Skip to content
Back Home
  • Home
  • The Chair
    • About
    • Our Head
    • Our Team
    • Contact
    • Past Members
  • Research
    • Publications
    • Projects
    • Teaching
    • Initiatives
    • Posts on Math and Research
    • Contributors
  • Join us!
    • Careers
    • Events
    • Past Events
  • Resources
    • Seminars / Lectures
    • Math to go!
    • Academy
    • GitHub
  • Search
Back Home
  • Search
  • Home
  • The Chair
    • About
    • Our Head
    • Our Team
    • Contact
    • Past Members
  • Research
    • Publications
    • Projects
    • Teaching
    • Initiatives
    • Posts on Math and Research
    • Contributors
  • Join us!
    • Careers
    • Events
    • Past Events
  • Resources
    • Seminars / Lectures
    • Math to go!
    • Academy
    • GitHub

Robust neural ODEs

Published June 20, 2022

The code implements the gradient regularization method of robust training in the setting of neural ODEs.
Various jupyter notebooks are included that generate plots comparing standard to robust training for 2d point clouds.

Code:

A good starting point is robustness_plots.ipynb

Code is based on GitHub: borjanG : 2021-dynamical-systems that uses the torchdiffeq package GitHub : rtqichen: torchdiffeq

 

|| Go to the Math & Research main page

You may also like

Published July 30, 2022

Sheep Herding Game

Author: Daniël Veldman, FAU DCN-AvH Code: A sheep herding game in MATLAB developed for the Long Night of Science #NdW22 (Lange Nacht […]

Published July 23, 2022

Lloyd’s Algorithm

Author: Martín Hernández, FAU DCN-AvH Code: In this repository, we show a code for Lloyd’s algorithm. Also called Voronoid iteration, this is […]

Published August 4, 2023

Combined convection and diffusion in a network. A numerical analysis

Combined convection and diffusion in a network. A numerical analysis. The problem: a contaminant in a network of water pipes Imagine that […]

Published July 3, 2023

Reinforcement learning as a new perspective into controlling physical systems

Reinforcement learning as a new perspective into controlling physical systems Introduction Optimal control addresses the problem of bringing a system from an […]

Post navigation

  • Previous post Optimal design of sensors and actuators by E. Zuazua
  • Back to post list
  • Next post Mini-workshop: “Recent Advances in Analysis and Control”
Last news
  • FAU MoD workshop L. Liverani / H. Holthusen
  • A domain decomposition framework for coupling physics-based and data-driven models in multi-physics problems
  • CIRM Workshop – HYCO: A Hybrid-Cooperative Strategy for Data-Driven PDE Model Learning
  • ACOMEN2025
  • CIRM Workshop: Mathematical and Computational Foundations of Digital Twins

©  2019 - 2025  – All rights reserved - FAU DCN-AvH Chair for Dynamics, Control and Numerics - Alexander von Humboldt Professorship at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany Imprint | Privacy | Accessibility | Contact