Skip to content
Back Home
  • Home
  • The Chair
    • About
    • Our Head
    • Our Team
    • Contact
    • Past Members
  • Research
    • Publications
    • Projects
    • Teaching
    • Initiatives
    • Posts on Math and Research
    • Contributors
  • Join us!
    • Careers
    • Events
    • Past Events
  • Resources
    • Seminars / Lectures
    • Math to go!
    • Academy
    • GitHub
  • Search
Back Home
  • Search
  • Home
  • The Chair
    • About
    • Our Head
    • Our Team
    • Contact
    • Past Members
  • Research
    • Publications
    • Projects
    • Teaching
    • Initiatives
    • Posts on Math and Research
    • Contributors
  • Join us!
    • Careers
    • Events
    • Past Events
  • Resources
    • Seminars / Lectures
    • Math to go!
    • Academy
    • GitHub

Robust neural ODEs

Published June 20, 2022

The code implements the gradient regularization method of robust training in the setting of neural ODEs.
Various jupyter notebooks are included that generate plots comparing standard to robust training for 2d point clouds.

Code:

A good starting point is robustness_plots.ipynb

Code is based on GitHub: borjanG : 2021-dynamical-systems that uses the torchdiffeq package GitHub : rtqichen: torchdiffeq

 

|| Go to the Math & Research main page

You may also like

Published September 30, 2022

Approximating the 1D wave equation using Physics Informed Neural Networks (PINNs)

Approximating the 1D wave equation using Physics Informed Neural Networks (PINNs)   Introduction Accurate and fast predictions of numerical solutions are of […]

Published December 16, 2021

Hamilton-Jacobi Equations: Inverse Design

Author: Carlos Esteve, Deusto CCM Code: In a previous post “Inverse Design For Hamilton-Jacobi Equations“, described all the possible initial states that […]

Published August 5, 2022

Gas networks at stationary states: Analysis, software and visualization

Gas networks at stationary states: Analysis, software and visualization Code: Files to run: nocircle.m, onecircle.m or twocircles.m   1 Introduction This post […]

Published July 12, 2023

The ADMM-PINNs Algorithmic Framework for Nonsmooth PDE-Constrained Optimization: A Deep Learning Approach

The ADMM-PINNs Algorithmic Framework for Nonsmooth PDE-Constrained Optimization: A Deep Learning Approach Motivation This post shows the source code from the paper […]

Post navigation

  • Previous post Optimal design of sensors and actuators by E. Zuazua
  • Back to post list
  • Next post Mini-workshop: “Recent Advances in Analysis and Control”
Last news
  • JLU Short course: PDEs Meet Machine Learning: Integrating Numerics, Control, and Machine Learning by E. Zuazua
  • Approximation Theory and applications of semi-autonomous Neural ODEs
  • Workshop on Recent Trends in Applied Mathematics and Machine Learning 2025
  • FAU MoD Lecture: Exemplary applications of Machine Learning and optimization in quantum chemistry
  • Control of a Lotka-Volterra System with Weak Competition

©  2019 - 2025  – All rights reserved - FAU DCN-AvH Chair for Dynamics, Control and Numerics - Alexander von Humboldt Professorship at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany Imprint | Privacy | Accessibility | Contact