Quasi-reversibility methods of optimal control for ill-posed final value diffusion equations

Mahamadi Warma
George Mason University, Fairfax, Virginia

University of Erlangen, July 05, 2022
Formulation of our problem

History of the quasi-reversibility method

Existence results of the state equations
- The ill-posed state equation
- The approximated state equation

Convergence of solutions

The optimal control problems
- The ill-posed optimal control problem
- The approximated optimal control problem
- Convergence of the approximated optimal controls
Outline

1. Formulation of our problem
2. History of the quasi-reversibility method
3. Existence results of the state equations
 - The ill-posed state equation
 - The approximated state equation
4. Convergence of solutions
5. The optimal control problems
 - The ill-posed optimal control problem
 - The approximated optimal control problem
 - Convergence of the approximated optimal controls
Our control problem

Of concern is the following optimization problem:

$$\min_{(f, \rho) \in \mathcal{A}} \frac{1}{2} \left(\| \rho(\cdot, 0) - \rho^d \|_{L^2(\Omega)}^2 + \xi \| f \|_{L^2(Q)}^2 \right)$$ \hspace{1cm} (1.1)

subject to the constraints that ρ solves the ill-posed state equation

$$\begin{cases}
\rho_t + A\rho = f & \text{in } Q := \Omega \times (0, T), \\
\rho(\cdot, T) = \rho^T & \text{in } \Omega,
\end{cases}$$ \hspace{1cm} (1.2)

where $T > 0$, f is the control, and $\rho^T \in L^2(\Omega)$ is a given function.

- ρ^d is a given fixed target and $\xi \geq 0$ is a real parameter.

- Here,

$$\mathcal{A} = \{ (f, \rho) : f \in \mathbb{U}_{ad} \text{ and } \rho \text{ is the strong solution of (1.2)} \}$$
Assumption on the operator A

We assume the following.

1. The operator $A : D(A) \to L^2(\Omega)$ is positive, selfadjoint, invertible, and has a compact resolvent.

2. $\Omega \subset \mathbb{R}^N$ is an arbitrary open set. The regularity needed for Ω will depend on the boundary or exterior conditions associated with A.

3. The operator $-A$ generates a strongly continuous, analytic, and compact semigroup $S = (S(t))_{t \geq 0}$ on $L^2(\Omega)$ which is also submarkovian in the sense that each operator $S(t)$, $t \geq 0$, is positive, and also L^∞-contractive, that is, for all $t \geq 0$,

$$\|S(t)u\|_{L^\infty(\Omega)} \leq \|u\|_{L^\infty(\Omega)}, \quad \forall \; u \in L^2(\Omega) \cap L^\infty(\Omega).$$
Observation 1

It follows from our assumptions on A that the following hold.

1. The operator A is given by a bilinear, symmetric, closed, and coercive form \mathcal{E} with domain $\mathcal{V} := D(\mathcal{E}) = D(\sqrt{A})$ and norm

 $$\|u\|_{\mathcal{V}} := (\mathcal{E}(u, u))^{1/2}. \tag{1.3}$$

2. There is a constant $C > 0$ such that for every $u \in D(\mathcal{E})$,

 $$\|u\|_{\mathcal{V}} \geq C\|u\|_{L^2(\Omega)}. \tag{1.4}$$

3. For every $u \in D(A)$ and $v \in D(\mathcal{E})$ we have

 $$(Au, v)_{L^2(\Omega)} = \mathcal{E}(u, v). \tag{1.5}$$
Observation 2

1. The spectrum of A is formed with eigenvalues λ_n ($n \in \mathbb{N}$) satisfying
 \[0 < \lambda_1 \leq \lambda_2 \leq \cdots \lambda_n \leq \cdots \quad \text{and} \quad \lim_{n \to \infty} \lambda_n = +\infty. \]

2. The eigenvalues of $S(t)$ are $e^{-t\lambda_n}$, and possible zero. For each $\varepsilon > 0$ and $t \geq 0$, the operator $\varepsilon I + S(t)$ is invertible with inverse
 \[\| (\varepsilon I + S(t))^{-1} \| \leq \frac{1}{\varepsilon}. \quad (1.6) \]

