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Abstract. We give a full characterization of the range of the operator which associates, to any

initial condition, the viscosity solution at time T of a Hamilton-Jacobi equation with convex

Hamiltonian. Our main motivation is to be able to treat the case of convex Hamiltonians with
no further regularity assumptions. We give special attention to the case H(p) = |p|, for which

we provide a rather geometrical description of the range of the viscosity operator by means of

an interior ball condition on the sublevel sets. From our characterization of the reachable set,
we are able to deduce further results concerning, for instance, sharp regularity estimates for the

reachable functions, as well as structural properties of the reachable set. The results are finally

adapted to the case of scalar conservation laws in dimension one.

1. Introduction

We consider first-order Hamilton-Jacobi equations of the form

(1)

{
∂tu+H(∇xu) = 0 in (0, T )× RN ,
u(0, x) = u0(x) in RN ,

where N ≥ 1, u0 ∈ Lip(RN ), and the Hamiltonian H : RN −→ R is a given convex function, with
no further regularity assumptions. It is well-known that the initial-value problem (1) is well-posed
in the sense of viscosity solutions [7, 17]. For any given positive time T > 0, the main goal of this
work is to give a full characterization of the range of the operator

(2)
S+
T : Lip(RN ) −→ Lip(RN )

u0 7−→ u(T, ·),

which associates, to any initial condition, the viscosity solution at time T of the equation (1).
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In what follows, the range of the operator S+
T will be referred to as the reachable set, and will be

denoted by

(3) RT := {uT ∈ Lip(RN ) : ∃u0 ∈ Lip(RN ) such that S+
T u0 = uT } ⊂ Lip(RN ).

The problem of characterizing RT can be seen as a controllability problem in which the dynamics
are governed by the PDE in (1), and the control is the corresponding initial condition. The charac-
terization of the reachable set for evolutionary equations such as (1) is important when addressing
the inverse problem of reconstructing the initial condition from an observation of the solution at
some positive time T > 0. This inverse problem is well-known to be highly ill-posed due to the
lack of regularity of the solutions, which gives raise to the loss of backward uniqueness [6, 11, 16]
(multiple initial conditions result in the same solution after some time). Moreover, in real-life appli-
cations, the measurements of the solution are usually noisy, and it is often the case that no initial
condition is compatible with the given observation. Hence, when addressing this inverse-design
problem, the first step is to construct a reachable function which is as close as possible to the given
noisy observation. This problem can be formulated as a minimum squares problem problem of the
form

minimize
ϕT∈RT

‖ϕT (·)− uT (·)‖2L2 ,

and is studied in [12] for convex smooth Hamiltonians. Having a good characterization of RT is
obviously of great interest in order to determine whether existence and uniqueness of minimizers
may hold or not, as well as to design optimization algorithms to find a good approximation of the
minimizer ϕ∗T ∈ RT .

When H is smooth and uniformly convex, i.e.

(4) H ∈ C2(RN ) and D2H(p) ≥ c IN for some c > 0,

the reachable set RT is well-studied, and its characterization can be addressed by utilizing semi-
concavity1 estimates. More precisely, it is well-known that a necessary condition for uT ∈ RT is
given by the following inequality2 (see [11, 18])

(5) D2uT ≤
(D2H(∇uT ))−1

T
in RN ,

which is understood in the sense of viscosity solutions. Moreover, for the one-dimensional case in
space, and for quadratic Hamiltonians in any space dimension, it is proven in [11, Theorem 2.2] that
the semiconcavity inequality (5) is actually optimal, in the sense that (5) is equivalent to uT ∈ RT .

In this work, we aim to give similar results for the case when H : RN −→ R does not fulfill
the hypotheses (4), and is merely assumed to be a convex function. In this general context, where
the Hamiltonian is neither smooth nor strictly convex, the viscosity solutions cannot be ensured
to be semiconcave, and the (one-sided) regularizing effect of the equation (1) can no longer be
expressed by means of differential inequalities such as (5). Nonetheless, we are still able to give a
full characterization of the reachable set RT by introducing a global condition, which is based on a
family of test functions constructed by means of the Legendre-Fenchel transform of the Hamiltonian.
As we will see in Theorem 2, for the level set equation (H(p) = |p|), this reachability condition

1We recall that a function f : RN → R is said to be semiconcave if there exists a constant c ∈ R such that the
function x 7→ f(x)− c|x|2 is concave.

2Here, D2 stands for the Hessian matrix operator, and the inequality is understood in the usual partial order of
symmetric matrices, i.e. A ≤ B if and only if B −A is semidefinite positive.
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can still be interpreted as a one-sided regularity condition, or semiconcavity condition, not for the
solution itself, but for its level sets (see Remark 2).

1.1. Characterization of the reachable set. Let us state our first result, which gives a full
characterization of the reachable set for the equation (1) when the Hamiltonian is merely assumed
to be a convex function. This characterization identifies the functions uT inRT with those functions
such that, for any x ∈ RN , there exists a function of the form

z 7−→ T H∗
(
z − x
T

)
+ c,

touching uT from above at x, where H∗ is the Legendre-Fenchel transform of the H. Let us recall
that the Legendre-Fenchel transform of H is the function H∗ : RN −→ (−∞,+∞] defined by

(6) H∗(q) = sup
p∈RN

{p · q −H(p)} , ∀q ∈ RN .

Note that the function H∗ is convex and lower semicontiuous since it is the supremum of convex
continuous functions. Note also that H∗(q) may take infinite values whenever H is not superlinear.
Indeed, this is the case for H(p) = |p|, whose Legendre-Fenchel transform satisfies H∗(q) = +∞ for
any |q| > 1.

