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Optimization Through Fixed Point
Recursive Schemes



Find x (a solution of a problem)

Am×nxn×1 = bm×1 (Ax = b) Linear Equations

min
x
∥Ax−b∥2

Least Square Pr.

MP: f (x)≤ f (y), ∀y ⟨∇f (x),y− x⟩ ≥ 0,∀y

VIP: ⟨T(x),y− x⟩ ≥ 0,∀y

EQP: F(x,y)≥ 0 ∀y

F(x,y) = f (y)− f (x)
Fixed
Point

Problem
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Fixed Point Problem

Fixed Point: Let T : D→H be a mapping

Find p ∈ D such that Tp = p

Questions: D∩H ̸= /0
Does T have a fixed point? If yes, is it unique? How to get a fixed point?
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Fixed Point Recursive Schemes

xn+1 = Txn = Tnx1 Picard (1890)

Banach (1922)

xn+1 =
1
2 xn +

1
2 Txn krasnoselskii (1955)

Schaefer (1957)xn+1 = (1−λ )xn +λTxn

xn+1 = (1−λn)xn +λnTxn =⇒ xn+1 = xn +λn(T− I)xn

xn+1 = xn +λn (−∇(fxn))xn+1 = (1−λn)Txn +λn gxn
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Substantial Operators in Fixed
Point Theory



Nice mappings

1. Contraction, nonexpansive, Lipchits if ∃ k ≥ 0 s.t.
∥Tx−Ty∥ ≤ k∥x− y∥;

2. Strictly pseudocontractive if ∃ k ∈ [0,1) s.t
∥Tx−Ty∥2 ≤ ∥x− y∥2 + k∥x− y−Tx+Ty∥2;

3. Enriched nonexpansive if ∃ β ≥ 0 s.t.
∥Tx−Ty+β (x− y)∥ ≤ (β +1)∥x− y∥;

4. Strongly monotone if ∃ γ > 0 s.t. ⟨Ax−Ay,x− y⟩ ≥ γ∥x− y∥;

5. Inverse strongly monotone if ∃ γ > 0 s.t. ⟨Ax−Ay,x−y⟩ ≥ γ∥Ax−Ay∥;

6. Monotone if ⟨Ax−Ay,x− y⟩ ≥ 0;

7. Pseudo-monotone if ⟨Ax,y− x⟩ ≥ 0 =⇒ ⟨Ay,y− x⟩ ≥ 0;

8. Quasi-monotone if ⟨Ax,y− x⟩> 0 =⇒ ⟨Ay,y− x⟩ ≥ 0;
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Developing Algorithms -
Substantial Concepts



Concepts Related to Recursive Schemes

Well-definedness

Structure

Does it converge?

No. iterations

Execution Time:
cputime/tictoc/timeit

Complexity per
iteration

Convergence rate: How fast does it converge?

Robustness: performance under various initial
selections and on distinct problems

Efficiency: Ability to find solutions across
various problems using few evaluations (total no.
of eval to reach solution)

Effectiveness: How many problems can it solve?

Accuracy: Minimal error possible.
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The Case of
Variational Inequality Problem



Recall: Minimization to Variational Inequality

Consider a smooth function f : Rn→ R

f is convex on C ⊂ Rn if and only if

⟨∇f (u),u−w⟩ ≥ f (u)− f (w), ∀ u,w ∈ C

f (u)≤ f (w), ∀ w ∈ C ⇐⇒ ⟨∇f (u),w−u⟩ ≥ 0, ∀ w ∈ C

Optimization: Minimizers, Saddle Points, Maximizers

For a mapping A : C→ H, the VIP is

find x ∈ C such that ⟨A(x),y− x⟩ ≥ 0, ∀ y ∈ C.

⟨A(x),y− x⟩ ≥ 0 ⇐⇒ ⟨αA(x),y− x⟩ ≥ 0 ⇐⇒ x = PC(I−αA)(x).

