
OPTIMAL CONTROL APPROACH FOR MOVING BOTTOM DETECTION IN

ONE-DIMENSIONAL SHALLOW WATERS BY SURFACE MEASUREMENTS
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Abstract. We consider the Boussinesq-Peregrine (BP) system as described by Lannes [Lannes, D. (2013).
The water waves problem: mathematical analysis and asymptotics (Vol. 188). American Mathematical
Soc.], within the shallow water regime, and study the inverse problem of determining the time and space
variations of the channel bottom profile, from measurements of the wave profile and its velocity on the free
surface. A well-posedness result within a Sobolev framework for (BP), considering a time dependent bottom,
is presented. Then, the inverse problem is reformulated as a nonlinear PDE-constrained optimization one. An
existence result of the minimum, under constraints on the admissible set of bottoms, is presented. Moreover,
an implementation of the gradient descent approach, via the adjoint method, is considered. For solving
numerically both, the forward (BP) and its adjoint system, we derive a universal and low-dissipation scheme,
which contains non-conservative products. The scheme is based on the FORCE-α method proposed in [Toro,
E. F., Saggiorato, B., Tokareva, S., and Hidalgo, A. (2020). Low-dissipation centred schemes for hyperbolic
equations in conservative and non-conservative form. Journal of Computational Physics, 416, 109545]. Finally,
we implement this methodology to recover three different bottom profiles; a smooth bottom, a discontinuous
one, and a continuous profile with a large gradient. We compare with two classical discretizations for (BP)
and the adjoint system. These results corroborate the effectiveness of the proposed methodology to recover
bottom profiles.

1. Introduction

The problem of wave generation and the forces that originate them comprise a wide area of study, involving
modeling through fundamental laws, numerical resolution of equations and laboratory scale tests. In the
particular case of water in the ocean, it is of interest to study those waves produced by displacements and
changes in the seabed, a task that has been developed from many points of view in the classical literature
[7, 9, 14, 27] and is currently a very active area of research [6, 19, 30, 33].

In this paper we investigate, theoretically and numerically, the effect of ocean bottom motions on waves.
More precisely, within the context of shallow water models, we analyze the inverse problem of finding a
single bottom, which depends on the time variable, and which generates a specific wave. These types of
problems have been considered before, in the context of unidirectional shallow water approximating models
[5, 27] and in a broader sense, through wave generating devices (wave-makers) such as those considered in
[25, 34, 35] for the water-waves equation.

The problem of generating waves through seafloor displacements is directly related to the generation
of tsunamis by submarine earthquakes and plate displacements (see [9, 14, 29]). Since it is important to
quantify both types of displacements, vertical and horizontal, in this work we follow an approach that allows
considering both of them, as reported in [10, 14, 28]. Moreover, from the point of view of applications, there
are man-made facilities for surfing away from the ocean [1], where a wave with specific characteristics is
created by the unidirectional motion of an underwater rigid object, moving in a preset direction.
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We put ourselves in the context of wave propagation in a shallow water channel, so that the dynamics
correspond to the laws of conservation of momentum and mass [17]. In this general framework, the inter-
action between the rigid boundary, represented by the bottom of the channel, with the free surface can be
well understood and characterized through terms representing a boundary condition or an external source in
the Partial Differential Equation. In particular, we will use the shallow water approximation of the general
system of water-waves, with a time-varying bottom, known as the Boussinesq-Peregrine (BP) model with
varying bottom, as derived in [17] (see details in section 2).

The main objective of this work is to provide a general theoretical framework, based on conservation laws,
to analyze the inverse problem of detecting a seafloor moving in time. Moreover, we propose an efficient
computational procedure to fully determine the variations of the channel (ocean) bottom in time and space.
For that, we chose to study the (BP) system, which is general enough and contains the main characteristics
of shallow water systems; it also includes terms corresponding to a time-varying bottom and in this context
has not been studied before. We study three main aspects: first, the existence of solutions of the system in
the framework of Sobolev spaces. Second, the theoretical identification of the bottom, as the solution to a
minimization problem, involving the state equation and its adjoint system. Third, the implementation of a
descent algorithm and a finite volume scheme discretization of the equation and its adjoint system.

Existence and uniqueness results for the (BP) system have been obtained in Sobolev spaces [15, 17],
for a steady bottom. In particular, a classical energy approach has been employed in [15] applied to a
symmetrizable hyperbolic system. We provide a well-posedness theorem for the local existence of solutions
to (BP), when the bottom is time-dependent, which has not been reported so far. On the extensive literature
concerning well posedness for the general system of water-waves, we mention Nalimov [26], Yosihara [40],
Craig [8], S.Wu [38, 39] and Lannes [16].

Optimal control problems on water-waves have been studied in [12], in the context of the inverse problem
of bottom identification through surface measurements, where the authors addressed the identifiability and
set the problem of finding a unique bottom minimizing the L2 norm in the horizontal variable of the
Dirichlet-Neumann operator. Concerning the (BP) system and the bathymetry detection, we mention the
work by Dutykh et al. [27], where the authors reduced the problem to the unidirectional wave propagation
to get a Benjami-Bona-Mahony (BBM)-type equation and studied the optimization problem of generating
the largest possible wave in the L2 sense within a given bounded interval, by a constant velocity moving
bottom.

Our numerical procedure to find the bottom profiles involves two hyperbolic systems: the system (BP)
for modeling the wave problem, and its adjoint which contains non-conservative products. We propose a
numerical scheme, for both (BP) and the adjoint system, which is universal in the sense that it applies for
both conservative and non-conservative systems. We consider two additional schemes aimed at evaluating
how a classical combination of conservative and non-conservative schemes behaves for solving the problem.
We refer to them as reference schemes since they are viable discretizations that users can employ. The first
one consists of using the conservative scheme of Rusanov [32] (also called Local Lax-Friedrich flux) for (BP)
and the finite difference discretization for the adjoint system. The second scheme consists of the conservative
scheme of Rusanov for (BP) and the non-conservative one, for the adjoint system.

A related formulation to the one we are studying is the controllability problem by a source, for the (BP)
system. Alazard et al. [2] have provided a local exact controllability result, obtained for the full water-waves
system by controlling a localized portion of the free surface. In [11], the authors proved the interior exact
controllability of the 2d-Euler’s system by injection of jet fluids through a rigid boundary. We can also
mention the works on KdV [31], BBM [21, 41], and some Boussinesq–type systems [22], concerning some
literature about controllability of asymptotic regimes and dispersive wave equations. Finally, even though
the computation of the adjoint state in the optimal control problem approach follow classical ideas, it is
worth to mention that this has not been done before in this context of moving bottoms.