3. If $u \in L^2(\Omega)$ has the expansion $u = \sum_{k=1}^{\infty} a_k \phi_k$, then
 \[S(t)u = \sum_{k=1}^{\infty} e^{-t\lambda_k} a_k \phi_k \quad \text{and} \quad (S(t)u, u)_{L^2(\Omega)} = \sum_{k=1}^{\infty} e^{-t\lambda_k} a_k^2 \geq 0. \]
Observation 3

1. If $u \in L^2(\Omega)$ has the expansion $u = \sum_{k=1}^{\infty} a_k \phi_k$, then for $\varepsilon > 0$

$$\left(\varepsilon I + S(T)\right) u = \sum_{k=1}^{\infty} \left(\varepsilon + e^{-T\lambda_k}\right) a_k \phi_k$$

and

$$\left(\varepsilon I + S(T)\right)^{-1} u = \sum_{k=1}^{\infty} \frac{a_k}{\varepsilon + e^{-T\lambda_k}} \phi_k.$$

2. Let \mathbb{V}^* denote the dual of \mathbb{V}. Then A can be also viewed as a bounded operator from \mathbb{V} into \mathbb{V}^* given by

$$\langle Au, v \rangle_{\mathbb{V}^*, \mathbb{V}} = \mathcal{E}(u, v). \quad (1.7)$$
Remark

1. One comes across such a model (1.2) while dealing of physical phenomena with missing data.

2. Actually in such a situation, one may not know when the phenomenon began or have information on the boundary.

3. Such models with missing data are therefore ill-posed in the sense of Hadamard. In particular, the uniqueness of solutions as well as the continuous dependence of solutions on the given data f and ρ^T are not always satisfied.

4. Even if we can prove using minimizing sequences that the optimization problem (1.1)-(1.2) has a unique solution $(\bar{f}, \bar{\rho})$, it will be difficult to characterize this solution since the increase of the state and the control will be linked as we shall see.
Outline

1. Formulation of our problem
2. History of the quasi-reversibility method
3. Existence results of the state equations
 - The ill-posed state equation
 - The approximated state equation
4. Convergence of solutions
5. The optimal control problems
 - The ill-posed optimal control problem
 - The approximated optimal control problem
 - Convergence of the approximated optimal controls
Lattès and Lions 1969

Let $\varepsilon > 0$. Lattès and Lions used the following well-posed problem

\[
\begin{align*}
\frac{d}{dt}v_{\varepsilon}(t) + Av_{\varepsilon}(t) - \varepsilon A^2 v_{\varepsilon}(t) &= 0, \quad 0 < t < T \\
v_{\varepsilon}(T) &= g
\end{align*}
\]
(2.1)

to approximate the ill-posed problem

\[
\begin{align*}
u'(t) + Au(t) &= 0, \quad 0 < t < T \\
u(T) &= g
\end{align*}
\]
(2.2)

They used the initial value $u_{\varepsilon}(0) = v_{\varepsilon}(0)$ in the system

\[
\begin{align*}
\frac{d}{dt}u_{\varepsilon}(t) + Au_{\varepsilon}(t) &= 0, \quad 0 < t < T \\
u_{\varepsilon}(0) &= v_{\varepsilon}(0)
\end{align*}
\]
(2.3)
They assumed that \(A \) is a selfadjoint operator on a Hilbert space \(H \) satisfying suitable conditions.

They have shown that if \(u_\varepsilon \) is a solutions of (2.3), then \(u_\varepsilon(T) \) converges to \(g \) in \(H \), as \(\varepsilon \downarrow 0 \).

They did not get a convergence of \(u_\varepsilon(t), 0 \leq t < T \), as \(\varepsilon \downarrow 0 \).

Also the operator carrying \(g \) into \(v_\varepsilon(0) \) in the system (2.1) has a large norm for small \(\varepsilon \) (of the order of \(e^{\varepsilon} \)).
Showalter 1974

- Showalter has approximated the ill-posed problem (2.2) with

\[
\begin{aligned}
 v_\varepsilon'(t) + \varepsilon A v_\varepsilon'(t) + A v_\varepsilon(t) &= 0, \quad 0 < t < T \\
 v_\varepsilon(T) &= g.
\end{aligned}
\]

(2.4)

- The author used the initial condition \(u_\varepsilon(0) = v_\varepsilon(0) \) in the system

\[
\begin{aligned}
 u_\varepsilon'(t) + A u_\varepsilon(t) &= 0, \quad 0 < t < T \\
 u_\varepsilon(0) &= v_\varepsilon(0).
\end{aligned}
\]

(2.5)

- He has proved that \(u_\varepsilon(T) \) converges to \(g \) in \(H \), as \(\varepsilon \downarrow 0 \), and that \(u_\varepsilon(t) \) converges to the solution \(u(t) \) of (2.2) in \(H \), uniformly in \(t \in [0, T] \), as \(\varepsilon \downarrow 0 \), if and only if such a solution exists.

