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Abstract. We consider the problem of identifying a sparse initial source condition to achieve a given
state distribution of a diffusion-advection partial differential equation after a given final time. The initial
condition is assumed to be a finite combination of Dirac measures. The locations and intensities of this
initial condition are required to be identified. This problem is known to be exponentially ill-posed because
of the strong diffusive and smoothing effects. We propose a two-stage numerical approach to treat this
problem. At the first stage, to obtain a sparse initial condition with the desire of achieving the given state
subject to a certain tolerance, we propose an optimal control problem involving sparsity-promoting and
ill-posedness-avoiding terms in the cost functional, and introduce a generalized primal-dual algorithm for this
optimal control problem. At the second stage, the initial condition obtained from the optimal control problem
is further enhanced by identifying its locations and intensities in its representation of the combination of
Dirac measures. This two-stage numerical approach is shown to be easily implementable and its efficiency in
short time horizons is promisingly validated by the results of numerical experiments. Some discussions on
long time horizons are also included.

1. Introduction and motivations

Among various inverse problems arising in scientific computing, an important one is the identification of
moving pollution sources in either compressible or incompressible fluids that can be described by diffusion-
advection systems. See e.g., [14, 34] for accurate estimation of pollution sources in the environmental
safeguard of a densely populated city, and [21, 35] for other related problems. As many contributions in
the literature have shown ([6, 7, 19, 35, 41]), this kind of pollution source identification problems can be
mathematically modeled by initial source identification problems of diffusion-advection systems. Besides, as
pointed out in [6, 7, 14, 33, 35, 41], the initial source is usually assumed to be sparse, i.e., its support is zero
in Lebesgue measure. In this paper, we consider the problem of identifying a sparse initial source condition
to achieve a given state distribution of a diffusion-advection partial differential equation (PDE) after a given
final time. The initial condition is assumed to be a finite combination of Dirac measures, and the locations
and intensities of this initial condition are required to be identified.

1.1. Problem statement. Let Ω ⊂ RN with N ≥ 1 be a bounded domain and ∂Ω its boundary. We
consider the following linear diffusion-advection equation

∂tu− d∆u+ v · ∇u = 0, (x, t) ∈ Ω× (0, T ),

u = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(1.1)
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where 0 < T < +∞ is a given final time, d > 0 is the diffusivity coefficient and the vector v ∈ RN is the
velocity field of the advection. Here and in what follows, d and v are both assumed to be constants for
simplicity, although our analysis to be presented can be adapted to the case where both diffusivity and
velocity fields vary. We further assume the initial condition u0(x) to be a finite combination of Dirac measures

u0(x) =

l∑
i=1

αiδx(xi), xi ∈ Ω,(1.2)

where {αi}li=1 ∈ Rl and xi ∈ Ω, 1 ≤ i ≤ l, are the intensities and locations, respectively, with 1 ≤ l < +∞ the
number of locations. The Dirac measure δx(xi) is defined by δx(xi) = 1 if x = xi, and δx(xi) = 0 otherwise.
Note that (1.2) implies that the support of u0(x) is {xi}li=1 ⊂ Ω and its Lebesgue measure is zero. With
the assumption (1.2), one can show that there exists a unique solution u of (1.1) and u belongs to the space
Lr(0, T ;W 1,p

0 (Ω)) for all p, r ∈ [1, 2), with 2
r + N

p > N + 1, see [5] and the references therein.

Problem 1.1. Consider the diffusion-advection equation (1.1). Let uT be a given or observed function. We
aim at identifying an initial condition û∗0 subject to (1.2), i.e.

û∗0(x) =

l∑
i=1

α̂∗i δx(x̂∗i ), with α̂∗i ∈ R, x̂∗i ∈ Ω

such that the corresponding final state û∗(·;T ) of (1.1) is as close as possible to uT , in the sense that for
ε > 0 arbitrary small we have

‖û∗(·;T )− uT ‖L2(Ω) ≤ ε, a.e in Ω.(1.3)

As well known (see, e.g., [29]), due to the strong diffusive and smoothing properties of equation (1.1),
Problem 1.1 is exponentially ill-posed, which means that a small perturbation on the data uT may cause
an arbitrarily large error in û∗0. For instance, if we set Ω = [0, π], d = 1 and v = 0 in (1.1) and consider a
reachable target uT , then addressing Problem 1.1 amounts to solving

ATu0 :=

∞∑
n=1

e−n
2T 〈u0, vn〉vn = uT

with vn defined by vn(x) =
√

2
π sin(nx). Since e−n

2T → 0 as n → +∞, we see that the operator AT is
compact, which in turn implies that the problem is ill-posed (more discussions on this specific issue can be
referred to [1, 15]). Moreover, it is easy to see that if T becomes larger, the problem is increasingly ill-posed.
Therefore, it is challenging to design some efficient numerical algorithms for solving Problem 1.1.

1.2. State-of-the-art. In the literature, some work has already been done for sparse initial source identifica-
tion problems, based on the natural idea of taking advantage of the sparse nature of the initial condition. A
widely used strategy to address sparse initial source identification problems is to formulate them as optimal
control problems modeled by PDEs, in which the initial condition is assumed to play the role of a control
term. This is the seminal idea at the basis of some research articles, see e.g., [6, 7, 33, 41].

In [6], sparse optimal control techniques are used to identify sparse initial sources for diffusion-convection
equations. The existence and uniqueness of optimal controls are proved, and necessary and sufficient
optimality conditions are obtained. Based on these conditions, the sparsity structure of the optimal control is
derived. In [7], the adjoint methodology for sparse initial source identification problems governed by parabolic
equations is introduced. It is proved that the sparse initial condition can be recovered by minimizing its
measure-norm under the constraint that the corresponding solution and the given target are close at the final
time. In [33], the identification of an unknown sparse initial source for a homogeneous parabolic equation is
addressed by considering an optimal control problem, where the control variable is considered in the space of
regular Borel measures and the corresponding norm is used as a regularization term in the objective functional.
Under specific structural assumptions, the authors show that the initial source is a finite combination of
Dirac measures as that in (1.2).
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It is remarkable that, in the above references, the sparse initial source identification problems are
formulated as optimal control problems in measure spaces that can be (equivalently) written as

min
u0∈M(Ω)

J(u0) :=
1

2
‖u(·, T )− uT ‖2L2(Ω) + β‖u0‖M(Ω),(1.4)

where u(·, T ) is the solution at t = T of equation (1.1) corresponding to u0; β > 0 is a regularization
parameter; M(Ω) = C0(Ω)∗ denotes the space of regular Borel measures in Ω, with C0(Ω) the space of
continuous functions in Ω vanishing on ∂Ω, and the norm in this space is defined by

‖u0‖M(Ω) = |u0|(Ω) = sup

{∫
Ω

zdu0 |z ∈ C0(Ω), ‖z‖∞ ≤ 1

}
,

|u0| being the total variation measure associated to u. Similar models can also be found in [12, 31] and the
references therein for sparse peak deconvolution. The presence of measures can guarantee the sparsity of
the initial source but entails appropriate discretization for measure-valued quantities and may invalidate
the application of some well-known numerical methods. For instance, the first-order optimality condition of
(1.4) cannot be reformulated in a non-smooth point-wise form and thus the well-known Semi-Smooth Newton
(SSN) type methods cannot be applied directly, see e.g., [18, 28].

It is shown in [33] that, after some proper discretization, problem (1.4) can be reformulated as a finite-
dimensional optimization problem with `1-regularization, for which various well-developed optimization
algorithms can be applied directly. See [31] for related discussions on sparse peak deconvolution. However, in
the context of optimal control of PDEs, such a direct application of finite-dimensional optimization algorithms
may cause the so-called mesh-dependent issue, which means that the convergence behavior critically depends
on the fineness of the discretization, see [33]. Hence, some new numerical algorithms that can be described
on the continuous level have to be deliberately designed from scratch. In this regard, a Primal-Dual Active
Point (PDAP) method is proposed in [33]. At each iteration of the PDAP, one entails the solutions of two
parabolic equations to update the adjoint variable, an optimization subproblem to find a new support point,
and a non-smooth optimization subproblem to compute a new iterate. This non-smooth optimization problem
has no closed-form solution and can only be solved iteratively by some optimization algorithm, such as the
SSN method suggested therein. Hence, nested iterations are resulted, which may cause some new challenges
in the overall rigorous convergence and additional computational loads in the implementation.

To address Poblem 1.1, a two-stage numerical approach is proposed in [41]. First, Poblem 1.1 is formulated
as an L1-regularized optimal control problem, where the initial condition is treated as the control variable
and is assumed to be in L1(Ω) to promote the sparsity. As a result, measures are avoided. To solve the
optimal control problem, a Gradient Descent (GD) method is suggested. Then, the optimal locations are
identified by determining these local maxima/minima of the optimal control, and the corresponding optimal
intensities are identified by solving a least squares problem. Several test cases validate that this two-stage
approach can accurately identify the sparse initial sources even in heterogeneous media. Despite this fact, we
shall remark that the focus in [41] is on the development and discussion of the numerical algorithm, but from
a mathematical viewpoint, the optimal control problem considered in [41] is not well-posed. In particular,
since the control variable is considered in the non-reflexive space L1(Ω), the existence of a solution in L1(Ω)
to the optimal control problem cannot be guaranteed. See [7, 46] for some related discussions.