Applications: Machine learning, robotic motion control, signal and
image restorations, dynamical systems,...
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Fixed Point Techniques for VIP

Projected Gradient12

Picard
xk+1 = PC(I−αA)(xk).

Extragradient3{
yk = PC(I−αA)(xk),

xk+1 = PC(xk−αAyk).

Subgrad. Extragrad.4{
yk = PC(I−αA)(xk),

xk+1 = PTk(x
k−αAyk).

1A. A. Golden, Bullet. Amer. Math. Soc. 70 (1964)
2E. S. Levitin, B. T. Polyak, USSR Comput. Math Phys. 6(1966)
3G. M. Korpelevich, Metecon, 12(1976)
4Y. Censor, A. Gibali and S. Reich, Optim. Methods Softw. 26 (2011)

Poom Kumam, PhD (KMUTT, Thailand) Optimization for Image restoration April 3, 2025 9 / 35



Fixed Point Techniques for VIP

Projected Gradient12

Picard
xk+1 = PC(I−αA)(xk).

Extragradient3{
yk = PC(I−αA)(xk),

xk+1 = PC(xk−αAyk).

Subgrad. Extragrad.4{
yk = PC(I−αA)(xk),

xk+1 = PTk(x
k−αAyk).

1A. A. Golden, Bullet. Amer. Math. Soc. 70 (1964)
2E. S. Levitin, B. T. Polyak, USSR Comput. Math Phys. 6(1966)
3G. M. Korpelevich, Metecon, 12(1976)
4Y. Censor, A. Gibali and S. Reich, Optim. Methods Softw. 26 (2011)

Poom Kumam, PhD (KMUTT, Thailand) Optimization for Image restoration April 3, 2025 9 / 35



Fixed Point Techniques for VIP

Projected Gradient12

Picard
xk+1 = PC(I−αA)(xk).

Extragradient3{
yk = PC(I−αA)(xk),

xk+1 = PC(xk−αAyk).

Subgrad. Extragrad.4{
yk = PC(I−αA)(xk),

xk+1 = PTk(x
k−αAyk).

1A. A. Golden, Bullet. Amer. Math. Soc. 70 (1964)
2E. S. Levitin, B. T. Polyak, USSR Comput. Math Phys. 6(1966)
3G. M. Korpelevich, Metecon, 12(1976)
4Y. Censor, A. Gibali and S. Reich, Optim. Methods Softw. 26 (2011)

Poom Kumam, PhD (KMUTT, Thailand) Optimization for Image restoration April 3, 2025 9 / 35



Fixed Point Techniques for VIP

Projected Gradient12

Picard
xk+1 = PC(I−αA)(xk).

Extragradient3{
yk = PC(I−αA)(xk),

xk+1 = PC(xk−αAyk).

Subgrad. Extragrad.4{
yk = PC(I−αA)(xk),

xk+1 = PTk(x
k−αAyk).

1A. A. Golden, Bullet. Amer. Math. Soc. 70 (1964)
2E. S. Levitin, B. T. Polyak, USSR Comput. Math Phys. 6(1966)
3G. M. Korpelevich, Metecon, 12(1976)
4Y. Censor, A. Gibali and S. Reich, Optim. Methods Softw. 26 (2011)

Poom Kumam, PhD (KMUTT, Thailand) Optimization for Image restoration April 3, 2025 9 / 35



Approximation Schemes for VIP

Projection Contraction Method5
x1 ∈ C,

yk = PC(I−αA)
(
xk
)

d
(
xk,yk

)
≡
(
xk− yk

)
−λ

(
Axk−Ayk

)
xk+1 = xk− γβ kd

(
xk,yk

)
Tseng Method6

x1 ∈ C
yk = PC(I−αA)

(
xk
)

xk+1 = yk−λ
(
Ayk−Axk

)
Golden Ratio7

x1 ∈ C, φ 2 = 1+φ

yk =
(φ −1)xk + yk−1

φ

xk+1 = proxλg(y
k−λAxk)

Several Modifications

5B. He, Appl. Math. Optim. 35(1997), 69-76.
6P. Tseng, SIAM J. Control Optim. 38(2000).
7Y. Malitsky, Math. Program. 184(2020).
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General Note about VIP

In general, the most substantial fixed point operator for VIP is
PC(I−αA)

A - strongly monotone, inverse-strongly monotone, monotone,
pseudo-monotone, quasi-monotone...