- In these convergences, the norm of the function carrying \(g \) to \(v_\varepsilon(0) \) in (2.4) is also quite large for small values of \(\varepsilon \).
Miller 1973

- Miller has addressed the problem of large norm by finding an optimal perturbation of the operator A.

- The author stated that it should be possible to make the norm in the order of c/ε rather than $e^{c/\varepsilon}$ and derive conditions on the perturbation to achieve the best possible results.

- As above the author approximated (2.2) with

\[
\begin{cases}
 v'(t) + g(A)v(t) = 0, & 0 < t < T \\
 v(T) = g,
\end{cases}
\]

and again solved the problem forward using $v(0)$ as an initial datum.

- Miller called this method, stabilized quasi-reversibility.
Clark and Oppenheimer 1994

They have approximated the ill-posed problem (2.2) with the well-posed problem

\[
\begin{align*}
 u'(t) + Au(t) &= 0, \quad 0 < t < T \\
 \varepsilon u(0) + u(T) &= g.
\end{align*}
\]

(2.6)

Let \(u_\varepsilon \) be a solution of (2.6). They have shown that \(u_\varepsilon(T) \) converges to \(g \) in \(H \), as \(\varepsilon \downarrow 0 \), and that \(u_\varepsilon(t) \) converges to the solution \(u(t) \) in \(H \) (if such a solution exists), uniformly in \(t \in [0, T] \), as \(\varepsilon \downarrow 0 \).

They have also obtained a better polynomial convergence rate.

We mention that the approximation (2.6) is known in the literature as the "quasi-boundary value method".
Finally, Denche and Bessila have approximated the ill-posed (2.2) with the following well-posed problem:

\[
\begin{aligned}
 & u'(t) + Au(t) = 0, \quad 0 < t < T \\
 & u(T) - \varepsilon u'(0) = g.
\end{aligned}
\]

They have obtained nice convergence results as the ones proved by Clark and Oppenheimer but here with a logarithmic convergence rate.
Outline

1. Formulation of our problem
2. History of the quasi-reversibility method
3. **Existence results of the state equations**
 - The ill-posed state equation
 - The approximated state equation
4. Convergence of solutions
5. The optimal control problems
 - The ill-posed optimal control problem
 - The approximated optimal control problem
 - Convergence of the approximated optimal controls
Definition (Strong solutions)

Let $f \in L^2(Q)$ and $\rho^T \in L^2(\Omega)$. A function $\rho \in C([0, T]; L^2(\Omega))$ is said to be a strong solution of the ill-posed problem (1.2) if the following assertions hold:

- **Regularity:**

 $$\rho_t(\cdot, t) \in L^2(\Omega) \text{ and } \rho(\cdot, t) \in D(A) \text{ for a.e. } t \in (0, T)$$

 and the first equation in (1.2) is satisfied for a.e. $t \in (0, T)$.

- **Final condition:**

 $$\rho(\cdot, T) = \rho^T \text{ a.e. in } \Omega.$$
Lemma (Necessary and sufficient conditions for existence of solutions)

Let \(f \in L^2(Q) \) and \(\rho^T \in L^2(\Omega) \) have the expansions

\[
f(\cdot, t) = \sum_{k=1}^{\infty} f_k(t) \phi_k \quad \text{and} \quad \rho^T = \sum_{k=1}^{\infty} b_k \phi_k.
\]

Then the following assertions are equivalent.

1. The ill-posed system (1.2) has a strong solution \(\rho \).
2. The following two series converge

\[
\sum_{k=1}^{\infty} b_k^2 e^{2T\lambda_k} < \infty \quad \text{and} \quad \sum_{k=1}^{\infty} \left(\int_0^T e^{t\lambda_k} |f_k(t)| \, dt \right)^2 < \infty. \tag{3.1}
\]

(3.1) is similar to the so called Gevrey condition.
Proof

Let \(f(\cdot, t) = \sum_{k=1}^{\infty} f_k(t) \phi_k \) and \(\rho^T = \sum_{k=1}^{\infty} b_k \phi_k \).