In [35], sparse initial sources are identified from some sparsely sampled solutions of the heat equation,
where the initial sources are assumed to satisfy (1.2). After some proper discretization, the initial source
identification problem is formulated as a finite-dimensional constrained `1 minimization problem with respect
to the initial condition, under the constraint that the corresponding final states of the discretized heat equation
are close to the observations. The classical Bregman iteration method [2] combined with two acceleration
strategies (support restriction and domain exclusion) is suggested to solve the constrained `1 minimization
problem. The effectiveness and efficiency of this approach are validated by some numerical experiments,
which show that, for two-dimensional spaces, one can recover the sparse initial condition accurately from
some point-wise observations at the final time. The Bregman iteration method solves the constrained problem
as a sequence of unconstrained subproblems that have no closed-form solutions and can only be solved
iteratively. Thus, inner iterations have to be embedded into the implementation of the Bregman iteration
method. Hierarchically nested iterations and hence the lack of rigorous analysis for the convergence of the
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overall scheme are thus caused. Moreover, as mentioned earlier, such a direct application of the Bregman
method may lead to the mesh-dependent issue implying that the convergence depends strongly on the fineness
of the discretization.

For completeness, we mention that other types of optimal control problems with sparsity properties have
also been widely discussed in the existing literature. In [3, 8] for elliptic problems and in [4, 32] for parabolic
problems, sparse controls are obtained by considering optimal control problems in the space of measures.
Some L1-regularized elliptic and parabolic optimal control problems are discussed in [45, 46]. The use of
L1-regularization has been shown to be efficient to obtain optimal controls with support in small regions of
the domain; and the support can be adjusted by tuning the L1-regularization parameter in the cost functional.

1.3. Our numerical approach. To address Problem 1.1, we propose a new two-stage numerical approach,
which consists of a sparsity promotion stage and a structure enhancement stage. Our approach keeps all
advantageous features of the framework in [41] while avoids the aforementioned issues encountered therein.
First, in the sparsity promotion stage, we treat the initial condition u0 as a control variable and formulate
Problem 1.1 as an optimal control problem with L2 + L1-regularization term. As to be shown in Section 2,
the presence of the L1-regularization can promote the sparsity of the initial source. However, the identified
initial source from the optimal control problem is not sparse as desired due to the smoothing property of the
L2-regularization term. Hence, a structure enhancement stage should be complemented to ensure that (1.2)
holds while identify the locations {x̂∗i }li=1 and the intensities {α̂∗i }li=1.

Concretely, we formulate Problem 1.1 in terms of the following optimal control problem:

min
u0∈L2(Ω)

J(u0) :=
1

2

∫
Ω

|u(·, T )− uT |2 dx+
τ

2

∫
Ω

|u0|2 dx+ β

∫
Ω

|u0| dx,(1.5)

where u(·, T ) is the solution at t = T of equation (1.1) corresponding to u0. In (1.5), the constants τ > 0
and β > 0 are regularization parameters. Similar as the problem in [41], the first term of J(u0) seeks for
an initial condition u0 such that the corresponding final state of equation (1.1) is as close as possible to uT ;
and the last term promotes the sparsity of the initial source. Meanwhile, inspired by [46], we introduce the
L2-regularization τ

2

∫
Ω
|u0|2 dx to guarantee the well-posedness of (1.5) while improving the conditioning to

allow for a more efficient numerical resolution. For any fixed τ > 0, as to be shown in Section 2.3, we can
always tune β to get an optimal control u∗0 with small support. Note that if τ = 0 and u0 ∈ L1(Ω), problem
(1.5) is not well-posed. To address this issue, a natural way is to consider u0 ∈M(Ω) and relax β

∫
Ω
|u0| dx

to β‖u‖M(Ω) so that problem (1.4) is obtained. From this perspective, problem (1.5) can be viewed as a
regularized version of (1.4); related discussions can be referred to [11].

Notice that the control variable u0 in (1.5) is considered as a general function in L2(Ω) and it is not
assumed to satisfy (1.2). To identify the locations and intensities directly, one may further assume that
u0(x) =

∑l
i=1 αiδx(xi), with αi ∈ R and xi ∈ Ω, in the formulation of (1.5). As a result, the intensities

{αi}li=1 and the locations {xi}li=1 become the control variables. However, this leads to a non-convex
optimization problem which is challenging to be solved both in terms of theory and algorithms. Meanwhile, it
causes practical difficulties related to the computation of the derivatives with respect to {xi}li=1. By contrast,
problem (1.5) is convex and, as to be shown in Section 2.2, the computation of the derivatives with respect
to u0 is relatively easier.

Clearly, problem (1.5) operates in function spaces and avoids the employment of measures. As a
consequence, it can be easily addressed numerically and various well-developed optimization algorithms can
be applied directly. Furthermore, due to the introduction of the L2-regularization term, problem (1.5) allows
identifying the sparse initial sources much more efficiently than the one in [41], as to be validated in Section
6. Notwithstanding that, due to the presence of the L2-regularization term and its smoothing property, the
recovered initial condition u0 by solving (1.5) is not sparse as desired in (1.2). To validate this fact, we
set Ω = (0, 2) × (0, 1), T = 0.01, d = 1, v = (0, 0)>, τ = 10−2 and β = 3 × 10−1, then solve (1.5) by the
primal-dual algorithm described in Section 3. Additional details are presented in Section 6. The numerical
results are visualized in Figure 1, where the left plot corresponds to the reference initial datum û0 assigned
a priori in the form of (1.2), while the middle plot shows the recovered initial datum u∗0 by solving (1.5).
We can clearly see that û0 and u∗0 do not coincide. In particular, the recovered initial datum u∗0 has a small
support but it is not sparse as the reference û0. The intensities of u∗0 are below the ones of û0.
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Figure 1. Reference initial datum û0 (left), the recovered initial datum u∗0 (middle) by solving (1.5),
and the recovered initial datum û∗0 (right) by the two-stage numerical approach. (Ω = (0, 2)× (0, 1),
T = 0.01, d = 1, v = (0, 0)>, τ = 10−2 and β = 3 × 10−1)

For the above reasons, once a numerical solution of (1.5) is computed, a structure enhancement stage
exploiting (1.2) is necessary to identify the optimal locations {x̂∗i }li=1 and the intensities {α̂∗i }li=1. To this end,
we propose to solve two simple and low-dimensional optimization problems. More precisely, to identify the
optimal locations {x̂∗i }li=1, we consider an optimization problem in terms of the spatial variable x ∈ Ω. Then,
motivated by the facts that the initial source û∗0 to be recovered is a finite combination of Dirac measures
and the associated final state û∗(·, T ) should be as close as possible to uT , we solve a least squares problem
to identify the optimal intensities {α̂∗i }li=1. A two-stage numerical approach is thus proposed for solving
Problem 1.1. The right plot in Figure 1 depicts the recovered initial datum û∗0 by the two-stage numerical
approach, which clearly is a highly accurate approximation to the reference initial datum û0. Therefore, the
proposed two-stage numerical approach allows identifying the sparse initial sources very accurately, even for
some heterogeneous materials or coupled models as validated by some numerical experiments in Section 6.

1.4. Primal-dual algorithms for the solution of (1.5). Note that the identification of the optimal
locations and intensities is based on the solution of (1.5). Thus it is crucial to solve (1.5) efficiently. Recall
that (1.5) is modeled in function spaces. Hence, various well-developed optimization algorithms can be
applied directly. For instance, SSN-type methods [47] and the Alternating Direction Method of Multipliers
(ADMM) [17] can be conceptually applied and they indeed have been successful in solving some other types
of optimal control problems in the literature (see [18, 28] and the references therein). Nevertheless, we note
that at each iteration of SSN and ADMM, a complicated large-scale and ill-conditioned saddle point system
and an optimal control subproblem should be iteratively solved, respectively. Both of them are numerically
challenging and expensive for such a time-dependent model. Consequently, some numerical algorithms
tailored for these subproblems have to be deliberately designed. The same concerns apply to the Bregman
iteration method in [35], which can also be considered for solving (1.5).

To avoid the above issues, we advocate the primal-dual algorithm proposed in [9], which has been widely
used in various areas such as image processing, inverse problems, and statistical learning. As to be shown
in Section 3, when the primal-dual algorithm in [9] is applied to problem (1.5), the main computation at
each iteration is solving only two PDEs which can be efficiently addressed by various well-developed PDE
solvers. Hence, the implementation of the primal-dual algorithm in [9] is easy and computationally cheap for
(1.5). To further speed up the convergence, we propose a generalized version of the primal-dual algorithm
mainly by following the ideas in [20, 22, 26]. Moreover, we show that the generalized primal-dual algorithm
performs significantly better than the GD described in [41] for the initial source identification procedure.

1.5. Organization. The rest of this paper is organized as follows. In Section 2, we analyze the optimal control
problem (1.5), including the existence and uniqueness of a solution, the first-order optimality condition, and
the structural property of the solution. A generalized primal-dual algorithm and its implementation details
for solving (1.5) are discussed in Section 3, and its strong global convergence and worst-case convergence rate
are analyzed in Section 4. A structure enhancement stage is introduced in Section 5 to identify the optimal
locations and intensities. A two-stage numerical approach is thus proposed, and its efficiency is illustrated in
Section 6 through some numerical experiments. Finally, Section 7 gathers some final remarks and future
perspectives.
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2. Analysis of the optimal control problem (1.5)

In this section, we analyze some properties of the optimal control problem (1.5). First, the existence and
uniqueness of an optimal control u∗0 are proved. Then, we derive the optimality conditions and deduce some
structural properties of u∗0.

2.1. Existence and uniqueness of an optimal control. Let us start by discussing the existence and
uniqueness of an optimal control u∗0 to (1.5). This comes from a very standard argument.

As a matter of fact, the existence of u∗0 minimizing the functional J(u0) can be proved by taking a
minimizing sequence and using the compactness of the map u0 ∈ L2(Ω) 7→ u(·, T ) ∈ L2(Ω), which can be
easily obtained by adapting the proof of [7, Lemma 2.3] and is a consequence of the smoothing properties of
the heat semi-group. The uniqueness is a direct consequence of the strict convexity of the functional. We
thus have the following theorem and leave the details of the proof to the reader.

