall a few properties of matrix BT = ∇FT (cf. [3, Lemma 7.4.3, p. 272])

󰀂BT󰀂 ≤ hT

ρ󰁥T
, 󰀂B−1

T 󰀂 ≤
h 󰁥T
ρT

and

| detB| = |JFT | =
|T |
|󰁥T |

.

For a fixed Th, we define the space 󰁨Vh as

󰁨Vh = {f ∈ C(Ω) ∩H1
0 (Ω); f ◦ FT ∈ P1(󰁥T ), ∀T ∈ Th},

where P1(󰁥T ) is the space of linear polynomials on 󰁥T .
For our approximations, we consider the unit ball B, and we approximate it with a

polygonal domain Bh ⊂ B as in [2]. We also introduce the space Vh ⊂ H1
0 (B) ∩ C(B) of

functions in 󰁨Vh extended by zero in B \Bh.
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3.2. Approximation by piecewise linear functions. We recall the classical approx-
imation result in Sobolev spaces [5, Th. 4.4.20]: For any polyhedral domain Ω ∈ RN ,
N < 2p, Th as above, 1 < p ≤ ∞ or N ≤ 2 if p = 1 (see [5, Th. 4.4.4] for the complete set
of restrictions), and s ∈ {0, 1}, the global piecewise-linear interpolant Ih satisfies

(3.2)

󰀣
󰁛

T∈Th

󰀂u− Ihu󰀂pW s,p(T )

󰀤1/p

≤ Ch2−s󰀂u󰀂W 2,p(Ω), ∀u ∈ W 2,p(Ω).

The above restrictions are necessary when one needs to have an estimate for all functions
in W 2,p(Ω). When we restrict to the class of functions that are smooth, for example
C2(Ω), the above restrictions on the dimension can be relaxed. The restriction N < 2p is
exactly the one that guarantees that W 2,p(RN) ⊂ C0(Ω), the class where the global linear
interpolator Ih is defined.

Lemma 3.1. Let Th be a regular mesh on a polyhedral domain Ω ∈ RN , 1 < p ≤ ∞,
s ∈ {0, 1}. There exists a positive constant C = C(N, p, s, σ) such that for all |α|=s and
1 ≤ p < ∞:

(3.3)

󰀣
󰁛

T∈Th

󰀂Dα(u− Ihu)󰀂pLp(T )

󰀤1/p

≤ Ch2−s

󰀣
󰁛

T∈Th

|T |󰀂D2u󰀂pL∞(T )

󰀤1/p

, ∀u ∈ C2(Ω),

and

(3.4) max
T∈Th

󰀂Dα(u− Ihu)󰀂L∞(T ) ≤ Ch2−s max
T∈Th

󰀂D2u󰀂L∞(T ), ∀u ∈ C2(Ω).

The proof is a slight modification of the one in [5, Th. 4.4.4, Chapter 4]. The proof can
be extended to more general finite elements and u ∈ Cm(Ω), but this is beyond the scope
of this paper. For a proof, see [13].

In fact, the above estimates are sharp in the case of functions that are uniformly convex
in one direction.

Lemma 3.2. ([13])For any p ∈ (1,∞) there exists a positive constant C(p) such that for
any T ∈ Th and any u ∈ C2(T )

min
A∈RN

󰁝

T

|Du− A|pdx ≥ C(p)ρN+p
T max

ξ∈SN−1
min
x∈Ω

|ξTD2u(x)ξ|p.

The same holds under the assumption that the function is uniformly convex in one direction,
i.e. infT |∂2

xk
u(x)| > 0 for some xk.

3.3. Finite element eigenvalue approximation. Let us now recall the classical theory
for eigenvalue approximation, [4]. Here we present it in the simplest case. Following the
notations in [4, Section 8, p. 697], let V be a real Hilbert space and a(·, ·) be a symmetric
continuous and coercive bilinear form on V . Let H be another Hilbert space such that
V ⊂ H with compact embedding, b a symmetric continuous bilinear form on H, such that
b(u, u) > 0, for all u ∈ V , u ∕= 0. Let Vh ⊂ V be a family of finite-dimensional spaces of V .
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Let λ1 be the first eigenvalue of the form a relative to the form b, i.e. the smallest λ1 so
that there exists a non–trivial u1 ∈ V such that

a(u1, v) = λ1b(u, v), ∀ v ∈ V.