(b) \Rightarrow (a): Assume that the two series in (5.1) converge. Define

\[
\rho(\cdot, t) := \sum_{k=1}^{\infty} e^{(T-t)\lambda_k} b_k \phi_k - \int_t^T \sum_{k=1}^{\infty} e^{(\tau-t)\lambda_k} f_k(\tau) \phi_k \, d\tau, \quad t \in [0, T].
\]

In that case, it is easy to verify that \(\rho \) is a strong solution of (1.2).
(a) \Rightarrow (b):

Let ρ be a solution of (1.2) with $f = 0$. Since $\rho(\cdot, 0) \in L^2(\Omega)$, it follows that $\rho(\cdot, 0) = \sum_{k=1}^{\infty} a_k \phi_k$. Calculating we get that

$$S(T)\rho(\cdot, 0) = \sum_{k=1}^{\infty} e^{-T\lambda_k} a_k \phi_k = \rho^T = \sum_{k=1}^{\infty} b_k \phi_k. \quad (3.2)$$

(3.2) implies that $e^{-T\lambda_k} a_k = b_k$. Thus, $a_k = b_k e^{T\lambda_k}$. Since $\rho(\cdot, 0) \in L^2(\Omega)$, then $\sum_{k=1}^{\infty} |a_k|^2 < \infty$. Thus, $\sum_{k=1}^{\infty} b_k^2 e^{2T\lambda_k} < \infty$.

Let ρ be a solution of (1.2) with $\rho^T = 0$. Then $\rho(\cdot, 0) = \sum_{k=1}^{\infty} a_k \phi_k$. Therefore,

$$S(T)\rho(\cdot, 0) = \sum_{k=1}^{\infty} e^{-T\lambda_k} a_k \phi_k = -\sum_{k=1}^{\infty} \int_0^T e^{-(T-\tau)\lambda_k} f_k(\tau) \phi_k \, d\tau.$$
Proof Cont

This implies that

\[e^{-T \lambda_k} a_k = - \int_0^T e^{-(T-\tau) \lambda_k} f_k(\tau) \, d\tau. \]

Thus, \(a_k = - \int_0^T e^{t \lambda_k} f_k(t) \, dt. \)

Since \(\sum_{k=1}^{\infty} |a_k|^2 < \infty \), we can deduce that the series

\[\sum_{k=1}^{\infty} \left(\int_0^T e^{t \lambda_k} f_k(t) \, dt \right)^2 < \infty. \]
The approximated state equation

For any $\varepsilon > 0$, we approximate (1.2) with the well-posed problem:

$$
\begin{aligned}
\rho_t^\varepsilon + A\rho^\varepsilon &= f \quad \text{in } Q, \\
\varepsilon\rho^\varepsilon(\cdot, 0) + \rho^\varepsilon(\cdot, T) &= \rho^T \quad \text{in } \Omega.
\end{aligned}
$$

(3.3)

Definition (Let $\varepsilon > 0$, $f \in L^2(Q)$, and $\rho^T \in L^2(\Omega)$)

A $\rho^\varepsilon \in C([0, T]; L^2(\Omega))$ is said to be a strong solution of (3.3) if

- Regularity:

 $$
 \rho_t^\varepsilon(\cdot, t) \in L^2(\Omega) \text{ and } \rho^\varepsilon(\cdot, t) \in D(A) \text{ for a.e. } t \in (0, T).
 $$

- Initial condition:

 $$
 \varepsilon\rho^\varepsilon(\cdot, 0) + \rho^\varepsilon(\cdot, T) = \rho^T \text{ a.e. in } \Omega.
 $$

(3.4)
A good candidate for a solution

Let $f \in L^2(Q)$ and $\rho^T \in L^2(\Omega)$.