The paper is organized as follows. In section 2, we present the (BP) system and the formulation of the
optimal control problem. In section 3, we set the optimal control problem and prove the existence of a
minimum. In section 4, a particular formulation for recovering a moving bottom is settled. In section 5, the
coupled formulation approach and the numerical method for solving the inverse problem, are presented. In
section 6, numerical results are reported. Finally, in section 7, conclusions are drawn.
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Figure 1. Sketch of the physical domain and main notation

2. The mathematical framework

We consider an ideal incompressible fluid in a two dimensional domain, (see Figure 1). We denote
the horizontal independent variable by x and the vertical variable by y, and assume that the line y = 1
corresponds to the still water level and H0 = 1 is a constant reference depth. Let ζ, b : [0, T ] × R → R
(T > 0), be the surface and bottom parameterizations respectively. Let µ be a small parameter to be
specified later and related to the shallow water regime and ε = O(µ) which represents the small variations of
the bottom and free surface, as explained in [17]. We assume that the total depth h ≡ h(t, x) = 1 + ε(ζ− b),
remains positive at all times t:

(1) ∃hmin > 0, inf
x∈R

h ≥ hmin,

which is a necessary condition for the system (BP) to be valid.
For a given bottom b(t, x), we are going to consider, on [0, T ]×R, the one dimensional Boussinesq-Peregrine

system with moving bottom for (ζ, V )

(BP)


ζt + (hV )x = bt,(

1− µ

3h
∂x(h3∂x·)

)
Vt + ζx + εV Vx = − ε

2
bttx,

ζ(0, ·) = ζ0(·), V (0, ·) = V0(·), in R,

with V : [0, T ] × R → R being the total depth averaged velocity. From now on, this will be our model
to understand the wave-bottom interaction. Recall that (ζ, V ) are the unknown free surface elevation and
velocity, respectively, and b is a given function, representing the topography of the moving bottom. Finally,
µ and ε are dimensionless, small parameters, representing the shallowness of the channel.

System (BP) can be derived from the general water waves equations under the shallow water assumption
(µ � 1), assuming ε = O(µ). See [17, page 145] for a two dimensional version of (BP), and [18], where
many of the shallow water models are deduced from the general water waves system.

We now turn our attention to the optimization problem for system (BP). We assume that the bottom
can change during a time interval over the entire domain; namely, the time-dependent bathymetry is given
by b = b(t, x). The detection of the bottom will be obtained as the solution to an optimization problem.
That is, we will find, theoretically and numerically, the function b to watch a prescribed wave and velocity
ζ, V , at some fixed time T > 0 (see sections 3 and 4). Mathematically, for fixed ζ0 and V0, we minimize the
functional

(2) J(b) =
1

2

∫ T

0
|ζ − ζ̄|2L2dt+

1

2

∫ T

0
|V − V̄ |2L2dt,

where ζ̄, V̄ ∈ L2((0, T );L2(R)) are given, (ζ, V ) is a solution to (BP) in C([0, T ];Hs × Hs+1), and the
Sobolev space Hs = Hs(R), s ≥ 3/2 (see A for details).

Note the explicit way the time derivatives of b appear in (BP), at the right-hand side in the bt, bttx terms.
We start by formulating an existence and uniqueness theorem for (BP), so that the regularity of the bottom
be explicit. This is needed when formulating the problem of finding b by the optimal control approach.

Theorem 1. Let s > 3/2 and (ζ0, V0) ∈ Xs. Let b ∈ W 2,∞([0,∞);Hs+1) and assume (1) is valid. Then,
there exists TBP > 0, uniformly bounded from below with respect to ε, such that system (25) admits a unique
solution (ζ, V )T ∈ C([0, TBP /ε]; X

s) with initial condition (ζ0, V0)T .
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Here we have introduced the space Xs, defined as

Xs = Hs(R)×Hs+1(R),

endowed with the norm

∀U ∈ Xs, |U|2Xs = |ζ|2Hs + |V |2Hs + µ|Vx|2Hs .

For the sake of clearness in the presentation, we leave the details of the proof for A.

Remark 1. When the water waves equations are nondimensionalized, a rough analysis of their linearization
around the rest state is performed. This shows the relevance of various dimensionless parameters, namely,
the amplitude parameter ε, the shallowness parameter µ, and the topography parameter β (see [17] for
details). With the relevant physical dimensionless parameters introduced, asymptotic regimes are identified
(the shallow water regime for instance) as conditions on these dimensionless parameters (e.g., µ << 1 for
the shallow water regime).

The asymptotic regime that corresponds to the system (BP) is precisely

{(ε, β µ) : 0 ≤ µ ≤ µ0, 0 ≤ β ≤ ε ≤ µ}.
That is the reason why we decided to keep the two parameters µ and ε in the formulation of (BP) above.

3. The optimal control approach

Following the explanations in the previous section, the process of minimizing the functional J will allow us
to design the bottom b(t, x), given a specific surface profile and its velocity, (ζ, V ). Therefore we will address
two practical questions. The first is tsunami detection with surface measurements, where we also include the
possibility of horizontal and vertical displacements caused by plate motions and underwater earthquakes [9].
Second, the design of moving underwater structures to generate specific waves for an entertainment purpose
[27]. With this in mind, we present the following mathematical formulation, and the sufficient conditions
for a bottom b to exist, minimizing functional J .

The first thing we need is an existence and uniqueness of solutions theorem, for system (BP). Because
the proof strategy is classical and follows arguments similar to those presented in [15, 17] for the nonlinear
shallow water and green-naghdi systems, respectively, we postpone the proof to an appendix and concentrate
on the optimization problem.

We consider the space Xs
T := C([0, T/ε]; Xs) endowed with its canonical norm. Let F ⊂W 2,∞(0, T ;Hs+1)

be a nonempty, closed and convex set. Given d0 > 1
2 , s ≥ d0 + 1 and (ζ0, V0) ∈ Xs, let the following

minimization problem related to (BP):

(P)


Find (ζ, V, b) ∈ Xs ×F such that the functional

J(b) =
1

2

∫ T

0
|ζ − ζ̄|2L2dt+

1

2

∫ T

0
|V − V̄ |2L2dt

is minimized, subject to (ζ, V, b) satisfies (BP).

Here (ζ̄, V̄ ) ∈ L2(0, T ;L2)× L2(0, T ;L2) represents the desired state.
The set of optimal solutions of (P) is defined by

Sad = {ω = (ζ, V, b) ∈ Xs ×F : ω is a solution of (BP)}.
Note that b is not acting on the right–hand side of (BP) only (through bt, bttx), but the spatial derivatives

of the terms involving h. That is, b acts on the source and coefficients.
Thanks to the remark 3 in the appendix, we can take ε sufficiently small, so that the existence time of

the solutions is guaranteed in a time interval containing [0, T ]. This is important when passing to the limit
in a minimizing sequence for proving the existence of a minimum for the functional J , as the next theorem
shows.

Theorem 2. Let (ζ0, V0)T ∈ Xs with s ≥ 1+δ, δ > 0. Let T > 0 such that F is bounded in W 2,∞(0, T ;Hs+1).
Then the optimal control problem (P) has at least one global optimal solution (ζ∗, V ∗, b∗) ∈ Sad.

Proof. From Theorem 3 in the appendix, we deduce that Sad 6= ∅. Let {ωn}n∈N = {(ζn, V n, bn)}n∈N ⊂ Sad a
minimizing sequence of J . Let Un(t, x) be the corresponding solution of problem (BP) with bottom bn(t, x).
From the definition of J and the assumption F bounded in W 2,∞(0, T ;Hs+1),

{bn} is bounded in W 2,∞(0, T ;Hs+1).
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We know F is weakly closed in W 2,∞(Hs+1). Then, from Theorem 3 and the corresponding estimate as
in (29), there exists ω∗ = (ζ∗, V ∗, b∗) ∈ Sad such that, for some subsequence of {ωn}, still denoted {ωn}n∈N,
we have weak convergences in Xs ×W 2,∞(0, T ;Hs+1).

