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Abstract. We consider finite element approximations to the optimal constant for the
Hardy inequality with exponent p = 2 in bounded domains of dimension n = 1 or
n ≥ 3. For finite element spaces of piecewise linear and continuous functions on a mesh
of size h, we prove that the approximate Hardy constant converges to the optimal Hardy
constant at a rate proportional to 1/|log h|2. This result holds in dimension n = 1, in
any dimension n ≥ 3 if the domain is the unit ball and the finite element discretization
exploits the rotational symmetry of the problem, and in dimension n = 3 for general
finite element discretizations of the unit ball. In the first two cases, our estimates show
excellent quantitative agreement with values of the discrete Hardy constant obtained
computationally.
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1. Introduction

In his celebrated work [19], G. H. Hardy proved that(
p− 1

p

)p ∫ 1

0

|u|p

xp
dx ≤

∫ 1

0

|u′|p dx (1.1)

for all 1 < p < +∞ and all u ∈ W 1,p(0, 1) with u(0) = 0. This inequality, nowadays called
the Hardy inequality, was extended in [20] to open sets Ω ⊆ Rn in n ≥ 2 dimensions and
p ∈ (1, n), giving (

n− p

p

)p ∫
Ω

|u|p

|x|p
dx ≤

∫
Ω

|∇u|p dx (1.2)

for all u ∈ W 1,p
0 (Ω). The inequality holds also when Ω = Rn and it is trivial when n = p.

The Hardy inequality has received considerable attention because it finds applications
in several fields. For example, it is related to Heisenberg’s uncertainty principle [13] and,
for p = 2, it is useful in describing properties of Schrödinger operators with inverse square
potentials [14]. Further extensions of the inequality exist and the literature is broad. We
refer readers to [1, 8, 11, 16, 23–27] for a general overview.

It is well-known that the constants in (1.1) and (1.2) are optimal, meaning that

(
p− 1

p

)p

= inf
u∈W 1,p(0,1)

u(0)=0

∫ 1

0

|u′|p dx∫ 1

0

x−p|u|p dx

if n = 1 (1.3a)

and (
n− p

p

)p

= inf
u∈W 1,p

0 (Ω)

∫
Ω

|∇u|p dx∫
Ω

|x|−p|u|p dx

if n ≥ 2. (1.3b)

These infima are not attained, but one can easily construct minimizing sequences. For
example, one can approximate the function u(x) = |x|(p−n)/p with functions in W 1,p(Ω)
satisfying the correct boundary conditions.
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In this work, we fix p = 2 and consider the problem of approximating the optimal Hardy
constant using the finite element method. Specifically, in dimension n = 1, define the
discrete Hardy constant as

Sh = min
v∈Vh

v(0)=0

∫ 1

0

|v′|2 dx∫ 1

0

x−2|v|2 dx
, (1.4)

where Vh is the space of function in H1(0, 1) that are piecewise linear on a ‘triangulation’ of
size h (see Section 2 for a precise definition). The approximation properties of Vh in H1(0, 1)
guarantee that, as h decreases, Sh converges to the optimal value 1/4 of the minimization
problem in (1.3a) for p = 2. We prove that this convergence is logarithmic by establishing
the following asymptotic expansion for Sh.

Theorem 1.1. For all sufficiently small triangulation size h,

Sh =
1

4
+

π2

|log h|2
+ o

(
1

|log h|2

)
.

We also prove the same square logarithmic convergence, this time without the optimal
prefactor, in n ≥ 3 dimensions when the domain Ω = B is the unit ball. This restriction
is justified because the Hardy constant is independent of the domain Ω, and is convenient
because then the minimization problem (1.3b) enjoys a rotational symmetry. In particular,
the minimization can be restricted to functions u ∈ W 1,p

0 (B) depending only on the radial
coordinate r. Thus, the optimal Hardy constant for p = 2 and dimension n ≥ 3 is

Sn :=
(n− 2)2

4
= inf

u∈H1(0,1)
u(1)=0

∫ 1

0

rn−1|u′|2 dr∫ 1

0

rn−3|u|2 dr
. (1.5)

We define its discrete version as

Sn
h = min

v∈Vh

v(1)=0

∫ 1

0

rn−1|v′|2 dr∫ 1

0

rn−3|v|2 dr

(1.6)

and prove the following statement.

Theorem 1.2. For every n ≥ 3 and every sufficiently small triangulation size h,

Sn +
π2

|log h|2
+ o

(
1

|log h|2

)
≤ Sn

h ≤ Sn +
(n+ 1)2π2

4|log(h)|2
+ o

(
1

|log h|2

)
.

Finally, in the special case of n = 3 dimensions, we prove a square logarithmic convergence
rate for the discrete Hardy constant even when the rotational symmetry of the unit ball is
not exploited. Precisely, let V 3

h be the space of functions in H1
0 (B) that are piecewise linear

on a general triangulation of the unit ball of R3 (see Section 2 for a precise definition) and
recall from (1.5) that S3 = 1/4. We establish the following estimates.

Theorem 1.3. Let n = 3 and let V 3
h be a triangulation of B of size h. There exists a

positive constant C such that, for every sufficiently small triangulation size h,

1

4
+

C

|log(h)|2
≤ min

v∈V 3
h

∫
B

|∇v|2 dx∫
B

|x|−2|v|2dx
≤ 1

4
+

π2

|log h|2
+ o

(
1

|log h|2

)
.
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The lower bound in this result holds in fact for any dimension n ≥ 3, with the constant 1
4

replaced by the Hardy constant Sn and with a constant C that depends on n (see Section 4.1).
Estimating the convergence rates for numerical approximations of optimal constants for

functional inequalities is not a new problem. For example, approximations of the optimal
Poincaré constant were studied in [5], while convergence rates for finite element approxi-
mations to the Sobolev constant were established in [2]. There is also a related literature
on estimating eigenvalues of operators, see for instance [7, 18, 30, 33]. While each of these
problems presents its own challenges for numerical analysis, one can categorize functional
inequalities into four broad classes with increasing complexity:
(1) Inequalities where the equality is attained by a smooth function. This is the case, for

example, for the Poincaré inequality in smooth domains.
(2) Inequalities where the equality is attained, but not by a smooth function. Examples in

this class include Poincaré-type inequalities for elliptic operators in nonsmooth domains
or with singular potentials.

(3) Inequalities where the equality is attained only when the underlying domain is the full
space. The Sobolev inequality analyzed in [2] belongs to this class.

(4) Inequalities where the equality is not attained, even on the full space.
The Hardy inequality falls in the last class of problems and, as such, poses unique chal-

lenges. Indeed, to prove the upper bounds in Theorems 1.1, 1.2 and 1.3 one can follow the
strategy in [2] and apply finite element interpolation estimates to minimizing sequences for
the problems in (1.3a) and (1.3b). However, there are many possible minimizing sequences,
so care must be taken to choose one with fast convergence properties. Finding lower bounds
on the discrete Hardy constant is also not straightforward. In [2], the gap between the
Sobolev constant and its finite element approximation was estimated from below using a
quantitative version of the Sobolev inequality from [15], which estimates how far a function
is from attaining equality. Quantitative Hardy inequalities also exist (see, e.g., [3, 4, 17, 31]
and [16, Section 2.5]) and a version due to Wang & Willem [32] suffices in dimension n = 3
to derive the lower bound in Theorem 1.3. For the lower bounds in Theorems 1.1 and 1.2,
instead, we follow a strategy inspired by ‘calibration methods’ from the calculus of variations
(see, e.g., [6, Section 1.2]), which is slightly more involved but is particularly well-suited to
the one-dimensional nature of the variational problems in (1.4) and (1.6). The idea, loosely
speaking, is to add to the Hardy inequality terms that integrate to zero and make the in-
equality evident. This strategy is known to produce sharp estimates for principal eigenvalues
of elliptic operators and of the p-Laplacian in dimension n = 1 if p is an even integer [9], and
it has recently received attention in the optimization community because it lends itself to
efficient numerical implementation [9, 12, 21, 22]. Here, we use it to derive lower bounds for
the discrete Hardy constant that not only show optimal dependence on the mesh size, but
also exhibit an excellent quantitative agreement with computational results. The ability to
produce explicit and accurate estimates is the main advantage of our ‘calibration’ approach
compared to using a quantitative Hardy inequality.

