Date: Wed. December 1, 2021
Organized by: FAU DCN-AvH, Chair for Dynamics, Control and Numerics – Alexander von Humboldt Professorship at FAU Erlangen-Nürnberg (Germany)
Title: Estimation of extreme event probabilities in systems governed by PDEs

Speaker: Prof. Dr. Georg Stadler
Affiliation: Courant Institute of Mathematical Sciences, New York University (USA)

Abstract. We propose methods for the estimation of extreme event probabilities in complex systems governed by PDEs. Our approach is guided by ideas from large deviation theory (LDT) and borrows methods from PDE-constrained optimization. The systems under consideration involve random parameters and we are interested in quantifying the probability that a scalar quantity of interest is at or above a threshold. The proposed methods initially solve an optimization problem over the set of parameters leading to the extreme event. Based on solutions of this PDE-constrained optimization problem, we propose (1) an importance sampling method and (2) a method that uses curvature information of the extreme event boundary to estimate small probabilities. We illustrate the application of our approach to quantify the probability of extreme tsunami events on shore, which results in a PDE constrained optimization problem governed by the shallow water equations. We study the role of the nonlinearity in the equations for observing large tsunamis and dominant mechanisms leading to large tsunamis on shore. This is joint work with Shanyin Tong and Eric Vanden-Eijnden from NYU.



Don’t miss out our Upcoming events!

|| Subscribe to our FAU DCN-AvH newsletter


Don't miss out our posts on Math & Research!

Transition Layers in Elliptic Equations By Maicon Sônego   Stable transition layers in an unbalanced bistable equation Consider the following semi-linear problem where are positive functions in ; is a positive parameter and We assume that the functions satisfy ; for all ; there is a […]
Randomized time-splitting in linear-quadratic optimal control By Daniël Veldman   Introduction Solving an optimal control problem for a large-scale dynamical system can be computationally demanding. This problem appears in numerous applications. One example is Model Predictive Control (MPC), which requires the solution of several optimal control […]
© 2019-2022 Chair for Dynamics, Control and Numerics - Alexander von Humboldt Professorship at FAU Erlangen-Nürnberg, Germany | Imprint | Contact