α - Lipchitz constant, operator norm, self-adaptive, region of
flexibility...

General concerns about iterative techniques: Fastness in the number
of iterations, CPU-time, Computational complexity, and
expansiveness.

Metric projection PC is meaningful when C is closed and convex.
However, the computation of the metric projection is tedious in many
closed convex sets. So there need to be closed and convex sets with
explicit forms of computing metric projection or less computation of it
in approximation techniques. E.g., Projection onto balls, half-spaces,
hyperplanes, boxes, and so on are quite welcome.
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Image Restoration
Problem



Image Recovery Problems

Figure: Blurred image
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Image Recovery Problems

z =


z1,1 . . . z1,n2

...
. . .

...

zn1,1 . . . zn1,n2


n1×n2

Problem: How can we recover the original image z?
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Image Recovery: Operator Perspective

Operator Formulation: K


u∗1

T

...

u∗n1
T

=


zT

1
...

zT
n1
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Image Recovery

Context:

• The observed image z ∈ Rn (with n = n1×n2) is often degraded or
blurred.

• The operator K ∈ Rn×n (a blurring operator) models this degradation.

• Main Target. To recover the original image u∗ by solving:

u∗ = arg min
u∈Rn
∥Ku− z∥

Other Associated Challenge:
It is hard to determine a precise operator K such that Ku = z.
Therefore, the task shifts to finding a “good enough” unified operator.

Practical Approach:
Various operators can be employed, for example:

K1u = z, K2u = z, . . . , K?u = z
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Some Sources of Image Noise

Transmission Errors:

Errors occur during the electronic transmission of the image signal.
Sensor Noise:
Heat generated by the sensor during image capture.
ISO Sensitivity:
A higher ISO setting increases the sensor’s light absorption but also
the likelihood of noticeable noise.

(a) (b)
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Solving Image Recovery Problems

• We aim to recover the unknown true image u from the linear system:

Ku = z,

where K is the blurring matrix and z is the observed (blurred) image.

• The residual is defined as:

g = Ku− z.

• Minimizing the residual norm,

argmin
u

{
∥Ku− z∥

}
,

may lead to an ill-posed problem that typically yields many solutions.
• Thus, we adopt a regularized formulation:

argmin
u

{
∥Ku− z∥2

2 +αR(u)
}
,

where ∥ · ∥2 denotes the Euclidean norm, α > 0 is a regularization
parameter, and R(u) is the regularization function.
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Regularizations and Image
Restoration

Via
Optimization Algorithms



Image Restoration Via Algorithms
Solve an optimization problem to restore noisy images while preserving edges.

Degradation: Identify noise type and blur model.

Objective: Set up fidelity and regularization terms.

Employ the Algorithm(s): Appropriate optimization methods.

Initialize: Start with an initial image estimate.
Iterate: Update the image iteratively to minimize the obj.
Stop: Apply convergence criteria to stop.

Evaluate: Assess restoration quality using metrics.

(Sometimes) Refine the output before the evaluation.

Some Effective Evaluation Metrics Beside Recovery Time

MSE (Mean Squared Error) provide pixel-wise error magnitude

PSNR (Peak Signal-to-Noise Ratio) log-scale transformation of MSE

ReIerr (Relative Error) relative comparison of error magnitude

SSIM (Structural Similarity Index) perceptual similarity & structural content
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Tikhonov regularization

• In general, a regularization method can be employed to compute
approximate solutions that are less sensitive to noise than the naive
solution.

• One of the most popular regularization methods is Tikhonov
regularization8, which is minimizing

min
u

{
∥Ku− z∥2

2 +α∥u∥2
2

}
,

where ∥ · ∥2 denotes the Euclidean norm and α > 0.