Theorem 1. Let H : RN → R be a convex function, uT ∈ Lip(RN ) and T > 0. Set the family of
functions

FT (uT ) :=

{
ϕ : z 7→ T H∗

(
z − x0
T

)
+ c : x0 ∈ RN , c ∈ R s.t. ϕ(z) ≥ uT (z) ∀z ∈ RN

}
,

where H∗ is the Legendre-Fenchel transform of H as defined in (6).

Then uT ∈ RT if and only if for all x ∈ RN , there exists ϕ ∈ FT (uT ) such that ϕ(x) = uT (x).

This characterization is somehow reminiscent of the definition of viscosity subsolution, and can
actually be seen as a weaker notion of semiconcavity. Interesting cases are the power-like Hamilto-
nians of the form

(7) H(p) =
|p|α

α
, ∀p ∈ RN , for some α ∈ [1,∞).

Note that, except for the quadratic case, α = 2, Hamiltonians of the form (7) do not fulfil the
hypotheses (4). If we consider α > 1, then Theorem 1 implies that for any T > 0, uT ∈ RT if and
only if, for any x ∈ RN , there exists a function of the form

z 7−→ T
α− 1

α

∣∣∣∣z − xT
∣∣∣∣ α
α−1

+ c

touching uT from above at x. From this observation, one can deduce the following regularity
estimate for the functions in RT . The proof of this corollary is given in subsection 2.4.

Corollary 1. Let H be of the form (7) for α > 1 and T > 0. Then, for any uT ∈ RT , the
superdifferential of uT (x) is nonempty for all x ∈ RN , i.e. for all x ∈ RN we have that

D+uT (x) := {q ∈ RN : ∃ϕ ∈ C1(RN ) uT − ϕ ≤ 0, uT (x)− ϕ(x) = 0 ∇ϕ(x) = q} 6= ∅.
Moreover, the following inequalities hold true:



4 CARLOS ESTEVE-YAGÜE AND ENRIQUE ZUAZUA

(i) If 1 < α < 2, then the superdifferential

D2uT (x) ≤ Lip(uT )2−α

(α− 1)T
IN ∀x ∈ RN ,

where Lip(uT ) stands for the Lipschitz constant of uT .
(ii) If α > 2, then

D2uT (x) ≤ 1

(α− 1)Tδα−2x

IN ∀x ∈ RN s.t. δx := inf
q∈D+uT (x)

|q| > 0.

Remark 1. (i) From the statement (i) in the previous Corollary, we deduce that for α ∈ (1, 2)
a necessary condition for uT ∈ RT is that uT has to be semiconcave with a constant
depending on T and the Lipschitz constant of uT .

(ii) From the statement (ii) we can only deduce a weaker semiconcavity estimate for the regime
α > 2. More precisely, a semiconcavity estimate only holds at points x which are not critical
points of uT .

(iii) In addition, we observe that if x is a local maximum of uT , then it holds that D2uT (x) ≤ 0.
Hence, for the case α > 2, we can slightly improve the result by saying that if uT ∈ RT ,
then uT is semiconcave at all points x ∈ RN except for the critical points which are not
local maxima (i.e. local minima and saddle points).

Let us now look at the limit case α = 1, i.e. when H is given by

(8) H(p) = |p|, ∀p ∈ RN ,
where | · | denotes the euclidean norm in RN . Note that, in this case, H is neither differentiable nor
strictly convex, and this brings us to a quite different situation as compared to the regular strictly
convex case α > 1. The equation (1) with H given by (8) is also known as the level-set equation
[20, 21] and is often used to describe the propagation of fronts, evolving in time, as the level sets
of the viscosity solution to (1).

In our following result, we will see that, when H is given by (8), the reachable target RT can be
characterized by means of the following interior ball condition on the sublevel sets of uT .

Definition 1. Let Ω ⊂ RN be a closed set. We say that Ω satisfies the interior ball condition with
radius r > 0 if for all x ∈ Ω, there exists y ∈ Ω such that

B(y, r) ⊂ Ω and x ∈ B(y, r).

We can now state the following theorem.

Theorem 2. Let uT ∈ Lip(RN ), H(p) = |p| and T > 0. Then uT ∈ RT if and only if for all
α ∈ R, the α-sublevel set defined as

Ωα(uT ) := {x ∈ RN ; uT (x) ≤ α}
satisfies the interior ball condition of Definition 1 with radius r = T .

Remark 2. (i) Recall that the convexity (resp. concavity) of a set can be characterized by
the non-negativity (resp. non-positivity) of the curvature of its boundary. Taking this into
account, we see that the interior ball condition of Theorem 2 implies that the curvature of
the boundary of any sub-level set of uT is bounded from above. Hence, the characterization
of the reachable set RT given in Theorem 2 can be seen as a semiconcavity condition on
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Figure 1. The sub-level sets of a func-
tion uT ∈ Lip(R2) satisfying the interior
ball condition from Theorem 2. The re-
gion of greatest curvature on the bound-
ary of the sublevel set 0 is zoomed down
in the box at the right.

the sublevel sets of uT . In this case, the regularizing effect of the Hamilton-Jacobi equation
is not observed on the solution, but rather on its sub-level sets.

(ii) We point out that the condition of Theorem 2 is indeed a one-sided regularity estimate for
the boundary of the sub-level sets. As a matter of fact, the boundary needs not be smooth
in general, and might contain corners, which, in view of the interior ball condition, will
always be pointing towards the interior of the sub-level set. See Figure 1 for an illustration.

In the one-dimensional case in space, it is sufficient to check the interior ball condition on the
local minima of uT , and then, the above result can be formulated simply as follows:

Corollary 2. Consider the one-dimensional case N = 1, and let uT ∈ Lip(R), H(p) = |p| and
T > 0. Then, uT ∈ RT if and only if for any local minimum x ∈ R of uT , there exists x0 ∈ R such
that x ∈ [x0 − T, x0 + T ] and uT (y) ≤ uT (x) for all y ∈ [x0 − T, x0 + T ].