The rest of this article is organized as follows. Section 2 reviews basic notions of the finite
element method. Theorems 1.1 and 1.3 are proved in Sections 3 and 4, respectively. The
proof of Theorem 1.2, instead, is relegated to Appendix A because the strategy is the same
as for the one-dimensional case, but the computations are more cumbersome. Section 5
briefly compares the estimates in Theorems 1.1 and 1.2 to numerical values for the discrete
Hardy constants obtained computationally for n = 1 and n = 3. Section 6 concludes the
paper with a list of open problems.

2. Finite Element Spaces

We start with a review of key notions about the finite element method. Readers are
referred to [28, Chapter 3] and [29] for details. We work in dimension n = 3, but all results
carry over to dimension n = 1 upon replacing polyhedra with intervals.
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Definition 2.1. Let Ω ⊂ Rn be a polyhedral domain (i.e., a finite union of polyhedra) and
let h > 0. A family Th of polyhedra is called a triangulation of Ω if

• Every T ∈ Th is a subset of Ω with non-empty interior
◦
T ;

•
◦
T 1 ∩

◦
T 2 = ∅ for all T1 ̸= T2 ∈ Th;

• If T1 ̸= T2 ∈ Th have T1 ∩ T2 ̸= ∅, then they share a common face, side or vertex;
• diam(T ) ≤ h for every T ∈ Th.

The vertices of the polyhedra in the triangulation Th are called interpolation nodes.

We restrict our attention to affine triangulations, meaning that every element T ∈ Th is
the image of a reference polyhedron T̂ under a C1, invertible and affine map. In particular,
we will fix T̂ to be the unit simplex. We also assume that the triangulations are shape
regular, meaning that there exists a constant σ > 0 such that

hT

ρT
≤ σ ∀T ∈ Th,

where ρT is the radius of the largest ball inscribed in T and hT is the diameter of T . Finally,
we impose that our meshes are uniform, meaning that we require h/hT to be uniformly
bounded in T ∈ Th. As usual, for a given triangulation Th, we set without loss of generality

h := max
T∈Th

hT .

In dimension n = 3, let B be the open unit ball of R3. Let Bh ⊂ B be an open polyhedral
approximation of B such that the boundary vertices of Bh lie on ∂B and |B \Bh| ≤ h2. Such
a polyhedral domain Bh exists because B is smooth and convex. Let Th be a triangulation
of Bh and denote by V 3

h the space of functions in H1
0 (B) that vanish on B \Bh and whose

restriction to each element T ∈ Th is linear. In dimension n = 1, we define the space Vh of
continuous and piecewise linear functions on a triangulation (or mesh) of Bh = B = (0, 1)
in a similar way.

Next, we introduce the finite element interpolation operator.

Definition 2.2. The interpolation operator Πh : C0(B) → V 3
h maps any continuous function

f to the continuous and piecewise linear function Πhf satisfying Πhf(xi) = f(xi), where xi

are the interpolation nodes.

In dimension n ≤ 3 the interpolation operator is well-defined for every function in H2(B)
because this space embeds continuously into C0(B). The following result is a restatement
of [29, Theorem 5.1-4].

Theorem 2.1. Let Th be an affine, uniform and shape regular triangulation of a polyhedral
domain Ω ⊂ R3. There exists a constant C1 > 0 such that, for every f ∈ H2(Ω),

∥∇(Πhf − f)∥L2(Ω) ≤ C1h
∥∥D2f

∥∥
L2(Ω)

. (2.1)

A similar estimate holds if the polyhedral domain Ω is replaced by a C∞ domain (see,
e.g., [29, Lemma 5.2-3]), except the L2 norm of D2f must be replaced with the full H2 norm
of f . For convenience, we recall this result only in the case of the ball B.

Lemma 2.2. Let n = 3. There exists a constant C2 > 0 such that, for every f ∈ H2(B),

∥∇f∥L2(B\Bh)
≤ C2h∥f∥H2(B). (2.2)

Combining Theorem 2.1 and Lemma 2.2, we obtain the following result.

Theorem 2.3. Let n = 3. There exists a constant C > 0 such that, for every f ∈ H2(B),

∥∇(Πhf − f)∥L2(B) ≤ Ch∥f∥H2(B). (2.3)
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3. Proof of Theorem 1.1

This section is dedicated to proving Theorem 1.1. In Section 3.1, we use a calibration-type
argument to establish the lower bound

Sh ≥ 1

4
+

(
π

6 + |log h|

)2

+ o

(
1

|log h|2

)
. (3.1)

The argument, although technical, is interesting because it reveals a nontrivial good mini-
mizing sequence for the minimization in (1.3a), which includes a sinusoidal term. We the
interpolate a convenient approximation of this function in Section 3.1 to establish the upper
bound

Sh ≤ 1

4
+

(
π

| log h| − 3 log | log h|

)2

+ o

(
1

|log h|2

)
. (3.2)

This and (3.1) immediately imply the asymptotic expansion for Sh stated in Theorem 1.1.
Throughout this section, we shall assume for simplicity that the finite element space

Vh ⊂ H1(0, 1) is based on a uniform mesh whose elements have equal length h. All of our
arguments, however, extend immediately to spaces Vh defined using meshes with elements
[xi, xi+1] that satisfy ch ≤ xi+1 − xi ≤ h for some constant c independent of h. Indeed, it
suffices to replace h with ch in all of our proofs and results.

3.1. Proof of the lower bound. Let Uh be the space of functions in H1(0, 1) that vanish
at x = 0 and are linear on (0, h), but not necessarily on the rest of the interval (0, 1). Since
the finite element space Vh is strictly contained in Uh, we have that

Sh > µh := inf
u∈Uh

∫ 1

0

|u′|2 dx∫ 1

0

x−2|u|2 dx
. (3.3)

This estimate, of course, is not expected to be sharp due to the strict gap between Vh and
Uh. However, as stated in the next theorem, we can compute µh exactly. This is enough to
prove the lower bound in (3.1).

Theorem 3.1. There holds µh = 1/4 + δ2h, where δh solves

1

4
+ δh tan

(
tan−1 1

2δh
+ δh log h

)
− δ2h = 0. (3.4)

In particular, for h ≪ 1 we have

µh =
1

4
+

(
π

6 + |log h|

)2

+ o

(
1

|log h|2

)
. (3.5)

This result could be established by solving the optimality conditions for the minimization
problem defining µh in (3.3). Here, however, we present an alternative strategy that applies
in general and can produce estimates for µh from below even when the associated optimality
conditions cannot be solved analytically. To ease the presentation we break the argument
into three steps, which correspond to Lemmas 3.2, 3.3 and 3.4 below. The first step is to
prove the lower bound µh ≥ 1/4 + δ2h when δh solves (3.4).

Lemma 3.2 (Lower bound on µh). Let δh satisfy (3.4). Then, µh ≥ 1/4 + δ2h.

