
Nodal Control and Probabilistic Constrained Optimization using the
Example of Gas Networks

Summary In this thesis we analyze stationary and dynamic gas flow with uncertain boundary data in networks of
pipelines. The gas flow in pipeline networks is modeled by the isothermal Euler equations. The uncertain boundary
data is modeled by probability distributions, they represent the a priori unknown gas demand of the consumers. The
aim of this work is the analysis of optimization problems with probabilistic constraints in the context of gas transport.

For computing the probability that an uncertain gas demand is feasible we use both, a kernel density estimator approach
and the spheric radial decomposition. Feasible in this context means, that the demanded gas can be transported through
the network, s.t. bounds for the pressure at the nodes are satisfied. Moreover we discuss advantages and disadvantages
of both methods. In the stationary case we extend our model by compressor control and bounds for the pressure at the
entry nodes, and we also compute the probability for an uncertain gas demand to be feasible. In the dynamic setting
the uncertain gas demand is time dependent, which is modeled by randomized Fourier series.

Further we analyze certain optimization problems with probabilistic constraints, in which the probabilistic constraints
are approximated by the kernel density estimator approach. On the one hand we show the existence of optimal so-
lutions for both, the exact and the approximated problems, and on the other hand we show that if the approximation
is sufficiently accurate, then the optimal solutions of the approximated problems are close to the solutions of the ex-
act problems. With the approximation of the probabilistic constraints via the kernel density estimator we are able to
compute derivatives of the approximated optimization constraints, which allows us to derive necessary optimality con-
ditions for the approximated optimization problems with probabilistic constraints.

Probabilistic Constrained Optimization on Stationary Gas Networks

Consider a connected, directed, tree-structured graph G = (V ,E ) with vertex set V = {v0, · · · ,vn} and a set of edges
E = {e1, · · · ,en} with E ⊆ V ×V . Due to the structure, the graph has a unique root v0. Every edge e ∈ E represents
a pipe with (positive) length Le. For x ∈ [0,Le] we consider the stationary semi-linear isothermal Euler equations for
horizontal pipes and ideal gases 

qe
x(x) = 0,

(ce)2 pe
x(x) =−

λ e

2De (RST )2 qe(x)|qe(x)|
pe(x)

.
(sISOstat)

Here, p is the pressure, q is the flow and ce,λ e,De ∈ R>0 denote the speed of sound in the gas, the pipe friction
coefficient and the pipe diameter of edge e ∈ E respectively. For simplicity we assume that these parameters are space
independent. RS,T ∈R>0 are specific gas constant and (constant) temperature, both come from the ideal gas equation.
Further pe and qe represent the restriction of the pressure and the flow defined over the network to a single edge e ∈ E .
We assume conservation of mass at every node v ∈ V \V0. That means that the gas inflow at every node must be equal
to the sum of gas outflow and load of this node, i.e.

∑
e∈E−(v)

qe
(

De

2

)2

π = bv + ∑
e∈E+(v)

qe
(

De

2

)2

π ∀v ∈ V \V0.

Let the pressure at the inflow node v0 be given, that is

pe(0) = p0 ∈ R>0 ∀e ∈ E+(v0).

Further we assume continuity in pressure at every inner node, i.e. for all v ∈ V with E−(v) 6= /0 and E+ 6= /0 holds

pe1(Le1) = pe2(0) ∀e1 ∈ E−(v), e2 ∈ E+. (1)
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So for every edge e ∈ E , the full model is given by

qe
x(x) = 0

pe
x(x) = − φ e

2
qe(x)|qe(x)|

pe(x)
qe(Le) = bh(e)+ ∑

κ∈E+(h(e))
qκ(0)

pe(0) = p0 e ∈ E+(v0)
pe(0) = pκ(Lκ) κ ∈ E−( f (e)), e ∈ E \E+(v0)

(statModel)

Let p ∈Rn be the vector of pressures at the outflow nodes, i.e. pi is the pressure at node vi (i = 1, · · · ,n). For lower
pressure bounds pmin

i > 0 and upper pressure bounds pmax
i ≥ pmin

i , we demand

pi ∈
[

pmin
i , pmax

i

]
i = 1, · · · ,n.

We define the set of feasible loads as follows: Definition. For pressure bounds pmin, pmax ∈Rn
≥0 with 0 < pmin

i ≤ pmax
i

(i = 1, · · · ,n), the set

M :=
{

b ∈ Rn
≥0

The solution (p,q) ∈ Rn×Rn of (statModel)
satisfies the box constraints p ∈

[
pmin, pmax

]
.