If Un,m := Un −Um we have (see Remark 2)(
1 0
0 T ·

)(
ζn,mt
V n,m
t

)
+

(
εV n hn

hn T (εV n·)

)(
ζn,mx
V n,m
x

)
=

(
bn,mt + εbn,mx V m + (ζmx − bnx)V n,m

− ε
2h

nbn,mttx − ε
2h

n,mbmttx − ζmx hn,m
)
.

Then, multiplying last equation in L2 by Un,m, integrating by parts and applying the Gronwall inequality
(as is done in the proof of Proposition 1 in the appendix), we obtain that Un,m is a Cauchy sequence in H1.
Hence ω∗ is solution of (BP), pointwisely; that is, ω∗ ∈ Sad. Therefore,

lim
n→+∞

J(ωn) = inf
ω∈Sad

J(ωn) ≤ J(ω∗).

On the other hand, since J is lower semicontinuous on Sad, we have J(ω∗) ≤ lim infn→+∞ J(ωn). �

Finally to implement the descent strategy, let us rewrite (BP) asrt + (hV )x = 0,

Vt −
µ

3h
∂x(h3Vtx) + rx + εV Vx = −bx −

ε

2
bttx,

with r = ζ − b, h = 1 + εr. Then, the adjoint system is given by (see B)
pt + εV px + qx = ζ̄ − ζ,

qt −
µ

3
∂x(h2qtx) + hpx + εV qx = V̄ − V,

p(T ) = 0, q(T ) = 0,

and the descent direction is
−∇J(b) = −qx −

ε

2
qttx + (ζ̄ − ζ),

accordingly (see Theorem 4 in the Appendix).

Remark 2. Because we are in the shallow water regime and µ << 1, let us neglect the term µ∂x(h3∂xVt).

4. Numerical reconstruction of a time dependent bathymetry

Now we will consider the problem of numerically reconstructing the bathymetry b(t, x) from measurements
of ζ and V at the surface. We will do so in the shallow water regime described in the previous section, in
which the term involving Vtxx is neglected (since µ << 1). As it was described above, we are looking for a
function b such that

J(b) =
1

2

∫ T

0
|ζ − ζ̄|2L2 +

1

2

∫ T

0
|V − V̄ |2L2(3)

is minimized, where ζ, V are constrained to the system

∂t

[
r
V

]
+ ∂x

[
hV

r + εV
2

2

]
=

[
0

−bx − ε
2bttx

]
,(4)

with r = ζ − b, h = 1 + εr.
In (3), ζ̄(0, x) is a given function. V̄ is obtained after solving (4) over the interval [0, L] with appropriate

boundary conditions and a given bathymetry b̄ and initial condition [r(0, x), V (0, x)]T = [ζ̄(0, x)−b̄(0, x), V0]T

for V0 a given initial velocity. That is, we use synthetic data for assessing the methodology.
The problem of finding the bathymetry is stated as a PDE-constraint optimization problem which is

studied through the adjoint method. That is, a minimizing sequence {bk} is generated via

bk+1 = bk − λb · ∇J(bk) ,(5)

where λb is a constant parameter and

∇J = qx + 1
2εqxtt − (ζ̄ − ζ) ,(6)

with p and q adjoint variables related through the adjoint system

∂t

[
p
q

]
+

[
εV 1
h εV

]
∂x

[
p
q

]
=

[
ζ̄ − ζ
V̄ − V

]
,(7)



MOVING BOTTOM DETECTION 6

on [0, L], endowed with p(T, x) = q(T, x) = 0 and boundary conditions chosen consistently with that of (4),
namely transmissive or periodic boundary conditions. Notice that, this system is solved back in time from
t = T up to t = 0. Here ζ = r + bk , r and V satisfy the system

∂t

[
r
V

]
+ ∂x

[
hV

r + εV
2

2

]
=

[
0

−bkx − ε
2b
k
ttx

]
,(8)

with [r(0, x), V (0, x)]T = [ζ̄(0, x)− b̄(0, x), V0]T on [0, L] and transmissible boundary condition.

5. Numerical discretization

System (4) can be expressed as

∂tU + ∂xF(U) = B(x,U) ,
U = U0(x) ,

(9)

where U0(x) is the prescribed initial condition function. The system in its quasilinear version takes the
form

∂tU + A(U)∂xU = B(x,U) ,
U = U0(x) ,

(10)

where A(U) is the Jacobian matrix of F(U) with respect to U.
The adjoint system (7) can be written as

∂tP + AT (U)∂xP = R(x,U,P) ,
P(T, x) = 0 ,

(11)

where P is the adjoint state. Both systems can be written in a unified way, in the sense of [24], for the state
W = [Q,P]T given by

∂tW + AW∂xW = SW ,(12)

where

AW =

[
A(U) 0

0 AT (U)

]
, SW =

[
B(x,U)

R(x,U,P)

]
.(13)

We derive a numerical scheme for system (12). In this type of applications, the numerical diffusion can
increase due to small CFL coefficients which are used in the context of inverse problems, in contrast to the
usual applications (direct problems) to conservation laws. In this paper, we explore the novel FORCE-α
scheme reported in [37] for first order of accuracy and extended to higher orders in [23]. This scheme has
the advantage of improving the numerical diffusion. The numerical scheme has the form

Wn+1
i = Wn

i − ω ∆t
∆x(D−

i+ 1
2

+ D+
i− 1

2

) + ω∆tSWi ,(14)

where

D±
i+ 1

2

= ωA±
i+ 1

2

· (Wn
i+1 −Wn

i ) ,(15)

here ω is a parameter that controls forward and backward propagation in time, ω = 1 and ω = −1,
respectively. The matrix A±

i+ 1
2

are given by

A±
i+ 1

2

= 1
2Âi+ 1

2
± 1

4
αF∆t

∆x (Â2
i+ 1

2

+ ( ∆t
α∆t)

2I) ,(16)

where I is the identity matrix, and

Âi+ 1
2

=
∫ 1

0 AW(Φ(s,Wn
i ,W

n
i+1))ds ≈

∑3
k=1w1 · Âi+ 1

2
=
∫ 1

0 AW(Φ(ξk,W
n
i ,W

n
i+1)) ,(17)

where Φ(s,Wn
i ,W

n
i+1) = Wn

i + (ωs− (ω−1)
2 )(Wn

i+1 −Wn
i ). The last term is approximated via the Gauss-

Legendre quadrature rule characterized by ξ1 = 1
2(1−

√
3
5), ξ2 = 1

2 , ξ3 = 1
2(1 +

√
3
5), w1 = 5

18 , w2 = 8
18 and
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w3 = 5
18 . The source term is discretized as

SWi =



0

−bnx,i −
ε

2

(
(bn+1
x,i − 2bnx,i + bn−1

x,i )

∆t2

)
ζni − ζ̄(xi, t

n)
V n
i − V̄ n

i

 ,(18)

with

bnx,i =
bni+1−bni−1

2∆x .(19)

Notice that for shallow water applications, the approximation of spatial derivatives, for a b(t, x) known, can

be replaced by bnx,i =
b(xi−∆x

2
,tn)−b(xi+ ∆x

2
,tn)

∆x . In this way the well-balanced property is ensured. However,
in this work b is only known in a discrete spatial and temporal location at each iteration, so we are limited
to use (18).