Proof. For λ ∈ R, set

Fλ(u) :=

∫ 1

0

|u′|2 − λ
u2

x2
dx (3.6)

and observe that
µh = max {λ : Fλ(u) ≥ 0 ∀u ∈ Uh} . (3.7)
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Since every u ∈ Uh has the linear representation u(x) = (x/h)u(h) for x ∈ (0, h), we can
rewrite

Fλ(u) =
1

h
(1− λ)u(h)2 +

∫ 1

h

|u′|2 − λ
u2

x2
dx.

We now use a calibration approach to find λ for which Fλ(u) is nonnegative irrespective of
the choice of u ∈ Uh. Such a value λ is then a lower bound on µh.

The idea is to add to Fλ(u) terms that sum to zero and that, at least for some carefully
chosen value of λ, make the inequality Fλ(u) ≥ 0 evident. To this end, observe that if φ is
any continuously differentiable function on [h, 1] such that φ(1) = 0, then the fundamental
theorem of calculus gives ∫ 1

h

(
φ(x)

x
u2

)′

dx+
1

h
φ(h)u(h)2 = 0.

After expanding the derivative inside the integral using the product and chain rules, we can
add this expression to Fλ(u) without changing its value to obtain

Fλ(u) =
1

h
[1− λ+ φ(h)]u(h)2 +

∫ 1

h

|u′|2 + 2
φ

x
uu′ + (xφ′ − φ− λ)

u2

x2
dx. (3.8)

The inequality Fλ(u) ≥ 0 is satisfied if we can find φ and λ such that

1− λ+ φ(h) ≥ 0, (3.9a)

xφ′ − φ− λ ≥ φ2 ∀x ∈ [h, 1], (3.9b)
φ(1) = 0. (3.9c)

Indeed, in this case we have

Fλ(u) ≥
1

h
[1− λ+ φ(h)]︸ ︷︷ ︸

≥0

u(h)2 +

∫ 1

h

(
u′ +

φ

x
u
)2

︸ ︷︷ ︸
≥0

dx, (3.10)

which is manifestly nonnegative for every function u ∈ Uh.
There remains to find φ and λ that satisfy the three conditions in (3.9). Fix δ > 0 to be

determined below and set λ = 1
4 + δ2. If we require that (3.9b) be satisfied with equality,

we obtain a differential equation with the boundary condition φ(1) = 0, whose solution is
given by

φ(x) = δ tan

[
tan−1

(
1

2δ

)
+ δ log x

]
− 1

2
. (3.11)

Note that this function is smooth on [0, h] for δ small enough. Then, we substitute this
function into (3.9a) and rearrange the inequality to obtain

1

4
+ δ tan

(
tan−1 1

2δ
+ δ log h

)
− δ2 ≥ 0. (3.12)

This inequality holds with equality when δ = δh is the solution of (3.4). All conditions
in (3.9) are then satisfied with equality. We conclude that λ = 1/4 + δ2h is feasible for the
maximization problem in (3.7), whence µh ≥ λ = 1/4 + δ2h. □

The second step is to derive an asymptotic expansion for δh when h ≪ 1.

Lemma 3.3 (Asymptotic expansion for δh). Let δh solve (3.4). For h ≪ 1, we have the
asymptotic expansion

δh =
π

6 + |log h|
+ o

(
1

|log h|

)
. (3.13)

Proof. Rewrite (3.4) as

tan−1

(
1

2δh

)
− δh|log h| = tan−1

(
4δ2h − 1

4δh

)
,
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Figure 1. Left: Ratio of δh to the leading-order term π/(6 + |log h|) in its asymptotic expansion.
Right: The error between this ratio and the value 1.

where we have used the identity log h = −|log h| valid for h ≤ 1. Anticipating that δh ≪ 1
when h ≪ 1, we can apply a Taylor expansion to find that

π

2
+ 2δh + o(δh)− δh|log h| =

π

2
+ 4δh + o(δh).

Solving for δh gives (3.13). The correctness of this expansion is confirmed by Figure 1. □

The third and final step to prove Theorem 3.1 is to complement the lower bound on µh

from Lemma 3.2 with a matching upper bound.

Lemma 3.4. Let δh satisfy (3.4). Then, µh ≤ 1/4 + δ2h.

Proof. It suffices to find a function uh ∈ Uh such that∫ 1

0

|u′
h|

2
dx∫ 1

0

x−2|uh|2 dx
=

1

4
+ δ2h. (3.14)

Setting λ = 1/4+δ2h to ease the notation, this is equivalent to solving the equation Fλ(uh) = 0
where the functional Fλ is as in (3.6). Since the value of λ was chosen to satisfy the conditions
in (3.9) with equality, we find from (3.8) that

Fλ(uh) =

∫ 1

h

(
u′
h +

φ

x
uh

)2
dx (3.15)

for any uh ∈ Uh. We should therefore take uh to solve the differential equation

u′
h +

φ

x
uh = 0 (3.16)

on (h, 1), and extend it by a linear function to (0, h) while ensuring that uh(0) = 0. The
differential equation (3.16) can be solved analytically if φ is as in (3.11) with δ = δh, giving

uh(x) =


A

x√
h
cos

(
tan−1

(
1

2δh

)
+ δh log h

)
for x ∈ [0, h]

A
√
x cos

(
tan−1

(
1

2δh

)
+ δh log x

)
for x ∈ (h, 1]

(3.17)

for an arbitrary normalization constant A. This function satisfies (3.14) by construction for
any A ̸= 0, which is the desired result. □

We conclude by remarking that Lemma 3.4 is not required to obtain the lower bound on
Sh stated in (3.1): that result already follows from Lemma 3.2, Lemma 3.3, and inequality
(3.3). Nevertheless, the extra analysis is valuable because it provides functions uh ∈ Uh

that, as h → 0, form a good minimizing sequence for the minimization problem defining
the Hardy constant in (1.3a). In the next section, we interpolate an approximation of uh to
estimate the discrete Hardy constant Sh from above with optimal errors.
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3.2. Proof of the upper bound. We now prove the upper bound in (3.2). Recall that, in
dimension n = 1, the discrete Hardy constant Sh is the optimal value of the optimization
problem in (1.4). It therefore suffices to construct a function vh ∈ Vh such that∫ 1

0

|v′h|
2
dx∫ 1

0

x−2 v2h dx

≤ 1

4
+

(
π

| log h| − 3 log | log h|

)2

+ o

(
1

|log h|2

)
. (3.18)

We will take vh to be the piecewise linear interpolation of an element vε of a minimiz-
ing sequence {vε}ε>0 for the minimization problem in (1.3a). The construction requires a
suitable choice of ε as a function of the mesh size h and, most importantly, a good choice
of vε. Indeed, there are many possible minimizing sequences {vε}ε>0 for (1.3a), and not
all converge at the same rate as ε tends to zero. The lower bound analysis of Section 3.1
suggests one should define vε by replacing h with ε in (3.17). To simplify the algebra in
what follows, however, it will be more convenient to work with the function

vε(x) =

0, x ∈ (0, ε),
√
x sin

(
π log x

log ε

)
, x ∈ (ε, 1),

(3.19)

which approximates the function in (3.17) for small ε. Crucially, this function is linear on
the interval (0, ε). If we choose ε = mh to be an interpolation node, therefore, vε coincides
with its piecewise linear interpolation Πhvε on (0, ε). On the interval (ε, 1), instead, we can
estimate the error between vε and Πhvε using Theorem 2.1 because vε ∈ H2(ε, 1). This
allows us to establish (3.18) for vh = Πhvε and a suitable choice of ε.

