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MATHEMATICAL CONTROL THEORY,

or

CONTROL ENGINEERING

or simply

CONTROL THEORY?

An interdisciplinary field of research in between Mathematics and En-

gineering with strong connections with Scientific Computing, Tech-

nology, Communications,...



THE ORIGINS:

“. . . if every instrument could accomplish its own work, obey-
ing or anticipating the will of others . . .

if the shuttle weaved and the pick touched the lyre without a
hand to guide them, chief workmen would not need servants,
nor masters slaves.”

Chapter 3, Book 1, of the monograph “Politics” by Aristotle (384-322
B. C.).

Main motivation: The need of automatizing processes to let the hu-
man being gain in liberty, freedom, and quality of life.



Nowadays:

The state equation

A(y) = f(v). (1)

y is the state to be controlled.

v is the control. It belongs to the set of admissible controls Uad .

Roughly speaking the goal is to drive the state y close to a desired

state yd:

y ∼ yd.



In this general functional setting many different mathematical models

feet:

• Linear versus nonlinear problems;

• Deterministic versus stochastic models;

• Finite dimensional versus infinite dimensional models;

• Ordinary Differential Equations (ODE) versus Partial Differential

Equations (PDE).



Several kinds of different control problems may also feet in this frame
depending on how the control objective is formulated:

• Optimal control (related with the Calculus of Variations)

minv∈Uad
||y − yd||2.

• Controllability: Drive exactly the state y to the prescribed one yd.

This is a more dynamical notion.

Several relaxed versions also arise: approximate controllability.

• Stabilization or feedback control. (real time control)

v = F (y); A(y) = f(F (y)).



SOME OF THE KEY INGREDIENTS OF CONTROL THEORY



The concept of feedback. Inspired in the capacity of biological sys-
tems to self-regulate their activities.

Incorporated to Control Engineering in the twenties by the engineers
of the “Bell Telephone Laboratory” but, at that time, it was al-
ready recognized and consolidated in other areas, such as Political
Economics.

Feedback process: the one in which the state of the system deter-
mines the way the control has to be exerted in real time

Nowadays, feedback processes are ubiquitous in applications to Engi-
neering, Economy also in Biology, Psychology, etc.

Cause-effect principle → Cause-effect-cause principle.



• The thermostat;

• The control of aircrafts in flight or vehicles in motion:



• Noise reduction:

http://www.ind.rwth-aachen.de/research/noise reduction.html



Noise reduction is a subject to research in many different fields.

Depending on the environment, the application, the source sig-

nals, the noise, and so on, the solutions look very different. Here

we consider noise reduction for audio signals, especially speech

signals, and concentrate on common acoustic environments such

an office room or inside a car. The goal of the noise reduction is

to reduce the noise level without distorting the speech, thus re-

duce the stress on the listener and - ideally - increase intelligibility.



The need of fluctuations.

“It is a curious fact that, while political economists recog-
nize that for the proper action of the law of supply and de-
mand there must be fluctuations, it has not generally been
recognized by mechanicians in this matter of the steam en-
gine governor. The aim of the mechanical engineers, as is
that of the political economist, should be not to do away
with these fluctuations all together (for then he does away
with the principles of self-regulation), but to diminish them
as much as possible, still leaving them large enough to have
sufficient regulating power.”

H.R. Hall, Governors and Governing Mechanisms, The Technical
Publishing Co., 2nd ed., Manchester 1907.



Accordingly, optimal controls and trajectory are often complex,

non intuitive, difficult to compute or to guess.

Control Theory provides systematic mathematical tools to com-

pute them.



An example: Lagrange multipliers.

min
g(x)=c

f(x).

The answer: critical points x are those for which

∇f(x) = λ∇g(x)

for some real λ.

This is so because ∇g(x) is the normal to the level set in which
minimization occurs. A necessary condition for the point x to be
critical is that ∇f(x) points in this normal direction. Otherwise, if
∇(x) had a nontrivial projection over the level set g(x) = c there
would necessarilly exist a better choice of x for which f(x) would
be even smaller.





Cybernetics.

“Cybernétique” was proposed by the French physicist A.-M. Ampère

in the XIX Century to design the nonexistent science of pro-

cess controlling. This was quickly forgotten until 1948, when

N. Wiener (1894–1964) chose “Cybernetics” as the title of his

book.