Theorem 2.1. There exists a unique solution u∗0 ∈ L2(Ω) of the optimal control problem (1.5).

2.2. First-order optimality condition. To derive the first-order optimality condition, we introduce the
Lagrangian formulation

L(u, ψ) =
1

2

∫
Ω

|u(·, T )− uT |2 dx+
τ

2

∫
Ω

|u0|2 dx+ β

∫
Ω

|u0| dx+

∫ T

0

∫
Ω

ψ(−∂tu+ d∆u− v · ∇u) dxdt.

Let

(2.1) ϕ(u0) = β

∫
Ω

|u0|dx

and denote by

∂ϕ(u0) :=
{
λu0
∈ L2(Ω) : ϕ(v)− ϕ(u0)− (λu0

, v − u0) ≥ 0,∀v ∈ L2(Ω)
}

the subdifferential of ϕ at u0 ∈ L2(Ω). Then, we compute the directional derivative δL(u, ψ) as

δL(u, ψ) =

∫
Ω

(u(·, T )−uT )δu(·, T ) dx+τ

∫
Ω

u0δu0 dx+

∫
Ω

λu0
δu0 dx+

∫ T

0

∫
Ω

ψ(−∂tδu+d∆δu−v·∇δu) dxdt,

where λu0
∈ ∂ϕ(u0) and

δu = 0 on ∂Ω× (0, T ).(2.2)

We now integrate by parts the last term in the above expression, obtaining∫ T

0

∫
Ω

ψ(−∂tδu+ d∆δu− v∇ · δu) dxdt

= −
∫

Ω

ψ(·, T )δu(·, T ) dx+

∫
Ω

ψ(·, 0)δu(·, 0) dx+

∫ T

0

∫
Ω

(∂tψ + d∆ψ + v · ∇ψ)δu dxdt,

where we took into account (2.2) and the fact that we are assuming v to be constant. Hence, we obtain from
(2.2) that

δL(u, ψ) =

∫
Ω

(u(·, T )− uT − ψ(·, T ))δu(·, T ) dx+

∫
Ω

(τu0 + λu0
+ ψ(·, 0))δu0 dx

+

∫ T

0

∫
Ω

(∂tψ + d∆ψ + v · ∇ψ)δu dxdt

or, equivalently,

δL(u, ψ) =

∫
Ω

(
τu0 + λu0

+ ψ(·, 0)
)
δu0 dx

with the constraint that ψ is a solution of the adjoint (backward) equation
∂tψ + d∆ψ + v · ∇ψ = 0, (x, t) ∈ Ω× (0, T ),

ψ = 0, (x, t) ∈ ∂Ω× (0, T ),

ψ(·, T ) = u(·, T )− uT := ψT , x ∈ Ω.

(2.3)
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This, in particular, implies that the gradient ∇J(u0) is given by the expression

∇J(u0) = ψ(·, 0) + τu0 + λu0
.(2.4)

The above discussions lead to the following result.

Theorem 2.2. Suppose that u∗0 ∈ L2(Ω) is the unique solution of the optimal control problem (1.5). Then,
the following first-order optimality condition holds:

(2.5) ψ∗(·, 0) + τu∗0 + λ∗u0
= 0,

where λ∗u0
∈ ∂ϕ(u∗0), and ψ∗ is the corresponding adjoint variable that is the successive solution of the state

equation (1.1) and the adjoint equation (2.3) provided the initial datum u∗0.

2.3. Structural properties of u∗0. Recall that λ∗u0
∈ ∂ϕ(u∗0) = β∂

∫
Ω
|u∗0|dx. Moreover, it follows from the

results of [30] that

λ∗u0
∈ βsign(u∗0),

where the set-valued function sign(·) is given by

sign(v) =


v

|v|
, if v 6= 0,

{η : |η| ≤ 1}, otherwise.

Then, one can consider the optimality condition (2.5) for all x ∈ Ω and get a pointwise relation of u∗0 and
ψ∗(·, 0) as displayed in Figure 2. To be concrete, for any x ∈ Ω, we have

u∗0(x) =
1

τ
(−ψ∗(x, 0)− β), if u∗0(x) > 0,

u∗0(x) =
1

τ
(−ψ∗(x, 0) + β), if u∗0(x) < 0,

|ψ∗(x, 0)| ≤ β, if u∗0(x) = 0,

which implies that

u∗0(x) = −sign(ψ∗(x, 0)) max

{
1

τ

(
|ψ∗(x, 0)| − β

)
, 0

}
.

Figure 2. Relationship between ψ∗(x, 0) and u∗0(x).

ψ∗(x, 0)

u∗0(x)

-β β

u∗0(x) = − 1
τ ψ
∗(x, 0) + β

τ

u∗0(x) = − 1
τ ψ
∗(x, 0)− β

τ

We thus have the following structural property of u∗0.

Theorem 2.3. Let u∗0 ∈ L2(Ω) be the unique solution of problem (1.5), and ψ∗ be the corresponding adjoint
variable. Then, for a.e. x ∈ Ω, we have that |ψ∗(x, 0)| ≤ β implies u∗0(x) = 0, which promotes the sparsity
property of u∗0.

When β is sufficient large, using some similar arguments as those in [46], we can prove that u∗0 = 0 on
the whole domain Ω.
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Theorem 2.4. Let L : L2(Ω) → L2(Ω) be the solution operator associated with the diffusion-advection
equation (1.1), i.e. Lu0 = u(·, T ), and let L∗ denote its adjoint. Let β0 := ‖L∗uT ‖L∞(Ω), where L∗uT is the
solution of (2.3) with ψ(·, T ) = uT . Then, if β ≥ β0, the unique solution of problem (1.5) is u∗0 = 0.

Proof. We first note that, with Lu0 = u(·, T ), the objective functional J(u0) in (1.5) can be rewritten as

J(u0) =
1

2

∫
Ω

|Lu0 − uT |2 dx+
τ

2

∫
Ω

|u0|2 dx+ β

∫
Ω

|u0| dx.

Then, it is easy to obtain that

J(u0)− J(0) =
1

2

∫
Ω

|Lu0|2 dx−
∫

Ω

Lu0uT dx+
τ

2

∫
Ω

|u0|2 dx+ β

∫
Ω

|u0| dx

=
1

2
‖Lu0‖2L2(Ω) −

∫
Ω

u0L∗uT dx+
τ

2
‖u0‖2L2(Ω) + β‖u0‖L1(Ω)

≥ 1

2
‖Lu0‖2L2(Ω) − ‖u0‖L1(Ω)‖L∗uT ‖L∞(Ω) +

τ

2
‖u0‖2L2(Ω) + β‖u0‖L1(Ω)

=
1

2
‖Lu0‖2L2(Ω) + (β − ‖L∗uT ‖L∞(Ω))‖u0‖L1(Ω) +

τ

2
‖u0‖2L2(Ω).

If β ≥ β0, we have that J(0) ≤ J(u0) for any u0 ∈ L2(Ω), which implies that the unique solution of
problem (1.5) is u∗0 = 0. �

Moreover, for β = 0, it follows from (2.5) that u∗0 is not zero whenever ψ∗(·, 0) is not zero. Typically in
this case, u∗0 is nonzero almost everywhere in Ω. Therefore, we can tune β in the interval (0, β0) to get an
optimal control u∗0 with small support.

3. A generalized primal-dual algorithm for the optimal control problem (1.5)

In this section, we propose a generalized primal-dual algorithm for the optimal control problem (1.5) and
delineate its implementation details. We are inspired by a number of existing works including [9, 20, 22, 26].

3.1. Primal-dual algorithms. Let us define

f(Lu0) =
1

2

∫
Ω

|Lu0 − uT |2 dx and g(u0) =
τ

2

∫
Ω

|u0|2 dx+ β

∫
Ω

|u0| dx.

Then, the optimal control problem (1.5) can be reformulated as

min
u0∈L2(Ω)

(
f(Lu0) + g(u0)

)
.(3.1)

Introducing an auxiliary variable p ∈ L2(Ω), we can show that (3.1) is equivalent to the saddle point problem:

(3.2) min
u0∈L2(Ω)

max
p∈L2(Ω)

(
g(u0) +

∫
Ω

pLu0 dx− f∗(p)
)
,

where f∗(p) := supq∈L2(Ω)

( ∫
Ω
pq dx− f(q)

)
is the convex conjugate of f(q) and can be specified as

f∗(p) =
1

2

∫
Ω

|p|2 dx+

∫
Ω

puT dx.

If the primal-dual algorithm in [9] is applied to problem (3.2), we readily obtain the following iterative scheme:



uk+1
0 = arg min

u0∈L2(Ω)

(
g(u0) +

∫
Ω

pkLu0 dx+
1

2r
‖u0 − uk0‖2L2(Ω)

)
,(3.3a)

ūk0 = uk+1
0 + θ(uk+1

0 − uk0),(3.3b)

pk+1 = arg max
p∈L2(Ω)

(∫
Ω

pLūk0 dx− f∗(p)−
1

2s
‖p− pk‖2L2(Ω)

)
,(3.3c)
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where θ ∈ [0, 1] is an extrapolation parameter, r > 0 and s > 0 are step sizes of the primal and dual step,
respectively. To ensure the convergence of (3.3), it was required in [9] that

(3.4) rs <
1

‖LL∗‖
.