8A. Tikhonov, V. Arsenin, Solution of ill-Posed Problems, Winston, Washington, DC,
1977.
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Tikhonov regularization

While Tikhonov regularization is effective for certain noise types, it usually
yields unsatisfactory restored images in the presence of impulse noise (e.g.,
salt and pepper noise) and Poisson noise.

• Chan et al.9 studied the l1-TV denoising model:

min
u

{
α

2
∥Ku− z∥1 +TV(u)

}
, (2.13)

where ∥ · ∥1 = ∑i |xi| and TV(u) is the discrete total variation
regularization term.

• Note that the TV norm is equivalent to the vector 1-norm of the
gradient:

TV(u) = ∥∇u∥1.

9S.H. Chan, R. Khoshabeh, K.B. Gibson, P.E. Gill, T.Q. Nguyen, An augmented
Lagrangian method for total variation video restoration, IEEE Trans. Image Process.,
vol. 20, no. 11, 3097-3111, 2011.

Poom Kumam, PhD (KMUTT, Thailand) Optimization for Image restoration April 3, 2025 20 / 35



Tikhonov regularization

While Tikhonov regularization is effective for certain noise types, it usually
yields unsatisfactory restored images in the presence of impulse noise (e.g.,
salt and pepper noise) and Poisson noise.

• Chan et al.9 studied the l1-TV denoising model:

min
u

{
α

2
∥Ku− z∥1 +TV(u)

}
, (2.13)

where ∥ · ∥1 = ∑i |xi| and TV(u) is the discrete total variation
regularization term.

• Note that the TV norm is equivalent to the vector 1-norm of the
gradient:

TV(u) = ∥∇u∥1.

9S.H. Chan, R. Khoshabeh, K.B. Gibson, P.E. Gill, T.Q. Nguyen, An augmented
Lagrangian method for total variation video restoration, IEEE Trans. Image Process.,
vol. 20, no. 11, 3097-3111, 2011.

Poom Kumam, PhD (KMUTT, Thailand) Optimization for Image restoration April 3, 2025 20 / 35



Tikhonov regularization

While Tikhonov regularization is effective for certain noise types, it usually
yields unsatisfactory restored images in the presence of impulse noise (e.g.,
salt and pepper noise) and Poisson noise.

• Chan et al.9 studied the l1-TV denoising model:

min
u

{
α

2
∥Ku− z∥1 +TV(u)

}
, (2.13)

where ∥ · ∥1 = ∑i |xi| and TV(u) is the discrete total variation
regularization term.

• Note that the TV norm is equivalent to the vector 1-norm of the
gradient:

TV(u) = ∥∇u∥1.

9S.H. Chan, R. Khoshabeh, K.B. Gibson, P.E. Gill, T.Q. Nguyen, An augmented
Lagrangian method for total variation video restoration, IEEE Trans. Image Process.,
vol. 20, no. 11, 3097-3111, 2011.

Poom Kumam, PhD (KMUTT, Thailand) Optimization for Image restoration April 3, 2025 20 / 35



Tikhonov regularization

While Tikhonov regularization is effective for certain noise types, it usually
yields unsatisfactory restored images in the presence of impulse noise (e.g.,
salt and pepper noise) and Poisson noise.

• Chan et al.9 studied the l1-TV denoising model:

min
u

{
α

2
∥Ku− z∥1 +TV(u)

}
, (2.13)

where ∥ · ∥1 = ∑i |xi| and TV(u) is the discrete total variation
regularization term.

• Note that the TV norm is equivalent to the vector 1-norm of the
gradient:

TV(u) = ∥∇u∥1.

9S.H. Chan, R. Khoshabeh, K.B. Gibson, P.E. Gill, T.Q. Nguyen, An augmented
Lagrangian method for total variation video restoration, IEEE Trans. Image Process.,
vol. 20, no. 11, 3097-3111, 2011.