1. Recall that $S = (S(t))_{t \geq 0}$ is the semigroup generated by $-A$.
2. For $\varepsilon > 0$ and $t \in [0, T]$, we let

$$
\rho^\varepsilon(\cdot, t) := S(t)(\varepsilon I + S(T))^{-1}\rho^T
- \int_0^T S(T + t - \tau)(\varepsilon I + S(T))^{-1}f(\cdot, \tau) \, d\tau
+ \int_0^t S(t - \tau)f(\cdot, \tau) \, d\tau.
$$

(3.5)
A good candidate for a solution

Using the semigroup property we easily get the following identity:

\[
\rho^\varepsilon(\cdot, t) = S(t)(\varepsilon I + S(T))^{-1}\rho^T
- \int_0^t S(t - \tau)\left[I - S(T)(\varepsilon I + S(T))^{-1}\right] f(\cdot, \tau) \, d\tau
- \int_t^T S(T + t - \tau)(\varepsilon I + S(T))^{-1}f(\cdot, \tau) \, d\tau. \tag{3.6}
\]

Theorem (Existence of solutions of the approximated equation)

Let \(f \in L^2(Q) \) and \(\rho^T \in L^2(\Omega) \). Then, the function \(\rho^\varepsilon \) given in (3.5) or (3.6) is the unique strong solution of the approximated system (3.3) and it depends continuously on the given data \(\rho^T \) and \(f \).
Since the semigroup S is analytic, we have that $S(t)u \in D(A)$ for all $u \in L^2(\Omega)$ and $t > 0$. In addition, $\frac{d}{dt} (S(t)u) = -AS(t)u$ for all $t > 0$, and $(\varepsilon l + S(T))^{-1} \rho^T \in D(A)$ for every $\varepsilon > 0$.

A simple computation shows that for a.e. $t \in (0, T)$,

$$\rho^\varepsilon(\cdot, t) = -A\rho^\varepsilon(\cdot, t) + f(\cdot, t).$$

It follows from (3.5) that

$$\varepsilon \rho^\varepsilon(\cdot, 0) = \varepsilon (\varepsilon l + S(T))^{-1} \rho^T$$

$$- \varepsilon \int_0^T S(T - \tau)(\varepsilon l + S(T))^{-1} f(\cdot, \tau) \, d\tau. \quad (3.7)$$
Ideas of the proof

Using (3.5) and the semigroup property again, we also get

$$\rho^\varepsilon(\cdot, T) = S(T) (\varepsilon I + S(T))^{-1} \rho^T$$

$$+ \varepsilon \int_0^T S(T - \tau) (\varepsilon I + S(T))^{-1} f(\cdot, \tau) \, d\tau. \tag{3.8}$$

Combining (3.7)-(3.8), we get

$$\varepsilon \rho^\varepsilon(\cdot, 0) + \rho^\varepsilon(\cdot, T) = (\varepsilon I + S(T)) (\varepsilon I + S(T))^{-1} \rho^T = \rho^T.$$

Using that S is contractive we get that for every $t \in [0, T]$,

$$\|\rho^\varepsilon(\cdot, t)\|_{L^2(\Omega)} \leq \frac{1}{\varepsilon} \|\rho^T\|_{L^2(\Omega)} + \frac{1}{\varepsilon} \|f\|_{L^2(Q)} + \|f\|_{L^2(Q)}. \tag{3.9}$$

Uniqueness is easy to prove.
The approximated adjoint equation

The approximated adjoint equation is given by

\[
\begin{cases}
-p_t^\epsilon + Ap^\epsilon = 0 & \text{in } Q, \\
\epsilon p^\epsilon(\cdot, T) + p^\epsilon(\cdot, 0) = p^T & \text{in } \Omega.
\end{cases}
\]

(3.10)

Definition (Let \(p^T \in L^2(\Omega)\))

A function \(p^\epsilon \in C([0, T]; L^2(\Omega))\) is a strong solution of (3.10) if

- Regularity:

\(p^\epsilon \in C([0, T]; L^2(\Omega)) \cap C^1((0, T); L^2(\Omega)) \cap C((0, T); D(A)).\)

- Initial condition:

\(\epsilon p^\epsilon(\cdot, T) + p^\epsilon(\cdot, 0) = p^T \text{ a.e. in } \Omega.\)
Theorem (Existence of solutions of approximated adjoint equation)

Let $p^T \in L^2(\Omega)$. Then, there exists a unique strong solution p^ε to (3.10). In addition, $p^\varepsilon \in L^2((0, T); \mathbb{V}) \cap H^1((0, T); \mathbb{V}^*)$ and there is a constant $C > 0$ independent of ε such that

$$
\|p^\varepsilon\|_{C([0, T]; L^2(\Omega))}^2 + \|p^\varepsilon\|_{L^2((0, T); \mathbb{V})}^2 \leq \frac{C}{\varepsilon^2} \|p^T\|_{L^2(\Omega)}^2.
$$