We refer to, e.g. [10, 24, 26, 43], for some theoretical analysis and generalizations for the original primal-dual
algorithm in [9]. The most interesting case of (3.3) seems to be θ = 1, because it was shown in [26] that the
original primal-dual algorithm in [9] with θ = 1 can be interpreted as an application of the classic proximal
point algorithm (PPA) in [39, 44] and then the relaxation step initiated in [20] from the PPA perspective can
be immediately used to further accelerate its convergence. More specifically, as analyzed in [26], applying the
relaxation idea in [20], we can propose a relaxed version of the algorithm (3.3) with θ = 1 for problem (3.2)
as the following: 

ũk0 = arg min
u0∈L2(Ω)

(
g(u0) +

∫
Ω

pkLu0 dx+
1

2r
‖u0 − uk0‖2L2(Ω)

)
,(3.5a)

ūk0 = 2ũk0 − uk0 ,(3.5b)

p̃ k = arg max
p∈L2(Ω)

(∫
Ω

pLūk0 dx− f∗(p)−
1

2s
‖p− pk‖2L2(Ω)

)
,(3.5c)

uk+1
0 = uk0 − ρ(uk0 − ũk0),(3.5d)
pk+1 = pk − σ(pk − p̃ k),(3.5e)

in which ρ ∈ (0, 2) and σ ∈ (0, 2) are the relaxation parameters from the PPA perspective.

3.2. A generalized primal-dual algorithm for (1.5). Recall that the relaxed primal-dual algorithm (3.5)
is an improvement of the original primal-dual algorithm (3.3) with θ = 1 from the PPA perspective. Now,
we consider extending the relaxation steps (3.5d) and (3.5e) to the general case of (3.3) with θ ∈ (0, 1] for
problem (1.5). The resulting generalized primal-dual algorithm is presented in Algorithm 1. Since the original
primal-dual algorithm (3.3) with θ 6= 1 is not an application of the PPA, the restrictions on ρ and σ should
be more strengthen than just ρ, σ ∈ (0, 2). More specifically, the conditions on ρ and σ are the following:

ρ = σ ∈ (0, 2), if θ = 1,(3.6a)

ρ ∈
(

0, 1 + θ −
√

1− θ
]

and σ =
θ

ρ
, if θ ∈ (0, 1).(3.6b)

Note that we do not discuss the case with θ = 0, because it was shown recently in [23] that the convergence
of (3.3) with θ = 0 is not guaranteed unless some restrictive conditions on the underlying functions and step
sizes are imposed. Algorithm 1 includes both the primal-dual algorithm (3.3) and its relaxed version (3.5) as
special cases.

Algorithm 1 A generalized primal-dual algorithm for (1.5)

input: initial values u0
0 ∈ L2(Ω) and p0 ∈ L2(Ω). Choose constants θ ∈ (0, 1], r > 0 and s > 0 subject to

(3.4), and ρ and σ subject to (3.6).
while not converged do



ũk0 = arg min
u0∈L2(Ω)

(
g(u0) +

∫
Ω

pkLu0 dx+
1

2r
‖u0 − uk0‖2L2(Ω)

)
(3.7a)

ūk0 = ũk0 + θ(ũk0 − uk0)(3.7b)

p̃ k = arg max
p∈L2(Ω)

(∫
Ω

pLūk0 dx− f∗(p)−
1

2s
‖p− pk‖2L2(Ω)

)
(3.7c)

uk+1
0 = uk0 − ρ(uk0 − ũk0)(3.7d)
pk+1 = pk − σ(pk − p̃ k)(3.7e)

end while
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3.3. Implementation of Algorithm 1. In this subsection, we discuss the implementation details of
Algorithm 1. To this end, it is sufficient to focus on the solutions of subproblems (3.7a) and (3.7c).

First of all, we observe that the u-subproblem (3.7a) can be reformulated as

ũk0 = arg min
u0∈L2(Ω)

(
τ

2

∫
Ω

|u0|2 dx+ β

∫
Ω

|u0| dx+
1

2r
‖u0 − uk0 + rL∗pk‖2L2(Ω)

)
,(3.8)

where L∗pk := ζk(·, 0) is the solution at time t = 0 of the following backward equation:
∂tζ

k + d∆ζk + v · ∇ζk = 0, (x, t) ∈ Ω× (0, T ),

ζk = 0, (x, t) ∈ ∂Ω× (0, T ),

ζk(·, T ) = pk, x ∈ Ω.

(3.9)

In addition, it can be readily checked (see e.g., [30]) that problem (3.8) has the following closed-form
solution

ũk0 = S βr
τr+1

(
uk0 − rζk(·, 0)

τr + 1

)
,

where, for any constant γ > 0, we denoted by Sγ the Shrinkage operator defined as

Sγ(a) =


a− γ, a > γ,

0, |a| ≤ γ,
a+ γ, a < −γ.

Concerning the solution of the p-subproblem (3.7c), it can be computed explicitly by taking into account
that p̃k has to satisfy

∇p
(∫

Ω

pLūk0 dx− f∗(p)−
1

2s
‖p− pk‖2L2(Ω)

) ∣∣∣∣
p=p̃k

= 0.

In particular, we have

p̃k =
1

s+ 1
pk +

s

s+ 1

(
Lūk0 − uT

)
,

where Lūk0 := ūk(·, T ) is the solution at time t = T of the equation (1.1).
At each iteration, the main computation of Algorithm 1 only requires the solutions of one forward equation

(1.1) and one backward equation (3.9), and both of them can be efficiently solved by various well-developed
PDE solvers. Hence, Algorithm 1 is easy and computationally cheap to implement.

4. Convergence analysis of Algorithm 1

In this section, we prove the strong global convergence and derive the worst-case O(1/K) convergence rate
measured by the iteration complexity in both the ergodic and non-ergodic senses for Algorithm 1 in the context
of optimal control problems. All the results can be directly extended to the primal-dual algorithm (3.3) and
its relaxed version (3.5) since they are special cases of Algorithm 1 with specific choices of parameters. For
ease of presentation, we denote by (·, ·) the canonical inner product in L2 spaces in the following discussions.

4.1. Preliminaries. Denote (u∗0, p
∗)> ∈ L2(Ω)× L2(Ω) the saddle point of (3.2), which in particular means

that u∗0 is the unique solution of (1.5). Then, the following variational inequalities (VIs) hold (see (2.1) for
the definition of ϕ):

ϕ(u0)− ϕ(u∗0) +
(
u0 − u∗0, τu∗0 + L∗p∗

)
≥ 0, ∀u0 ∈ L2(Ω),(4.1a) (

p− p∗, p∗ + uT − Lu∗0
)
≥ 0, ∀p ∈ L2(Ω).(4.1b)

We observe that the VIs (4.1a) and (4.1b) can be written in a compact form:

(4.2) ϕ(u0)− ϕ(u∗0) +
(
w − w∗, F (w∗)

)
≥ 0, ∀w ∈W,
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where

(4.3) W = L2(Ω)× L2(Ω), w =

(
u0

p

)
, F (w) =

(
τu0 + L∗p

p− Lu0 + uT

)
.

Moreover, a direct calculation shows that, for all w1, w2 ∈W ,(
w1 − w2, F (w1)− F (w2)

)
= ‖p1 − p2‖2L2(Ω) + τ‖u0,1 − u0,2‖2L2(Ω),(4.4)

which implies that F is strongly monotone.
Then, we rewrite also the iterative scheme (3.7a)-(3.7c) in a VI form. For this purpose, we first note that

the optimality conditions of (3.7a) and (3.7c) are

ϕ(u0)− ϕ(ũk0) +
(
u0 − ũk0 , τ ũk0 + L∗pk +

1

r
(ũk0 − uk0)

)
≥ 0, ∀u0 ∈ L2(Ω),(

p− p̃ k, p̃ k + uT − Lūk0 +
1

s
(p̃ k − pk)

)
≥ 0, ∀p ∈ L2(Ω),

respectively. Taking (3.7b) into account, we obtain the following VIs:

ϕ(u0)− ϕ(ũk0) +
(
u0 − ũk0 , τ ũk0 + L∗p̃ k − L∗(p̃ k − pk) +

1

r
(ũk0 − uk0)

)
≥ 0, ∀u0 ∈ L2(Ω),(4.6a) (

p− p̃ k, p̃ k + uT − Lũk0 − θL(ũk0 − uk0) +
1

s
(p̃ k − pk)

)
≥ 0, ∀p ∈ L2(Ω).(4.6b)

To simplify the notation, we define the following matrix-form operators

(4.7) D :=

(
ρI 0
0 σI

)
, G :=

(
1
r I −L∗
−θL 1

sI

)
, K := GD−1, N := G+G∗ −D∗KD.

With the notations in (4.3) and (4.7), the VIs (4.6a) and (4.6b), as well as the correction steps (3.7d) and
(3.7e), can be respectively written in the following compact forms

(4.8) ϕ(u0)− ϕ(ũk0) +
(
w − w̃k, F (w̃k) +G(w̃k − wk)

)
≥ 0, ∀w ∈W,

and

(4.9) wk+1 = wk −D(wk − w̃k).

Using some similar arguments as those in [22], we have the following result.

Lemma 4.1. Let θ ∈ (0, 1], r and s satisfy (3.4), ρ and σ satisfy (3.6). Then, the matrix-form operators K
and N defined in (4.7) are self-adjoint and positive definite, namely,

(4.10)
K = K∗ and (Kw,w) ≥ c1‖w‖2L2(Ω),

N = N ∗ and (Nw,w) ≥ c2‖w‖2L2(Ω), ∀w ∈W,w 6= 0,

where c1 and c2 are two positive constants.

In the following discussions, we denote by ‖w‖A := (Aw,w),∀w ∈W , the norm induced by a self-adjoint
and positive definite matrix-form operator A. Clearly, it follows from (4.10) that the norms ‖w‖K and ‖w‖N ,
∀w ∈W , are well-defined.