In a similar way, we define λ1h as the smallest value for which there exists a non–trivial
u1h ∈ Vh such that

a(u1h, vh) = λ1hb(u1h, vh), ∀ vh ∈ Vh.

A fundamental result in the theory of eigenvalue approximation is the following, originally
established in [8, Prop. 6.30, p. 315]; see also [4, p. 700] for a more direct statement:

(3.5) C1ε
2
h ≤ λ1h − λ1 ≤ C2ε

2
h

where

εh = d(u1, Vh) = inf
vh∈Vh

󰀂u1 − vh󰀂V .

The upper bound together with the trivial estimate 0 ≤ λ1h−λ1, can also be found in [15,
Th. 6.4-2].

This analysis will be useful in the proofs of Theorem 1.2 and Theorem 1.3, which are ef-
fectively related to eigenvalue problems. However, Theorem 1.1 lies outside this framework
and requires an independent, substantially more advanced analysis.

4. Proof of Theorem 1.1

Let us consider Ω a convex smooth domain such that 0 ∈ Ω ⊂ Ω ⊂ BR for some
R > 0. Without loss of generality, assume that R = 1. We approximate the domain Ω
by a polygonal domain Ωh ⊂ Ω as in [2]. We introduce the space Vh to be the space of
continuous finite elements on Ωh extended by zero to Ω \ Ωh.

The proof of Theorem 1.1 treats the lower and upper bounds in (1.5) separately.
The following Hardy inequality with a logarithmic remainder term [14, Th. 2.5.2, p. 25]

will play a key role: There exists a positive constant C = C(N,Ω) such that for all
φ ∈ C∞

c (Ω), it holds

(4.1)

󰁝

Ω

|∇φ|2dx− ΛN

󰁝

Ω

φ2

|x|2dx ≥ C

󰁝

Ω

|∇φ|2
󰀕
log

1

|x|

󰀖−2

dx.

By density, it also holds for any φ ∈ H. We also recall that (see [14, (2.5.7), p. 25-26])

(4.2) inf
φ∈C∞

c (Ω),φ ∕=0

󰁕
Ω
|∇φ|2dx− ΛN

󰁕
Ω

φ2

|x|2dx

󰁕
Ω
|φ|2|x|−2

󰀓
log 1

|x|

󰀔−2

dx
=

1

4
.

In dimension N ≥ 3, the infimum above, 1/4, can be approximated through the procedure
in [14, Chapter 2.4, p. 22] and the fact that

(4.3) ũ2(x) = |x|−
N−2

2

󰀕
log

1

|x|

󰀖1/2
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is the distributional solution of

−∆w − ΛN
w

|x|2 =
1

4

w

|x|2

󰀕
log

1

|x|

󰀖−2

.

This regularization consists, roughly speaking, of truncating the singular explicit function
ũ2 near the singularity at x = 0.

It is worth mentioning that functions of the form u(x) = |x|−(N−2)/2v(x), where v(x) ≃
(log(1/x))α as x → 0 belong to the space H if α ∈ [0, 1/2) but fail to be in H for α ≥ 1/2,
see [16].

The idea of the proof is to construct a minimizing sequence uε for ΛN , with a controlled
error of order | log ε|−2:

󰁕
Ω
|∇uε|2dx− ΛN

󰁕
Ω
u2
ε|x|−2dx󰁕

Ω
|uε|2|x|−2

≲ | log ε|−2.

The proof of Theorem 1.1 proceeds by a careful finite element approximation of this min-
imizing sequence.

4.1. The lower bound. Although it is briefly presented in [11], we include a sketch here
for completeness.

Let vh ∈ Vh be the minimizer corresponding to Λh:

Λh =

󰁕
Ω
|∇vh|2dx󰁕

Ω
v2h|x|−2dx

.