We start by calculating the values of some norms of vε.

Lemma 3.5. For every ε < 1, the function vε in (3.19) satisfies∫ 1

0

vε(x)
2

x2
dx =

1

2
|log ε|,∫ 1

0

|vε(x)′|
2
dx =

1

2
|log ε|

(
1

4
+

π2

|log ε|2

)
,∫ 1

ε

|vε(x)′′|
2
x2 dx =

1

32
|log ε|+ π2

4|log ε|
+

π4

2|log ε|3
.

Proof. By direct calculation. □

We will also use the following estimates, which relate a function f ∈ H1(0, 1) ∩H2(ε, 1)
that vanishes on [0, ε] to its piecewise linear interpolation Πhf on a mesh of size h when
ε = mh is an interpolation node. The proof is analogous to that of Lemma A.6 in the
appendix, so we do not report it for brevity.

Lemma 3.6. Let ε = mh ∈ (0, 1) be an interpolation node. Assume f ∈ H1(0, 1)∩H2(ε, 1)
vanishes on [0, ε]. Set

Eh(f) :=
h

ε

(∫ 1

0

|f ′|2 dx
) 1

2
(∫ 1

ε

|f ′′|2x2 dx

) 1
2

+
h2

ε2

∫ 1

ε

|f ′′|2x2 dx.

There exists a constant C > 0, independent of f , h and ε, such that∫ 1

0

∣∣(Πhf)
′∣∣2 dx ≤

∫ 1

0

|f ′|2 dx+ CEh(f) (3.20a)∫ 1

0

x−2|Πhf |2 dx ≥
∫ 1

0

x−2|f |2 dx− CEh(f). (3.20b)
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We are now ready to prove that the piecewise linear function vh = Πhvε satisfies (3.18)
when vε is as in (3.19) and ε is a carefully chosen interpolation node. Precisely, set ε = mh
for some integer m to be specified below and observe that vε(x) = 0 for all x ∈ [0, ε]. Then,
we can apply (3.20a) and (3.20b) to estimate∫ 1

0

|(Πhvε)
′|2 dx∫ 1

0

x−2 |Πhvε|2 dx

≤

∫ 1

0

|v′ε|
2
dx+ CEh(vε)∫ 1

0

x−2 |vε|2 dx− CEh(vε)
(3.21)

Using the calculations reported in Lemma 3.5 we find that Eh(vε) ≲
(
hε−1 + h2ε−2

)
|log ε|,

so there exist a constant C, different from the one in (3.21) but still independent of ε and
h, such that ∫ 1

0

|(Πhvε)
′|2 dx∫ 1

0

x−2 |Πhvε|2 dx

≤

1

4
+

π2

|log ε|2
+ C

(
h2

ε2
+

h

ε

)
1− C

(
h2

ε2
+

h

ε

) . (3.22)

Next, set m = ⌊| log h|3⌋, so ε = mh ∼ h|log h|3 satisfies in particular ε ≤ h|log h|3. With
this choice we can estimate

|log ε|2 ≥
∣∣∣log (h|log h|3)∣∣∣2 = (| log h| − 3 log | log h|)2

and
h2

ε2
+

h

ε
∼ 1

|log h|6
+

1

|log h|3
= o

(
1

|log h|2

)
.

If we substitute these estimates into (3.22) and take h ≪ 1, so we can apply the inequality
1/(1− z) ≤ 1 + 2z valid for z ≤ 1/2, we obtain∫ 1

0

|(Πhvε)
′|2 dx∫ 1

0

x−2 |Πhvε|2 dx

≤

[
1

4
+

(
π

| log h| − 3 log | log h|

)2

+ o

(
1

| log h|2

)][
1 + o

(
1

| log h|2

)]

=
1

4
+

(
π

| log h| − 3 log | log h|

)2

+ o

(
1

| log h|2

)
.

This is precisely (3.18) for vh = Πhvε, which implies the upper bound on Sh claimed in (3.2).
We conclude by remarking that while the choice of m could in principle be optimized,

this can only improve the terms that are asymptotically smaller than 1/|log h|2 when h ≪ 1.
The leading-order term π2/|log h|2, instead, is optimal in light of the lower bound in (3.1).

4. Proof of Theorem 1.3

We now turn to proving the upper and lower bounds from Theorem 1.3, which apply to the
discrete Hardy constant in n = 3 dimensions for general triangulations of the unit ball. The
main difference with the arguments for n = 1 dimensions is in the proof of the lower bound,
which we present in Section 4.1: rather than following a calibration argument, we exploit a
Hardy inequality with a logarithmic remainder term [32]. We note, however, that the proof
of this inequality given in [27, Section 2.5] relies on a completion-of-the-square argument,
very similar in spirit to what our calibration strategy achieves in (3.10) and (3.15). We
remark also that while in Section 4.1 we fix n = 3, our arguments immediately generalize to
any dimension n ≥ 3 and yield

min
v∈V n

h

∫
B

|∇v|2 dx∫
B

|x|−2|v|2dx
≥ Sn +

Cn

|log(h)|2
,
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where V n
h is the space of piecewise linear functions on a triangulation of the n-dimensional

unit ball, Sn = (n− 2)2/4 is the Hardy constant, and the constant Cn > 0 depends on n.
The upper bound part of Theorem 1.3, instead, is proved in Section 4.2 with the same

interpolation strategy used for n = 1. For this we must fix n = 3 because the finite element
interpolation estimates from Theorem 2.3 are not valid in higher dimensions.

4.1. Proof of the lower bound. We exploit the following Hardy inequality with a log-
arithmic remainder term. The statement, adapted from [27, Theorem 2.5.2, p. 25], is a
particular case of general quantitative Caffarelli–Kohn–Nirenberg inequalities from [32].

Theorem 4.1 (See [27, Theorem 2.5.2]). Let R > 0 be such that 0 ∈ Ω ⊂ Ω ⊂ BR(0).
There exists a positive constant K(n,R) such that every ϕ ∈ C∞

c (Ω) satisfies∫
Ω

|∇ϕ|2 dx−
(
n− 2

2

)2 ∫
Ω

|x|−2
ϕ2 dx ≥ K

∫
Ω

|∇ϕ|2
(
log

|x|
R

)−2

dx. (4.1)

By density, this inequality holds for all ϕ ∈ H1
0 (Ω). Because of the definition of space V 3

h

in Section 2, we can take R = 2 and apply the above inequality to any function in V 3
h .

In particular, let vh ∈ V 3
h be the function attaining the minimum in the definition of S3

h,
that is,

S3
h =

∫
B

|∇vh|2 dx∫
B

|x|−2
v2h dx

.

Using inequality (4.1) for n = 3 we obtain

S3
h − 1

4
=

∫
B

|∇vh|2 dx− 1

4

∫
B

|x|−2
v2h dx∫

B

|x|−2
v2h dx

≥ K

∫
B

|∇vh|2
(
log |x|

2

)−2

dx∫
B

|x|−2
v2h dx

= K

∑
T∈Th

∫
T

|∇vh|2
(
log |x|

2

)−2

dx∫
B

|x|−2
v2h dx

.