4.2. Global convergence of Algorithm 1. In this subsection, we prove the convergence of Algorithm 1
under the conditions (3.4) and (3.6). First, we show that the sequence {wk = (uk0 , p

k)>}k≥1 generated by
Algorithm 1 is strictly contractive.

Theorem 4.2. Let {wk = (uk0 , p
k)>}k≥1 be the sequence generated by Algorithm 1 and w∗ = (u∗0, p

∗)> be
the solution of problem (3.2). Suppose that the conditions (3.4) and (3.6) hold. Then, we have

(4.11) ‖wk+1 − w∗‖2K ≤ ‖wk − w∗‖2K − ‖wk − w̃k‖2N − 2‖p̃ k − p∗‖2L2(Ω) − 2τ‖ũ k0 − u∗0‖2L2(Ω).
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Proof. First of all, it follows from (4.7) and (4.9) that the VI (4.8) can be written as

(4.12) ϕ(u0)− ϕ(ũk0) +
(
w − w̃k, F (w̃k)

)
≥
(
w − w̃k,K(wk − wk+1)

)
, ∀w ∈W.

Then, we apply the identity(
a− b,K(c− d)

)
=

1

2

(
‖a− d‖2K − ‖a− c‖2K

)
+

1

2

(
‖c− b‖2K − ‖d− b‖2K

)
to the right-hand side of (4.12) with

a = w, b = w̃k, c = wk, and d = wk+1.

We thus obtain(
w − w̃k,K(wk − wk+1)

)
=

1

2

(
‖w − wk+1‖2K − ‖w − wk‖2K

)
+

1

2

(
‖wk − w̃k‖2K − ‖wk+1 − w̃k‖2K

)
.(4.13)

Considering the last two terms in (4.13) and using (4.7) and (4.9), we have

‖wk − w̃k‖2K − ‖wk+1 − w̃k‖2K = ‖wk − w̃k‖2K − ‖(wk − w̃k)− (wk − wk+1)‖2K
= ‖wk − w̃k‖2K − ‖(wk − w̃k)−D(wk − w̃k)‖2K

= 2
(
wk − w̃k,KD(wk − w̃k)

)
−
(
D(wk − w̃k),KD(wk − w̃k)

)
= 2
(
wk − w̃k, G(wk − w̃k)

)
−
(
wk − w̃k,D∗KD(wk − w̃k)

)
=
(
wk − w̃k, (G+G∗ −D∗KD)(wk − w̃k)

)
= ‖wk − w̃k‖2N .(4.14)

Combining (4.12), (4.13) and (4.14), we obtain that

ϕ(u0)− ϕ(ũk0) +
(
w − w̃k, F (w̃k)

)
≥ 1

2

(
‖w − wk+1‖2K − ‖w − wk‖2K

)
+

1

2
‖wk − w̃k‖2N , ∀w ∈W.(4.15)

It follows from (4.15) that, for all w ∈W ,

ϕ(ũk0)− ϕ(u0) +
(
w̃k − w,F (w)

)
+
(
w̃k − w,F (w̃k)− F (w)

)
≤ 1

2

(
‖wk − w‖2K − ‖wk+1 − w‖2K

)
− 1

2
‖wk − w̃k‖2N .(4.16)

Moreover, we recall that (see (4.4))(
w̃k − w,F (w̃k)− F (w)

)
= ‖p̃ k − p‖2L2(Ω) + τ‖ũ k0 − u0‖2L2(Ω).

Hence, setting w = w∗ in (4.16), and using (4.2), we finally obtain

‖wk+1 − w∗‖2K ≤ ‖wk − w∗‖2K − ‖wk − w̃k‖2N − 2‖p̃ k − p∗‖2L2(Ω) − 2τ‖ũ k0 − u∗0‖2L2(Ω).

�

Theorem 4.2 shows that the sequence {wk = (uk0 , p
k)>}k≥1 generated by Algorithm 1 is strictly contractive.

This, in turn, implies the convergence of wk to the solution point w∗ of problem (3.2), as we shall see in the
following theorem.

Theorem 4.3. Let {wk = (uk0 , p
k)>}k≥1 be the sequence generated by Algorithm 1 and w∗ = (u∗0, p

∗)> be
the solution of problem (3.2). Suppose that the conditions (3.4) and (3.6) hold. Then, {uk0} converges to u∗0
strongly in L2(Ω) and pk converges to p∗ strongly in L2(Ω).

Proof. First of all, it follows from (4.11) that
∞∑
k=0

(
‖w̃k − wk‖2N + 2‖p̃ k − p∗‖2L2(Ω) + 2τ‖ũ k0 − u∗0‖2L2(Ω)

)
≤ ‖w0 − w∗‖2K.
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This means that the series
∞∑
k=0

(
‖w̃k − wk‖2N + 2‖p̃ k − p∗‖2L2(Ω) + 2τ‖ũ k0 − u∗0‖2L2(Ω)

)
is convergent which, in particular, implies

(4.17) ‖w̃k − wk‖2N → 0, ‖ũ k0 − u∗0‖2L2(Ω) → 0, and ‖p̃ k − p∗‖2L2(Ω) → 0, as k →∞.
Thus

(4.18) p̃ k → p∗, ũ k0 → u∗0, strongly in L2(Ω).

It follows from (4.10) and (4.17) that

‖w̃k − wk‖2L2(Ω) = ‖ũk0 − uk0‖2L2(Ω) + ‖p̃ k − pk‖2L2(Ω) → 0,

which, in particular, yields

‖p̃ k − pk‖2L2(Ω) → 0, and ‖ũ k0 − uk0‖2L2(Ω) → 0, as k →∞.

This, together with (4.18), implies that

pk → p∗, uk0 → u∗0 strongly in L2(Ω).

Our proof is then concluded. �

4.3. Convergence rate of Algorithm 1. In this subsection, we analyze the convergence rate of Algorithm
1. In particular, we establish an O(1/K) worst-case convergence rate in both ergodic and non-ergodic senses.

Recall that an O(1/K) worst-case convergence rate means that an iterate whose accuracy to the solution
under certain criterion is of the order O(1/K) can be found after K iterations of an iterative scheme. This
can also be understood as the need of at most O(1/ε) iterations to find an approximate solution with an
accuracy of ε. Besides, we emphasize that such a convergence rate is in the worst-case nature, meaning that
it provides a worst-case but universal estimate on the speed of convergence. Hence, it does not contradict
with some much faster speeds which might be observed empirically for a specific application (as to be shown
in Section 6).

4.3.1. Convergence rate in the ergodic sense. We first establish the O(1/K) worst-case convergence rate in
the ergodic sense for Algorithm 1 by following the work [25].

Theorem 4.4. Let {wk = (uk0 , p
k)>}k≥1 and {w̃k = (ũk0 , p̃

k)>}k≥1 be the sequences generated by Algorithm
1 and w∗ = (u∗0, p

∗)> be the solution of problem (3.2). For any K ∈ N, define

(4.19) wK =
1

K + 1

K∑
k=0

w̃k and u0,K =
1

K + 1

K∑
k=0

ũk0 .

Then, we have

(4.20) ϕ(u0,K)− ϕ(u∗0) +
(
wK − w∗, F (w∗)

)
≤ 1

2(K + 1)
‖w0 − w∗‖2K.

Proof. Setting w = w∗ in (4.16), it follows from the monotonicity of F that

ϕ(ũk0)− ϕ(u∗0) +
(
w̃k − w∗, F (w∗)

)
≤ 1

2

(
‖wk − w∗‖2K − ‖wk+1 − w∗‖2K

)
.(4.21)

Summing the inequality (4.21) over k = 0, . . .K, we then have

1

K + 1

K∑
k=0

(
ϕ(ũk0)− ϕ(u∗0)

)
+

(
1

K + 1

K∑
k=0

w̃k − w∗, F (w∗)

)
≤ 1

2(K + 1)
‖w0 − w∗‖2K.

Then, from the convexity of ϕ and (4.19), we immediately obtain

ϕ(u0,K)− ϕ(u∗0) +
(
wK − w∗, F (w∗)

)
≤ 1

2(K + 1)
‖w0 − w∗‖2K,

and complete the proof. �
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The above theorem shows that, after K iterations of Algorithm 1, we can find an approximate solution
with an O(1/K) accuracy. This approximate solution is given by wK , and it is the average of all the points
w̃k which can be computed by all the known iterates generated Algorithm 1. Hence, this is an O(1/K)
worst-case convergence rate in the ergodic sense for Algorithm 1.

As a corollary of Theorem 4.4, we have the following convergence rate estimate for Algorithm 1 with
θ = 1.

Corollary 4.5. Let {wk = (uk0 , p
k)>}k≥1 and {w̃k = (ũk0 , p̃

k)>}k≥1 be the sequences generated by Algorithm
1 with θ = 1, and w∗ = (u∗0, p

∗)> be the solution of problem (3.2). For any K ∈ N, wK and u0,K are defined
in (4.19). Then, for a constant c ∈ (0, 2), we have

(4.22) ϕ(u0,K)− ϕ(u∗0) +
(
wK − w∗, F (w∗)

)
≤ 1

2(K + 1)c
‖w0 − w∗‖2

G̃
,

where G̃ is obtained from G in (4.7) by setting θ = 1.