Wiener defined Cybernetics as “ the science of control and com-

munication in animals and machines”.

In this way, he established the connection between Control Theory

and Physiology and anticipated that, in a desirable future, engines

would obey and imitate human beings.





In mathematical terms this corresponds to duality in convex anal-

ysis.

To each optimization problem it corresponds a dual one. Solving

the primal one is equivalent to solving the dual one, and viceversa.

But often in practice one is much easier to solve than the other

one.

This duality principle is to be used to always solve the easy one.

PRIMAL =DUAL

CONTROL= COMMUNICATION



ORIGINS

• Irrigation systems, ancient Mesopotamia, 2000 BC.

• Harpenodaptai, ancient Egypt, the string stretchers.

* Primal: The minimal distance between two points is given

by the straight line.

* Dual: The maximal distance between the extremes of a

cord is obtained when the cord is along a straight line.



In mathematical terms, things are not easy:

To minimize the functional∫ 1

0
||x′(t)||dt

among the set of parametrized curves x : [0,1] → R, such that

x(0) = A and x(1) = B.

We easily end up working in the BV class of functions of

bounded variation, out of the most natural and simple con-

text of Hilbert spaces.



• Roman aqueducts. Systems of water transportation endowed

with valves and regulators.



• The pendulum. The works of Ch. Huygens and R. Hooke,

in the end of the XVII century, the goal being measuring in a

precise way location and time, so precious in navigation.



• Regulator of windmills. Applied later by J. Watt (1736-1819),

to the steam engine, the motor of industrial revolution.



The first mathematical rigorous analysis of the stability prop-

erties of the steam engine was done by Lord J. C. Maxwell, in

1868.

The explanation of some erratic behaviors was explained. Until

them it was not well understood why apparently more ellabo-

rated and perfect regulators could have a bad behavior.

The reason is now refered to as the overdamping phenomenon.

Consider the equation of the pendulum:

x′′ + x = 0.

This describes a pure conservative dynamics: the energy

e(t) =
1

2
[x2(t) + |x′(t)|2]



is constant in time.

Let us now consider the dynamics of the pendulum in presence
of a friction term:

x′′ + x = −kx′,

k being a positive constant k > 0.

The energy decays exponentially. But the decay rate does not
necessarily increase with the damping parameter k despite of
the following energy disspation law:

de(t)

dt
= −k|x′(t)|2.

Indeed, computed the eigenvalues of the characteristic equa-
tion one finds:

λ± = [−k ±
√

k2 − 4]/2.



It is easy to see that λ+ increases as k > 2 increases.

This confirms the prediction that optimal controls and strate-

gies are often complex and that they do not necessarily obey

to the very first intuition.



• Automatic control. The number of applications rapidly in-

creased in the thirties covering different areas like amplifiers in

telecommunications, distribution systems in plants, stabiliza-

tion of aeroplanes, electrical mechanisms in paper production,

petroleum and stell industry,...



By that time there were two clear and disntic approaches:

• State space approach, based on modelling by means of Ordi-

nary Differential equations (ODE);

• The frequency domain approach, based in the Fourier repre-

sentation of signals.

PHYSICAL SPACE ≡ FREQUENCY SPACE

But after the second world war it was discovered that most phys-

ical systems were nonlinear and nondeterministic.



IMPORTANT CONTRIBUTIONS WERE MADE IN THE 60’s:

• Kalman and his theory of filtering and algebraic approach to

the control of systems;

• Pontryagin and his maximum principle: A generalization of

Lagrange multipliers.

• Bellman and his principle of dynamic programming:

A trajectory is optimal if it is optimal at every time.



Kalman and the controllability of finite dimensional linear sys-

tems

Let n, m ∈ N∗ and T > 0. Consider the following finite dimen-

sional system:{
x′(t) = Ax(t) + Bu(t), t ∈ (0, T ),

x(0) = x0.
(2)

A is a real n×n matrix, B is a real n×m matrix and x0 a vector

in Rn. The function x : [0, T ] −→ Rn represents the state and

u : [0, T ] −→ Rm the control. Both are vector functions of n

and m components respectively depending exclusively on time

t. Obviously, in practice m ≤ n. The most desirable goal is, of

course, controlling the system by means of a minimum number

m of controls.



