FAU MoD Lecture: Optimization-based control for large-scale and complex systems: When and why does it work?
Date: Thu. June 5, 2025
Event: FAU MoD Lecture
Organized by: FAU MoD, the Research Center for Mathematics of Data at Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany)
FAU MoD Lecture: Optimization-based control for large-scale and complex systems: When and why does it work?
Speaker: Prof. Dr. Lars Grüne
Affiliation: Universität Bayreuth (Germany)
Abstract. Model Predictive Control (MPC) and Reinforcement Learning (RL) are two of the most prominent methods for computing control laws based on optimization. In both cases, the resulting controllers approximate infinite-horizon optimal controllers, where the objective of the optimization may range from stabilization of a set-point to energy efficiency to yield maximization. However, for both methods the computational effort may make their application infeasible for large-scale or complex problems. In this talk we explain the basic functioning of both methods and then present situations in which the methods provably work well, by identifying beneficial structures of the solutions of optimal control problems. In the case of MPC we focus on the so-called turnpike property of optimal trajectories, while for Deep RL (i.e., RL with deep neural networks as approximators) we look at the compositional structure of optimal value functions. Examples from academia and a use case from industry illustrate the theoretical findings.
OUR SPEAKER
Lars Grüne has been Professor for Applied Mathematics at the University of Bayreuth, Germany, since 2002. He received his Diploma and Ph.D. in Mathematics in 1994 and 1996, respectively, from the University of Augsburg and his habilitation from the J.W. Goethe University in Frankfurt/M in 2001. He held visiting positions at the Universities of Rome Sapienza (Italy), Padova (Italy), Melbourne (Australia), Paris IX – Dauphine (France), Newcastle (Australia) and IIT Bombay (India). Prof. Grüne was General Chair of the 25th International Symposium on Mathematical Theory on Networks and Systems (MTNS 2022), he is Editor-in-Chief of the journal Mathematics of Control, Signals and Systems (MCSS) and is or was Associate Editor of various other journals, including the Journal of Optimization Theory and Applications (JOTA), Mathematical Control and Related Fields (MCRF) and the IEEE Control Systems Letters (CSS-L). His research interests lie in the area of mathematical systems and control theory with a focus on numerical and optimization-based methods for nonlinear systems.
AUDIENCE
This is a hybrid event (On-site/online) open to: Public, Students, Postdocs, Professors, Faculty, Alumni and the scientific community all around the world.
WHEN
Thu. June 5, 2025 at 15:00H (Berlin time)
WHERE
On-site / Online
[On-site] Friedrich-Alexander-Universität Erlangen-Nürnberg.Room TBA
Cauerstraße 11, 91058 Erlangen [Online] https://go.fau.de/1bcfg
Meeting ID: 667 9081 1368 | PIN code: 716845
Link to share this event: https://go.fau.de/1bddc
You might like:
• FAU MoD Lectures
• FAU MoD Lecture: Measuring productivity and fixedness in lexico-syntactic constructions by Prof. Dr. Stephanie Evert
• FAU MoD Lecture: New avenues for the interaction of computational mechanics and machine learning by Prof. Dr. Paolo Zunino
• FAU MoD Lecture: Discovering and Communicating Excellence by Prof. Dr. Ute Klammer
• FAU MoD Lecture: Thoughts on Machine Learning by Prof. Dr. Rupert Klein
• FAU MoD Lecture: Using system knowledge for improved sample efficiency in data-driven modeling and control of complex technical systems by Prof. Dr. Sebastian Peitz
• FAU MoD Lecture: Image Reconstruction – The Dialectic of Modelling and Learning by Prof. Dr. Martin Burger
• FAU MoD Lecture: The role of Artificial Intelligence in the future of mathematics by Prof. Dr. Amaury Hayat
• FAU MoD Lecture: FAU MoD Lecture. Special November 2023 by Prof. Dr. Michael Kohlhase and Prof. Dr. Edriss S. Titi
• FAU MoD Lecture: Free boundary regularity for the obstacle problem by Prof. Dr. Alessio Figalli
• FAU MoD Lecture: Physics-Based and Data-Driven-Based Algorithms for the Simulation of the Heart Function by Prof. Dr. Alfio Quarteroni
• FAU MoD Lecture: From Physics-Informed Machine Learning to Physics-Informed Machine Intelligence: Quo Vadimus? by Prof. Dr. George Karniadakis
• FAU MoD Lecture: From Alan Turing to contact geometry: Towards a “Fluid computer” by Prof. Dr. Eva Miranda
• FAU MoD Lecture: Applications of AAA Rational Approximation by Prof. Dr. Nick Trefethen
• FAU MoD Lecture: Learning-Based Optimization and PDE Control in User-Assignable Finite Time by Prof. Dr. Miroslav Krstic
_
Don’t miss out our last news and connect with us!