Skip to content
Back Home
  • Home
  • The Chair
    • About
    • Our Head
    • Our Team
    • Contact
    • Past Members
  • Research
    • Publications
    • Projects
    • Teaching
    • Initiatives
    • Posts on Math and Research
    • Contributors
  • Join us!
    • Careers
    • Events
    • Past Events
  • Resources
    • Seminars / Lectures
    • Math to go!
    • Academy
    • GitHub
  • Search
Back Home
  • Search
  • Home
  • The Chair
    • About
    • Our Head
    • Our Team
    • Contact
    • Past Members
  • Research
    • Publications
    • Projects
    • Teaching
    • Initiatives
    • Posts on Math and Research
    • Contributors
  • Join us!
    • Careers
    • Events
    • Past Events
  • Resources
    • Seminars / Lectures
    • Math to go!
    • Academy
    • GitHub

Robust neural ODEs

Published June 20, 2022

The code implements the gradient regularization method of robust training in the setting of neural ODEs.
Various jupyter notebooks are included that generate plots comparing standard to robust training for 2d point clouds.

Code:

A good starting point is robustness_plots.ipynb

Code is based on GitHub: borjanG : 2021-dynamical-systems that uses the torchdiffeq package GitHub : rtqichen: torchdiffeq

 

|| Go to the Math & Research main page

You may also like

Published April 7, 2022

The interplay of control and deep learning

Author: Borjan Geshkovski, MIT The interplay of control and Deep Learning By Borjan Geshkovski   It is superfluous to state the impact […]

Published September 13, 2022

Training of neural ODEs using pyTorch

Start with tutorials to get familiar with the code Tutorial 1: Train a neural ODE based network on point cloud data set […]

Published December 9, 2021

Augmented Lagragian preconditioners for incompressible flow

Author: Alexei Gazca, FAU DCN-AvH Code:   Below is a description of the types of problems that can be tackled using the […]

Published August 4, 2023

Combined convection and diffusion in a network. A numerical analysis

Combined convection and diffusion in a network. A numerical analysis. The problem: a contaminant in a network of water pipes Imagine that […]

Post navigation

  • Previous post Optimal design of sensors and actuators by E. Zuazua
  • Back to post list
  • Next post Mini-workshop: “Recent Advances in Analysis and Control”
Last news
  • FAU MoD Lecture: Bridging numerics and scientific machine learning for industrial applications
  • Benasque XI Workshop-Summer School 2026: Partial differential equations, optimal design and numerics
  • MLPDES26, Machine Learning and PDEs Workshop (2026)
  • FAU MoD Workshop G. Fantuzzi / D. Martonová
  • Development of a Modular Multi-Agent System Architecture for Enhanced Flexibility and Scalability

©  2019 - 2026  – All rights reserved - FAU DCN-AvH Chair for Dynamics, Control and Numerics - Alexander von Humboldt Professorship at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany Imprint | Privacy | Accessibility | Contact