In (14), ω = 1 evolves the system forward in time and thus the first components of W solve (9), whereas
ω = −1 solves (14) backward in time, so the last components of W solve (11). For solving the system
backwards, we set to zero the variables of W associated to the adjoint state and froze the values of W
associated to U, that is, we keep the values obtained in the forward evaluation. This is needed because
the hyperbolic system is not reversible in time, that means wave patterns in backward evolution may be
different from forward ones. Since in the forward evolution, variables associated to the adjoint system do
not influence the state variables we also set them to be zero. At each iteration of the present strategy, we
extract components r, p and q to form ∇J given by (6). We remark that the coupled formulation is only
required for building the numerical scheme; in practice this still works as a classical solver.

Although the particular case of finding b(t, x) is addressed, the framework is general enough for any source
b(t, x) as well. As stated in [23], this method is universal, since hyperbolic problems written in conservative
and non-conservative form are solved with the scheme without any modification of the code. Since the
present scheme is derived from the non-conservative FORCE-α method applied to both direct and adjoint
systems through the Couple System Formulation, from now on, we referee this scheme FORCE-α+CSF.

6. Numerical results

In this section, we solve the following three test problems; smooth bottom profiles, discontinuous bottom
profiles and smooth profiles with a large gradient. In order to compare the current scheme, we use the
following reference schemes. The first one, presented in C, is characterized by the use of the conservative
Rusanov finite volume method for solving (4) and finite difference approximation for handling (7), from now
on called Rusanov+FD. The second scheme, consists of the non-conservative FORCE-α scheme applied
for solving (4) only, and finite difference approximation, as in C, for the adjoint system (7), from now on
FORCE-α+FD. The choice of these reference schemes attempts to reproduce the discretization that users
usually implement as a first choice when performing this type of tests.

The reference schemes do not consider strategies based on other types of discretizations. For instance,
those in [20], where finite difference methods for both (BP) and adjoint systems are implemented. Neither
those in [13], where a semidiscrete scheme is employed to solve (BP), which consists of a conservative flux for
spatial discretization [27] and Runge-Kutta scheme for time discretization. They are used in combination
with the Matlab Optimization Toolbox fmincon for solving the constrained optimization problem. The
comparison with some of these methods is material for a future work.

The first reference scheme must be sensitive to numerical diffusion due to small CFL coefficients, whereas
the second one must control this by implementing the FORCE-α on the state system.

To illustrate the performance of the present scheme and reference ones, the sequence of time t = 0.25,
t = 0.5, t = 0.75 and iterations 0, 1, 2, 4, 8, are depicted. In all simulations, we set L = 20, ζ̄ = 1, ∆t = 0.01,
100 cells, αF = 2, V0 = 1.5, ε = 0.001, b0 = 0.01 and λb = 0.71.

6.1. Smooth bottom profile. This test aims at recovering the smooth bottom profile

b̄(t, x) = 0.1(1 + t · exp(−(x− 10− 2.5t)2)) .(20)

Systems (4) and (7) are solved with transmissible boundary conditions. Note that this profile consists of a
soliton that moves to the right and the amplitude of the wave increases with the time.
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Figure 2 shows the results for the Rusanov+FD scheme. We observe some oscillations in the first
iterations. We note that they do not disappear but reduce as the iterations increase. Figure 3 shows the
results for the FORCE-α+FD scheme. We still observe some oscillations on the first iterations, but they
almost disappear as the iterations increase. Figure 4 shows the results for the FORCE-α+CSF scheme. We
note that oscillations are reduced at the initial iterations and disappear as the iterations increase. Figure 5
shows the L∞ norm of ∇J against the number of iterations, to facilitate the visualization the plot is depicted
in logarithmic scale. So, this measures the error between bk and bk+1, which is the empirical convergence
of the global algorithm. These results show that in order to obtain convergence, it is not only important
how the state system is discretized, but also how the adjoint system is does so. This test reveals that a
low-dissipation scheme is beneficial in the PDE-constraint optimization context and smooth variables.
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Figure 2. Smooth bottom profile (20): Result for the reconstruction procedure resulting
from Rusanov+FD. Parameters ∆t = 0.01, αF = 2, ε = 0.001, λb = 0.71, 100 cells. Feft:
t = 0.25, centered t = 0.5, right: t = 0.75.
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Figure 3. Smooth bottom profile (20): Result for the reconstruction procedure resulting
from non-conservative FORCE-α+FD. Parameters ∆t = 0.01, αF = 2, ε = 0.001, λb =
0.71, 100 cells. Feft: t = 0.25, centered t = 0.5, right: t = 0.75.
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Figure 4. Smooth bottom profile (20): Result for the reconstruction procedure resulting
from FORCE-α+CSF. Parameters ∆t = 0.01, αF = 2, ε = 0.001, λb = 0.71, 100 cells.
Feft: t = 0.25, centered t = 0.5, right: t = 0.75.
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6.2. Discontinuous bottom profile. This test aims at recovering the discontinuous bottom profile

b̄(t, x) =


1
4 , 5 < x < 7,

0.3t, 7 < x < 10 + 4t,
0.1, otherwise.

(21)

Systems (4) and (7) are solved with transmissible boundary conditions. This profile consists of two square
waves, one is kept fix while the other increases in amplitude and moves on the right as the time advances.

Figure 6 shows the results for the Rusanov+FD scheme. Despite the locations of discontinuities are
recovered, the right amplitude of the waves are not recovered. Furthermore, spurious oscillation appear
in both the direct and inverse problems. This approach is not suitable for recovering this type of bottom
profile. It is well known that Rusanov scheme introduces large numerical diffusion when CFL coefficients
are small. Figure 7 shows the results for the FORCE-α+FD. It can be seen that the procedure recovers
the correct profile. This highlights the fact that a low dissipation scheme for the state system is suitable
for achieving convergence of the global procedure. Figure 8 shows the results for the FORCE-α+CSF
scheme. We note that global convergence is achieved. We observe that already in the second iteration of
the descent step procedure the scheme is able to recover the main features of the profile. Figure 9 shows
the L∞ norm of ∇J against the number of iterations, to facilitate the visualization the plot is depicted in
logarithmic scale. So, this measures the error between bk and bk+1, which is the empirical convergence of the
global algorithm. These results show that to obtain convergence, not only becomes important the form in
which the state system is discretized but also how the adjoint system does so. As before, a low-dissipation
scheme is beneficial in the PDE-constraint optimization context and discontinuous variables.
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Figure 5. Smooth bottom profile (20): The L∞ norm of ∇J for ε = 0.001, λb = 0.71, 100
cells at t = 1, αF = 2. (Dot line) Rusanov+FD scheme. (Dash line) FORCE-α+FD
scheme. (Full line) FORCE-α+CSF scheme.
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Figure 6. Discontinuous bottom profile (21): Result for the reconstruction procedure re-
sulting from Rusanov+FD. Parameters ∆t = 0.01, αF = 2, ε = 0.001, λb = 0.71, 100 cells.
Feft: t = 0.25, centered t = 0.5, right: t = 0.75.
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Figure 7. Discontinuous bottom profile (21): Result for the reconstruction procedure re-
sulting from non-conservative FORCE-α+FD. Parameters ∆t = 0.01, αF = 2, ε = 0.001,
λb = 0.71, 100 cells. Feft: t = 0.25, centered t = 0.5, right: t = 0.75.
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Figure 8. Discontinuous bottom profile (21): Result for the FORCE-α+CSF. Parameters
∆t = 0.01, αF = 2, ε = 0.001, λb = 0.71, 100 cells. Feft: t = 0.25, centered t = 0.5, right:
t = 0.75.
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6.3. Smooth bottom profile with large gradients. This test aims at recovering the smooth bottom
profile with a large gradient

b̄(t, x) = 0.15t
(

1 + sin4
(
π(x−10−4.5t)

5

))
.(22)

Systems (4) and (7) are solved with periodic boundary conditions. The profile consists of a triggered of
pulses that moves periodically to the right, elevates with respect to an equilibrium b = 0 and increments its
amplitude as the time advances.