Proof. When θ = 1, the condition (3.6) implies that ρ and σ should be chosen such that ρ = σ ∈ (0, 2).
Moreover, if we let c = ρ = σ, the matrix-form operator K in (4.7) turns out to be c−1G̃. Then, the desired
result (4.22) follows from (4.20) directly. �

The above result implies that, to implement Algorithm 1 with θ = 1, it is beneficial to choose c (i.e., ρ
and σ) as close to 2 as possible, in order to reduce the constant on the right hand side of (4.22) and thus
improve the convergence rate. Moreover, recall that the original primal-dual algorithm (3.3) is obtained by
setting ρ = σ = 1 (i.e., c = 1) in Algorithm 1. Hence, for the specific case of θ = 1, Algorithm 1 converges
faster than the original primal-dual algorithm (3.3), and this will be validated by some numerical experiments
in Section 6.

4.3.2. Convergence rate in the non-ergodic sense. Next, we establish the O(1/K) worst-case convergence
rate in a non-ergodic sense for Algorithm 1 by following the work [27]. For this purpose, we first need to
define a criterion to precisely measure the accuracy of an iterate.

It follows from (4.8) and G = KD that the sequence {wk}k≥1 generated by Algorithm 1 is a solution
point of (4.2) if ‖D(wk − w̃k)‖K = 0. Hence, it is reasonable to use ‖D(wk − w̃k)‖K or ‖D(wk − w̃k)‖2K to
measure the accuracy of an iterate wk to a solution point. We have the following result.

Theorem 4.6. Let {wk = (uk0 , p
k)>}k≥1 and {w̃k = (ũk0 , p̃

k)>}k≥1 be the sequences generated by Algorithm
1 and w∗ = (u∗0, p

∗)> be the solution of problem (3.2). Then, for any K ∈ N, we have

(4.23) ‖D(wK − w̃K)‖2K ≤
1

c0(K + 1)
‖w0 − w∗‖2K.

Proof. We set w = w̃k+1 in (4.8) and obtain

(4.24) ϕ(ũk+1
0 )− ϕ(ũk0) +

(
w̃k+1 − w̃k, F (w̃k) +G(w̃k − wk)

)
≥ 0.

Moreover, we notice that (4.8) also holds for k := k + 1, which yields

ϕ(u0)− ϕ(ũk+1
0 ) +

(
w − w̃k+1, F (w̃k+1) +G(w̃k+1 − wk+1)

)
≥ 0, ∀w ∈W.

Let w = w̃k in the above inequality. Hence, we have that

(4.25) ϕ(ũk0)− ϕ(ũk+1
0 ) +

(
w̃k − w̃k+1, F (w̃k+1) +G(w̃k+1 − wk+1)

)
≥ 0.

Adding up (4.24) and (4.25), and taking into account (4.4), we obtain that(
w̃k − w̃k+1, G(w̃k+1 − wk+1)−G(w̃k − wk)

)
≥ 0.

Furthermore, observing that w̃k − w̃k+1 = w̃k − w̃k+1 + wk − wk + wk+1 − wk+1, the above inequality
yields

(4.26)
(
wk − wk+1, G(w̃k+1 − wk+1)−G(w̃k − wk)

)
≥ 1

2
‖(w̃k − wk)− (w̃k+1 − wk+1)‖2G∗+G,
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where we used the fact that (
w,Gw

)
=

1

2

(
w, (G∗ +G)w

)
, ∀w ∈W.

It follows from (4.7) and (4.9) that (4.26) is equivalent to

(4.27)
(
wk − w̃k,D∗KD

(
(w̃k+1 − wk+1)− (w̃k − wk)

))
≥ 1

2
‖(w̃k − wk)− (w̃k+1 − wk+1)‖2G∗+G.

Applying the identity (
a,K(a− b)

)
=

1

2

(
‖a‖2K − ‖b‖2K + ‖a− b‖2K

)
to the left-hand side of (4.27) with a = D(wk − w̃k) and b = D(wk+1 − w̃k+1), we obtain(

wk − w̃k,D∗KD
(
(w̃k+1 − wk+1)− (w̃k − wk)

))
(4.28)

=
1

2
‖D(wk − w̃k)‖2K −

1

2
‖D(wk+1 − w̃k+1)‖2K +

1

2
‖D(wk − w̃k)−D(wk+1 − w̃k+1)‖2K.

Combining (4.27) and (4.28), we thus obtain

‖D(wk − w̃k)‖2K − ‖D(wk+1 − w̃k+1)‖2K
≥‖(w̃k − wk)− (w̃k+1 − wk+1)‖2G∗+G − ‖D(wk − w̃k)−D(wk+1 − w̃k+1)‖2K
=‖(w̃k − wk)− (w̃k+1 − wk+1)‖2G∗+G−D∗KD ≥ 0.

This implies that the sequence ‖D(wk − w̃k)‖2K is non-increasing, i.e.

(4.29) ‖D(wk+1 − w̃k+1)‖2K ≤ ‖D(wk − w̃k)‖2K, ∀k ≥ 0.

Furthermore, it follows from (4.10) and (4.11) that there exists a positive constant c0 > 0 such that

‖wk+1 − w∗‖2K ≤ ‖wk − w∗‖2K − c0‖D(wk − w̃k)‖2K,

which implies that

(4.30) c0

∞∑
k=0

‖D(wk − w̃k)‖2K ≤ ‖w0 − w∗‖2K.

Therefore, it follows from (4.29) and (4.30) that for any integer K > 0, we have

(K + 1)‖D(wK − w̃K)‖2K ≤
K∑
k=0

‖D(wk − w̃k)‖2K ≤
1

c0
‖w0 − w∗‖2K.

Our proof is then complete. �

We note that the number in the right-hand side of (4.23) is of order O(1/K). Therefore, Theorem 4.6
provides an O(1/K) worst-case convergence rate in a non-ergodic sense for Algorithm 1.

5. A structure enhancement stage for identifying the optimal locations and intensities

As discussed in the introduction, the numerical solution of the optimal control problem (1.5) is not sparse
as desired. This suggests the need of introducing a second procedure to project the obtained non-sparse initial
source into the set of admissible sparse solutions in the form of (1.2) and identify the locations x̂∗ := {x̂∗i }li=1

and the intensities α̂∗ := {α̂∗i }li=1. We thus obtain a two-stage numerical approach for solving Problem 1.1.
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5.1. Optimal locations identification. To identify the optimal locations, we recall (see (1.2)) that the
initial condition to be identified is assumed to be a finite combination of Dirac measures.

It was shown in [41] that the local maxima of |u∗0(x)| fall into the optimal locations. Consequently, one
can identify the optimal locations x̂∗ by solving

(5.1) x̂∗ = arg max
x∈supp(u∗0)

|u∗0(x)|,

where supp(u∗0) denotes the support of u∗0. Recall that by tuning the regularization parameter β, one can
always obtain an optimal control u∗0 with small support. Hence, problem (5.1) is usually low-dimensional and
computationally cheap to solve.

5.2. Optimal intensities identification. In this subsection, we explain how to find the intensities {α̂∗i }li=1

of the initial source once we have identified their locations {x̂∗i }li=1 by solving (5.1). To this end, we first
note that the state equation (1.1) is linear. As a consequence, for any u0(x) =

∑l
i=1 αiδx(xi) with αi ∈ R

and xi ∈ Ω, the solution operator L verifies

Lu0 =

l∑
i=1

αiLδx(xi), xi ∈ Ω.

Recall that we aim at identifying a sparse initial condition u0 such that Lu0 is as close as possible to the
given target uT . Hence, to find the optimal intensities of the initial source, it is sufficient to consider the
following least squares problem:

(5.2) {α̂∗i }li=1 = arg min
{αi}li=1∈Rl

1

2

∥∥∥∥∥
l∑
i=1

αiLδx(x̂∗i )− uT

∥∥∥∥∥
2

L2(Ω)

.

After a suitable space-time discretization, the discretized formulation of (5.2) reads

(5.3) α̂∗ = arg min
α∈Rl

1

2
‖Lα− uT ‖2,

where α = {αi}li=1, the vector uT ∈ RNx is a discretized version of uT with Nx the number of grid points on
Ω, and each column of the matrix L ∈ RNx×l contains the solution of (1.1) with u(x, 0) = δx(x̂∗i ), 1 ≤ i ≤ l.
Note that the support of the desired sparse initial source usually consists of a few points, i.e. l is generally
small. Hence, the dimension of problem (5.3) is low and it can be solved efficiently through various existing
techniques. Here, we suggest to solve the corresponding normal equation

L>Lα̂∗ = L>uT ,(5.4)

to find the vector of intensities α̂∗. Clearly, problem (5.4) is a l × l symmetric positive definite linear system
and can be easily solved.

Finally, with the computed locations {x̂∗i }li=1 and intensities {α̂∗i }li=1, the recovered initial source is thus
given by

û∗0 =

l∑
i=1

α̂∗i δx(x̂∗i ).

5.3. A two-stage numerical approach for Problem 1.1. In view of the above considerations, the
procedure for our initial source identification Problem 1.1 needs to be complemented with the structure
enhancement stage we just described. The complete methodology is given by Algorithm 2.

6. Numerical experiments

In this section, we show several test cases to validate that Algorithm 2 allows identifying the sparse initial
sources accurately from reachable targets or noisy observations, even for some heterogeneous materials or
coupled models. For numerical discretization, we employ the backward Euler finite difference method (with
step size ∆t) for the time discretization and the finite element method (with mesh size ∆x) described in
[41, 48] for the space discretization. All our numerical results have been produced by implementing Algorithm
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Algorithm 2 A two-stage numerical approach for solving Problem 1.1.

procedure SparseIdentification(uT )
compute u∗0 from the optimal control problem (1.5) by Algorithm 1;
compute ψ∗(·, 0) by solving the state equation (1.1) and the adjoint equation (2.3);
find the locations by solving (5.1).
for i = 1, 2, . . . , l do

compute L(:, i) by solving (1.1) with u(x, 0) = δx(x̂∗i )
end for
α̂∗ = (L>L)\L>uT
compute û∗0 =

∑l
i=1 α̂

∗
i δx(x̂∗i )

2 in MATLAB R2016b on a Surface Pro 5 laptop with 64-bit Windows 10.0 operation system, Intel(R)
Core(TM) i7-7660U CPU (2.50 GHz), and 16 GB RAM.