See Figure 2 for an illustration of this characterization.

Remark 3. In section 2, we shall prove in Corollary 3 that, as a consequence of Theorem 1, the
concave functions satisfy the property of being reachable for all positive times T > 0. However, from
Corollary 2, we can deduce that for the Hamiltonian H(p) = |p|, the concave functions are not the
only ones satisfying this property. Indeed, if uT : R→ R is monotonically increasing or decreasing,
the reachability condition from Corollary 2 is trivially satisfied, and then uT ∈ RT for all T > 0.
Hence, monotone functions are in RT for all T no matter they are concave or not. We recall that
in the smooth strictly convex case, it follows from the necessary condition (5), that uT ∈ RT for all
T > 0 if and only if uT is concave.

1.2. Structural properties of the reachable set. As a by-product of the characterization of
RT given in Theorem 1, we can also prove some results concerning the structural properties of the
set of reachable functions RT for the Hamilton-Jacobi equation (1). The precise statements of these
results are given in subsection 2.1, and their proofs in subsection (2.4).

(i) The reachable set is decreasing in time, i.e. RT ⊂ RT ′ for all 0 < T ′ < T , and concave
functions are reachable for all T > 0. See Corollary 3.

(ii) The minimum of two reachable functions is reachable. See Corollary 4.
(iii) If H(p) = |p|α, with α ≥ 1, then the reachable set RT is star-shaped with center at the

origin. See Corollary 5.
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Figure 2. An example of function satisfying uT ∈ RT for the Hamiltonian H(p) =
|p| and T = 1. In view of Corollary 2, we only need to check the interior ball
condition at the local minima of uT . For each local minimum x of uT in this plot,
we have coloured in red a ball of radius 1 around x, in which uT is smaller or equal
than uT (x).

(iv) If H(p) = |p|2, then RT is convex, and if H(p) = |p|, then RT is a non-convex cone with
vertex at the origin. See Corollary 5.

1.3. Reachable set for scalar conservation laws. In the one-dimensional case in space, it is
well-known that Hamilton-Jacobi equations and scalar conservation laws of the form

(9) ∂tv + ∂x[H(v)] = 0 in (0, T )× R
are intimately related. Indeed, if u ∈ Lip([0, T ] × R) is a viscosity solution to (1) with initial
condition u0 ∈ Lip(R), then the function v ∈ L∞((0, T )× R) given by

v(t, x) = ∂xu(t, x) for a.e. (t, x) ∈ [0, T ]× R
is the unique entropy solution to (9) with initial condition v0 = ∂xu0 (see for instance [14, Theorem
1.1] and also [5, 6]).

In this section, we adapt the previous results to give a full characterization of the range of the
operator

(10)
SSCLT : L∞(R) −→ L∞(R)

v0 7−→ v(T, ·),
which associates, to any initial condition v0, the unique entropy solution [9, 15, 22] to the equation
(9) at time T . We also define, for any T > 0, the reachable set for (9) as

(11) RSCLT := {vT ∈ L∞(R) : ∃v0 ∈ L∞(RN ) such that SSCLT v0 = vT } ⊂ L∞(R),

For the scalar conservation law (9) with a flux H satisfying (4), it is well-known [6, 8, 10, 13] that
for any T > 0 and vT ∈ L∞(R), the property vT ∈ RSCLT is equivalent to the one-sided-Lipschitz
condition

(12) ∂pH(v(t, y))− ∂pH(v(t, x)) ≤ y − x
t

for a.e. x ≤ y.
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In the general convex case, in which H is not necessarily differentiable nor strictly convex, the
one-sided-Lipschitz inequality (12) does not hold in general. Nonetheless, we can adapt Theorem 1
in the following way to give a full characterization of the functions in RSCLT .

Theorem 3. Let H : R → R be a convex function, vT ∈ L∞(R) and T > 0. Then vT ∈ RSCLT if
and only if

(13)
for all x ∈ R, there exists x0 ∈ R such that the function

z 7−→
∫ z

0

vT (y)dy − T H∗
(
z − x0
T

)
has a global maximum at x.

Sharp one-sided regularity estimates are for power-like fluxes of the form |p|α with α > 1 are
given in [10]. The limit case α = 1 is again different since H is no longer differentiable. The
following theorem provides a full characterization of the functions in RSCLT , when the flux is the
absolute value.

Theorem 4. Let vT ∈ L∞(R), H(p) = |p| and T > 0. Then, vT ∈ RSCLT if and only if

(14) sgn(vT (y))− sgn(vT (x)) ≤ y − x
T

for a.e. x, y ∈ supp(vT ) satisfying x ≤ y.

Here, the sign function sgn : R \ {0} → {−1, 1} is defined as

sgn(z) :=

{
−1 if z < 0
1 if z > 0.

The above result must be interpreted as follows: in order for vT to be reachable, any sign change,
from negative to positive, must be separated by an interval of length 2T where vT vanishes. More
precisely, if we define the supports of the positive and negative parts of vT

A+ = {x ∈ R ; vT (x) > 0} and A− = {x ∈ R ; vT (x) < 0}.

then it must hold that

y − x ≥ 2T, for a.e. x ∈ A− and for a.e. y ∈ A+ with x ≤ y.

See Figure 3 for an illustration of a function vT satisfying this property.