These type of tests are a challenge for the balance law (4). They introduce stiffness on the source term
and may induce large gradient on the other variables.

Figure 10 shows the results for the Rusanov+FD scheme. Although the overall procedure converges, a
phase mismatch of the amplitudes and asymmetries are observed in the first few iterations. Asymmetry is still
present in the 8th iteration at t = 0.5. Figure 11 shows the results for the FORCE-α+FD. Asymmetries are
observed in the initial iterations that disappear by the eighth iteration. Figure 12 shows the results for the
FORCE-α+CSF scheme. In the first iterations, errors appear on the boundaries. In addition, asymmetries
appear in the first iterations, which are not perceived after the fourth iteration. Figure 13 shows the L∞
norm of ∇J against the number of iterations, to facilitate the visualization the plot is depicted in logarithmic
scale. So, this measures the error between bk and bk+1, which is the empirical convergence of the global
algorithm. We observe that for smooth bottom profiles with large gradients, all methods have oscillations
during the iterative process and asymmetries in the first iterations. By comparing with reference schemes,
FORCE-α+CSF depicts the best convergence. This test evidences that the methodology also applies to
other types of boundary conditions than transmissive.
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Figure 9. Discontinuous bottom profile (21): The L∞ norm of ∇J for ε = 0.001, λb = 0.71,
100 cells at t = 1, αF = 2. (Dot line) Rusanov+FD scheme. (Dash line) FORCE-α+FD
scheme. (Full line) FORCE-α+CSF scheme.
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Figure 10. Smooth bottom profile with large gradient (22): Result for the reconstruction
procedure resulting from Rusanov+FD. Parameters ∆t = 0.01, αF = 2, ε = 0.001, λb =
0.71, 100 cells. Feft: t = 0.25, centered t = 0.5, right: t = 0.75.
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Figure 11. Smooth bottom profile with large gradient (22): Result for the reconstruction
procedure resulting from FORCE-α+FD. Parameters ∆t = 0.01, αF = 2, ε = 0.001,
λb = 0.71, 100 cells. Feft: t = 0.25, centered t = 0.5, right: t = 0.75.
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Figure 12. Smooth bottom profile with large gradient (22): Result for the FORCE-
α+CSF. Parameters ∆t = 0.01, αF = 2, ε = 0.001, λb = 0.71, 100 cells. Feft: t = 0.25,
centered t = 0.5, right: t = 0.75.
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7. Conclusions

In this paper we have considered the inverse problem of detecting a time-varying bottom through free
surface measurements. This problem has applications in oceanography, in the study of tsunami generation
by vertical and horizontal displacements of underwater plates. Also in man-made facilities to design surf
pools.

To study the problem we used the system of conservation laws for an incompressible, non-viscous fluid, in
the shallow water regime with time-varying bottom, known as the Boussinesq-Peregrine system (BP) (see
[17]). The solution to (BP) is obtained through an iterative Picard scheme that generates a sequence of
linearized systems. For each of them, energy estimates are obtained, where the symmetrization of (BP) is
fundamental. Well-posedness follows classical ideas from energy estimates as in [15, 36].

The identification of the bottom was obtained as the minimum of a functional involving the L2 norm of
the solution of (BP). Existence of an optimal solution and formulation of a first order necessary condition,
involving the adjoint system, were obtained.

The numerical identification of the bottom followed the methodology described above, through a descent
method. Both, the state and adjoint equations, were discretized by using a unified finite volume scheme
for non-conservative systems. Namely, we implemented the FORCE-α a universal, low-dissipation scheme
applied to the coupled system (12), in the classical fashion of forward and backward evolution that we called
FORCE-α+CSF, and contrasted with two reference solutions, namely Rusanov+FD and FORCE-
α+FD, assumed as standard discretizations.

Let us mention a few things in this regard. First, for a stable computation of (BP) and its adjoint system,
small CFL coefficients are required. Second, the reference scheme Rusanov+FD uses the Rusanov method
(see [32]) to solve BP and it is the one with the worst results. Possibly due to the fact that Rusanov scheme
introduces the largest numerical diffusion among the three methods. Third, the universal, low-dissipation
scheme for both the state and adjoint systems yields the best results, making clear the importance of
discretizing the adjoint system in an appropriate manner.
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Figure 13. Smooth bottom profile with large gradient (22): The L∞ norm of ∇J for ε =
0.001, λb = 0.71, 100 cells at t = 1, αF = 2. (Dot line) Rusanov+FD scheme. (Dash line)
FORCE-α+FD scheme. (Full line) FORCE-α+CSF scheme.
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Finally, test problems presented in this paper show that the bottoms have been successfully recovered, and
therefore, low-dissipation schemes work as a correct numerical methodology in this type of inverse problems.

In the future, we will implement this strategy in more sophisticated models, such as the Green-Naghdi
system (see [15]). Also, it would be interesting to understand how much of this strategy can be replicated
for the class of equations coming from the water-waves theory in [17]. Finally, the current strategy leads us
to the question of the exact or approximate controllability of these systems through a source term in the
equation of state.

Appendix A. Existence and uniqueness of solutions

In this section we prove a well-posedness theorem for the Boussinesq–Peregrine system (BP). The idea is
to write (BP) as a symmetrizable hyperbolic system (see [36]). Then, an iterative Picard scheme is carried
out. For the resulting linear systems, an energy estimate is constructed which yields a solution to (BP).
This procedure has been done for the Nonlinear Shallow Water [17] and Green–Naghdi equations [15], in
the case of a stationary bottom.

After multiplying second equation in (BP) by h, the system can be written as

(23)


ζt + ε(ζ − b)xV + hVx = bt,(
h+ µh

(
− 1

3h
∂x(h3∂x·)

))
(Vt + εV Vx) + hζx = −εh

2
bttx.

Then, if one defines the operator

(24) T w = hw + µh

(
− 1

3h
∂x(h3∂xw)

)
,

system (23) becomes (
1 0
0 T ·

)(
ζt
Vt

)
+

(
εV h
h T (εV ·)

)(
ζx
Vx

)
=

(
bt + εbxV
− ε

2hbttx

)
.

Namely,

(25) S(U)∂tU + A(U)∂xU = B(U),

with U = (ζ, V )T ,

B(U) =

(
bt + εbxV
− ε

2hbttx

)
and

(26) S(U) =

(
1 0
0 T ·

)
, A(U) =

(
εV h
h T (εV ·)

)
,

be two symmetric operators. Existence and uniqueness of a solution for system (25) is guaranteed by the
following theorem.

Theorem 3. Let s > 3/2 and (ζ0, V0) ∈ Xs. Let b ∈ W 2,∞([0,∞);Hs+1) and assume (1) is valid. Then,
there exists TBP > 0, uniformly bounded from below with respect to ε, such that system (25) admits a unique
solution (ζ, V )T ∈ Xs

TBP
with initial condition (ζ0, V0)T .

This result is a consequence of applying a strategy similar to the one described in [36], Chapter 16.
Namely, the solution is built as the limit of the following Picard iterative scheme

(27)

{
S(Un)∂tU

n+1 + A(Un)∂xU
n+1 = B(Un),

Un+1|t=0 = U0.