Given an initial datum x0 ∈ Rn and a vector function u ∈
L2(0, T ;Rm), system (2) has a unique solution x ∈ H1(0, T ;Rn)

characterized by the variation of constants formula:

x(t) = eAtx0 +
∫ t

0
eA(t−s)Bu(s)ds, ∀t ∈ [0, T ]. (3)

System (2) is exactly controllable in time T > 0 if given any

initial and final one x0, x1 ∈ Rn there exists u ∈ L2(0, T, Rm)

such that the solution satisfies x(T ) = x1.

According to this definition the aim of the control process

consists in driving the solution x from the initial state x0 to

the final one x1 in time T by acting on the system through the

control u.



Example 1. Consider the case

A =
(1 0

0 1

)
, B =

(1

0

)
. (4)

Then the system

x′ = Ax + Bu

can be written as {
x′1 = x1 + u

x′2 = x2,

or equivalently, {
x′1 = x1 + u
x2 = x0

2e
t,

where x0 = (x0
1, x

0
2) are the initial data.

This system is not controllable since the control u does not act on the

second component x2 of the state which is completely determined by the

initial data x0
2.,



Example 2. By the contrary, the equation of the harmonic oscillator is
controllable

x′′ + x = u. (5)

The matrices A and B are now respectively

A =
( 0 1

−1 0

)
, B =

(0

1

)
.

Once again, we have at our disposal only one control u for both components

x and y of the system. But, unlike in Example 1, now the control acts in

the second equation where both components are present.



The answer to the problem does not depend simply on the

number of controls M and the number of states N to be con-

trolled, but rather on how the controller B is chosen in terms

of the dynamics A of the matrix.

Más vale maña que fuerza.



Observability property

Let A∗ be the adjoint matrix of A, i.e. the matrix with the
property that 〈Ax, y〉 = 〈x, A∗y〉 for all x, y ∈ Rn. Consider the
following homogeneous adjoint system of (2):{

−ϕ′ = A∗ϕ, t ∈ (0, T )
ϕ(T ) = ϕT .

(6)

Multiplying the state equation by the adjoint state ϕ, if x(T ) ≡
0 we get ∫ T

0
〈u, B∗ϕ〉dt + 〈x0, ϕ(0)〉 = 0, ∀ϕ. (7)

This is a linear system of n equations. The unkown u belongs
to (L2(0, T ))m, which is an infinite-dimensional space.



Identity (7) is in fact an optimality condition for the critical

points of the quadratic functional J : Rn → Rn,

J(ϕT ) =
1

2

∫ T

0
| B∗ϕ |2 dt + 〈x0, ϕ(0)〉

where ϕ is the solution of the adjoint system (6) with initial

data ϕT at time t = T .

Lemma 1 Suppose that J has a minimizer ϕ̂T ∈ Rn and let ϕ̂

be the solution of the adjoint system (6) with initial data ϕ̂T .

Then

u = B∗ϕ̂ (8)

is a control of system (2) with initial data x0.



A necessary and sufficient condition for that is J to be coercive.

∫ T

0
| B∗ϕ |2 dt ≥ c | ϕ(0) |2, (9)

for all ϕT ∈ Rn, ϕ being the corresponding solution of (6).

In the sequel (9) will be called the observation or observability

inequality. When it holds the adjoint system is observable.

It guarantees that the solution of the adjoint problem at t = 0 is

uniquely determined by the observed quantity B∗ϕ(t) for 0 < t < T .

In other words, the information contained in this term completely

characterizes the solution of (6).



CONTROLLABILITY OF THE STATE EQUATION

≡

OBSERVABILITY OF THE ADJOINT SYSTEM.

This is a rigorous mathematical expression of Wiener’s principle

of Cybernetics: communication=control.



Kalman’s controllability condition

Theorem 1 System (2) is exactly controllable in some time T if

and only if

rank [B, AB, · · · , An−1B] = n. (10)

Consequently, if system (2) is controllable in some time T > 0 it

is controllable in any time.