The rest of the paper is structured as follows. Section 2 is devoted to Hamilton-Jacobi equations.
In subsection 2.1, we present some corollaries concerning the structural properties of RT , that can
be deduced from Theorem 1. Then, in subsection 2.2 we give some prelimiaries about Hamilton-
Jacobi equations and the Hopf-Lax formula which are then used in subsections 2.3 and 2.4 to prove
our results. In section 3, we prove the characterization of the reachable set given in Theorem 3 for
scalar conservation laws (9) with general convex flux, and we also prove Theorem 4 for the case
when the flux is the absolute value. Finally, we conclude the paper with a section describing our
conclusions and presenting a couple of open questions.
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Figure 3. An example of a function vT ∈ RSCLT for the flux H(p) = |p| and T = 1.

2. Hamilton-Jacobi equations

In this section, we deal with Hamilton-Jacobi equations of the form (1) with a convex Hamiltonian
H : RN → R, and without making any further regularity assumptions. As announced in the
introduction, for a given T > 0, our main goal is to prove the full characterization (necessary and
sufficient condition) given in Theorem 1 for the reachable setRT , defined as in (3), and also prove its
main properties. Before addressing the proofs of our results, let us state in the following subsection
the results concerning the structural properties of RT , that can be deduced from Theorem 1.

2.1. Reachable set: main properties. Theorem 1 has some interesting consequences, revealing
information about the structure of the reachable set RT , and the way it evolves as we increase the
time horizon T . The following result ensures that the reachable set decreases as T increases, and
that concave functions have the property of being reachable for all T > 0. The corollary is proved
in subsection 2.4.

Corollary 3. Let H : RN → R be a convex function. Then,

for any 0 < T ′ < T, we have RT ⊂ RT ′ .

Moreover, if uT ∈ Lip(RN ) is a concave function, then, uT ∈ RT for all T > 0.

Remark 4. Corollary 3 states that concavity is a sufficient condition for a function to be reachable
for all T > 0. However, it is not necessary in general. Indeed, it can be proved (see Remark 3) that,
if one considers the one-dimensional case with the Hamiltonian given by H(p) = |p|, any globally
Lipschitz monotone (increasing or decreasing) function uT : R → R is reachable for all T > 0,
even if it is not concave. It differs from the smooth uniformly convex case (4), where, due to the
necessary condition (5), a function is reachable for all T > 0 if and only if it is a concave function.

Another interesting consequence of Theorem 1 is the following corollary, which roughly says that
the minimum of two reachable targets is reachable. The proof of this corollary is omitted as it is a
straightforward consequence of Theorem 1.
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Figure 4. Three examples of reachable targets in time T = 1, with compact sup-
port, for the Hamiltonian H(p) = |p|2/2. The first two examples were constructed
using the statement (ii) in Corollary 4, whereas the third one was constructed using
the statement (i) as the minimum of the two first examples.

Corollary 4. Let T > 0, let H : RN → R be a convex function, and let H∗ be its Legendre-Fenchel
transform as defined in (6). Then, the following statements hold true.

(i) For any uT , vT ∈ RT , the function wT (x) := min{uT (x), vT (x)} satisfies wT ∈ RT .
(ii) If in addition H∗ is locally Lipschitz, then for any uT ∈ RT , x0 ∈ RN and c ∈ R, the

function

wT (x) := min

{
uT (x), T H∗

(
x− x0
T

)
+ c

}
satisfies wT ∈ RT .

Note that in (ii), the assumption of H∗ being a locally Lipschitz continuous function is needed
to guarantee that wT ∈ Lip(RN ). Corollary 4 provides, in particular, a simple method to construct
reachable functions with compact support when H∗ is locally Lipschitz. Note that the zero function
is reachable for any T > 0. Then, for any given finite set {(xi, ci)}ki=1 ⊂ RN ×R, we can define the
function

uT (x) := min

{
0, T H∗

(
x− x1
T

)
+ c1, . . . , T H

∗
(
x− xk
T

)
+ ck

}
which, in view of Corollary 4, satisfies uT ∈ RT . Of course, the method can readily be applied
to larger collections of points {(xi, ci)}I ⊂ RN × R, under the assumption of ci being uniformly
bounded from below. See Figure 4 for an illustration of this result.

The last property about the reachable set RT that we are going to present as a consequence of
Theorem 1 applies to power-like Hamiltonians of the form (7). The following corollary ensures that
the reachable set RT is star-shaped with center the origin, i.e.

(15) ∀uT ∈ RT and ∀λ ∈ [0, 1], we have λuT ∈ RT .
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For the particular case α = 2, the set RT is additionally convex, and if α = 1, then RT is actually
a non-convex cone with vertex at the origin, i.e.

(16) ∀uT ∈ RT and ∀λ ∈ [0,∞), we have λuT ∈ RT .

Corollary 5. Let T > 0 and let H : RN → R be given by (7) for some α ∈ [1,∞). Then the
reachable set RT is star-shaped with center the origin, i.e. (15) holds. Moreover, if α = 2, then RT
is convex, and if α = 1, then RT is a cone with vertex at the origin.

The proof of the corollary is given in subsection 2.4.

2.2. Preliminaries. Let us recall some elementary facts about viscosity solutions to Hamilton-
Jacobi equations of the form (1) that are well-known in the literature and will be used throughout
our proofs. Let us recall from (2) in the introduction that, for any T > 0, the (forward) viscosity
operator S+

T associates, to any initial condition u0, the viscosity solution to (1) at time t = T . It is
well-known that the viscosity solution to (1) can be given by the so-called Hopf-Lax formula (see
for instance [1, 2, 3]). Then, for any T > 0, the operator S+

T can be explicitly defined as

(17) S+
T u0(x) = min

y∈RN

{
u0(y) + T H∗

(
x− y
T

)}
,

where H∗ is defined as in (6).