Now, to study (27), we consider the initial value problem

(28)

{
S(U)∂tU + A(U)∂xU = B(U),

U|t=0 = U0,

where U = (ζ, V )T is a reference state. For this system we provide an energy estimate. Before giving the
proof, let us recall two lemmas describing some important properties of the operator T . Proofs can be found
in [15].



MOVING BOTTOM DETECTION 22

Lemma 1. Let ζ, b ∈W 1,∞(R) such that (1) is satisfied. Then the operator

T : H2(R)→ L2(R)

is well defined, one-to-one and onto.

Lemma 2. Let d0 >
1
2 and ζ, b ∈ Hd0+1(R) be such that (1) is satisfied.

Then

(1) ∀s ≥ 0, |T −1f |Hs +
√
µ|∂xT −1f |Hs ≤ C( 1

hmin
, |ζ, b|Hs∨d0+1)|f |Hs.

(2) ∀s ≥ 0,
√
µ|T −1∂xf |Hs ≤ C( 1

hmin
, |ζ, b|Hs∨d0+1)|f |Hs.

Finally, we present the energy estimate for the linearized system (28). The proof follows the ideas
presented in [17] for the Saint-Venant equation, but in our case, the bottom also depends on the time
variable.

Proposition 1. Let s > 3/2, T > 0, and b ∈W 2,∞((0,∞);Hs+1). Let also U = (ζ, V )T ∈ Xs
T be such that

∂tU ∈ Xs−1
T satisfying the condition (1) on [0, T/ε]. Then for any U0 ∈ Xs, there exists a unique solution

U = (ζ, V )T ∈ Xs
T to (28) such that for any t ∈ [0, T/ε]

|U|2Xs ≤ eεtC(U)|U0|2Xs + εC(U, T )

∫ t

0
(|bt|2Hs + |btt|2Hs+1)dτ.(29)

Remark 3. Due to the approach of the inverse problem, as an optimal control problem, it is important to
note that no assumption has been made on the size of ε. On the contrary, thanks to the fact that TBP is
uniformly bounded from below with respect to ε, it allows one to conclude that if any smallness assumption
is made on ε, the existence time is large, of order O(1/ε).

Proof of Proposition 1. Let

U ∈ C([0, T/ε]; Xs), ∂tU ∈ C([0, T/ε]; Xs−1).

Let
Λ = (1− ∂2

x)1/2 = (1 + |D|2)1/2

be the fractional derivative where D = 1
i ∂x stands for the Fourier multiplier. We use notation T = T (U).

By taking the Λs operator in (28) and using the definition of the commutator we obtain

S(U)∂tΛ
sU + A(U)∂xΛsU = ΛsB(U)− [Λs,S(U)]∂tU− [Λs,A(U)]∂xU(30)

= ΛsB(U)− [Λs,S(U)]S−1(U)B(U)

+ [Λs,S(U)]S−1(U)A(U)∂xU− [Λs,A(U)]∂xU.

Since S is symmetric, we have

1

2

d

dt
(S(U)ΛsU,ΛsU) =

1

2
([∂t,S(U)]ΛsU,ΛsU) + (S(U)∂tΛ

sU,ΛsU)

=
1

2
([∂t, T ]ΛsV,ΛsV ) + (S(U)∂tΛ

sU,ΛsU).

Then, by replacing (30), from last equality we obtain

1

2

d

dt
(S(U)ΛsU,ΛsU) =

1

2
([∂t, T ]ΛsV,ΛsV ) + (ΛsB(U),ΛsU)

− ([Λs,S(U)]S−1(U)B(U),ΛsU) + ([Λs,S(U)]S−1(U)A(U)∂xU,Λ
sU)

− ([Λs,A(U)]∂xU,Λ
sU)− (A(U)∂xΛsU,ΛsU).

Thus, by the symmetry of A,

1

2

d

dt
(S(U)ΛsU,ΛsU) =

1

2
([∂t, T ]ΛsV,ΛsV ) + (ΛsB(U),ΛsU)

− ([Λs,S(U)]S−1(U)B(U),ΛsU) + ([Λs,S(U)]S−1(U)A(U)∂xU,Λ
sU)

− ([Λs,A(U)]∂xU,Λ
sU) +

1

2
([∂x,A(U)]ΛsU,ΛsU).

We are going to estimate now each term of the right–hand side of this last equality in terms of |U|Xs ,
taking into account the expressions for S and A from (26).
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Estimate of ([∂x,A(U)]ΛsU,ΛsU).

([∂x,A(U)]ΛsU,ΛsU) = (εV xΛsζ,Λsζ) + (hxΛsζ,Λsζ)

+ (hxΛsV,ΛsV ) + ([∂x, T (εV ·)]ΛsV,ΛsV ),

with h = 1 + ε(ζ − b).
From the definition of the operator T , one has

([∂x, T (εV ·)]ΛsV,ΛsV ) = ([∂x, (εV h)]ΛsV,ΛsV )− µ

3
([∂x, ∂x(h3∂x(εV ·))]ΛsV,ΛsV )

= ([∂x, (εV h)]ΛsV,ΛsV ) +
µ

3
([∂x, h

3]∂x(εV ΛsV ),ΛsVx).

Therefore
([∂x,A(U)]ΛsU,ΛsU) ≤ εC(|U, b|Hd0 )|U|2Xs .

Estimate of ([Λs,A(U)]∂xU,Λ
sU).

([Λs,A(U)]∂xU,Λ
sU) = ([Λs, εV ]ζx,Λ

sζ) + ([Λs, h]Vx,Λ
sζ)

+ ([Λs, h]ζx,Λ
sV ) + ([Λs, T (εV )]Vx,Λ

sV ).

From the definition of T
([Λs, T (εV )]Vx,Λ

sV ) = ([Λs, εhV ]Vx,Λ
sV )− µ

3
([Λs, ∂x(h3∂x(εV ·))]Vx,ΛsV ).

Since that

[Λs, ∂x(h3∂x(εV ·))]Vx = Λs(∂x(h3∂x(εV Vx)))− ∂x(h3∂x(εV ΛsVx))

= ∂x
(
Λs(h3∂x(εV Vx))− h3∂xΛs(εV Vx) + h3∂x([Λs, εV ]Vx)

)
= ∂x

(
[Λs, h3]∂x(εV Vx) + h3∂x([Λs, εV ]Vx)

)
,

we have

−µ
3

([Λs, ∂x(h3∂x(εV ·))]Vx,ΛsV )

=
µ

3
([Λs, h3]∂x(εV Vx),ΛsVx) +

µ

3
(∂x([Λs, εV ]Vx), h3ΛsVx)

=
µ

3
([Λs, h3]∂x(εV Vx),ΛsVx) +

µ

3
([Λs, εV x]Vx, h

3ΛsVx)

+
µ

3
([Λs, εV ]Vxx, h

3ΛsVx).

Then one finally has

([Λs,A(U)]∂xU,Λ
sU) ≤ εC(|U, b|Hs∨d0+1 , µ|V x|Hs)|U|2Xs .

Estimate of ([Λs,S(U)]S−1(U)A(U)∂xU,Λ
sU). We have that

S−1 =

(
1 0
0 T −1

)
.

Then using the definition of A given in (26)

([Λs,S(U)]S−1(U)A(U)∂xU,Λ
sU) = ([Λs, T ]T −1(hζx),ΛsV )

+ ([Λs, T ]εV Vx,Λ
sV ).