Poom Kumam, PhD (KMUTT, Thailand) Optimization for Image restoration April 3, 2025 20 / 35



Tikhonov regularization

While Tikhonov regularization is effective for certain noise types, it usually
yields unsatisfactory restored images in the presence of impulse noise (e.g.,
salt and pepper noise) and Poisson noise.

• Chan et al.9 studied the l1-TV denoising model:

min
u

{
α

2
∥Ku− z∥1 +TV(u)

}
, (2.13)

where ∥ · ∥1 = ∑i |xi| and TV(u) is the discrete total variation
regularization term.

• Note that the TV norm is equivalent to the vector 1-norm of the
gradient:

TV(u) = ∥∇u∥1.

9S.H. Chan, R. Khoshabeh, K.B. Gibson, P.E. Gill, T.Q. Nguyen, An augmented
Lagrangian method for total variation video restoration, IEEE Trans. Image Process.,
vol. 20, no. 11, 3097-3111, 2011.

Poom Kumam, PhD (KMUTT, Thailand) Optimization for Image restoration April 3, 2025 20 / 35



Mathematical Approach

• Cai et al.10 proposed solving an approximate model by

min
u

{
α1

2
∥Ku− z∥2

2 +
α2

2
∥∇u∥2

2 +∥∇u∥1

}
, (2.14)

where α1, α2 > 0 are regularization parameters.

• Based on model (21), the corresponding l1 denoising model is given by

min
u

{
α1

2
∥Ku− z∥1 +

α2

2
∥∇u∥2

2 +∥∇u∥1

}
, (2.15)

where α1, α2 > 0 remain the regularization parameters.

10X. Cai, R. Chan, and T. Zeng, A two-stage image segmentation method using a
convex variant of the Mumford-Shah model and thresholding, SIAM Journal on Imaging
Sciences, 6(1):368-390, 2013.
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Other Regularization

• We consider the following mixed l1-l2 regularization model:

min
u

{
Φ(u) :=

α1

2
∥Ku− z∥2

2 +
α2

2
∥Ku− z∥1 +

α3

2
∥∇u∥2

2 +∥∇u∥1

}
,

(2.16)
where α1, α2, α3 > 0 are the regularization parameters.
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Other Regularization

� The iterative algorithm

Let g = Ku− z and v = ∇u, then we
reformulate the optimal problem (2.16) into the following constrained
form:

min
u

{
α1

2
∥Ku− z∥2

2 +
α2

2
∥g∥1 +

α3

2
∥∇u∥2

2 +∥v∥1

}
,

subject to g = Ku− z, v = ∇u.
(2.17)

Thus, the augmented Lagrangian function for (2.16) is given by

L (u,g,v,λ1,λ2) =
α1

2
∥Ku− z∥2

2 +
α2

2
∥g∥1 +

α3

2
∥∇u∥2

2 +∥v∥1

−⟨λ1, g− (Ku− z)⟩+ γ1

2
∥g− (Ku− z)∥2

2

−⟨λ2, v−∇u⟩+ γ2

2
∥v−∇u∥2

2.

(2.18)
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Alternating Direction Method (ALTV-l1-l2)



uk+1 =u

{
α1

2
∥Ku− z∥2

2−⟨λ k
1 , gk− (Ku− z)⟩

+
γ1

2
∥gk− (Ku− z)∥2

2−⟨λ k
2 , vk−∇u⟩

+
γ2

2
∥vk−∇u∥2

2 +
α3

2
∥∇u∥2

2

}
,

vk+1 =v

{
∥v∥1−⟨λ k

2 , v−∇uk+1⟩+ γ2

2
∥v−∇uk+1∥2

2

}
,

gk+1 =g

{
α2

2
∥g∥1−⟨λ k

1 , g− (Kuk+1− z)⟩

+
γ1

2
∥g− (Kuk+1− z)∥2

2

}
,

λ
k+1
1 = λ

k
1 − γ1

(
gk+1− (Kuk+1− z)

)
,

λ
k+1
2 = λ

k
2 − γ2

(
vk+1−∇uk+1

)
.
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Degraded and Recovered Images

(a) degraded (b) Chan et al. (c) Cai et al. (d) ALTV-l1-l2
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Image Restoration
The original, observed and restored images are given in Figure 4.1-4.2.