The simplest way to characterize the reachable set RT , which actually applies to more general
Hamiltonians of the form H(x, p), is to perform a backward-forward resolution of (1), by means of
the so-called backward viscosity operator (see [4])

S−T : Lip(RN ) −→ Lip(RN )
uT 7−→ S−T uT = w(0, ·),

where w ∈ Lip([0, T ]×RN ) is the unique backward viscosity solution to (1) with terminal condition
uT . We recall that w ∈ Lip([0, T ] × RN ) is a backward viscosity solution to (1) if and only if the
function v(t, c) := w(T − t, x) is a forward viscosity solution to

∂tv −H(Dxv) = 0 in [0, T ]× RN .

As well as for the forward viscosity solutions, existence, uniqueness and stability of backward
viscosity solutions for the terminal value problem associated to the Hamilton-Jacobi equation (1)
can be proved by means of the vanishing viscosity method, i.e. the backward viscosity solution can
be obtained as the limit when ε→ 0+ of the solution uε to the terminal value problem{

∂tuε + ε∆uε +H(Dxuε) = 0 in (0, T )× RN
uε(T, ·) = uT in RN .

Let us now recall the reachability condition for the initial-value problem (1) which, for any T > 0,
identifies the reachable targets in time T with the fixed points of the composition operator S+

T ◦S
−
T .

Under the assumption of H : RN → R being a convex function and uT ∈ Lip(RN ), we have that

(18) uT ∈ RT if and only if S+
T ◦ S

−
T uT = uT

The proof of (18) is exactly the same as the one of [11, Theorem 2.1], which is a direct consequence
of [11, Proposition 4.7] (see also [4, 19]), and we omit the proof here.
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As well as for the forward viscosity solutions, there is a Hopf-Lax formula for the backward
viscosity solutions to (1) with terminal condition uT ∈ Lip(RN ), which reads as

(19) S−T uT (x) = max
y∈RN

{
uT (y)− T H∗

(
y − x
T

)}
.

Let us finish the subsection with the proof of the following elementary property of H∗, which
will be used in the sequel.

Lemma 1. Let H : RN → R be a convex function and let H∗ be its Legendre-Fenchel transform.
Then, for any constant C > 0, we have

H∗(q) ≥ C |q| − max
p∈B(0,C)

H(p) ∀q ∈ RN ,

where B(0, C) is the closure of the ball of radius C centered at the origin.

Proof. Let C > 0 be any positive constant. Since H is convex and takes values in R, we deduce
that H is continuous, and then we have

max
p∈B(0,C)

H(p) <∞.

Now, using the definition of H∗ in (6), for any q ∈ RN \ {0}, we can take p = C q
|q| ∈ B(0, C) and

then deduce that

H∗(q) ≥ C|q| −H
(
C
q

|q|

)
≥ C|q| − max

p∈B(0,C)
H(p).

Similarly, for q = 0, by taking p = 0 we obtain

H∗(q) ≥ −H (0) ≥ C|q| − max
p∈B(0,C)

H(p).

�

2.3. Proof of Theorems 1 and 2. We start with the proof of Theorem 1.

Proof of Theorem 1. Let uT ∈ RT be a reachable target. By (18), we have that, for all x ∈ RN ,
there exists x0 ∈ RN such that

uT (x) = S−T uT (x0) + T H∗
(
x− x0
T

)
.

Using the definition of S−T in (19), we deduce that

S−T uT (x0) ≥ uT (z)− T H∗
(
z − x0
T

)
∀z ∈ RN .

Hence, by setting c = S−T uT (x0), we obtain that the function

ϕ(z) = c+ T H∗
(
z − x0
T

)
satisfies ϕ ∈ FT (uT ) and ϕ(x) = uT (x).
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For the reverse implication, let us first prove that, for any uT ∈ Lip(RN ), it holds that

(20) uT (x) ≤ S+
T ◦ S

−
T uT (x) ∀x ∈ RN .

In view of (19), we have

S−T uT (y) ≥ uT (x)− T H∗
(
x− y
T

)
∀x, y ∈ RN ,

which implies that

uT (x) ≤ min
y∈RN

{
S−T uT (y) + T H∗

(
x− y
T

)}
= S+

T ◦ S
−
T uT (x) ∀x ∈ RN .

Now, let uT ∈ Lip(RN ) be such that, for all x ∈ RN , there exists ϕ ∈ FT (uT ) satisfying
ϕ(x) = uT (x). This means that there exist x0 ∈ RN and c ∈ R such that

uT (x) = c+ T H∗
(
x− x0
T

)
and

uT (z) ≤ c+ T H∗
(
z − x0
T

)
∀z ∈ RN .

This in particular implies, as a consequence of (19), that c = S−T uT (x0). Hence, using (17) we
deduce that

S+
T ◦ S

−
T uT (x) = min

y∈RN

{
S−T uT (y) + T H∗

(
y − x
T

)}
≤ S−T uT (x0) + T H∗

(
x0 − x
T

)
= uT (x).

Combining this inequality with (20) we deduce that S+
T ◦ S

−
T uT (x) = uT (x) for all x ∈ RN , and

then we can use the general reachability criterion (18) to deduce that uT ∈ RT . �

Let us now prove Theorem 2 using the conclusion of Theorem 1.

Proof of Theorem 2. Note first of all that the Legendre-Fenchel transform of H(p) = |p| is given by

(21) H∗(q) =

{
0 if |q| ≤ 1

+∞ if |q| > 1.

In view of the form of H∗, the functions in FT defined in the statement of Theorem 1 are simply
functions which are constant in a ball of radius T and infinity elsewhere. Therefore, the reachability
condition from Theorem 1, in this case, reads as follows:

(22) ∀x ∈ RN , ∃x0 ∈ RN such that x ∈ B(x0, T ) and uT (y) ≤ uT (x) ∀y ∈ B(x0, T ).