}
(2)

is called the set of feasible loads.
Since the consumers gas demand cannot be known a priori (it depends on various factors like e.g. temperature

and gas price), the gas demand can be seen as random variable. For a mean value µ ∈ Rn
≥0 and a positive definite

covariance matrix Σ ∈ Rn×n, we define a Gaussian distributed random variable

ξb ∼N (µ,Σ),

on an appropriate probability space (Ω,A ,P). We identify the load vector b ∈ Rn with the image ξb(ω) for ω ∈Ω on
this probability space.
Our aim is to answer the following question:

Qprob: For a given inlet pressure, can we guarantee, that every consumer receives their demanded gas, s.t. the gas
pressure in the network is neither too high nor too low, in at least α% of all scenarios?

Since we are in a stationary setting in this chapter, the scenarios are time independent. We want to compute the
probability for a random load vector to be feasible, i.e.

P(b ∈M). (3)

This has also been discussed in [3]. There the authors use both, a kernel density estimator (KDE) approach and
the spheric radial decomposition (SRD) to compute the probability (3). On the one hand the set of feasible loads
is characterized by using the SRD to compute the desired probability, on the other hand a KDE approach is used to
estimate the probability density function of the pressures to compute the desired probability (see Figure 1).
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Figure 1: The two different ways to compute the probability for a random load vector to be feasible
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A model extension of (statModel) was discussed in [2]. The focus in the thesis was more on optimization problems
with probabilistic constraints. Let convex functions f1 : Rn → R and f2 : R→ R be given. For a probability level
α ∈ (0,1) consider the optimization problems

min
pmax∈Rn

f1(pmax)

s.t. P(b ∈M(pmax))≥ α,

pmax ≥ pmin,

(4)

and
min
p0∈R

f2(p0)

s.t. P(b ∈M(p0))≥ α,

p0 ≥ 0,

(5)

where M is defined in (2). Usually α is chosen large, i.e. close to 1. Consider also the probabilistic constrained
optimization problems in which the probability is approximated by the KDE approach, i.e.,

min
pmax∈Rn

f1(pmax)

s.t. PKDE (b ∈M(pmax))≥ α,

pmax ≥ pmin,

(6)

and
min
p0∈R

f2(p0)

s.t. PKDE (b ∈M(p0))≥ α,

p0 ≥ 0,

(7)

where M is defined in (2). Both problems only differ from (4) and (5) in the approximated probabilistic constraint. We
state the main results of the thesis. The following lemmata state the existence of optimal solutions:

Lemma. Let a probability level α ∈ (0,1), an inlet pressure p0 ∈R≥0 and a lower pressure bound pmin ∈Rn
≥0 be given.

Assume that there exists x≥ pmin (component-by-component), s.t.∫ x

pmin
ρp(z) dz > α. (8)

Let f1 be strictly monotone increasing in the sense that for all positive directions d ∈ Rn
≥0 (with d > 0 in at least one

component) it follows
f1(pmax)< f1(pmax + εd),

for all ε > 0. Then there exists a solution of (4).
Further let p∗,max ∈ Rn be a solution of (4). Then the probabilistic constraint is always active, i.e. it is

P(b ∈M(pmax)) = α.

Lemma. Let pressure bounds pmin, pmax ∈ Rn with pmax > pmin be given. Assume that there exists x≥ 0, s.t.∫
Pmax

min

ρp(x)(z) dz≥ α. (9)

Then (5) has at least one solution. If f2 is strictly monotone (increasing or decreasing), the solution is unique and the
probabilistic constraint is always active.

Corrolary. Let a probability level α ∈ (0,1), an inlet pressure p0 ∈ R≥0 and a lower pressure bound pmin ∈ Rn
≥0 be

given. Assume that there exists x≥ pmin (component-by-component), s.t.∫ x

pmin
ρp,NKDE(z) dz > α. (10)
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Let f1 be strictly monotone increasing in the sense that for all positive directions d ∈ Rn
≥0 (with d > 0 in at least one

component) it follows
f1(pmax)< f1(pmax + εd),

for all ε > 0. Then there exists a solution of (6).
Further let p∗,max ∈ Rn be a solution of (6). Then the probabilistic constraint is always active, i.e. it is

PKDE(b ∈M(pmax)) = α.