(a) original image (b) zoom image

(c) zoom image and
focus (:,401)

(d) degradation
image and focus
(:,401)
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Image Restoration

(a) signal image and focus (:,401)

Figure 4.1: Figure (a) shows the original image ”car”, figure (b) shows the
zoom original image size 604×856 figure (c) shows the zoom original
image focus at point (:,401) and figure (d) shows the zoom degradation
image by a motion blur and random noise focus at point (:,401) and figure
(e) show signal of zoom original and degradation image.
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Lasso Models for Image Restoration

Denoising Problem

Minimize the functional:

min
u

1
2
∥Ku−ξ∥2

2 +λ∥Wu∥1

Terminologies

u : Restored image (vectorized form)
ξ : Observed noisy image
K : Degradation operator (e.g., blur, downsampling)
W : Transform operator (e.g., wavelet, DCT)
λ : Regularization parameter

Data fidelity term: 1
2∥Ku−ξ∥2

2

Sparsity-promoting term: λ∥Wu∥1
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A derivative-free Scheme for Nonlinear Equations

Ibrahim, A.H., Kumam, P., Abubakar, A.B. and Abubakar, J.,A
derivative-free projection method for nonlinear equations with
non-Lipschitz operator: application to LASSO problem, Math.
Methods Appl. Sci. 46 (2023), no. 8, 9006–9027; MR4589854.

Findings

Introduces a derivative-free iterative method for solving
convex-constrained nonlinear equations using a projection strategy.

Avoids the need for gradient evaluations while still generating a
search direction that satisfies the sufficient descent property.

Global convergence is established under mild assumptions; notably,
Lipschitz continuity is not required – only pseudomonotonicity.

The method is applied to the LASSO problem in image recovery,
demonstrating its practical utility.

Numerical experiments illustrate competitive performance and
favorable comparisons with related algorithms.

Poom Kumam, PhD (KMUTT, Thailand) Optimization for Image restoration April 3, 2025 29 / 35

https://doi.org/10.1002/mma.9033


A derivative-free Scheme for Nonlinear Equations

Ibrahim, A.H., Kumam, P., Abubakar, A.B. and Abubakar, J.,A
derivative-free projection method for nonlinear equations with
non-Lipschitz operator: application to LASSO problem, Math.
Methods Appl. Sci. 46 (2023), no. 8, 9006–9027; MR4589854.

Findings

Introduces a derivative-free iterative method for solving
convex-constrained nonlinear equations using a projection strategy.

Avoids the need for gradient evaluations while still generating a
search direction that satisfies the sufficient descent property.

Global convergence is established under mild assumptions; notably,
Lipschitz continuity is not required – only pseudomonotonicity.

The method is applied to the LASSO problem in image recovery,
demonstrating its practical utility.

Numerical experiments illustrate competitive performance and
favorable comparisons with related algorithms.

Poom Kumam, PhD (KMUTT, Thailand) Optimization for Image restoration April 3, 2025 29 / 35

https://doi.org/10.1002/mma.9033


A derivative-free Scheme for Nonlinear Equations

Ibrahim, A.H., Kumam, P., Abubakar, A.B. and Abubakar, J.,A
derivative-free projection method for nonlinear equations with
non-Lipschitz operator: application to LASSO problem, Math.
Methods Appl. Sci. 46 (2023), no. 8, 9006–9027; MR4589854.

Findings

Introduces a derivative-free iterative method for solving
convex-constrained nonlinear equations using a projection strategy.

Avoids the need for gradient evaluations while still generating a
search direction that satisfies the sufficient descent property.

Global convergence is established under mild assumptions; notably,
Lipschitz continuity is not required – only pseudomonotonicity.

The method is applied to the LASSO problem in image recovery,
demonstrating its practical utility.

Numerical experiments illustrate competitive performance and
favorable comparisons with related algorithms.