6.1. Generalities. We consider Problem 1.1 on the domain Ω× (0, T ) with Ω = (0, 2)× (0, 1) and T = 0.1;
and we test Algorithm 2 for two scenarios:

Scenario 1: the given function uT is reachable.
Scenario 2: the given function uT is observed with noise.

For each scenario, we further consider the following three cases:
Case I: diffusivity coefficient d = 0.05; advection vector v = (2,−2)> on Ω. In this case, several
initial sources are to be identified in a homogeneous medium, namely, the domain Ω is constituted by
materials with same diffusivity constants.
Case II: diffusivity coefficient d = 0.08 on Ω1 = (0, 1)× (0, 1) and d = 0.05 on Ω2 = (1, 2)× (0, 1);
advection vector v = (1, 2)> on Ω. Here, we consider the advection-diffusion equation modeled in a
heterogeneous medium. To be concrete, the left half subdomain Ω1 = (0, 1)× (0, 1) and the right half
one Ω2 = (1, 2)× (0, 1) are constituted by materials with different diffusivity constants. Consequently,
the dynamics of the problem behaves differently in each of them.
Case III: diffusivity coefficient d = 0.05 on Ω; advection vector v = (0, 0)> on Ω1 = (0, 1)× (0, 1)
and v = (0,−3)> on Ω2 = (1, 2) × (0, 1). This means that we identify several initial sources for
coupled-models, namely, different equations are modeled on the left half (Ω1 = (0, 1)× (0, 1)) and
the right half (Ω2 = (1, 2)× (0, 1)) of the domain Ω. More precisely, the heat equation is used on Ω1

and the diffusion-advection equation is used on Ω2.
The reference initial datum û0 to be recovered for all cases is set as

(6.1) û0 = 100δ(1.5, 0.5) + 85δ(1, 0.75) + 60δ(0.5, 0.5) + 90δ(0.75, 0.25).

We implement the original primal-dual algorithm (3.3) and Algorithm 1 to solve the optimal control
problem (1.5). Both of them are repeated until the following stopping criterion is fulfilled:

ek := max
{
‖uk+1

0 − uk0‖L2(Ω)/‖uk+1
0 ‖L2(Ω), ‖pk+1 − pk‖L2(Ω)/‖pk+1‖L2(Ω)

}
≤ tol

with tol = 10−5 or until we reach a maximum number of iterations kmax = 1000. Moreover, if there are no
other specifications, we always use the following parameters:

• Mesh sizes: ∆x = 0.02 and ∆t = 0.05.
• Regularization parameters: β = (∆x)4, τ = 10−2.
• The original primal-dual algorithm (3.3): θ = 1, r = 6, s = 0.578(≈ 0.999

r‖L∗L‖ ).
• Algorithm 1: θ = 1, r = 6, s = 0.578, ρ = σ = 1.9.
• Initial values: u0

0 = 0, p0 = 0.
Moreover, we compare the numerical efficiency of our approach with the one described in [41], and show

that our methodology yields significant improvements in the performance of the initial source identification
procedure. For completeness, we review the approach in [41] briefly.

In [41], Problem 1.1 was formulated as an optimal control problem but in the absence of an L2-regularization
in the cost functional (that is, taking τ = 0 in (1.5)). To address the resulting optimal control problem
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numerically, a GD approach was employed, which consists of looking for the minimizer u∗0 as the limit
k → +∞ of the following iterative process:

uk+1
0 = uk0 − ηk∇J(uk0).

Moreover, recall that the gradient ∇J(u0) has already been computed in (2.4) and is given by the expression

∇J(u0) = ψ(·, 0) + τu0 + λu0 .

Consequently, the above iterative scheme becomes

uk+1
0 = uk0 − ηk(ψk0 + τuk0 + λuk0 )(6.2)

where ψk0 = ψk(·, 0) with ψk the solution of (2.3).
In (6.2), the parameter ηk > 0 is called the step-size and plays a fundamental role in the convergence of

the scheme. It is by now well-known that, if one takes ηk constant small enough and the objective functional
is sufficiently regular (convex, differentiable, and with Lipschitz gradient), then (6.2) will eventually converge
to the minimum (see, e.g., [42, Section 2.1.5]).

Nevertheless, the choice of a constant step-size is most often not optimal: if ηk is too small, the convergence
velocity of GD may drastically decrease while, if ηk is too large, one can generate overshooting phenomena
and not be able to reach the minimum of J . Hence, in numerical implementations, an adaptive choice of
the step-size is usually introduced (e.g., Armijo line search). In this regard, it is worth recalling that these
adaptive strategies require the evaluation of the objective function value repeatedly, which in our case is
numerically expensive because each one of these evaluations requires solving (1.1). For the above reasons, in
our implementation of GD we always considered a constant step-size although, as we shall see, this choice
contributes to making the GD methodology less efficient.

Finally, it is clear that the computational load of each GD iteration is the same as that of Algorithm 1.
However, we shall stress that the convergence of the GD algorithm can be proved rigorously only in the case
of regular enough objective functionals. In other words, if the gradient presents discontinuities, convergence
is not guaranteed. This is exactly the case of the optimal control problem (1.5), as we already discussed in
Section 2. Notwithstanding that, as we will see in our numerical simulations, the GD methodology is still
capable to compute the correct solution u∗0.

6.2. Reachable target uT . We first test Algorithm 2 for Problem 1.1 where the target function uT is
reachable. In particular, we set the target function uT as the solution of (1.1) at T = 0.1 corresponding to
the initial condition u(x; 0) = û0 in (6.1).

We apply the original primal-dual algorithm (3.3), Algorithm 1, and the GD method in [41] to the
optimal control problem (1.5). The efficiency (in terms of the number of iterations to converge) is collected
in Table 1. First of all, we observe that the iteration numbers of the algorithm (3.3) and Algorithm 1 are
almost unchanged for different cases. We thus conclude that their convergence are robust with respect to the
diffusion coefficient d and the convection coefficient v, at least for the cases we considered. We also observe
from Table 1 that Algorithm 1 improves the numerical efficiency of the original primal-dual algorithm (3.3)
by a factor about 40%, and both of them are more efficient than the GD method.

Table 1. Numerical comparisons (in terms of the number of iterations to converge) of different
algorithms for Cases I-III.

Model (1.5) Model in [41]
Algorithm (3.3) Algorithm 1 GD Algorithm (3.3) Algorithm 1 GD

Case I 53 32 86 629 589 673
Case II 54 32 87 632 612 650
Case III 52 32 87 648 601 667

For comparison purposes, we also implement the original primal-dual algorithm (3.3), Algorithm 1, and
the GD method for the model introduced in [41]. The efficiency of each methodology is once again collected
in Table 1. It is not surprising that a significantly higher number of iterations is required because the model
considered in [41] excludes the term τ

2

∫
Ω
|u0|2 dx and is much more ill-conditioned than (1.5).

18



Furthermore, we recall that Algorithm 1 is described on the continuous level and its convergence property
is analyzed in function spaces. Hence, mesh independent property of Algorithm 1 can be expected in practice,
which means that the convergence behavior is independent of the fineness of the discretization. This is
confirmed by our numerical results presented in Table 2. The same conclusion also applies to the original
primal-dual algorithm (3.3).

Table 2. Iteration numbers with respect to different mesh sizes for Case I
Mesh size ∆t = 0.1,∆x = 0.05 ∆t = 0.05,∆x = 0.02 ∆t = 0.025,∆x = 0.0125 ∆t = 0.0156,∆x = 0.00781

Algorithm (3.3) 61 53 49 46
Algorithm 1 37 32 29 27

For Case I, the recovered initial datum û∗0 by Algorithm 2 and the corresponding final state û∗(·, T ) are
displayed in Figure 3. One can observe that both the locations and the intensities of the initial condition are
recovered very accurately, which validates the effectiveness and efficiency of Algorithm 2.

Figure 3. Sparse initial sources identification by Algorithm 2 for Case I (d = 0.05, v = (2,−2)>

on Ω) with a reachable target uT at T = 0.1.

(a) Reference initial state (front view) (b) Reference initial state (above view) (c) Reachable target uT

(d) Recovered initial state (front view) (e) Recovered initial state (above view) (f) Recovered final state

Similarly, the results in Table 1 show that also in Case II and Case III, Algorithm 1 is the most efficient
one. Moreover, problem (1.5) allows for a much less expensive numerical resolution than the one in [41]. The
recovered initial datum û∗0 by Algorithm 2 and the corresponding final state û∗(·, T ) are displayed in Figure
4 (Case II) and Figure 5 (Case III). We observe that the locations and the intensities of the sparse initial
sources are also recovered very accurately for heterogeneous materials and coupled models.

6.3. Noisy observation uT . In this subsection, we aim to validate the effectiveness and efficiency of
Algorithm 2 for identifying sparse initial sources from some noisy observations. For convenience, we
still consider the reference initial datum û0 in (6.1), and the noisy observations at T = 0.1 are given by
uT = Lu0 + δ, where δ ∈ L2(Ω) is a noise term satisfying

‖Lu0 − uT ‖L2(Ω)

‖Lu0‖L2(Ω)
≈ 10%.

