Assistant Professor | Senior Scientist
hannes.meinlschmidt@math.fau.de
Room 03.330 | Friedrich-Alexander-Universität Erlangen-Nürnberg. FAU DCN-AvH Chair for Dynamics, Control, Machine Learning and Numerics – Alexander von Humboldt Professorship.
+49 9131 85-67128
I am an assistant professor (W1) at the chair for Dynamics, Control, Machine Learning and Numerics at FAU Friedrich- Alexander-Universität Erlangen-Nürnberg since March 2021. I am working on optimal control of partial differential equations and applied analysis in general. I obtained both my Diploma (Oct 2011) and PhD (Mar 2017) in mathematics at TU Darmstadt, Germany; my PhD supervisor was Stefan Ulbrich. I then moved to RICAM in Linz, Austria, for a PostDoc position in the “Optimization and Optimal Control” group of Karl Kunisch, in Sept 2017.
My research interests concern problems at the intersection of (optimal) control and optimization with the analysis of PDEs. This includes regularization aspects on the optimization side and regularity theory for elliptic and parabolic evolution equations on the analysis side. The research questions I consider are motivated mostly by optimal control problems subject to strongly nonlinear (coupled systems of) time- dependent PDEs, or real-world applications with nonsmooth data.
PhD Thesis: Analysis and Optimal Control of Quasilinear Parabolic Evolution Equations on Rough Domains (March 20, 2017)
Teaching
• WS 22/23: Lecture „Optimization with PDEs”
• WS 22/23: Seminar on „Interpolation theory and function spaces”
• SS 21/22: Partielle Differentialgleichungen I
• WS 21/22: Partielle Differentialgleichungen II
• WS 20/21: A Primer on Functional Analytic Methods for PDE. Seminar “Evolution Equations”
Akademy
Lecture notes: A primer on functional Analytic methods for PDEs
My posters
Parabolic Problems Arising in Real-World Applications
Publications
2024
GLOBAL-IN-TIME SOLUTIONS AND HÖLDER CONTINUITY FOR QUASILINEAR PARABOLIC PDES WITH MIXED BOUNDARY CONDITIONS IN THE BESSEL DUAL SCALE
In: Evolution Equations and Control Theory 13 (2024), p. 1250-1286
ISSN: 2163-2480
DOI: 10.3934/eect.2024025
BibTeX: Download , , :
A variational approach to Continuous Time Dynamic Models
In: Mark Stemmler, Wolfgang Wiedermann, Francis Huang (ed.): Dependent Data in Social Sciences Research - Forms, Issues and Methods of Analysis (second edition), Cham: Springer, 2024
ISBN: 978-3-031-56317-1
BibTeX: Download , , :
2021
Extrapolated elliptic regularity and application to the van Roosbroeck system of semiconductor equations
In: Journal of Differential Equations 280 (2021), p. 375-404
ISSN: 0022-0396
DOI: 10.1016/j.jde.2021.01.032
BibTeX: Download , :
2020
On the numerical range of second-order elliptic operators with mixed boundary conditions in Lp
In: Journal of Evolution Equations (2020)
ISSN: 1424-3199
DOI: 10.1007/s00028-020-00642-6
BibTeX: Download , , :
Optimal control of an energy-critical semilinear wave equation in 3D with spatially integrated control constraints
In: Journal De Mathematiques Pures Et Appliquees 138 (2020), p. 46-87
ISSN: 0021-7824
DOI: 10.1016/j.matpur.2020.03.006
BibTeX: Download , :
Regularization for optimal control problems associated to nonlinear evolution equations
In: Journal of Convex Analysis 27 (2020), p. 443-485
ISSN: 0944-6532
URL: https://www.heldermann.de/JCA/JCA27/JCA272/jca27025.htm
BibTeX: Download , , :
Optimal control of an abstract evolution variational inequality with application in homogenized plasticity
In: Journal of Nonsmooth Analysis and Optimization 1 (2020)
ISSN: 2700-7448
DOI: 10.46298/jnsao-2020-5800
URL: https://jnsao.episciences.org/6467
BibTeX: Download , , :
2019
Higher regularity for solutions to elliptic systems in divergence form subject to mixed boundary conditions
In: Annali Di Matematica Pura Ed Applicata 198 (2019), p. 1227-1241
ISSN: 0373-3114
DOI: 10.1007/s10231-018-0818-9
BibTeX: Download , , :
2018
The full Keller-Segel model is well-posed on nonsmooth domains
In: Nonlinearity 31 (2018), p. 1560-1592
ISSN: 0951-7715
DOI: 10.1088/1361-6544/aaa2e1
BibTeX: Download , , :
2017
Analysis and Optimal Control of Quasilinear Parabolic Evolution Equations in Divergence Form on Rough Domains (Dissertation, 2017)
BibTeX: Download :
Optimal control of the thermistor problem in three spatial dimensions, part 1: Existence of optimal solutions
In: SIAM Journal on Control and Optimization 55 (2017), p. 2876-2904
ISSN: 0363-0129
DOI: 10.1137/16M1072644
BibTeX: Download , , :
Optimal control of the thermistor problem in three spatial dimensions, part 2: Optimality conditions
In: SIAM Journal on Control and Optimization 55 (2017), p. 2368-2392
ISSN: 0363-0129
DOI: 10.1137/16M1072656
BibTeX: Download , , :
2016
Hölder-estimates for non-autonomous parabolic problems with rough data
In: Evolution Equations and Control Theory 5 (2016), p. 147-184
ISSN: 2163-2480
DOI: 10.3934/eect.2016.5.147
BibTeX: Download , :