(3.11)
Outline

1. Formulation of our problem
2. History of the quasi-reversibility method
3. Existence results of the state equations
 - The ill-posed state equation
 - The approximated state equation
4. Convergence of solutions
5. The optimal control problems
 - The ill-posed optimal control problem
 - The approximated optimal control problem
 - Convergence of the approximated optimal controls
Convergence of $\rho^\varepsilon(\cdot, T)$

\[
\lim_{\varepsilon \downarrow 0} \| \rho^\varepsilon(\cdot, T) - \rho^T \|_{L^2(\Omega)} = 0.
\]

Proof

Let $\rho^T = \sum_{k=1}^{\infty} b_k \phi_k \in L^2(\Omega)$ and $f \in L^2(Q)$. Using (3.5) we get

\[
\| \rho^\varepsilon(\cdot, T) - \rho^T \|_{L^2(\Omega)}^2 \leq \sum_{k=1}^{\infty} \varepsilon^2 b_k^2 (\varepsilon + e^{-T \lambda_k})^{-2} \nonumber \\
+ \left\| I - S(T)(\varepsilon I + S(T))^{-1} \right\|^2 \| f \|^2_{L^2(Q)}. \tag{4.1}
\]

Using the dominated convergence theorem, it is easily seen that

\[
\lim_{\varepsilon \downarrow 0} \left\| I - S(T)(\varepsilon I + S(T))^{-1} \right\| = 0. \tag{4.2}
\]
Next, fix $\delta > 0$. Choose $N \in \mathbb{N}$ large such that $\sum_{k=N+1}^{\infty} b_k^2 < \frac{\delta}{2}$. Then,

$$\sum_{k=1}^{\infty} \varepsilon^2 b_k^2 \left(\varepsilon + e^{-T\lambda_k} \right)^{-2} \leq \varepsilon^2 \sum_{k=1}^{N} b_k^2 e^{2T\lambda_k} + \frac{\delta}{2}.$$

Now, let $\varepsilon > 0$ be such that $\varepsilon^2 < \frac{\delta}{4} \left(\sum_{k=1}^{N} b_k^2 e^{2T\lambda_k} \right)^{-1}$.

This implies that $\sum_{k=1}^{\infty} \varepsilon^2 b_k^2 \left(\varepsilon + e^{-T\lambda_k} \right)^{-2} < \delta$. We have shown that

$$\lim_{\varepsilon \downarrow 0} \sum_{k=1}^{\infty} \varepsilon^2 b_k^2 \left(\varepsilon + e^{-T\lambda_k} \right)^{-2} = 0. \quad (4.3)$$

Combining (4.2)-(4.3) and using (4.1), we get the result.
General convergence results

Let $f \in L^2(Q)$, $\rho^T \in L^2(\Omega)$, and ρ^ε be given by (3.5).

- The system (1.2) has a strong solution ρ if and only if the sequence $\{\rho^\varepsilon(\cdot, 0)\}$ converges in $L^2(\Omega)$, as $\varepsilon \downarrow 0$.

- In addition, as $\varepsilon \downarrow 0$, we have that

 $\rho^\varepsilon(\cdot, t)$ converges strongly to ρ in $L^2(\Omega)$, uniformly in $t \in [0, T]$,

 ρ^ε converges strongly to ρ in $L^2((0, T), V) \cap H^1((0, T); V^*)$.

Let \(f \in L^2(Q) \) and \(\rho^T \in L^2(\Omega) \) have the expansions

\[
f(\cdot, t) = \sum_{k=1}^{\infty} f_k(t) \phi_k \quad \text{and} \quad \rho^T = \sum_{k=1}^{\infty} b_k \phi_k. \tag{4.4}
\]