Poom Kumam, PhD (KMUTT, Thailand) Optimization for Image restoration April 3, 2025 29 / 35

https://doi.org/10.1002/mma.9033


A derivative-free Scheme for Nonlinear Equations

Ibrahim, A.H., Kumam, P., Abubakar, A.B. and Abubakar, J.,A
derivative-free projection method for nonlinear equations with
non-Lipschitz operator: application to LASSO problem, Math.
Methods Appl. Sci. 46 (2023), no. 8, 9006–9027; MR4589854.

Findings

Introduces a derivative-free iterative method for solving
convex-constrained nonlinear equations using a projection strategy.

Avoids the need for gradient evaluations while still generating a
search direction that satisfies the sufficient descent property.

Global convergence is established under mild assumptions; notably,
Lipschitz continuity is not required – only pseudomonotonicity.

The method is applied to the LASSO problem in image recovery,
demonstrating its practical utility.

Numerical experiments illustrate competitive performance and
favorable comparisons with related algorithms.

Poom Kumam, PhD (KMUTT, Thailand) Optimization for Image restoration April 3, 2025 29 / 35

https://doi.org/10.1002/mma.9033


A derivative-free Scheme for Nonlinear Equations

Ibrahim, A.H., Kumam, P., Abubakar, A.B. and Abubakar, J.,A
derivative-free projection method for nonlinear equations with
non-Lipschitz operator: application to LASSO problem, Math.
Methods Appl. Sci. 46 (2023), no. 8, 9006–9027; MR4589854.

Findings

Introduces a derivative-free iterative method for solving
convex-constrained nonlinear equations using a projection strategy.

Avoids the need for gradient evaluations while still generating a
search direction that satisfies the sufficient descent property.

Global convergence is established under mild assumptions; notably,
Lipschitz continuity is not required – only pseudomonotonicity.

The method is applied to the LASSO problem in image recovery,
demonstrating its practical utility.

Numerical experiments illustrate competitive performance and
favorable comparisons with related algorithms.

Poom Kumam, PhD (KMUTT, Thailand) Optimization for Image restoration April 3, 2025 29 / 35

https://doi.org/10.1002/mma.9033


A derivative-free Scheme for Nonlinear Equations

Ibrahim, A.H., Kumam, P., Abubakar, A.B. and Abubakar, J.,A
derivative-free projection method for nonlinear equations with
non-Lipschitz operator: application to LASSO problem, Math.
Methods Appl. Sci. 46 (2023), no. 8, 9006–9027; MR4589854.

Findings

Introduces a derivative-free iterative method for solving
convex-constrained nonlinear equations using a projection strategy.

Avoids the need for gradient evaluations while still generating a
search direction that satisfies the sufficient descent property.

Global convergence is established under mild assumptions; notably,
Lipschitz continuity is not required – only pseudomonotonicity.

The method is applied to the LASSO problem in image recovery,
demonstrating its practical utility.

Numerical experiments illustrate competitive performance and
favorable comparisons with related algorithms.

Poom Kumam, PhD (KMUTT, Thailand) Optimization for Image restoration April 3, 2025 29 / 35

https://doi.org/10.1002/mma.9033


Derivative-free Dai-Yuan Projection Algorithm

Let u0 ∈ Rn, and parameters ζ ∈ (0,1), Tol ∈ (0,1), b ∈ (0,1),
r ∈ (0,1), ρ ∈ (0,2).
Compute the search direction using

pk = −B
(
uk
)
+

∥∥B(uk)
∥∥2

max
{

pT
k−1 yk−1, t

∥∥pk−1
∥∥∥∥B(uk)

∥∥} pk−1, k ≥ 1,

where p0 = −B
(
u0
)
, t > 0, yk−1 = B(uk) − B(uk−1).

Choose tk = br i, where i is the least nonnegative integer satisfying

−B
(
uk +br i pk

)T pk ≥ ζ br i ∥pk∥2.