The “miracle” is that an strategic choice of B, even if it repre-

sentes a single control (M = 1) may allow controlling an arbitrarily

large number of components (N as large as we wish).

This is the so-called trigger effect or efecto dominó.



Remark 1 The set of controllable pairs (A, B) is open and dense.

This means that

• Most systems are controllable;

• The controllability property is robust, i. e. it is invariant under

small perturbations of A and/or B.



RECENET IMPORTANT FURTHER DEVELOPMENTS:

• Nonlinear problems;

Lie brackets: Think on how park or unpark your car...

• Stochastic models;

Human beings introduce more uncertainty in already uncertain
systems...

• Infinite dimensional systems = Partial Differential Equations
(PDE), also refered to as Distributed Parameter Systems. The
models in Continuum Mechanics....



In the PDE context itself a lot of work has been done distin-
guishing elliptic, parabolic and hyperbolic equations, and also for
more sophisticated systems arising in fluid-structure interaction,
thermoelasticity, multi-link structures,...

But, there is an important jump between the finite-dimensional
theory of Kalman and the PDE theory.

FROM FINITE TO INFINITE DIMENSIONS

This problem is conceptually and technically difficult. This is
particularly the case for hyperbolic problems in which the dynamics
is purely conservative.

The situation is better for parabolic equations in which the intrin-
sic dissipative nature of the system introduces some simplification
of the dynamics.





IS PDE CONTROL RELEVANT?

The answer is, definitely, YES.

Let us mention some examples in which the wave equation is

involved in a way or another.

• Noise reduction in cavities and vehicles.

Typically, the models involve the wave equation for the acoustic

waves coupled with some other equations modelling the dynam-

ics of the boundary structure, the action of actuators, possibly

through smart mechanisms and materials.



• Quantum control and Computing.

Laser control in Quantum mechanical and molecular systems to

design coherent vibrational states.

In this case the fundamental equation is the Schrödinger one.

Most of the theory we shall develop here applies in this case too.

The Schrödinger equation may be viewed as a wave equation

with inifnite speed of propagation.



P. Brumer and M. Shapiro, Laser Control of Chemical reactions,

Scientific American, March, 1995, pp.34-39.



• Seismic waves, earthquakes.

F. Cotton, P.-Y. Bard, C. Berge et D. Hatzfeld, Qu’est-ce qui

fait vibrer Grenoble?, La Recherche, 320, Mai, 1999, 39-43.



• Flexible structures.

SIAM Report on “Future Directions in Control Theory. A Math-

ematical Perspective”, W. H. Fleming et al., 1988.



• An many others...

Control in an information rich World, SIAM, 2003.



CONTROL THEORY is full of challenging, difficult and interest-

ing mathematical problems.

Control is continuously enriched by the permanent interaction with

applications.

This interaction works in both directions:

* mathematical control theory provides the understanding allowing

to improve real-life control mechanisms;

* Applications provide and bring new mathematical problems of

increasing complexity.













AN OPEN PROBLEM



The 1-d wave equation, with Dirichlet boundary conditions, de-
scribing the vibrations of a flexible string, with control one one
end: 

ytt − yxx = 0, 0 < x < 1, 0 < t < T
y(0, t) = 0; y(1, t) =v(t), 0 < t < T

y(x,0) = y0(x), yt(x,0) = y1(x), 0 < x < 1

y = y(x, t) is the state and v = v(t) is the control.

The goal is to stop the vibrations, i.e. to drive the solution to
equilibrium in a given time T : Given initial data {y0(x), y1(x)} to
find a control v = v(t) such that

y(x, T ) = yt(x, T ) = 0, 0 < x < 1.

We know that this property holds if and only if T ≥ 2.



The problem being linear it can be reduced to an observability

inequality (J. L. Lions’ Hilbert Uniqueness method (HUM)).



The open problem is: is the same true for the nonlinear wave

equation?
ytt − yxx + y3 = 0, 0 < x < 1, 0 < t < T
y(0, t) = 0; y(1, t) =v(t), 0 < t < T

y(x,0) = y0(x), yt(x,0) = y1(x), 0 < x < 1

So far we know that for any data {y0(x), y1(x)}, controllability can

be reached if T is LARGE ENOUGH. But it is unknown whether

this can be done in a time which is independent of the data!