If there exists \(\gamma > 0 \) such that the series

\[
\sum_{k=1}^{\infty} b_k^2 e^{\gamma T \lambda_k} \quad \text{and} \quad \sum_{k=1}^{\infty} \int_0^T e^{\gamma t \lambda_k} |f_k(t)|^2 \, dt \tag{4.5}
\]

converge, then

\[
\lim_{\varepsilon \downarrow 0} \|\rho^\varepsilon(\cdot, T) - \rho^T\|_{L^2(\Omega)} = 0
\]

with rate \(\varepsilon^{\gamma - 2} \).
Outline

1. Formulation of our problem
2. History of the quasi-reversibility method
3. Existence results of the state equations
 - The ill-posed state equation
 - The approximated state equation
4. Convergence of solutions
5. The optimal control problems
 - The ill-posed optimal control problem
 - The approximated optimal control problem
 - Convergence of the approximated optimal controls
Our ill-posed control problem

- Let $f \in L^2(Q)$ and $\rho_T \in L^2(\Omega)$ satisfy

$$\sum_{k=1}^{\infty} b_k^2 e^{2T\lambda_k} < \infty \quad \text{and} \quad \sum_{k=1}^{\infty} \left(\int_0^T e^{t\lambda_k} |f_k(t)| \, dt \right)^2 < \infty.$$ \hspace{1cm} (5.1)

- We want to solve the optimization problem (1.1)-(1.2).
- Let U_{ad} be the closed and convex subset of $L^2(Q)$ given by

$$U_{ad} := \left\{ f \in L^2(Q) \mid \sum_{k=1}^{\infty} \left(\int_0^T e^{t\lambda_k} |f_k(t)| \, dt \right)^2 < \infty \right\}.$$

- Let

$$\mathcal{A} = \{(f, \rho^T) \in U_{ad} \times L^2(\Omega) : \rho^T \text{ satisfies (5.1)} \}.$$
Observations

1. We know that $\mathcal{A} \neq \emptyset$.

2. Since $\rho \in C([0, T]; L^2(\Omega))$, we know that $\rho(\cdot, 0) \in L^2(\Omega)$. We can thus define the cost function

$$J(f, \rho) = \frac{1}{2} \left(\|\rho(\cdot, 0) - \rho^d\|_{L^2(\Omega)}^2 + \xi \|f\|_{L^2(Q)}^2 \right),$$

where $\rho^d \in L^2(\Omega)$ and $\xi > 0$ is a real parameter.

3. Using minimizing sequences, the structure of J, we can prove that there exists a unique $(\bar{\rho}, \bar{\rho}) \in \mathcal{A}$ solution to (1.1)-(1.2). Moreover,

$$\int_{\Omega} (\rho(x, 0) - \bar{\rho}(x, 0))(\bar{\rho}(x, 0) - \rho^d(x))dx + \int_Q \xi \bar{f}(f - \bar{f}) \, dxdt \geq 0$$

for all $(f, \rho) \in \mathcal{A}$.
The approximated optimal control problem

Let $\mathcal{U}_{ad} \subset L^2(Q)$ be closed and convex. Minimize

$$
\min_{(f, \rho^\varepsilon) \in \mathcal{U}_{ad} \times L^2(Q)} J^\varepsilon(f) := \frac{1}{2} \left(\| \rho^\varepsilon(\cdot, 0) - \rho^d \|^2_{L^2(\Omega)} + \xi \| f \|^2_{L^2(Q)} \right)
$$

(5.3)

subject to the constraints that

$$
\begin{cases}
\rho^\varepsilon_t + A \rho^\varepsilon = f & \text{in } Q, \\
\varepsilon \rho^\varepsilon(\cdot, 0) + \rho^\varepsilon(\cdot, T) = \rho^T & \text{in } \Omega.
\end{cases}
$$

(5.4)

Existence and uniqueness of optimal controls

For every $\varepsilon > 0$, there exists a unique $f^\varepsilon \in \mathcal{U}_{ad}$ solution of the minimization problem (5.3)-(5.4). The associated state ρ^ε is the unique strong solution of (3.3) with f replaced by f^ε.
Ideas of the proof

- Since J^ε is bounded from below by zero, it is possible to construct a minimizing sequence $(f^{\varepsilon n})_{n \in \mathbb{N}}$ such that

$$\lim_{n \to \infty} J^\varepsilon(f^{\varepsilon n}) = \inf_{f \in \mathcal{U}_{ad}} J^\varepsilon(f). \quad (5.5)$$