If vk := uk + tk pk ∈ C and ∥B(vk)∥ ≤ Tol, stop. Otherwise, compute
the next iterate by

uk+1 = PC

(
uk−ρ

(
−B(vk)

T
(
tk pk

)
∥B(vk)∥2

)
B(uk + tk pk)

)
.

Set k← k+1 and reiterate.
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Relaxed Forward-backward Proximal for Variational

Kratuloek, K., Kumam, P., Sriwongsa, S. and Abubarkar, J., A
relaxed splitting method for solving variational inclusion and fixed
point problems, Comput. Appl. Math. 43 (2024), no. 1, Paper
No. 70, 18 pp.; MR4698053

Findings

Proposed a relaxed forward-backward proximal method VIP.

Inertial steps and averaging techniques are incorporated, resulting in
lighter assumptions and fast convergence behavior.

The step-size is obtained through self-adaptive approaches, thereby
reducing computational cost.

Strong convergence is established provided the underlying variational
operator is pseudomonotone.

Efficient performance in image recovery and superior performance
compared with two existing algorithms.
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Hybrid BFGS-CG for Monotone Equations

Abubakar, A.B., Kumam, P., Mohammad, H., Ibrahim, A.H.,
Seangwattana, T. and Hassan, B.A., A hybrid BFGS-like method
for monotone operator equations with applications, J. Comput.
Appl. Math. 446 (2024), Paper No. 115857, 23 pp.; MR4718321

Findings

Proposed a hybrid three-term CG projection method for constrained
monotone operator equations.

The search direction approximates that of a memoryless BFGS
method, ensuring sufficient descent and boundedness.

Conjugacy conditions are satisfied without requiring a line search.

Global convergence is established under mild assumptions.

Numerical experiments show superior performance compared to
existing methods, with applications to image recovery.
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The search direction approximates that of a memoryless BFGS
method, ensuring sufficient descent and boundedness.

Conjugacy conditions are satisfied without requiring a line search.

Global convergence is established under mild assumptions.

Numerical experiments show superior performance compared to
existing methods, with applications to image recovery.
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Edge-Preserving Variational Denoising Model

Denoising Problem

Minimize the functional:

min
u={uij}

U (u) = min
u

 ∑
(i,j)∈Ω

φ0(uij−ξij)+
1
2 ∑
(i,j)∈Ω

∑
(k,l)∈N(i,j)

φα(uij−ukl)


Note that the functional is differentiable and convex

Terminologies

φ0(v) =
√

v2 +a, φα(v) =
√

v2 +α

ξ = {ξij}: Observed noisy image over domain Ω

N(i,j): Neighborhood of pixel (i, j)

a,α: Constants controlling the degree of smoothness and edge
preservation.
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Efficient Spectral RMIL Conjugate Gradient

Salihu, N., Kumam, P., Awwal, A.M., Sulaiman, I.M. and
Seangwattana, T., The global convergence of spectral RMIL
conjugate gradient method for unconstrained optimization with
applications to robotic model and image recovery. Plos one 18
(2023), p.e0281250.

Findings

Proposed an efficient spectral RMIL conjugate gradient method for
unconstrained optimization.

Proved that the search direction is always descent, regardless of the
line search employed.

Established convergence under the Lipschitz continuity condition.

Evaluated performance empirically using several large-scale
benchmark problems.

Applicable to image restoration.

Substantially outperforms previous RMIL variants based on empirical
results.
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Newton-like Conjugate Gradient for Optimization

Salihu, N., Kumam, P., Sulaiman, I.M., Arzuka, I. and Kumam,
W., An efficient Newton-like conjugate gradient method with
restart strategy and its application, Math. Comput. Simulation
226 (2024), 354–372; MR4775204

Findings

Proposed an efficient Newton-like conjugate gradient method
incorporating a spectral parameter and Powell’s restart strategy.

Established the sufficient descent property of the search direction.

Relaxed the double-truncated conditions required in previous
literature.

Compared with at least five existing algorithms, showing superior
performance on standard optimization problems.

Proven applicability to image reconstruction models.
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