We claim that there exists a constant C1 > 0 such that∑
T∈Th

∫
T

|∇vh|2
(
log |x|

2

)−2

dx ≥ C1

| log h|2
∑
T∈Th

∫
T

|∇vh|2 dx

=
C1

| log h|2

∫
B

|∇vh|2 dx. (4.2)

Then, upon setting C = KC1 and using (1.3b) for n = 3 and p = 2, we obtain

S3
h − 1

4
≥ C

| log h|2

∫
B

|∇vh|2 dx∫
B

|x|−2
v2h dx

≥ C

4| log h|2
,

which immediately implies the lower bound in Theorem 1.3.
There remains to prove (4.2). Let Bh be the ball of radius h centered at the origin and

observe that we can write Th = T 1
h ∪ T 2

h , where

T 1
h := {T ∈ Th such that T ∩Bh = ∅}

T 2
h := {T ∈ Th such that T ∩Bh ̸= ∅}.

For any T ∈ T 1
h , x ∈ T implies |x| ≥ h, so∫

T

|∇vh|2

| log(|x|/2)|2
dx ≥ 1

|log(h/2)|2
∫
T

|∇vh|2 dx ∀T ∈ T 1
h . (4.3)
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On the other hand, if T ∈ T 2
h , we can write

∑
T∈T 2

h

∫
T

|∇vh|2

| log(|x|/2)|2
dx =

∑
T∈T 2

h

[∫
T∩Bh

|∇vh|2

| log(|x|/2)|2
dx+

∫
T\Bh

|∇vh|2

| log(|x|/2)|2
dx

]

=

∫
Bh

|∇vh|2

| log(|x|/2)|2
dx+

∑
T∈T 2

h

∫
T\Bh

|∇vh|2

| log(|x|/2)|2
dx.

The integrals over T \Bh can be estimated as before because x ∈ T \Bh implies |x| ≥ h, so∑
T∈T 2

h

∫
T\Bh

|∇vh|2

| log(|x|/2)|2
dx ≥ 1

|log(h/2)|2
∑

T∈T 2
h

∫
T\Bh

|∇vh|2 dx. (4.4)

As far as the integral over Bh, we apply the coarea formula and integrate by parts to obtain∫
Bh

|∇vh|2

| log(|x|/2)|2
dx =

∫ h

0

1

| log(s/2)|2

(∫
∂Bs

|∇vh|2 dH2

)
ds

=
1

|log(h/2)|2
∫
Bh

|∇vh|2 dx− 2

∫ h

0

(∫
Bs

|∇vh|2 dx
)

1

|log(s/2)|3
ds

≥ 1

|log(h/2)|2
∫
Bh

|∇vh|2 dx− 2

∫
Bh

|∇vh|2 dx
∫ h

0

1

|log(s/2)|3
ds

=
1

|log(h/2)|2

[
1− 2

∫ h

0

|log(h/2)|2

|log(s/2)|3
ds

]∫
Bh

|∇vh|2 dx.

Now, since

lim
h→0

∫ h

0

|log(h/2)|2

|log(s/2)|3
ds = 0

there exists a positive constant C2 < 1 such that∫
Bh

|∇vh|2

| log(|x|/2)|2
dx ≥ C2

|log(h/2)|2
∫
Bh

|∇vh|2 dx (4.5)

for all sufficiently small h. We can now sum up the estimates (4.3), (4.4) and (4.5) to arrive
at the claimed inequality (4.2). The lower bound in Theorem 1.3 is therefore proved.

4.2. Proof of the upper bound. To prove the upper bound from Theorem 1.3, it suffices
to find a function vh ∈ V 3

h such that∫
B

|∇vh|2dx∫
B

|x|−2|vh|2dx
≤ 1

4
+

4π2

|log h|2
+ o

(
1

|log h|2

)
. (4.6)

As in Section 3.2, we will take vh = Πhvε to be the piecewise linear interpolation of a
function vε that is close to attaining the minimum in (1.3b), where ε is a small parameter
to be determined as a function of the mesh size h. We make here the particular choice

vε(x) =
1√

|x|+ ε
sin

(
π log(|x|+ ε)

log ε

)
− 1√

1 + ε
sin

(
π log(1 + ε)

log ε

)
. (4.7)

The following result follows from direct calculations.
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Lemma 4.2. For every ε > 0, the function vε defined in (4.7) belongs to H1
0 (B) ∩H2(B).

In particular, for ε ≪ 1 we have

1

|B|

∫
B

|x|−2|vε(x)|2dx =
|log ε|
2

+O

(
ε

|log ε|

)
1

|B|

∫
B

|∇vε|2dx ≤ |log ε|
2

(
1

4
+

π2

|log ε|2

)
+O (ε)

1

|B|

∫
B

(|x|+ ε)
2 ∣∣D2vε(x)

∣∣2dx ≤ 9

32
|log ε|+O

(
ε

log ε

)
.

(4.8)

We will also use the following estimates, which are similar to those in Lemma 3.5 and
Lemma A.5. The proof is similar to that of Lemma A.5, which is reported in the appendix,
except that one must use the finite element interpolation estimates from Theorem 2.3 instead
of those in Theorem 2.1. The details are omitted for brevity.

Lemma 4.3. For every mesh size h and every function f ∈ H1
0 (B) ∩H2(B), set

Eh(f) := h2∥f∥2H2(B) + h∥f∥H2(B)∥∇f∥L2(B).

There exists a constant C > 0, independent of both f and h, such that∫
B

|∇Πhf |2dx ≤
∫
B

|∇f |2dx+ CEh(f),∫
B

|x|−2|Πhf |2dx ≥
∫
B

|x|−2|f |2dx− CEh(f),
(4.9)

With these results in hand, it is relatively straightforward to show that the function
vh = Πhvε ∈ V 3

h satisfies (4.6) for a suitable choice of ε = ε(h). Indeed, by Lemma 4.2, for
every ε > 0 we can estimate

∥vε∥2H2(B) ≤
∫
B

|x|−2|vε|2dx+

∫
B

|∇vε|2dx+ ε−2

∫
B

(|x|+ ε)
2 ∣∣D2vε

∣∣2dx
≤ |log ε|

ε2
+O

(
1

ε|log ε|

)
.

This, in turn, implies that Eh(vε) ≤
(
h2ε−2 + hε−1

)
|log ε|. Using Lemma 4.2, Lemma 4.3,

and this last estimate we then find∫
B

|∇Πhvε|2dx∫
B

|x|−2|Πhvε|2dx
≤

∫
B

|∇vε|2dx+ CEh(vε)∫
B

|x|−2|vε|2dx− CEh(vε)

≤

1

4
+

π2

|log ε|2
+O

(
ε

|log ε|

)
+ C

(
h2

ε2
+

h

ε

)
1 +O

(
ε

|log ε|2

)
− C

(
h2

ε2
+

h

ε

) .

We now fix ε = h|log h|3 and obtain∫
B

|∇Πhvε|2dx∫
B

|x|−2|Πhvε|2dx
≤

1

4
+

(
π

|log h| − 3 log |log h|

)2

+O

(
1

|log h|3
+ h|log h|2

)

1 +O

(
1

|log h|3
+ h|log h|2

) .

Since |log h|−3
+h|log h|2 = o(|log h|−2

), this inequality implies (4.6) for all sufficiently small
h values. This concludes the proof of the upper bound part of Theorem 1.3.
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Figure 2. The gap Eh = Sh − 1/4 between the discrete and exact Hardy constant in dimension
n = 1, scaled by the factors π2/(6 + |log h|)2 (left) and π2/(|log h| − 3 log |log h|)2 (right) predicted
by the lower and upper bounds in (3.1) and (3.2), respectively.

Figure 3. Left: Minimizer u ∈ Vh for (1.4) and h = 10−3, normalized so that u(1) = 1. Right:
Error ∥u−uh∥L∞(0,1) between the minimizer u of (1.4) and the function uh in (3.17). Both functions
are normalized so that u(1) = uh(1) = 1.