By the definition of the operator T

([Λs, T ]T −1hζx,Λ
sV ) = ([Λs, h]T −1hζx,Λ

sV )− µ

3
([Λs, ∂x(h3∂x·)]T −1hζx,Λ

sV )

= ([Λs, h]T −1hζx,Λ
sV )− µ

3
(∂x[Λs, h3]∂xT −1hζx,Λ

sV )

= ([Λs, h]T −1hζx,Λ
sV ) +

µ

3
([Λs, h3]∂xT −1hζx,Λ

sVx).

On the other hand

([Λs, T ]εV Vx,Λ
sV ) = ([Λs, h]εV Vx,Λ

sV )− µ

3
([Λs, ∂x(h3∂x·)]εV Vx,ΛsV )

= ([Λs, h]εV Vx,Λ
sV ) +

µ

3
([Λs, h3]∂x(εV Vx),ΛsVx).
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Therefore by Lemma 2

([Λs,S(U)]S−1(U)A(U)∂xU,Λ
sU) ≤ εC(|U, b|Hs∨d0+1)|U|2Xs .

Estimate of ([Λs,S(U)]S−1(U)B(U),ΛsU).

([Λs,S(U)]S−1(U)B(U),ΛsU) = − ε
2

([Λs, T ]T −1(hbttx),ΛsV ).

Then, by the definition of the operator T

− ε
2

([Λs, T ]T −1(hbttx),ΛsV ) = − ε
2

([Λs, h]T −1(hbttx),ΛsV )

+
εµ

6
([Λs, ∂x(h3∂x·)]T −1(hbttx),ΛsV )

= − ε
2

([Λs, h]T −1(hbttx),ΛsV )

− εµ

6
([Λs, h3]∂xT −1(hbttx),ΛsVx).

Therefore from Lemma 2 and the commutator properties ([4, Lemma 4.6])

|[Λs, h3]∂xT −1(hbttx)|L2 ≤ C|h− 1|Hs |∂xT −1(hbttx)|Hs−1

≤ C(|h− 1|Hs∨d0+1)|hbttx|Hs

≤ C(|U, b|Hs∨d0+1)|btt|Hs+1 ,

namely
([Λs,S(U)]S−1(U)B(U),ΛsU) ≤ εC(|U, b|Hs∨d0+1)(|U|2Xs + |btt|2Hs+1).

Estimate of (ΛsB(U),ΛsU).

(ΛsB(U),ΛsU) = ([Λs, εbx]V + εbxΛsV ,Λsζ) + (Λsbt,Λ
sζ)

− ε

2
([Λs, h]bttx + hΛsbttx,Λ

sV ).

Then

(ΛsB(U),ΛsU) ≤ εC(|U|Hs∨d0+1 , |b|Hs+1)(|U|2Xs + |btt|2Hs+1 +
1

ε
|bt|2Hs).

Estimate of ([∂t, T ]ΛsV,ΛsV ). By the definition of the operator T

([∂t, T ]ΛsV,ΛsV ) = (∂thΛsV,ΛsV )− µ

3
(∂x(∂th

3ΛsVx),ΛsV )

= (∂thΛsV,ΛsV ) +
µ

3
(∂th

3ΛsVx,Λ
sVx).

Therefore
([∂t, T ]ΛsV,ΛsV ) ≤ εC(|U, b|W 1,∞(Hd0 ))|U|

2
Xs .

From the definition of S given in (26) and by (1)

(31) |U|2Xs ≤ C
(

1

hmin

)
(S(U)ΛsU,ΛsU)

and

(32) (S(U)ΛsU,ΛsU) ≤ C(|h|L∞ , |hx|L∞)|U|2Xs .

Then, summarizing all the estimates above together with (31)

(33)
d

dt
(S(U)ΛsU,ΛsU) ≤ εc1(U)((SΛsU,ΛsU) +

1

ε
|bt|2Hs + |btt|2Hs+1),

with c1(U) = C( 1
hmin

, |U|Xs
T
, |∂tU|Xs−1

T
, |b|L∞(Hs+1), |b|W 1,∞(Hd0 )).

By (33), for any λ ∈ R

eελt
d

dt
(e−ελt(S(U)ΛsU,ΛsU))

= −ελ(S(U)ΛsU,ΛsU) +
d

dt
(S(U)ΛsU,ΛsU)

≤ (εc1(U)− ελ)(S(U)ΛsU,ΛsU) + εc1(U)(
1

ε
|bt|2Hs + |btt|2Hs+1).



MOVING BOTTOM DETECTION 25

Then, if λ = λ(c1(U)) is sufficiently large, by (32) and the last inequality

eελt
d

dt
(e−ελt(S(U)ΛsU,ΛsU)) ≤ εc1(U)(

1

ε
|bt|2Hs + |btt|2Hs+1).

Integrating in 0 ≤ t ≤ T/ε

(S(U)ΛsU,ΛsU) ≤ eελt(S(U)ΛsU,ΛsU)|t=0 + εc1(U)

∫ t

0
eελ(t−τ)(

1

ε
|bt|2Hs + |btt|2Hs+1)dτ,

or equivalently, by (31), (32)

|U|2Xs ≤ eελt|U0|2Xs + εc2(U)

∫ t

0
(
1

ε
|bt|2Hs + |btt|2Hs+1)dτ,(34)

with c2(U) = C(c1(U), T ).
The fact that TBP is bounded from below by some T > 0 independent of ε ∈ (0, 1), follows from the

analysis above (see [3]). �

As was mentioned at the beginning of this section, existence and uniqueness of solutions for system (BP),
follow classical ideas based on the energy estimate provided in Proposition 1. Indeed, to prove existence of
solutions for system (28) one regularizes the operators S and A, to apply the Cauchy–Lipschitz Theorem
for ODE. To prove existence of solutions for (BP) one uses the above energy estimate and proceed as in
[36], chapter 16 (see also [15]).

Appendix B. First order necessary condition and optimality system

We now proceed to derive a system of first order necessary optimality conditions for problem (P). This
is done in a straightforward manner by studying the Gateaux derivative of the functional J(b). From (BP),
we are considering system:

(35)

rt + (hV )x = 0,

Vt −
µ

3h
∂x(h3Vtx) + rx + εV Vx = −bx −

ε

2
bttx,

with r = ζ − b, h = 1 + εr.
We denote Ω = {(x, y) ∈ R2 : εb ≤ y ≤ εζ}. Given λ > 0 and b ∈ C1(W 1,∞(R)), we define the domain

Ωλ = Ω + λb. For U := (ζ, V )T we use notation δU = limλ→0
Uλ−U
λ where Uλ is the solution of (35) in the

domain Ωλ.
Differentiating formally in system (35) with respect to bottom variations, we obtain

(36)


δrt + ∂x(δhV + hδV ) = 0,

δVt −
µ

3
δ

(
1

h
∂x(h3Vtx)

)
+ δrx + εδ(V Vx) = −δbx −

ε

2
δbttx.

Multiplying first and second equations in (36) by test functions p = p(t, x) and q = q(t, x) respectively,
such that lim|x|→∞ p(t, x) = 0 = lim|x|→∞ q(t, x), and integrating in x

(37)



∫ T

0

∫
R
δrtp−

∫ T

0

∫
R

(δhV + hδV )px = 0,∫ T

0

∫
R
δVtq −

µ

3

∫ T

0

∫
R
δ

(
1

h
∂x(h3Vtx)

)
q −

∫ T

0

∫
R
δrqx

+ ε

∫ T

0

∫
R
δV Vxq − ε

∫ T

0

∫
R
δV (V q)x =

∫ T

0

∫
R
δbqx +

ε

2

∫ T

0

∫
R
δbttqx.