It follows that

Λh − ΛN =

󰁕
Ω
|∇vh|2dx− ΛN

󰁕
Ω
v2h|x|−2dx󰁕

Ω
v2h|x|−2dx

≥ C(N,Ω)

󰁕
Ω
|∇vh|2| log |x||−2dx󰁕

Ω
v2h|x|−2dx

.

Using that ∇vh is constant in each simplex and Lemma 8.2 in the Appendix below, we get
󰁝

Ω

|∇vh|2| log |x||−2dx =
󰁛

T∈Th

󰁝

T

|∇vh|2| log |x||−2dx =
󰁛

T∈Th

|∇vh|2
󰁝

T

| log |x||−2dx

≳ 1

| log h|2
󰁛

T∈Th

|T ||∇vh|2 =
1

| log h|2

󰁝

Ω

|∇vh|2dx

=
Λh

| log h|2

󰁝

Ω

v2h|x|−2dx.

This shows that Λh − ΛN ≳ Λh| log h|−2 ≥ ΛN | log h|−2.

4.2. The upper bound. It is sufficient to prove the upper bound

Λh − ΛN ≲ 1

| log h|2 ,

in the case when Ω = B1, the unit ball. Indeed, given that the constant ΛN is independent
of the bounded domain under consideration, the upper bound holds in the general case by
comparison.
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As mentioned above, the main idea for the upper bound is to use an approximating
sequence uε of

(4.4) ũ2(x) = |x|−N/2+1

󰀕
log

1

|x|

󰀖α

,

and project it on the space Vh. In the following, we make this construction more precise.
In the proof, we will also employ the function

u2(x) = |x|−N/2+1.

We consider the following cut-off function inspired by [12, proof of Corol. VIII.6.4] and
[6]:

ηε(x) =

󰀻
󰁁󰀿

󰁁󰀽

0, |x| < ε2,

ξ( log(|x|/ε
2)

log(1/ε)
), |x| ∈ (ε2, ε),

1, |x| > ε,

where ξ : [0, 1] → [0, 1] is a smooth function such that for some µ ∈ (0, 1), ξ = 0 on [0, µ]
and ξ = 1 on [1− µ, 1].

The function ηε satisfies the following properties:

(1) ηε(r) = 0 on 0 < r < ε2−µ,

(2) |η′ε(r)| ≤
󰀂ξ󰀂∞
r| log ε| ≲

1
r| log ε| , ε

2 ≤ r ≤ ε,

(3) |η′′(r)| ≤ 󰀂ξ′′󰀂∞
r2| log ε|2 +

󰀂ξ′󰀂∞
r2| log ε| ≲

1
r2| log ε| , ε

2 < r < ε.

As a consequence, we get:

(1) |∇ηε(x)| ≤ 1
|x|| log ε| if ε

2 < |x| < ε and vanishes otherwise,

(2) |D2ηε(x)| ≲ 1
|x|2| log ε| , if ε

2 < |x| < ε and vanishes otherwise.

With this function ηε, we introduce

uε(x) = ũ2(|x|)ηε(|x|)ψ(|x|) ∈ C∞
c (Ω),

where ψ ∈ C∞
c (R) such that ψ ≡ 1 for |r| ≤ 1/4 and ψ ≡ 0 for |r| > 1/2.

The following lemma provides quantitative estimates for this sequence, viewed as a
minimizing sequence for the Hardy constant.

Lemma 4.1. Let α ≥ 0. The family of functions uε satisfies the following estimates:

(4.5) Aε =

󰁝

Ω

|∇uε|2dx− ΛN

󰁝

Ω

u2
ε

|x|2dx ≲

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

| log ε|2α−1, α > 1/2,

log | log ε|, α = 1/2,

1, α ∈ [0, 1/2);

(4.6) Bε =

󰁝

Ω

u2
ε

|x|2dx ≃ | log ε|2α+1,
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and

(4.7) 󰀂uε󰀂2H2(Ω) ≲
| log ε|2α
ε4−2µ

.

Remark 4.2. As a consequence, we get that the quotient Aε/Bε satisfies

(4.8)
Aε

Bε

≲

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

1
| log ε|2 , α > 1

2
,

log | log ε|
| log ε|2 , α = 1

2
,

1
| log ε|2α+1 , α ∈ [0, 1

2
).