5. Numerical results

Our analytical estimates in Theorems 1.1, 1.2 and 1.3 provide precise asymptotic rates
of convergence for the discrete Hardy constants in dimension n = 1 and n ≥ 3 as the
mesh size h tends to zero. This section reports some computational results to validate our
estimates and check if they are quantitatively accurate for small but finite h, rather than
just asymptotically.

5.1. Computations for n = 1. For the case of dimension n = 1, the implementation
of the finite element method is straightforward and the computation of the discrete Hardy
constant Sh amounts to solving a tridiagonal generalized eigenvalue problem. We solved this
eigenvalue problem for uniform meshes with N equispaced interpolation nodes, xk = k/N
for k = 0, . . . , N . The mesh size is h = 1/N . We considered 100 logarithmically spaced
integer values N from N = 10 to N = 107. The gap

Eh := Sh − 1

4
is plotted as a function of the mesh size in the two panels of Figure 2, where it is compensated
by the values π2/(6+ |log h|)2 and π2/(|log h|−3 log |log h|)2 that one predicts (up to higher-
order corrections) from the lower and upper bounds in (3.1) and (3.2), respectively. We use
these values instead of the simpler asymptotic predictions from Theorem 1.1 because we
expect them to be more precise for finite h values. The left panel in Figure 2 suggests that
the upper bound (3.2) on Sh overestimates Eh. Note also how the O(1/|log h|2) asymptotic
behaviour of Eh, guaranteed by Theorem 1.1, is not evident in the plot despite the very
small mesh sizes. This is due to the extremely slow decay of other, higher-order logarithmic
corrections. In contrast, the lower bound from (3.1) predicts Eh much more accurately for
the mesh sizes h in our numerical computations, even though it was obtained by replacing
the finite element space Vh with the strictly larger space Uh.

The accuracy of our lower bound analysis is further confirmed if we consider the minimizer
u ∈ Vh for (1.4). This is the principal eigenfunction of the eigenvalue problem for Sh and is
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Figure 4. The gap E3
h = S3

h − 1/4 between the discrete Hardy constant for n = 3 dimensions,
computed with (1.6), and the exact value S3 = 1/4. Results are plotted after scaling by the
functions 9π2/(16 + 3h+ 3|log h|)2 (right) and 4π2/(|log h| − 3 log |log h|)2 (right) predicted by the
lower and upper bounds in (A.1) and (A.16), respectively.

Figure 5. Left: Minimizer v ∈ Vh for (1.6) with n = 3 and h = 10−2, normalized so that v(0) = 1.
Right: Error ∥v − vh∥L∞(0,1) between the minimizer v of (1.6) and the function vh in (A.11) for
n = 3. Both functions are normalized so that v(0) = vh(0) = 1.

shown in the left panel of Figure 3 for h = 10−3 (results for other values of h are similar). As
shown by the right panel in the same figure, this eigenfunction is approximated well by the
function uh in (3.17) in a pointwise sense. Moreover, the approximation appears to improve
as the mesh size h decreases. This suggests that a careful interpolation of uh may improve
the upper bound in (3.2) so that it matches more precisely the lower bound in (3.1).

5.2. Computations for n = 3 with radial symmetry. Next, we consider computations
in dimension n = 3 when the domain Ω = B is the unit ball. We focus on the case
of radially symmetric meshes because the computation of S3

h reduces to solving the one-
dimensional minimization problem in (1.6) for n = 3. This problem is equivalent to a
tridiagonal generalized eigenvalue problem, which can be solved on a laptop even for very
small values of the mesh size h. General meshes of the three-dimensional ball, instead, would
require a more sophisticated parallel implementation on a computer cluster that is beyond
the scope of our work. Our computations used uniform meshes with N elements of size
h = 1/N , and we considered 100 logarithmically spaced integer values N from N = 10 to
N = 107. The gap

E3
h := S3

h − 1

4
is plotted in Figure 4 after scaling by the values 9π2/(16+3h+3| log h|)2 and 4π2/(|log h|−
3 log |log h|)2 one predicts for E3

h (up to higher-order corrections) from the lower and upper
bounds on S3

h in (A.1) and (A.16), respectively. As before, we use these values rather than
the asymptotically equivalent predictions from Theorem 1.2 because we expect them to be
more accurate for small but finite h. Again, the results suggest that our lower bound predicts
E3

h more accurately than our upper bound. Moreover, Figure 5 reveals that the function vh
in (A.11) is a reasonable approximation for the minimizer v of (1.6). However, contrary to
the case of dimension n = 1, the approximation error does not seem to decrease as the mesh
is refined.
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6. Open problems

We conclude with a list of open problems.
(1) Determine the exact prefactor for the O(1/|log(h)|2) correction to the asymptotic value

of the discrete Hardy constant in n ≥ 3 dimensions. Our analysis does not provide this
because the leading-order corrections in the upper and lower bounds in Theorem 1.2 do
not match as the mesh size h tends to zero. The good quantitative agreement between
the values of Sn

h computed numerically in Section 5 and the lower bounds in (A.1)
suggests that

Sn
h = Sn +

π2

|log(h)|2
+ o

(
1

|log(h)|2

)
.

Confirming this precisely, even with computer assistance, is challenging due to the slow
decay of higher-order logarithmic corrections. If this prediction is correct, however, then
one should be able to improve upper bound in (A.16).

(2) Generalize our estimates to the Hardy inequality with exponent p ∈ (1, n). The calibra-
tion technique we employed has already been used to prove sharp lower bounds on the
optimal constant for the one-dimensional Poincaré inequality in W 1,p

0 when p is an even
integer [9]. We wonder if those arguments carry over first to the Hardy inequality with
exponent p ̸= 2, and then to its finite element approximations.

(3) Generalize our estimates to refinements of the Hardy inequality in dimension n = 2,
which was not considered here. In particular, we wonder if one can estimate the con-
vergence rate of finite element approximations for logarithmic versions of the Hardy
inequality (see, e.g., [10]).

Appendix A. Proof of Theorem 1.2

In this appendix, we prove the upper and lower bounds reported in Theorem 1.2, which
apply to the discrete Hardy constant Sn

h defined in (1.3b) for any dimension n ≥ 3. We
follow essentially the same strategy used in Section 3 for the case of n = 1 dimensions, but
the computations are more involved. There is only one minor technical difference in the
proof of the lower bound, which we point out explicitly.

A.1. Proof of the lower bound. Let us first prove the lower bound part of Theorem 1.2.
We shall in fact establish the lower bound

Sn
h ≥ Sn +

π2(
8(n−1)
n(n−2) + h+ |log h|

)2 + o

(
1

|log h|2

)
, (A.1)

which is asymptotically equivalent to that in the theorem for h ≪ 1. The proof follows the
same strategy as in Section 3.1 with only one difference: the space Uh in that section is
replaced by the space Wh of functions in H1(0, 1) that vanish at r = 1 and that are linear
both on (0, h) and on (1 − h, 1). Since the space Wh contains the finite element space Vh

used to define Sn
h , the inequality in (A.1) follows from a lower bound on

µn
h := inf

v∈Wh

∫ 1

0

rn−1|v′|2 dr∫ 1

0

rn−3v2 dr

. (A.2)

We will compute this quantity using a calibration-type argument. To simplify the nota-
tion, let us introduce for every positive integer m the function

fm(h) :=
1

m

m−1∑
k=0

(1− h)2−n+k. (A.3a)
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Let us also set
gn(h) := fn(h)− 2fn−1(h) + fn−2(h). (A.3b)

Theorem A.1. Suppose δh and γh solve(
n2 − 2n

2
− 2δ2h

)(
n2

4
− δ2h + nδh tan (γh + δh log h)

)
=

n− 2

n− 1

(
n2

4
+ δ2h

)2

(A.4a)

n− 2

2
+ δh tan (γh + δh log(1− h)) =

1

h

[
fn(h)− gn(h)

(
(n− 2)2

4
+ δ2h

)]
. (A.4b)

Then, µn
h = Sn + δ2h. In particular, for h ≪ 1 we have

µn
h = Sn +

π2(
8(n−1)
n(n−2) + h+ |log h|

)2 + o

(
1

|log h|2

)
. (A.5)

This result is an immediate consequence of the following three lemmas. The first estab-
lishes the lower bound µn

h ≥ Sn + δ2h. The second provides an asymptotic expression for δh
when h ≪ 1. The third shows that µn

h ≤ Sn+δ2h, from which we conclude that µn
h = Sn+δ2h.