Since it is possible to drop the O(µ2) terms, under the extra assumptions lim|x|→∞ qx(t, x) = 0 and
qxx(T, x) = 0, one has

−µ
3

∫ T

0

∫
R
δ

(
1

h
∂x(h3Vtx)

)
q =

µ

3

∫ T

0

∫
R
δV ∂x(h2qtx).

We have that δr(0, x) = δV (0, x) = 0. On the control b we are going to assume δb(0, x) = δb(T, 0) = 0
and δbt(0, x) = δbt(T, x) = 0. Then (37) becomes into
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(38)



−
∫ T

0

∫
R
δrpt +

∫
R
δr(T )p(T )−

∫ T

0

∫
R
δhV px −

∫ T

0

∫
R
δV hpx = 0,

−
∫ T

0

∫
R
δV qt +

∫
R
δV (T )q(T ) +

∫ T

0

∫
R
δV

µ

3
∂x(h2qtx)−

∫ T

0

∫
R
δrqx

− ε
∫ T

0

∫
R
δV V qx =

∫ T

0

∫
R
δbqx +

ε

2

∫ T

0

∫
R
δbqttx.

Summing both equations in (38) and having into account that δh = εδr, we have

(39)

∫ T

0

∫
R
δr(−pt − εV px − qx)

+

∫ T

0

∫
R
δV (−hpx − qt +

µ

3
∂x(h2qtx)− εV qx) +

∫
R
δr(T )p(T ) +

∫
R
δV (T )q(T )

=

∫ T

0

∫
R
δb(qx +

ε

2
qttx).

Remark 4. Note that we have made some assumptions on the behavior of the bottom and its first time
derivative on 0 and T . This is not an issue since we are thinking in an underwater device that is at rest at
the beginning and end of the physical experiment.

Considering the functional J defined in (P), with α = 0, we obtain

δJ(b)[δb] =

∫ T

0

∫
R

(ζ − ζ̄)δζ +

∫ T

0

∫
R

(V − V̄ )δV(40)

=

∫ T

0

∫
R

(ζ − ζ̄)(δr + δb) +

∫ T

0

∫
R

(V − V̄ )δV,

as long as b(·, x) be compact supported in [0, T ].
Therefore, assuming

(41)


pt + εV px + qx = ζ̄ − ζ,

qt −
µ

3
∂x(h2qtx) + hpx + εV qx = V̄ − V,

p(T ) = 0, q(T ) = 0,

from (39) and (40) we have

δJ(b)[δb] =

∫ T

0

∫
R
δb(qx +

ε

2
qttx + (ζ − ζ̄))dxdt.

On the other hand, by Theorem 2 we know that there exists an optimal pair (U∗, b∗) of (P). Then,
necessarily we have ∇J(b∗) = 0. Namely, if we consider δU = U + U∗ and δb = b+ b∗ then

0 = ∇J(b∗) = q∗x +
ε

2
q∗ttx + (ζ∗ − ζ̄).

Observe that (41) can be written as((
h 0
0 1

)
+ µ

(
0

−1
3∂x(h2∂x·)

))(
pt
qt

)
+

(
hεV h
h εV

)(
px
qx

)
=

(
h(ζ̄ − ζ)
V̄ − V

)
.

From this last expression and proceeding as we did to prove Theorem 3, it can be proved that there exists
a T > 0 such that (p∗, q∗) ∈ C([0, T/ε];Xs). Therefore, we can state now a theorem giving a system of first
order necessary optimality conditions for problem (P).
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Theorem 4. Let (U∗, b∗) be an optimal solution for (P). Then there exists (p∗, q∗) ∈ C([0, T/ε];Xs)
satisfying the following optimality system, in a variational sense:

r∗t + (h∗V ∗)x = 0,

V ∗t −
µ

3h∗
∂x((h∗)3V ∗tx) + r∗x + εV ∗V ∗x = −b∗x −

ε

2
b∗ttx,

ζ(0) = ζ0, V (0) = V0,

p∗t + εV ∗p∗x + q∗x = ζ̄ − ζ∗,

q∗t −
µ

3
∂x((h∗)2∂xq

∗
t ) + h∗p∗x + εV ∗q∗x = V̄ − V ∗,

p∗(T ) = 0, q∗(T ) = 0,

q∗x +
ε

2
q∗ttx + (ζ∗ − ζ̄) = 0.

Appendix C. The reference scheme Rusanov+FD

In this section we build a solver for the PDE-constraint optimization problem in which system (4) is
solved with a conservative finite volume scheme, the Rusanov method, and system (7) is discretized by a
finite difference approach. Here, we propose the solver in a general approach, so we describe the method for
(9) and (11) which are more general than (4) and (7), respectively.

System (9) is solved by the finite volume formula

Un+1
i = Un

i − ∆t
∆x(Fi+ 1

2
− Fi− 1

2
) + ∆tBi ,(42)

where Fi+ 1
2

is a numerical flux, in this case the Rusanov flux is implemented, that corresponds to

Fi+ 1
2

= 1
2(F(Un

i+1) + F(Un
i ))−

λ
i+ 1

2
2 (Un

i+1 −Un
i ) ;(43)

here λi+ 1
2

= max(λL, λR) with

λL = max{|εV n
i −

√
rni |, |εV

n
i +

√
rni |}

and

λR = max{|εV n
i+1 −

√
rni+1|, |εV

n
i+1 +

√
rni+1|} .

For the source term we use central finite difference scheme for approximating spatial and time derivatives,
that is, a similar approach to that used in (18).

To solve the adjoint system (11) we use

−Pn+1
i + Pn

i −∆tA(Un+1
i ,Pn+1

i )
(Pn+1

i+1 −P
n+1
i−1 )

2∆x = ∆tR(xi,P
n+1
i ,Un+1

i ) .(44)

Notice that the adjoint system is solved back from PnT
i = 0 , where nT is the number of time iterations to

reach the output time, T , of the simulation.
As commented above, these methods are functional and simple enough for problems in this paper. To

extend them to other systems only expressions for B(x,U), F(U), A(U,P) and R(x,U,P) must be pro-
vided.

This complete the description of the solvers for the state and adjoint systems. They need to be combined to
generate the minimizer sequence for a cost functional J(b). Algorithm 1 summarizes the global procedure to
obtain b, iteratively. The iterations are stopped by fixing the maximum number iterations to IterTotal = 17.

Algorithm 1 Global algorithm for obtaining b(t, x). Provide b0, it = 1, λb, IterTotal and Tol.

Ensure: b at each xi and tn.
while it ≤ IterTotal do

Step 1: Solve eq. (9) using (42). This generates {Un
i }

nT
n=1, i = 1, ..., Nx, where Nx is the number of

cells.
Step 2: Solve (11) using (44), in this step {Pn

i }
nT
n=1 is generated.

Step 3: Update bk+1 = bk − λb∇(bk), where ∇J = qx + 1
2εqxtt − (ζ̄ − ζ) .

Step 4: Stop the algorithm once |∇(bk,Ui,Pi)| < Tol, where Tol is some prescribed tolerance.
end while
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