Skip to content
Back Home
  • Home
  • The Chair
    • About
    • Our Head
    • Our Team
    • Contact
    • Past Members
  • Research
    • Publications
    • Projects
    • Teaching
    • Initiatives
    • Posts on Math and Research
    • Contributors
  • Join us!
    • Careers
    • Events
    • Past Events
  • Resources
    • Seminars / Lectures
    • Math to go!
    • Academy
    • GitHub
  • Search
Back Home
  • Search
  • Home
  • The Chair
    • About
    • Our Head
    • Our Team
    • Contact
    • Past Members
  • Research
    • Publications
    • Projects
    • Teaching
    • Initiatives
    • Posts on Math and Research
    • Contributors
  • Join us!
    • Careers
    • Events
    • Past Events
  • Resources
    • Seminars / Lectures
    • Math to go!
    • Academy
    • GitHub

Robust neural ODEs

Published June 20, 2022

The code implements the gradient regularization method of robust training in the setting of neural ODEs.
Various jupyter notebooks are included that generate plots comparing standard to robust training for 2d point clouds.

Code:

A good starting point is robustness_plots.ipynb

Code is based on GitHub: borjanG : 2021-dynamical-systems that uses the torchdiffeq package GitHub : rtqichen: torchdiffeq

 

|| Go to the Math & Research main page

You may also like

Published July 23, 2022

Lloyd’s Algorithm

Author: Martín Hernández, FAU DCN-AvH Code: In this repository, we show a code for Lloyd’s algorithm. Also called Voronoid iteration, this is […]

Published December 9, 2021

Augmented Lagragian preconditioners for incompressible flow

Author: Alexei Gazca, FAU DCN-AvH Code:   Below is a description of the types of problems that can be tackled using the […]

Published July 3, 2024

Clustering in pure-attention hardmax transformers and its role in sentiment analysis

Clustering in pure-attention hardmax transformers and its role in sentiment analysis This post provides an overview of the results in the paper […]

Published November 14, 2025

Sentiment Analysis with Transformers

Sentiment Analysis with Transformers This post includes an app SentimentAnalysisTransformersApp created for a public outreach activity organized by the Chair for Dynamics, […]

Post navigation

  • Previous post Optimal design of sensors and actuators by E. Zuazua
  • Back to post list
  • Next post Mini-workshop: “Recent Advances in Analysis and Control”
Last news
  • Wissenschaftliche Mitarbeiterstelle in „PDE und Maschinelles Lernen”
  • Research assistant position in “PDE and Machine Learning”
  • FAU MoD Workshop G. Fantuzzi / D. Martonová
  • A workshop in Speinshart: Scientific center for AI and SuperTech
  • Benasque XI Workshop-Summer School 2026: Partial differential equations, optimal design and numerics

©  2019 - 2025  – All rights reserved - FAU DCN-AvH Chair for Dynamics, Control and Numerics - Alexander von Humboldt Professorship at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany Imprint | Privacy | Accessibility | Contact