Proof. Using that uε(x) = ũ2(|x|)ηε(r)ψ(r), we obtain

Bε ≤
󰁝 1/2

ε2
rN−3|ũ2(r)|2η2ε(r)dr ≲

󰁝 1/2

ε2

| log r|2α
r

dr ≲ | log ε|2α+1

and

Bε ≳
󰁝 1/4

ε

| log r|2α
r

dr ≳ | log ε|2α+1,

and then (4.6) holds.
The estimate (4.5) is more delicate.
Let us recall that for any u ∈ H,

󰀂u󰀂2H =

󰁝

Ω

|x|−(N−2)

󰀏󰀏󰀏󰀏∇
󰀕

u

u2

󰀖󰀏󰀏󰀏󰀏
2

dx =

󰁝

Ω

|∇u|2dx−
󰁝

Ω

ΛN
u2

|x|2dx.

For uε, we have

Aε =

󰁝

Ω

󰀏󰀏󰀏󰀏∇uε − uε
∇u2

u2

󰀏󰀏󰀏󰀏
2

dx =

󰁝

Ω

|u2∇θε|2dx,

where

(4.9) θε(r) =

󰀕
log

1

r

󰀖α

ηε(r)ψ(r).

Note that

∇θε =

󰀣󰀕
log

1

|x|

󰀖α

∇ηε − α

󰀕
log

1

|x|

󰀖α−1
x

2|x|2ηε

󰀤
ψ +

󰀕
log

1

|x|

󰀖α

ηε∇ψ.
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According to the properties of ψ and ηε,

󰁝

Ω

|u2∇θε|2dx ≲
󰁝

|x|<1/2

󰀕
u2
2|∇ηε|2| log |x||2α + u2

2η
2
ε

| log |x||2α−2

|x|2

󰀖
dx+

󰁝

1/4<|x|<1/2

| log |x||2αη2εdx

≲
󰁝 ε

ε2
r| log r|2α dr

r2| log ε|2 +

󰁝 1/2

ε2

| log r|2α−2dr

r
+

󰁝 1/2

1/4

r| log r|2αdr

≲ 1 +

󰀻
󰁁󰀿

󰁁󰀽

| log ε|2α−1, α > 1/2,

log | log ε|, α = 1/2,

| log ε|2α−1, α ∈ [0, 1/2).

This completes the proof of (4.5).
Let us now estimate the H2(Ω) norm of uε. For simplicity, assume that ψ ≡ 1, since the

main contribution comes from the singularity near the origin. As above, we have

󰀂uε󰀂2L2(Ω) =

󰁝 1/2

ε2
rN−1|ũ2(r)|2η2ε(r)dr ≲

󰁝 1/2

ε2
r| log r|2αdr ≲ 1.

Using the expression of uε and the properties of ηε we have

|u′
ε(r)| ≲ r−N/2| log r|αηε(r) + r−N/2| log r|α−1ηε(r) + r−N/2+1| log r|αη′ε(r)

≲ r−N/2| log r|αηε(r) + r−N/2+1| log r|αη′ε(r)

≲ r−N/2| log r|α + r−N/2 | log r|α
| log ε| ≲ r−N/2| log r|α.

This implies that

󰀂∇uε󰀂2L2(Ω) =

󰁝 1/2

ε2−µ

rN−1|u′
ε(r)|2dr ≲

󰁝 1/2

ε2−µ

r−1| log r|2αdr ≲ | log ε|2α+1.

The second order derivatives of uε satisfy

|D2uε(x)| ∼ |u′′
ε(r)| ≲ ηε(r)r

−N/2−1
󰀃
| log r|α + | log r|α−1 + | log r|α−2

󰀄

+ η′ε(r)r
−N/2

󰀃
| log r|α + | log r|α−1

󰀄

+ η′′ε (r)r
−N/2+1| log r|α

≲ ηε(r)r
−N/2−1| log r|α + η′ε(r)r

−N/2| log r|α + η′′ε (r)r
−N/2+1| log r|α.
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This implies that
󰁝