As in the previous subsections, we employ Algorithm 1 to solve the optimal control problem (1.5). We
observe that the iteration numbers of Algorithm 1 for all test cases are almost the same as the reachable
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Figure 4. Sparse initial sources identification by Algorithm 2 for Case II (d = 0.08 on Ω1 =
(0, 1) × (0, 1) and d = 0.05 on Ω2 = (1, 2) × (0, 1); v = (1, 2)> on Ω) with a reachable target uT at
T = 0.1.

(a) Reference initial state (front view) (b) Reference initial state (above view) (c) Reachable target uT

(d) Recovered initial state (front view) (e) Recovered initial state (above view) (f) Recovered final state

Figure 5. Sparse initial sources identification by Algorithm 2 for Case III (d = 0.05 on Ω;
v = (0, 0)> on Ω1 = (0, 1) × (0, 1) and v = (0,−3)> on Ω2 = (1, 2) × (0, 1)) with a reachable target
uT at T = 0.1.

(a) Reference initial state (front view) (b) Reference initial state (above view) (c) Reachable target uT

(d) Recovered initial state (front view) (e) Recovered initial state (above view) (f) Recovered final state

target case. Furthermore, mesh-independent property can also be observed. Hence, we can conclude that the
numerical efficiency of Algorithm 1 is robust with respect to noisy observations.
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The initial datum û∗0 recovered from the noisy observations uT by Algorithm 2 and the associated final
state û∗(·, T ) for Case I-III are respectively presented in Figures 6, 7 and 8. It is easy to observe that both the
locations and the intensities of the sparse initial source are recovered accurately from the noisy observations.

Figure 6. Sparse initial sources identification by Algorithm 2 for Case I (d = 0.05, v = (2,−2)>

on Ω) with a noisy observation uT at T = 0.1.

(a) Reference initial state (front view) (b) Reference initial state (above view) (c) Noisy observation uT

(d) Recovered initial state (front view) (e) Recovered initial state (above view) (f) Recovered final state

Figure 7. Sparse initial sources identification by Algorithm 2 for Case II (d = 0.08 on Ω1 =
(0, 1) × (0, 1) and d = 0.05 on Ω2 = (1, 2) × (0, 1); v = (1, 2)> on Ω) with a noisy observation uT at
T = 0.1.

(a) Reference initial state (front view) (b) Reference initial state (above view) (c) Noisy observation uT

(d) Recovered initial state (front view) (e) Recovered initial state (above view) (f) Recovered final state
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Figure 8. Sparse initial sources identification by Algorithm 2 for Case III (d = 0.05 on Ω;
v = (0, 0)> on Ω1 = (0, 1) × (0, 1) and v = (0,−3)> on Ω2 = (1, 2) × (0, 1)) with a noisy observation
uT at T = 0.1.

(a) Reference initial state (front view) (b) Reference initial state (above view) (c) Noisy observation uT

(d) Recovered initial state (front view) (e) Recovered initial state (above view) (f) Recovered final state

6.4. Long time horizon cases. Our simulations have shown that Algorithm 2 is capable of accurately
recovering the sparse initial source from a reachable target or noisy observation uT at T = 0.1. On the other
hand, if the final time T increases, Problem 1.1 becomes strongly ill-posed and Algorithm 2 cannot identify
a sparse initial condition correctly, as it can be appreciated in Figure 9. We observe that the recovered
final state u∗(T ) is close to the target uT , but the recovered initial source û∗0 and the reference û0 do not
coincide. This validate the extreme ill-posedness of the sparse initial source identification problem in long
time horizons, as it shows that a small perturbation on the final state may cause an arbitrarily large error on
the initial datum.

Figure 9. Sparse initial sources identification by Algorithm 2 for Case I (d = 0.05, v = (2,−2)>

on Ω) with a reachable target uT at T = 1.

(a) Reference initial datum û0 (b) Referene final state uT (c) Recovered initial datum û∗0 (d) Recovered final state u(T )

The above issue caused by long time horizons has also been observed in some research works on Backward
Heat Conduction Problems (BHCPs), see e.g., [37, 40]. Typically, a BHCP aims at estimating an initial
condition of the heat equation for a given final state distribution, which is closely related to Problem 1.1
but without the sparsity assumption (1.2). Based on the group preserving scheme [36], a Lie-group shooting
method was proposed in [13]. When the initial condition to be estimated is smooth or its support is sufficiently
large, this Lie-group shooting method can address BHCPs in long time horizons successfully. However, the
Lie-group shooting method cannot be extended directly to Problem 1.1 because the initial condition to be
recovered therein is nonsmooth and has a support of Lebesgue measure zero. We also combined the group
preserving scheme into Algorithm 2 and obtained a new numerical approach for addressing Problem 1.1. By
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some numerical simulations, we found that this new approach cannot improve the performance of Algorithm
2 when T is large, while it is less efficient than Algorithm 2 when T is small.

Additionally, we note that the admissible final time at which the sparse initial source can be identified
numerically varies from case to case. It is highly related to the diffusivity parameter, the velocity field of the
advection, the geometry of the domain, and the locations and intensities of the initial source to be identified,
etc. To elaborate, we remove two Dirac deltas from (6.1) and consider the following reference initial datum:

û0 = 100δ(1.5, 0.5) + 60δ(0.5, 0.5).

We set d = 0.05 and v = (0, 0)> on Ω, and T = 1. We implement Algorithm 2 to this test case and the
numerical results are reported in Figure 10. We observe that the initial datum can be accurately recovered
from the final target uT at T = 1. Compared with the results in Figure 9, it is easy to see that the admissible
final time varies from case to case.

Figure 10. Sparse initial sources identification by Algorithm 2 for Case III (d = 0.05 and
v = (0, 0)> on Ω) with a reachable target uT at T = 1.

(a) Reference initial state (front view) (b) Reference initial state (above view) (c) Reachable target uT

(d) Recovered initial state (front view) (e) Recovered initial state (above view) (f) Recovered final state

7. Conclusions and Perspectives

In this paper, we discussed the sparse initial source identification of diffusion-advection equations. The
initial source is assumed to be a finite combination of Dirac measures indicating the locations, with their
weights representing the intensities; and the locations and intensities are required to be identified. We
designed an algorithm capable of identifying a sparse initial condition and leading the solution of our model
to match with a prescribed final target in a given time horizon T . The algorithm we proposed to solve the
initial source identification problem is comprised of two stages. Firstly, we formulated an optimal control
problem with a cost functional consisting of three terms:

1. a least squares term seeking for an initial condition u0 such that the corresponding solution, at time
t = T , is as close as possible to the desired target;

2. an L1-regularization term of the initial condition u0 to promote sparsity;
3. an L2-regularization term, introduced to guarantee the well-posedness of the problem while improving

the conditioning of the optimal control problem;
and we introduced a generalized primal-dual algorithm to solve the optimal control problem. Secondly, an
optimization problem in terms of the locations and a least squares fitting corresponding to the intensities are
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considered to find the optimal locations and intensities of the initial source, respectively. In our numerical
simulations, by comparing with the approach in [41], the effectiveness and efficiency of the proposed two-stage
numerical approach were validated by several test cases. We observed that, when the final time is not
large, the initial sources from reachable targets or noisy observations were accurately identified, even for
some heterogeneous materials or coupled models. When the final time becomes larger, the problem becomes
increasingly ill-posed, and the sparse initial source may not be identified correctly. By some preliminary
numerical tests, we found that the admissible final time, at which the sparse initial source can be identified
accurately, varies from case to case. To the best of our knowledge, there is still no numerical approach in the
literature that can address sparse initial source identification problems in arbitrarily long time horizons for
all cases.

Nevertheless, our work left unaddressed several key aspects of initial source identification problems, which
are beyond the scope of the paper and will be subject of future investigation.

1. A natural extension of this work is to design novel and efficient algorithms allowing to address
the sparse initial source identification of advection-diffusion systems in some relatively longer time
horizons. We observe from Figure 9 (c) that the recovered location is close to the boundary of
the domain, and this is mainly caused by the advection, which is the transport of a substance by
bulk motion. Meanwhile, the recovered intensity is affected by the diffusion of the system. Hence,
the sparse initial source identification of diffusion-advection systems can be viewed as a two-scale
process: one is the inverse transport to determine the locations of the initial source, and the other
is to determine the intensities of the initial source from the diffusion process. It is thus natural to
consider some multiscale methods, for which some further investigation is needed.

2. It would be interesting to address a complete analysis of the maximum admissible final time at which
the sparse initial source can still be identified. This is highly related to the diffusivity parameter, the
velocity field of the advection, the geometry of the domain, and the locations and intensities of the
initial source to be identified. For instance, it is easy to see that a smaller diffusivity parameter or
velocity field admits a larger maximum final time.

3. In Section 6, the L2- and L1-regularization parameters were chosen empirically. It is important
to discuss the optimal combination of these two regularizations. In particular, some regularization
parameter choice rules have to be deliberately designed in order to find an optimal balance between
the L2-regularization that aims to avoid ill-conditioning and the L1-regularization that promotes
sparsity.

4. To further simplify the implementation and to improve the numerical efficiency of the proposed
two-stage numerical approach, it would be attractive to address the sparse initial source identification
problem in one shot. In this regard, one may consider modifying the optimal control problem (1.5) by
taking into account the sparsity assumption (1.2) and designing some more sophisticated numerical
approaches for solving the consequent optimal control problem.

5. Finally, it is worth designing algorithms for the sparse initial source identification of equations
that are nonlinear or modeled on more complicated geometries. For instance, recall (5.2) that the
identification of the optimal intensities relies on the linearity of the diffusion-advection equation (1.1).
Hence, the proposed two-stage numerical approach cannot be directly extended to the sparse initial
source identification of nonlinear systems [38] and some more sophisticated techniques have to be
involved in developing efficient numerical algorithms in this specific setting.
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