It is easy to prove that this property is equivalent to the interior ball condition from Definition
1 with r = T . Let us first assume that (22) holds. Then, for any α ∈ R and x ∈ Ωα(uT ), we have

that there exists a ball B(x0, T ) containing x such that

uT (y) ≤ uT (x) ≤ α, ∀y ∈ B(x0, T ),
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which implies that B(x0, T ) ⊂ Ωα(uT ).

On the other hand, if the interior ball condition holds with r = T , then for any x ∈ RN we have
that x ∈ Ωα(uT ) with α = uT (x). Hence, by the interior ball condition, there exists x0 ∈ Ωα(uT )

such that x ∈ B(x0, T ) ⊂ Ωα(uT ), which then implies that

uT (y) ≤ α = uT (x) ∀y ∈ B(x0, T ).

�

2.4. Proof of Corollaries 1, 3 and 5. We start by proving the regularity result given in Corollary
1 for power-like Hamiltonians.

Proof of Corollary 1. We start by noticing that, since H(p) = |p|α for some α > 1, the its Legendre–
Fenchel transform is given by

H∗(q) =
α− 1

α
|q|

α
α−1 .

Then, a straightforward computation gives the following:

(23) ∇H∗(q) = |q|
2−α
α−1 q ∀q ∈ RN ,

and

(24) D2H∗(q) ≤ 1

α− 1
|q|

2−α
α−1 IN , ∀q ∈ RN .

Now, from Theorem 1, we have that if uT ∈ RT , then for any x ∈ RN there exists a function
ϕ : RN → R of the form

ϕ(z) := uT (z)− T H∗
(
z − x0
T

)
− c

for some x0 ∈ RN and c ∈ R such that ϕ(·) attains its maximum at x.

This implies that 0 ∈ D+ϕ(x), which then implies, using (23), that

(25) ∇H∗
(
x− x0
T

)
=

∣∣∣∣x− x0T

∣∣∣∣ 2−αα−1 x− x0
T

∈ D+uT (x).

It then follows that D+uT (x) 6= ∅ for all x ∈ RN .

Let us now prove the semiconcavity inequalities. Since ϕ(·) attains its maximum at x, we have
that its Hessian matrix at x is semidefinite negative, i.e. D2ϕ(x). Then, using (24) we obtain that

(26)

D2uT (x) ≤ 1

T
D2H∗

(
x− x0
T

)
≤ 1

α− 1

|x− x0|
2−α
α−1

T
1

α−1

IN .

We now need to use an estimate for the quantity |x−x0|, taking into account that the exponent
2−α
α−1 has different sign depending whether α ∈ (1, 2) or α > 2.
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If α ∈ (1, 2), we can use (25), and the Lipschitz constant of uT , that we denote by Lip(uT ), to
deduce that

|x− x0| ≤ T Lip(uT )α−1.

Note that uT ∈ Lip(RN ) implies that |q| ≤ Lip(uT ) for all q ∈ D+uT (x), and for all x ∈ RN .

Hence, combining the above inequality with (26), along with the fact that the exponent 2−α
α−1 is

positive, we deduce that

D2uT (x) ≤ Lip(uT )2−α

(α− 1)T
IN .

Let us now assume that α > 2. If we have

δx := inf
q∈D+uT (x)

|q| > 0,

we can deduce from (25) that

|x− x0| ≥ T δα−1x .

Hence, combining this with (26), and the fact that the exponent 2−α
α−1 is negative, we deduce that

D2uT (x) ≤ 1

(α− 1)δα−2x T
IN .

�

Let us now prove Corollary 3.

Proof of Corollary 3. The fact that the reachable set RT decreases in time is a direct consequence
of the semigroup property of S+

T . Indeed, if uT ∈ RT , then there exists u0 ∈ Lip(RN ) such that

S+
T u0 = uT . Then, for any T ′ ∈ (0, T ), consider the initial condition

ũ0(x) = SHJT−T ′u0(x).

By the semigroup property we have that

SHJT ′ ũ0(x) = SHJT ′ (SHJT−T ′u0(x)) = S+
T u0(x) = uT (x),

implying that uT ∈ RT ′ . This proves that RT ⊂ RT ′ .

Let us now prove the second part of the Corollary. Let uT ∈ Lip(RN ) be concave and fix any
T > 0. In view of Theorem 1, it suffices to prove that, for all x ∈ RN , there exists x0 ∈ RN and
c ∈ R such that

(27) uT (x) = T H∗
(
x− x0
T

)
+ c and uT (z) ≤ T H∗

(
z − x0
T

)
+ c ∀z ∈ RN .

Since uT is concave, for any x ∈ RN , there exists p0 ∈ RN such that

(28) uT (z) ≤ p0 · (z − x) + uT (x) ∀z ∈ RN .
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On the other hand, it is well-known that the convex conjugate of a convex function is convex and
lower semi-continuous. This, combined with the superlinearity of H∗ proved in Lemma 1, implies
the existence of q0 ∈ RN satisfying

H∗(q0)− p0 · q0 = min
q∈RN

{H∗(q)− p0 · q} > −∞,

and then we have

(29) H∗(q) ≥ p0 · (q − q0) +H∗(q0) ∀q ∈ RN .

Set x0 := x−Tq0. For any z ∈ RN , we can plug q = z−x0

T into (29) and multiply by T to obtain

T H∗
(
z − x0
T

)
≥ p0 · (z − x) + T H∗(q0).

Finally, combining this inequality with (28), we deduce that

uT (z) ≤ T H∗
(
z − x0
T

)
− T H∗(q0) + uT (x), ∀z ∈ RN .