Ω

|∂ijuε|2dx ≲
󰁝 1/2

ε2−µ

rN−1

󰀕
|u′′

ε(r)|2 +
|u′

ε(r)|2
r2

󰀖
dr

≲
󰁝 1/2

ε2−µ

󰀃
|ηε(r)|2r−3| log r|2α + |η′ε(r)|2r−1| log r|2α + |η′′ε (r)|2r| log r|2α

󰀄
dr

≲
󰁝 1/2

ε2−µ

r−3| log r|2αdr +
󰁝 ε

ε2−µ

r−1| log r|2α dr

r2| log ε|2 +

󰁝 ε

ε2−µ

r| log r|2α dr

r4| log ε|2

≲ | log ε|2α
ε4−2µ

+
| log ε|2α−2

ε4−2µ
≲ | log ε|2α

ε4−2µ
.

The proof of the Lemma is now complete. □

We now prove the desired upper bound in Theorem 1.1. For simplicity, we treat the case
N = 3. The general case N ≥ 4 can be handled as in [13] by using Lemma 3.2.

We consider ũ2 as in (4.4), with α > 1/2, and the corresponding uε constructed previously

uε(x) = ũ2(|x|)ηε(|x|)ψ(|x|).

Let us denote by Πhuε the H1
0 -projection of uε onto the space Vh. In view of the classical

estimate (3.2) it satisfies

󰀂∇(Πhuε − uε)󰀂L2(Ω) ≲ h󰀂uε󰀂H2(Ω).

Since Πhuε is the projection of uε on Vh it follows that
󰁝

Ω

|∇(Πhuε)|2dx =

󰁝

Ω

|∇uε|2dx−
󰁝

Ω

|∇(uε − Πhuε)|2dx.

Using that for any β > 0, y2 ≥ x2

1+β
− 1

β
|x− y|2 and the Hardy inequality we obtain

󰁝

Ω

|Πhuε|2
|x|2 dx ≥ 1

1 + β

󰁝

Ω

u2
ε

|x|2dx− 1

β

󰁝

Ω

|uε − Πhuε|2
|x|2 dx

≥ 1

1 + β

󰁝

Ω

u2
ε

|x|2dx− 1

βΛN

󰁝

Ω

|∇(uε − Πhuε)|2dx.

Let us denote

Rε,h =

󰁕
Ω
|∇(uε − Πhuε)|2dx󰁕

Ω
u2
ε|x|−2dx

, Qε =

󰁕
Ω
|∇uε|2dx󰁕

Ω
u2
ε|x|−2dx

.

We know from Lemma 4.1 that

Qε =
Aε

Bε

= ΛN +O(| log ε|−2)

and

Rε,h ≲
h2󰀂uε󰀂2H2(Ω)

| log ε|2α+1
≲ h2

| log ε|2α+1

| log ε|2α
ε4−2µ

=
h2

ε4−2µ| log ε| .
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Under the assumption that β and Rε,h are small enough we get

Λh(Ω) ≤
󰁕
Ω
|∇(Πhuε)|2dx󰁕

Ω
|Πhuε|2|x|−2dx

≤
󰁕
Ω
|∇uε|2dx

1
1+β

󰁕
Ω
u2
ε|x|−2dx− 1

βΛN

󰁕
Ω
|∇(uε − Πhuε)|2dx

=
Qε

1
1+β

− 1
βΛN

Rε,h

≤ ΛN +O(| log ε|−2)

1− β
1+β

− 1
βΛN

h2

ε4−2µ| log ε|
.

Taking

(4.10) ε2 ≃ h, β = hµ/2, µ ∈ (0, 1),

we have that

(4.11) Rε,h = O
󰀓 hµ

| log h|

󰀔
,

and we get the desired estimate

Λh ≤ ΛN +O(
1

| log h|2 ).

5. Proof of Theorem 1.2

Classical arguments on the finite element approximation of eigenvalues show that

(5.1) µ1h − µ1(Ω) ∼ inf
vh∈Vh

󰀂φ1 − vh󰀂2H

where φ1 is the corresponding first eigenfunction associated to µ1(Ω). In the case where Ω
is the unit ball we have

(5.2) φ1(x) = φ1(|x|) = |x|−(N−2)/2J0(z0,1|x|).
When Ω is a smooth domain containing the origin, one can show, using a cut-off argument,
that φ1 exhibits the same type of singularity near the origin as in the case of the unit ball.