Corollary. Let pressure bounds pmin, pmax ∈ Rn with pmax > pmin be given. Assume that there exists x≥ 0, s.t.∫
Pmax

min

ρp(x),NKDE(z) dz≥ α. (11)

Then (7) has at least one solution. If f2 is strictly monotone (increasing or decreasing), the solution is unique and the
probabilistic constraint is always active.

The next theorems are one of the key results of the thesis. They state that under slight assumptions the optimal
solution of the approximated problems is close to the optimal solution of the original problems if the sampling size is
sufficiently large. For α ∈ (0,1) we define gα

1 ,g
α
1,NKDE

: Rn→ R with

gα
1 : pmax 7→ α−P(b ∈M(pmax)),

gα
1,NKDE

: pmax 7→ α−PNKDE(b ∈M(pmax)),

and gα
2 ,g

α
2,NKDE

: R→ R with
gα

2 : p0 7→ α−P(b ∈M(p0)),

gα
2,NKDE

: p0 7→ α−PNKDE(b ∈M(p0)).

Further we define
Z := {x ∈ Rn | x≥ pmin and gα

1 (x) = 0 },
ZNKDE := {x ∈ Rn | x≥ pmin and gα

1,NKDE
(x) = 0 },

as set of all points, for which the probabilistic constraint in (4) and the approximated probabilistic constraint in (6) are
active, i.e. Z contains the roots of gα

1 and ZKDE contains the roots of gα
1,NKDE

.

Theorem. Let a probability level α ∈ (0,1), an inlet pressure p0 ∈ R≥0 and a lower pressure bound pmin ∈ Rn
≥0 be

given. Assume that there exist x≥ pmin (component-by-component), s.t. (8) and (10) hold.
Let f1 be strictly monotone increasing in the sense of Lemma and Corollary .
Assume that for all x ∈Z there exist d1,d2 ∈ Rn\{0n}, s.t. for all τ ∈ (0,1) it holds

gα
1 (x+ τd1)< 0 and gα

1 (x+ τd2)> 0. (12)

Let p∗,max be a solution of (4). Assume that the solution is unique. Further assume that there exist δ ,ε > 0, s.t. for
p ∈Z with

‖p∗,max− p‖> δ

2
,

it holds
| f (p∗,max)− f (p)|> ε. (13)

Then there exist a sufficiently large number NKDE, s.t. the solution p∗,max
NKDE

of (6) is close to p∗,max in the sense that we
have

‖p∗,max− p∗,max
NKDE
‖< δ P− almost surely. (14)

Theorem. Consider δ > 0 and let pressure bounds pmin, pmax ∈Rn with pmax > pmin be given. Assume that there exists
x ≥ 0, s.t. (9) and (11) hold. Assume that f2 is strictly monotone (increasing or decreasing). Let p∗0 be the solution of
(5) and let p∗0,NKDE

be the solution of (7). If for all x≥ 0 with gα
2 (x) = 0 there exists ε > 0, s.t.

sgn(gα
2 (x− τ)) =−sgn(gα

2 (x+ τ)) ∀τ ∈ (0,ε),
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where sgn is the sign function, then for NKDE sufficiently large it follows

p∗0,NKDE
∈ (p∗0−δ , p∗0 +δ ).

Last we state necessary optimality conditions for the approximated probabilistic constrained optimization problems.
Corollary. Let p∗,max ∈ Rn be a (local) optimal solution of (6). Since the LICQ holds in p∗,max (cf. Remark ??), there
exists a multiplier µ∗ ≥ 0, s.t.

∇ f1(p∗,max)+µ
∗
∇gα

1 (p∗,max) = 0,
gα

1 (p∗,max)≤ 0,
µ
∗gα

1 (p∗,max) = 0.

Thus (p∗,max,µ∗) ∈ Rn×R is a Karush-Kuhn-Tucker point.

Corollary. Let p∗0 ∈ R be a (local) optimal solution of (7). Since the LICQ holds in p∗0 (cf. Remark ??), there exists a
multiplier µ∗ ≥ 0, s.t.

f ′(p∗0)+µ
∗(gα

2 )
′(p∗0) = 0,

gα
2 (p∗0)≤ 0,

µ
∗gα

2 (p∗0) = 0.

Thus (p∗0,µ
∗) ∈ R×R is a Karush-Kuhn-Tucker point.

The computation of the gradients, the proofs of the theorems and lemmata and interpretations of the assumptions
and the results can be found in [1]. The necessary optimality conditions of the Corollaries above can be used to
characterize the solution of the approximated probabilistic constrained optimization problems as it is shown in Figure
2.