By the choice of x0, we observe that the above inequality is actually an equality for z = x. Then
(27) follows with c = uT (x)− T H∗(q0), and the corollary is proved. �

We end the section with the proof of Corollary 5.

Proof of Corollary 5. We start with the cases α = 2 and α = 1. The case α = 2 follows directly
from the characterization of the RT given by the semiconcavity condition (5), which in this case
reads as

D2uT ≤
IN
T
, in the viscosity sense.

Note that if uT and vT both satisfy this inequality, then so does λuT + (1− λ)vT for all λ ∈ [0, 1].

The case α = 1 follows from Theorem 2. Indeed, for any uT ∈ RT and λ > 0 we have that, for
all γ ∈ R the sublevel set Ωγ(λuT ) is given by

Ωγ(λuT ) = {x ∈ RN ; λuT (x) ≤ γ} = Ωγ/λ(uT ),

which satisfies the interior ball condition with radius r = T since uT is reachable.

Let us now consider α ∈ (1,∞). For any uT ∈ RT and λ ∈ (0, 1), we shall check that λuT
satisfies the reachability condition from Theorem 1. First of all note that, since H is of the form
(7), its Legendre-Fenchel H∗ transform is given by

H∗(q) =
α− 1

α
|q|

α
α−1

Since uT ∈ RT , for any x ∈ RN , there exists x0 ∈ RN and c ∈ R such that the function

φ(z) =
α− 1

α
T−

1
α−1 |z − x0|

α
α−1 + c

satisfies

φ(x) = uT (x) and φ(z) ≥ uT (z) ∀ ∈ RN .
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Hence, the function ψ(z) = λφ(z) satisfies

ψ(x) = λuT (x) and ψ(z) ≥ λuT (z) ∀ ∈ RN .
Now, since ψ(z) can be written as

ψ(z) =
α− 1

α

(
T

λα−1

)− 1
α−1

|z − x0|
α
α−1 + λc,

we deduce, from Theorem 1, that λuT ∈ RT ′ with T ′ =
T

λα−1
. Note that α > 1 and λ ∈ (0, 1)

imply that T ′ > T . Finally, since the reachable set is decreasing in time (see Corollary 3), we
conclude that λuT ∈ RT . �

3. Scalar conservation laws

In this section we prove the results given in Theorem 3 and 4 concerning the characterization of
the reachable set RSCLT for the scalar conservation law

(30)

{
∂tv + ∂xH(v) = 0 in (0, T )× R
v(0, ·) = v0 in R.

Proof of Theorem 3. The proof consists in checking that condition (13) is equivalent to the condition
of Theorem 1 for the function

uT (x) :=

∫ x

0

vT (y)dy ∀x ∈ R.

Then, since ∂xuT (x) = vT (x) for a.e. x ∈ R, we have that vT is reachable for the equation (30) if
and only if uT is reachable for the equation (1). But, in view of Theorem 1, uT is reachable for (1)
if and only if, for all x ∈ R, there exists x0 such that the function

z 7−→
∫ z

0

vT (y)dy − T H∗
(
z − x0
T

)
has a global maximum at x, and the proof is concluded. �

We end the section with the proof of Theorem 4 stated in the introduction, which corresponds
to the application of Theorem 3 to the case H(p) = |p|.

Proof of Theorem 4. First of all, we recall that the Legendre-Fenchel transform of H(p) = |p| is
given by the function

(31) H∗(q) =

{
0 if |q| ≤ 1
+∞ else.

We first prove that (14) implies (13), and then we will prove the reversed implication. Let vT
satisfy (14). For any x ∈ R, define the points

x1 := sup{y ∈ (−∞, x] such that vT (z) ≥ 0 for a.e. z ∈ (y, x)}
and

x2 := inf{y ∈ [x,+∞) such that vT (z) ≤ 0 for a.e. z ∈ (x, y)}.
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By the choice of x1 and x2, we have that for any ε > 0, the sets

[x1 − ε, x1] ∩ {vT (y) < 0} and [x2, x2 + ε] ∩ {vT (y) > 0}
have both positive measure, whence, by the assumption (14), and letting ε→ 0+, we deduce that

(32) x2 − x1 ≥ 2T.

Moreover, by the choice of x1 and x2, we have vT (z) ≥ 0 for a.e. z ∈ (x1, x) and vT (z) ≤ 0 for a.e.
z ∈ (x, x2). This implies that the function g : [x1, x2]→ R, defined by

(33) g(z) =

∫ z

0

vT (y)dy, ∀z ∈ [x1, x2], has a global maximum at z = x.

Then, by (32), along with the fact that x ∈ (x1, x2), implies that there exists x0 ∈ (x1, x2) such
that

[x0 − T, x0 + T ] ⊂ (x1, x2) and x ∈ [x0 − T, x0 + T ]

Finally, for this choice of x0, and using (31), we obtain that∫ z

0

vT (y)dy − T H∗
(
z − x0
T

)
=

{
g(z) for z ∈ [x0 − T, x0 + T ]
−∞ else,

and we can deduce from (33) that the function

z 7−→
∫ z

0

vT (y)dy − T H∗
(
z − x0
T

)
has a global maximum at x.

Let us prove the reversed implication. Consider a function vT ∈ L∞(R) satisfying (13). For
any x ≤ y, it is obvious that, if y − x ≥ 2T , then (14) trivially holds. It is therefore sufficient to
prove that the property (14) holds in any interval of length 2T . Let (a, b) ⊂ R be any interval with
b− a = 2T , and set

x1 := sup{y ∈ (a, b) such that vT (z) ≥ 0 for a.e. z ∈ (a, y)}.

If x1 = b, then vT (x) ≥ 0 for a.e. x ∈ (a, b), which implies that vT (x) > 0 for a.e. x ∈
supp(vT ) ∩ (a, b), and hence, property (14) holds in (a, b).