It remains to quantify the above distance in the particular case of the unit ball.
For the upper bound, a computation similar to that in Lemma 4.1 with α = 0 gives us

inf
vh∈Vh

󰀂φ1 − vh󰀂2H ≲ 󰀂φ1 − φ1,ε󰀂2H + 󰀂φ1,ε − Ihφ1,ε󰀂2H

≲ 1

| log ε| + 󰀂∇(φ1,ε − Ihφ1,ε)󰀂2L2(Ω) ≲
1

| log ε| +
h2

ε4−2µ
.

Taking ε2 ≃ h, we obtain the desired upper bound.
For the lower bound, we must show that for any vh ∈ Vh,

󰀂φ1 − vh󰀂2H ≳ 1

| log h| .

Using the Hardy inequality with logarithmic correction in Lemma 8.1, we obtain

󰀂φ1 − vh󰀂2H ≳
󰁝

Ω

|∇φ1 −∇vh|2dx
| log(1/|x|)|2 =

󰁛

T∈Th

󰁝

T

|∇φ1 −∇vh|2dx
| log(1/|x|)|2 .
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It is interesting to notice that for all the simplices situated outside the ball of radius h,
the contribution is of order 1/| log h|2. The main contribution comes from the simplex
T0 containing the origin or the finitely many simplices for which the origin lies on their
boundaries.

To simplify the presentation, let us consider the case in which the origin is the incenter
of T0, and a ball of radius ρT0 ≃ h centered at x = 0 is contained in T0. Otherwise, we can
perform a similar computation by choosing a conical subset.

In this case, the main contribution is given by

Ih =

󰁝

|x|≤h

|∇φ1 −∇vh|2dx
| log(1/|x|)|2 ≥ inf

A∈RN

󰁝

|x|≤h

|∇φ1 − A|2dx
| log(1/|x|)|2 .

Since

∇φ1(x) = φ′
1(|x|)

x

|x| ,

we obtain that

|∇φ1 − A| ≥ ||φ′
1(r)|− |A||.

We have to prove that for any A ∈ RN ,
󰁝

Bh(0)

||φ′
1(|x|)|− |A||2
| log(1/|x|)|2 dx ≳ 1

| log h| .

After integrating in the angular variables, this reduces to showing that for any constant
CA ≥ 0,

g(CA) =

󰁝 h

0

rN−1(|φ′
1(r)|− CA)

2

| log(r)|2 dr ≳ 1

| log h| ,

where φ1(r) = r−(N−2)/2J0(z0,1r).
Denoting g(CA) = C2

Aah − 2CAbh + ch, we know that the minimum is attained at CA =
bh/ah, and

min
CA≥0

g(CA) = ch −
b2h
ah

.

We use the following expansion as h → 0, valid for α ≥ −1:

󰁝 h

0

rα

| log r|2dr ≃
󰀫

hα+1

| log h|2 , α > −1,
1

| log h| , α = −1.

Since φ′
1(r) ≃ r−N/2 as r → 0, we have ch =

󰁕 h

0

rN−1(φ′
1(r))

2

| log r|2 dr ≃
󰁕 h

0
r−1

| log r|2dr ≃ 1
| log h| .

Similarly, we obtain ah ≃ hN

| log h|2 and bh ≃ hN/2

| log h|2 . Then

min
CA≥0

g(CA) ≃
1

| log h| −
(hN/2/| log h|2)2
hN/| log h|2 =

1

| log h| −
1

| log h|2 ≃ 1

| log h| .
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6. Proof of Theorem 1.3

We consider the case where the domain Ω is the unit ball, since the singularity analysis
near the origin is the same for all domains containing x = 0.

In the present case, the norm introduced by the bilinear form is equivalent to the H1
0 (Ω)-

one. Thus, it is sufficient to provide sharp upper bounds on

d(φ1, Vh) ≃ inf
vh∈Vh

󰀂∇φ1 −∇vh󰀂H1
0 (B1),

where φ1 is the first eigenfunction.
Let us set

m =
󰁳

ΛN − Λ ∈
󰀕
0,

N − 2

2

󰀘
.