Corollaries
(necessary opt. cond.)

Solution of
(6) resp. (7)

Solution of
(4) resp. (5)

Optimality conditions
for (4) resp. (5)

satisfies

Theorems

satisfies

Figure 2: Scheme on the relation of the necessary optimality conditions

Probabilistic Constrained Optimization on Dynamic Gas Networks

Time dependent probabilistic constraints: For a time dependent uncertain boundary function b(t) and a (time de-
pendent) feasible set M(t), the formulation of time dependent probabilistic constraints that we will use later is

P( b ∈M(t) ∀t ∈ [0,T ] ) ≥ α. (15)

This is a strong condition. It means, we want to guarantee, that a percentage α of all possible random boundary func-
tions (in an appropriate probability space (Ω,A ,P)) is feasible in every point in time t ∈ [0,T ]. So we do not allow
any violation of the feasibility for most of the random boundary functions. In the context of gas transport this is a
reasonable condition since the pressure bounds are fix and do not allow violations. In fact the formulation (15) is a
so-called probust constraint, i.e. a constraint that contains both, a probabilistic and a robust part.

Uncertain time dependent functions: Let a function f ∈ L2([0,T ]) with f (0) = 0 be given.
For m = 0,1,2, · · · , we define the orthonormal series

ψm(t) :=

√
2√
T

sin
((

π

2
+mπ

) t
T

)
, (16)
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and the coefficients

a0
m( f ) :=

∫ T

0
f (t)ψm(t) dt. (17)

Then the Fourier series representation of f (t) is given by

f (t) =
∞

∑
m=0

a0
m( f )ψm(t). (18)

Since it is ψm(0) = 0 and thus,
∞

∑
m=0

a0
m( f )ψm(0) = 0,

we also assume f (0) = 0. For the implementation we truncate the Fourier series after NF ∈ N terms, i.e.

fNF (t) :=
NF

∑
m=0

a0
mψm(t). (19)

Consider a sequence of identically distributed random variables (ξm)m≥0 on an appropriate probability space (Ω,A ,P).
For ω ∈Ω consider the random function

f ω(t) =
∞

∑
m=0

ξm(ω)a0
mψm(t).

Then according to an extension of the Paley-Zygmund Theorem it follows that if f ∈ L2([0,T ]), then f ω converges
almost surely in L2.

Mathematical modelling: Consider a connected, directed graph G = (V ,E ) with the vertex set V = {v0, · · · ,vn} and
a set of edges E = {e1, · · · ,em} ⊆ V ×V (n,m ∈N). Every edge e ∈ E represents a pipe with (positive) length Le. For
(t,x) ∈ [0,T ]× [0,Le] we consider the isothermal Euler equations for horizontal pipes and ideal gases

ρ
e
t +qe

x = 0,

qe
t +

(
(ce)2

ρ
e +

(qe)2

ρe

)
x
=− λ e

F
2De

qe|qe|
ρe

(qISO)

with density ρe and flow qe. The constants ce,λ e
F ,D

e ∈ R≥0 denote the speed of sound in the gas, the pipe friction
coefficient and the pipe diameter of the edge e ∈ E respectively. For simplicity we assume that these parameters are
constant on every edge. Further ρe and qe represent the restriction of the pressure and the flow (defined over the net-
work) to a single edge e ∈ E .

We state that all nodes v∈ V with |E0(v)|> 1 are inner nodes and that all nodes v∈ V with |E0(v)|= 1 are terminal
nodes. We assume w.l.o.g. that gas inflow and gas outflow only occurs at terminal nodes. Next we define coupling
conditions for all inner nodes of the graph. Therefor for v ∈ V and e ∈ E0(v) we define

xe(v) :=

{
0 if e ∈ E+(v),
Le if e ∈ E−(v),

as the end of edge e, that corresponds to node v. Then we assume conservation of mass for all inner nodes, i.e. for all
nodes v ∈ V with |E0(v)|> 1 we have

∑
e∈E0(v)

(De)2qe(t,xe(v)) = 0 ∀t ∈ [0,T ]. (20)

Further we assume continuity in density for all inner nodes, i.e. for all nodes v ∈ V with |E0(v)|> 1 we have

ρ
e(t,xe(v)) = ρ

f (t,x f (v)) ∀e, f ∈ E0(v). (21)

Since we assume ideal gas, the continuity in density conforms with the continuity in pressure. Next we define boundary
conditions for terminal nodes, i.e. for all nodes v ∈ V with |E0(v)|= 1 we define

ρ
e(t,0) := ρ0(t) if e ∈ E+(v), (22)
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and
qe(t,Le) := b(t) if e ∈ E−(v). (23)

As in the stationary case the function ρ(·) states the (time dependent) inlet density and b(·) states the (time dependent)
gas outflow.