- There exist $f^\varepsilon \in L^2(Q)$, $\rho_T^\varepsilon, \rho_0^\varepsilon \in L^2(\Omega)$, and $\rho^\varepsilon \in L^2((0, T); \mathbb{V})$ such that, as $n \to \infty$, we have the following convergences:

$$f^{\varepsilon n} \to f^\varepsilon \quad \text{weakly in } L^2(Q), \quad (5.6a)$$

$$\rho^{\varepsilon n}(\cdot, 0) \to \psi_0^\varepsilon \quad \text{weakly in } L^2(\Omega), \quad (5.6b)$$

$$\rho^{\varepsilon n}(\cdot, T) \to \psi_T^\varepsilon \quad \text{weakly in } L^2(\Omega), \quad (5.6c)$$

$$\rho^{\varepsilon n} \to \rho^\varepsilon \quad \text{weakly in } L^2((0, T); \mathbb{V}). \quad (5.6d)$$
Theorem (Optimality conditions)

Let \((\rho^\varepsilon, f^\varepsilon)\) be the solution of the minimization problem (5.3)-(5.4). Then, there exists \(q^\varepsilon \in L^2((0, T); \mathbb{V}) \cap H^1((0, T); \mathbb{V}^*)\) such that we have the following optimality systems:

\[
\begin{aligned}
\rho^\varepsilon_t + A\rho^\varepsilon &= f^\varepsilon & \text{in } Q, \\
\varepsilon\rho^\varepsilon(\cdot, 0) + \rho^\varepsilon(\cdot, T) &= \rho^T & \text{in } \Omega,
\end{aligned}
\]

(5.7)

and

\[
\begin{aligned}
-q^\varepsilon_t + Aq^\varepsilon &= 0 & \text{in } Q, \\
\varepsilon q^\varepsilon(\cdot, T) + q^\varepsilon(\cdot, 0) &= \rho^\varepsilon(\cdot, 0) - \rho^d & \text{in } \Omega,
\end{aligned}
\]

(5.8)

and

\[
\int_Q (\xi f^\varepsilon - q^\varepsilon)(f - f^\varepsilon) \, dx \, dt \geq 0, \quad \forall f \in \mathcal{U}_{ad}.
\]

(5.9)
Theorem (Convergence of optimal solutions)

Let \((\bar{f}, \bar{\rho})\) be a solution of the minimization problem \((1.1)-(1.2)\), and let \((f^\varepsilon, \rho^\varepsilon, q^\varepsilon)\) be as above.

- Assume that \(f^\varepsilon \in U_{ad}\) and that \(\text{Int}(U_{ad}) \neq \emptyset\).
- Then, there exists \(\bar{q} \in L^2(Q)\) such that, as \(\varepsilon \downarrow 0\), we have the following convergences:

 \[
 \begin{align*}
 f^\varepsilon & \text{ converges strongly to } \bar{f} \in L^2(Q) \text{ and } \bar{f} \in U_{ad}, \\
 \rho^\varepsilon & \text{ converges weakly to } \bar{\rho} \in L^2((0, T); V) \cap H^1((0, T); V^*), \\
 \rho^\varepsilon(\cdot, T) & \text{ converges strongly to } \rho^T \in L^2(\Omega), \\
 \rho^\varepsilon(\cdot, 0) & \text{ converges strongly to } \bar{\rho}(\cdot, 0) \in L^2(\Omega), \\
 q^\varepsilon & \text{ converges weakly to } \bar{q} \in L^2(Q).
 \end{align*}
 \]
Assume that $\text{Int}(U_{ad}) \neq \emptyset$. Then, $(\bar{f}, \bar{\rho})$ is the solution of the minimization problem (1.1)-(1.2) if and only if there exists $\bar{q} \in L^2(Q)$ such that the triple $(\bar{f}, \bar{\rho}, \bar{q})$ satisfies the following singular optimality systems: $\bar{\rho}$ is a strong solution of

$$
\begin{cases}
\bar{\rho}_t + A\bar{\rho} = \bar{f} & \text{in } Q, \\
\bar{\rho}(\cdot, T) = \rho^T & \text{in } \Omega,
\end{cases}
$$

(5.15)

and

$$
\int_Q \bar{q}(\phi_t + A\phi) \, dx \, dt = 0
$$

(5.16)

for every $\phi \in D((0, T))$, $D(A)$, and finally

$$
\int_Q (\xi \bar{f} - \bar{q})(f - \bar{f}) \, dx \, dt \geq 0, \quad \forall f \in U_{ad}.
$$

(5.17)
THANK YOU!