Recall that in the case of the ball, the first eigenfunction can be explicitly computed (see
[17]), φ1(x) = φ1(|x|),

φ1(r) = r−N/2+1Jm(jm,1r) ≃ r−N/2+1

󰀕
1

Γ(m+ 1)

󰀓r
2

󰀔m

− 1

Γ(m+ 2)

󰀓r
2

󰀔m+2
󰀖
, r → 0,

where Jm is the Bessel function of order m and jm,1 is its first zero.
This eigenfunction φ1 belongs to H1+s(Ω) for all 0 < s < m. If m = (N − 2)/2 then

φ1 ∈ C∞(Ω).
Let us prove the upper bound. Let us assume without loss of generality that there exists

a simplex T0 that contains the origin and all its vertices have the same distance to the
origin. We take a function vh that is constant in the simplex T0 and interpolate φ1 at
the other nodes. We quantify the interpolation error by splitting the domain into a small
ball around the origin, where the singular behavior dominates, and its complement, where
standard H2-based estimates apply. We split the integral into two parts:

󰀂∇φ1 −∇vh󰀂2L2(Ω) ≤
󰁝

|x|≲h

|∇φ1|2dx+ h2

󰁝

|x|≳h

|D2φ1|2dx := I1 + I2.

When m < N
2
− 1 we have

I1 ≤
󰁝 h

0

rN−1r2(−N/2+m)dr ≃ h2m

while for m = N
2
− 1 we have I1 ≃ hN since φ1 is C∞ in this case.

For the second term, we first consider the case N ≥ 5. When m = N−2
2

clearly we have

I2 ≲ h2. For 0 < m < N−2
2

a similar argument as for I1 yields

I2 ≲ h2

󰁝 1

h

rN−1r2(−N/2−1+m)dr = h2

󰁝 1

h

r2m−3dr ≲

󰀻
󰁁󰀿

󰁁󰀽

h2m, 0 < m < 1,

h2| log h|, m = 1,

h2, m ∈ (1, N−2
2

].

Putting together the results for I1 and I2 leads to the desired result.
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When N = 4 we obtain, in a similar way, that I2 ≤ h2 for m = N−2
2

= 1 and

I2 ≤ h2

󰁝 1

h

r2m−3dr ≃ h2m, 0 < m < 1.

In dimension N = 3 we get I2 ≤ h2 when m = 1
2
= N−2

2
and

I2 ≤ h2

󰁝

|x|≳h

|D2φ1|2dx ≤ h2

󰁝 1

h

r2m−3dr ≃ h2m, 0 < m < 1/2.

To obtain the lower bound in (1.10) we divide the integral into two parts, the first one
as in the proof of Theorem 1.2 and the second one, integrating outside the ball of radius
h:

󰀂∇φ1 −∇vh󰀂2L2(Ω) =

󰁝

|x|<h

|∇φ1 −∇vh|2dx+

󰁝

h<|x|<1

|∇φ1 −∇vh|2dx = I1 + I2.

Let us consider the case N ≥ 5 since the others are similar. For I1 the same arguments
as in the proof of Theorem 1.2 give us that I1 ≳ h2m for 0 < m < N−2

2
or I1 ≳ h2N if

m = N−2
2

. Using Lemma 3.2 as in [13] we get

I2 ≳

󰀻
󰁁󰀿

󰁁󰀽

h2m, 0 < m < 1,

h2| log h|, m = 1,

h2, m > 1.

The proof is now complete.

7. Conclusions and Open Problems

In this paper, we have analyzed the finite element approximation of the best Hardy
constant in bounded domains containing the origin for dimensions N ≥ 3. Despite the
absence of minimizers for the Hardy inequality in the standard Sobolev space H1

0 (Ω), we
have rigorously established that the first eigenvalue of the corresponding discrete eigenvalue
problem converges to the continuous Hardy constant as the mesh size h → 0.

Our main result provides an explicit convergence rate of order 1/| log h|2, independent of
the spatial dimension, and reflects the singular nature of the underlying functional inequal-
ity. The analysis demonstrates how the finite element method is capable of capturing the
concentration phenomena inherent in the minimization sequences that saturate the Hardy
inequality.