Last we define initial conditions for the density and for the flow, i.e. for all e ∈ E we define

ρ
e(0,x) := ρ

e
ini(x), (24)

and
qe(0,x) = qe

ini(x). (25)

So the full model is given by the isothermal Euler equations (qISO), coupling conditions (20) and (21), boundary
conditions (22) and (23) and initial conditions (24) and (25):

For all e ∈ E we have

ρe
t +qe

x = 0,

qe
t +
(
(ce)2ρe + (qe)2

ρe

)
x
=− λ e

F
2De

qe|qe|
ρe ,

ρe(0,x) = ρe
ini(x),

qe(0,x) = qe
ini(x),

for all v ∈ V with |E0(v)|> 1 we have

∑e∈E0(v)(D
e)2qe(t,xe(v)) = 0,

ρe(t,xe(v)) = ρ f (t,x f (v)) e, f ∈ E0(v),

for all v ∈ V with |E0(v)|= 1 we have

ρe(t,0) = ρe
0(t) e ∈ E+(v),

qe(t,Le) = be(t) e ∈ E−(v).

(dynModel)

Let qv(t) be the flow of the gas at node v ∈ V and let ρv(t) be the density of the gas at node v ∈ V . Let bounds for
the density ρmin,ρmax ∈R|Vout| with 0 < ρmin ≤ ρmax (component-by-component) be given. For t∗ ∈ [0,T ], we demand

pv(t∗) ∈
[
ρ

v,min,ρv,max] ∀v ∈ Vout,

where ρv,min and ρv,max are the bounds for the density at node v ∈ Vout. We define the set of feasible loads for the
dynamic setting as follows:

Definition. For density bounds ρmin,ρmax ∈R|Vout| with 0< ρv,min ≤ ρv,max (v∈Vout) and for a point in time t∗ ∈ [0,T ],
the set

M(t∗) :=

 b : [0,T ]→ R|Vout|

bi ∈ Lip([0,T ])

The solution ρv(t), qv(t) of (dynModel)
satisfies the box constraints
ρv(t∗) ∈

[
ρv,min,ρv,max

]
at time t∗

 (26)

is called the set of feasible loads.

Since we are in a dynamic setting in this chapter, the scenarios depend on the time. We want to compute the
probability that a random boundary function is feasible, i.e.

P
(

b ∈M(t) ∀t ∈ [0,T ]
)
. (27)

As in the stationary setting, the load b(t) is considered to be random but we have no information about the structure of
the set of feasible loads M(t). The densities ρv(t) at the nodes v ∈ Vout are also random but the set of feasible densities

Pmax
min :=⊗v∈Vout

[
ρ

v,min,ρv,max] , (28)
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is a well-known cuboid. For t ∈ [0,T ] let ρout(t) be the densities at the nodes v ∈ Vout. Then we have

P
(

b ∈M(t) ∀t ∈ [0,T ]
)
= P

(
ρout(t) ∈Pmax

min ∀t ∈ [0,T ]
)
. (29)

For i = 1, · · · ,NKDE we define
ρ

out
(bω,i) := min

t∈[0,T ]
ρout(t,bω,i),

and
ρout(b

ω,i) := max
t∈[0,T ]

ρout(t,bω,i),

as minimal and maximal gas densities of ρout on [0,T ]. The minimal and the maximal gas densities have to be un-
derstood component-by-component and they exist due to the continuity of ρv and the compactness of [0,T ]. For
i = 1, · · · ,NKDE it follows

ρout(t,bω,i) ∈Pmax
min ∀t ∈ [0,T ]
m (30)

ρ
out
(bω,i),ρout(b

ω,i) ∈Pmax
min .

We can now approximate the probability density function of the minimal and maximal gas densities, which leads
to a (2nout)-dimensional (time independent) probability density function ρρ,KDE. Since there is no time dependency
anymore we can use the theory from the stationary case. Then also the results from the probabilistic constrained
optimization problems can be applied to the dynamic case. More information , details and a detailed numerical example
on the dynamic case can be found in the thesis [1].
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