Lemma A.2. If δh and γh solve (A.4), then µh ≥ Sn + δ2h.

Proof. Set

Fλ(v) :=

∫ 1

0

rn−1|v′|2 − λrn−3v2 dr

and observe that
µn
h = max {λ : Fλ(v) ≥ 0 ∀v ∈ Wh} . (A.6)

By definition of Wh, every v ∈ Wh satisfies

v(x) =

{
h−1(h− r) v(0) + h−1r v(h) if r ∈ (0, h),

h−1(1− r) v(1− h) if r ∈ (1− h, 1).

Moreover, every continuously differentiable function φ(r) on [h, 1− h] satisfies∫ 1−h

h

(
rn−2φ(r) v2

)′
dr = (1− h)n−2φ(1− h)v(1− h)2 − hn−2φ(h)v(h)2

by the fundamental theorem of calculus. Expanding the derivative under the integral using
the chain rule, and using the piecewise linear representation of v, we can rewrite

Fλ(v) =
hn−2

n(n− 1)(n− 2)

(
v(0)
v(h)

)⊤

M(n, h, λ)

(
v(0)
v(h)

)

+

∫ 1

h

rn−1|v′|2 + 2rn−2φ(r)vv′ +
[
(rn−2φ)′ − λ

]
v2 dx

+ hn−3 [fn(h)− gn(h)λ− hφ(1− h)] v(1− h)2, (A.7)

where the functions fn and gn are as in (A.3) and

M(n, h, λ) :=

(
(n− 1)(n− 2)− 2λ (n− 2)(1− n− λ)
(n− 2)(1− n− λ) (n− 1)(n− 2) (1− λ+ nφ(h))

)
.

The right-hand side of (A.7) is nonnegative if the matrix M(n, h, λ) is positive semidefinite,
the integrand in the second line is a square, and the coefficient of the last term is nonnegative.
This is true if φ and λ satisfy

(n− 1)(n− 2)− 2λ ≥ 0, (A.8a)

(n− 1) [(n− 1)(n− 2)− 2λ] [1− λ+ nφ(h)] ≥ (n− 2)(1− n− λ)2, (A.8b)
fn(h)− gn(h)λ− hφ(1− h) ≥ 0, (A.8c)(

rn−2φ
)′ − λ = rn−3φ2. (A.8d)
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Figure 6. Left: Ratio of δh to the leading-order term π/(σn + h + |log h|) in its asymptotic
expansion, where σn = 8(n − 1)/(n2 − 2n). Right: Error between this ratio and the value 1. The
three curves are for n = 3 (blue), n = 4 (red), and n = 5 (yellow).

To satisfy these four conditions, we set λ = Sn + δ2 for some δ to be determined below,
and solve the differential equation in (A.8d) to find

φ(r) =
n− 2

2
+ δ tan (γ + δ log r) ,

where γ is an integration constant. Then, we substitute this function into (A.8a), (A.8b)
and (A.8c). After some rearrangement, we conclude that δ and γ should satisfy

n(n− 2)− 4δ2 ≥ 0, (A.9a)(
n2 − 2n

2
− 2δ2

)(
n2

4
− δ2 + nδ tan (γ + δ log h)

)
≥ n− 2

n− 1

(
n2

4
+ δ2

)2

, (A.9b)

n− 2

2
+ δ tan (γ + δ log(1− h)) ≤ 1

h

[
fn(h)− gn(h)

(n− 2)2

4
− gn(h)δ

2

]
. (A.9c)

These inequalities hold with equality if δ = δh and γ = γh. The choice λ = Sn + δ2h is thus
feasible for the maximization problem in (A.6), so µh ≥ Sn + δ2h. □

Next, we solve (A.4) for h ≪ 1 to derive an asymptotic expansion for δh.

Lemma A.3. If δh and γh solve (A.4) and h ≪ 1, then

δh =
π

8(n−1)
n(n−2) + h+ |log h|

+ o

(
1

|log h|

)
. (A.10)

Proof. We perform an asymptotic solution of (A.4) for h ≪ 1. Anticipating that δh ≪ 1
and that γh ≈ π/2 in this regime, we rearrange (A.4a) keeping only the leading-order terms
to find that

n2

4
+ nδh tan (γh + δh log h) =

n3

8(n− 1)
.

This equation can be solved for γh to obtain, again to leading order,

γh = − tan−1

(
n(n− 2)

8(n− 1)δh

)
− δh log h.

We then rearrange (A.4b) keeping only the leading-order terms in δh to arrive, after some
algebraic simplifications, at

γh = tan−1

(
1

hδh

)
.

Substituting the expression for γh and using the Taylor expansion of the tangent for small
δh we obtain, to leading order in δh,

−π

2
+

8(n− 1)

n(n− 2)
δh + o(δh)− δh log h =

π

2
− hδh + o(δh).

Solving this equation for δh yields (A.10). The correctness of this asymptotic expansion
confirmed for n = 3, 4 and 5 by Figure 6. □
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Finally, we show that the lower bound µn
h ≥ Sn + δ2h proved in Lemma A.2 is sharp by

establishing the reverse inequality.

Lemma A.4. If δh and γh solve (A.4), then µh ≥ Sn + δ2h.

Proof. Let λ = Sn+δ2h. It suffices to find a function vh ∈ Wh for which Fλ(vh) = 0, because
then

λ = Sn + δ2h =

∫ 1

0

rn−1|v′|2 dr∫ 1

0

rn−3v2 dr

≥ µn
h.

To construct vh, recall that δh and γh are chosen to satisfy (A.8b) and (A.8c) with
equality. Thus, for any v ∈ Wh, identity (A.7) becomes

Fλ(v) =

∫ 1−h

h

rn−3 (rv′ + φv)
2
dr

+
hn−2

n(n− 1)

(
v(0)
v(h)

)⊤
(
n− 1− 2λ

n−2 1− n− λ

1− n− λ (n−2)(1−n−λ)2

(n−1)(n−2)−2λ

)(
v(0)
v(h)

)
.

Recognizing that the 2× 2 matrix in the second line has rank one, we can further rewrite

Fλ(v) =

∫ 1−h

h

rn−3 (rv′ + φv)
2
dr

+
hn−2

n(n− 1)

[√
n− 1− 2λ

n− 2
v(0) +

√
n− 2(1− n− λ)√

(n− 1)(n− 2)− 2λ
v(h)

]2
.

To construct vh, therefore, we first solve the differential equation rv′+φ(r)v = 0 on (h, 1−h).
Then, we extend the solution linearly to (0, h) and to (1−h, 1) while satisfying the boundary
conditions

v(1) = 0 and v(0) = − (n− 2)(1− n− λ)

(n− 1)(n− 2)− 2λ
v(h).