We have also analyzed similar approximation issues for two closely related eigenvalue
problems.

Several open problems naturally arise from this study:

• The 2-dimensional case: As mentioned in the introduction, the two-dimensional
case is critical and requires an inverse-square logarithmic correction to the Hardy
inequality, as shown in [1]. This case would therefore require a more detailed
analysis.
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• Other Hardy inequalities: The literature on Hardy inequalities is extensive; we
refer the reader to the monograph [14] for a comprehensive overview. The finite
element approximation techniques developed in this paper could, in principle, be
systematically applied to the many existing variants of the Hardy inequality.

• Weighted spectral problems: Using the fact that

µ1(Ω) = min
u∈H

󰀂u󰀂2H
󰀂u󰀂2L2(Ω)

= min
v∈W 1,2

0 (|x|−(N−2)dx,Ω)

󰁕
Ω
|x|−(N−2)|∇v|2dx󰁕
Ω
|x|−(N−2)v2dx

,

one can consider introducing the finite element approximation in this weighted
setting

µ̃1h(Ω) = min
v∈Vh

󰁕
Ω
|x|−(N−2)|∇v|2dx󰁕
Ω
|x|−(N−2)v2dx

and analyze the approximation rates.
• Higher-Order Finite Elements: It would be of interest to investigate whether similar
convergence rates can be established for higher-order finite element spaces and other
finite-element variants, like discontinuous Galerkin approximations.

• Adaptive Mesh Refinement: Given the concentration of minimizing sequences near
the singularity at the origin, adaptive mesh refinement strategies could improve the
numerical approximation. Theoretical analysis of such adaptive methods in this
singular context remains an open challenge.

• Extension to Non-Radial Settings and General Domains: While our analysis is
presented for general bounded domains containing the origin, extensions to more
complex geometries or domains with additional singularities could reveal new phe-
nomena. The same can be said in the context of multi-polar Hardy inequalities (see
[7] for the analysis in the continuous setting).

• Other Singular Inequalities: A natural direction for future work is to study the
finite element approximation of best constants in other critical inequalities, such as
Rellich or Hardy-Sobolev inequalities, where similar non-attainability issues arise.
Similar issues also arise in the fractional setting, see [10].

We hope that this contribution stimulates further research on the numerical analysis of crit-
ical inequalities and the development of numerical methods tailored for singular variational
problems.
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8. Appendix

Lemma 8.1. Let Ω be a smooth domain such that 0 ∈ Ω ⊂ Ω ⊂ BR for some R > 0.
There exists a positive constant C = C(N,Ω) such that for all u ∈ H we have

(8.1) 󰀂u󰀂2H ≥ C(N,Ω)

󰁝

Ω

|∇u|2dx
| log(R/|x|)|2 .

Proof. The inequality holds for u ∈ C∞
c (Ω) as proved in [14, Th. 2.5.2, p. 25]

󰀂u󰀂2H =

󰁝

Ω

|∇u|2dx− ΛN

󰁝

Ω

u2

|x|2dx ≥ C

󰁝

Ω

|∇u|2
󰀕
log

R

|x|

󰀖−2

dx.

By density, the inequality extends to functions u in H. □
Lemma 8.2. For any T ∈ Th the following holds:

(8.2)

󰁝

T

dx

| log |x||2 ≳ |T |
| log h|2 .

The proof is elementary and is left to the readers.
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for the Master’s Degree]. Masson, Paris, 1983.

[16] J. L. Vázquez and N. B. Zographopoulos. Functional aspects of the Hardy inequality: appearance of
a hidden energy. J. Evol. Equ., 12(3):713–739, 2012.

[17] J. L. Vazquez and E. Zuazua. The Hardy inequality and the asymptotic behaviour of the heat equation
with an inverse-square potential. J. Funct. Anal., 173(1):103–153, 2000.

[1] Institute of Mathematics “Simion Stoilow” of the Romanian Academy, 21 Calea
Grivitei Street, 010702 Bucharest, Romania.

[2] National University of Science and Technology Politehnica Bucharest, 313 Splaiul
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