If we have x1 ∈ [a, b), by the definition of x1, it holds that, for any ε > 0, there exists xε ∈
(x1, x1 + ε] such that ∫ xε

x1

vT (y)dy < 0,

which implies that the function

(34) y 7−→ g(y) =

∫ y

0

vT (z)dz

satisfies g(x1) > g(xε). Using the assumption (13), together with the particular form of H∗ in (31),
we have that

(35) ∀x ∈ R, ∃x0 := x0(x) ∈ R s.t. |x− x0| ≤ T and g(x) ≥ g(y) ∀y ∈ [x0 − T, x0 + T ].

In particular, applying this property to xε, and the fact that b−a = 2T , we have that g(y) ≤ g(x1)
for all y ∈ [x1, b].
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We can now deduce that vT (y) ≤ 0 for a.e. y ∈ (x1, b). This is indeed equivalent to prove that
the function g(x) defined in (34) is nonincreasing in [x1, b]. Assume for a contradiction that

∃z1, z2 ∈ [x0, b] with z1 < z2 and g(z2) > g(z1).

Then we have g(z1) < g(z2) ≤ g(x0), which together with z1 ∈ (x0, z2) ⊂ (a, b) leads to a con-
tradiction with the statement (35). We have then proved that vT (x) ≥ 0 for a.e. x ∈ (a, x1) and
vT (x) ≤ 0 for a.e. x ∈ (x1, b), which implies that (14) holds in (a, b).

�

4. Conclusions and open questions

In this work we studied the range of the operator that associates, to any initial condition,
the solution at time T of nonlinear first-order partial differential equations such as Hamilton-Jacobi
equations and scalar conservation laws. In the case when the Hamiltonian (resp. the flux) is smooth
and uniformly convex, the range of this operator is well-understood, and can be characterized
by means of semiconcavity estimates for Hamilton-Jacobi equations, and by one-sided Lipschitz
condition for scalar conservation laws. Our goal in this work was to extend this results to the more
general case when the Hamiltonian is not necessarily smooth nor strictly convex, and is merely
assumed to be a convex function. Note that in this case, semiconcavity estimates are not available.

Our characterization of the reachable set for Hamilton-Jacobi equations relies on the use of
the Hopf-Lax formula for the viscosity solution. This result is then adapted to the case of scalar
conservation laws in one space dimension by using the link between both equations.

In the particular case of Hamilton-Jacobi equations with H(p) = |p|, we give a rather geometrical
description of the reachable set by means of an interior ball condition on the sublevel sets of the
target, which yields a one-sided regularity estimate for the boundary of the sublevel sets.

Finally, we use our main results to deduce several structural properties of the reachable set. For
instance, we can prove that for power-like Hamiltonians of the form H(p) = |p|α, with α ≥ 1, the
reachable set is star-shaped with center at the origin. Moreover, if α = 2, the reachable set is
convex, and if α = 1, then it consists of a (non-convex) cone.

Open questions. Let us conclude the paper with two questions that we were not able to answer,
and might be addressed in forthcoming works.

(i) We proved that for the case of Hamilton-Jacobi equations with power-like Hamiltonian,
the reachable set is star-shaped, with center at the origin. Although it seems reasonable
that the same property should hold for the case of general convex Hamiltonians, we were
not able to provide a rigorous proof.

(ii) Concerning the same star-shaped property for the reachable set, we proved that the origin
is a center of the domain, however, we cannot confirm whether or not other function than
zero could be centers of this star-shaped set, i.e. a function u∗T ∈ RT such that

∀uT ∈ RT , and ∀λ ∈ [0, 1], λuT + (1− λ)u∗T ∈ RT .
For instance, the set of concave functions is a convex set contained in the reachable set,
which makes it a good candidate to find other centers.
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[15] S. N. Kružkov. First order quasilinear equations in several independent variables. Mathematics of the USSR-
Sbornik, 10(2):217, 1970.

[16] T. Liard and E. Zuazua. Initial data identification for the one-dimensional Burgers equation. IEEE Transactions

on Automatic Control, 2021.
[17] P.-L. Lions. Generalized solutions of Hamilton-Jacobi equations, volume 69. London Pitman, 1982.

[18] P.-L. Lions and P. E. Souganidis. New regularity results for Hamilton–Jacobi equations and long time behavior

of pathwise (stochastic) viscosity solutions. Research in the Mathematical Sciences, 7(3):1–18, 2020.
[19] A. Misztela and S. Plaskacz. An initial condition reconstruction in Hamilton–Jacobi equations. Nonlinear Anal-

ysis, 200:112082, 2020.

[20] S. Osher and R. P. Fedkiw. Level set methods: an overview and some recent results. Journal of Computational
physics, 169(2):463–502, 2001.

[21] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-
Jacobi formulations. Journal of computational physics, 79(1):12–49, 1988.

[22] D. Serre. Systems of Conservation Laws 1: Hyperbolicity, entropies, shock waves. Cambridge University Press,

1999.



20 CARLOS ESTEVE-YAGÜE AND ENRIQUE ZUAZUA
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Universidad Autónoma de Madrid,

28049 Madrid, Spain

Email address: enrique.zuazua@fau.de


	1. Introduction
	1.1. Characterization of the reachable set
	1.2. Structural properties of the reachable set
	1.3. Reachable set for scalar conservation laws

	2. Hamilton-Jacobi equations
	2.1. Reachable set: main properties
	2.2. Preliminaries
	2.3. Proof of Theorems 1 and 2 
	2.4. Proof of Corollaries 1, 3 and 5

	3. Scalar conservation laws
	4. Conclusions and open questions
	References