Introducing the function

Ψ(r) := r−
n−2
2 cos (γh + δh log r)

for convenience, we find that

vh(r) =


Ah−1

[
r − (n−2)(1−n−λ)

(n−1)(n−2)−2λ (h− r)
]
Ψ(h) r ∈ [0, h],

AΨ(r) r ∈ [h, 1− h],

Ah−1(1− r)Ψ(1− h) r ∈ [1− h, 1],

(A.11)

where A is an arbitrary normalization constant. □

A.2. Proof of the upper bound. The upper bound in Theorem 1.2 is proven for any
n ≥ 3 exactly like its counterpart for n = 1 in Theorem 1.1. The only difference is that we
replace the function vε in (3.19) with

vε(x) =

0, r ∈ [0, ε],

r−
n−2
2 sin

(
π log r

log ε

)
, r ∈ (ε, 1],

(A.12)

where ε = ε(h) will be chosen to be an interpolation node. Observe that vε(1) = 0 and
vε ∈ H1(0, 1) ∩H2(ε, 1). Moreover, direct calculation gives the following results.
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Lemma A.5. For every ε < 1, the function vε in (A.12) satisfies∫ 1

0

|vε|2rn−3dr =
|log ε|
2

,∫ 1

0

|v′ε|
2
rn−1dr =

(n− 2)2

8
|log ε|+ π2

2|log ε|
,∫ 1

ε

|v′′ε |
2
rn+1dr =

n2(n− 2)2

32
|log ε|+ π2(n2 − 2n+ 2)

4|log ε|
+

π4

2|log ε|3
.

Next, we derive two useful estimates that extend to n ≥ 3 those stated for n = 1 in
Lemma 3.6. Note that the same arguments given here apply when n = 1, too, and that in
that case the assumption f(1) = 0 can be dropped.

Lemma A.6. Fix an integer n ≥ 3 and let ε = mh ∈ (0, 1) be an interpolation node. Let
f ∈ H1(0, 1) ∩H2(ε, 1) vanish on [0, ε] and satisfy f(1) = 0. Set

Eh(f) :=
h

ε
n+1
2

(∫ 1

0

|f ′|2rn−1dr

) 1
2
(∫ 1

ε

|f ′′|2rn+1dr

) 1
2

+
h2

εn+1

∫ 1

ε

|f ′′|2rn+1dr.

There exists a constant C > 0, independent of f , h and ε, such that∫ 1

0

∣∣(Πhf)
′∣∣2rn−1dr ≤

∫ 1

0

|f ′|2rn−1dr + CEh(f), (A.13a)∫ 1

0

|Πhf |2rn−3dr ≥
∫ 1

0

|f |2rn−3dr − CEh(f). (A.13b)

Proof. We first prove (A.13a). Since ε is an interpolation node, we have f(r) = Πhf(r) = 0
for every r ∈ [0, ε]. We can therefore estimate∫ 1

0

∣∣(Πhf)
′∣∣2rn−1dr =

∫ 1

ε

∣∣f ′ + (Πhf − f)
′∣∣2rn−1dr

≤
∫ 1

ε

|f ′|2rn−1dr +

∫ 1

ε

∣∣(Πhf − f)
′∣∣2rn−1dr

+ 2

(∫ 1

ε

|f ′|2rn−1dr

) 1
2
(∫ 1

ε

∣∣(Πhf − f)
′∣∣2rn−1dr

) 1
2

. (A.14)

We now use the bounds ε ≤ r ≤ 1 and the interpolation inequality (2.1) on the interval
(ε, 1), which is valid for every f ∈ H2(ε, 1), to further estimate (A.14) as∫ 1

0

∣∣(Πhf)
′∣∣2rn−1dr ≤

∫ 1

ε

|f ′|2rn−1dr + c2h2

∫ 1

ε

|f ′′|2dr

+ 2ch

(∫ 1

ε

|f ′|2rn−1dr

) 1
2
(∫ 1

ε

|f ′′|2dr
) 1

2

≤
∫ 1

ε

|f ′|2rn−1dr + c2h2ε−(n+1)

∫ 1

ε

|f ′′|2rn+1dr

+ 2chε−
n+1
2

(∫ 1

ε

|f ′|2rn−1dr

) 1
2
(∫ 1

ε

|f ′′|2rn+1dr

) 1
2

.

This implies (A.13a) for any constant C ≥ C1 := max{2c, c2}. This constant can be taken
to be independent of ε because the constant c in the interpolation inequality (2.1) is an
increasing function of the diameter of the integration domain [29], and can therefore be
replaced by a larger constant (also denoted by c) independently of ε.
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Next, we derive inequality (A.13b) using similar arguments. We start from the estimate∫ 1

0

|Πhf |2rn−3dr ≥
∫ 1

0

|f |2rn−3dr −
∫ 1

0

|Πhf − f |2rn−3dr

− 2

(∫ 1

0

|f |2rn−3dr

) 1
2
(∫ 1

0

|Πhf − f |2rn−3dr

) 1
2

. (A.15)

Since f(1) = 0 by assumption, then both f and Πhf − f satisfy the Hardy inequality
with optimal constant Sn. Using this inequality, and the fact that Πhf = f in (0, ε) by
assumption, we can further estimate (A.15) as∫ 1

0

|Πhf |2rn−3dr ≥
∫ 1

0

|f |2rn−3dr − Sn

∫ 1

ε

∣∣(Πhf − f)
′∣∣2rn−1dr

− 2Sn

(∫ 1

0

|f ′|2rn−1dr

) 1
2
(∫ 1

ε

∣∣(Πhf − f)
′∣∣2rn−1dr

) 1
2

.

Applying to this inequality the same estimates used on (A.14) yields (A.13b) for any constant
C ≥ C2 := max{2Snc, Snc2}, which may be again chosen to be independent of ε. Estimates
(A.13a) and (A.13b) clearly hold simultaneously for C = max{C1, C2}. □

Finally, we establish the following refinement of the upper bound on Sn
h from Theorem 1.2,

which is asymptotically equivalent to the latter when h ≪ 1.

Theorem A.7. For every n ≥ 3 and all sufficiently small mesh sizes h,

Sn
h ≤ (n− 2)2

4
+

(
(n+ 1)π

2|log h| − 6 log |log h|

)2

+ o

(
1

|log h|2

)
. (A.16)

Proof. Let ε = mh be an interpolation node. We can then follow exactly the same steps
as in Section 3.2, except that we let vε be defined as in (A.12) and replace the results in
Lemmas 3.5 and 3.6 with those in Lemmas A.5 and A.6. We obtain

Sn
h ≤

(n− 2)2

4
+

π2

|log ε|2
+ C

(
hε−

n+1
2 + h2ε−(n+1)

)
1− C

(
hε−

n+1
2 + h2ε−(n+1)

) .

for some constant C independent of both h and ε. We now recall that ε = mh and set

m =
⌊
h

1−n
n+1 |log h|

6
n+1

⌋
.

This gives ε ∼ h2/(n+1)|log h|6/(n+1) and, in particular, ε ≤ h2/(n+1)|log h|6/(n+1). We can
thus find another constant, also denoted by C and independent of h, such that

Sn
h ≤

(n− 2)2

4
+

(
(n+ 1)π

2|log h| − 6 log |log h|

)2

+ C

(
1

|log h|3
+

1

|log h|6

)

1− C

(
1

|log h|3
+

1

|log h|6

) .

This inequality implies (A.16) when the mesh size h is sufficiently small. □
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